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Featured Application: Applications for the speech codecs presented in this paper are Voice over
Internet Protocol, digital cellular communications, and video telephony.

Abstract: As speech-coding standards have improved over the years, so complexity has increased,
and less emphasis been placed on low encoding/decoding delay. We present a low-complexity,
low-delay speech codec based on tree-coding with sample-by-sample adaptive long- and short-code
generators that incorporates pre- and post-filtering for perceptual weighting and multimode speech
classification with comfort noise generation (CNG). The pre-/post-weighting filters adapt based
on the code generator parameters available at both the encoder and decoder rather than the usual
method that uses the input speech. The coding of the multiple speech modes and comfort noise
generation is accomplished using the code generator adaptation algorithms, again, rather than using
the input speech. Codec complexity comparisons are presented and operational rate distortion curves
for several standardized speech codecs and the new codec are given. Finally, codec performance is
shown in relation to theoretical rate distortion bounds.

Keywords: speech-coding; tree coding; perceptual weighting

1. Introduction

Speech-coding has a history of more than 50 years, but the current research directions
involving linear prediction can be traced back to the mid to late 1960s [1,2]. As standards
were developed for narrowband speech (300 to 3400 Hz bandwidth), first in digital tele-
phony over the circuit-switched telephone network, followed by video telephony and
digital cellular applications, bit rates were pushed lower and more complexity and latency
in the encoding/decoding processes were admitted. More recent forays into speech-coding
standards incorporate wideband speech for inputs in the 50 Hz to 7 kHz band and audio
bandwidths of 20 Hz to 20 kHz and additional functionalities involving better input and
output processing. Coupled with computational advances driven by Moore’s Law, these
codecs are extraordinarily complex, and latencies can grow well above 20 msec. High com-
plexity is an obvious challenge in many applications, particularly with respect to battery
power for mobile devices, and increased latency can impact conversational voice quality,
and perhaps more subtly, cellular capacity.

With these ideas in mind, we have conducted research on speech codecs that have
greatly reduced complexity and latency, while attempting to strike a performance balance
between coded speech quality and required bitrate. The codec structure presented in this
paper uses a type of analysis-by-synthesis coding called tree-coding, which employs a
codec that has the form of a tree. The tree depth is much shorter than the usual block length
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used for the code searching in Code-Excited Linear Prediction (CELP). See Section 2 and
references cited there. To reduce complexity, the perceptual weighting filter is moved out
of the analysis-by-synthesis loop and incorporated as pre-weighting and post-weighting
filters. Additionally, the short-term and long-term predictors as well as the codec gain are
adapted on a sample-by-sample basis using what are called backward adaptive algorithms,
which along with the shallow search depth, leads to lower delay than for codecs such as
AMR and EVS. Furthermore, the input speech is classified into modes, which are coded
separately. Since this coder uses multiple modes, perceptual pre- and post-weighting, tree
searching, and a pitch predictor, it is denoted as the Multimode Tree Coder with Pre- and
Post-Weighting and Pitch prediction (MMT-WP) coder.

The particular codec described and analyzed here, MMT-WP, was first presented in [3]
where its performance was compared with a Multimode Tree Coder (MMT) based on G.727
and a squared error fidelity criterion and a MMT with pre-weighting and post-weighting to
add perceptual shaping to the fidelity criterion, designated here as MMT-W, the multimode
tree coder with pre- and post-weighting but no pitch prediction. It is shown in that paper
that the MMT-WP outperforms the MMT codec without perceptual weighting and without
pitch prediction in terms of PESQ-MOS [4]. These results are not included here, and
substantial new discussion and performance results are presented as discussed at the end
of this Introduction. The overall structure of the MMT-WP codec is presented in Section 3,
which briefly introduces the several components.

The G.727 waveform-following codec that uses backward adaptive short-term predic-
tion and quantization is discussed in Section 4. The details of the predictor adaptation are
included in Section 4.1 and the quantizer adaptation is covered in Section 4.2. These de-
scriptions are included since parameters from G.727 are used in the voice activity detection
and mode decisions and the reasons for zeros in the predictor are developed later as well.
The G.727 performance is improved by the addition of a long-term pitch predictor, which
is described in Section 5. The G.727 codec with the long-term pitch predictor forms the
basis for what is called the Code Generator in Tree-Coding. Section 6 very briefly presents
the basic building blocks of a tree coder, including the Code Generator, the Code Tree, the
Tree Search, Algorithm, and the Perceptual Distortion Measure, which is usually inside the
analysis-by-synthesis loop.

The justification and analysis of moving the perceptual distortion measure outside the
analysis-by-synthesis loop are given in Section 7. Section 8 develops the novel voice activity
detection and mode detection procedures using the G.727 codec parameters and shows the
classification results for the sentences used for the initial studies. Zeros were included in the
original G.727 to maintain prediction performance when the all-pole predictor order was
reduced for stability reasons. Zeros are part of the short-term predictor in the MMT-WP
codec for the different reasons briefly discussed in Section 9. Performance analyses of the
MMT-WP codec start in Section 10, where the different Comfort Noise Generation (CNG)
methods and the corresponding bit rates are given and then the performance with the
different CNG coding methods is presented. One of the goals of the current research is to
reduce the codec complexity and Section 11 analyzes the complexity of the MMT-WP codec
per component and per sentence. Section 13 presents comparisons of the operational rate
distortion functions of the MMT-WP codec and the AMR-NB, G.727, and G.728 codecs for
the utterances studied. Comparisons of the operational rate distortion functions with the
rate distortion bounds are given in Section 14 to see how far away these codecs are from
the optimum performance theoretically attainable for the source models developed using
the approach of Gibson and Hu [5].

In comparison to the conference paper in [3], this paper has an extensive discussion
of speech-coding background and current work in Section 2, a clearer development of the
voice activity detection and mode decisions in Section 8, a justification of using zeros in
the predictor in Section 9, a new section, Section 12, describing current voice codecs and
comparisons in terms of complexity, latency, performance, and functionality in relation to
the goals of the current research, an expansion of the performance comparisons to other
standardized codecs in terms of operational rate distortion functions in Section 13, and the
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inclusion of new results on the proposed codec compared to theoretically calculated rate
distortion bounds in Section 14.

Finally, some suggestions for extending the MMT-WP codec for wideband speech
inputs and ideas for other future work are given in Section 15 along with conclusions.

The following section on Speech-Coding Background, Section 2, places this research
in the context of the various speech-coding standards and some on-going speech-coding
research.

2. Speech-Coding Background

In the past few decades, speech-coding research and development has been dominated
by efforts to standardize speech codecs for different applications [6,7]. Initial applications
were for narrowband (NB) or telephone bandwidth speech, which refers to speech occupy-
ing the band 300 Hz to 3400 Hz, and were for wireline telephony in the circuit-switched
digital telephone network and then the emphasis turned to digital cellular communications.
Starting with G.729, a NB speech codec operating at 8 kbps [8], the primary approach
to speech-coding since has been analysis-by-synthesis (AbS) coding using a codebook
excitation, called Code-Excited Linear Prediction (CELP). This codec produced unheard of
performance at that design rate. Interest then turned to developing codecs for wideband
(WB) speech, which occupies the band 50 Hz to 7 kHz, to allow sharper sounding and more
intelligible speech than possible with NB speech. This effort led to the establishment of the
Adaptive Multirate (AMR) codec that has both narrowband and wideband capabilities and
a range of transmitted bit rates [9,10].

More recently, the speech-coding standards activity turned to not only improving
the quality of the coded speech at the desired bit rates for both NB and WB speech, but
also to incorporating the capability of coding music in wider bands and detecting and
compensating for noisy environments. This work led to the standardization of the Enhanced
Voice Services (EVS) codec with truly remarkable performance [11]. Despite the availability
of the new EVS codec, AMR continues to be the most installed and used codec in the World.
AMR-WB is also the currently preferred codec for First Responder voice communications in
the U. S. over LTE by First Net because of its widely installed base and the years of reliable
performance, which is needed for first responder voice communications.

Specific details of the performance, complexity, and latency for many standardized
codecs are available in Gibson [6]. An overview of the field of speech-coding standards
and speech-coding research, including the relationship between speech and audio coding
and future challenges, is presented in [7], wherein extensive key references to the literature
are included. These publications point out the leading role played by the AMR-WB
and AMR-NB speech codecs in VoIP and digital cellular communications throughout the
World. The discussion of the EVS codec points out that this new codec is designed for
multi-functionality by providing the ability to code narrowband, wideband, and super
wideband speech as well as audio. Both increased front end and output signal processing
addresses issues such as background noise in the input and smooth switching between
bandwidths and coding modes at the output. This greatly increased functionality comes
with a corresponding tremendous increase in complexity and an increase in total latency.

Not included in the references [6,7] is a discussion of the application of Deep Learning
to speech-coding, which is receiving some research attention. The success of Deep Learning
for speech recognition has motivated research into the use of deep learning for speech-
coding. Speech-coding is not quite as good a fit for deep neural networks as for speech
recognition, for example, since latencies greater than a few tenths of a second can preclude
person-to-person voice communications and since the encoding and decoding must be
accomplished in real time on mobile handsets (for the primary application). Furthermore,
researchers in neural networks and learning also desire, as is the vogue in deep learning
applications today, end-to-end speech-coding, meaning speech-coding without any, or at
least minimal, domain knowledge.

These research goals are challenging since current speech codecs operate in real time
with under a tenth of a second for encoding cascaded with decoding, are implementable
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on moderate complexity mobile devices, work well for multiple languages, and achieve
excellent quality and intelligibility, allowing the listener to not only understand what is
being said but also to identify the speaker. There are limits to speech codecs today, but
those limits tend to be on the naturalness and intelligibility achievable at lower bit rates
such as 4 kilobits/sec and below, and on increased complexity and ever-increasing latency.

However, the lure of end-to-end speech-coding without the expertise of a domain
expert and trainable in hours or days rather than requiring years for codec design is suffi-
ciently strong that several researchers/research groups have been motivated to approach
the problem [12–16]. The study by Kankanahalli [12] on using deep neural networks
(DNNs) to design an “end-to-end” speech codec captures the challenges faced when de-
signing a speech codec with minimal domain knowledge. First, the term end-to-end is
usually intended to mean that the raw signal is input and the DNN does the rest–no domain
knowledge required. For speech-coding, all the papers choose a window, a window size,
and an overlap of the adjacent windows to package the raw data before passing it on to the
DNN. These choices are significant and domain knowledge and experimentation should be
used in their selection. The work in [12] used a 32 msec (512 samples at 16,000 samples/s)
Hann window with 2 msec overlap (32 samples) for adjacent windows. A greater overlap
of the windows would likely produce better results. The speech codec in [12] employed an
additional much more domain knowledge assumption since it used mel frequency cepstral
coefficients (MFCCs) within a sum of squared error perceptual distortion measure.

In the training process for the DNN-based codec, a separate network is trained for
each bitrate targeted and each network required about 20 h of training on a GeForce GTX
1080 Ti GPU. Encoding and decoding time is nearly equally split and the average time
it takes for encoding and decoding of a 30 msec window using an Intel i7-4970K CPU
(3.8 GHz) and the GeForce GTX 1080 Ti GPU is about 26 msec. The conclusion is that the
DNN codec can operate in real time, albeit on processors that are far faster than embedded
systems or cell phones. The performance of this codec is compared to the AMR-WB codec
and achieves some PESQ-MOS values approximately equal to AMR, but the perceptual
tests showed that the quality was poorer than AMR.

Based on the claims in [12], Zhen, et al. [13] move toward simplifying what appears to
be the primary limitation of that prior work, DNN complexity, by developing a simpler
learning approach to achieving similar performance. Zhen, et al adopt the same window,
window size, and overlap, employ the same MFCC perceptual loss function, and focus on
the same four AMR-WB bit rates as in [12]. Using CMRL, the authors’ algorithms have
40% fewer model parameters than in [12], thus apparently offering a significant reduction
in complexity.

Three different indicators are used to determine the comparative performance, SNR
(signal-to-noise (reconstruction error) ratio), PESQ-MOS [4], and a MUSHRA subjective
test [17]. It has been known for decades that SNR has no meaning for analysis-by-synthesis
speech codecs such as AMR, so this indicator is a diversion only for the uninitiated. The
PESQ-MOS results presented for the raw input speech are similar to those from [12] in that
the CMRL has a higher PESQ-MOS for all four rates than AMR-WB and K-Net (the name
associated with the Kankanahalli DNN), with a few tenths higher gap over AMR-WB.

For the MUSHRA subjective testing, the conclusions change dramatically compared
to the objective test results. The CMRL codec performs substantially poorer than AMR-WB
at all four rates. The authors then investigate an approach wherein the linear predictive
coding (LPC) model parameters are calculated and used to form the prediction error which
is then fed as input to the CMRL at the encoder side. The LPC coefficients are then used
with the outputs of the CMRL to synthesize the speech. This approach, which no longer
can be called end-to-end, does considerably better on the MUSHRA test, outperforming
AMR-WB at the higher rates of 19.85 kbit/s and 23.85 kbits/s but still having significantly
lower subjective quality than AMR-WB at 8.85 kbits/s and 15.85 kbits/s.

Using LPC with CMRL means that the claimed end-to-end learning method has now
adopted the same basic model as used in AMR, and so the CMRL is really spending all the
remaining learning effort on finding a good excitation for the LPC model.
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An interesting and important contribution to the application of neural networks (NN)
to speech-coding is the contribution by Kleijn et al. [15] based on the WaveNet generative
audio model [18]. This work does not pursue nor claim end-to-end but provides a structure
for low bitrate speech-coding by repurposing WaveNet as a generic generative model
for speech. WaveNet is a generative audio model based on DNNs that uses learning
conditional probabilities to produce natural sounding speech for applications such as text
to speech and to produce natural sounding audio. WaveNet also allows other conditioning
variables to be incorporated and this feature is exploited to propose and analyze a new
approach to low bitrate speech-coding.

Both waveform-based and parametric speech coders are described. A general open
source 2.4 kbits/s speech coder is used in the parametric coder. This codec uses a 20 msec
frame and represents the spectral envelope with line spectral frequencies at 36 bits/frame,
pitch at 7 bits/frame, signal power with 5 bits/frame, and voicing level with 2 bits/frame.
The voicing level is determined as in the multiband excitation coder [19]. These parameters
are extracted at the encoder and sent to the WaveNet decoder where they are used as
conditioning variables.

The basic parametric codec selected as the baseline codec is designed for narrowband
speech but the training of the WaveNet decoder mapped the lower rate conditioning into
wideband speech samples. Objective performance was evaluated using the POLQA [20]
and subjective evaluations with MUSHRA listening tests. A WaveNet-based waveform
codec was also evaluated and compared to AMR-WB at 23.85 kbits/s and other low bitrate
codecs. The WaveNet parametric codec operates at 2.4 kbits/s. The parametric WaveNet
codec produced an MOS from POLQA of 2.9 compared to a MOS of 4.7 and 4.6 for the
WaveNet waveform codec at 42 kbits/s and AMR-WB at 23.85 kbits/s. However, MUSHRA
listening tests capture the importance of the effective bandwidth extension and training
since the parametric WaveNet codec achieved a score of 70 compared to about 84 for
AMR-WB at 23.85 kbits/s and a score of approximately 25 for the best 2.4 kbits/s codec
studied (MELP) [21].

There are a few caveats. First, the experimental results for the parametric WaveNet
codec did not always allow the speaker to be identified in another comparison test. This
is likely due to the quality of the baseline parametric codec. Furthermore, as the authors
note, the computational cost of training and running WaveNet is high compared to the
conventional standardized speech codecs. A further investigation of generative speech-
coding is in [22] which pushes the bitrate down below 4 kbits/s.

End-to-end speech-coding using DNNs and related neural networks to date have
not yet achieved the quality and intelligibility necessary to compete with the AMR-WB
codec particularly when complexity and real time coding requirements are folded in. A
new approach to speech-coding combining the NN-based WaveNet generative model with
known low bitrate speech codecs is interesting and shows one way forward to using NNs
in speech-coding. The use of variational autoencoders is discussed in [14,23].

However, as these standards evolved, codec complexity increased substantially as
well. It is clear from the above discussions, however, that most current speech-coding
research investigates performance compared to the AMR-WB codec. This is because of
the prevalence of the AMR codecs in applications including VoIP, digital cellular, and first
responder communications. In this paper, we describe and analyze the performance of
a codec structure with much lower complexity and delay than AMR and EVS for coding
narrowband speech. An evolution to wideband speech-coding is also suggested.

3. Overall Block Diagram of the Multimode Tree Coder with Pitch Prediction and Pre-
and Post-Perceptual Weighting

Figure 1 is the block diagram of the Multimode Tree Coder with backward pitch
predictor and perceptual pre- and post-weighting filters, designated as MMT-WP. This
diagram shows the basic structure of the codec and the locations of the several components.

We see from the figure that the codec involves both pole A(z) and zero B(z) short-term
predictors and a long-term predictor PI(z). This combination is called a code generator in
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tree-coding. Additionally evident from the figure is a now classical analysis-by-synthesis
loop involving a distortion measure and a tree search for the best excitation. The figure
also shows the Mode Decision outside of the encoding loop and the new location of the
perceptual weighting outside of the encoding and decoding sequence. These components
and the others are developed in detail in subsequent sections.

Figure 1. Block diagram of the Multimode Tree Coder with backward pitch predictor and perceptual
pre- and post-weighting filters, the zero-coefficient of short-term predictor is updated by the input of
the pitch predictor.

4. G.727 DPCM Encoder

Differential pulse code modulation (DPCM) with an adaptive pole-zero short-term
linear predictor is the basic structure of the ITU-T G.726 standard [24] and its embedded
coding version G.727 [25,26]. Both codecs have selectable transmitted bit rates of 40, 32, 24,
and 16 kbps from best to worst reconstruction quality. G.727 is an embedded codec so it has
enhancement and core bits, and the coding rate is often specified in terms of enhancement
and core bits/sample as (x,y), where x represents the total of the enhancement and core
bits, and y refers to the number of core bits. Therefore, G.727 coding rates are (5,4), (5,3),
and (5,2) for 40 kbps, (4,4), (4,3), and (4,2) for 32 kbps, (3,3) and (3,2) for 24 kbps, and (2,2)
for 16 kbps. Figure 2 is a block diagram of the encoder and Figure 3 is a block diagram of
the decoder. The specific structures and adaptation rules for A(z) and B(z) are developed
in Section 4.1.

The quantizer is represented by Q in the figures and the quantizers and adaptation
rules are described briefly in Section 4.2.

Figure 2. DPCM Encoder with Pole-Zero Predictor.
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Figure 3. DPCM Decoder with Pole-Zero Predictor.

4.1. Short-Term Predictor

The short-term predictor Ps(z) is a 2-pole and 6-zero backward adaptive predictor.
The two pole coefficients (ai) of the predictor are adapted by [24,25]:

a1(k) = (1− 2−8)a1(k− 1) + (3× 2−8)sgn[p(k)]sgn[p(k− 1)], (1)

and

a2(k) = (1− 2−7)a2(k− 1) + 2−7{sgn[p(k)]sgn[p(k− 2)]− f [a1(k− 1)]sgn[p(k)]sgn[p(k− 1)]}, (2)

where

p(k) = e(k) +
6

∑
i=1

bi(k− 1)u(k− i) (3)

f (a1) =

{
4a1, |a1| ≤ 2−1

2sgn(a1), |a1| > 2−1 (4)

The six zero coefficients (bi) of the predictor are adapted by:

bi(k) = (1− 2−8)bi(k− 1) + 2−7sgn[u(k)]sgn[u(k− i)] (5)

for i = 1, 2, . . . , 6.

4.2. Adaptive Quantizers

The quantizers in G.726/G.727 adapt the step size to track the dynamic range of
the prediction error signal. The step size is adapted according to two scale factors every
sampling instant [24,25]. One scale factor, called the unlocked step size, ∆u, adapts as

∆u(n) = ∆u
β(n− 1)M(|I(n− 1)|) (6)

where β = (1− 2−5) and the M parameters are multipliers that are greater than one for
outer quantizer levels and less than one for the inner levels.

In addition to the unlocked step size, there is another step size in G.726/727, denoted
as ∆l , that adapts more slowly. This step size adapts according to the logarithm of its value
as well as the logarithm of ∆u. Defining ∇l(n) = log∆l(n), the adaptation rule is

∇l(n) =
63
64
∇l(n− 1) +

1
64
∇u(n) (7)

The final step size is a weighted combination of the unlocked and locked step sizes as

∇(n) = w∇u(n) + (1− w)∇l(n) (8)

where w is chosen based on several different rules [25,26].

5. Backward Pitch Predictor

To improve the performance of the G.726/727 codec structure, we add a long-term
adaptive predictor to compensate for speaker pitch. The pitch predictor Pl(z) is a 3-tap
backward pitch predictor, which is defined as [27,28]:



Appl. Sci. 2022, 12, 2026 8 of 24

Pl(z) =
i=+1

∑
i=−1

βiz−(d+i). (9)

5.1. Backward Pitch Estimation

The pitch period dk at time instant k is estimated from previous reconstructed signal e.
The autocorrelation function Ree of e is calculated every 240 samples. In addition, when
the previous pitch period increases one or decreases one and the shifted coefficients are
not stable, the pitch period and pitch coefficients are initialized again by calculating the
autocorrelation function Ree. The pitch period is initialized by finding the peak of Ree
between dmin = 20 and dmax = 125, and then is recursively updated. The estimate of the
autocorrelation function, ρ̂(m), is obtained from the following recursions [3,28]:

σ̂2
e (k) = δσ̂2

e (k− 1) + (1− δ)(e(k))2 (10)

ρ̂(k)(m) = δρ̂(k−1)(m) + (1− δ)
e(k)e(k−m)

σ̂2
e (k)

, (11)

where δ = 0.95. The pitch period dk is updated by:

dk+1 =


dk + 1 if ρ̂(k)(dk + 1) = max

(
ρ̂(k)(dk + 1), ρ̂(k)(dk), ρ̂(k)(dk − 1), ρ̂min

)
dk − 1 if ρ̂(k)(dk − 1) = max

(
ρ̂(k)(dk + 1), ρ̂(k)(dk), ρ̂(k)(dk − 1), ρ̂min

)
dk otherwise

(12)

5.2. Backward Pitch Coefficients Calculation

After obtaining the pitch period dk, the pitch coefficients can be calculated as follows. The
initial pitch coefficients of each block are calculated using a Wiener–Hopf equation [27,28]: β−1

β0
β+1

 =

 (1 + µ)Ree(0) Ree(1) Ree(2)
Ree(1) (1 + µ)Ree(0) Ree(1)
Ree(2) Ree(1) (1 + µ)Ree(0)

−1 Ree(d− 1)
Ree(d)

Ree(d + 1)

, (13)

where µ = 0.001. When pitch coefficients of each block are initialized, other pitch coeffi-
cients are recursively adapted using the equation:

βi(k) = λβi(k− 1) +
α

σu(k)σe(k)
u(k)e(k− dk − i), i = −1, 0,+1, (14)

where λ = 1− 2−7 and α = 2−7, u(k) is the output of inverse quantizer, σ2
u is the estimate

of the variance of u(k), and σ2
e is the estimate of the variance of the output of pitch predictor

e(k). The estimated variances are calculated using Equation (10).

6. Tree-Coding

Tree-coding is a type of analysis-by-synthesis coding structure similar to Code-Excited
Linear Prediction (CELP), but differs from CELP in that the codebook has a tree structure
and the delay in the analysis-by-synthesis procedure is less [29]. Tree-coding is a natural
way to incorporate the analysis-by-synthesis approach into backward adaptive codecs such
as G.726/727, leading to expected performance improvements.

A block diagram of a tree coder for speech is shown in Figure 4. A tree coder consists
of a Code Generator, a Code Tree (set of excitations), a Tree Search algorithm, a Distortion
calculation, and a Path Map Symbol Release Rule. The Tree Search algorithm, in com-
bination with the code generator and appropriate distortion measure, chooses the best
candidate path to the tree depth L to encode the current input sample. The symbol release
rule decides the number of symbols on the best path to transmit or release.
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In tree-coding of speech, the terminology Code Generator refers to the structure that
colors the code tree excitations and usually consists of a short-term predictor and a long-
term predictor.

Figure 4. Block diagram of a tree coder with a perceptual weighting filter.

The tree code provides the excitation to the code generator to synthesize the recon-
structed speech. To construct the tree, we must select the number of branches per node
and the number and type of excitation values per branch. Then, the rate of the tree code in
bits/sample is obtained from R = 1

β log α where α is the number of branches/node and β

is the number of excitation values/branch. The selection of the number of branches/node
and the number and values of the samples/branch are important design choices.

Once the code tree is designed, we need to search the tree for the best possible path to
some depth L. If we have α = 16 branches/node (corresponding to a 4-bit quantizer) and
β = 1 excitation value/branch, for a full search, we must search 16L paths to depth L and
there are L computations per path. Since performance often improves with search depth L,
it is obvious that the computational load is immense, particularly since these sequences
also must be passed through the recursive code generator. To reduce the computational
complexity of searching the full tree to depth L with minimum cumulative distortion, it is
common to use the (M,L) Tree Search algorithm [30]. This algorithm only retains M paths at
each node. The minimum cumulative distortion path among the M depth-L paths is chosen.
Then, the path map symbols according to this best path are released or transmitted to the
decoder. Different path map symbol release rules are possible. All L path map symbols
can be released and then the tree regenerated according to the (M,L) algorithm, or some
number of symbols less than L can be released.

Most users of the (M,L) algorithm release only the first symbol along the best path,
and then extend the M best paths with that symbol as their root. This is called the single
symbol release rule (SSR) [31].

The distortion between the candidate output ŝ(k) and the input sample s(k) is com-
puted by filtering the error between them along the depth-L path through the perceptual
error weighting filter similar to that used in CELP, which is of the form

W(z) =
1−∑N

i=1 γiaiz−i

1−∑N
i=1 µiaiz−i

, (15)

The distortion values are stored along each searched path map. The path resulting in
minimum cumulative distortion is encoded using the symbol release rule. However, the
distortion calculation along each path obtained by filtering the error along depth-L path
through the perceptual error weighting filter in Equation (15) is computationally expensive.
Therefore, to reduce complexity, perceptual pre-weighting and post-weighting filters can
be used, as we do here.

7. Perceptual Pre-Weighting and Post-Weighting

The computational complexity with the perceptual weighting filter inside the loop as
in Figure 4 is computed as follows. If the computational complexity of W(z) is C operations,
and B = 2n is the number of children of each tree node for the n bits/sample tree, then the
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complexity of releasing one symbol is M · B · L · C operations. Schuller, Yu, Huang, and
Edler [32] have employed adaptive pre-filtering and post-filtering in lossless audio coding.
They showed that lossless audio coding with pre- and post-filtering maintains high quality.
In addition, Shetty and Gibson [33] employed perceptual pre-weighting and post-weighting
in a G.726 ADPCM codec [24] and a modified AMR-NB CELP codec. They showed that
the performance of lossy coding with pre- and post-weighting also improves over having
no weighting. As shown in Figure 5, the computational complexity of our Multimode
Tree Coder is reduced to 2C operations for releasing one symbol using pre-weighting and
post-weighting filters.

Figure 5. Pre-weighting and post-weighting filters for speech codec.

Let S(z) be the input speech, X(z) be the pre-weighted speech, X′(z) be the pre-
weighted speech output, and S′(z) be the output speech after post-weighting. From
Figure 5, the relation of S(z) and X(z) is

S(z)W(z) = X(z), (16)

and the relation of S′(z) and X′(z) is

X′(z)
1

W(z)
= S′(z). (17)

The design of the pre-weighting filter W(z) and post-weighting filter 1
W(z) is to mask

the reconstruction error at the output by the input spectrum. The spectral response of the
perceptual weighting filter W(z) should have the form of that shown in Equation (15).

However, the input spectrum information is not available at the decoder in our codec;
so our post-weighting filter uses the pole-zero coefficients from the backward adaptive
predictor. The post-weighting filter is of the form,

Hpost(z) =
1 + ∑6

i=1 mi
2biz−i

(1 + ∑6
i=1 mi

3biz−i)(1−∑2
i=1 mi

1aiz−i)
, (18)

where ai’s are pole coefficients and the bi’s are zero coefficients, and we have added an
additional denominator term mainly to tune the spectral tilt.

To choose the weighting filter parameters, m1, m2, and m3, in Equation (18), experi-
ments were conducted to match the frequency response of the perceptual post-weighting
filter generated with 5th order linear prediction coefficients calculated from the input,
Equation (19),

1
W(z)

=
1−∑5

i=1 (0.86)iaiz−i

1−∑5
i=1 aiz−i

, (19)

with the frequency response of the filter generated with the ADPCM predictor coefficients.
After experimentation, the parameters were chosen to be m1 = 0.2, m2 = 1.0, and m3 = 0.85
in both pre- and post-weighting filters.

8. Voice Activity Detection (VAD) and Mode Decision

Most high-performance codecs today use some approach to VAD. Usually these
methods are quite complex, such as in [8]. Our approach is much simpler since the codec is
backward adaptive and low delay and relies more on the available codec parameters. The
VAD method developed here is an entirely new, simplified approach.



Appl. Sci. 2022, 12, 2026 11 of 24

The flow chart of our mode decision is shown in Figure 6. The mode decision is a
low-delay, low-complexity method based on the ADPCM coder state parameters, unlocked
scale factor yu and long-term average magnitude of weighted quantization level dml , along
with the absolute magnitude of each frame and zero crossing rate. The input to the mode
decision is a speech frame consisting of 40 samples of 8 kHz narrowband speech, and the
output is the classification of the frame among one of these five modes: Voiced (V); Onset
(ON); Unvoiced (UV); Hangover (H); and Silence (S). In the following, the term “Voice” is
used to denote all non-silence speech and the term “Voiced” is used to denote the Voiced
(V) mode of speech. The input frame of speech is first classified into Voice/Silence by Voice
Activity Detection (VAD) before further classification into five modes.
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The unlocked scale factor yu is updated for the adaptive quantizer in the G.727
ADPCM coder. The long-term average magnitude of weighted quantization level dml is
calculated. The absolute magnitude of each frame fe is widely used in VAD algorithms.
It is computed for each frame i as follows,

fe(i) =
i+N−1

∑
k=i

|s(k)|, (20)

where s is the input speech signal, and N is the length of a speech frame. The number
of zero-crossings ZC is widely used for voiced and unvoiced classification, which is
defined as:

ZC(i) =
1

2

i+N−1

∑
k=i+1

|sgn[s(k)]− sgn[s(k − 1)]|, (21)

with sgn(·) the sign function returning ±1 depending on the sign of the operand.
The unlocked scale factor yu, long-term average magnitude of weighted quantiza-

tion level dml , and frame energy fe are high during Voice sequences and low during
Silence sequence. Therefore, the three parameters are compared against threshold val-
ues computed for each parameter to make a Voice Activity Detection decision. If yu or
dml is greater than its threshold, yVAD or dVAD, and fe is greater than the threshold fVAD,
then the frame is marked as Voice. If yu and dml are smaller than their thresholds, yVAD

and dVAD, and the status continues for at least 15 frames, then the frame is marked as
Silence.

After Voice Activity Detection, each frame should be further classified into Voiced
(V), Onset (ON), Unvoiced (UV), or Hangover (H). For the frame marked as Voice, it
will be further classified into Unvoiced (UV), Onset (ON) or Voiced (V). If yu, dml , and
fe are smaller than their thresholds, yVOICE, dVOICE, and fVOICE, and ZC is greater
than the threshold ZCVOICE, the frame is classified as Unvoiced (UV). Otherwise, it is
classified as Voiced (V). The first Voiced frame following Unvoiced or Silence frame is
marked as Onset (ON). For the frame marked as Silence, it will be further classified into
Silence (S), or Hangover (H). The first ten Silence frames following Voiced are marked
as Hangover (H). Otherwise, it is marked as Silence (S).

Figure 6. Flow chart of the mode decision.

The unlocked scale factor yu is updated for the adaptive quantizer in the G.727 ADPCM
coder. The long-term average magnitude of weighted quantization level dml is calculated.
The absolute magnitude of each frame fe is widely used in VAD algorithms. It is computed
for each frame i as follows,

fe(i) =
i+N−1

∑
k=i
|s(k)|, (20)

where s is the normalized input speech signal, normalized to input speech power, and N is
the length of a speech frame. The number of zero-crossings ZC is widely used for voiced
and unvoiced classification, which is defined as:

ZC(i) =
1
2

i+N−1

∑
k=i+1

|sgn[s(k)]− sgn[s(k− 1)]|, (21)

with sgn(·) the sign function returning ±1 depending on the sign of the operand.
The unlocked scale factor yu, long-term average magnitude of weighted quantization

level dml , and frame energy fe are high during Voice sequences and low during Silence
sequence. Therefore, the three parameters are compared against threshold values computed
for each parameter to make a Voice Activity Detection decision. If yu or dml is greater than
its threshold, yVAD or dVAD, and fe is greater than the threshold fVAD, then the frame is
marked as Voice. If yu and dml are smaller than their thresholds, yVAD and dVAD, and the
status continues for at least 15 frames, then the frame is marked as Silence.

After Voice Activity Detection, each frame should be further classified into Voiced
(V), Onset (ON), Unvoiced (UV), or Hangover (H). For the frame marked as Voice, it will
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be further classified into Unvoiced (UV), Onset (ON) or Voiced (V). If yu, dml , and fe are
smaller than their thresholds, yVOICE, dVOICE, and fVOICE, and ZC is greater than the
threshold ZCVOICE, the frame is classified as Unvoiced (UV). Otherwise, it is classified
as Voiced (V). The first Voiced frame following Unvoiced or Silence frame is marked as
Onset (ON). For the frame marked as Silence, it will be further classified into Silence (S), or
Hangover (H). The first ten Silence frames following Voiced are marked as Hangover (H).
Otherwise, it is marked as Silence (S).

Table 1 shows the details of the test sequences. The test sequences are all longer than
one sentence, and there are four female and four male speakers. The sentences were chosen
to cover a wide range of difficult-to-code phonemes and words. The sentence, “We were
away a year ago,” is included since it is almost totally voiced, without unvoiced sounds
or silence. These test sequences are taken from a standard ITU-T speech test data set [34]
for standardized speech codecs. Their bandwidth is 300 to 3400 Hz, and they are sampled
at 8000 samples/sec. Each sample is represented as a 16 bit linearly quantized word. The
terminology dBov is the dB level relative to the overload of the system.

Table 1. Details of the narrowband speech test sequences.

Sequences M/F Active Speech Level (dBov) Sentence

lathe F −18.1 A lathe is a big tool. Grab every dish of sugar.
we were away M −16.5 We were away a year ago.

af1s01 F −31.9 You are the perfect hostess. Are you going to be nice to me?
af1s02 F −32.2 You know my outlook on life. I jumped at least two feet.
af1s03 F −33.1 He took out his pipe and lit it up. It was the same in the public bar.

am1s01 M −34.9 The wind slammed the door. It did not seem like summer.
am1s02 M −33.5 There wasn’t a scrap of evidence. The jar was full of water.
am1s03 M −34.5 He carried a bag of tennis balls. The scheme was plotted out.

The relative frequency of these classifications according to modes using our algorithm
on each sentence are shown in Table 2.

Table 2. Mode decision results for narrowband sequences.

Sequence S UV V ON H

lathe 0.3693 0.1535 0.4707 0.0065 0
we were away 0 0.0292 0.9655 0.0053 0

af1s01 0.6012 0.1681 0.2244 0.0063 0
af1s02 0.5675 0.1838 0.2444 0.0044 0
af1s03 0.4506 0.2719 0.2687 0.0088 0

am1s01 0.6663 0.1231 0.2050 0.0056 0
am1s02 0.6306 0.1713 0.1906 0.0075 0
am1s03 0.5894 0.2019 0.2006 0.0081 0

The thresholds chosen by experiment in the design presented here are:

• fVAD = 0.04
• yVAD = 5
• dVAD = 0.6

After the VAD decision, then the voicing decisions use the thresholds:

• yVOICE = 0.33 of average yu
• dVOICE = average dml
• fVOICE = 0.3 of average fe

where the averages are over a frame, and these are updated on a frame-by-frame basis.
ZCVOICE was not used in our final design, although it can be used to fine tune unvoiced
decisions if needed. It is important to notice that the threshold values given here are
all normalized values, being normalized to the power level of the input speech levels.
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This is as typical in VAD and mode decision rules used in other codecs such as AMR.
Therefore, these values are robust to variations in input speech power and across different
utterances. The VAD and Mode not only impact reconstructed speech quality but also the
transmitted bitrate.

9. Zeros in the Short-Term Predictor

The G.726/727 codecs have 2 poles and 6 zeros. When these codecs were being
standardized, the order of the all-pole predictor was reduced so that stability tests could be
easily performed and the predictor stabilized, but the zeros were needed to compensate for
any loss in prediction performance from using only 2 poles but without risking instabilities.
However, there are other important reasons for including zeros in a backward adaptive
tree-coding structure.

First, it is well known that when estimating the parameters of an autoregressive (AR)
sequence in additive noise, the estimation procedure should include zeros [35,36]. The
inclusion of zeros can make the estimation more accurate and can reduce the flattening of
the estimated spectral envelope of the AR model.

Second, rate distortion theory indicates that for optimal encoding using the mean
squared error distortion measure, the code generator should include zeros as well as poles
when achieving small distortion [29].

Third, from studies of backward adaptive prediction with a quantizer in the loop, it is
known that an all-pole model can end up tracking itself rather than the input speech signal.
The inclusion of zeros in the adaptive predictor can prevent this behavior and can couple
the backward adaptive predictor to the codec input signal more directly [37].

For all these reasons, we include zeros in our short-term backward adaptive predictor
structure.

10. Performance of the Multimode Tree Coder
10.1. The Bitrate of the Multimode Tree Coder

The bitrate of the Multimode Tree coder is controlled by the mode decision output.
The mode decision output, the frame header, is coded with 2 bits. The two header bits,
00—S, 01—UV or H, 10—V, and 11—ON, are used to specify the mode of each frame. Since
the frame length for the narrowband Multimode Tree coder is 5 msec, the bitrate of the
header is 0.4 kbps.

Since we use the quantizer of G.727 in the code generator, the bitrate of UV, V, ON, and
H can be 16, 24, 32, or 40 kbps. In addition, G.727 is an embedded ADPCM coder. Therefore,
the number of core bits and enhancement bits can be adjusted as well. For simplicity, we
do not use enhancement bits in our experiments. In the tree coder, M is 4 and L is 10 for
the M-L Tree Search algorithm.

To lower the average bitrate, the Comfort Noise Generator (CNG) motivated by the
CNG of AMR-NB [38] is used for Silence (S) mode. In the CNG, the pole-zero predictor
coefficients from the short-term predictor are averaged between each transmission frame
and encoded every 15th frame. The absolute magnitude of each frame is averaged and
transmitted every 8th and 15th frames. The averaged absolute magnitude is transmitted
with 5 bits, the averaged pole coefficients are transmitted with 7 bits, and the averaged zero
coefficients are transmitted with 5 bits. Since there are 2 pole coefficients, 6 zero coefficients
and 2 averaged absolute magnitude transmitted for every 15 frames, the total transmitted
bits is 54 bits. Therefore, the bitrate for Silence (S) mode is 0.72 kbps.

10.2. Performance with Different CNG Codes

We compare the PESQ of the MMT with perceptual pre- and post-weighting and back-
ward pitch prediction (MMT-WP) for Voiced (V) and Onset (ON) using 3 core bits/sample
and Voiced (V) and Onset (ON) using 2 core bits/sample. The Unvoiced (UV) and Hangover
(H) are coded at 2 core bits/sample.
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The PESQ-MOS [4] results of the MMT-WP for narrowband sequences using 2 core
bits/sample on Voiced, Onset are shown in Table 3. Compared with the results of 3 core
bits/sample for Voiced and Onset in Table 4, the PESQs of 2 core bits/sample for Voiced
and Onset in Table 3 are lower than those in Table 4 since the bitrate is lower. However,
comparing the performance of MMT with weighting and pitch predictor with the perfor-
mance of MMT without pitch prediction from prior studies, the PESQ for 2 bits/sample
increases more than the PESQ for 3 bits/sample on Voiced and Onset. It shows that the
pitch predictor is very important when the bitrate is low.

Table 3. PESQ of the MMT for narrowband sequences using 2 bits/sample for Voiced and Onset.

Sequence MMT-WP Average Bitrate

lathe 3.424 10.74
we were away 3.284 16.40

af1s01 3.435 7.21
af1s02 3.319 7.73
af1s03 3.476 9.51

am1s01 3.416 6.22
am1s02 3.523 6.76
am1s03 3.396 7.39

Average 3.409 9.00

Table 4. PESQ of the MMT for narrowband sequences using 3 bits/sample for Voiced and Onset.

Sequence MMT-WP Average Bitrate

lathe 3.938 14.55
we were away 4.012 24.12

af1s01 3.838 9.06
af1s02 3.784 9.72
af1s03 3.768 11.73

am1s01 3.638 7.90
am1s02 3.825 8.35
am1s03 3.681 9.06

Average 3.811 11.81

11. Estimated Computational Complexity of MMT-WP

The estimated computational complexity of the several components of MMT-WP
is shown in Table 5. Table 2 shows the mode decision results of each sequence. Based
on the mode decision, the estimated computational complexity of MMT with pre- and
post-weighting and pitch filter is shown in Table 6. When the sequence is 100% voiced, the
computational complexity for MMT-WP is the worst case. Based on the per component
estimated computational complexities in Table 5, the worst computational complexity for
MMT-WP including Mode decision, tree coder, the G.727 decoder, pre- and post-weighting,
and pitch predictor is 4.83 WMOPS. Since “we were away” is a fully voiced sentence with
no silence, the computational complexity for this sentence is the worst case. The probability
of silence for sequences af1s01m af1s02, af1s03, am1s01, am1s02, and am1s03 is about
58%. Since the computational complexity for silence is 0.08916 WMOPS, the computational
complexity of these sequences is less than half of the worst computational complexity for
“we were away” in Table 6.
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Table 5. Estimated computational complexity (WMOPS) of MMT-WP

Process Computational Complexity (WMOPS) Mode

Mode Decision in Encoder 0.0178 V, UV, ON, H, S
Pre-weighting filter in Encoder 0.208 V, ON
Tree Coder in Encoder 1.385 V, UV, ON, H
Pitch Predictor in Encoder 1.1919 V
Silence Encoding 0.0008 S
G.727 Decoder 0.625 V, UV, ON, H
Pitch Predictor in Decoder 1.1919 V
Post-weighting filter in Decoder 0.208 V, ON
Silence Decoding 0.07056 S

Table 6. Estimated computational complexity (WMOPS) for narrowband sequences.

Sequence Complexity of MMT-WP

lathe 2.63
we were away 4.73

af1s01 1.49
af1s02 1.61
af1s03 1.91

am1s01 1.31
am1s02 1.34
am1s03 1.45

Average 2.06

12. Comparison Codec Selection

The AMR-NB/WB codec is a workhorse in digital cellular and VoIP applications.
It has outstanding reliability and consistent performance across many platforms and
networks. The newer Enhanced Voice Services (EVS) codec was standardized in 2014 with
the goal of not only improving performance for narrowband and wideband applications but
also to develop a codec for superwideband applications and to improve performance for
music and mixed inputs in conversational speech and to add stereo audio, plus improved
VoIP performance through jitter buffer management, better packet loss robustness, and
additional input and output processing [11]. All this improved functionality came at the
price of greatly increased complexity and longer encoding/decoding delay. The EVS codec
is at least twice as complex as AMR-WB and 5 times more complex than the AMR-NB
codec used in the comparisons here [39].

It is well established that the increased complexity does yield better performance than
AMR-NB/WB [40], so it is a given that the EVS codec outperforms both AMR-NB/WB
and our MMT-WP codec in terms of speech quality at the same bitrate. However, many
applications that focus on NB speech, such as we do here, do not need all the functionality in
the EVS codec and the increased complexity and latency is not worth the improved speech-
coding performance over AMR-NB/WB, which performs very well. Since AMR-NB/WB is
widely installed and used, and has much reduced complexity and slightly reduced latency
than EVS, AMR-NB/WB is the codec we compare to since our first priorities are much
reduced complexity and latency.

13. Performance Comparisons of MMT-WP with Other Codecs

Table 7 shows the PESQ, average bitrate, algorithmic delay, and computational com-
plexity comparison of the MMT-WP codec with AMR-NB and G.727 [3]. We see that the
MMT-WP codec can produce the same output speech quality as G.727 but at much lower bit
rates. Furthermore, the MMT-WP codec has much lower complexity and much lower delay
than AMR-NB while producing the same output speech quality, albeit at higher bit rates.

Table 7 shows the range of PESQ-MOS, bitrate, delay, and computational complexity
over the utterances examined, but a closer examination can indicate where the variations are
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from. Operational rate distortion functions allow a more detailed performance comparison
of possibly competitive voice codecs [41]. Figures 7–14 show PESQ and average bitrate of
different speech codecs on 8 clean English sequences described in Table 1.

Table 7. Comparison of MMT-WP, AMR-NB, and G.727.

Attribute MMT-WP V:3, UV:2 AMR-NB 12.2 kbps G.727 24 kbps

PESQ 3.638–4.012 3.602–4.136 3.243–3.814

bitrate (kbps) 7.90–24.40 5.97–12.2 24

Delay (msec) 6.125 25 0.125

Complexity (WMOPS) 1.31–4.83 11.9–16.7 1.25
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Figure 7. The operational rate distortion performance of narrowband speech “A lathe is a big tool”.

Compared to AMR-NB, the PESQs of MMT-WP with weighting and pitch predictor
using 3 bits/sample for Voiced and Onset (the highest bitrate of MMT) are comparable
with the PESQs of AMR-NB at 12.2 kbps (the highest bitrate of AMR-NB). Even though
the average bitrate of MMT-WP is 0.25–1.5 bit/sample higher than that of AMR-NB, the
delay and computational complexity of MMT are significantly lower than those of AMR-
NB. Furthermore, the algorithmic delay of MMT-WP is 6.125 msec while that of AMR-
NB is 25 msec. Thus, the delay of MMT-WP is about a quarter of AMR-NB. The worst
computational complexity of MMT-WP with weighting and pitch predictor is 4.83 WMOPS
while the worst computational complexity of AMR-NB is 16.7 WMOPS. Therefore, MMT-
WP saves about 70% in computational complexity.

Referring to Figure 8 and comparing MMT-WP to G.727 for the sequence “we were
away,” the PESQ for G.727 at 16 kbps is 2.513 while the PESQ for MMT with weighting and
pitch predictor at 24 kbps is 4.012. Moreover, the PESQ for G.727 at 32 kbps is 3.66, which
is lower than the PESQ for MMT-WP at 32 kbps. This shows that MMT with weighting and
pitch predictor saves about 1 bit/sample when PESQ is comparable with G.727.

Analyzing Figures 7 and 8 to compare MMT-WP with AMR-NB, we see that there is
a relatively constant gap of just under 1 bit/sample between MMT-WP and AMR-NB for
“lathe” with the same PESQ-MOS values, and this gap widens to 1.5 to almost 2 bits/sample
for “we were away” since the MMT-WP loses any rate reduction produced by VAD/CNG
because “we were away” is all voiced.

Comparing results in Figures 9–14, where the first three figures are for female speakers
and the latter three are for male speakers, we can see some further trends. First, it is evident
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that the gap between MMT-WP and AMR-NB is narrowed to less than 0.5 bit/sample for
these sentences for the desirable quality range shown. Additionally, the gap between these
two codecs varies somewhat for these six test sequences.
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Figure 8. The operational rate distortion performance of narrowband speech “We were away a year
ago” (Male Speaker).
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Figure 9. The operational rate distortion performance of narrowband speech af1s01 (Female Speaker).

Furthermore, for the MMT-WP codec, the female speakers have a slightly higher
bitrate for the same performance than the male speakers. This does not appear to be the
same for the AMR-NB codec where the rate distortion performance is about the same for
female and male speakers. The small difference in performance between female and male
speakers for the MMT-WP codec is likely due to the increased number of pitch periods
for female speakers compared to male speakers which requires an increased use of the
long-term prediction for the female speakers. Our backward adaptive pitch tracking and
pitch coefficient adaptation may need further optimization, but this is not certain nor easy.
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Figure 10. The operational rate distortion performance of narrowband speech af1s02 (Female Speaker).
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Figure 11. The operational rate distortion performance of narrowband speech af1s03 (Female
Speaker).

The operational rate distortion functions in the figures not only include G.727, AMR-
NB, and MMT-WP but also G.728 [42]. G.728 is a standardized codec for operation at the
single bitrate of 16 kbps but without voice activity detection and comfort noise generation.
The use of VAD/CNG will lower the bits/sample of G.728 further. We include G.728
combined with the AMR-NB VAD/CNG in the studies comparing MMT-WP and AMR-NB
with theoretical rate distortion bounds in Section 14.
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The operational rate distortion performance curves shown in Figures 7 through 14 il-
lustrate that average performance comparisons between codecs over various test sequences
may not capture the possibly significant variation around the average. Studies of individual
sequences as done here, while requiring substantial effort, are necessary to evaluate the
actual performance range of codecs. This insight foreshadows the approach necessary to
obtain meaningful rate distortion bounds.
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Figure 12. The operational rate distortion performance of narrowband speech am1s01 (Male Speaker).
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Figure 13. The operational rate distortion performance of narrowband speech am1s02 (Male Speaker).
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Figure 14. The operational rate distortion performance of narrowband speech am1s03 (Male Speaker).

14. Comparison with Rate Distortion Bounds

Rate distortion functions provide the optimal performance theoretically attainable
(OPTA) for compressing a given source with a selected distortion measure [41]. To derive
such bounds, we need a good source model of a physical source and a meaningful distortion
measure. Both have been stumbling blocks to obtaining useful rate distortion bounds.

Models averaged over many sentences do not allow such bounds to be developed
because an average source cannot produce a lower bound since one of more of the sources
in the average will almost certainly have performance that is better than the average
bound developed. Thus, a new model needs to be obtained for each sentence or utterance
considered. Additionally, the distortion measure challenge is that it must be analytically
tractable and physically meaningful. Most rate distortion functions have been derived for
mean squared error or Hamming distortion measures.

Gibson and Hu used existing rate distortion functions for autoregressive sources
for mean squared error distortion but extended those results using composite source
models [29] and conditional rate distortion theory [43] to generate good source models for
speech [5,44]. For the distortion measure, they experimentally obtained a mapping from
mean squared error into PESQ-MOS. Thus, the need for an accurate source model and a
meaningful distortion measure were both addressed.

Three models for each sentence are obtained. One model is averaged over the entire
utterance, one model that has two modes, voiced and silence, and a third model that has
5 modes, voiced, unvoiced, silence, onset, and hangover. The conditional rate distortion
bound is derived for each subsource, along with the probability of that subsource, and
these conditional rate distortion bounds are combined as indicated by conditional rate
distortion theory [5,43].

The mapping from MSE to PESQ-MOS is generated for each utterance using waveform
codecs which try to track the time domain waveform but also allow the PESQ-MOS to be
found. The waveform codecs need to have a range of coding rates so a mapping can be
obtained. G.727 is one such codec and is one of the codecs used by Gibson and Hu [5].

The details of producing the composite source models and the MSE to PESQ-MOS
mappings are left to the monograph by Gibson and Hu [5]. We use their approach here to
develop rate distortion bounds for two of our sentences, “A lathe is a big tool” and “We
were away a year ago”.

Figures 15 and 16 show the PESQ and rate performance of G.726, G.727, G.728, and
MMT with weighting and pitch predictor, and the rate distortion bounds for three different
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source models. In Figure 15, compared with the G.726 PESQ-rate performance curve, MMT
with weighting and pitch predictor is about 0.8 bit/sample lower than G.726 when the
PESQ are comparable. Compared with the rate distortion bounds using the 5 modes source
model, MMT-WP is still 1.5–2 bits/sample above the theoretical rate distortion bound.

Results for G.728 and G.728 with VAD/CNG are also shown in Figures 15 and 16. We
see that G.728 at 2 bits/sample achieves a PESQ-MOS of near 4.0 for both sentences. When
VAD/CNG is used with G.728, 0.5 bit/sample is saved for “lathe” as seen in Figure 15, but
from Figure 16, there is no reduction in rate when using VAD/CNG with G.728 because
“we were away” is an all-voiced sentence.
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Figure 15. The operational rate distortion performance of MMT-WP for narrowband speech “A lathe
is a big tool” and the rate distortion bounds.
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Figure 16. The operational rate distortion performance of MMT-WP for narrowband speech “We
were away a year ago” and the rate distortion bounds.
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15. Conclusions

The performance evaluations reveal that the design decisions of moving the perceptual
weighting outside of the analysis-by-synthesis loop can, not only perform well, but also
result in a substantial reduction in algorithmic complexity. The sequentially adaptive long-
and short-term predictors coupled with the small look ahead of the tree coder keeps the
latency low as well. The use of VAD plus CNG for multimode coding pushes the bitrate
down for utterances with about 50% silence, as is relatively common. Therefore, the Multi-
mode Tree Coder with sequentially backward adaptive short- and long-term prediction
and perceptual pre- and post-weighting filters can reduce complexity and latency in those
applications where the reasonable performance penalty compared to increased complexity
and latency codecs can be absorbed.

Further research that incorporates a more advanced sequentially adaptive predic-
tion algorithm, such as recursive least squares, could provide substantial performance
improvements while maintaining low latency with slightly increased complexity. Codecs
built around the MMT-WP using a two-band codec structure can extend the approach
to wideband speech and is an area of future research. In fact, given the combination of
performance, low latency, and low complexity provided by the MMT-WP codec for narrow-
band speech, it is natural to consider extending the approach to wideband speech-coding.
One such initial study split the wideband speech, usually 50 Hz to 7 kHz, into two bands
using the quadrature mirror filters used in G.722 [45] and then coded the low band with an
early version of the codec described in the current paper and coded the upper band using
tree-coding with the upper band ADPCM coding of G.722 [46].

Improved performance of the above suggested wideband codec structure could be
obtained at the cost of increased complexity using a recursive least squares adaptation of a
higher order short-term predictor as in [30] and in [47], particularly in the low band. Low
latency would still be retained.

A second possible approach is to filter the input 50 Hz to 7 kHz into the bands 50 to
6400 Hz and 6400–7000 Hz as in AMR-WB and code the lower band with a reoptimized
version of the current MMT-WP codec. A new coding approach would need to be found
for the high frequency band.
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