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Abstract

The heart is the first organ formed during mammalian development. A properly sized and 

functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes due to injury or 

diseases leads to heart failure, which is a major cause of human morbidity and mortality. 

Unfortunately, regenerative potential of the adult heart is very limited. The Hippo pathway is a 

recently identified signaling cascade that plays an evolutionarily conserved role in organ size 

control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/ progenitor 

cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of 

this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo 

pathway or activation of its downstream effector, the Yes-associated protein (YAP) transcription 

co-activator, improves cardiac regeneration. Several known upstream signals of the Hippo 

pathway such as mechanical stress, G-protein-coupled receptor (GPCR) signaling, and oxidative 

stress, are known to play critical roles in cardiac physiology. In addition, YAP has been shown to 

regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we 

summarize and discuss current findings regarding the roles and mechanisms of the Hippo pathway 

in heart development, injury, and regeneration.
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Introduction

In mammals, organ size is relatively constant under regulation by both organ-intrinsic 

mechanisms and extrinsic physical and chemical cues, including mechanical stress and 

circulating factors1. Heart size is also tightly controlled to ensure proper blood circulation. A 

small-sized heart will not be able to generate sufficient cardiac output to sustain 

physiological activities. However, increased myocardium mass could shrink cavity size and 
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obstruct cardiac outflow. Alternatively, heart enlargement could result in heart failure as that 

in pathological cardiac hypertrophy. Mechanistically, the enlargement of heart size during 

development could be grossly divided into two phases2. Fetal heart growth is mainly 

achieved by cardiomyocyte proliferation3. Soon after birth, heart growth switches to 

increase of cardiomyocyte size, which is also called physiological hypertrophy4, 5. The 

molecular mechanism underlying this switch is unclear. Although it has been demonstrated 

that adult cardiomyocytes still maintain some proliferation ability6-10, the large loss of 

mitotic potential in cardiomyocytes is a key barrier for cardiac regeneration after heart 

injury.

Proliferation of cardiomyocytes during development is regulated by various growth factors 

such as insulin-like growth factors (IGFs), bone morphogenetic proteins (BMPs), Wnts and 

neuregulins11. However, the cell intrinsic signaling pathways regulating cardiomyocyte 

proliferation are not well understood. It was recently demonstrated that the Hippo signaling 

pathway is critical for cardiomyocyte proliferation, heart size control, and cardiac 

regeneration12-17. The Hippo pathway is a signaling cascade that plays an evolutionarily 

conserved role in organ size control from Drosophila to human by regulating cell 

proliferation, apoptosis, and stem cell/ progenitor cell fate determination18-21. It has also 

been studied extensively in the context of tumor suppression and cancer in mammals22, 23. 

In this review, we briefly outline current understandings of the basic mechanisms of the 

Hippo pathway, and then focus on the relevance of these mechanisms in recent findings of 

the Hippo pathway in cardiac physiology, such as developmental heart size control, heart 

injury and hypertrophy, and cardiac regeneration.

Composition of the Hippo pathway

Core components of the Hippo pathway were first identified in Drosophila by genetic 

screens for tissue growth regulators24-33. Mutations of these genes lead to a common 

phenotype of tissue overgrowth and enlarged organ size in Drosophila eyes and wings. 

More significant is that core components of the Hippo pathway are highly conserved in 

mammals29, 33-37 (Table 1). As illustrated in Figure 1, MST1/2, homologs of the Drosophila 

Hippo kinase, are known to be pro-apoptotic and activated by apoptotic stress38, 39. MST1/2 

physically interact with an adaptor protein SAV1. The interaction is mediated by 

dimerization of SARAH (Salvador, RASSF and Hpo homology) domains, which are present 

at the carboxyl terminal regions of both proteins40. So far, SARAH domain is found only in 

components of the Hippo pathway. Binding to SAV1 activates MST1/2 although the 

underlying mechanism is not completely understood. MST1/2 phosphorylates several 

proteins including SAV140, the NDR family kinases LATS1/241, and the LATS1/2-

interacting adaptor proteins MOBKL1A/1B (MOB1)42, 43. These phosphorylations lead to 

activation of LATS1/2, which in turn phosphorylate the YAP transcription co-activator on 

five serine residues34, 35, 44, 45. YAP could shuttle between cytoplasm and nucleus, where it 

stimulates gene transcription. Phosphorylation of YAP serine residue 127 leads to 14-3-3 

binding and thus cytoplasmic retention and inactivation of YAP34. In addition, 

phosphorylation of YAP serine residue 381 by LATS1/2 results in further phosphorylation 

of a phosphodegron motif on YAP by CK1 delta and epsilon and recruitment of 

SCFbeta-TRCP E3 ligase, thus poly ubiquitination and degradation of YAP46. Such a dual-
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inhibitory mechanism may allow spatial and temporal regulation of YAP activity dependent 

on strength and duration of Hippo pathway activity. TAZ (transcriptional coactivator with 

PDZ-binding motif, also called WWTR1), the YAP paralog, is inhibited by the Hippo 

pathway in a similar manner while protein stability plays a more prominent role in 

regulation of TAZ activity - possibly due to the presence of an additional phosphodegron in 

TAZ47-49. YAP was also reported to be tyrosine phosphorylated by Src/Yes or c-Abl 

kinases50, 51, which resulted in enhanced interaction with RUNX or p73 transcription 

factors. The functional significance of YAP tyrosine phosphorylation needs further 

examination in vivo.

Both YAP and TAZ lack DNA-binding domains and therefore have to cooperate with 

transcription factors to bind proper DNA elements and to stimulate gene transcription. Most 

of the known YAP target transcription factors could be broadly divided into two groups: the 

PPXY-containing transcription factors and the TEA domain family members (TEADs). The 

first group contains several proteins such as p7352-55, RUNX56, 57, ERBB4 cytoplasmic 

domain58, 59, and SMADs60. These transcription factors interact with the WW domains of 

YAP or TAZ through their PPXY motifs. The TEAD family transcription factors interact 

with YAP/TAZ via the N-terminal TEAD binding domains in YAP/TAZ. Pairing of YAP 

and TAZ with different transcription factors could exert differential functions. For example, 

TAZ may promote osteogenesis by stimulating RUNX target gene expression57 and YAP 

may promote pluripotency by mediating BMP target gene expression in ES cells through 

interaction with SMAD160. Moreover, YAP may paradoxically promote apoptosis by 

interacting with and stimulating p73 target genes53-55. These findings from cell culture 

studies suggest functional roles of the YAP WW domains. Further examination of 

YAP/TAZ WW domain knock-in mouse models, especially in comparison with Yap/Taz 

knockout mice, would help to clarify the importance of the WW domains.

Both genetic and biochemical studies have convincingly established a critical role of the 

TEAD family transcription factors in medicating biological functions of YAP in tissue 

growth61-63. By large, YAP displays much stronger interaction with TEAD family members 

than other transcription factors described above61. This point is confirmed by several recent 

systematic proteomic interaction studies of the Hippo pathway64-68. Crystal structures of the 

YAP-TEAD complex have been solved, which revealed several critical interaction 

surfaces69-71. Of particular interest is the YAP S94-TEAD1 Y406 hydrogen bound. 

Mutation of TEAD1 Y406 to histidine is found to cause a rare autosomal dominant human 

genetic disease Sveinsson's chorioretinal atrophy72. Remarkably, either YAP S94A or 

TEAD1 Y406H mutation almost completely disrupts YAP-TEAD interaction69, 73. This 

observation highlights the physiological role of YAP-TEAD interaction in tissue 

homeostasis. In tissue culture, mutation of YAP S94 abolishes the majority of YAP-induced 

gene expression and cell proliferation, oncogenic transformation, and epithelial-

mesenchymal-transition (EMT)61. More importantly, knock-in of this mutation in mice skin 

phenocopies YAP knockout, further validating an essential role of TEADs in the biological 

functions of YAP63. Recently, it was demonstrated that VGLL4, another cofactor of 

TEADs, represses YAP function by competing with YAP for TEAD binding74-77. The 

discovery of this mechanism adds another layer of complexity to the control of YAP 
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activity. The functional interaction between Yki (the Drosophila YAP homolog) and 

Scalloped (the Drosophila TEAD homolog) has also been demonstrated by genetic studies 

in Drosophila78-80. Moreover, YAP regulates transcription likely through interaction with 

additional transcription regulators. For example, in both Drosophila and mammals, 

TAZ/Yki were shown to interact with the SWI/SNF complex, which modulates chromatin 

structure and plays an important role in Hippo pathway target gene expression78-80. 81-83.

Regulation of the Hippo pathway by polarity and junctional proteins

Signals upstream of the Hippo pathway core kinase cascade have been intensively 

investigated. It has been shown that Neurofibromin 2 (NF2, Merlin), a membrane-localized 

cytoskeleton related ERM (Ezrin, Radixin, Moesin) family protein and a human tumor 

suppressor, is upstream of the Hippo pathway in both Drosophila and mammalian 

cells34, 84-87. NF2 may function together with FERM domain-containing protein 6 

(FRMD6)88 and Kibra89-92. Recently it was shown that NF2 directly interacts with LATS1/2 

and may mediate plasma membrane localization and activation of LATS1/293. Other cell 

polarity proteins have also been implicated in regulation of the Hippo pathway. The 

Angiomotin (AMOT) complex at tight junction inhibits YAP/TAZ by both direct binding 

and indirectly activating LATS1/294-97. However, it has also been reported that the p130 

isoform of AMOT activates YAP in the context of liver tumorigenesis98. About 70% of 

AMOT knockout mice die around E7.5 and the rest survive normally without cardiac 

phenotype99. Northern blot indicates low expression of AMOT in adult mouse heart. 

However, the other AMOT family members, angiomotin like 1 and 2 (AMOTL1 and 

AMOTL2), which could also bind to YAP, express at relatively high levels100. The cardiac 

function of AMOTL1 and AMOTL2 as part of the Hippo pathway would worth further 

study. Alpha-catenin at adherens junction may inhibit YAP by binding to 14-3-3 bound 

phosphorylated YAP63, 101. The basolateral domain protein scribble may promote the 

formation of MST-LATS-TAZ complex and thus facilitates TAZ inhibition102, 103. In 

addition, the basolateral localization of scribble and its function in promoting Hippo 

pathway activity are under positive regulation by the polarity regulator LKB1104. In 

Drosophila, the Hippo pathway is also regulated by signal from a protocadherin, Fat, which 

plays an important role in planar cell polarity105-110. Fat4 is the mammalian ortholog of 

Drosophila Fat. However, whole-body or liver-specific ablation of Fat4 does not support a 

role in regulation of the mammalian Hippo pathway111, 112. Regulation of the Hippo 

pathway by polarity and junctional proteins has been reviewed in detail elsewhere113.

Interestingly, the Hippo pathway is also regulated by specific junctional structures in 

cardiomyocytes114. Intercalated discs (IDs) are cell-cell adhesion structures joining 

cardiomyocytes end-to-end and responsible for maintaining mechanical integrity of the 

heart. Mutations of genes encoding ID proteins such as PKP2, JUP, and DSG2 cause 

arrhythmogenic cardiomyopathy (AC), which is characterized by replacement of 

cardiomyocytes with fibro-adipocytes predominantly in the right ventricle115. Notably, NF2 

also localizes to IDs in cardiomyocytes and is phosphorylated. In human AC hearts, 

phosphorylated NF2 is lost from IDs and YAP phosphorylation seems to be increased114. In 

mouse models of AC by either transgenic expression of Jup or conditional heterozygous 

knockout (cHET) of Dsp, NF2 protein level was increased whereas its phosphorylation was 

Zhou et al. Page 4

Circ Res. Author manuscript; available in PMC 2016 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dramatically decreased114. In these mutant cardiomyocytes, strong YAP phosphorylation 

was also observed. Another study showed repression of CTGF, a direct YAP target gene, in 

hearts of the same mouse models116. Thus pathological abnormalities of cardiac cell 

junctions in AC may result in inhibition of YAP. YAP/TAZ are known to promote 

osteogenesis and inhibit adipogenesis in other cell types57. Consistently, inactivation of the 

Hippo pathway in Pkp2 knockdown cardiomyocytes rescued the characteristic adipogenesis 

in AC114. Therefore deregulation of YAP and the Hippo pathway due to junctional 

abnormalities may result in YAP inhibition and thus pathogenesis of AC.

Regulation of the Hippo pathway by mechanical stress

Mechanical stress is increasingly recognized as a critical regulator of cell behavior and is 

directly relevant to heart physiology. Remarkably, the Hippo pathway effectors, YAP and 

TAZ, have been shown to be critical mediators of mechanical stress in several 

contexts117-122. For example, mesenchymal stem cells (MSCs) have the ability to 

differentiate into various lineages depending on matrix stiffness123. YAP/TAZ subcellular 

localization is sensitive to matrix stiffness117. On stiff matrix, YAP/TAZ localize to cell 

nuclei and promote osteogenesis117. On soft matrix, YAP/TAZ translocate to the cytoplasm 

and MSCs adopt adipogenic fate117. Interestingly, this mechano-sensing mechanism may 

also exist in cardiac cells. For example, it was noticed that nuclear YAP, which is absent in 

normal adult cardiomyocytes, appears in infarcted cardiac tissue with stiffer extracellular 

matrix (ECM)124. The regulation and function of YAP in cardiac infarction and regeneration 

are further discussed below.

Consistent with a central role of the actomyosin cytoskeleton in generation and transduction 

of mechanical force in cells, response of YAP/TAZ to mechanical stress depends on the 

actin cytoskeleton117-120, 122, 125. Pharmacological disruption of F-actin or inhibition of Rho 

GTPase, which plays a critical role in actin polymerization, leads to YAP inactivation. 

Robust regulation of the Drosophila Hippo pathway effector Yki by F-actin has also been 

demonstrated in vivo120, 126. The involvement of the Hippo pathway kinase cascade in 

YAP/TAZ regulation by mechanical stress is under debate. On one hand, mechanical stress 

clearly regulates LATS1/2 activity and YAP/TAZ phosphorylation118, 119, and on the other 

hand knockdown of LATS1/2 is insufficient to rescue YAP/TAZ activity in cells cultured on 

soft matrix117, 122. It is possible that both LATS1/2-dependent and independent mechanisms 

are involved, which need to be further elucidated. So far, the mechano-sensor that initiates 

signal transduction to the Hippo pathway has not been pinpointed. Cell-cell junctional 

proteins and cell-ECM adhesion molecules, such as integrins, might be involved. The 

junctional protein AMOT complex and alpha-catenin complex directly localize YAP/TAZ to 

tight junctions and adherens junctions, which are both associated with actin fibers. Although 

YAP localization in isolated cells are affected by mechanical stress which excludes an 

essential role of cell-cell junction remodeling in mediating mechanical signals to YAP/TAZ, 

it remains possible that differential subcellular distribution of junctional proteins but not cell 

junction remodeling per se under various mechanical conditions modulates YAP/TAZ 

localization and activity. As a biological pump, the heart endures mechanical forces all the 

time. Pathological mechanical overload could lead to heart hypertrophy, injury, and heart 

failure. It is tantalizing to speculate that the Hippo pathway in the heart is regulated by 
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mechanical force and modulates heart physiological function and pathological injury and 

regeneration.

Regulation of the Hippo pathway by GPCR signaling

Classical signaling pathways are initiated by extracellular ligands and respective cell surface 

receptors. Despite the discovery of mechanical stress and physical environment in regulation 

of the Hippo pathway, a traditional ligand-receptor pair upstream of the Hippo pathway was 

missing until recently. The first example of such upstream signaling has been demonstrated 

to originate from activation of GPCRs125, 127-129. The serum borne lysophosphatidic acid 

(LPA) and sphingosine-1-phosphate (S1P) are potent mitogens and strongly inhibit the 

Hippo pathway kinases LATS1/2, leading to activation of YAP/TAZ125, 127, 129. These 

phospholipids act through their respective GPCRs and downstream heterotrimeric G 

proteins. Activation of Rho and F-actin remodeling are involved in YAP/TAZ activation in 

response to LPA and S1P125, 127. Other GPCR ligands such as thrombin also stimulate 

YAP/TAZ activity128. Strikingly, epinephrine and glucagon act through their respective 

GPCRs leading to YAP/TAZ inhibition127.

Subsequently, it was realized that GPCRs and heterotrimeric G proteins have broad roles in 

regulation of the Hippo pathway127. YAP/TAZ can be either activated or inhibited 

depending on the coupled Gα subunits. For example, activation of Gα12/13, Gαq/11, or Gαi/o 

induces YAP/TAZ activity, whereas activation of Gαs represses YAP/TAZ activity127. 

GPCRs are the largest class of cell surface receptors encoded by the human genome and also 

the largest class of drug targets130, 131. It is estimated that there are around 200 GPCRs 

expressed in the heart132. For example, adrenergic receptors are GPCRs targeted by a large 

number of prescription drugs for cardiovascular diseases129, 133. Stimulation of β-adrenergic 

receptors (β1- and β2ARs) activates Gs proteins and increases intracellular Ca2+ 

concentration in turn, which ultimately results in cardiac muscle contraction134. However, 

chronic cardiac β1AR activation is detrimental and pro-apoptotic in the heart. Mice 

overexpressing β1-ARs developed dilated cardiomyopathy135. Consistently, mice 

overexpressing Gs also developed dilated cardiomyopathy associated with myocyte 

apoptosis136. These phenotypes could potentially be explained by YAP inhibition 

downstream of activation of Gs-coupled GPCRs. However, whether the Hippo pathway and 

YAP/TAZ are indeed involved in the deleterious cardiac effects of chronic β-adrenergic 

receptors activation waits to be determined. Modulation of the Hippo pathway as a common 

outcome of various drugs and conditions targeting cardiac GPCRs is an important topic to 

be studied.

The Hippo pathway in regulation of heart development

Organ size control is one of the most long-standing mysteries in biology. The most striking 

phenotype of Hippo pathway dysfunction in Drosophila is the alteration of organ size18. In 

mouse, liver-specific transgenic expression of YAP or knockout of Mst1/2 leads to 

enlargement of the liver to as much as one-fourth of the mouse body weight35, 137-141. 

Remarkably, the size of the liver shrinks back to normal upon cessation of YAP 

expression35, 137. Thus, the Hippo pathway plays an evolutionarily conserved role in organ 
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size control. The size of the mammalian heart is precisely controlled throughout 

development. However, little is known about the intrinsic regulation of heart size. Whether 

the Hippo pathway also controls heart size is therefore an intriguing question, which has 

been nicely answered by studying a large collection of genetic mouse models (summarized 

in Table 2).

Conditional knockout (cKO) of Sav1 by a knock-in Nkx2.5 Cre, which drives deletion at 

E7.5 in the cardiac crescent142, leads to substantial cardiomegaly although general 

organization of the heart is preserved12. The mutant mice die postnatally. A similar 

phenotype is observed in embryos of Mst1/2 and Lats2 cKO mutants12. Despite the dramatic 

change of myocardium thickness and heart size, cardiomyocyte size is unaffected. Instead, 

cardiomyocyte proliferation is significantly increased12. Noteworthy, defects caused by 

Lats2 cKO are not compensated by Lats1. Differential expression of Lats1 and Lats2, which 

has not been carefully compared in the heart, could be a reason. Alternatively, despite the 

presence of highly similar kinase domains, the differential N-terminal sequences of LATS1 

and LATS2 could mediate specific regulation or substrate binding. In agreement with 

increased heart size caused by KO of Hippo pathway kinase cascade components, 

conditional ablation of Yap early in development by the same Nkx2.5 Cre or cardiomyocyte-

specific Tnnt2 Cre leads to severe myocardium hypoplasia and embryonic lethality15, 17. In 

Yap cKO mice, although hearts are smaller, ectopic apoptosis is not seen in unstressed 

condition. Nevertheless, cardiomyocyte proliferation is severely reduced15.

Wnt signaling pathway also plays critical roles in cardiogenesis. There have been many 

studies suggesting cross-talks between Wnt and Hippo signaling in various contexts. 

Noteworthy, cardiac phenotypes of genetic mouse models of the two pathways exhibit 

interesting similarities and differences. Wnt pathway inactivation during heart development 

had been modeled by conditional deletion of the Wnt effecter protein β-catenin at different 

stages of cardiogenesis using various Cre lines. Conditional inactivation of β-catenin has 

been done using a transgenic Nkx2.5 Cre line, which is different from the aforementioned 

knock-in Nkx2.5 Cre in that its expression begins from E8 and is throughout ventricular 

myocardium from E8.5143. Developing hearts of these β-catenin cKO mice do not show 

ectopic apoptosis, but have reduced cell proliferation, significant reduction of ventricular 

size, thinner compact layer in the ventricular wall, and the embryos decease by E12.5144. 

These phenotypes are similar to that caused by cKO of Yap using the transgenic Nkx2.5 Cre 

or Tnnt2 Cre although the time point of embryonic death varies by a few days15, 17. One 

interesting finding is that β-catenin inactivation by transgenic Nkx2.5 Cre has a more 

profound effect in the right ventricle144. Developmentally, the two ventricles of mouse 

hearts are derived from distinct populations of progenitor cells. Cells of the first heart field 

(FHF) contribute to the left ventricle and progenitors in the second heart field (SHF) form 

the rightward looping of the cardiac tube, therefore contributing to the right ventricle and 

inflow and outflow tracts11, 145. The differential effects on left and right ventricles suggest 

that Wnt signaling has specific functions in the SHF. Remarkably, inactivation of β-catenin 

at an earlier stage in all heart progenitor cells using Mesp1 Cre or more specifically in SHF 

progenitors by Islet1 Cre or Mef2c-ANF Cre leads to dramatic defects of SHF-derived right 

ventricle and outflow tract146-149. However, inactivation of YAP or the Hippo pathway 
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components by the knock-in Nkx2.5 Cre, which also expresses in both FHF and SHF, seems 

to affect both ventricles equally, suggesting that different from Wnt, the Hippo pathway 

does not specifically function in the SHF12, 17. Nevertheless, a more precise comparison of 

the Hippo and Wnt function in the SHF progenitors would require examination of 

phenotypes after deletion of the Hippo pathway genes using SHF-specific Islet1 Cre line or 

general cardiac progenitor-specific Mesp1 Cre line. Interestingly, in cultured cardiac 

progenitor cells, YAP/TAZ is expressed and their subcellular localization shifts from 

cytoplasm to nucleus when matrix is remodeled from soft to stiff124. However, in this case, 

the functional consequence is unclear, and as we discussed above, the roles of YAP/TAZ in 

cardiac progenitors in vivo would require further evidence. Nevertheless, YAP/TAZ as 

potential mediators of mechanical stress to cardiac progenitors is still an intriguing 

possibility.

The function of the Hippo pathway in regulation of cardiomyocyte proliferation is further 

supported by the observed dramatic myocardial overgrowth and cardiomegaly in embryos of 

active Yap conditional transgenic (cTG) mice15-17. When inducible Yap expression is driven 

by Tnnt2 Cre and induced from E8.5, the trabecular myocardium of fetal hearts seems to be 

especially affected such that the ventricles are almost obliterated and the fetuses demise by 

E15.515. Expression of trabecular myocardium marker Nppa (natriuretic peptide A) is 

markedly down-regulated in Yap transgenic myocardium, suggesting that elevated 

cardiomyocyte proliferation is associated with impaired differentiation15. In other tissues 

such as the skin, Sav1 KO has also been shown to delay cell cycle exit and impair 

differentiation but does not affect the speed of cell proliferation150. Thus it is possible that 

the Hippo pathway regulates heart size by preventing cardiomyocytes to enter mitosis, albeit 

the rate of proliferation may not differ once cells are licensed to proliferation.

In another report of Yap cTG under α-myosin heavy-chain (αMHC) promoter, which mainly 

expresses postnatally (although expression could be detected as early as E10.5), mice are 

viable and thickened myocardium is obvious in 4 months old adult hearts16. Interestingly, 

when YAP expression is driven by βMHC promoter, which expresses from E9, adult heart 

size is normalized due to reduced cardiomyocyte size, although the cell numbers are 

elevated than normal controls17. Such a normalization of organ size under conditions of cell 

over-proliferation has been reported for other growth regulators but has not been reported 

for the Hippo pathway in other organs. The reason for the cross-talk between cell number 

and cell size to maintain a predetermined heart size under this specific YAP activation 

condition is unclear but fascinating.

The Hippo pathway also plays a role in early cardiac development. In zebrafish, an activity 

reporter indicates the expression and activity of YAP/TAZ in cardiac progenitor cells151. 

During zebrafish development, cardiac precursors migrate to the midline to form the heart 

tube152. Interestingly, when a dominant-negative form of YAP was expressed, the migration 

of these cells was impaired resulting in cardiac bifida, although formation of the heart was 

not completely blocked151. YAP and TAZ are known to promote cell migration in other 

contexts such as cancer metastasis34, 153. Thus, this observation expands the physiological 

role of YAP/TAZ-induced cell migration into heart development. More interestingly, S1P is 

known to be required for midline migration of cardiac progenitor cells in zebrafish154, 155. 
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Therefore, the finding may provide a physiological niche for GPCR in regulation of the 

Hippo pathway in the context of heart development as S1P may induce cardiac progenitor 

cell migration via activation of YAP/TAZ.

The Hippo pathway in cardiomyocyte apoptosis and myocardium infarction

MST1/2 kinases were known to be activated by apoptotic stress even before their role in the 

Hippo pathway was characterized38. MST1/2 can be activated by caspase-dependent 

cleavage39, dimerization, and autophosphorylation156. The proapoptotic function of MST1/2 

is also stimulated by upstream molecule RASSF1A157-160. One of the most physiologically 

relevant apoptotic stimuli of MST1/2 is oxidative stress. It has been shown that MST1 

mediates neuronal cell death in response to hydrogen peroxide161-163. Ischaemia/reperfusion 

(I/R) is one of the most common injuries to human hearts. I/R leads to death of 

cardiomyocytes largely due to the production of reactive oxygen species (ROS)164. 

Therefore, the potential regulation of MST1/2 by I/R-induced ROS and the role of MST1/2 

in myocardium injury have been extensively examined165-168. The kinase activity of 

MST1/2 is indeed activated by I/R as indicated by in vitro kinase assay167. Both caspase-

dependent cleavage165, 167, 168 and interaction with RASSF1A168 have been shown to be 

involved in MST1/2 activation by I/R in myocardium. Interestingly, transgenic expression of 

a dominant-negative forms of MST1 under αMHC promoter blocks MST1/2 activation and 

dramatically reduces acute cardiomyocyte apoptosis and the size of myocardial 

infarction165. In models of long-term myocardium infarction, introduction of dominant-

negative MST1 also attenuated endogenous MST1/2 activation, myocardium apoptosis, 

fibrosis, and cardiac dysfunction165. Consistent with the role of RASSF1A in MST1/2 

activation, cTG expression of MST-binding-deficient form of RASSF1A or cKO of 

Rassf1A, both driven by cardiomyocyte-specific αMHC promoter, largely blocked MST1/2 

activation, cardiomyocyte apoptosis, and fibrosis under pressure overload168. Nevertheless, 

whole body knockout of Rassf1A leads to worsened heart fibrosis although cardiomyocyte 

apoptosis was still reduced166, 168. Further in vitro experiments suggest an anti-proliferative 

and anti-inflammatory role of RASSF1A-MST1/2 in cardiac fibroblasts168. Thus 

RASSF1A-MST1/2 also plays a role in non-myocytes of the heart during heart injury. In 

line with the Hippo pathway in mediating cardiomyocyte apoptosis upon pressure overload, 

LATS2 protein level was significantly elevated upon pressure overload, and expression of a 

dominant-negative LATS2 under αMHC promoter reduced cardiomyocyte apoptosis 

induced by transverse aortic constriction (TAC)169. Furthermore, αMHC promoter driven 

cardiomyocyte-specific cHET of Yap significantly increased cardiomyocyte apoptosis and 

fibrosis after chronic myocardium infarction170. Thus the MST1/2-LATS1/2 kinase cascade, 

which is activated by heart damage, may contribute to cardiomyocyte apoptosis and 

infarction by inhibiting YAP.

However, functions of MST1/2 and LATS1/2 in cardiomyocyte apoptosis are not identical 

because αMHC promoter-driven transgenic expression of MST1, but not LATS2, in 

cardiomyocytes induces apoptosis in basal condition167, 169. This finding suggests that 

MST1/2 may promote cardiomyocyte apoptosis through additional mechanisms. 

Interestingly, MST1 was found to inhibit autophagy based on the observation that Mst1 

facilitates accumulation of protein aggresomes and p62, which are normally removed by 
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autophagy171. By directly phosphorylating Beclin1, MST1 disrupts the formation of the pro-

autophagic Atg14L-Beclin1-Vps34 complex and promotes Beclin1 interaction with Bcl-2 

and Bcl-xL, as well as Beclin1 homodimerization171. Autophagy may play a protective role 

in cardiomyocytes by alleviating energy loss and recycling damaged organelles and protein 

aggregates172. The role of autophagy inhibition upon Hippo pathway activation in mediating 

cardiac damage still awaits further confirmation in vivo. Nevertheless, the activation of 

MST1, increase of Beclin1 phosphorylation, and signs of autophagy inhibition such as 

accumulation of p62 and decreased LC3 cleavage are indeed observed in failing hearts of 

human patients171. The promotion of Beclin1 binding to Bcl-2/Bcl-xL by MST1 releases 

Bax from these proteins171. Although this may provide a LATS1/2-YAP-independent 

mechanism for MST1/2 to induce apoptosis, the precise function of this mechanism in 

MST1/2-induced cardiomyocyte apoptosis also needs to be carefully examined in vivo.

The Hippo pathway in Cardiac hypertrophy and dilated cardiomyopathy

Hypertrophic growth is a necessary phase of cardiac development and the major form of 

heart growth after birth. Cardiomyocyte hypertrophy also happens under pathological 

conditions such as I/R induced infarction, hypertension, and valvular heart disease, in which 

elevated wall stress normally induces an adaptive heart hypertrophy to compensate for 

insufficient contractile mass173. An increase in wall thickness by cardiac hypertrophy can 

reduce wall stress (by Laplace's law), which in turn reduces both oxygen consumption as 

well as cell death.

A role of the Hippo pathway in inhibiting pathological hypertrophy was first observed in 

Mst1 heart specific transgenic mice165, 167. Consistent with the kinase activity-dependent 

role of MST1/2 in promoting apoptosis, transgenic expression of Mst1 but not a kinase 

inactive mutant under αMHC promoter clearly increases cardiomyocyte apoptosis and 

extensive fibrosis in adult hearts, leading to wall thinning and dilated cardiomyopathy 

(DCM)167. However, detailed examination indicates that cardiac dilation is due to lateral 

myocyte slippage under elevated wall stress rather than compensatory hypertrophy. Thus 

although myocardium damage and stress to the heart were evident, a default hypertrophy 

program was not initiated, suggesting a role of the Hippo pathway in inhibiting this process. 

In other pathological conditions such as pressure overload, MST1 is activated in the 

myocardium, in correlation with apoptosis168. Interestingly, αMHC promoter driven 

Rassf1A cKO blocks MST1/2 activation and attenuates the hypertrophic response likely due 

to inhibition of apoptosis and fibrosis and thus reduced heart damage168. Thus inhibition of 

the Hippo pathway may also inhibit cardiomyocyte hypertrophy because of an indirect effect 

in repressing apoptosis and heart injury. However, it should be noted that αMHC promoter 

driven expression of DN-Mst1 or DN-Rassf1A, which also show inhibitory effect on MST1 

phosphorylation, apoptosis, and fibrosis to a similar level as Rassf1A cKO, do not block 

cardiomyocyte hypertrophy165, 168. The reason for this discrepancy is unclear.

Different from Mst1, αMHC promoter driven Lats2 transgenic hearts show reduced size and 

no apoptosis at baseline thus no DCM was observed169. However, expression of LATS2 

inhibits protein synthesis and cell size as determined by the cross-sectional area of 

cardiomyocytes. Nevertheless, αMHC promoter driven transgenic expression of dominant-
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negative LATS2 leads to increased cardiomyocyte size and biventricular hypertrophy at 

baseline169. Thus both MST1 and LATS2 seem to inhibit hypertrophy. However, it is 

unclear whether they work in a linear pathway fashion. Furthermore, the possibility of MST 

and LATS affecting hypertrophy by a secondary effect due to a more pleiotropic role of 

these proteins in myocardium proliferation and apoptosis has not been unequivocally 

excluded.

Interestingly, cKO of Yap leads to a phenotype similar to Mst1 overexpression. Early 

deletion of Yap using knock-in Nkx2.5 Cre leads to demise of the embryo, which prevents 

analysis of the effect of long-term loss of Yap in cardiac function17. Ablation of Yap using 

αMHC-Cre, which expresses as early as E10.5 and mainly postnatally, circumvented 

embryonic lethality16, 170. However, these mutants die by 20 weeks of age due to DCM and 

heart failure. Consistent with a low expression of TAZ in myocardium, deletion of Taz using 

the same Cre does not cause obvious abnormality of the heart16. However, combination of 

Yap and Taz KO dose-dependently worsen the phenotype suggesting functional redundancy 

of the two genes. Examination of myocardium indicates reduced proliferation and increased 

cardiac apoptosis in neonatal αMHC-Cre Yap cKO; Taz cHET mice16 and 8 weeks old 

αMHC-Cre Yap cKO mice170. Noteworthy, Yap cKO by Nkx2.5 Cre does not induce 

apoptosis in embryonic hearts17. Postnatal heart endures much more mechanical stress than 

fetal heart. Thus the observed apoptosis in αMHC-Cre driven Yap cKO mice is possibly 

secondary to compromised cardiac function and elevated wall stress due to insufficient 

cardiomyocyte proliferation. In Yap cKO myocardium, cardiomyocyte hypertrophy is 

obvious as indicated by cross sectional area of cells170. However, the observed hypertrophy 

is likely secondary to heart injury. The role of Yap in cardiomyocyte hypertrophy has also 

been studied in myocardium with mosaic deletion of Yap by delivering of Tnnt2-Cre-

encoding adenovirus to Yap floxed neonatal mice15. Results indicate that YAP does not 

affect cardiomyocyte hypertrophy in neonatal hearts or after ascending aortic constriction in 

adult hearts15. In this experimental setting, Yap deletion happens only postnatally, which 

minimizes the secondary effect of Yap deletion on cardiomyocyte hypertrophy owing to 

insufficient proliferation and induced apoptosis. Furthermore, examination of Yap transgenic 

myocardium did not find obvious cardiomyocyte hypertrophy in vivo15-17. In addition, 

during development, YAP is down-regulated in hypertrophic phase of heart growth15. These 

studies suggest that YAP plays a role in heart hypertrophy secondary to its role in regulation 

of cardiomyocyte proliferation and apoptosis but may not directly regulate cardiomyocyte 

hypertrophy. In adult hearts, αMHC-Cre driven condition deletion of only one allele of Yap 

moderately decreases cardiomyocyte hypertrophy after MI170. In cardiomyocytes cultured in 

vitro, expression of YAP increased cell size and knockdown of YAP attenuated 

phenylephrine induced cardiomyocyte hypertrophy170. Interestingly, it was recently reported 

that YAP expression is enhanced while YAP phosphorylation is dampened with reduced 

Mst1 expression in myocardium of patients with hypertrophic cardiomyopathy174, 

suggesting a role of YAP in pathogenesis of human hypertrophic heart disease. Taken 

together, functions of YAP and the Hippo pathway in cardiac hypertrophy might be more 

complex and context-dependent.
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The PI3K-AKT-mTOR pathway is a critical regulator of cell size175. The Hippo pathway 

may modulate mTOR and protein synthesis through YAP-dependent induction of miR-29 

and inhibition of PTEN, thus activation of AKT176. Interestingly, AKT is also activated by 

YAP in myocardium17, 170, 177, which may involve induced expression of Pik3cb177. 

Knockdown of Pik3cb reduces ectopic cardiomyocyte proliferation in vivo and expression of 

Pik3cb ameliorates cardiomyopathy upon YAP cKO177. Therefore, the Hippo-mTOR 

crosstalk likely plays a role in regulation of cardiomyocyte hypertrophy in vivo. Damage-

induced mechanical overload is a common cause of cardiac hypertrophy178, 179. 

Interestingly, the Hippo pathway is known to respond to mechanical stress117. However, the 

precise nature and signaling mechanism of mechanical stress to impinge on the Hippo 

pathway in the context of cardiac hypertrophy and dilation would be an important question 

for future study.

The Hippo pathway in heart regeneration

Although some organs in the human body have substantial regeneration capacity, the 

renewal potential of the heart is very limited5-7, 9, 10. Nevertheless, recent evidence indicates 

that adult human and mouse heart is renewing slowly6, 9, 180, and such potential can be 

overwhelmed by sudden loss of cardiomyocytes in pathological conditions3, 181. Several 

different approaches have been attempted such as direct supplement of cardiac progenitor 

cells2, 182 and reprogramming by cardiac genes or small molecules183-185. Some of these 

manipulations improve regeneration, but are generally not robust. Although both cardiac 

progenitor cells and cardiomyocytes renewal have been documented, lineage tracing suggest 

that cells contribute to ventricular regeneration are primarily cardiomyocytes186, 187. In fact 

in species such as zebrafish the potential of cardiomyocytes to proliferate and repair 

damaged heart is quite strong188, 189. In newborn mice before postnatal day 7 (P7), 

cardiomyocytes could also proliferate to reach substantial cardiac regeneration. However, 

such ability is quickly lost after P7, leaving behind fibrosis and scar tissue after 

damage186, 190. The molecular mechanism that switches off the regeneration potential of 

cardiomyocytes is unclear but is likely associated with the switch of heart growth from 

cardiomyocyte proliferation to cellular hypertrophy. Therefore attempts have been made to 

force cardiomyocyte proliferation by overexpression of various cell cycle regulators such as 

cyclin A2, CDK2, and cyclin D13, 191-195. However, although DNA synthesis and 

karyokinesis could readily be observed, complete cytokinesis and proliferation remain 

inefficient in most cases. A better understanding of mechanisms of cardiac regeneration is 

thus in need.

The Hippo pathway is known to play important roles in regeneration of intestines after 

damage. Although cKO of Yap does not seem to affect general development and function of 

mouse intestine, the damage-induced regeneration program is largely impaired without 

Yap196. Considering functions of the Hippo pathway in control of heart size and 

cardiomyocyte proliferation during development, it is possible that the Hippo pathway also 

exerts vital functions during repair and regeneration of the heart. Such possibility has been 

directly tested in conditions of heart injury16. Resection of mouse cardiac apex after P7 

normally results in scarring in contrast to regeneration if resection is done before P7. 

However, in two different Sav1 cKO models, one specifically in cardiomyocytes by 
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Myh6creERT2 induced from P7 and the other during development by knock-in Nkx2.5 Cre, 

myocardium resected at P8 regenerated with reduced scar size compared to control 

animals13. Study of the function of the Hippo pathway in acute resection-induced heart 

regeneration avoids complications by the role of the Hippo pathway in damage-induced 

apoptosis, although this kind of damage is non-physiological.

In human hearts, cardiomyocyte loss is more commonly caused by myocardium infarction 

due to coronary artery disease, which could be mimicked by left anterior descending (LAD) 

coronary artery occlusion. Similar to that in apex resection, heart injury induced by LAD 

occlusion at P8 or P7 is also much better tolerated with reduced scar size and improved heart 

functional recovery in cardiomyocyte-specific Sav1 cKO (Myh6creERT2) mice or Yap 

transgenic (αMHC Cre) mice, respectively13, 16. To further examine the role of the Hippo 

pathway in regeneration of adult hearts, LAD occlusion was done at one or two month of 

age in the same Yap transgenic or Sav1 cKO mice13, 16. In both cases, improved heart 

regeneration was indicated by reduced fibrotic scarring and improved recovery in heart 

functional parameters such as fractional shorting (FS), ejection fraction (EF), and stroke 

volume. Noteworthy, Yap expression or Sav1 cKO does not completely block heart injury 

(scarring), although in Sav1 cKO model, FS and EF recovered to a level similar to sham-

operated animals. In contrast, cardiomyocyte-specific Yap cKO by αMHC Cre impairs 

neonatal heart regeneration induced by LAD occlusion at P2 leaving behind extensive 

fibrotic infarct zone and gross deficiency of healthy myocardium16.

Proliferating cardiomyocytes are observed in Hippo pathway deficient hearts, which is likely 

the reason for improved cardiac regeneration. Lineage-tracing of regenerated myocardium in 

resected Sav1 cKO mice indicates that the regenerated cTnt staining positive 

cardiomyocytes are also positive for GFP resulted from recombination of the mTmG allele, 

indicating pre-existing cardiomyocyte lineage. Thus regenerated myocardium is largely 

from proliferating cardiomyocytes, although some contribution from resident stem cells 

could not be completely ruled out13. In fact, cardiomyocyte-specific inactivation of Sav1 

could even induce complete mitosis in myocardium of mice 4 months of age13. Conversely, 

cHET of Yap decreases proliferating cells in infarcted myocardium15, 170. These studies 

suggest that the Hippo pathway is active in suppressing mitosis in adult heart. In support of 

this notion, YAP protein is clearly detected in neonatal hearts and declines with age while 

YAP phosphorylation increases with age15. However, in infarcted adult heart, YAP 

expression reappeared at the border of the infarction zone, which could be due to increased 

stiffness of the infarcted area124, 170. The functional role of YAP re-expression in these areas 

has not been demonstrated. Nevertheless, it has been known for a while that injury of one 

area of the heart induces cell cycle reentry of cardiomyocytes throughout the whole organ in 

zebrafish197. Similar phenomenon has also been observed in Hippo-deficient mouse 

hearts13. Therefore, in zebrafish hearts or neonatal mouse hearts, cues upstream to the Hippo 

pathway may exist to propagate damaged signals to instruct cardiomyocyte proliferation 

distant from the site of injury. Whether the Hippo pathway is directly responsive to 

myocardium injury or simply limits cardiomyocyte proliferation needs to be further 

examined.
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Transcriptional regulation of heart size and regeneration downstream of 

YAP/TAZ

As transcription co-activators, the function of YAP/TAZ depends on their interacting 

transcription factors (Fig. 2). Evidence so far supports that the TEAD family is the major 

transcription factor target of YAP/TAZ in vitro and in vivo61-63. Functions of TEADs in 

YAP-regulated cardiomyocyte proliferation and heart development have also been 

demonstrated in vivo15. Cardiomyocyte-specific knock-in mutation of mouse Yap-S79A 

(equivalent to human YAP-S94A mutant), which abolishes its interaction with TEADs, leads 

to cardiomyocyte hypoplasia comparable to that caused by Yap cKO in fetal hearts15. In 

addition, introduction of a peptide disrupting YAP-TEAD interaction significantly inhibits 

YAP-induced expression of cell cycle-related genes such as Aurkb, cdc20, Ccna2, and 

proliferation of cultured cardiomyocytes15. Furthermore, whole-body Tead1 knockout mice 

die around embryonic day 11.5 with abnormally thin ventricular wall and a dramatic 

reduction of myocardium trabeculation198, 199. These phenotypes closely resemble those 

observed in Yap cKO mice and strongly support that TEAD1 is critical for YAP to regulate 

cardiomyocyte proliferation and cardiac development. Noteworthy, in human, all 

Sveinsson's chorioretinal atrophy patients are heterozygous for TEAD1 mutation72. Heart 

defects of these patients, however, have not been described, which also suggests that 

different from the optic disc, one allele of Tead1 is sufficient to sustain myocardium 

development and function.

Wnt signaling is one of the most recognized pathways in regulation of development. β-

catenin is a transcription co-activator and major effector of the Wnt pathway. Wnt 

stimulation leads to disassembly of the destruction complex and stabilization and nuclear 

enrichment of β-catenin200. In Sav1 cKO myocardium, nuclear localization of β-catenin and 

expression of β-catenin target genes were found to be elevated12. Furthermore, 

dephosphorylated and active, but not phosphorylated and inactive, YAP interacts with β-

catenin12. It has also been reported that in epithelial cells, cytoplasmic inactive YAP directly 

binds to and sequesters β-catenin in the cytoplasm 201. Thus activity of the Hippo pathway 

may dictate a stimulatory or inhibitory role of YAP on β-catenin activity, although the 

applicability of such mechanism to myocardium is unknown. In cardiomyocytes, sequential 

ChIP showed that YAP and β-catenin co-occupy the promoters of target genes such as Sox2 

and Snai212. More importantly, heterozygous knockout of β-catenin in Sav1 cKO mice 

normalizes ventricular cardiomyocyte proliferation rate, and myocardial thickness, 

supporting a functional role of β-catenin in cardiac overgrowth induced by Hippo pathway 

inactivation12. Several mechanisms of β-catenin activation by the Hippo pathway have been 

reported including those affecting β-catenin stability, subcellular localization and 

transcriptional activity201-206. In cardiomyocytes, one possible mechanism for YAP-induced 

activation of β-catenin is the elevation of IGF1R expression and subsequent activation of 

AKT and inhibition of GSK3β, which could then cause β-catenin accumulation and nuclear 

enrichment17. The mechanism for IGF1R induction by Hippo pathway inhibition remains 

unknown. It should be noted that the Wnt/β-catenin and Hippo signaling show substantial 

functional differences in heart development in regard to progenitors of the SHF. However, 
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activity of β-catenin as Wnt effector may be limited by the Hippo pathway in 

cardiomyocytes, which may be reactivated under certain conditions such as heart injury.

TAZ and YAP are also reported to associate with TBX5, a T-box transcription factor 

mutated in Holt-Oram syndrome (HOS), which is characterized by a variety of cardiac and 

other abnormalities207. YAP/TAZ-TBX5 stimulates expression of cardiac specific genes 

such as Nppa. TBX5 directly binds to Nppa promoter208 and co-expression of TAZ or YAP 

with TBX5 potently stimulates luciferase expression driven by Nppa promoter207, 

suggesting that Nppa is a direct target gene of YAP/TAZ-TBX5. Interestingly, some of the 

HOS patients-associated TBX5 mutants lost interaction with YAP, suggesting the 

involvement of this interaction in pathogenesis of subtypes of HOS207. The functional 

significance of this interaction is yet to be validated by genetic models207. YAP-TBX5 

interaction has also been implicated in cancer205. A TBX5-YAP-β-catenin-YES complex is 

shown to bind to promoters of anti-apoptotic genes such as Birc5 and Bcl2L1, thus regulates 

survival and transformation of Wnt-dependent cancer cells205. It is currently unknown 

whether the function of YAP/TAZ-TBX5 in cardiomyocytes is also Wnt-dependent. 

However, this connection could provide another possibility for cross-talk between Hippo 

and Wnt pathways in regulation of cardiac physiology.

FoxO1 is a Forkhead transcription factor known to regulate expression of antioxidant genes 

such as catalase and Sod2, thus protects cardiomyocytes from oxidative stress209-211. YAP 

is reported to directly bind to FoxO1 and stimulate antioxidant gene expression212. In 

condition of I/R in the heart, activation of MST1/2 leads to inhibition of YAP and thus 

attenuates antioxidant gene expression212. Indeed, inhibition of the Hippo pathway by 

dominant-negative or knockdown of LATS2 rescues catalase and Sod2 expression, restores 

antioxidant capacity, and reduces cardiomyocyte apoptosis and myocardium infarction 

under I/R setting in a FoxO1-dependent manner212. However, FoxO1 is also well-known to 

induce apoptosis213. How would the conflicting roles of YAP-FoxO1 in generating 

antioxidant potential and promoting apoptosis be reconciled in the context of cardiac injury 

by I/R would need further study. In addition, YAP is known to activate AKT in 

cardiomyocytes17, which is a major kinase phosphorylating and inactivating FoxOs. 

Whether and how a balance between YAP-induced FoxO1 activation and YAP-AKT-

induced FoxO1 inhibition is reached to regulate cardiomyocyte survival under stressed 

condition is another issue requiring further investigation.

Other YAP/TAZ target transcription factors may also mediate the effect of the Hippo 

pathway in heart development and regeneration. For example, YAP/TAZ are known to 

interact with SMADs to regulate stemness downstream of TGF-β/BMP pathways60, 214. The 

interaction between YAP and SMAD1 after BMP stimulation is particularly interesting 

because BMP signaling is known to be involved in cardiac development and anti-apoptotic 

in neonatal hearts215. However, the potential role of Hippo-BMP signaling cross-talk in 

cardiac development is merely hypothetical at this point. In addition, Meis1, a TALE family 

homeodomain protein, was recently found to be critical in regulation of the cardiac growth 

switch from proliferation to hypertrophy216. Meis1 deletion in mouse cardiomyocytes 

extends the postnatal proliferative window of cardiomyocytes, and overexpression of Meis1 

in cardiomyocytes decreases neonatal cardiomyocyte proliferation and regeneration216. 
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Interestingly, Homothorax (Hth), the Drosophila homolog of Meis1, interacts with Yki to 

induce expression of microRNA bantam and to regulate proliferation and apoptosis in 

specific compartment of Drosophila eye imaginal disc217. Whether YAP-Meis1 could 

interact in cardiomyocytes to coordinately regulate cell proliferation and hypertrophy has 

not been examined. One model is that Meis1 functions as a transcriptional repressor with 

other cofactors to inhibit cardiomyocyte proliferation, which is blocked by competitive 

binding of YAP to Meis1.

Evidence so far supports that multiple transcriptional complexes downstream of the Hippo 

pathway are involved in regulation of cardiac development and regeneration (Fig. 2). More 

YAP/TAZ transcription factor partners and functional downstream target genes are likely to 

emerge in the near future.

Perspectives and concluding remarks

Proper heart development is vital to life and heart repair/regeneration post-injury is a topic 

of paramount importance in biomedical research. Current research has provided abundant 

evidence for the important functions of the Hippo pathway in heart development, injury and 

regeneration. However, our understanding of basic mechanisms of the Hippo pathway is still 

incomplete, such as the signal transduction mechanisms of GPCRs and mechanical stress to 

regulate activity of LATS1/2 and YAP/TAZ; additional signals in physiological and 

pathological conditions in regulation of Hippo pathway activity; contribution and 

coordination of downstream effectors in mediating biological outcome of the Hippo 

pathway. Although the Hippo pathway has been demonstrated to regulate cardiomyocyte 

proliferation during development, the cardiac specific upstream signal remains an enigma. 

The proliferation to hypertrophy switch of cardiomyocytes soon after birth is accompanied 

by an acute increase of oxygen pressure and mechanical load, which can modulate the Hippo 

pathway activity. Whether regulation of the Hippo pathway by these signals influences the 

switch of cardiomyocyte fate would be a very important question for future study. During 

heart regeneration, cardiomyocyte proliferation could happen distant from the damage site, 

suggesting the involvement of diffusible signal(s). Would this signal be a Hippo inhibitor 

such as a GPCR ligand or a secreted growth factor encoded by YAP target genes are 

important and interesting questions remain to be answered. The Hippo pathway and YAP 

are known to regulate EMT in the context of development and cancer metastasis34, 153. In 

the heart, EMT has a critical function in the trans-differentiation and formation of heart 

valve from endothelial cells218, 219. Whether the Hippo pathway and YAP are involved in 

valve development and defects are topics worth further investigation. microRNAs 

(miRNAs) play important roles in heart development and homeostasis220-222. This is 

indicated by heart-specific cKO of Dicer, the miRNA-processing enzyme, which leads to 

lethality due to heart failure223. Disruption of miRNA production postnatally also leads to 

cardiac remodeling and dysfunction224, 225. YAP is known to induce expression of specific 

miRNAs and broadly repress miRNA production by sequestering p72, a regulatory 

component of the miRNA-processing machinery176, 226. The possibility of altered miRNA 

expression, either globally or individually, in mediating YAP regulation of cardiac 

physiology and disease is of interest and potential therapeutic value.
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Nonstandard Abbreviations and Acronyms

AAC Ascending Aortic Constriction

AC Arrhythmogenic Cardiomyopathy

AJ Adherens Junctions

α-CAT α-Catenin

βARs β-adrenergic receptors

β-TRCP β-Transducin repeat-containing protein

CK1δ/ε Casein Kinase 1 δ/ε

cKI conditional Knock-in

cKO conditional Knockout

cTG conditional Transgenic

DCM Dilated cardiomyopathy

DLG Disks large homolog

DVL Dishevelled

ECM Extracellular Matrix

EL Embryonic Lethal

FHF First Heart Field

HOS Holt-Oram syndrome

IDs Intercalated Discs

I/R Ischaemia/reperfusion

KBR Kibra

LAD Left Anterior Descending

LGL Lethal Giant Larvae protein homolog

LPA Lysophosphatidic acid

MI Myocardial infarction

MSCs Mesenchymal Stem Cells

p300 E1A binding protein p300
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pCAF p300/CBP-associated factor, KAT2B

S1P Sphingosine-1-phosphate

Scrib Protein scribble homolog

SCF Skp, Cullin, F-box containing complex

SHF Second Heart Field

SWI/SNF SWItch/Sucrose NonFermentable nucleosome remodeling complex

TAC Transverse Aortic Constriction

TCF/LEF Transcription factor/Lymphoid enhancer-binding factor

TJ Tight Junctions

Ub Ubiquitin

VSD Ventricular Septal Defect

ZO-1 Tight Junction Protein ZO-1, also called TJP1
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Figure 1. The mammalian Hippo pathway
Arrows or blunt ends indicate activation or inhibition, respectively. Dashed lines indicate 

unknown mechanisms. Abbreviations: AJ (Adherens Junctions), CK1δ/ε (casein kinase 1 

δ/ε), DLG (Disks large homolog), KBR (Kibra), LGL (Lethal giant larvae protein homolog), 

Scrib (Protein scribble homolog), SCF (Skp, Cullin, F-box containing complex), β-TRCP (β-

Transducin repeat-containing protein), SWI/SNF (SWItch/Sucrose NonFermentable 

nucleosome remodeling complex), TJ (Tight Junctions), Ub (Ubiquitin), ZO-1 (Tight 

junction protein ZO-1, also called TJP1), α-CAT (α-Catenin).
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Figure 2. 
Transcription effectors of the Hippo pathway in regulation of cardiac physiology. YAP/TAZ 

transcription factor partners in cardiomyocytes and their downstream target genes are 

shown. The Hippo pathway likely regulates cardiac physiology through a coordinated 

transcriptional program. Abbreviations: DVL (Dishevelled), p300 (E1A binding protein 

p300), pCAF (p300/CBP-associated factor, KAT2B), TCF/LEF (Transcription factor/

Lymphoid enhancer-binding factor).
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Table 1

Major Hippo Pathway Components in Drosophila and Mammals

Drosophila Mammals

Full Name Symbol Full Name Symbol

Scalloped Sd TEA domain family member 1/2/3/4 TEAD

Yorkie Yki Yes-associated protein
Transcriptional co-activator with PDZ-binding motif

YAP
TAZ

Tondu-domain-containing growth inhibitor Tgi Transcription co-factor vestigial-like protein 4 VGLL4

Warts Wts Large tumor suppressor kinase 1/2 LATS1/2

Mob as tumor suppressor Mats Mps one binder kinase activator-like 1A/1B MOB

Hippo Hpo serine/threonine kinase 4/3 MST1/2

Salvador Sav Salvador SAV1

Ras association family member Rassf Ras association domain-containing protein 1-6 RASSF1-6

Merlin Mer Neurofibromin 2 NF2

Expanded Ex FERM domain-containing protein 6 FRMD6

Kibra Kibra Kibra KBR

Angiomotin AMOT

Fat Fat Protocadherin Fat1-4 FAT1-4
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Table 2

Cardiac phenotypes of Hippo pathway mouse models.

Gene Mouse models Promoter Phenotypes

Yap cKO Nkx25-Cre EL by E10.5, decreased proliferation, thin myocardium17.

cKO Tnnt2-Cre EL by E16.5, hypoplastic ventricles, reduced proliferation, no elevated 
apoptosis, normal hypertrophy in basal and pathological conditions15.

cKO α-MHC-Cre Die by 11 weeks, dilated cardiomyopathy, increase apoptosis and fibrosis; 
worse injury, less proliferation and hypertrophy after chronic MI in cHET170; 
defective neonatal cardiac regeneration16.

cKO SM22α-Cre Perinatal lethality, hypoplastic myocardium, VSD227.

cTG mYap1-S112A P-MHC Embryonic hearts have enhanced proliferation, thickened myocardium, 
expanded trabecular layer; adult heart size normal due to reduced cell size17.

cTG mYap1-S112A α-MHC Increased proliferation, myocardium thickness, heart size, and cardiac 
regeneration16.

inducible cTG hYap1-S127A Tnnt2-Cre Induction at E8.5 leads to EL by E15.5 with increased proliferation, thickened 
myocardium, cardiomegaly; induction at P5 increases heart weight and 
proliferation but not hypertrophy15.

cKI Yap1fl/S79A Tnnt2-Cre Myocardium hypoplasia comparable to Yap1 cKO15.

Taz cKO α-MHC-Cre Normal heart, but when combined with Yap1 cKO enhances phenotypes 
including reduced proliferation, increased apoptosis, dilated cardiomyopathy 
and heart failure16.

Tead1 KO EL by E11.5, thin ventricular wall, dramatic reduction of myocardium 
trabeculation198.

cTG MCK Myocyte misalignment, wall-thickening, fibrosis, reduced heart output, heart 
failure within 4 days by pressure overload228.

Lats2 KO EL by E12.5, at E10.5 ventricular hypoplasia in 36% of embryos229.

cKO Nkx25-Cre Myocardial expansion12.

cTG α-MHC Reduced cardiomyocyte size and ventricle size, basal apoptosis not affected; 
enhancement of apoptosis in response to pressure overload169.

cTG-DN Lats2-K697A α-MHC Ventricular hypertrophy, less cardiomyocyte apoptosis induced by TAC169.

Lats1/2 inducible cKO Myh6-CreERT2 Increased renewal of adult cardiomyocytes, better regeneration after apex 
resection13.

Sav1 inducible cKO Myh6-CreERT2 Increased renewal of adult cardiomyocytes; increased proliferation and better 
morphological and functional regeneration after apex resection or MI13.

cKO Nkx25-Cre Increased proliferation, thickened myocardium, cardiomegaly12.

Mst1 cTG α-MHC Premature death, increased cardiomyocyte apoptosis, fibrosis, no hypertrophy, 
dilated cardiomyopathy167.

cTG-DN Mst1-K59R α-MHC Reduced apoptosis after I/R167; reduced apoptosis, fibrosis, cardiac dilation, and 
dysfunction, but not hypertrophy after MI165.

Mst1/2 cKO Nkx25-Cre Myocardial expansion12.

inducible KO CAGG-CreER Heart enlargement (partial penetrance)140.

Rassf1A KO No cardiac defects at basal condition; reduced apoptosis, enhanced hypertrophy, 
fibrosis, and LV chamber dilatation in response to TAC166, 168.

cKO α-MHC-Cre No cardiac defects at basal condition; reduced apoptosis, hypertrophy, and 
fibrosis after TAC168.

Circ Res. Author manuscript; available in PMC 2016 April 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 35

Gene Mouse models Promoter Phenotypes

cTG α-MHC No gross difference in cardiac morphology and function; elevated Mst1 
phosphorylation and cardiomyocyte apoptosis; increased apoptosis and fibrosis 
after TAC168.

cTG-DN Rassf1A-L308P α-MHC Abrogated Mst1 activation, reduced fibrosis and apoptosis in response to 
TAC168.

Abbreviations: knockout (KO); conditional knockout (cKO); tissue specific transgenic expression (cTG); conditional knock-in (cKI); ascending 
aortic constriction (AAC); Embryonic lethal (EL); Left anterior descending coronary artery (LAD); Myocardial infarction(MI); Postnatal day (P); 
Transverse aortic constriction (TAC); ventricular septal defect (VSD).
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