UC San Diego UC San Diego Previously Published Works

Title

The Hippo Pathway in Heart Development, Regeneration, and Diseases

Permalink

https://escholarship.org/uc/item/1400g74b

Journal

Circulation Research, 116(8)

ISSN

0009-7330

Authors

Zhou, Qi Li, Li Zhao, Bin <u>et al.</u>

Publication Date

2015-04-10

DOI

10.1161/circresaha.116.303311

Peer reviewed

HHS Public Access

Author manuscript *Circ Res.* Author manuscript; available in PMC 2016 April 10.

Published in final edited form as:

Circ Res. 2015 April 10; 116(8): 1431–1447. doi:10.1161/CIRCRESAHA.116.303311.

The Hippo pathway in heart development, regeneration, and diseases

Qi Zhou¹, Li Li², Bin Zhao^{1,*}, and Kun-Liang Guan^{3,*}

¹Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China

²Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China

³Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA

Abstract

The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes due to injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is very limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/ progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein (YAP) transcription co-activator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor (GPCR) signaling, and oxidative stress, are known to play critical roles in cardiac physiology. In addition, YAP has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings regarding the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.

Keywords

Hippo; cardiac hypertrophy; stem cell; YAP; GPCR signaling

Introduction

In mammals, organ size is relatively constant under regulation by both organ-intrinsic mechanisms and extrinsic physical and chemical cues, including mechanical stress and circulating factors¹. Heart size is also tightly controlled to ensure proper blood circulation. A small-sized heart will not be able to generate sufficient cardiac output to sustain physiological activities. However, increased myocardium mass could shrink cavity size and

^{*}To whom correspondence should be addressed: kuguan@ucsd.edu; binzhao@zju.edu.cn.

obstruct cardiac outflow. Alternatively, heart enlargement could result in heart failure as that in pathological cardiac hypertrophy. Mechanistically, the enlargement of heart size during development could be grossly divided into two phases². Fetal heart growth is mainly achieved by cardiomyocyte proliferation³. Soon after birth, heart growth switches to increase of cardiomyocyte size, which is also called physiological hypertrophy^{4, 5}. The molecular mechanism underlying this switch is unclear. Although it has been demonstrated that adult cardiomyocytes still maintain some proliferation ability⁶⁻¹⁰, the large loss of mitotic potential in cardiomyocytes is a key barrier for cardiac regeneration after heart injury.

Proliferation of cardiomyocytes during development is regulated by various growth factors such as insulin-like growth factors (IGFs), bone morphogenetic proteins (BMPs), Wnts and neuregulins¹¹. However, the cell intrinsic signaling pathways regulating cardiomyocyte proliferation are not well understood. It was recently demonstrated that the Hippo signaling pathway is critical for cardiomyocyte proliferation, heart size control, and cardiac regeneration¹²⁻¹⁷. The Hippo pathway is a signaling cascade that plays an evolutionarily conserved role in organ size control from *Drosophila* to human by regulating cell proliferation, apoptosis, and stem cell/ progenitor cell fate determination¹⁸⁻²¹. It has also been studied extensively in the context of tumor suppression and cancer in mammals^{22, 23}. In this review, we briefly outline current understandings of the basic mechanisms of the Hippo pathway in cardiac physiology, such as developmental heart size control, heart injury and hypertrophy, and cardiac regeneration.

Composition of the Hippo pathway

Core components of the Hippo pathway were first identified in Drosophila by genetic screens for tissue growth regulators²⁴⁻³³. Mutations of these genes lead to a common phenotype of tissue overgrowth and enlarged organ size in *Drosophila* eyes and wings. More significant is that core components of the Hippo pathway are highly conserved in mammals^{29, 33-37} (Table 1). As illustrated in Figure 1, MST1/2, homologs of the *Drosophila* Hippo kinase, are known to be pro-apoptotic and activated by apoptotic stress^{38, 39}. MST1/2 physically interact with an adaptor protein SAV1. The interaction is mediated by dimerization of SARAH (Salvador, RASSF and Hpo homology) domains, which are present at the carboxyl terminal regions of both proteins⁴⁰. So far, SARAH domain is found only in components of the Hippo pathway. Binding to SAV1 activates MST1/2 although the underlying mechanism is not completely understood. MST1/2 phosphorylates several proteins including SAV1⁴⁰, the NDR family kinases LATS1/2⁴¹, and the LATS1/2interacting adaptor proteins MOBKL1A/1B (MOB1)^{42, 43}. These phosphorylations lead to activation of LATS1/2, which in turn phosphorylate the YAP transcription co-activator on five serine residues^{34, 35, 44, 45}. YAP could shuttle between cytoplasm and nucleus, where it stimulates gene transcription. Phosphorylation of YAP serine residue 127 leads to 14-3-3 binding and thus cytoplasmic retention and inactivation of YAP³⁴. In addition, phosphorylation of YAP serine residue 381 by LATS1/2 results in further phosphorylation of a phosphodegron motif on YAP by CK1 delta and epsilon and recruitment of SCF^{beta-TRCP} E3 ligase, thus poly ubiquitination and degradation of YAP⁴⁶. Such a dual-

inhibitory mechanism may allow spatial and temporal regulation of YAP activity dependent on strength and duration of Hippo pathway activity. TAZ (transcriptional coactivator with PDZ-binding motif, also called WWTR1), the YAP paralog, is inhibited by the Hippo pathway in a similar manner while protein stability plays a more prominent role in regulation of TAZ activity - possibly due to the presence of an additional phosphodegron in TAZ⁴⁷⁻⁴⁹. YAP was also reported to be tyrosine phosphorylated by Src/Yes or c-Abl kinases^{50, 51}, which resulted in enhanced interaction with RUNX or p73 transcription factors. The functional significance of YAP tyrosine phosphorylation needs further examination *in vivo*.

Both YAP and TAZ lack DNA-binding domains and therefore have to cooperate with transcription factors to bind proper DNA elements and to stimulate gene transcription. Most of the known YAP target transcription factors could be broadly divided into two groups: the PPXY-containing transcription factors and the TEA domain family members (TEADs). The first group contains several proteins such as p73⁵²⁻⁵⁵, RUNX^{56, 57}, ERBB4 cytoplasmic domain^{58, 59}, and SMADs⁶⁰. These transcription factors interact with the WW domains of YAP or TAZ through their PPXY motifs. The TEAD family transcription factors interact with YAP/TAZ via the N-terminal TEAD binding domains in YAP/TAZ. Pairing of YAP and TAZ with different transcription factors could exert differential functions. For example, TAZ may promote osteogenesis by stimulating RUNX target gene expression⁵⁷ and YAP may promote pluripotency by mediating BMP target gene expression in ES cells through interaction with SMAD1⁶⁰. Moreover, YAP may paradoxically promote apoptosis by interacting with and stimulating p73 target genes⁵³⁻⁵⁵. These findings from cell culture studies suggest functional roles of the YAP WW domains. Further examination of YAP/TAZ WW domain knock-in mouse models, especially in comparison with Yap/Taz knockout mice, would help to clarify the importance of the WW domains.

Both genetic and biochemical studies have convincingly established a critical role of the TEAD family transcription factors in medicating biological functions of YAP in tissue growth⁶¹⁻⁶³. By large, YAP displays much stronger interaction with TEAD family members than other transcription factors described above⁶¹. This point is confirmed by several recent systematic proteomic interaction studies of the Hippo pathway⁶⁴⁻⁶⁸. Crystal structures of the YAP-TEAD complex have been solved, which revealed several critical interaction surfaces⁶⁹⁻⁷¹. Of particular interest is the YAP S94-TEAD1 Y406 hydrogen bound. Mutation of TEAD1 Y406 to histidine is found to cause a rare autosomal dominant human genetic disease Sveinsson's chorioretinal atrophy⁷². Remarkably, either YAP S94A or TEAD1 Y406H mutation almost completely disrupts YAP-TEAD interaction^{69, 73}. This observation highlights the physiological role of YAP-TEAD interaction in tissue homeostasis. In tissue culture, mutation of YAP S94 abolishes the majority of YAP-induced gene expression and cell proliferation, oncogenic transformation, and epithelialmesenchymal-transition (EMT)⁶¹. More importantly, knock-in of this mutation in mice skin phenocopies YAP knockout, further validating an essential role of TEADs in the biological functions of YAP⁶³. Recently, it was demonstrated that VGLL4, another cofactor of TEADs, represses YAP function by competing with YAP for TEAD binding⁷⁴⁻⁷⁷. The discovery of this mechanism adds another layer of complexity to the control of YAP

activity. The functional interaction between Yki (the *Drosophila* YAP homolog) and Scalloped (the *Drosophila* TEAD homolog) has also been demonstrated by genetic studies in *Drosophila*⁷⁸⁻⁸⁰. Moreover, YAP regulates transcription likely through interaction with additional transcription regulators. For example, in both *Drosophila* and mammals, TAZ/Yki were shown to interact with the SWI/SNF complex, which modulates chromatin structure and plays an important role in Hippo pathway target gene expression⁷⁸⁻⁸⁰. ⁸¹⁻⁸³.

Regulation of the Hippo pathway by polarity and junctional proteins

Signals upstream of the Hippo pathway core kinase cascade have been intensively investigated. It has been shown that Neurofibromin 2 (NF2, Merlin), a membrane-localized cytoskeleton related ERM (Ezrin, Radixin, Moesin) family protein and a human tumor suppressor, is upstream of the Hippo pathway in both *Drosophila* and mammalian cells^{34, 84-87}. NF2 may function together with FERM domain-containing protein 6 (FRMD6)⁸⁸ and Kibra⁸⁹⁻⁹². Recently it was shown that NF2 directly interacts with LATS1/2 and may mediate plasma membrane localization and activation of LATS1/293. Other cell polarity proteins have also been implicated in regulation of the Hippo pathway. The Angiomotin (AMOT) complex at tight junction inhibits YAP/TAZ by both direct binding and indirectly activating LATS $1/2^{94-97}$. However, it has also been reported that the p130 isoform of AMOT activates YAP in the context of liver tumorigenesis⁹⁸. About 70% of AMOT knockout mice die around E7.5 and the rest survive normally without cardiac phenotype⁹⁹. Northern blot indicates low expression of AMOT in adult mouse heart. However, the other AMOT family members, angiomotin like 1 and 2 (AMOTL1 and AMOTL2), which could also bind to YAP, express at relatively high levels¹⁰⁰. The cardiac function of AMOTL1 and AMOTL2 as part of the Hippo pathway would worth further study. Alpha-catenin at adherens junction may inhibit YAP by binding to 14-3-3 bound phosphorylated YAP^{63, 101}. The basolateral domain protein scribble may promote the formation of MST-LATS-TAZ complex and thus facilitates TAZ inhibition^{102, 103}. In addition, the basolateral localization of scribble and its function in promoting Hippo pathway activity are under positive regulation by the polarity regulator LKB1¹⁰⁴. In Drosophila, the Hippo pathway is also regulated by signal from a protocadherin, Fat, which plays an important role in planar cell polarity¹⁰⁵⁻¹¹⁰. Fat4 is the mammalian ortholog of Drosophila Fat. However, whole-body or liver-specific ablation of Fat4 does not support a role in regulation of the mammalian Hippo pathway^{111, 112}. Regulation of the Hippo pathway by polarity and junctional proteins has been reviewed in detail elsewhere¹¹³.

Interestingly, the Hippo pathway is also regulated by specific junctional structures in cardiomyocytes¹¹⁴. Intercalated discs (IDs) are cell-cell adhesion structures joining cardiomyocytes end-to-end and responsible for maintaining mechanical integrity of the heart. Mutations of genes encoding ID proteins such as *PKP2, JUP*, and *DSG2* cause arrhythmogenic cardiomyopathy (AC), which is characterized by replacement of cardiomyocytes with fibro-adipocytes predominantly in the right ventricle¹¹⁵. Notably, NF2 also localizes to IDs in cardiomyocytes and is phosphorylated. In human AC hearts, phosphorylated NF2 is lost from IDs and YAP phosphorylation seems to be increased¹¹⁴. In mouse models of AC by either transgenic expression of *Jup* or conditional heterozygous knockout (cHET) of *Dsp*, NF2 protein level was increased whereas its phosphorylation was

dramatically decreased¹¹⁴. In these mutant cardiomyocytes, strong YAP phosphorylation was also observed. Another study showed repression of CTGF, a direct YAP target gene, in hearts of the same mouse models¹¹⁶. Thus pathological abnormalities of cardiac cell junctions in AC may result in inhibition of YAP. YAP/TAZ are known to promote osteogenesis and inhibit adipogenesis in other cell types⁵⁷. Consistently, inactivation of the Hippo pathway in *Pkp2* knockdown cardiomyocytes rescued the characteristic adipogenesis in AC¹¹⁴. Therefore deregulation of YAP and the Hippo pathway due to junctional abnormalities may result in YAP inhibition and thus pathogenesis of AC.

Regulation of the Hippo pathway by mechanical stress

Mechanical stress is increasingly recognized as a critical regulator of cell behavior and is directly relevant to heart physiology. Remarkably, the Hippo pathway effectors, YAP and TAZ, have been shown to be critical mediators of mechanical stress in several contexts¹¹⁷⁻¹²². For example, mesenchymal stem cells (MSCs) have the ability to differentiate into various lineages depending on matrix stiffness¹²³. YAP/TAZ subcellular localization is sensitive to matrix stiffness¹¹⁷. On stiff matrix, YAP/TAZ localize to cell nuclei and promote osteogenesis¹¹⁷. On soft matrix, YAP/TAZ translocate to the cytoplasm and MSCs adopt adipogenic fate¹¹⁷. Interestingly, this mechano-sensing mechanism may also exist in cardiac cells. For example, it was noticed that nuclear YAP, which is absent in normal adult cardiomyocytes, appears in infarcted cardiac tissue with stiffer extracellular matrix (ECM)¹²⁴. The regulation and function of YAP in cardiac infarction and regeneration are further discussed below.

Consistent with a central role of the actomyosin cytoskeleton in generation and transduction of mechanical force in cells, response of YAP/TAZ to mechanical stress depends on the actin cytoskeleton^{117-120, 122, 125}. Pharmacological disruption of F-actin or inhibition of Rho GTPase, which plays a critical role in actin polymerization, leads to YAP inactivation. Robust regulation of the Drosophila Hippo pathway effector Yki by F-actin has also been demonstrated in vivo^{120, 126}. The involvement of the Hippo pathway kinase cascade in YAP/TAZ regulation by mechanical stress is under debate. On one hand, mechanical stress clearly regulates LATS1/2 activity and YAP/TAZ phosphorylation^{118, 119}, and on the other hand knockdown of LATS1/2 is insufficient to rescue YAP/TAZ activity in cells cultured on soft matrix^{117, 122}. It is possible that both LATS1/2-dependent and independent mechanisms are involved, which need to be further elucidated. So far, the mechano-sensor that initiates signal transduction to the Hippo pathway has not been pinpointed. Cell-cell junctional proteins and cell-ECM adhesion molecules, such as integrins, might be involved. The junctional protein AMOT complex and alpha-catenin complex directly localize YAP/TAZ to tight junctions and adherens junctions, which are both associated with actin fibers. Although YAP localization in isolated cells are affected by mechanical stress which excludes an essential role of cell-cell junction remodeling in mediating mechanical signals to YAP/TAZ, it remains possible that differential subcellular distribution of junctional proteins but not cell junction remodeling per se under various mechanical conditions modulates YAP/TAZ localization and activity. As a biological pump, the heart endures mechanical forces all the time. Pathological mechanical overload could lead to heart hypertrophy, injury, and heart failure. It is tantalizing to speculate that the Hippo pathway in the heart is regulated by

mechanical force and modulates heart physiological function and pathological injury and regeneration.

Regulation of the Hippo pathway by GPCR signaling

Classical signaling pathways are initiated by extracellular ligands and respective cell surface receptors. Despite the discovery of mechanical stress and physical environment in regulation of the Hippo pathway, a traditional ligand-receptor pair upstream of the Hippo pathway was missing until recently. The first example of such upstream signaling has been demonstrated to originate from activation of GPCRs^{125, 127-129}. The serum borne lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are potent mitogens and strongly inhibit the Hippo pathway kinases LATS1/2, leading to activation of YAP/TAZ^{125, 127, 129}. These phospholipids act through their respective GPCRs and downstream heterotrimeric G proteins. Activation of Rho and F-actin remodeling are involved in YAP/TAZ activation in response to LPA and S1P^{125, 127}. Other GPCR ligands such as thrombin also stimulate YAP/TAZ activity¹²⁸. Strikingly, epinephrine and glucagon act through their respective GPCRs leading to YAP/TAZ inhibition¹²⁷.

Subsequently, it was realized that GPCRs and heterotrimeric G proteins have broad roles in regulation of the Hippo pathway¹²⁷. YAP/TAZ can be either activated or inhibited depending on the coupled G_{α} subunits. For example, activation of $G_{\alpha 12/13}$, $G_{\alpha q/11}$, or $G_{\alpha i/0}$ induces YAP/TAZ activity, whereas activation of G_{GS} represses YAP/TAZ activity¹²⁷. GPCRs are the largest class of cell surface receptors encoded by the human genome and also the largest class of drug targets^{130, 131}. It is estimated that there are around 200 GPCRs expressed in the heart¹³². For example, adrenergic receptors are GPCRs targeted by a large number of prescription drugs for cardiovascular diseases^{129, 133}. Stimulation of β -adrenergic receptors (\beta1- and \beta2ARs) activates Gs proteins and increases intracellular Ca2+ concentration in turn, which ultimately results in cardiac muscle contraction¹³⁴. However, chronic cardiac β 1AR activation is detrimental and pro-apoptotic in the heart. Mice overexpressing β 1-ARs developed dilated cardiomyopathy¹³⁵. Consistently, mice overexpressing Gs also developed dilated cardiomyopathy associated with myocyte apoptosis¹³⁶. These phenotypes could potentially be explained by YAP inhibition downstream of activation of Gs-coupled GPCRs. However, whether the Hippo pathway and YAP/TAZ are indeed involved in the deleterious cardiac effects of chronic β -adrenergic receptors activation waits to be determined. Modulation of the Hippo pathway as a common outcome of various drugs and conditions targeting cardiac GPCRs is an important topic to be studied.

The Hippo pathway in regulation of heart development

Organ size control is one of the most long-standing mysteries in biology. The most striking phenotype of Hippo pathway dysfunction in *Drosophila* is the alteration of organ size¹⁸. In mouse, liver-specific transgenic expression of YAP or knockout of *Mst1/2* leads to enlargement of the liver to as much as one-fourth of the mouse body weight^{35, 137-141}. Remarkably, the size of the liver shrinks back to normal upon cessation of YAP expression^{35, 137}. Thus, the Hippo pathway plays an evolutionarily conserved role in organ

size control. The size of the mammalian heart is precisely controlled throughout development. However, little is known about the intrinsic regulation of heart size. Whether the Hippo pathway also controls heart size is therefore an intriguing question, which has been nicely answered by studying a large collection of genetic mouse models (summarized in Table 2).

Conditional knockout (cKO) of *Sav1* by a knock-in Nkx2.5 Cre, which drives deletion at E7.5 in the cardiac crescent¹⁴², leads to substantial cardiomegaly although general organization of the heart is preserved¹². The mutant mice die postnatally. A similar phenotype is observed in embryos of *Mst1/2* and *Lats2* cKO mutants¹². Despite the dramatic change of myocardium thickness and heart size, cardiomyocyte size is unaffected. Instead, cardiomyocyte proliferation is significantly increased¹². Noteworthy, defects caused by *Lats2* cKO are not compensated by *Lats1*. Differential expression of *Lats1* and *Lats2*, which has not been carefully compared in the heart, could be a reason. Alternatively, despite the presence of highly similar kinase domains, the differential N-terminal sequences of LATS1 and LATS2 could mediate specific regulation or substrate binding. In agreement with increased heart size caused by KO of Hippo pathway kinase cascade components, conditional ablation of *Yap* early in development by the same Nkx2.5 Cre or cardiomyocyte-specific Tnnt2 Cre leads to severe myocardium hypoplasia and embryonic lethality^{15, 17}. In *Yap* cKO mice, although hearts are smaller, ectopic apoptosis is not seen in unstressed condition. Nevertheless, cardiomyocyte proliferation is severely reduced¹⁵.

Wnt signaling pathway also plays critical roles in cardiogenesis. There have been many studies suggesting cross-talks between Wnt and Hippo signaling in various contexts. Noteworthy, cardiac phenotypes of genetic mouse models of the two pathways exhibit interesting similarities and differences. Wnt pathway inactivation during heart development had been modeled by conditional deletion of the Wnt effecter protein β-catenin at different stages of cardiogenesis using various Cre lines. Conditional inactivation of β -catenin has been done using a transgenic Nkx2.5 Cre line, which is different from the aforementioned knock-in Nkx2.5 Cre in that its expression begins from E8 and is throughout ventricular myocardium from E8.5¹⁴³. Developing hearts of these β -catenin cKO mice do not show ectopic apoptosis, but have reduced cell proliferation, significant reduction of ventricular size, thinner compact layer in the ventricular wall, and the embryos decease by $E12.5^{144}$. These phenotypes are similar to that caused by cKO of *Yap* using the transgenic Nkx2.5 Cre or Tnnt2 Cre although the time point of embryonic death varies by a few days^{15, 17}. One interesting finding is that β -catenin inactivation by transgenic Nkx2.5 Cre has a more profound effect in the right ventricle¹⁴⁴. Developmentally, the two ventricles of mouse hearts are derived from distinct populations of progenitor cells. Cells of the first heart field (FHF) contribute to the left ventricle and progenitors in the second heart field (SHF) form the rightward looping of the cardiac tube, therefore contributing to the right ventricle and inflow and outflow tracts^{11, 145}. The differential effects on left and right ventricles suggest that Wnt signaling has specific functions in the SHF. Remarkably, inactivation of β -catenin at an earlier stage in all heart progenitor cells using Mesp1 Cre or more specifically in SHF progenitors by Islet1 Cre or Mef2c-ANF Cre leads to dramatic defects of SHF-derived right ventricle and outflow tract¹⁴⁶⁻¹⁴⁹. However, inactivation of YAP or the Hippo pathway

components by the knock-in Nkx2.5 Cre, which also expresses in both FHF and SHF, seems to affect both ventricles equally, suggesting that different from Wnt, the Hippo pathway does not specifically function in the SHF^{12, 17}. Nevertheless, a more precise comparison of the Hippo and Wnt function in the SHF progenitors would require examination of phenotypes after deletion of the Hippo pathway genes using SHF-specific Islet1 Cre line or general cardiac progenitor-specific Mesp1 Cre line. Interestingly, in cultured cardiac progenitor cells, YAP/TAZ is expressed and their subcellular localization shifts from cytoplasm to nucleus when matrix is remodeled from soft to stiff¹²⁴. However, in this case, the functional consequence is unclear, and as we discussed above, the roles of YAP/TAZ in cardiac progenitors *in vivo* would require further evidence. Nevertheless, YAP/TAZ as potential mediators of mechanical stress to cardiac progenitors is still an intriguing possibility.

The function of the Hippo pathway in regulation of cardiomyocyte proliferation is further supported by the observed dramatic myocardial overgrowth and cardiomegaly in embryos of active *Yap* conditional transgenic (cTG) mice¹⁵⁻¹⁷. When inducible *Yap* expression is driven by Tnnt2 Cre and induced from E8.5, the trabecular myocardium of fetal hearts seems to be especially affected such that the ventricles are almost obliterated and the fetuses demise by E15.5¹⁵. Expression of trabecular myocardium marker *Nppa* (*natriuretic peptide A*) is markedly down-regulated in *Yap* transgenic myocardium, suggesting that elevated cardiomyocyte proliferation is associated with impaired differentiation¹⁵. In other tissues such as the skin, *Sav1* KO has also been shown to delay cell cycle exit and impair differentiation but does not affect the speed of cell proliferation¹⁵⁰. Thus it is possible that the Hippo pathway regulates heart size by preventing cardiomyocytes to enter mitosis, albeit the rate of proliferation may not differ once cells are licensed to proliferation.

In another report of *Yap* cTG under α -myosin heavy-chain (α MHC) promoter, which mainly expresses postnatally (although expression could be detected as early as E10.5), mice are viable and thickened myocardium is obvious in 4 months old adult hearts¹⁶. Interestingly, when YAP expression is driven by β MHC promoter, which expresses from E9, adult heart size is normalized due to reduced cardiomyocyte size, although the cell numbers are elevated than normal controls¹⁷. Such a normalization of organ size under conditions of cell over-proliferation has been reported for other growth regulators but has not been reported for the Hippo pathway in other organs. The reason for the cross-talk between cell number and cell size to maintain a predetermined heart size under this specific YAP activation condition is unclear but fascinating.

The Hippo pathway also plays a role in early cardiac development. In zebrafish, an activity reporter indicates the expression and activity of YAP/TAZ in cardiac progenitor cells¹⁵¹. During zebrafish development, cardiac precursors migrate to the midline to form the heart tube¹⁵². Interestingly, when a dominant-negative form of YAP was expressed, the migration of these cells was impaired resulting in cardiac bifida, although formation of the heart was not completely blocked¹⁵¹. YAP and TAZ are known to promote cell migration in other contexts such as cancer metastasis^{34, 153}. Thus, this observation expands the physiological role of YAP/TAZ-induced cell migration into heart development. More interestingly, S1P is known to be required for midline migration of cardiac progenitor cells in zebrafish^{154, 155}.

Therefore, the finding may provide a physiological niche for GPCR in regulation of the Hippo pathway in the context of heart development as S1P may induce cardiac progenitor cell migration via activation of YAP/TAZ.

The Hippo pathway in cardiomyocyte apoptosis and myocardium infarction

MST1/2 kinases were known to be activated by apoptotic stress even before their role in the Hippo pathway was characterized³⁸. MST1/2 can be activated by caspase-dependent cleavage³⁹, dimerization, and autophosphorylation¹⁵⁶. The proapoptotic function of MST1/2 is also stimulated by upstream molecule RASSF1A¹⁵⁷⁻¹⁶⁰. One of the most physiologically relevant apoptotic stimuli of MST1/2 is oxidative stress. It has been shown that MST1 mediates neuronal cell death in response to hydrogen peroxide¹⁶¹⁻¹⁶³. Ischaemia/reperfusion (I/R) is one of the most common injuries to human hearts. I/R leads to death of cardiomyocytes largely due to the production of reactive oxygen species (ROS)¹⁶⁴. Therefore, the potential regulation of MST1/2 by I/R-induced ROS and the role of MST1/2 in myocardium injury have been extensively examined¹⁶⁵⁻¹⁶⁸. The kinase activity of MST1/2 is indeed activated by I/R as indicated by *in vitro* kinase assay¹⁶⁷. Both caspasedependent cleavage^{165, 167, 168} and interaction with RASSF1A¹⁶⁸ have been shown to be involved in MST1/2 activation by I/R in myocardium. Interestingly, transgenic expression of a dominant-negative forms of MST1 under aMHC promoter blocks MST1/2 activation and dramatically reduces acute cardiomyocyte apoptosis and the size of myocardial infarction¹⁶⁵. In models of long-term myocardium infarction, introduction of dominantnegative MST1 also attenuated endogenous MST1/2 activation, myocardium apoptosis, fibrosis, and cardiac dysfunction¹⁶⁵. Consistent with the role of RASSF1A in MST1/2 activation, cTG expression of MST-binding-deficient form of RASSF1A or cKO of *Rassf1A*, both driven by cardiomyocyte-specific aMHC promoter, largely blocked MST1/2 activation, cardiomyocyte apoptosis, and fibrosis under pressure overload¹⁶⁸. Nevertheless, whole body knockout of Rassf1A leads to worsened heart fibrosis although cardiomyocyte apoptosis was still reduced^{166, 168}. Further *in vitro* experiments suggest an anti-proliferative and anti-inflammatory role of RASSF1A-MST1/2 in cardiac fibroblasts¹⁶⁸. Thus RASSF1A-MST1/2 also plays a role in non-myocytes of the heart during heart injury. In line with the Hippo pathway in mediating cardiomyocyte apoptosis upon pressure overload, LATS2 protein level was significantly elevated upon pressure overload, and expression of a dominant-negative LATS2 under aMHC promoter reduced cardiomyocyte apoptosis induced by transverse aortic constriction (TAC)¹⁶⁹. Furthermore, aMHC promoter driven cardiomyocyte-specific cHET of Yap significantly increased cardiomyocyte apoptosis and fibrosis after chronic myocardium infarction¹⁷⁰. Thus the MST1/2-LATS1/2 kinase cascade, which is activated by heart damage, may contribute to cardiomyocyte apoptosis and infarction by inhibiting YAP.

However, functions of MST1/2 and LATS1/2 in cardiomyocyte apoptosis are not identical because αMHC promoter-driven transgenic expression of MST1, but not LATS2, in cardiomyocytes induces apoptosis in basal condition^{167, 169}. This finding suggests that MST1/2 may promote cardiomyocyte apoptosis through additional mechanisms. Interestingly, MST1 was found to inhibit autophagy based on the observation that Mst1 facilitates accumulation of protein aggresomes and p62, which are normally removed by

autophagy¹⁷¹. By directly phosphorylating Beclin1, MST1 disrupts the formation of the proautophagic Atg14L-Beclin1-Vps34 complex and promotes Beclin1 interaction with Bcl-2 and Bcl-xL, as well as Beclin1 homodimerization¹⁷¹. Autophagy may play a protective role in cardiomyocytes by alleviating energy loss and recycling damaged organelles and protein aggregates¹⁷². The role of autophagy inhibition upon Hippo pathway activation in mediating cardiac damage still awaits further confirmation *in vivo*. Nevertheless, the activation of MST1, increase of Beclin1 phosphorylation, and signs of autophagy inhibition such as accumulation of p62 and decreased LC3 cleavage are indeed observed in failing hearts of human patients¹⁷¹. The promotion of Beclin1 binding to Bcl-2/Bcl-xL by MST1 releases Bax from these proteins¹⁷¹. Although this may provide a LATS1/2-YAP-independent mechanism for MST1/2 to induce apoptosis, the precise function of this mechanism in MST1/2-induced cardiomyocyte apoptosis also needs to be carefully examined *in vivo*.

The Hippo pathway in Cardiac hypertrophy and dilated cardiomyopathy

Hypertrophic growth is a necessary phase of cardiac development and the major form of heart growth after birth. Cardiomyocyte hypertrophy also happens under pathological conditions such as I/R induced infarction, hypertension, and valvular heart disease, in which elevated wall stress normally induces an adaptive heart hypertrophy to compensate for insufficient contractile mass¹⁷³. An increase in wall thickness by cardiac hypertrophy can reduce wall stress (by Laplace's law), which in turn reduces both oxygen consumption as well as cell death.

A role of the Hippo pathway in inhibiting pathological hypertrophy was first observed in Mst1 heart specific transgenic mice^{165, 167}. Consistent with the kinase activity-dependent role of MST1/2 in promoting apoptosis, transgenic expression of Mst1 but not a kinase inactive mutant under a MHC promoter clearly increases cardiomyocyte apoptosis and extensive fibrosis in adult hearts, leading to wall thinning and dilated cardiomyopathy (DCM)¹⁶⁷. However, detailed examination indicates that cardiac dilation is due to lateral myocyte slippage under elevated wall stress rather than compensatory hypertrophy. Thus although myocardium damage and stress to the heart were evident, a default hypertrophy program was not initiated, suggesting a role of the Hippo pathway in inhibiting this process. In other pathological conditions such as pressure overload, MST1 is activated in the myocardium, in correlation with apoptosis¹⁶⁸. Interestingly, aMHC promoter driven Rassf1A cKO blocks MST1/2 activation and attenuates the hypertrophic response likely due to inhibition of apoptosis and fibrosis and thus reduced heart damage¹⁶⁸. Thus inhibition of the Hippo pathway may also inhibit cardiomyocyte hypertrophy because of an indirect effect in repressing apoptosis and heart injury. However, it should be noted that α MHC promoter driven expression of DN-Mst1 or DN-Rassf1A, which also show inhibitory effect on MST1 phosphorylation, apoptosis, and fibrosis to a similar level as *Rassf1A* cKO, do not block cardiomyocyte hypertrophy^{165, 168}. The reason for this discrepancy is unclear.

Different from *Mst1*, α MHC promoter driven *Lats2* transgenic hearts show reduced size and no apoptosis at baseline thus no DCM was observed¹⁶⁹. However, expression of LATS2 inhibits protein synthesis and cell size as determined by the cross-sectional area of cardiomyocytes. Nevertheless, α MHC promoter driven transgenic expression of dominant-

negative LATS2 leads to increased cardiomyocyte size and biventricular hypertrophy at baseline¹⁶⁹. Thus both MST1 and LATS2 seem to inhibit hypertrophy. However, it is unclear whether they work in a linear pathway fashion. Furthermore, the possibility of MST and LATS affecting hypertrophy by a secondary effect due to a more pleiotropic role of these proteins in myocardium proliferation and apoptosis has not been unequivocally excluded.

Interestingly, cKO of *Yap* leads to a phenotype similar to *Mst1* overexpression. Early deletion of Yap using knock-in Nkx2.5 Cre leads to demise of the embryo, which prevents analysis of the effect of long-term loss of Yap in cardiac function¹⁷. Ablation of Yap using aMHC-Cre, which expresses as early as E10.5 and mainly postnatally, circumvented embryonic lethality^{16, 170}. However, these mutants die by 20 weeks of age due to DCM and heart failure. Consistent with a low expression of TAZ in myocardium, deletion of Taz using the same Cre does not cause obvious abnormality of the heart¹⁶. However, combination of Yap and Taz KO dose-dependently worsen the phenotype suggesting functional redundancy of the two genes. Examination of myocardium indicates reduced proliferation and increased cardiac apoptosis in neonatal aMHC-Cre Yap cKO; Taz cHET mice¹⁶ and 8 weeks old aMHC-Cre Yap cKO mice¹⁷⁰. Noteworthy, Yap cKO by Nkx2.5 Cre does not induce apoptosis in embryonic hearts¹⁷. Postnatal heart endures much more mechanical stress than fetal heart. Thus the observed apoptosis in aMHC-Cre driven Yap cKO mice is possibly secondary to compromised cardiac function and elevated wall stress due to insufficient cardiomyocyte proliferation. In Yap cKO myocardium, cardiomyocyte hypertrophy is obvious as indicated by cross sectional area of cells¹⁷⁰. However, the observed hypertrophy is likely secondary to heart injury. The role of Yap in cardiomyocyte hypertrophy has also been studied in myocardium with mosaic deletion of Yap by delivering of Tnnt2-Creencoding adenovirus to Yap floxed neonatal mice¹⁵. Results indicate that YAP does not affect cardiomyocyte hypertrophy in neonatal hearts or after ascending aortic constriction in adult hearts¹⁵. In this experimental setting, Yap deletion happens only postnatally, which minimizes the secondary effect of Yap deletion on cardiomyocyte hypertrophy owing to insufficient proliferation and induced apoptosis. Furthermore, examination of Yap transgenic myocardium did not find obvious cardiomyocyte hypertrophy in vivo¹⁵⁻¹⁷. In addition, during development, YAP is down-regulated in hypertrophic phase of heart growth¹⁵. These studies suggest that YAP plays a role in heart hypertrophy secondary to its role in regulation of cardiomyocyte proliferation and apoptosis but may not directly regulate cardiomyocyte hypertrophy. In adult hearts, α MHC-Cre driven condition deletion of only one allele of *Yap* moderately decreases cardiomyocyte hypertrophy after MI¹⁷⁰. In cardiomyocytes cultured in vitro, expression of YAP increased cell size and knockdown of YAP attenuated phenylephrine induced cardiomyocyte hypertrophy¹⁷⁰. Interestingly, it was recently reported that YAP expression is enhanced while YAP phosphorylation is dampened with reduced Mst1 expression in myocardium of patients with hypertrophic cardiomyopathy¹⁷⁴, suggesting a role of YAP in pathogenesis of human hypertrophic heart disease. Taken together, functions of YAP and the Hippo pathway in cardiac hypertrophy might be more complex and context-dependent.

The PI3K-AKT-mTOR pathway is a critical regulator of cell size¹⁷⁵. The Hippo pathway may modulate mTOR and protein synthesis through YAP-dependent induction of miR-29 and inhibition of PTEN, thus activation of AKT¹⁷⁶. Interestingly, AKT is also activated by YAP in myocardium^{17, 170, 177}, which may involve induced expression of *Pik3cb*¹⁷⁷. Knockdown of *Pik3cb* reduces ectopic cardiomyocyte proliferation *in vivo* and expression of *Pik3cb* ameliorates cardiomyopathy upon *YAP* cKO¹⁷⁷. Therefore, the Hippo-mTOR crosstalk likely plays a role in regulation of cardiomyocyte hypertrophy *in vivo*. Damage-induced mechanical overload is a common cause of cardiac hypertrophy^{178, 179}. Interestingly, the Hippo pathway is known to respond to mechanical stress¹¹⁷. However, the precise nature and signaling mechanism of mechanical stress to impinge on the Hippo pathway in the context of cardiac hypertrophy and dilation would be an important question for future study.

The Hippo pathway in heart regeneration

Although some organs in the human body have substantial regeneration capacity, the renewal potential of the heart is very limited^{5-7, 9, 10}. Nevertheless, recent evidence indicates that adult human and mouse heart is renewing slowly^{6, 9, 180}, and such potential can be overwhelmed by sudden loss of cardiomyocytes in pathological conditions^{3, 181}. Several different approaches have been attempted such as direct supplement of cardiac progenitor cells^{2, 182} and reprogramming by cardiac genes or small molecules¹⁸³⁻¹⁸⁵. Some of these manipulations improve regeneration, but are generally not robust. Although both cardiac progenitor cells and cardiomyocytes renewal have been documented, lineage tracing suggest that cells contribute to ventricular regeneration are primarily cardiomyocytes^{186, 187}. In fact in species such as zebrafish the potential of cardiomyocytes to proliferate and repair damaged heart is quite strong^{188, 189}. In newborn mice before postnatal day 7 (P7), cardiomyocytes could also proliferate to reach substantial cardiac regeneration. However, such ability is quickly lost after P7, leaving behind fibrosis and scar tissue after damage^{186, 190}. The molecular mechanism that switches off the regeneration potential of cardiomyocytes is unclear but is likely associated with the switch of heart growth from cardiomyocyte proliferation to cellular hypertrophy. Therefore attempts have been made to force cardiomyocyte proliferation by overexpression of various cell cycle regulators such as cyclin A2, CDK2, and cyclin D1^{3, 191-195}. However, although DNA synthesis and karyokinesis could readily be observed, complete cytokinesis and proliferation remain inefficient in most cases. A better understanding of mechanisms of cardiac regeneration is thus in need.

The Hippo pathway is known to play important roles in regeneration of intestines after damage. Although cKO of *Yap* does not seem to affect general development and function of mouse intestine, the damage-induced regeneration program is largely impaired without *Yap*¹⁹⁶. Considering functions of the Hippo pathway in control of heart size and cardiomyocyte proliferation during development, it is possible that the Hippo pathway also exerts vital functions during repair and regeneration of the heart. Such possibility has been directly tested in conditions of heart injury¹⁶. Resection of mouse cardiac apex after P7 normally results in scarring in contrast to regeneration if resection is done before P7. However, in two different *Sav1* cKO models, one specifically in cardiomyocytes by

Myh6^{creERT2} induced from P7 and the other during development by knock-in Nkx2.5 Cre, myocardium resected at P8 regenerated with reduced scar size compared to control animals¹³. Study of the function of the Hippo pathway in acute resection-induced heart regeneration avoids complications by the role of the Hippo pathway in damage-induced apoptosis, although this kind of damage is non-physiological.

In human hearts, cardiomyocyte loss is more commonly caused by myocardium infarction due to coronary artery disease, which could be mimicked by left anterior descending (LAD) coronary artery occlusion. Similar to that in apex resection, heart injury induced by LAD occlusion at P8 or P7 is also much better tolerated with reduced scar size and improved heart functional recovery in cardiomyocyte-specific *Sav1* cKO (Myh6^{creERT2}) mice or *Yap* transgenic (α MHC Cre) mice, respectively^{13, 16}. To further examine the role of the Hippo pathway in regeneration of adult hearts, LAD occlusion was done at one or two month of age in the same *Yap* transgenic or *Sav1* cKO mice^{13, 16}. In both cases, improved heart regeneration was indicated by reduced fibrotic scarring and improved recovery in heart functional parameters such as fractional shorting (FS), ejection fraction (EF), and stroke volume. Noteworthy, *Yap* expression or *Sav1* cKO does not completely block heart injury (scarring), although in *Sav1* cKO model, FS and EF recovered to a level similar to shamoperated animals. In contrast, cardiomyocyte-specific *Yap* cKO by α MHC Cre impairs neonatal heart regeneration induced by LAD occlusion at P2 leaving behind extensive fibrotic infarct zone and gross deficiency of healthy myocardium¹⁶.

Proliferating cardiomyocytes are observed in Hippo pathway deficient hearts, which is likely the reason for improved cardiac regeneration. Lineage-tracing of regenerated myocardium in resected Sav1 cKO mice indicates that the regenerated cTnt staining positive cardiomyocytes are also positive for GFP resulted from recombination of the mTmG allele, indicating pre-existing cardiomyocyte lineage. Thus regenerated myocardium is largely from proliferating cardiomyocytes, although some contribution from resident stem cells could not be completely ruled out¹³. In fact, cardiomyocyte-specific inactivation of Sav1 could even induce complete mitosis in myocardium of mice 4 months of age¹³. Conversely, cHET of Yap decreases proliferating cells in infarcted myocardium^{15, 170}. These studies suggest that the Hippo pathway is active in suppressing mitosis in adult heart. In support of this notion, YAP protein is clearly detected in neonatal hearts and declines with age while YAP phosphorylation increases with age¹⁵. However, in infarcted adult heart, YAP expression reappeared at the border of the infarction zone, which could be due to increased stiffness of the infarcted area^{124, 170}. The functional role of YAP re-expression in these areas has not been demonstrated. Nevertheless, it has been known for a while that injury of one area of the heart induces cell cycle reentry of cardiomyocytes throughout the whole organ in zebrafish¹⁹⁷. Similar phenomenon has also been observed in Hippo-deficient mouse hearts¹³. Therefore, in zebrafish hearts or neonatal mouse hearts, cues upstream to the Hippo pathway may exist to propagate damaged signals to instruct cardiomyocyte proliferation distant from the site of injury. Whether the Hippo pathway is directly responsive to myocardium injury or simply limits cardiomyocyte proliferation needs to be further examined.

Transcriptional regulation of heart size and regeneration downstream of YAP/TAZ

As transcription co-activators, the function of YAP/TAZ depends on their interacting transcription factors (Fig. 2). Evidence so far supports that the TEAD family is the major transcription factor target of YAP/TAZ in vitro and in vivo⁶¹⁻⁶³. Functions of TEADs in YAP-regulated cardiomyocyte proliferation and heart development have also been demonstrated in vivo¹⁵. Cardiomyocyte-specific knock-in mutation of mouse Yap-S79A (equivalent to human YAP-S94A mutant), which abolishes its interaction with TEADs, leads to cardiomyocyte hypoplasia comparable to that caused by Yap cKO in fetal hearts¹⁵. In addition, introduction of a peptide disrupting YAP-TEAD interaction significantly inhibits YAP-induced expression of cell cycle-related genes such as Aurkb, cdc20, Ccna2, and proliferation of cultured cardiomyocytes¹⁵. Furthermore, whole-body *Tead1* knockout mice die around embryonic day 11.5 with abnormally thin ventricular wall and a dramatic reduction of myocardium trabeculation^{198, 199}. These phenotypes closely resemble those observed in Yap cKO mice and strongly support that TEAD1 is critical for YAP to regulate cardiomyocyte proliferation and cardiac development. Noteworthy, in human, all Sveinsson's chorioretinal atrophy patients are heterozygous for TEAD1 mutation⁷². Heart defects of these patients, however, have not been described, which also suggests that different from the optic disc, one allele of *Tead1* is sufficient to sustain myocardium development and function.

Wnt signaling is one of the most recognized pathways in regulation of development. βcatenin is a transcription co-activator and major effector of the Wnt pathway. Wnt stimulation leads to disassembly of the destruction complex and stabilization and nuclear enrichment of β -catenin²⁰⁰. In *Sav1* cKO myocardium, nuclear localization of β -catenin and expression of β -catenin target genes were found to be elevated¹². Furthermore, dephosphorylated and active, but not phosphorylated and inactive, YAP interacts with β catenin¹². It has also been reported that in epithelial cells, cytoplasmic inactive YAP directly binds to and sequesters β -catenin in the cytoplasm ²⁰¹. Thus activity of the Hippo pathway may dictate a stimulatory or inhibitory role of YAP on β-catenin activity, although the applicability of such mechanism to myocardium is unknown. In cardiomyocytes, sequential ChIP showed that YAP and β -catenin co-occupy the promoters of target genes such as Sox2 and Snai2¹². More importantly, heterozygous knockout of β -catenin in Sav1 cKO mice normalizes ventricular cardiomyocyte proliferation rate, and myocardial thickness, supporting a functional role of β -catenin in cardiac overgrowth induced by Hippo pathway inactivation¹². Several mechanisms of β -catenin activation by the Hippo pathway have been reported including those affecting β-catenin stability, subcellular localization and transcriptional activity²⁰¹⁻²⁰⁶. In cardiomyocytes, one possible mechanism for YAP-induced activation of β -catenin is the elevation of IGF1R expression and subsequent activation of AKT and inhibition of GSK3 β , which could then cause β -catenin accumulation and nuclear enrichment¹⁷. The mechanism for IGF1R induction by Hippo pathway inhibition remains unknown. It should be noted that the Wnt/β-catenin and Hippo signaling show substantial functional differences in heart development in regard to progenitors of the SHF. However,

activity of β -catenin as Wnt effector may be limited by the Hippo pathway in cardiomyocytes, which may be reactivated under certain conditions such as heart injury.

TAZ and YAP are also reported to associate with TBX5, a T-box transcription factor mutated in Holt-Oram syndrome (HOS), which is characterized by a variety of cardiac and other abnormalities²⁰⁷. YAP/TAZ-TBX5 stimulates expression of cardiac specific genes such as *Nppa*. TBX5 directly binds to *Nppa* promoter²⁰⁸ and co-expression of TAZ or YAP with TBX5 potently stimulates luciferase expression driven by *Nppa* promoter²⁰⁷, suggesting that *Nppa* is a direct target gene of YAP/TAZ-TBX5. Interestingly, some of the HOS patients-associated TBX5 mutants lost interaction with YAP, suggesting the involvement of this interaction in pathogenesis of subtypes of HOS²⁰⁷. The functional significance of this interaction is yet to be validated by genetic models²⁰⁷. YAP-TBX5 interaction has also been implicated in cancer²⁰⁵. A TBX5-YAP- β -catenin-YES complex is shown to bind to promoters of anti-apoptotic genes such as *Birc5* and *Bcl2L1*, thus regulates survival and transformation of Wnt-dependent cancer cells²⁰⁵. It is currently unknown whether the function of YAP/TAZ-TBX5 in cardiomyocytes is also Wnt-dependent. However, this connection could provide another possibility for cross-talk between Hippo and Wnt pathways in regulation of cardiac physiology.

FoxO1 is a Forkhead transcription factor known to regulate expression of antioxidant genes such as *catalase* and *Sod2*, thus protects cardiomyocytes from oxidative stress²⁰⁹⁻²¹¹. YAP is reported to directly bind to FoxO1 and stimulate antioxidant gene expression²¹². In condition of I/R in the heart, activation of MST1/2 leads to inhibition of YAP and thus attenuates antioxidant gene expression²¹². Indeed, inhibition of the Hippo pathway by dominant-negative or knockdown of LATS2 rescues catalase and Sod2 expression, restores antioxidant capacity, and reduces cardiomyocyte apoptosis and myocardium infarction under I/R setting in a FoxO1-dependent manner²¹². However, FoxO1 is also well-known to induce apoptosis²¹³. How would the conflicting roles of YAP-FoxO1 in generating antioxidant potential and promoting apoptosis be reconciled in the context of cardiac injury by I/R would need further study. In addition, YAP is known to activate AKT in cardiomyocytes¹⁷, which is a major kinase phosphorylating and inactivating FoxOs. Whether and how a balance between YAP-induced FoxO1 activation and YAP-AKT-induced FoxO1 inhibition is reached to regulate cardiomyocyte survival under stressed condition is another issue requiring further investigation.

Other YAP/TAZ target transcription factors may also mediate the effect of the Hippo pathway in heart development and regeneration. For example, YAP/TAZ are known to interact with SMADs to regulate stemness downstream of TGF- β /BMP pathways^{60, 214}. The interaction between YAP and SMAD1 after BMP stimulation is particularly interesting because BMP signaling is known to be involved in cardiac development and anti-apoptotic in neonatal hearts²¹⁵. However, the potential role of Hippo-BMP signaling cross-talk in cardiac development is merely hypothetical at this point. In addition, Meis1, a TALE family homeodomain protein, was recently found to be critical in regulation of the cardiac growth switch from proliferation to hypertrophy²¹⁶. *Meis1* deletion in mouse cardiomyocytes extends the postnatal proliferative window of cardiomyocytes, and overexpression of *Meis1* in cardiomyocytes decreases neonatal cardiomyocyte proliferation and regeneration²¹⁶.

Interestingly, Homothorax (Hth), the *Drosophila* homolog of Meis1, interacts with Yki to induce expression of microRNA *bantam* and to regulate proliferation and apoptosis in specific compartment of *Drosophila* eye imaginal disc²¹⁷. Whether YAP-Meis1 could interact in cardiomyocytes to coordinately regulate cell proliferation and hypertrophy has not been examined. One model is that Meis1 functions as a transcriptional repressor with other cofactors to inhibit cardiomyocyte proliferation, which is blocked by competitive binding of YAP to Meis1.

Evidence so far supports that multiple transcriptional complexes downstream of the Hippo pathway are involved in regulation of cardiac development and regeneration (Fig. 2). More YAP/TAZ transcription factor partners and functional downstream target genes are likely to emerge in the near future.

Perspectives and concluding remarks

Proper heart development is vital to life and heart repair/regeneration post-injury is a topic of paramount importance in biomedical research. Current research has provided abundant evidence for the important functions of the Hippo pathway in heart development, injury and regeneration. However, our understanding of basic mechanisms of the Hippo pathway is still incomplete, such as the signal transduction mechanisms of GPCRs and mechanical stress to regulate activity of LATS1/2 and YAP/TAZ; additional signals in physiological and pathological conditions in regulation of Hippo pathway activity; contribution and coordination of downstream effectors in mediating biological outcome of the Hippo pathway. Although the Hippo pathway has been demonstrated to regulate cardiomyocyte proliferation during development, the cardiac specific upstream signal remains an enigma. The proliferation to hypertrophy switch of cardiomyocytes soon after birth is accompanied by an acute increase of oxygen pressure and mechanical load, which can modulate the Hippo pathway activity. Whether regulation of the Hippo pathway by these signals influences the switch of cardiomyocyte fate would be a very important question for future study. During heart regeneration, cardiomyocyte proliferation could happen distant from the damage site, suggesting the involvement of diffusible signal(s). Would this signal be a Hippo inhibitor such as a GPCR ligand or a secreted growth factor encoded by YAP target genes are important and interesting questions remain to be answered. The Hippo pathway and YAP are known to regulate EMT in the context of development and cancer metastasis^{34, 153}. In the heart, EMT has a critical function in the trans-differentiation and formation of heart valve from endothelial cells^{218, 219}. Whether the Hippo pathway and YAP are involved in valve development and defects are topics worth further investigation. microRNAs (miRNAs) play important roles in heart development and homeostasis²²⁰⁻²²². This is indicated by heart-specific cKO of Dicer, the miRNA-processing enzyme, which leads to lethality due to heart failure²²³. Disruption of miRNA production postnatally also leads to cardiac remodeling and dysfunction^{224, 225}. YAP is known to induce expression of specific miRNAs and broadly repress miRNA production by sequestering p72, a regulatory component of the miRNA-processing machinery^{176, 226}. The possibility of altered miRNA expression, either globally or individually, in mediating YAP regulation of cardiac physiology and disease is of interest and potential therapeutic value.

Page 17

Acknowledgements

Research in the lab of Bin Zhao is supported by grants from State Key Development Program for Basic Research of China (2013CB945303), National Natural Science Foundation of China (31422036, 31271508, 31471316), Natural Science Foundation of Zhejiang (LR12C07001), Specialized Research Fund for the Doctoral Program of Higher Education (20130101110117), Cao Guangbiao Science and Technology Development Fund of Zhejiang University (J20141204), the 111 project (B13026), Fundamental Research Funds for Central Universities of China, and the Thousand Young Talents Plan of China. Research in the lab of Kun-Liang Guan is supported by grants from NIH. We thank Drs. Youngchul Kim and Jenna L. Jewell for critical reading of the manuscript.

Nonstandard Abbreviations and Acronyms

AAC	Ascending Aortic Constriction		
AC	Arrhythmogenic Cardiomyopathy		
AJ	Adherens Junctions		
a-CAT	α-Catenin		
βARs	β-adrenergic receptors		
β-TRCP	β-Transducin repeat-containing protein		
CK1δ/ε	Casein Kinase 1 δ/ε		
cKI	conditional Knock-in		
сКО	conditional Knockout		
cTG	conditional Transgenic		
DCM	Dilated cardiomyopathy		
DLG	Disks large homolog		
DVL	Dishevelled		
ECM	Extracellular Matrix		
EL	Embryonic Lethal		
FHF	First Heart Field		
HOS	Holt-Oram syndrome		
IDs	Intercalated Discs		
I/R	Ischaemia/reperfusion		
KBR	Kibra		
LAD	Left Anterior Descending		
LGL	Lethal Giant Larvae protein homolog		
LPA	Lysophosphatidic acid		
MI	Myocardial infarction		
MSCs	Mesenchymal Stem Cells		
p300	E1A binding protein p300		

pCAF	p300/CBP-associated factor, KAT2B		
S1P	Sphingosine-1-phosphate		
Scrib	Protein scribble homolog		
SCF	Skp, Cullin, F-box containing complex		
SHF	Second Heart Field		
SWI/SNF	SWItch/Sucrose NonFermentable nucleosome remodeling complex		
TAC	Transverse Aortic Constriction		
TCF/LEF	Transcription factor/Lymphoid enhancer-binding factor		
TJ	Tight Junctions		
Ub	Ubiquitin		
VSD	Ventricular Septal Defect		
ZO-1	Tight Junction Protein ZO-1, also called TJP1		

References

- 1. Stanger BZ. Organ size determination and the limits of regulation. Cell Cycle. 2008; 7:318–324. [PubMed: 18235243]
- Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013; 14:529–541. [PubMed: 23839576]
- Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological reviews. 2007; 87:521–544. [PubMed: 17429040]
- Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: Fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013; 14:38–48. [PubMed: 23258295]
- Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of molecular and cellular cardiology. 1996; 28:1737–1746. [PubMed: 8877783]
- Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in humans. Science. 2009; 324:98–102. [PubMed: 19342590]
- Kajstura J, Urbanek K, Perl S, Hosoda T, Zheng H, Ogorek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C, Sanada F, D'Amario D, Rota M, Del Monte F, Orlic D, Tisdale J, Leri A, Anversa P. Cardiomyogenesis in the adult human heart. Circulation research. 2010; 107:305–315. [PubMed: 20522802]
- Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kuhn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013; 110:1446–1451. [PubMed: 23302686]
- Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013; 493:433–436. [PubMed: 23222518]
- 10. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics--2010 update: A report from the american heart association. Circulation. 2010; 121:e46–e215. [PubMed: 20019324]

- Vincent SD, Buckingham ME. How to make a heart: The origin and regulation of cardiac progenitor cells. Current topics in developmental biology. 2010; 90:1–41. [PubMed: 20691846]
- Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011; 332:458–461. [PubMed: 21512031]
- Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signaling impedes adult heart regeneration. Development. 2013; 140:4683–4690. [PubMed: 24255096]
- 14. Lin Z, von Gise A, Zhou P, Gu F, Ma Q, Jiang J, Yau AL, Buck JN, Gouin KA, van Gorp PR, Zhou B, Chen J, Seidman JG, Wang DZ, Pu WT. Cardiac-specific yap activation improves cardiac function and survival in an experimental murine myocardial infarction model. Circulation research. 2014
- von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT. Yap1, the nuclear target of hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012; 109:2394– 2399. [PubMed: 22308401]
- 16. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN. Hippo pathway effector yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013; 110:13839–13844. [PubMed: 23918388]
- 17. Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulin-like growth factor signaling by yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011; 4:ra70. [PubMed: 22028467]
- Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010; 19:491–505. [PubMed: 20951342]
- 19. Zhao B, Tumaneng K, Guan KL. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature cell biology. 2011; 13:877–883.
- 20. Liu H, Jiang D, Chi F, Zhao B. The hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein & cell. 2012; 3:291–304. [PubMed: 22549587]
- 21. Ramos A, Camargo FD. The hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012; 22:339–346. [PubMed: 22658639]
- 22. Liu AM, Wong KF, Jiang X, Qiao Y, Luk JM. Regulators of mammalian hippo pathway in cancer. Biochimica et biophysica acta. 2012; 1826:357–364. [PubMed: 22683405]
- 23. Chen L, Qin F, Deng X, Avruch J, Zhou D. Hippo pathway in intestinal homeostasis and tumorigenesis. Protein & cell. 2012; 3:305–310. [PubMed: 22492181]
- 24. Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: The drosophila lats gene encodes a putative protein kinase. Development. 1995; 121:1053–1063. [PubMed: 7743921]
- 25. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995; 9:534–546. [PubMed: 7698644]
- Kango-Singh M, Nolo R, Tao C, Verstreken P, Hiesinger PR, Bellen HJ, Halder G. Sharpei mediates cell proliferation arrest during imaginal disc growth in drosophila. Development. 2002; 129:5719–5730. [PubMed: 12421711]
- Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber DA, Hariharan IK. Salvador promotes both cell cycle exit and apoptosis in drosophila and is mutated in human cancer cell lines. Cell. 2002; 110:467–478. [PubMed: 12202036]
- 28. Harvey KF, Pfleger CM, Hariharan IK. The drosophila mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell. 2003; 114:457–467. [PubMed: 12941274]
- Wu S, Huang J, Dong J, Pan D. Hippo encodes a ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell. 2003; 114:445– 456. [PubMed: 12941273]
- Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the salvador/warts pathway. Nature cell biology. 2003; 5:914–920.

- Pantalacci S, Tapon N, Leopold P. The salvador partner hippo promotes apoptosis and cell-cycle exit in drosophila. Nature cell biology. 2003; 5:921–927.
- 32. Jia J, Zhang W, Wang B, Trinko R, Jiang J. The drosophila ste20 family kinase dmst functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 2003; 17:2514–2519. [PubMed: 14561774]
- Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell. 2005; 120:675–685. [PubMed: 15766530]
- 34. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of yap oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007; 21:2747–2761. [PubMed: 17974916]
- 35. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D. Elucidation of a universal size-control mechanism in drosophila and mammals. Cell. 2007; 130:1120–1133. [PubMed: 17889654]
- Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MA, Chen W, Xu T. Human homologue of the drosophila melanogaster lats tumour suppressor modulates cdc2 activity. Nat Genet. 1999; 21:177–181. [PubMed: 9988268]
- Huang J, Wu S, Barrera J, Matthews K, Pan D. The hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating yorkie, the drosophila homolog of yap. Cell. 2005; 122:421–434. [PubMed: 16096061]
- de Souza PM, Lindsay MA. Mammalian sterile20-like kinase 1 and the regulation of apoptosis. Biochemical Society transactions. 2004; 32:485–488. [PubMed: 15157167]
- Graves JD, Gotoh Y, Draves KE, Ambrose D, Han DK, Wright M, Chernoff J, Clark EA, Krebs EG. Caspase-mediated activation and induction of apoptosis by the mammalian ste20-like kinase mst1. EMBO J. 1998; 17:2224–2234. [PubMed: 9545236]
- 40. Callus BA, Verhagen AM, Vaux DL. Association of mammalian sterile twenty kinases, mst1 and mst2, with hsalvador via c-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 2006; 273:4264–4276. [PubMed: 16930133]
- 41. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH. The ste20- like kinase mst2 activates the human large tumor suppressor kinase lats1. Oncogene. 2005; 24:2076– 2086. [PubMed: 15688006]
- 42. Praskova M, Xia F, Avruch J. Mobkl1a/mobkl1b phosphorylation by mst1 and mst2 inhibits cell proliferation. Curr Biol. 2008; 18:311–321. [PubMed: 18328708]
- 43. Hirabayashi S, Nakagawa K, Sumita K, Hidaka S, Kawai T, Ikeda M, Kawata A, Ohno K, Hata Y. Threonine 74 of mob1 is a putative key phosphorylation site by mst2 to form the scaffold to activate nuclear dbf2-related kinase 1. Oncogene. 2008; 27:4281–4292. [PubMed: 18362890]
- 44. Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor lats1 is a negative regulator of oncogene yap. J Biol Chem. 2008; 283:5496–5509. [PubMed: 18158288]
- 45. Oka T, Mazack V, Sudol M. Mst2 and lats kinases regulate apoptotic function of yes kinaseassociated protein (yap). J Biol Chem. 2008; 283:27534–27546. [PubMed: 18640976]
- 46. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by lats and ck1 regulates yap stability through scf(beta-trcp). Genes Dev. 2010; 24:72–85. [PubMed: 20048001]
- 47. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL. Taz promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol. 2008; 28:2426–2436. [PubMed: 18227151]
- 48. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei QY, Guan KL. The hippo tumor pathway promotes taz degradation by phosphorylating a phosphodegron and recruiting the scf{beta}-trcp e3 ligase. J Biol Chem. 2010; 285:37159–37169. [PubMed: 20858893]
- Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, Xiong Y, Lei QY, Guan KL. The n-terminal phosphodegron targets taz/wwtr1 protein for scfbeta-trcp-dependent degradation in response to phosphatidylinositol 3-kinase inhibition. J Biol Chem. 2012; 287:26245–26253. [PubMed: 22692215]

- Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008; 29:350– 361. [PubMed: 18280240]
- Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Tyrosine phosphorylation controls runx2-mediated subnuclear targeting of yap to repress transcription. EMBO J. 2004; 23:790–799. [PubMed: 14765127]
- Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G, Blandino G. Physical interaction with yes-associated protein enhances p73 transcriptional activity. J Biol Chem. 2001; 276:15164–15173. [PubMed: 11278685]
- 53. Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, Blandino G. Pml, yap, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell. 2008; 32:803–814. [PubMed: 19111660]
- Zhang H, Wu S, Xing D. Yap accelerates abeta(25-35)-induced apoptosis through upregulation of bax expression by interaction with p73. Apoptosis : an international journal on programmed cell death. 2011; 16:808–821. [PubMed: 21562856]
- 55. Okazaki T, Kageji T, Kuwayama K, Kitazato KT, Mure H, Hara K, Morigaki R, Mizobuchi Y, Matsuzaki K, Nagahiro S. Up-regulation of endogenous pml induced by a combination of interferon-beta and temozolomide enhances p73/yap-mediated apoptosis in glioblastoma. Cancer letters. 2012; 323:199–207. [PubMed: 22542810]
- 56. Stein GS, Lian JB, Stein JL, van Wijnen AJ, Choi JY, Pratap J, Zaidi SK. Temporal and spatial parameters of skeletal gene expression: Targeting runx factors and their coregulatory proteins to subnuclear domains. Connective tissue research. 2003; 44(Suppl 1):149–153. [PubMed: 12952189]
- Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. Taz, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005; 309:1074–1078. [PubMed: 16099986]
- 58. Komuro A, Nagai M, Navin NE, Sudol M. Ww domain-containing protein yap associates with erbb-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of erbb-4 that translocates to the nucleus. J Biol Chem. 2003; 278:33334–33341. [PubMed: 12807903]
- Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, Gulino A, Alimandi M. Ligand-regulated association of erbb-4 to the transcriptional co-activator yap65 controls transcription at the nuclear level. Exp Cell Res. 2004; 294:469–479. [PubMed: 15023535]
- 60. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massague J. Nuclear cdks drive smad transcriptional activation and turnover in bmp and tgf-beta pathways. Cell. 2009; 139:757–769. [PubMed: 19914168]
- Zhao B, Ye X, Yu J, Li L, Li W, Li S, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. Tead mediates yap-dependent gene induction and growth control. Genes Dev. 2008; 22:1962– 1971. [PubMed: 18579750]
- 62. Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY, Guan KL. Tead transcription factors mediate the function of taz in cell growth and epithelial-mesenchymal transition. J Biol Chem. 2009; 284:13355–13362. [PubMed: 19324877]
- 63. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011; 144:782–795. [PubMed: 21376238]
- 64. Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Molecular & cellular proteomics : MCP. 2014; 13:119–131. [PubMed: 24126142]
- 65. Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R, Gstaiger M. Interaction proteome of human hippo signaling: Modular control of the co-activator yap1. Molecular systems biology. 2013; 9:713. [PubMed: 24366813]
- 66. Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC. Protein interaction network of the mammalian hippo

pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal. 2013; 6:rs15. [PubMed: 24255178]

- 67. Kwon Y, Vinayagam A, Sun X, Dephoure N, Gygi SP, Hong P, Perrimon N. The hippo signaling pathway interactome. Science. 2013; 342:737–740. [PubMed: 24114784]
- Kohli P, Bartram MP, Habbig S, Pahmeyer C, Lamkemeyer T, Benzing T, Schermer B, Rinschen MM. Label-free quantitative proteomic analysis of the yap and taz interactome. American journal of physiology. Cell physiology. 2014
- 69. Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H, Guan KL, Xu Y. Structural insights into the yap and tead complex. Genes Dev. 2010; 24:235–240. [PubMed: 20123905]
- 70. Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W, Song H. Structural basis of yap recognition by tead4 in the hippo pathway. Genes Dev. 2010; 24:290–300. [PubMed: 20123908]
- 71. Tian W, Yu J, Tomchick DR, Pan D, Luo X. Structural and functional analysis of the yap-binding domain of human tead2. Proc Natl Acad Sci U S A. 2010; 107:7293–7298. [PubMed: 20368466]
- 72. Fossdal R, Jonasson F, Kristjansdottir GT, Kong A, Stefansson H, Gosh S, Gulcher JR, Stefansson K. A novel tead1 mutation is the causative allele in sveinsson's chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Human molecular genetics. 2004; 13:975–981. [PubMed: 15016762]
- 73. Kitagawa M. A sveinsson's chorioretinal atrophy-associated missense mutation in mouse tead1 affects its interaction with the co-factors yap and taz. Biochemical and biophysical research communications. 2007; 361:1022–1026. [PubMed: 17689488]
- 74. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z. A peptide mimicking vgll4 function acts as a yap antagonist therapy against gastric cancer. Cancer Cell. 2014; 25:166–180. [PubMed: 24525233]
- 75. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B, Chen Q, Wu S, Pan D. The hippo effector yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell. 2013; 25:388–401. [PubMed: 23725764]
- 76. Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W, Wang H, Zhou Z, Ji H, Zhao Y, Zhang L. A novel partner of scalloped regulates hippo signaling via antagonizing scalloped-yorkie activity. Cell research. 2013; 23:1201–1214. [PubMed: 23999857]
- 77. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F, Han X, Feng Y, Zheng C, Wang Z, Chen H, Zhou Z, Zhang L, Ji H. Vgll4 functions as a new tumor suppressor in lung cancer by negatively regulating the yap-tead transcriptional complex. Cell research. 2014; 24:331–343. [PubMed: 24458094]
- Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J. The tead/tef family of transcription factor scalloped mediates hippo signaling in organ size control. Dev Cell. 2008; 14:377–387. [PubMed: 18258485]
- Wu S, Liu Y, Zheng Y, Dong J, Pan D. The tead/tef family protein scalloped mediates transcriptional output of the hippo growth-regulatory pathway. Dev Cell. 2008; 14:388–398. [PubMed: 18258486]
- Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber J, Zider A. Scalloped interacts with yorkie, the nuclear effector of the hippo tumor-suppressor pathway in drosophila. Curr Biol. 2008; 18:435–441. [PubMed: 18313299]
- 81. Jin Y, Xu J, Yin MX, Lu Y, Hu L, Li P, Zhang P, Yuan Z, Ho MS, Ji H, Zhao Y, Zhang L. Brahma is essential for drosophila intestinal stem cell proliferation and regulated by hippo signaling. eLife. 2013; 2:e00999. [PubMed: 24137538]
- Oh H, Slattery M, Ma L, Crofts A, White KP, Mann RS, Irvine KD. Genome-wide association of yorkie with chromatin and chromatin-remodeling complexes. Cell reports. 2013; 3:309–318. [PubMed: 23395637]
- 83. Skibinski A, Breindel JL, Prat A, Galvan P, Smith E, Rolfs A, Gupta PB, Labaer J, Kuperwasser C. The hippo transducer taz interacts with the swi/snf complex to regulate breast epithelial lineage commitment. Cell reports. 2014; 6:1059–1072. [PubMed: 24613358]
- 84. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, Jafar-Nejad H, Halder G. The tumour-suppressor genes nf2/merlin and expanded act through hippo signalling to regulate cell proliferation and apoptosis. Nature cell biology. 2006; 8:27–36.

- 85. Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, Giovannini M, Liu P, Anders RA, Pan D. The merlin/nf2 tumor suppressor functions through the yap oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010; 19:27–38. [PubMed: 20643348]
- 86. Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through yap. Neoplasia. 2008; 10:1204–1212. [PubMed: 18953429]
- Lavado A, He Y, Pare J, Neale G, Olson EN, Giovannini M, Cao X. Tumor suppressor nf2 limits expansion of the neural progenitor pool by inhibiting yap/taz transcriptional coactivators. Development. 2013; 140:3323–3334. [PubMed: 23863479]
- Angus L, Moleirinho S, Herron L, Sinha A, Zhang X, Niestrata M, Dholakia K, Prystowsky MB, Harvey KF, Reynolds PA, Gunn-Moore FJ. Willin/frmd6 expression activates the hippo signaling pathway kinases in mammals and antagonizes oncogenic yap. Oncogene. 2012; 31:238–250. [PubMed: 21666719]
- Moleirinho S, Chang N, Sims AH, Tilston-Lunel AM, Angus L, Steele A, Boswell V, Barnett SC, Ormandy C, Faratian D, Gunn-Moore FJ, Reynolds PA. Kibra exhibits mst-independent functional regulation of the hippo signaling pathway in mammals. Oncogene. 2013; 32:1821–1830. [PubMed: 22614006]
- 90. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H. The ww domain protein kibra acts upstream of hippo in drosophila. Dev Cell. 2010; 18:309–316. [PubMed: 20159600]
- Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N. Kibra is a regulator of the salvador/warts/ hippo signaling network. Dev Cell. 2010; 18:300–308. [PubMed: 20159599]
- Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D. Kibra functions as a tumor suppressor protein that regulates hippo signaling in conjunction with merlin and expanded. Dev Cell. 2010; 18:288– 299. [PubMed: 20159598]
- Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D. Spatial organization of hippo signaling at the plasma membrane mediated by the tumor suppressor merlin/nf2. Cell. 2013; 154:1342–1355. [PubMed: 24012335]
- 94. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL. Angiomotin is a novel hippo pathway component that inhibits yap oncoprotein. Genes Dev. 2011; 25:51–63. [PubMed: 21205866]
- 95. Chan SW, Lim CJ, Chong YF, Venkatesan Pobbati A, Huang C, Hong W. Hippo pathwayindependent restriction of taz and yap by angiomotin. J Biol Chem. 2011
- 96. Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively regulate yap1. J Biol Chem. 2011; 286:4364–4370. [PubMed: 21187284]
- 97. Paramasivam M, Sarkeshik A, Yates JR 3rd, Fernandes MJ, McCollum D. Angiomotin family proteins are novel activators of the lats2 kinase tumor suppressor. Molecular biology of the cell. 2011; 22:3725–3733. [PubMed: 21832154]
- 98. Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, Showe LC, Liu Q, Shimono A, Sudol M, Holmgren L, Stanger BZ, Kissil JL. The p130 isoform of angiomotin is required for yapmediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal. 2013; 6:ra77. [PubMed: 24003254]
- 99. Shimono A, Behringer RR. Angiomotin regulates visceral endoderm movements during mouse embryogenesis. Curr Biol. 2003; 13:613–617. [PubMed: 12676095]
- 100. Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L. Angiomotin belongs to a novel protein family with conserved coiled-coil and pdz binding domains. Gene. 2002; 298:69–77. [PubMed: 12406577]
- 101. Silvis MR, Kreger BT, Lien WH, Klezovitch O, Rudakova GM, Camargo FD, Lantz DM, Seykora JT, Vasioukhin V. Alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator yap1. Sci Signal. 2011; 4:ra33. [PubMed: 21610251]
- 102. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The hippo transducer taz confers cancer stem cell-related traits on breast cancer cells. Cell. 2011; 147:759– 772. [PubMed: 22078877]

- 103. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC, Ma L. Lifr is a breast cancer metastasis suppressor upstream of the hippo-yap pathway and a prognostic marker. Nature medicine. 2012; 18:1511–1517.
- 104. Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL, Wei C, Frazier M, Samson O, Wong KK, Kim C, Camargo FD. A genetic screen identifies an lkb1-mark signalling axis controlling the hippo-yap pathway. Nature cell biology. 2014; 16:108–117.
- 105. Feng Y, Irvine KD. Fat and expanded act in parallel to regulate growth through warts. Proc Natl Acad Sci U S A. 2007; 104:20362–20367. [PubMed: 18077345]
- 106. Bennett FC, Harvey KF. Fat cadherin modulates organ size in drosophila via the salvador/warts/ hippo signaling pathway. Curr Biol. 2006; 16:2101–2110. [PubMed: 17045801]
- 107. Cho E, Feng Y, Rauskolb C, Maitra S, Fehon R, Irvine KD. Delineation of a fat tumor suppressor pathway. Nat Genet. 2006; 38:1142–1150. [PubMed: 16980976]
- 108. Silva E, Tsatskis Y, Gardano L, Tapon N, McNeill H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol. 2006; 16:2081– 2089. [PubMed: 16996266]
- 109. Tyler DM, Baker NE. Expanded and fat regulate growth and differentiation in the drosophila eye through multiple signaling pathways. Dev Biol. 2007; 305:187–201. [PubMed: 17359963]
- 110. Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, Zhang X, Halder G. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol. 2006; 16:2090–2100. [PubMed: 16996265]
- 111. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a dchs1 mutant mouse reveals requirements for dchs1-fat4 signaling during mammalian development. Development. 2011; 138:947–957. [PubMed: 21303848]
- 112. Bossuyt W, Chen CL, Chen Q, Sudol M, McNeill H, Pan D, Kopp A, Halder G. An evolutionary shift in the regulation of the hippo pathway between mice and flies. Oncogene. 2014; 33:1218– 1228. [PubMed: 23563179]
- 113. Yu F-X, Guan K-L. The hippo pathway: Regulators and regulations. Genes & development. 2013; 27:355–371. [PubMed: 23431053]
- 114. Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ. The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circulation research. 2014; 114:454–468. [PubMed: 24276085]
- 115. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, Nava A, Silvestri F, Blomstrom-Lundqvist C, Wlodarska EK, Fontaine G, Camerini F. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: A multicenter study. Journal of the American College of Cardiology. 1997; 30:1512–1520. [PubMed: 9362410]
- 116. Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ. Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circulation research. 2011; 109:1342–1353. [PubMed: 22021931]
- 117. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of yap/taz in mechanotransduction. Nature. 2011; 474:179–183. [PubMed: 21654799]
- 118. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012; 26:54–68. [PubMed: 22215811]
- 119. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011; 138:3907–3914. [PubMed: 21831922]
- 120. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, Halder G. Modulating factin organization induces organ growth by affecting the hippo pathway. EMBO J. 2011; 30:2325–2335. [PubMed: 21556047]
- 121. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G. Mechanotransduction and yap-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature cell biology. 2013; 15:637–646.

- 122. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S. A mechanical checkpoint controls multicellular growth through yap/taz regulation by actinprocessing factors. Cell. 2013; 154:1047–1059. [PubMed: 23954413]
- 123. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126:677–689. [PubMed: 16923388]
- 124. Mosqueira D, Pagliari S, Uto K, Ebara M, Romanazzo S, Escobedo-Lucea C, Nakanishi J, Taniguchi A, Franzese O, Di Nardo P, Goumans MJ, Traversa E, Pinto-do OP, Aoyagi T, Forte G. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS nano. 2014; 8:2033–2047. [PubMed: 24483337]
- 125. Miller E, Yang J, DeRan M, Wu C, Su AI, Bonamy GM, Liu J, Peters EC, Wu X. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of yap. Chemistry & biology. 2012; 19:955–962. [PubMed: 22884261]
- 126. Fernandez BG, Gaspar P, Bras-Pereira C, Jezowska B, Rebelo SR, Janody F. Actin-capping protein and the hippo pathway regulate f-actin and tissue growth in drosophila. Development. 2011; 138:2337–2346. [PubMed: 21525075]
- 127. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL. Regulation of the hippo-yap pathway by g-protein-coupled receptor signaling. Cell. 2012; 150:780–791. [PubMed: 22863277]
- 128. Mo JS, Yu FX, Gong R, Brown JH, Guan KL. Regulation of the hippo-yap pathway by proteaseactivated receptors (pars). Genes Dev. 2012; 26:2138–2143. [PubMed: 22972936]
- 129. Cai H, Xu Y. The role of lpa and yap signaling in long-term migration of human ovarian cancer cells. Cell communication and signaling : CCS. 2013; 11:31. [PubMed: 23618389]
- Hopkins AL, Groom CR. The druggable genome. Nature reviews. Drug discovery. 2002; 1:727– 730. [PubMed: 12209152]
- Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002; 3:639–650. [PubMed: 12209124]
- 132. Tang CM, Insel PA. Gpcr expression in the heart; "new" receptors in myocytes and fibroblasts. Trends in cardiovascular medicine. 2004; 14:94–99. [PubMed: 15121156]
- 133. Frishman WH. Beta-adrenergic blockade in cardiovascular disease. Journal of cardiovascular pharmacology and therapeutics. 2013; 18:310–319. [PubMed: 23637119]
- 134. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annual review of physiology. 2008; 70:23–49.
- 135. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A. 1999; 96:7059–7064. [PubMed: 10359838]
- 136. Geng YJ, Ishikawa Y, Vatner DE, Wagner TE, Bishop SP, Vatner SF, Homcy CJ. Apoptosis of cardiac myocytes in gsalpha transgenic mice. Circulation research. 1999; 84:34–42. [PubMed: 9915772]
- 137. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. Yap1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007; 17:2054– 2060. [PubMed: 17980593]
- 138. Lee KP, Lee JH, Kim TS, Kim TH, Park HD, Byun JS, Kim MC, Jeong WI, Calvisi DF, Kim JM, Lim DS. The hippo-salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A. 2010
- 139. Lu L, Li Y, Kim SM, Bossuyt W, Liu P, Qiu Q, Wang Y, Halder G, Finegold MJ, Lee JS, Johnson RL. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A. 2010; 107:1437–1442. [PubMed: 20080689]
- 140. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, Wang CY, Gao B, Jiang J, Yang Y. Mammalian mst1 and mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A. 2010; 107:1431–1436. [PubMed: 20080598]
- 141. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N. Mst1 and mst2 maintain hepatocyte quiescence and suppress hepatocellular

carcinoma development through inactivation of the yap1 oncogene. Cancer Cell. 2009; 16:425–438. [PubMed: 19878874]

- 142. Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an nkx2-5/cre gene using rosa26 reporter mice. Genesis. 2001; 31:176–180. [PubMed: 11783008]
- 143. McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN. The hand1 and hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 2005; 132:189–201. [PubMed: 15576406]
- 144. Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci U S A. 2007; 104:10894–10899. [PubMed: 17576928]
- 145. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell. 2004; 6:685–698. [PubMed: 15130493]
- 146. Ai D, Fu X, Wang J, Lu MF, Chen L, Baldini A, Klein WH, Martin JF. Canonical wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A. 2007; 104:9319–9324. [PubMed: 17519332]
- 147. Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W. Distinct roles of wnt/beta-catenin and bmp signaling during early cardiogenesis. Proc Natl Acad Sci U S A. 2007; 104:18531–18536. [PubMed: 18000065]
- 148. Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kemler R, Rosenfeld MG, Chen J, Evans SM. Beta-catenin directly regulates islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci U S A. 2007; 104:9313–9318. [PubMed: 17519333]
- 149. Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, Jiang X, Lin L, Granger A, Moretti A, Caron L, Wu X, Clarke J, Taketo MM, Laugwitz KL, Moon RT, Gruber P, Evans SM, Ding S, Chien KR. The renewal and differentiation of isl1+ cardiovascular progenitors are controlled by a wnt/beta-catenin pathway. Cell stem cell. 2007; 1:165–179. [PubMed: 18371348]
- 150. Lee JH, Kim TS, Yang TH, Koo BK, Oh SP, Lee KP, Oh HJ, Lee SH, Kong YY, Kim JM, Lim DS. A crucial role of ww45 in developing epithelial tissues in the mouse. EMBO J. 2008; 27:1231–1242. [PubMed: 18369314]
- 151. Miesfeld JB, Link BA. Establishment of transgenic lines to monitor and manipulate yap/taz-tead activity in zebrafish reveals both evolutionarily conserved and divergent functions of the hippo pathway. Mech Dev. 2014
- 152. Stainier DY. Zebrafish genetics and vertebrate heart formation. Nature reviews. Genetics. 2001; 2:39–48.
- 153. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA. Transforming properties of yap, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006; 103:12405–12410. [PubMed: 16894141]
- 154. Kupperman E, An S, Osborne N, Waldron S, Stainier DY. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000; 406:192–195. [PubMed: 10910360]
- 155. Osborne N, Brand-Arzamendi K, Ober EA, Jin SW, Verkade H, Holtzman NG, Yelon D, Stainier DY. The spinster homolog, two of hearts, is required for sphingosine 1-phosphate signaling in zebrafish. Curr Biol. 2008; 18:1882–1888. [PubMed: 19062281]
- 156. Lee KK, Yonehara S. Phosphorylation and dimerization regulate nucleocytoplasmic shuttling of mammalian ste20-like kinase (mst). J Biol Chem. 2002; 277:12351–12358. [PubMed: 11805089]
- 157. Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B, Avruch J. Identification of a novel ras-regulated proapoptotic pathway. Curr Biol. 2002; 12:253–265. [PubMed: 11864565]
- 158. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. Regulation of the mst1 kinase by autophosphorylation, by the growth inhibitory proteins, rassf1 and nore1, and by ras. Biochem J. 2004; 381:453–462. [PubMed: 15109305]

- 159. Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH, Im CR, Lee JO, Yonehara S, Lim DS. Role of the tumor suppressor rassf1a in mst1-mediated apoptosis. Cancer Res. 2006; 66:2562–2569. [PubMed: 16510573]
- 160. Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP. Rassf1a is part of a complex similar to the drosophila hippo/salvador/lats tumor-suppressor network. Curr Biol. 2007; 17:700–705. [PubMed: 17379520]
- 161. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved mst-foxo signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006; 125:987–1001. [PubMed: 16751106]
- 162. Liu W, Wu J, Xiao L, Bai Y, Qu A, Zheng Z, Yuan Z. Regulation of neuronal cell death by c-ablhippo/mst2 signaling pathway. PloS one. 2012; 7:e36562. [PubMed: 22590567]
- 163. Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, Ren J, Ji G, Wang Y, Yuan Z. The c-abl-mst1 signaling pathway mediates oxidative stress-induced neuronal cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011; 31:9611–9619. [PubMed: 21715626]
- 164. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemiareperfusion injury. Physiological reviews. 2008; 88:581–609. [PubMed: 18391174]
- 165. Odashima M, Usui S, Takagi H, Hong C, Liu J, Yokota M, Sadoshima J. Inhibition of endogenous mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circulation research. 2007; 100:1344–1352. [PubMed: 17395874]
- 166. Oceandy D, Pickard A, Prehar S, Zi M, Mohamed TM, Stanley PJ, Baudoin-Stanley F, Nadif R, Tommasi S, Pfeifer GP, Armesilla AL, Cartwright EJ, Neyses L. Tumor suppressor rasassociation domain family 1 isoform a is a novel regulator of cardiac hypertrophy. Circulation. 2009; 120:607–616. [PubMed: 19652091]
- 167. Yamamoto S, Yang G, Zablocki D, Liu J, Hong C, Kim SJ, Soler S, Odashima M, Thaisz J, Yehia G, Molina CA, Yatani A, Vatner DE, Vatner SF, Sadoshima J. Activation of mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. The Journal of clinical investigation. 2003; 111:1463–1474. [PubMed: 12750396]
- 168. Del Re DP, Matsuda T, Zhai P, Gao S, Clark GJ, Van Der Weyden L, Sadoshima J. Proapoptotic rassf1a/mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. The Journal of clinical investigation. 2010; 120:3555–3567. [PubMed: 20890045]
- 169. Matsui Y, Nakano N, Shao D, Gao S, Luo W, Hong C, Zhai P, Holle E, Yu X, Yabuta N, Tao W, Wagner T, Nojima H, Sadoshima J. Lats2 is a negative regulator of myocyte size in the heart. Circulation research. 2008; 103:1309–1318. [PubMed: 18927464]
- 170. Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, Zhang N, Yabuta N, Nojima H, Pan D, Sadoshima J. Yes-associated protein isoform 1 (yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013; 288:3977–3988. [PubMed: 23275380]
- 171. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, Lim DS, Isobe M, Sadoshima J. Mst1 inhibits autophagy by promoting the interaction between beclin1 and bcl-2. Nature medicine. 2013; 19:1478–1488.
- Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circulation research. 2009; 104:150–158. [PubMed: 19179668]
- 173. Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the heart: A new therapeutic target? Circulation. 2004; 109:1580–1589. [PubMed: 15066961]
- 174. Wang P, Mao B, Luo W, Wei B, Jiang W, Liu D, Song L, Ji G, Yang Z, Lai YQ, Yuan Z. The alteration of hippo/yap signaling in the development of hypertrophic cardiomyopathy. Basic research in cardiology. 2014; 109:435. [PubMed: 25168380]
- 175. Lee CH, Inoki K, Guan KL. Mtor pathway as a target in tissue hypertrophy. Annual review of pharmacology and toxicology. 2007; 47:443–467.
- 176. Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL. Yap mediates crosstalk between the hippo and pi(3)k-tor pathways by suppressing pten via mir-29. Nature cell biology. 2012; 14:1322–1329.

- 177. Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, Guo H, van Gorp PR, Wang DZ, Pu WT. Pi3kcb links hippo-yap and pi3k-akt signaling pathways to promote cardiomyocyte proliferation and survival. Circulation research. 2015; 116:35–45. [PubMed: 25249570]
- 178. Cooper, Gt. Cardiocyte adaptation to chronically altered load. Annual review of physiology. 1987; 49:501–518.
- Mondry A, Swynghedauw B. Biological adaptation of the myocardium to chronic mechanical overload. Molecular determinants of the autonomic nervous system. European heart journal. 1995; 16(Suppl I):64–73. [PubMed: 8829959]
- Soonpaa MH, Field LJ. Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. The American journal of physiology. 1997; 272:H220–226. [PubMed: 9038941]
- 181. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011; 473:326–335. [PubMed: 21593865]
- 182. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: The scientific foundations of cardiac repair. The Journal of clinical investigation. 2005; 115:572–583. [PubMed: 15765139]
- Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142:375–386. [PubMed: 20691899]
- 184. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012; 485:593–598. [PubMed: 22522929]
- 185. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non myocytes with cardiac transcription factors. Nature. 2012; 485:599–604. [PubMed: 22660318]
- 186. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331:1078–1080. [PubMed: 21350179]
- 187. Kikuchi K, Poss KD. Cardiac regenerative capacity and mechanisms. Annual review of cell and developmental biology. 2012; 28:719–741.
- 188. Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010; 464:601–605. [PubMed: 20336144]
- 189. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010; 464:606–609. [PubMed: 20336145]
- 190. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the mir-15 family. Proc Natl Acad Sci U S A. 2013; 110:187–192. [PubMed: 23248315]
- 191. Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, Wolgemuth DJ. Cyclin a2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004; 279:35858– 35866. [PubMed: 15159393]
- 192. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin d2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circulation research. 2005; 96:110–118. [PubMed: 15576649]
- 193. Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, Cohen JE, Chaudhry HW. Therapeutic delivery of cyclin a2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006; 114:I206–213. [PubMed: 16820573]
- 194. Liao HS, Kang PM, Nagashima H, Yamasaki N, Usheva A, Ding B, Lorell BH, Izumo S. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circulation research. 2001; 88:443–450. [PubMed: 11230113]
- 195. Soonpaa MH, Koh GY, Pajak L, Jing S, Wang H, Franklin MT, Kim KK, Field LJ. Cyclin d1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. The Journal of clinical investigation. 1997; 99:2644–2654. [PubMed: 9169494]

- 196. Cai J, Zhang N, Zheng Y, de Wilde RF, Maitra A, Pan D. The hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev. 2010; 24:2383–2388. [PubMed: 21041407]
- 197. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002; 298:2188–2190. [PubMed: 12481136]
- 198. Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 1994; 8:2293–2301. [PubMed: 7958896]
- 199. Sawada A, Kiyonari H, Ukita K, Nishioka N, Imuta Y, Sasaki H. Redundant roles of tead1 and tead2 in notochord development and the regulation of cell proliferation and survival. Mol Cell Biol. 2008; 28:3177–3189. [PubMed: 18332127]
- 200. Barker N, Clevers H. Mining the wnt pathway for cancer therapeutics. Nature reviews. Drug discovery. 2006; 5:997–1014.
- 201. Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links hippo signalling to the inhibition of wnt/β-catenin signalling. The EMBO journal. 2012; 31:1109–1122. [PubMed: 22234184]
- 202. Guo X, Zhao B. Integration of mechanical and chemical signals by yap and taz transcription coactivators. Cell & bioscience. 2013; 3:33. [PubMed: 23985334]
- 203. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S. Role of taz as mediator of wnt signaling. Cell. 2012
- 204. Konsavage WM, Yochum GS. Intersection of hippo/yap and wnt/β-catenin signaling pathways. Acta biochimica et biophysica Sinica. 2013; 45:71–79. [PubMed: 23027379]
- 205. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC. B-catenin-driven cancers require a yap1 transcriptional complex for survival and tumorigenesis. Cell. 2013; 153:267–270.
- 206. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L. The hippo pathway regulates wnt/beta-catenin signaling. Dev Cell. 2010; 18:579–591. [PubMed: 20412773]
- 207. Murakami M, Nakagawa M, Olson EN, Nakagawa O. A ww domain protein taz is a critical coactivator for tbx5, a transcription factor implicated in holt-oram syndrome. Proc Natl Acad Sci U S A. 2005; 102:18034–18039. [PubMed: 16332960]
- 208. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of holt-oram syndrome defines roles of the t-box transcription factor tbx5 in cardiogenesis and disease. Cell. 2001; 106:709–721. [PubMed: 11572777]
- Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science. 2002; 295:2450–2452. [PubMed: 11884717]
- 210. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor foxo3a protects quiescent cells from oxidative stress. Nature. 2002; 419:316–321. [PubMed: 12239572]
- 211. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. Foxo transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011; 286:7468–7478. [PubMed: 21159781]
- 212. Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D, Sadoshima J. A functional interaction between hippo-yap signalling and foxo1 mediates the oxidative stress response. Nature communications. 2014; 5:3315.
- 213. Fu Z, Tindall DJ. Foxos, cancer and regulation of apoptosis. Oncogene. 2008; 27:2312–2319. [PubMed: 18391973]
- 214. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. Taz controls smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature cell biology. 2008; 10:837–848.
- 215. van Wijk B, Moorman AF, van den Hoff MJ. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovascular research. 2007; 74:244–255. [PubMed: 17187766]

- 216. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 2013; 497:249–253. [PubMed: 23594737]
- 217. Peng HW, Slattery M, Mann RS. Transcription factor choice in the hippo signaling pathway: Homothorax and yorkie regulation of the microrna bantam in the progenitor domain of the drosophila eye imaginal disc. Genes Dev. 2009; 23:2307–2319. [PubMed: 19762509]
- 218. von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circulation research. 2012; 110:1628–1645. [PubMed: 22679138]
- 219. Armstrong EJ, Bischoff J. Heart valve development: Endothelial cell signaling and differentiation. Circulation research. 2004; 95:459–470. [PubMed: 15345668]
- Dangwal S, Thum T. Microrna therapeutics in cardiovascular disease models. Annual review of pharmacology and toxicology. 2014; 54:185–203.
- 221. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. Micrornas play an essential role in the development of cardiac hypertrophy. Circulation research. 2007; 100:416–424. [PubMed: 17234972]
- 222. Small EM, Olson EN. Pervasive roles of micrornas in cardiovascular biology. Nature. 2011; 469:336–342. [PubMed: 21248840]
- 223. Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH, Meissner G, Patterson C, Hannon GJ, Wang DZ. Targeted deletion of dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008; 105:2111–2116. [PubMed: 18256189]
- 224. da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008; 118:1567–1576. [PubMed: 18809798]
- 225. Ali R, Huang Y, Maher SE, Kim RW, Giordano FJ, Tellides G, Geirsson A. Mir-1 mediated suppression of sorcin regulates myocardial contractility through modulation of ca2+ signaling. Journal of molecular and cellular cardiology. 2012; 52:1027–1037. [PubMed: 22326846]
- 226. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, Gregory RI. Hippo signaling regulates microprocessor and links cell-density-dependent mirna biogenesis to cancer. Cell. 2014; 156:893–906. [PubMed: 24581491]
- 227. Wang Y, Hu G, Liu F, Wang X, Wu M, Schwarz JJ, Zhou J. Deletion of yes-associated protein (yap) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for yap in mouse cardiovascular development. Circulation research. 2014; 114:957–965. [PubMed: 24478334]
- 228. Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, Fine DM, Hanft LM, McDonald KS, Molkentin JD, Krenz M, Yang S, Ji J. Tead-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem. 2010; 285:13721–13735. [PubMed: 20194497]
- 229. McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, Lemmers B, Salmena L, Hakem A, Fish J, Kassam F, Squire J, Bruneau BG, Hande MP, Hakem R. Lats2/kpm is required for embryonic development, proliferation control and genomic integrity. Embo J. 2004; 23:3677–3688. [PubMed: 15343267]

Figure 1. The mammalian Hippo pathway

Arrows or blunt ends indicate activation or inhibition, respectively. Dashed lines indicate unknown mechanisms. Abbreviations: AJ (Adherens Junctions), CK1 δ / ϵ (casein kinase 1 δ / ϵ), DLG (Disks large homolog), KBR (Kibra), LGL (Lethal giant larvae protein homolog), Scrib (Protein scribble homolog), SCF (Skp, Cullin, F-box containing complex), β -TRCP (β -Transducin repeat-containing protein), SWI/SNF (SWItch/Sucrose NonFermentable nucleosome remodeling complex), TJ (Tight Junctions), Ub (Ubiquitin), ZO-1 (Tight junction protein ZO-1, also called TJP1), α -CAT (α -Catenin).

Figure 2.

Transcription effectors of the Hippo pathway in regulation of cardiac physiology. YAP/TAZ transcription factor partners in cardiomyocytes and their downstream target genes are shown. The Hippo pathway likely regulates cardiac physiology through a coordinated transcriptional program. Abbreviations: DVL (Dishevelled), p300 (E1A binding protein p300), pCAF (p300/CBP-associated factor, KAT2B), TCF/LEF (Transcription factor/ Lymphoid enhancer-binding factor).

Table 1

Major Hippo Pathway Components in Drosophila and Mammals

Drosophila		Mammals	
Full Name	Symbol	Full Name	Symbol
Scalloped	Sd	TEA domain family member 1/2/3/4	TEAD
Yorkie	Yki	Yes-associated protein Transcriptional co-activator with PDZ-binding motif	YAP TAZ
Tondu-domain-containing growth inhibitor	Tgi	Transcription co-factor vestigial-like protein 4	VGLL4
Warts	Wts	Large tumor suppressor kinase 1/2	LATS1/2
Mob as tumor suppressor	Mats	Mps one binder kinase activator-like 1A/1B	MOB
Нірро	Нро	serine/threonine kinase 4/3	MST1/2
Salvador	Sav	Salvador	SAV1
Ras association family member	Rassf	Ras association domain-containing protein 1-6	RASSF1-6
Merlin	Mer	Neurofibromin 2	NF2
Expanded	Ex	FERM domain-containing protein 6	FRMD6
Kibra	Kibra	Kibra	KBR
		Angiomotin	AMOT
Fat	Fat	Protocadherin Fat1-4	FAT1-4

Table 2

Cardiac phenotypes of Hippo pathway mouse models.

Gene	Mouse models	Promoter	Phenotypes
Yap	сКО	Nkx25-Cre	EL by E10.5, decreased proliferation, thin myocardium ¹⁷ .
	сКО	Tnnt2-Cre	EL by E16.5, hypoplastic ventricles, reduced proliferation, no elevated apoptosis, normal hypertrophy in basal and pathological conditions ¹⁵ .
	сКО	a-MHC-Cre	Die by 11 weeks, dilated cardiomyopathy, increase apoptosis and fibrosis; worse injury, less proliferation and hypertrophy after chronic MI in cHET ¹⁷⁰ ; defective neonatal cardiac regeneration ¹⁶ .
	сКО	SM22a-Cre	Perinatal lethality, hypoplastic myocardium, VSD ²²⁷ .
	cTG mYap1-S112A	Р-МНС	Embryonic hearts have enhanced proliferation, thickened myocardium, expanded trabecular layer; adult heart size normal due to reduced cell size ¹⁷ .
	cTG mYap1-S112A	а-МНС	Increased proliferation, myocardium thickness, heart size, and cardiac regeneration ¹⁶ .
	inducible cTG <i>hYap1-S127A</i>	Tnnt2-Cre	Induction at E8.5 leads to EL by E15.5 with increased proliferation, thickened myocardium, cardiomegaly; induction at P5 increases heart weight and proliferation but not hypertrophy ¹⁵ .
	cKI Yap1 ^{fl/S79A}	Tnnt2-Cre	Myocardium hypoplasia comparable to <i>Yap1</i> cKO ¹⁵ .
Taz	сКО	a-MHC-Cre	Normal heart, but when combined with <i>Yap1</i> cKO enhances phenotypes including reduced proliferation, increased apoptosis, dilated cardiomyopathy and heart failure ¹⁶ .
Tead1	КО		EL by E11.5, thin ventricular wall, dramatic reduction of myocardium trabeculation ¹⁹⁸ .
	cTG	МСК	Myocyte misalignment, wall-thickening, fibrosis, reduced heart output, heart failure within 4 days by pressure overload ²²⁸ .
Lats2	КО		EL by E12.5, at E10.5 ventricular hypoplasia in 36% of embryos ²²⁹ .
	сКО	Nkx25-Cre	Myocardial expansion ¹² .
	cTG	a-MHC	Reduced cardiomyocyte size and ventricle size, basal apoptosis not affected; enhancement of apoptosis in response to pressure overload ¹⁶⁹ .
	cTG-DN Lats2-K697A	a-MHC	Ventricular hypertrophy, less cardiomyocyte apoptosis induced by TAC ¹⁶⁹ .
Lats1/2	inducible cKO	Myh6-CreERT2	Increased renewal of adult cardiomyocytes, better regeneration after apex resection ¹³ .
Sav1	inducible cKO	Myh6-CreERT2	Increased renewal of adult cardiomyocytes; increased proliferation and better morphological and functional regeneration after apex resection or MI ¹³ .
	сКО	Nkx25-Cre	Increased proliferation, thickened myocardium, cardiomegaly ¹² .
Mst1	cTG	a-MHC	Premature death, increased cardiomyocyte apoptosis, fibrosis, no hypertrophy, dilated cardiomyopathy ¹⁶⁷ .
	cTG-DN Mst1-K59R	a-MHC	Reduced apoptosis after I/R^{167} ; reduced apoptosis, fibrosis, cardiac dilation, and dysfunction, but not hypertrophy after MI^{165} .
Mst1/2	сКО	Nkx25-Cre	Myocardial expansion ¹² .
	inducible KO	CAGG-CreER	Heart enlargement (partial penetrance) ¹⁴⁰ .
Rassf1A	КО		<i>No</i> cardiac defects at basal condition; reduced apoptosis, enhanced hypertrophy, fibrosis, and LV chamber dilatation in response to TAC ^{166, 168} .
	cKO	a-MHC-Cre	No cardiac defects at basal condition; reduced apoptosis, hypertrophy, and fibrosis after TAC ¹⁶⁸ .

Gene	Mouse models	Promoter	Phenotypes
	cTG	a-MHC	No gross difference in cardiac morphology and function; elevated Mst1 phosphorylation and cardiomyocyte apoptosis; increased apoptosis and fibrosis after TAC ¹⁶⁸ .
	cTG-DN Rassf1A-L308P	а-МНС	Abrogated Mst1 activation, reduced fibrosis and apoptosis in response to TAC ¹⁶⁸ .

Abbreviations: knockout (KO); conditional knockout (cKO); tissue specific transgenic expression (cTG); conditional knock-in (cKI); ascending aortic constriction (AAC); Embryonic lethal (EL); Left anterior descending coronary artery (LAD); Myocardial infarction(MI); Postnatal day (P); Transverse aortic constriction (TAC); ventricular septal defect (VSD).