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1-4 A common feature of many approaches to relativistic nuclear collisions 
is that the experimentally observed quantities in inclusive measurements of 
various kinds are calculated by means of a four-dimensional integral of the 
following form: 

Q = J ds J da q s(a) 

where Q is the quantity of interest (a differential cross section, for example), 
s is the two-dimensional vector impact parameter, a is the two-dimensional vector 
position in the plane perpendicular to the beam, and q„(c0 is the local contri­
bution to Q for impact parameter s from the point a. This integral nan be 
recast in the form, 

Q = l2Trs 1ds 1J 2irs2ds2 qCs^Sg) 

where st and s 2 are one-dimensional radial variables measured from the centers 
of the projections of the target and projectile nuclear density distributions 
onto a plane. Finally, for the idealization of nuclei as uniform, sharp surface 
spheres of density p, the integral can be written, 

2R t 2R, 
Q = J |ada / | gdg q(a,f ,P) 

0 0 
where Rj and R 2 are the sharp radii and a and 3 are length variables proportional 
to the number of particles per unit area when the nuclear densities are projected 
onto a plane. 

As an example of how this expression is to be used, consider the question 
of the total cross section for a particle that is to emerge from a relativistic 
nuclear collision. Assuming that all the particles come from the overlap region 
and none from the "spectators," the quantity q = (a+3)p and the total cross 
section is calculated to be, a = irCAjR* + Rf A 2 ] . Similarly, if we wish to 
calculate the total cross section assuming that the yield comes only from single 
knock-on collisions in the overlap region (under the drastic assumption of 
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infinite nucleon-nucleon cross section), then 
3 2 • min(a,e)p and k.o. 2TT AjR* - 1/5 Rj] 

A somewhat more complex application is made in Ref. 4. 
To continue, let us choose to measure the lengths a and (3 in units of 

X = 6.9 fm, which is simply the length of a column one fermi square, which 
Then our integral contains one nucleon when the nucleon density p = 0.145 fm~ 

can be written, 

Q = c j d U i y d(o2 Wtoj.u^) 
0 

where C is a proportionality constant and the de sity function W((o,,(o ) = 
UjOJ2(a)1+i<2). This latter quantity is plotted in Fig. 1 and the boundaries for 
various target and projectile combinations are 
indicated. Such plots are useful to illustrate the 
relative importance of different w 1,u 2 combinations 
and their dependence on the particular target and 
projectile. The quantity W can be defined with 
respect to w and n where w = to + w 2 and ri = u>j/io, 
in which case W(n,ui) = wW(u)j,U)2), Finally, the 
quantity W(r|) [which i.'i the dimensionless analog 
of the quantity Y(n) in Ref. 1] can then be formed 
by projecting that part of the W(r|,u>) function 
which is bounded by flj and f?2, onto the r) axis. 

These generally useful relations allow us to 
do completely analytic calculations for various 
differential cross sections in the firestreak, 

2 3 
rows-on-rows, and knock-on models but are limited Ne4J 
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Fig. 1 

by the unrealistic assumption of sharp nuclear 
surfaces. Fortunately, t' v? may be extended by 
using an approximation in which the projection of 
the diffuse nuclear density distribution onto a 
plane is represented by a circle smoothly joined to an exponential as is shown 
in Fig. 2. The curves show the approximation and the dots are the actual values 
of the projected density for a particular model. 

With this extension we can reconsider such quantities as W(iii1,(ii2) which is 
shown in Fig. 3. The figure was drawn for the case of Ne + U, and the dashed 
lines show the boundaries of the region to be considered, just as they did in 
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Fig. 3 
Fig. 1. However, the presence of the diffuse tails of the nuclear density distri­
butions add a new aspect. The dot-dashed lines divide the surface into four 
regions. Region A concerns that port of the collision process in which the 
diffuse fringe around the projectile collides wit>> ..e fringe around the target. 
In region B the fringe of the projectile is incident on the massive central part 
of the target. In C the central part of the projectile is incident on the fringe 
around the target, and in D the two central regions are incident on eauh other. 
Region D, of course, is identical to the corresponding region in Fig. 1, but the 
boundaries limiting the region have moved in slightly. 

As before the weight function W((0, ,0)2) can be converted to W(r|,u) and then 
projected onto the rrsxis to give W(n), which is the exact analog of the Y(r\) 

fiinctions that were tabulated in Ref. 1. 
These analytic forms of the geometrical weigh'; functions are currently 

being employed in a generalization of the firestreak model which includes effects 
of transparency and the contributions of simple two-body knock-on collisions to 
the inclusive cross sections, but this work is not yet complete. 

The author wishes to thank the University of Munich and the members of 
Prof. Siissman's group for their hospitality during a period when some of the 
above work was done. 

References 
*Work supported by the U.S. Department of Energy and by the Humboldt-Stiftung 
through a U.S. Senior Scientist Award. 

1. W.D.Myers, Nucl. Phys. A296 (1978) 177-188. 
2. J.Hufner and J.Knoll, Nucl. Phys. A290 (1977) 460-492. 
3. R.L.Hatch and S.E.Koonin, Cal. Tech. preprint MAP-2 (September 1978). 
4. J.Randrup, Nordita preprint 78-6 (March 1978). 
5. As was pointed out to me by J.Randrup. 




