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Drug persistence - from antibiotics to cancer therapies

Karl Kochanowski*,#, Leanna Morinishi*, Steven Altschuler#, and Lani Wu#

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 
California, USA

Abstract

Drug-insensitive tumor subpopulations remain a significant barrier to effective cancer treatment. 

Recent works suggest that within isogenic drug-sensitive cancer populations, subsets of cells can 

enter a ‘persister’ state allowing them to survive prolonged drug treatment. Such persisters are 

well-described in antibiotic-treated bacterial populations. In this review, we compare mechanisms 

of drug persistence in bacteria and cancer. Both bacterial and cancer persisters are associated with 

slow-growing phenotypes, are metabolically distinct from non-persisters, and depend on the 

activation of specific regulatory programs. Moreover, evidence suggests that bacterial and cancer 

persisters are an important reservoir for the emergence of drug-resistant mutants. The emerging 

parallels between persistence in bacteria and cancer can guide efforts to untangle mechanistic links 

between growth, metabolism, and cellular regulation, and reveal exploitable therapeutic 

vulnerabilities.
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References of special (*) or outstanding (**) interest:
•(*) Brauner et al. [5]: review that provides a conceptual framework to distinguish resistance, tolerance, and persistence
•(**) Levin-Reisman et al. [57]: provides direct evidence that bacterial tolerance precedes the emergence of resistance in vitro
•(*) Van den Bergh et al. [55]: stationary bacterial cultures exposed intermittently to antibiotics rapidly evolve to increase rates of 
persister formation, suggesting that the rate of persister formation is an evolvable trait.
•(**) Sharma et al. [2]: hallmark paper reporting the emergence of a reversible drug-tolerant subpopulation upon treatment of a EGFR-
addicted NSCLC cell line with EGFR inhibitors.
•(*) Hata et al. [10] and Ramirez et al. [58]: provide evidence that drug-resistant lung cancer cell populations can emerge from an 
initial pool of drug-tolerant cells.
•(*) Hangauer et al. [11]: shows that various persister cell models are vulnerable to inhibition of the lipid hydroperoxidase GPX4, 
presumably through disruption of glutathione metabolism.
•(*) Vinogradova et al. [46] and Roesch et al. [35]: demonstrate that suppressing the activity of KDM5 or KDM6, respectively, inhibits 
the emergence of drug-tolerant cells in various cancers, highlighting the importance of chromatin-remodeling in the formation of 
persistence.
•(**) Shaffer et al. [52]: reports existence of transient pre-resistant cell states characterized by sporadic expression of bypassing 
resistance markers in drug exposed cancer cell populations, suggesting a ‘tolerance by sporadic bypassing’ mechanism.
•(*) Su et al. [31]: shows that adaptive resistance of patient-derived melanoma cell lines to BRAF inhibition occurs as a cell-state 
transition to a mesenchymal-like state. Arresting the transition halts the development of drug resistance.
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Introduction

The last decades have brought the arrival of an impressive arsenal of therapies for treating 

cancer. At the same time, countless drug resistance mechanisms have been discovered by 

which cancer cells avoid and subvert drug treatment. Tumor subpopulations that do not 

respond to therapeutics are a significant barrier in the treatment of cancer, and cancer 

remains a major global killer [1].

Recently, it has become clear that even within otherwise drug-susceptible isogenic cancer 

populations, a subset of cells can enter a persister state, in which they survive prolonged 

drug exposure [2] (see table 1 for a list of cancer persister models). While this persister state 

has only recently started to draw attention in mammalian cells, bacterial persisters were 

described in literature as early as 70 years ago [3]. The past decade has seen a surge in 

studies elucidating the mechanisms underlying bacterial antibiotic persistence – as recently 

summarized in a string of excellent reviews [4–8]. In this review, we compare and contrast 

persistence in bacteria and cancer cells, and highlight surprising parallels in the underlying 

persistence mechanisms.

1. Defining persistence – a persistent challenge

Before delving into persistence mechanisms, we must first define what drug persistence is, 

and how it differs from other mechanisms of drug insensitivity (figure 1A).

Bacterial insensitivity to antibiotics is classified phenomenologically into three broad 

categories that can be distinguished experimentally (compared to a reference sensitive 

population; figure 1B), as summarized in [4,5]. The first category, drug tolerance, is the 

ability of cell populations to withstand transient lethal antibiotic concentrations, while 

remaining genetically susceptible [4,5]. Experimentally, tolerance manifests as a decreased 

rate of killing during drug exposure compared to a sensitive reference population (figure 

1B). The second category, drug resistance, is the genetically inherited ability of cells to 

grow at normally lethal antibiotic concentrations [4,5]. Drug-resistant populations show a 

characteristic increase in minimal inhibitory concentration (the lowest drug concentration 

needed to prevent bacterial growth); this increase is absent in drug-tolerant populations. In 

contrast to these two categories, which are defined at the population level, drug persistence 
describes scenarios in which only a subpopulation of cells within a clonal cell population 

survives prolonged antibiotic treatment, while remaining genetically susceptible to 

reapplication of the drug [5,9]. An important feature of bacterial drug persistence is its 

phenotypic reversibility. After drug treatment is stopped, the remaining persister cells will 

eventually re-establish a population showing the same heterogeneous response when 

retreated with the same drug (figure 1B). Experimentally, drug persistence is characterized 

by a survival curve with two phases -an initial steep decline in cell number followed by a 

cell number plateau -, which is absent in drug-tolerant populations [5,7] (figure 1B).

Compared with the converging literature view of how to define and distinguish bacterial 

persisters, terminology is somewhat more diverse in cancer literature. Persistence is 

sometimes used interchangeably with drug tolerance to describe subpopulations that have an 

enhanced (and non-genetic) ability to survive drug treatment [2,10,11]. Various other terms 
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have also been used to describe scenarios in which a phenotypically distinct subpopulation 

survives prolonged drug treatment, including quiescence [12], dormancy [13] or cancer 
stem cells [14]. Throughout this review, we will use the term ‘persistence’ for cases in 
which a subpopulation survives drug treatment but regains sensitivity after drug removal, 
and we reserve the term ‘tolerance’ for cases in which the whole population is more resilient 
to drug exposure.

2. Paths to persistence

How do cells become persisters? We will first briefly discuss mechanisms of bacterial 

antibiotic persister formation, and then relate these to our current understanding of how 

cancer drug persisters emerge. In particular, we will focus on the impact of three factors on 

persistence: cell growth, metabolic activity, and regulatory program.

Arguably the best studied bacterial persistence mechanism are Toxin-Antitoxin (TA) systems 

[15]. These consist of a stable toxin, which arrests growth by inhibiting vital cellular 

processes such as transcription or translation thereby inducing the persister state, and a labile 

antitoxin acting as the antidote [7]. An example is the HipBA module in E. coli, which 

inhibits the glutamyl-tRNA synthetase GltX and thus halts translation [16,17]. Originally 

identified as a mechanism to prevent plasmid loss, TA systems were shown to induce the 

stochastic formation of non-growing persisters in exponentially growing cultures [18].

Recent works have identified additional factors that modulate antibiotic persistence. For 

example, various studies found that the fraction of persisters in different environmental 

conditions is inversely correlated with the population growth rate, as shown e.g. in [19] and 

summarized in [5]. Additionally, stresses, such as salt-stress, can increase the rate of 

persister formation [20]. Particularly interesting types of environmental stress are shifts in 

nutrient availability: bacteria undergoing nutrient shifts, which are typically accompanied by 

a transient reduction in growth rate, show dramatically elevated persister fractions [21–24]. 

The examples above evoke a ‘tolerance by slow growth’ [5] scheme, in which slow-growing 

bacteria tend to become more resilient against antibiotic treatment, regardless of how exactly 

the reduction in growth rate came about.

This increase in antibiotic persistence at slow growth could of course simply be the 

consequence of a reduction in the activity of the antibiotic targets, i.e. the cellular 

transcription/translation machinery. However, mounting evidence suggests that antibiotic 

persistence in fact relies on an active cellular program. Various studies have demonstrated 

that the (p)ppGpp-mediated bacterial starvation program (also termed “stringent response”) 

modulates the rate of persister formation [24–26]. Importantly, mutant strains lacking the 

stringent response program are readily killed by antibiotic treatment even in starvation 

conditions [25], suggesting that absence of growth alone is not sufficient to induce 

persistence.

Finally, recent studies have shown that persisters can be selectively killed off by modulating 

their metabolic activity [20,25,27,28]. For example, addition of metabolic stimuli that 

promote an increase in proton-motive force by the oxidative electron transport chain triggers 

the uptake of aminoglycoside antibiotics in persister cells, thereby enhancing persister 
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killing [27]. These observations indicate that persisters retain a distinct -and active -

metabolic state, and highlight the importance of metabolism for persistence [6,29].

Collectively, these studies paint a picture of bacterial antibiotic persistence with three main 

themes. The first theme is the recurrent observation that slow bacterial growth tends to favor 

persister formation. The second theme is a distinct metabolic state in persisters, which leaves 

them vulnerable to metabolic perturbations. The third theme is the reliance on a specific 

regulatory program involving the stringent response, which can be directly targeted to 

reduce persister formation.

Do these themes have parallels in cancer drug persisters? Recent literature suggests that this 

is indeed the case. The first hint stems from the observation that slow-growing cancer cells 

also tend to be more drug-tolerant in a wide range of cell types and model systems [12,30–

35]. Such drug-tolerance has been reported during exposure to chemo-[35] and targeted [30] 

therapy, for adherent [32] and suspension [31] cells in vitro, as well as in vivo in mouse 

models [12], suggesting a general phenomenon.

Surprisingly, there is also evidence that metabolism might be an important determinant of 

drug persistence in cancer cells [11,13,35–38]. Recent works by Hangauer et al. and 

Viswanathan et al. demonstrated that various persister models are vulnerable to inhibition of 

the lipid hydroperoxidase GPX4 [11,37]. GPX4 catalyzes the glutathione-dependent 

reduction of lipid peroxides, which cause oxidative stress, and thereby prevents the induction 

of ferroptosis, a non-apoptotic form of cell death [39]. This result supports earlier work 

showing that the enzyme aldehyde dehydrogenase 1 A1 (ALDH1A1)—which is also 

involved in lipid peroxidation and expressed in many cancer stem cells—is required to 

maintain drug persistence [36]. Moreover, recent reports indicate that persisters rely more 

heavily on oxidative phosphorylation (OXPHOS), and are more sensitive to OXPHOS 

inhibitors [13,35,40]. In particular, these subpopulations were reported to have a diminished 

‘glycolytic reserve’, which is the ability to increase glucose uptake for ATP generation if 

OXPHOS is inhibited, suggesting impaired metabolic plasticity [13]. Whether these changes 

in metabolic activity are an adaptation to redox stress [41,42], or rather reflect an increased 

demand for ATP [38], is currently unclear.

Finally, several lines of evidence suggest that drug persistence in cancer cells also relies on a 

distinct regulatory program [43], and particularly pinpoint two regulatory processes. The 

first process is epithelial-to-mesenchymal transition (EMT), which causes cells to gradually 

lose their differentiation status and become more stem-cell like [44]. Expression of EMT/

stem-cell markers is a frequent hallmark of persister subpopulations, which can be exploited 

to isolate persister cells within isogenic populations [30,31,35,36,45]. Second, several lines 

of evidence point towards chromatin remodeling as a key step in persister formation 

[2,32,46,47]. For example, inhibition of the histone demethylases KDM5 and KDM6 were 

found to suppress the emergence of persisters [35,46]. These findings are particularly 

intriguing given that epigenetic and metabolic changes seem to be closely linked in many 

cancers. A prime example are mutations in metabolic enzymes, such as isocitrate 

dehydrogenase 1 and 2, which can modulate the epigenetic state of cells through the 

accumulation of ‘oncometabolites’ such as 2-hydroxyglutarate, and thereby influence cancer 

Kochanowski et al. Page 4

Curr Opin Syst Biol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



progression and drug survival [48,49]. The involvement of EMT and chromatin remodeling 

suggests the requirement for a distinct regulatory program to ensure the formation and/or 

maintenance of a persister state, analogous to the aforementioned stringent response 

dependent regulation in bacterial persisters. As we will discuss in more detail in the final 

section of the review, a major open question is how these processes are linked 

mechanistically in cancer persisters.

Despite these striking parallels, there are also bacterial persistence mechanisms that do not 

have a direct analog in cancer. For example, a study found that E. coli treated intermittently 

with Ampicillin for different durations quickly evolved population lag times (the time it 

takes to transition from stationary to exponential growth phase) to match the duration of the 

antibiotic exposure, while the maximal growth rate did not change [50]. To our knowledge, 

there is only one example of such ‘tolerance by lag’ [5] in the cancer literature [51]. 

Nevertheless, since cancer therapies often involve drug administration at regular time 

intervals, it is at least conceivable that similar selective pressures might also affect cancer 

cell populations.

Conversely, there are also cancer persistence mechanisms with no direct bacterial equivalent. 

A compelling example was recently presented by Shaffer et al [52]. In an elegant set of 

experiments in patient-derived melanoma cell lines, the authors demonstrated the existence 

of transiently pre-resistant subpopulations characterized by sporadic expression of resistance 

markers, for example alternative oncogenes such as EGFR, which can become more tolerant 

of a given targeted therapy. Conceptually, such ‘tolerance by sporadic bypassing’ is similar 

to the sporadic high expression of multidrug efflux pumps in bacterial populations [53]. It is 

currently not clear whether these pre-resistant cancer subpopulations also adopt a non/slow-

growing state. Another open question is whether this mechanism constitutes a ‘bug or 

feature’ of mammalian regulatory networks: is the sporadic activation of signaling kinases 

merely the inevitable consequence of stochastic fluctuations within highly nonlinear 

signaling networks, or an evolved bet-hedging strategy? As we will discuss in the next 

section, recent evidence suggests that at least bacterial persistence may indeed be an 

evolvable trait.

3. Persistence and evolution

Given the ubiquitous cell-to-cell variability in gene expression, it is tempting to assume that 

persistence is an inevitable byproduct of life (‘persistence as stuff happens’) [54]. However, 

there is some evidence that bacterial persistence is actually an evolvable trait [55,56]. E. coli 
cultures exposed to different frequencies of antibiotic treatment quickly evolve an inverse 

relationship between persister fractions and treatment interval, without altering their 

antibiotic resistance [55]. This observation is of particular importance given evidence that 

antibiotic tolerance acts as a stepping-stone on the path to resistance. A study by Levin-

Reisman et al. demonstrated in a series of in vitro evolution experiments that Ampicillin-

resistant E. coli mutants emerge from the pool of initially only Amp-tolerant mutants [57]. A 

potential explanation for this result is that the space of mutations conferring tolerance – and 

therefore the probability to establish a tolerance-inducing mutation – is substantially larger 

than the space of mutations conferring resistance [5].
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Interestingly, recent work suggests that cancer persister cells are also an important reservoir 

for the emergence of resistant cell lines in vitro [10,58]. Hata et al. focused on the clinically 

relevant EGFR-T790M gatekeeper mutation, which makes EGFR-mutant non-small-cell 

lung cancer (NSCLC) cells resistant to EGFR inhibitors. The authors found that EGFR-

T790M positive populations not only originate from the selection of pre-existing mutants, 

but can also emerge from the pool of persister cells. Moreover, work by Ramirez et al. 

suggests that even within an initially isogenic EGFR-mutant NSCLC cell population 

exposed to an EGFR-inhibitor, the persister subpopulation ultimately gives rise to different 

mutant populations with diverse resistance mechanisms [58]. These results indicate that the 

evolution of drug resistance is not necessarily restricted towards few attainable bypass 

mechanisms when cell populations first pass through a persister state.

If resistant mutants indeed evolve from the pool of persister cells in a population, a rational 

strategy to minimize their emergence is the elimination of persisters before drug exposure. 

However, as we discussed above, persisters not only emerge spontaneously in untreated 

populations, but can also be induced by various environmental stresses. Recent in vitro 
studies have begun to elucidate the importance of induced persistence, also termed ‘type I 

persistence’ [9], in cancer cell populations [31,45]. Pisco et al. showed in clonally derived 

leukemia cells that the rapid emergence of multidrug resistance 1 (MDR1) mediated 

persisters upon chemotherapeutic treatment is largely driven by induced persistence [45]. 

Whether such ‘Larmarckian induction’ [45] is the exception or the norm in the emergence of 

cancer drug persisters remains an open question. Nevertheless, these works suggest that 

inhibition of the mechanisms that mediate the transition to a persister state during drug 

treatment may help to prevent the emergence of drug resistance in cancer [31,45,58–60].

4. Conclusions and open questions

In this review, we explored the surprising parallels between bacterial and cancer persisters 

that are emerging in recent literature. In particular, both persister types are frequently 

associated with a slow-growing phenotype, show metabolic alterations that leave them 

vulnerable to metabolic perturbations, and rely on a distinct regulatory program that can be 

targeted to prevent persister formation.

Currently, the mechanistic links between the emerging regulatory processes in cancer 

persisters, namely EMT and chromatin remodeling, their slow-growth phenotype, and their 

vulnerability to inhibitors of lipid peroxidation and oxidative phosphorylation [11,13,35–

37], are unclear. Lessons from bacterial research may provide some inspiration. For 

example, recent works have shown that the global coordination of protein expression in 

bacteria heavily depends on the growth rate [61–65] and can be described by few so-called 

‘growth laws’ [66]. It is tempting to speculate that in cancer cells similar mechanisms could 

potentially induce an EMT-type transcriptional program if growth is impaired. Such a 

mechanism might explain the rapid increase in persister fraction that has been observed in 

drug exposed populations [31,45]. Another intriguing question is whether metabolism can 

directly induce persistence in cancer cells, similar to the nutrient-shift induced persisters in 

bacteria [21–24]. Interestingly, recent reports suggest that loss of fumarate hydratase may 

induce EMT through fumarate-mediated changes in epigenetic state [67], thus providing a 
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potential link from metabolism to EMT-induced drug tolerance. Future efforts might identify 

scenarios in which metabolism sits in the driver seat of cancer persister formation.

A major aspect not discussed in this review is the influence of the microenvironment on 

persister formation. Bacteria living in in communities—termed biofilms—tend to have 

higher persister fractions than planktonic cultures [8]. Do nearby cells also affect the 

formation of cancer persisters, for example through direct cell contact or indirectly via 

signaling molecules? In vitro observations have shown that growth factors can attenuate the 

efficacy of oncogene-targeting drug therapy by activating alternative signaling pathways 

[68]. It is conceivable that other molecules present in the tumor microenvironment, such as 

cytokines or metabolites secreted by cancer cells, might also modulate persister formation. 

An important first step will be the systematic identification of tumor microenvironment 

molecules that play a role in the formation and maintenance of cancer persisters. Future 

experiments might also explore the extent to which cell-cell contacts among cancer cells and 

between cancer and stroma cells affect persister formation. Here, the self-organizing 3D 

structure and microenvironment provided by organoid systems may provide interesting new 

research avenues [69].

Finally, the relevance of persisters in clinical settings remains an open question. There is 

indeed evidence that antibiotic persisters play a role in bacterial infections [4]. For example, 

Pseudomonas aeruginosa strains infecting patients with cystic fibrosis show dramatically 

increased persister levels over time, which seems to be main mechanism to cope with 

antibiotic treatment [70]. There is also evidence in murine Salmonella typhimurium 
infections that slow-growing persisters survive antibiotic treatment and drive disease 

progression [71]. In contrast, the role of persisters in tumor progression is more enigmatic. 

So far, evidence is mostly restricted to mouse models [12,72]. For example, slow-growing 

glioblastoma subpopulations were reported to survive initial drug exposure and repopulate 

the tumor after cessation of drug treatment [12]. Assessing the clinical relevance of 

persisters could follow in two steps. First, molecular signatures that are unique for 

preclinical models of cancer persisters will need to be identified. The aforementioned 

signatures of EMT or chromatin remodeling in persisters could provide a starting point. 

Second, the presence of these signatures in clinical samples needs to be validated, for 

example through examination of serial patient biopsies throughout treatment. Ultimately, 

validated signatures could be used to evaluate clinical efficacy of persister-targeting 

therapies, including targeting metabolic vulnerabilities of cancer persisters or preventing the 

transition into a persister state in the first place.
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Highlights

• Drug persistence is frequently observed in bacterial and cancer cell 

populations

• Slow growth, and a distinct metabolic and regulatory state are common 

persister hallmarks

• It is unclear how growth, metabolism, and regulation are linked 

mechanistically in cancer persisters

• Persisters can serve as a reservoir for the emergence of resistant mutants

• Targeting distinct persister vulnerabilities may provide new therapeutic 

avenues
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Figure 1. Schematic of different forms of drug sensitivity.
A) Blue area: Size of cell population. Grey shaded area: duration of drug treatment. 

Sensitivity: cells in a drug-sensitive population are readily killed by the drug. Tolerance: a 

drug-tolerant population is killed at a slower rate than a sensitive population. Pre-existing 

resistance: drug-treatment selects pre-existing resistant mutants (red), which continue 

growing while sensitive cells are being killed. Persistence: persister subpopulations (yellow) 

form either before drug treatment (type II persistence), or are induced by treatment (type I 

persistence), as indicated by yellow question marks, and survive the duration of drug 

treatment. Once treatment is stopped, persisters re-establish a mixed population of sensitive 

and drug-tolerant cells, which remains susceptible to repeated drug exposure. B) 
Corresponding survival curves, plotted as the log number of cells over time during drug 

exposure.
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Table 1.

In vitro persister model systems in cancer (Sorted by cancer origin and cell line name). Corresponding 

references are included in brackets.

Cancer Cell Line Target Drug Susceptibility

Breast BT474 HER2 Labatanib, Trastuzumab BAD/BCL-XL [73]

Breast BT474 HER2 Lapatanib, GPX4 [11]

Carboplatin+Paclitaxel

Breast EVSA-T PI3K PI3 kinase inhibitor KDM5 [46]

Breast SKBR3 HER2 Lapatanib KDM5 [46]

Colon Colo205 BRAF Vemurafenib KDM5 [46]

Gastric
Gastric

GTL-16
MKN-4

MET
MET

Crizotinib, Etoposide
Crizotinib

ALDH1A1 [36]
ALDH1A1 [36]

Lung HCC827 EGFR Erlotinib BCL-2/BCL-XL, pSTAT3 [74],

SOX2 [75]

Lung HCC827 EGFR Gefitinib OCT4 [76], HIF1a, IGF1R [77]

Lung PC9 EGFR Erlotinib BCL-2/BCL-XL, pSTAT3 [74],

KDM5 [46], GPX4 [11]

Lung PC9 EGFR Gefitinib IGF-1R, KDM5 [2], OCT4 [76],

HIF1a, IGF1R [77]

Ovarian JCRB Carboplatin+Paclitaxel GPX4 [11]

Skin
Skin

A375
Hs888

BRAF
BRAF

Vemurafenib
AZ628

GPX4 [11]
KDM5 [46]

Skin M14 BRAF AZ628 KDM5 [46]

T-ALL DND-41 GSI (Compound E) BRD4 [78]

T-ALL KOPT-K1 GSI (Compound E) BRD4 [78]
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