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Evolutionary Polynomial Regression (EPR) has found widespread application and use for model structure
development in engineering and science. This hybrid evolutionary approach merges real world data and
explanatory variables to generate well-structured models in the form of polynomial equations. The simple and
transparent models produced by this technique enable us to explore, via sensitivity analysis, the robustness
of the derived models. Yet, existing EPR frameworks do not make explicit use of sensitivity analysis in the
selection of robust and high-fidelity model structures. In this paper, we develop a multi-step sensitivity-
driven method which combines the strengths of differential evolution and model selection via Monte Carlo
simulation to explore the input-output relationships of model structures. In the first step, our hybrid approach
automatically determines the optimum number of terms of the polynomial equations. In a subsequent step,
our algorithm explores the mean parametric response of each explanatory variable used in the mathematical
formulation to select a final model structure. Finally, in our selection of the most robust mathematical structure,
we take explicit consideration of the prediction uncertainty of the simulated output. We illustrate and evaluate
our EPR method for different engineering problems involving modeling and prediction of the moisture content
and creep index of soils. Altogether, our results demonstrate that the use of sensitivity analysis as an integral
part of model structure search and selection will lead to robust models with high predictive ability.

1. Introduction estimation and overfitting problems are some of the disadvantages
of model development by black-box models (Giustolisi and Laucelli,

Complex engineering systems are commonly derived from first
principles or closed-form equations (white-box models), data-driven
techniques (black-box models), or conceptual mathematical structures
(gray-box models) (Giustolisi and Savic, 2006). White-box models
assume algebraic and ordinary (or partial) differential equations to
model the dynamics of intricate engineering processes at distinct spa-
tial dimensions and temporal scales (Vrugt, 2016). These models can
accurately characterize the underlying physical meaning of the process
being investigated. Yet, many white-box models are often unable to
precisely describe complex, real-world engineering systems. Black-box
models, such as artificial neural networks (ANN), have the advan-
tage of dealing with a significant amount of information to produce

2005). What is more, these techniques do not allow us to explicitly
incorporate knowledge obtained from physical processes into the model
search. This makes it very difficult to detect if the model can reproduce
theoretically relevant parts of the system behavior. Consequently,
many resort to gray-box techniques such as Evolutionary Polynomial
Regression (EPR), which provides well-structured, transparent, and
physically based mathematical expressions. Additionally, EPR methods
allow us to explore, through sensitivity analyses (parametric study),
the generalization ability (robustness), and the physical meaning of
each input data in the model (Shahin, 2015). Sensitivity analysis is an
essential process for differentiating (gray) EPR models from black-box

complex model functions. These approaches can mimic engineering
processes by learning from numerous examples, that is, by analyzing
input and output data. While popular, these techniques also have their
own drawbacks (Giustolisi and Savic, 2006). For instance, parameter
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approaches. For these reasons, EPR models have found its way into
engineering practice (Ahangar-Asr et al., 2011b; Alani and Faramarzi,
2014; Balf et al.,, 2018; Berardi et al., 2008; Bruno et al., 2018;
Costa et al., 2020; Doglioni et al., 2010; Doglioni and Simeone, 2021;
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Faramarzi et al., 2012; Fiore et al., 2012, 2016; Giustolisi et al., 2007,
2008; Gomes et al., 2021a; Jin and Yin, 2020; Laucelli and Giustolisi,
2011; Montes et al., 2020; Rezania et al., 2008, 2010, 2011; Shahin,
2015).

EPR is a useful two-stage hybrid regression technique that performs
(i) model structure identification, and (ii) parameter estimation to fit
simple polynomials in the input-output process. Traditionally, the EPR
framework uses simple genetic algorithm (GA) and linear least-squares
(LS) for model structure identification and parameter estimation, re-
spectively. The model structure search strategy using single-objective
genetic algorithm (SOGA) has been widely applied (Ahangar-Asr et al.,
2010, 2011a,b, 2012; El-Baroudy et al., 2010; Faramarzi et al., 2012;
Shahin, 2015; Shahnazari et al., 2013). In these approaches, the ob-
jective function relies on statistical metrics, such as the minimiza-
tion of the sum of squared errors (SSE). Still, overfitting and lack of
generalization ability are some of the drawbacks involved in SOGA-
based EPR modeling schemes (Giustolisi and Savic, 2009; Savic et al.,
2009; Laucelli and Giustolisi, 2011; Jin et al., 2019b). In contrast,
the multi-objective (MO) strategy enhances the classical SOGA-base
EPR techniques for multiple reasons (Marasco et al., 2021). Most
notably, MO-based EPR enables us to handle multiple objectives within
the search strategy. For instance, several adopted MO-based EPR to
maximize the model fitness to data and to minimize the number of
polynomial terms (Alani and Faramarzi, 2014; Balf et al., 2018; Berardi
et al., 2008; Creaco et al., 2016; Giustolisi and Savic, 2009; Rezania
et al., 2008). The MO procedure thus returns a Pareto-efficient subset
of feasible non-dominated solutions, that is, optimal model structures
based on different criteria (Giustolisi and Savic, 2009). However, a key
task is then to select one representative model from the set of Pareto
optimal solutions. Hence, many researchers worldwide are trying to
improve the different building blocks of EPR to select optimum model
structures for empirical engineering models (Jin et al., 2019b; Jin and
Yin, 2020; Gomes et al., 2021a; Marasco et al., 2021; Marasco and
Cimellaro, 2021). A review of Gomes et al. (2021a) discusses challenges
and research gaps on model selection within the EPR framework.

Recently, different methodologies have been proposed to improve
search strategy and model selection within the EPR framework. These
attempts have successfully developed multi-step automatic model se-
lection schemes. For instance, Jin and Yin (2020) developed an EPR
process that consisted of two steps: (i) model selection using a multi-
objective differential evolution algorithm (MODE) that handles mul-
tiple objectives (model accuracy, complexity and robustness) and (ii)
delicacy identification, in which a set of candidate models are ranked
according to the coefficient of determination (R?), number of EPR
terms, number of input variables, robustness ratio and monotonicity.
Their results highlighted that the MODE-based EPR technique can
efficiently model soil properties. Still, they also reported that inno-
vative optimization algorithms or advanced model selection schemes
should enhance the EPR performance. In another attempt to create an
intelligent multi-step automatic model selection, Jin et al. (2019b) pro-
posed a single-objective differential evolution (SODE) EPR procedure.
In their approach, two optimal models were selected to predict the
creep index of clays based on the predictive ability, model complexity,
robustness and monotonicity. However, to select one of the two models
as the optimum, sensitivity analysis was performed on the physical
properties used as explanatory variables. Despite both formulations
presented excellent predictive ability, the parametric study showed
quite different (one of them unrealistic) physical meaning. In fact,
from a practical perspective, EPR models must interpret the underlying
physical meaning of the system (Shahin, 2015). This raises a question
of how uncertain the sensitivity analyzes are if independent simulations
are carried out. Therefore, an EPR method that quantifies such infor-
mation and automatically preserves the theoretical underpinning of the
system behavior during the search strategy would hence be desirable
to engineering practice. In a similar line of research, Gomes et al.
(2021a) have proposed a new EPR method that differs from previous
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attempts in three different procedures: dual search-based using GA and
differential evolution (DE) as model structure exploration engine, self-
adaptive evolution of new population and compromise programming as
a model selection tool. The study has demonstrated that it is possible
to nicely predict dependent variables within the EPR framework with
accuracy, physical meaning, and reduced number of parameters and
input data in the model structure.

These previously published works did not resolve, however, other
questions concerning the optimum model selection and uncertainty
quantification within the EPR framework. First, it is unclear if the
robustness of single EPR runs is warranted since distinct models might
be produced using the same input data and algorithmic parameters.
In fact, Oparaji et al. (2017) highlighted that different ANN models
might be obtained utilizing equal training data due to the random
initialization of the (weights and biases) parameters in each network,
which leads to unavoidable uncertainty in the selection of the best
performing model. Accordingly, EPR models with different structures
can produce close predictive capability, but they could also have quite
different generalization and parametric responses (Jin et al., 2019b).
On the one hand, simple models without sufficient explanatory vari-
ables can potentially overlook components of the system. Alternatively,
care should be exercised not to derive complex EPR models with too
many parameters in lieu of overfitting, therefore decreasing substan-
tially generalization ability. As a consequence, EPR models that provide
excellent predictions and generalization abilities, maintain accuracy
and robustness for predicting real-world phenomenon (Jin et al., 2019a;
Marasco et al., 2021; Gomes et al., 2021a). Moreover, robust EPR
models can preserve features of the physical process that are likely to
be revealed in the sensitivity analysis (Shahin, 2015). Second, while
sensitivity analysis could provide several advantages to the model
search strategy, existing publications only adopt such parametric study
subsequently to the definition of the optimum mathematical model
(e.g., among others, (Ahangar-Asr et al., 2011a, 2012; Alzabeebee,
2020; Javadi et al.,, 2012; Rezania et al., 2010; Shahin, 2015; Jin
et al., 2019b; Gomes et al., 2021a)). Therefore, a natural question
arises whether sensitivity analysis can effectively delineate the space
of feasible solutions, i.e., if and how the parametric study can be used
as an integral part of the model structure search. This paper addresses
these research questions.

This essay introduces and tests a novel multi-step sensitivity-driven
EPR. We build on the hypothesis that sensitivity analysis can drive
our search strategy toward improved model structure selection. We
use our previous multi-objective differential evolution and genetic
algorithm EPR (EPR-MODEGA) to explore the search space in pur-
suit of models that have a trade-off between goodness of fit and
model complexity (Gomes et al., 2021a). By coupling two different
optimization algorithms (DE and GA) in a self-adaptive evolutionary
scheme and a compromise programming tool, the method has shown
benefits in the decision-making of optimal EPR models. Here, we extend
the usefulness and general applicability of EPR-MODEGA with a new
model selection procedure that merges Monte Carlo simulations and a
parametric study to investigate how input data are propagated through
the EPR models. Monte Carlo simulations provide a simple way to
quantify the average trend of model predictions and their correspond-
ing uncertainty ranges (Dao et al., 2020; Naserim et al., 2020; Pham
et al,, 2019; Tian et al.,, 2014; Cunha et al.,, 2014; Oparaji et al.,
2017). We are particularly interested in the impact of the uncertainty
sources of explanatory data on the simulated output and its associated
95% confidence interval, rather than only looking at its deterministic
results. The framework presented herein is illustrated using real-world
data, involving the prediction of two complex geotechnical engineering
variables, the optimum moisture content and the creep index of clayey
soils.

The remaining of this paper is structured as follows. Section 2
briefly describes the classical EPR approach and the new developments
of this contribution. In Section 3, we discuss our methodology, in-
cluding the database, case studies and details of our computational
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setup for the EPR simulations. Then, Section 4 highlights the results
of the application of our method to real-world data and illustrates
the advantages of our proposed EPR framework. Finally, Section 5
concludes this paper with a summary of our main discoveries.

2. EPR method
2.1. Classical approach
The key feature of evolutionary polynomial regression is to assume

that the mathematical structure of a given physical phenomenon can
be approximately described by:

m

y=) f(X.g(X).a))+ay, @
j=1

where y = {y,,»,....,¥,} is a n-vector of simulated data of the

physical process, m is the number of terms in the polynomial ex-
pression, f represents a polynomial function developed by the pro-
cess, X = {x,X,,...,x;} is the matrix of explanatory data (input
data) with k explanatory variables, g denotes an optional function
(e.g., exp, log, cos, sin) determined by the user, which extends the poly-
nomial search into a pseudo-polynomial search strategy, a; is an
adjustable parameter for the jth term and g, is an optional bias
parameter. It is mathematically convenient to transform Eq. (1) into
the following vector form (Giustolisi and Savic, 2006):

Yix1 0, 2) = Uy Zoyllag ay - a1 @

= Zxa X 9;5)(1’

where y,. ., represents the least-squares (LS) estimator vector of n target
values, 0,y = {ag.a,,...,a;} is a d (= m+ 1) vector of regression
parameters, [ ]7 denotes transpose, Z,,, is a matrix composed by a
unitary vector I, for an optional bias, a,, and m-vectors of explana-
tory variables Z/. As an example, the j-term of Eq. (2) can be written
as follows:

ESG) | (ESG2) | (ESG3)

Jo
z [x) 2 3

nxl —

X 0) ©)

where, Z/ is the jth column vector whose elements are products of
candidate-independent inputs and ES comprises a k X m user-defined
matrix of candidate exponents. The central question in the EPR prob-
lem is to optimize, by evolutionary computing, the matrix ES,,,, of
exponents for a certain number of terms (m) that will produce the poly-
nomial equation. By adopting linear least squares, it is then possible to
tune the vector of regression parameters 0 in Eq. (2).

Fig. 1 illustrates the EPR workflow. The classical approach consists
of two main steps: (i) model structure identification using simple
genetic algorithm (GA) and (ii) parameter estimation by the linear
least-squares (LS) method. Initially, the user must provide a matrix with
input data X = {x,,x,,...,%;}, i.e., explanatory data. Next, a matrix
of exponents (ES,,,,) is randomly assigned, from pre-specified power
values. After that, the EPR framework proceeds with repeated appli-
cation of three main steps. First, the exponents created are assigned
to the columns of input data, generating then a polynomial equation.
Second, the standard least squares method is used to estimate the vector
of regression parameters, 6,,, in Eq. (2). Then, the method provides
a model structure in the form of a polynomial equation, which can
be used to simulate the dependent variable, y. In the third step, the
vector of simulated data, y, is compared to the observed (calibration)
data using standard statistical metrics, such as the sum of squared
errors (Giustolisi and Savic, 2006). At this point, the first generation
of the proposed equations is thus created and tested. If the stopping
criterion is not satisfied, GA is used in the evolutionary process to create
a new matrix of exponent vectors.

In practice, the evolutionary process can be implemented using any
global search algorithm (Jin et al., 2019b). The classical method was
widely used in the literature not only because it was the first EPR
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Fig. 1. Overview of the EPR approach. The top (single run) panel represents the
flowchart of the classical EPR procedure. The filled green boxes indicate the devel-
opments of the EPR-MODEGA, while the final elements of the flowchart illustrate the
main steps involved in the sensitivity-driven model structure search strategy.

method available, but also notably because of its simple implementa-
tion. Examples are SOGA methods, which generally have the maximiza-
tion of the model’s accuracy as their objective function, but can produce
complex model structures, often increasing the chances of overfitting
and lack of generalization ability (e.g., Faramarzi et al., 2012; Shahin,
2016). Other methods have been proposed to improve the building
blocks of the classical approach shown in Fig. 1. A summary of the main
characteristics of the available EPR methods is presented in Table 1.
The fitness functions of multi-objective EPR methods are considerably
more sophisticated in pursuit of more parsimonious models, with fewer
polynomial terms and number of explanatory variables incorporated
into the model structure. In addition to handling multiple objectives,
some available methods can offer automatic model selection, such
as MODE (e.g., Jin and Yin, 2020), while other approaches require
inspection of the Pareto front to select the optimum model (e.g., Balf
et al., 2018). However, sensitivity analysis must be carried out inde-
pendently to confirm the robustness of the parametric response of each
model. In this work, we draw inspiration from the newly developed
MODEGA approach (Gomes et al., 2021a) to develop our gray-box
models. The main features of this last method, detailed below, will be
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Table 1

Engineering Applications of Artificial Intelligence 116 (2022) 105421

Main characteristics of available EPR methods: general fitness functions, central advantages and significant challenges.

Method Fitness function Advantages Challenges
SOGA Maximization of model accuracy Simple implementation Overfitting and lack of generalization
ability

MOGA Maximization of model accuracy, Handles multiple objectives Non-automated model selection
minimization of polynomial terms
and/or minimization of inputs

SODE Maximization of model accuracy with Adaptive process for selecting the Requires user inspection of ranked
complexity penalization combination of involved variables models

MODE Maximization of model accuracy, Handles multiple objectives with Generalization ability not guaranteed
minimization of polynomial terms automatic model selection
and maximization of model
robustness

MODEGA Maximization of model accuracy, Dual search optimization, Generalization ability not guaranteed

minimization of polynomial terms
and minimization of input
combinations

self-adaptive offspring creation and
automatic model selection

further enhanced to improve model selection using sensitivity analysis,
while quantifying modeling uncertainties, which have been overlooked
in the literature related to EPR (Jin and Yin, 2020).

2.2. MODEGA approach

EPR-MODEGA differs fundamentally in three elements from the
classical approach. First, a multi-objective optimization procedure is
implemented using both DE and GA to enhance the search efficiency. In
fact, its dual search-based method has shown to outperform individual
algorithms such as MOGA and MODE (Gomes et al., 2021a). Second,
the self-adaptive offspring creation was specifically designed to select
the most efficient search method for population evolution. This tech-
nique updates the new population based on the reproductive success
of both DE and GA in the previous generation. The proposition adap-
tively changes the contribution of each algorithm and ensures that the
“best” optimization method contributes the most offspring to the next
generation (Vrugt et al., 2009). Third, the compromise programming
method embedded in the EPR procedure facilitates the decision-making
stage, since it enables us to select models preferred statistically from
a set of Pareto optimal models with different polynomial terms. The
selection of an optimal number of terms is particularly important to
avoid overfitting as additional terms introduce unnecessary complexity,
hence producing models more sensitive to the noise of the training set
that do not generalize to other data sets (Giustolisi and Savic, 2006).
During the search procedure and population evolution, two objectives
are minimized: minimization of SSE and minimization of the number
of explanatory variables in the model structure. These improvements of
the EPR-MODEGA method are shown with filled green boxes in Fig. 1.

The EPR-MODEGA approach provides to the user one model struc-
ture with m-terms. In fact, in this model search strategy, the fittest
models (with different numbers of polynomial terms, m) are stored
and then further evaluated using a compromise programming tool.
Thus, model structure selection is conducted according to the modeler’s
viewpoints, who assigns the relative importance to five objectives:
minimization of the number of EPR terms (m) and root mean squared
error (RMSE), and maximization of the coefficient of determination
(R?), coefficient of correlation (r), and relative efficiency (E,). This
process is illustrated in the top panel of Fig. 2, which summarizes
schematically how these statistical metrics vary with m. The solid red
squares in each plot denote a hypothetical optimum number of terms
(m = 2) provided by a single EPR run with the MODEGA method.
Overall, the MODEGA approach can help EPR modelers incorporate
different objectives, in a relatively simple way, to select the optimum
EPR model. Consequently, by adopting such multi-criteria technique for
model selection, the approach selects the best-compromised EPR model
more efficiently. However, since a single EPR run (see Fig. 1) for a
specific value of m can provide different model structures, it has yet
to be established whether we can develop a broader, uncertainty-based
approach, for model structure selection within the EPR framework.

2.3. New multi-step sensitivity-driven model search

We propose a new EPR framework for model structure selection
consisting of two major blocks: (i) Monte Carlo simulations and (ii)
sensitivity-driven model selection, which benefits from the Monte Carlo
simulations to select one model with the best adjustment to the mean
parametric response. Our sensitivity-driven multi-objective differential
evolution and genetic algorithm (MODEGA-SD) is coded in MATLAB
and integrates the EPR-MODEGA method, Monte Carlo simulations
and sensitivity analysis so that the users do not need to port data
between the different modeling steps, thereby simplifying substantially
sensitivity analyzes and model selection. Furthermore, our code has
post-processing features to help visualization of the results, specially
the prediction uncertainty ranges of the output variables with respect
to each independent variable. The following subsections detail the
different steps involved in our methodology.

2.3.1. Monte Carlo simulations

Now that the number of polynomial terms, m, of our EPR framework
has been defined, we are left with the final model structure. Thus,
we resort to Monte Carlo simulations to quantify the uncertainty of
the sensitivity analysis. To execute our Monte Carlo method, users
must supply the number of Monte Carlo runs, w. We note here that
additional inputs, such as algorithmic EPR parameters for both DE and
GA, training and testing datasets, the number of polynomial terms,
m, and the set of exponents, which will compose the matrix ES,,,,,
are also required information. Table 2 provides a brief description
of the different inputs and outputs of our EPR framework. Details of
input/output information required for the MODEGA-SD framework will
be discussed in Section 3.

Through multiple EPR runs, Monte Carlo simulations provide us
to store much more information than single EPR runs. These include
a variety of statistical metrics on model performance and sensitiv-
ity analysis. Such useful information will be used to investigate the
predictive capability and generalization ability of w models with m
polynomial terms, and thus providing a basis for model selection using
the MODEGA-SD method. As schematically illustrated in Fig. 3, the
output information of Table 2 is stored in several matrices, including
automatic model parametric responses with respect to each explanatory
variable. Thus, with the sensitivity analysis concluded, in the next
subsection, we describe how such information can be used as a formal
component of the model structure selection.

2.3.2. Model selection

Sensitivity analysis is an important component of the EPR process,
since it can provide information on the underlying physics of the
derived model (Ahangar-Asr et al.,, 2011a, 2012; Alzabeebee, 2020;
Javadi et al., 2012; Rezania et al., 2010; Shahin, 2015). If we de-
note yﬁx“) as a vector that stores the parametric response of the ith-
model (i = {1,2,...,w}), with respect to the explanatory variable u
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Fig. 2. Summary of our sensitivity-based model selection. The top panel illustrates how the EPR-MODEGA method can be used to derive the optimum number of polynomial terms,
m, within a single EPR run. The bottom panel exemplifies the sensitivity analysis of multiple EPR runs with m-terms using Monte Carlo simulations. Red lines denote the mean
parametric response of w simulations, while black lines correspond to the parametric response of each model simulation. The green check indicates a model whose parametric

response is consistently close to the mean.

Table 2

Description of the input and output variables and algorithmic information of the MODEGA-SD approach, including their size (dimension) or

type (scalar or vector).

Inputs Type/ Outputs Type/
Size Size
Training and testing data Model performance
Dependent variable, y nx1 Simulated dependent variable, Y nXxuw
Explanatory variables, X nxk Root mean squared error (RMSE) ng X w
Algorithmic parameters Coefficient of determination, R? ny X w
Number of EPR terms, m scalar Coefficient of correlation, r ng X w
Number of Monte Carlo runs, w scalar Relative efficiency, E, ng X w
Set of EPR exponents vector Sum of squared errors (SSE) ny X w
Number of generations, n, scalar Algorithmic information
Population size scalar Number of offspring points, N, ng X w
Offspring diversity (DE) scalar Parametric study
Crossover rate (DE and GA) scalar Model parametric response, YX) n, X kX w
Mutation rate (GA) scalar Mean model response, ?X) ny, Xk

(u = {1,2,...,k}), then we can write the mean parametric response as
follows:

wo (X))
—(x) _ Z,’:l Y;
you) = ST
w

, 4

where y*@

model response for the explanatory variable x,. Since in our sensitivity

identifies the parametric vector that computes the mean

analysis the model is simulated at n,, points of the explanatory variable

(x,), the size of the array &

is n, X 1. This process, executed for all
k explanatory variables, characterizes the first step of our sensitivity-
driven model selection. We can next store the mean model parametric

response in a matrix, as follows:

—X
Y( )= [y(xl) y(xz) ;(Xk)] , (5)
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Fig. 3. Schematic overview describing the main steps of the Monte Carlo simulations
within the MODEGA-SD approach. By storing a variety of statistical metrics of each
model generated and automatically producing parametric responses for these models,
our new EPR provides an arsenal of data to be further explored in model selection.

where Y(X) corresponds to the n, X k-matrix that stores the mean model
parametric responses of all k explanatory variables, U, 32 and
i("") are the mean model parametric values of the first, second and
kth explanatory variable, respectively. When an explanatory variable
is propagated forward through different models, it is possible that
different responses can be produced. In fact, simulation 1 in Fig. 2
depicts that the variables x; and x, produce quite distant responses
(solid black lines) from the mean (solid red lines). Simulations 2 and
3 reveal that at least one parametric response of each model varies
significantly from the ensemble mean. However, one can see that
simulation w, for instance, returns excellent match with the mean
model parametric responses. This last model will thus provide a nice
generalization ability, since its responses are close to the mean of w
model structures derived using an optimum number of EPR terms.
Once the matrix o has been derived, all the model parametric
responses must be statistically investigated, so that they can be ranked
accordingly.

The next step is to rank the w models considering their fit to the
mean, ™. For this purpose, we therefore resort to two standard
statistical metrics, the R? and RMSE indicators, whose mathematical
formulations are expressed as follows:

—(x,) (xy)\2
Ri2 =1- u 6)
S T

RMSE, = %)

where R? and RMSE; correspond to the R? and RMSE-values of the
i"-model, respectively. Of course, other statistical metrics could be
considered to evaluate these model parametric responses. These values
are then conveniently stored into reference matrices (Egs. (8) and (9)),
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as follows:
[ Rmel) R?,(m
p® | . . . ®)
wxk 2:(X1) 2:(3‘[() '
_Rw Rw
RMSE™ RMSE™
(RMSE) . .
D = : : , )
wk (x1) (xk)
RMSE() RMSE{}
where Divlk is a matrix that stores the statistical performance of w
models. For example, R*™" and R:™" correspond to the R? values of

w
the first and w'™® modelsl, respectively, of the first parametric response,
that is, the sensitivity analysis of the model response with respect to
the variable x;.

The following procedure consists of sorting the matrices foxz ,i and
DS}%SE) in descending and ascending order, respectively. This ranking
method is convenient since it allows us to accommodate the best sta-
tistical performances at the first row of the matrix (Eqgs. (10) and (11)).
We note here that an ascending or descending ranking depends on the
statistical indicator being considered. For instance, if we consider the
kth explanatory variable, the maximum R>-value (Ri;gi“)), the closest to
one, would reflect a model parametric response very close to the mean
model response. Alternatively, low RMSE-values (RMSE;’E:")) would
then represent the best performances in terms of deviation from the
mean model parametric response. Again, it is important to stress that
one model can produce an excellent agreement with the mean model
parametric response for one explanatory variable, but the adjustment
to other variables can deviate considerably from the average (e.g., sim-
ulations 2 and 3 in the bottom panel of Fig. 2). These ranked statistical
performances are then multiplied by a wxk-matrix, which is filled with
values from 1 to w. The resulting award matrices A(Lf:]z and A
will translate into numbers the sensitivity analysis of the Monte Carlo
simulations that are closest to the mean model parametric response. In
fact, the smallest values of both matrices will appear in the first row. In
our sensitivity-driven model selection, these “best” simulations stored
in the matrix Afw)( . can be schematically observed in the bottom panel
of Fig. 2 (simulation w). To facilitate our next step, at this stage, a sort
index is stored to link elements of be; . with those of the sorted award
matrix A(wi -

wxk RZ-%Xl) st’ﬁ"k) 1 w ’
L min min
RMSE"! RMSE®Y | 1w

A= : P an
RMSEC) . RMSESK| |1 - w

The optimum model structure in our approach will be the one with
better model performance involving all k£ explanatory variables. If we
create an array with values computed by the award matrix Af”lk for
each model of the Monte Carlo simulation, we can thus compare each
model performance with a single scalar. This relatively simple but

efficient idea is represented mathematically by Egs. (12) and (13):

2 2
A(]R X1) o +A(1R Xk
(R?) . 12
wx1 ) : 5 g 12)
AP 4 A
A(IRMSE,XI) 4o +A(1RMSE,xk)
RMSE .
Soxt = : , a3)
A(M]}MSE,xl) R A(ulv(MSE,xk)
2
where sffxl) and sgiv]lSE) depict the scoring arrays that compute the

sum of elements of Afw)(k for each model considering the R? and

1)

2
RMSE metrics, respectively. A(IR is, for example, the award value
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attributed to the first Monte Carlo model for its position in the matrix
A(M;k when R? is used to compare the model response with respect to
the variable x,. One should note that the sum of elements of Afw)(k for
each model (for model 1, { A(1R2,x|> T+t AﬁRz’xk)}) will lead to a scalar
that will summarize the fit of each model to the mean model parametric
response. Eq. (14) generalizes the procedure above described:

Z ALY
1
S(w>)<l = : ’ as
.X)
ZAMY
where sfw)d is the scoring vector for a generic () statistical indicator,

> A(1 %) sums the awards for the first model considering all explanatory
variables, and the same stands for the w' model, Y AfL,’X ). To conclude
this step, both statistical indicators are combined by simply adding the
scoring vectors, as demonstrated by Eq. (15):
S(Mfzj;rRMSE) - SLszl) " ngsa ) (15)
The last step relies on the model structure selection, which can
be done by sorting the elements of sfn)( , in ascending order. The first
index that connects the elements of Y’ A¢ %) into sfw)d along the sorted
dimension will be the index of the i"-optimum model. This process
can also be performed using the index of the minimum value of Sic>)<1
(s$i+RMSE)). Finally, the selected (i"-)model is the used to simulate
the output variable, y, which will be further confronted with observed
data. Algorithm 1 provides a step-by-step procedure on how to store all
the required information for model structure selection using sensitivity
analysis within the MODEGA-SD method.

Algorithm 1 Sensitivity-driven model structure selection.

Require: input data of Table 2
1: for i < 1 to w do

2:  Compute y* using Eq. (4)

3: Evaluate statistically sensitivity analysis using Egs. (6) and (7)
4: Store R? and RMSE values using Egs. (8) and (9)
5: Compute the award matrices using Egs. (10) and (11)
6: Evaluate the models’ performances using Egs. (12) and (13)
7: Merge the models’ performances using Eq. (15)
8: i < index of 5(62+RMSE)
min
9: return i > i is the index of the optimum EPR model

3. Methodology

The MATLAB framework with its different elements and settings
related to the sensitivity-driven model selection was used to develop
new EPR models of two complex engineering problems. We below
detail the dataset and the input information adopted within our EPR
framework. Additionally, we also discuss how the predictive capability
of the models was investigated and our treatment of uncertainty in the
sensitivity analysis.

3.1. Database

Two case studies are used to test our method: the modeling of
optimum moisture content and the modeling of creep index of clays.
The modeling of optimum moisture content is based on measurements
provided by Ahangar-Asr et al. (2011a), consisting of 57 discrete val-
ues. The data predict optimum moisture content (OMC, %), by using
values of fineness modulus (F,), coefficient of uniformity (U) and
plastic limit (PL, %). The modeling of creep index is established on
the data presented by Jin et al. (2019b), comprising a database of
147 measurements. The data predict the creep index (C,) of soils,
by computing the clay content (CI, %), liquid limit (LL, %), plastic
index (Ip, %), and void ratio (e). The strength and direction of a
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linear relationship between each observed input and the target output
were quantified using the coefficient of correlation (r). The databases
used in this paper are presented as supplementary material (Table S1).
All models (developed and cited) were trained and tested using the
database mentioned above. This enables a direct comparison between
the mathematical structures proposed in this work and those of the two
case studies. A complete description of the databases used here is given
in the cited publications, and interested readers are referred to these
works for further details.

3.2. MODEGA-SD method input information

Table 2 lists the input information required to execute our frame-
work. These include training and testing data of the dependent, y and
k-explanatory variables, X, deemed important to explain the underly-
ing physical process. As previously detailed, the optimum number of
polynomial terms is automatically defined with a single EPR run of
the EPR-MODEGA method. Users also have to provide the number of
Monte Carlo runs, w, and several algorithmic parameters. In this work,
100 Monte Carlo simulations were considered for each case study. We
follow previous work (Berardi et al., 2008; Creaco et al., 2016) and uti-
lize a vector of exponents with a step of 0.1 (ES = [-2,-1.9,...,1.9,2]).
This step size provides a good compromise between the CPU costs of
our EPR method and the corresponding accuracy of the optimal model
structure. In fact, if a smaller step size is adopted, a higher number of
generations (n,) or population may be necessary to adequately explore
the complete model search space. Conversely, the larger the exponent
step, the lower the accuracy of the model (Marasco et al., 2021). Here,
a default population size of 20m was used for 300 generations. The
remaining input parameters of both DE and GA optimization algorithms
were identical to those reported by Gomes et al. (2021a).

3.3. Predictive capability and robustness

Monte Carlo simulations provided by the MODEGA-SD code allow
us to store a series of statistical metrics that can be used to investigate
the performance of the models and robustness of our methodology.
When the EPR process stops, after the desired number of generations
is reached, the simulated outputs, Y, of w-EPR runs are stored in a
n X w-matrix. At each generation, the values of different statistical
metrics such as RMSE, R?, r, and E, are stored in ng X w matrices
for both training and testing data sets (see outputs of Table 2). Despite
our efforts to address the performance of the models using common
statistical metrics adopted in the EPR framework (e.g., Ahangar-Asr
et al., 2011a; Shahin, 2015; Alzabeebee, 2020; Gomes et al., 2021a)
some other metrics can be equally useful. To assess the predictive
ability and robustness of our procedure, these statistical metrics were
evaluated over generations using box plots. The evolution of the mean
and corresponding 95% uncertainty ranges of SSE and the number
of offspring points, N, were also investigated from one generation to
another. N, is a routine of the MODEGA approach that indicates which
optimization algorithm, GA or DE, exhibits the greatest