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Abstract. Proper application of error analysis techniques remains uncommon in most EXAFS
analyses. Consequently, many researchers in the community remain distrustful of parameter-
error estimates. Here, we demonstrate the accuracy of conventional methods through r-space
fits to simulated data. Error estimates are determined as a function of r by averaging many scan
simulations in r-space. The statistical-χ2 value can then be calculated. Since

〈

χ
2
〉

corresponds
to the degrees of freedom in a fit, we check Stern’s rule for the number of independent data
points in an EXAFS spectra. Finally, we apply these simple methods to real data from a Cu foil,
highlighting the overwhelming role of systematic errors in theoretical backscattering functions
and pointing to the ultimate power of the EXAFS technique if such errors could be removed.

1. Introduction

Systematic uncertainties, such as those in calculated backscattering amplitudes, crystal glitches,
etc. (e.g. Ref. [1]), not only limit the ultimate accuracy of the EXAFS technique, but also
affect the covariance matrix representation of real parameter errors in typical fitting routines
[2]. Despite major advances in EXAFS analysis and in understanding all potential uncertainties
[1, 3–8], these methods are not routinely applied by all EXAFS users. Consequently, reported
parameter errors are not reliable in many EXAFS studies in the literature. This situation
has made many EXAFS practitioners leery of conventional error analysis applied to EXAFS
data. However, conventional error analysis, if properly applied, can teach us more about our
data, and even about the power and limitations of the EXAFS technique. Here, we describe
the proper application of conventional error analysis to r-space fitting to EXAFS data. Using
simulations, we demonstrate the veracity of this analysis by, for instance, showing that the
number of independent data points from Stern’s rule [9] is balanced by the degrees of freedom
obtained from a χ2 statistical analysis. By applying such analysis to real data, we determine the
quantitative effect of systematic errors. In short, this study is intended to remind the EXAFS
community about the role of fundamental noise distributions in interpreting our final results.



2. Conventional χ2-based error methods in EXAFS

Most applications of error analysis revolve around determining the statistical-χ2 parameter [10],

χ2 =
Nind
∑

i=1

(yi − yf,i)
2

s2
i

, (1)

where yi are the measured data, yf,i are the values from a fit using a model with p1, p2,...,pNfit

fitting parameters, si are the standard deviations of the data, and Nind is the number of
independent data points. It is this last quantity that generates confusion regarding χ2 methods
in EXAFS, and will be further discussed below. In any case, if one applies equation 1 for known
yf,i, each term in the sum should average to unity assuming a normal error distribution, and the
sum should total to Nind, on average. For every fit parameter used to determine yf,i, the sum
will be reduced by one; that is, the degrees of freedom in a fit are ν = Nind − Nfit.

As χ2 is calculated from data with a statistical distribution, χ2 itself has a distribution with
〈

χ2
〉

= ν. If one has yf,i, si, and Nind, one can determine χ2, and hence the errors on the
final fitting parameters pi. These errors are typically calculated as in the Levenberg-Marquardt
method [2] from the covariance matrix, based on the curvature of χ2 at its minimum value with
respect to pi. This procedure assumes not only that χ2 is quadratic from pi = 〈pi〉 to 〈pi〉 ± σi,
where σi is the standard deviation error on 〈pi〉, but also does not account for correlations with
other parameters, except by examining the off-diagonal elements of the full covariance matrix.
We have therefore implemented an alternate, more general method [2, 11] where one performs
several fits, holding a given pi at some ∆i away from its best-fit value, pi = 〈pi〉 ± ∆i. Since all
the other parameters are allowed to vary in such a fit, ν is increased by one. When one finds
the maximal deviation from 〈pi〉 where χ2 =

〈

χ2
〉

+ 1, pi = 〈pi〉 ± σi, where σi is one standard
deviation. Note that this method can easily be extended to yield asymmetric error bars.

These procedures rely on an accurate determination of Nind to properly evaluate equation 1.
In a purely k-space situation, Nind is merely the number of data points collected in a spectrum,
assuming good energy resolution [12]. However, since data are typically fit over some range ∆r

in an r-space fit, Nind = 2 (∆r/δr + 1), where δr is the the step-size in r-space, and the factor
of 2 comes about because each data point in r-space has a real and an imaginary component.
Since a Fast Fourier Transform is typically used, data are collected with a constant step size
in k. Therefore, the number of data points in k-space is Nk = kmax/δk + 1, where kmax is the
maximum k value measured. Note that in any Fourier transform (FT), the total number of
independent data points cannot change; thus, Nk = Nr = 2rNy/δr, where rNy is the maximum r
value given by the Nyquist theorem, rNy = π/(2δk). Combining these equations, one can write

Nind =
2∆k∆r

π
+ 2 +

2∆rδk

π
. (2)

The first two terms, colloquially known as “Stern’s rule”, give Nind as derived in a famous paper
[9] that was the first to point out that the constant offset, which we refer to as c, should be two
for fits that don’t extend to either r = 0 or rNy. The third term is not significant until ∆r ∼ 30
Å, and is therefore ignored in the following discussion in favor of Stern’s result.

Before moving on, some particular points must be made. The ability to resolve two peaks
in a FT is actually given by half the step-size in r-space, owing to the complex (i.e. real and
imaginary part) nature of the FT. Since this degree of resolution isn’t obvious in a plot of the
FT magnitude, virtually every researcher resorts to a common trick that make FTs easier to
visually interpret: data are “padded” with χ(k) = 0 to a k well beyond kmax in the real data.
The sum in equation 1 is therefore carried out over some number of data points in, say, r-space,
Nr > Nind. However, since these points are no longer independent, the final sum must be scaled:

χ2 =
Nind

Nr

Nr
∑

i=1

(yi − yf,i)
2

s2
i

. (3)



Finally, it is important to note that when one minimizes χ2 as the goodness-of-fit parameter,
the weighting of the data by si eliminates any effect from k-weighting in the final fit result.

3. Example application: simulated noise and Stern’s rule

Random noise can be determined in real EXAFS data by collecting many scans to determine 〈yi〉
and si (here, the standard deviation of the mean) for each data point. Even some of the quasi-
statistical noise in the background absorption functions can be accounted by performing the
averages after background removal on individual scans. Determining si in r-space analytically
from k-space measurements can be performed [13]. We circumnavigate this issue in the RSXAP
codes [14] by transforming individual k-space scans and calculating 〈yi〉 and si directly in r-space.

Here, we test the methods in section 2 by adding Gaussian noise to simulated χ(k) data
generated with the FEFF code [15]. In this way, systematic errors, including in the background
removal, are negligible. Noise is added to 100 scans using the Mersenne Twister algorithm [16]
which are used to calculate the average r-space spectra and si. It is necessary to use a fairly
large number of scans so that the determination of the si are reliable, and to ensure that no si

estimates are erroneously too small, causing a singularity in equation 3. Such simulations have
other uses. Elsewhere in these proceedings, we show how one can use simulations in conjunction
with the F -test [17, 18] to judge the probable success of an experiment given the expected data
quality [19]. In addition, we have determined that the method for parameter error determination
described in section 2 is accurate by comparing errors determined with that method to the 〈pi〉
distribution determined by fitting each of the 100 simulated scans individually.

Given the demonstrated efficacy of these methods, we now perform a set of simulations to
generate the χ2 distribution, and therefore determine ν and verify Stern’s rule (equation 2), and
especially the need for the factor of c = 2. By performing many fits to simulated spectra, we
can vary ν (and thus

〈

χ2
〉

) by varying ∆r. A plot of
〈

χ2
〉

vs. ∆r should then be a straight line,
with a slope of 2∆k/π and an intercept of 2 − Nfit, according to Stern’s rule.

The simulations for this purpose used only the first three single-scattering paths from the
Cu structure (RCu−Cu = 2.55, 3.61, and 4.42 Å). Typical constraints were employed, such as
holding the threshold energy E0 shifts equal for each path. Ultimately, Nfit = 8, with each fit
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Figure 1. (a) Example of a single simulation with error bars, together with a fit between
the limits shown by the vertical dashed lines. Outer envelope is the FT magnitude, and the
modulating inner line is the real part of the FT, calculated between 2.5 and 18.0 Å−1, with a
0.3 Å−1-wide Gaussian window. (b) Histogram of χ2 values with a fit to the χ2 distribution.
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vs. r-range for fits to simulated Cu data. Linear fit gives ν as a function of ∆r,
with ν = Nind − Nfit and Nfit = 8. Each data point represents 40,000 simulations.

ranging from 2.5− 18 Å−1, using a Gaussian window of width 0.3 Å−1. The r-range was varied
from ∆r = 4.3 − 2.3 = 2.0 Å to ∆r = 6.5 − 1.0 = 5.5 Å in 0.5 Å increments. A total of 320,000
such simulations were used for this experiment.

Figure 1 shows an example of one simulated data set with error bars (based on 100 individual
simulations, each), together with a histogram of χ2 values from 5000 fits to such spectra. Figure
2 shows

〈

χ2
〉

as a function of ∆r for all these fits, together with a linear fit. This fit determines
∆k = 15.8 ± 0.1 Å−1 and c = 2.5 ± 0.2, in good agreement with the known value of ∆k = 15.5
Å−1 and the Stern value of c = 2. Although we do not currently have an explanation for the
small discrepancy between these results and those expected from Stern’s rule, we find, at worst,
that Stern’s rule gives a lower limit for Nind, and therefore provides a good working estimate.

4. Real data and systematic error effects

The above results rely on using data simulated with the actual backscattering functions used
in the fits, thereby ascribing systematic error sources to the fitting codes (i.e. round-off error).
Real data have many other non-random sources of error, including problems with background
removal, crystal glitches, harmonic content, etc. Careful treatments of these effects are possible
[20, 21]. Nevertheless, even relatively clean data will benefit from a conventional error analysis:
the calculation of a real χ2 from a fit will indicate whether the data are limited by systematic
or random errors when compared to ν. Moreover, it has been shown [1] that the main effect of
systematic errors is to produce an offset, χ2

0, in an experimentally determined χ2; that is, while
varying a parameter pi in a fit to real data, χ2

exp(pi) ≈ χ2
rand(pi) + χ2

0. Therefore, the procedure
outlined above will still generate the random component of the error on a given parameter pi.

An example of a case where random errors play a dominant role is given in reference [19].
Here, we give an example of data that is limited by systematic errors. For this purpose, we have
chosen data on a Cu foil collected at 50 K, since the FEFF code should produce its best results
for this model system. A total of 8 scans were collected to calculate 〈yi〉 and si in r-space (figure
3). The si are corrected for the limited number of scans using Student’s t factor [23]. The data
were fit in a similar manner to those in section 2, except that two multiple scattering paths were
explicitly included, and a “kitchen sink” path was also used including all other paths with four
scattering legs or less out to 6 Å. The fit results are given in table 1. The fitted χ2 is very large,
and attempts to ascertain parameter errors as in section 2 were not practical; therefore, σp were
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Figure 3. (a) Fit results for real Cu foil data. Data were transformed between 2.5 and 15.8
Å−1 with a 0.3 Å−1-wide Gaussian window. Data are from the average of 8 scans. Error bars
(difficult to discern in this plot, see (b)) were determined from the standard deviation of the
mean (sdom) of these scans. (b) Error bar magnitude from data in (a).

estimated by performing separate fits to each of the 8 scans.
There are a number of important features of these fits with regard to the current subject.

First, the fits are quantitatively excellent on the scale of EXAFS fits in general. Moreover,
the absolute differences between the bond lengths implied by diffraction and those measured
by EXAFS are quite small, consistent with other model compounds [1]. However, the absolute
differences are very much larger than expected from the estimate of the random errors on the
bond lengths. These errors are, in fact, the maximum estimated errors, as both FEFF and
RSXAP become unreliable at higher precision due to round-off errors. In addition, the fit in
figure 3 does not pass through the estimated error bars, which are quite small and difficult to
see in the figure. The biggest problem in this fit is the χ2/ν estimate, which is nominally unity
in a statistically-limited fit. This fit, therefore, is strongly limited by systematic errors. In fact,
these data are far better than need be, given the systematic error level: the random errors could

Table 1. Fit results from Cu foil data at 50 K, between 2.0 and 4.4 Å (figure 3). Stern’s rule
gives ν = 8.5. Rdiff are from diffraction measurements at 298 K, corrected to 50 K for thermal
expansion [22]. Multiple scattering is included, but only single scattering paths are reported.

path N Rdiff R(Å) σ2(Å2)

Cu-Cu 12 2.5456 2.5376(1) 0.00272(1)
Cu-Cu 6 3.6001 3.5906(1) 0.00406(1)
Cu-Cu 24 4.4092 4.4051(1) 0.00482(1)

∆E0 3.78(1)
S2

0 0.8210(3)
R(%) 4.62
χ2/ν ∼13,000



be
√

χ2/ν ∼ 100 times larger before they are of similar magnitude as the systematic errors.
Normally, one might ascribe the enhanced

√

χ2/ν to deficiencies in the fitting model; however,
this fitting model is well founded. It has been previously shown by comparisons between fits to
model-system data using experimentally and theoretically determined backscattering functions
that the main source of systematic error is in the backscattering calculation [1, 5, 24]. Therefore,
an important result given the extremely small errors in reproducibility, is that the true potential
of the EXAFS technique is still far from being reached, and vast improvements can still be made
to backscattering codes that could revolutionize the field.

5. Conclusions

After reviewing proper evaluations of the statistical-χ2 and fit degrees of freedom ν, simulations
of simplified Cu EXAFS were used to generate statistically-limited fits. By performing many
such fits, the accuracy of the χ2 distribution was verified, as was Stern’s rule for determining
the number of independent data points Nind in a spectrum, including the extra factor of +2.
Using the same techniques on real data from a Cu foil produced very high quality fits that were
severely limited by systematic differences between the data and the theoretically calculated
backscattering functions. It is suggested that routine application of these techniques will allow
experimenters to properly quantify errors when limited by random noise, and to also allow for
determining the magnitude of systematic errors in real data.
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