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ABSTRACT OF THE DISSERTATION

Multi-scale Interaction of Drift Wave Turbulence with Large Scale

Shear Flows

by

Christopher J. McDevitt

Doctor of Philosophy in Physics

University of California, San Diego, 2008

Professor Patrick H. Diamond, Chair

Multi-scale methods are utilized within the context of strongly magnetized plasmas to

describe the interaction of drift wave turbulence with large scale flow structures. The spe-

cific contexts treated correspond to transport barrier formation, magnetic island evolution

in the presence of drift wave turbulence, and plasma rotation. Emphasis is placed on iden-

tifying critical feedback mechanisms via the study of simple, reduced models, rather than

the detailed description of isolated components of the system.

In Chapter 2 a two component self-consistent model is derived to investigate a novel

mechanism of transport barrier formation. It is found that intense cellular flow, driven by

modulational instability of the background turbulence provides a viable candidate mech-

xv



anism for triggering transport barrier formation in regimes of weak magnetic shear. Sim-

ilarly, the nonlinear modification of the drift wave phase space topology by the cellular

flow is investigated. The presence of a weak non-integrable perturbation in the effective

Hamiltonian of the drift wave turbulence, induced by the non-axisymmetric component of

the cellular flow, is found to circumvent nonlinear wave trapping as a means of quenching

the secondary instability drive of the large scale flow.

In Chapter 3, the interaction of a tearing mode with drift wave turbulence is discussed.

Wave kinetics and adiabatic theory are utilized to treat the feedback of tearing mode flows

on the drift wave turbulence. The stresses exerted by the self-consistently evolved drift

wave population density on the tearing mode are calculated by mean field methods. The

principal effect of the drift waves is to pump the resonant low-m mode via a negative

viscosity, consistent with the classical notion of an inverse cascade in quasi 2-D turbulence.

In Chapter 4, the multi-scale methods utilized above are extended to describe the trans-

port of parallel momentum. The primarily fluid description employed above is extended

to include momentum exchange between waves and resonant particles. A quasi-linear mo-

mentum conservation theorem is proven, demonstrating that the total momentum flux can

be decomposed into wave and resonant particle fluxes. Quasi-linear expressions for the

radial transport of parallel momentum induced both by waves and resonant particles are

derived, providing a comprehensive quasi-linear description of parallel momentum trans-

port induced by electrostatic drift wave turbulence.

xvi



Chapter 1

General Introduction

Magnetic fusion corresponds to a potentially abundant and environmentally benign

source of energy free from many of the constraints that limit the practical usefulness and

sustainability of existing technologies. While magnetic fusion presents an attractive energy

alternative, strong technological and scientific hurdles must be overcome before this tech-

nology can be transformed into an economically viable energy option. More specifically,

the success of the magnetic fusion program depends on the ability to produce a deuterium-

tritium plasma which satisfies the Lawson criterion, given by niτE & 2× 1020m−3s, where

ni represents the ion density and τE the confinement time. As is clear from the above re-

lation, plasma confinement, and thus an understanding of plasma transport processes are

crucial to this endeavor.

Before proceeding further, it is useful to briefly describe some general characteristics

of magnetic fusion devices. In particular, an appropriate choice of geometry can strongly

limit the avenues for plasma losses, thus facilitating overall plasma confinement. To this

end, toroidal vacuum vessels are utilized such that periodic boundary conditions in both

the poloidal and toroidal directions are present, leaving only radial fluxes as a means of

inducing plasma losses. Furthermore, since the guiding center motion of a charged particle

is to lowest order along magnetic field lines, nested magnetic flux surfaces are externally

1
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imposed. In this manner, the rapid loss of particles via motion along magnetic field lines is

avoided. Thus, potential plasma loss mechanisms can be separated into two categories:

a.) cross-field transport induced either by collisional or turbulent processes,

b.) spontaneous changes of the magnetic field configuration.

With regard to (a), while collisional processes may in certain cases be significant, and

can be understood to set the minimum attainable level of cross-field transport, turbulent

processes are typically dominant. Specifically, ubiquitous plasma instabilities, so-called

universal modes [1], driven by the strong temperature and density gradients between the

dense, hot plasma core and the surrounding vacuum vessel, have been observed to strongly

limit the performance of fusion devices. While seminal studies have uncovered regimes

of operation which significantly mitigate the detrimental effects of these modes [2], further

research into the underlying physics of these regimes is necessary in order to improve upon,

and extrapolate these results to the next generation of fusion devices.

Coincident with the practical necessity of understanding the level of cross-field trans-

port induced by universal modes, is the interesting scientific challenge posed by providing

a detailed description of their nonlinear evolution. That this problem is interesting, and

distinct from classic studies of 3-D neutral fluid turbulence [3, 4], can be most clearly illus-

trated by briefly reviewing two essential characteristics to the self-consistent description of

modes endemic to strongly magnetized plasmas. First, unlike classic studies of 3-D neu-

tral fluid turbulence, where one hypothesizes the presence of a given forcing function, and

seeks to compute the spectral evolution and subsequent statistical steady state, universal

modes, or so-called drift waves, are driven by the temperature and density profiles present

within the plasma. These in turn must be self-consistently calculated based on the level

of cross-field transport present within the system, which is largely set by the intensity of

the drift wave turbulence. The presence of this nonlinear feedback mechanism, allows bi-

furcations to occur in the saturated spectrum of the underlying turbulence and the mean
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field profiles of the system. Indeed, the significant improvement in confinement alluded to

above corresponds to a well known example of such a bifurcation.

Second, aside from the dynamics of the turbulence drive, obtaining a detailed under-

standing of the nonlinear saturated state of the turbulent fluctuations has proven to be a non-

trivial and fertile area of ongoing research. Of critical importance to this line of research

has been the study of self-organization within the context of strongly magnetized plasmas.

Recently, seminal studies performed by multiple authors, and reviewed in Ref. [5], have

demonstrated that the same insidious modes responsible for limiting reactor performance,

are capable of inducing the formation of intense axisymmetric shear flows. These sponta-

neously generated flows, so called zonal flows, are generated by modulational instability

of the background turbulence and have the attractive feature of suppressing turbulent ed-

dies via shear decorrelation [6] without themselves driving any net radial transport. Hence,

zonal flows provide an effective means of triggering bifurcations into regimes of low trans-

port. Thus, introducing the possibility of a self-regulating system whereby energy extracted

from the pressure profile by the background turbulence is ultimately transferred to (benign)

large scale flows.

More generally, the phenomenon of self-organization, or more specifically turbulent

structure formation, has been observed in a disparate array of systems ranging from dy-

namo action [7] to Rayleigh-Benard convection [8]. Of particular relevance to strongly

magnetized plasmas, whose variations parallel to the magnetic field are typically weak in

comparison to cross field variations, is the case of two-dimensional, or so called “quasi”

two-dimensional turbulent systems [9]. Indeed, drift wave turbulence corresponds to one

example from a fairly broad set of problems collectively referred to as (quasi) 2-D turbu-

lence. This family of problems is distinguished from more general turbulence phenomena

due to their unique statistical properties. Central to this distinction is the addition of one

or more added constraints to the equations of motion, most notably enstrophy conserva-
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tion [10] (integrated square of vorticity). Other examples from this family of problems

include Rossby waves, (incompressible) 2-D hydrodynamics, and 2-D magnetohydrody-

namics (MHD). These four examples, while instructive to consider together, contain sig-

nificant differences. The last of the four mentioned (2-D MHD), while often grouped with

the former three, can be immediately seen to be fundamentally distinct. This follows since

the presence of J × B forcing removes the added constraint of enstrophy conservation.

2-D hydrodynamic turbulence, on the other hand, while conserving enstrophy along with

the other two remaining examples, is incapable of supporting waves, and thus can only be

described by so called “eddy” turbulence or strong turbulence theory. This is in contrast

to Rossby waves and drift waves which may, to varying degrees, be described via “wave”

turbulence or weak turbulence theory.

In spite of these differences, remarkable similarities in their descriptions remain. Namely,

the first three examples (exempting MHD) all demonstrate a condensation of energy on the

largest scale present within the system. The presence of energy condensation at the largest

available scale necessitates the use of multi-scale techniques in order to self-consistently

model the evolution of the condensate flow and the underlying turbulence. Adiabatic the-

ory provides a tractable means of exploiting the space and time separations between these

two components, thus providing a mathematically tractable self-consistent description. Re-

markably, for each of the examples cited above, exempting MHD, potential enstrophy den-

sity is found to be adiabatically conserved under slow modulations by the condensate flow

[11, 12, 13]. Furthermore, the non-local transfer of energy to the condensate flow can be

recovered from modulation instability of the underlying turbulence, which can be shown

to follow straightforwardly from the form of the adiabatic invariant (see text below). Thus,

in spite of the striking physical differences between these three systems (eddy versus wave

turbulence, nonlinearities due to: polarization drift, Coriolis force, and vorticity advection),

they share critical elements of their dynamics.
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Turning now to item (b), while operating regimes which avoid explosive ideal MHD

instabilities have been found, and are widely implemented in modern magnetic confine-

ment devices, slower resistive MHD instabilities continue to hinder reactor performance.

In particular, magnetic islands created by the spontaneous reconnection of magnetic field

lines [14, 15], have been observed to provide a (soft) upper beta limit (ratio of plasma pres-

sure to magnetic field pressure) attainable in numerous tokamak experiments. Hence, a

detailed description of the formation and evolution of magnetic islands is essential for the

improvement of reactor performance.

Historically, obtaining a comprehensive description of magnetic island evolution has

been obstructed by the tacit assumption that processes (a) and (b) can be effectively de-

coupled from one another. This assumption is typically justified by invoking the tempo-

ral scale separation between the rapidly fluctuating turbulence, and the slow changes in

magnetic field topology induced by magnetic reconnection. Following this reasoning, drift

wave turbulence is often "modelled" via the introduction of turbulently enhanced collsional

transport coefficients. These transport coefficients in turn play a critical role in determining

the stability of the magnetic island [16]. That this turbulence "model" is unsatisfactory, can

be most clearly seen by considering that:

i.) the turbulent drive, and thus intensity of the drift wave turbulence, is strongly af-

fected as the magnetic topology is changed, thus leading to the presence of dynamic

transport coefficients,

ii.) large scale flow structures, nonlinearly driven by the background turbulence, can

strongly affect the reconnection process.

Both of these processes can be easily seen to be extensions of the two processes discussed

above: Item (i) corresponds to feedback on the growth rate of the drift wave turbulence

via profile modification, with the added degree of freedom of a self-consistently evolving
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magnetic island. Item (ii) is a generalization of turbulent structure formation, but with the

addition of a temporally evolving, non-trivial magnetic field topology. Thus, the problem of

magnetic island evolution, traditionally confined within the MHD community, can be seen

to be in many ways an extension of classic problems in transport physics. Similarly, due to

the scale separation that exists between the magnetic island and the drift wave turbulence,

adiabatic theory provides a useful tool in simplifying its description. Thus, an analogous

theoretical description may be employed in describing magnetic island evolution, albeit

with the addition of non-trivial feedback mechanisms absent from the classic turbulent

transport problem discussed above.

In this thesis, multi-scale techniques are implemented in the specific contexts of trans-

port barrier formation, magnetic island evolution and plasma rotation. In Chapter 2, a sim-

ple model is introduced to investigate a novel mechanism of transport barrier formation.

Emphasis is placed on the impact of turbulent structure formation in triggering the tran-

sition to improved confinement regimes, as well as identifying critical nonlinear feedback

mechanisms, which are investigated via simple reduced models. These include the impact

of secondary structure formation on the phase space topology of the drift wave turbulence,

and a simple model describing the self-consistent evolution of mean profiles, E×B driven

flows, Reynolds stress driven flows, and turbulence intensity.

In Chapter 3, a minimal self-consistent model is introduced in order to explore the evo-

lution of a thin magnetic island in a background of drift wave turbulence. Various nonlinear

feedback loops are identified, however emphasis is placed on a secondary instability aris-

ing due to modulational instability of the ambient turbulence. A simple closure scheme is

implemented, where the non-local transfer of energy from the drift wave turbulence to the

large scale flows is manifested by a negative viscosity. Modifications to the dynamics of

the thin magnetic island by the drift wave turbulence are subsequently investigated.

Chapter 4 contains a derivation of parallel momentum transport in a strongly magne-
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tized plasma. While methods analogous to those implemented in Chapters 2 and 3 are

utilized, extensions to include kinetic effects are implemented. A momentum conserva-

tion theorem is proven demonstrating momentum conservation between waves and reso-

nant particles, and expressions describing the structure of momentum transport induced by

these components are derived.

1.1 Derivation of Multi-scale Model

A minimal description of the multi-scale problem described above requires two com-

ponents:

a.) a dynamic model for the small scale drift wave turbulence evolving in the presence

of the large scale mean fields,

b.) a model for the evolution of the mean fields, accounting for stresses induced by the

small scale turbulence.

Gyrokinetics provides a useful framework to begin our description, since both the small

scale dynamics of the drift wave turbulence, as well as the large scale mean field dynamics

can be obtained as different limiting forms of the generalized gyrokinetic equation. Before

proceeding further, we note that our emphasis here is not on the technical elements of the

mathematically cumbersome field of modern gyrokinetics (the interested reader is referred

to Ref. [17] for a review), but instead on clearly outlining the physics contained within the

model equations which will be utilized below. Furthermore, we note that detailed studies

of the linear properties of drift wave turbulence in various regimes have been extensively

studied (see Ref. [1] for a review). Our objective here is to consider an absolutely minimal

model for the linear dynamics of both the small scale and large scale modes, and to instead

focus on their self-consistent nonlinear evolution.
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The gyrokinetic equation in slab geometry can be written as [18]

0 =
∂f tots

∂t
+

{
U b̂ +

c

B
b̂×∇J0 (λ)

(
φ− U

c
A‖

)}
· ∇f tots

− qs
ms

J0 (λ)

(
b̂ · ∇φ+

1

c

∂A‖

∂t

)
∂f tots

∂U
, (1.1)

where f tots represents the total gyrocenter distribution function for a given particle species

s, λ ≡ k⊥ρ⊥, φ and A‖ represent the scalar potential and the parallel component of the

vector potential respectively, and we have neglected magnetic perturbations parallel to the

magnetic field for simplicity. Eq. (1.1) can be seen to describe the evolution of the gy-

rocenter distribution function in the five dimensional phase space given by (x, µ, U) (note

that the magnetic moment µ ≡ msv
2
⊥/2ωcs is an adiabatic invariant such that µ̇ ≈ 0, and

hence the dimensionality of the system is effectively further reduced). This description

is convenient as it both reduces the dimensionality in comparison to the six dimensional

Vlasov equation, as well as integrates out the rapid gyro motions of the charged particles

about the magnetic field. The latter simplification is particularly convenient as both the

drift wave turbulence as well as the secondary structures which we will be interested in

describing evolve on scales slow in comparison to the gyro motion of the particles.

Separating the gyrocenter distribution function into f tots = F0s + fs, where F0s repre-

sents a Maxwellian distribution, Eq. (1.1) can be written as

∂fs
∂t

+

{
U b̂ +

c

B
b̂×∇J0 (λ)

(
φ− U

c
A‖

)}
· ∇fs −

qs
ms

J0 (λ)

(
b̂ · ∇φ+

1

c

∂A‖

∂t

)
∂fs
∂U

= − c

B
b̂×∇J0 (λ)

(
φ− U

c
A‖

)
· ∇F0s +

qs
ms

J0 (λ)

(
b̂ · ∇φ+

1

c

∂A‖

∂t

)
∂F0s

∂U
.

(1.2)

Here it is useful to separate the fields fs, φ, and A‖ into a slowly fluctuating component

and a small scale rapidly fluctuating piece, such that ψ = 〈ψ〉 + δψ. Introducing this
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scale separation, equations for the large scale mean field component, and the small scale

fluctuating component can be easily derived as:

(
∂

∂t
+ U b̂ · ∇

)
〈fs〉 = − c

B
b̂×∇J0 (λ)

(
〈φ〉 − U

c

〈
A‖
〉)
· ∇F0s

+
qs
ms

J0 (λ)

(
b̂ · ∇ 〈φ〉+

1

c

∂
〈
A‖
〉

∂t

)
∂F0s

∂U

− c

B

〈
b̂×∇J0 (λ)

(
δφ− U

c
δA‖

)
· ∇δfs

〉
+

qs
ms

〈
J0 (λ)

(
b̂ · ∇δφ+

1

c

∂δA‖

∂t

)
∂δfs
∂U

〉
. (1.3)

and (
∂

∂t
+ U b̂ · ∇

)
δfs = S1 + S2 + S3, (1.4)

where

S1 ≡ −
c

B
b̂×∇J0

(
δφ− U

c
δA‖

)
· ∇F0s +

qs
ms

J0

(
b̂ · ∇δφ+

1

c

∂δA‖

∂t

)
∂F0s

∂U
,

S2 ≡ − c

B
b̂×∇J0

(
δφ− U

c
δA‖

)
· ∇ 〈fs〉 −

c

B
b̂×∇J0

(
〈φ〉 − U

c

〈
A‖
〉)
· ∇δfs

+
qs
ms

J0

(
b̂ · ∇δφ+

1

c

∂δA‖

∂t

)
∂ 〈fs〉
∂U

+
qs
ms

J0

(
b̂ · ∇ 〈φ〉+

1

c

∂
〈
A‖
〉

∂t

)
∂δfs
∂U

,

S3 ≡ − c

B
b̂×∇J0

(
δφ− U

c
δA‖

)
· ∇δfs +

c

B

〈
b̂×∇J0

(
δφ− U

c
δA‖

)
· ∇δfs

〉
+

qs
ms

J0

(
b̂ · ∇δφ+

1

c

∂δA‖

∂t

)
∂δfs
∂U

− qs
ms

〈
J0

(
b̂ · ∇δφ+

1

c

∂δA‖

∂t

)
∂δfs
∂U

〉
.

Since we are primarily interested in the excitation of secondary structures, the mean field

nonlinearities in Eq. (1.3) have been neglected in favor of non-local interactions with the
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small scale fluctuations. Considering the fluctuation equation [Eq. (1.4)], the terms on the

rhs can be grouped into three categories. The first, defined by S1, represent purely linear

phenomena induced either by inhomogeneities in the equilibrium distribution function (first

term in S1), or momentum and energy exchange between waves and resonant particles

(second term in S1). The second category of terms, denoted by S2, corresponds to nonlocal

interactions with the large scale mean fields. This interaction, as discussed below, can

both allow for the exchange of energy between the small scale drift waves and the large

scale mean fields, as well as modify the linear characteristics of the small scale modes such

as the introduction of a nonlinear correction to the diamagnetic drift through mean field

density or pressure fluctuations. Finally, the last set of terms, contained in S3, correspond

to local nonlinear interactions among the drift wave modes. These terms allow for energy

and momentum to be exchanged among the small scale modes.

1.1.1 Drift Wave Evolution

Eqs. (1.3) and (1.4) can be simplified significantly. First, considering the equation

for small scale fluctuations [Eq. (1.4)], and taking the low β limit, allows for magnetic

fluctuations to be neglected. Thus, the zeroth order velocity moment of Eq. (1.4) can be

rewritten as

∂δNi

∂t
+ cs∇ ·

(
b̂δV‖i

)
= vthiρi

(
b̂×∇ lnn0

)
· ∇
(

1− 1

2
ηib

)
e−

1
2
b eδφ

Ti

− c

B

[
b̂×∇

(
1 +

1

2
b

)
e−

1
2
bδφ

]
· ∇ 〈Ni〉

− c

B

[
b̂×∇

(
1 +

1

2
b

)
e−

1
2
b 〈φ〉

]
· ∇δNi

+
1

2

c

B

(
b̂×∇be−

1
2
bδφ
)
· ∇ 〈P⊥i〉

+
1

2

c

B

(
b̂×∇be−

1
2
b 〈φ〉

)
· ∇δP⊥i +

∫
d3v̄S3, (1.5)
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where
∫
d3v̄ ≡ 2π

∫
dµdU (ωci/mi), b ≡ k2

⊥ρ
2
⊥ and we have introduced the normaliza-

tions: (
Ni, V‖i, P⊥i

)
→
(
Ni

n0

,
V‖i
cs
,
P⊥i
p0⊥i

)
.

A subtle, but critical characteristic of the gyrokinetic description is that the distribution

function describes the distribution of gyrocenters and not the instantaneous particle posi-

tion within the five dimensional phase space given by (x, µ, U). Since the fast gyrocenter

motion of the particles is integrated out, rather than describing the evolution of point parti-

cles in a six dimensional phase space, one is instead describing the evolution of “rings” in

a five dimensional phase space. Thus, the moments of the gyrocenter distribution function

(i.e. density, velocity, etc), should be understood to be distinct from the physical moments

of particle distributions. Fortunately, the physical particle moments and gyrocenter mo-

ments may be related via a set of pull back transformations. Keeping lowest order finite

Larmor radius corrections, the relation between gyrocenter moments and particle moments

can be written as [18]:

Ni = ni +
1

2
b

(
p⊥i + 2

e

Ti
φ

)
, (1.6)

V‖i =

(
1 +

1

2
b

)
v‖i, (1.7)

P⊥i = p⊥i + b

(
2p⊥i − ni + 2

eφ

Ti

)
. (1.8)

Substituting the pull back transformations given by Eqs. (1.6-1.8) into Eq. (1.5), yields:

d

dt

(
1− ρ2

s∇2
⊥
) eδφ
Ti

= τvthiρi

(
b̂×∇ lnn0

)
· ∇
(

1 +
1

2
ηiρ

2
i∇2

⊥

)(
1 +

1

2
ρ2
i∇2

⊥

)
eδφ

Ti

+
1

2

∂

∂t
ρ2
s∇2

⊥δp⊥i +
1

2

c

B
ρ2
s

(
b̂×∇〈φ〉

)
· ∇∇2

⊥δp⊥i

− 1

2

c

B
ρ2
s

(
b̂×∇∇2

⊥δφ
)
· ∇ 〈p⊥i〉 − τ

c

B

(
b̂×∇δφ

)
· ∇ 〈ni〉

+ τ

∫
d3v̄S3, (1.9)
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where d/dt ≡ ∂/∂t + (c/B)
(
b̂×∇〈φ〉

)
· ∇, we assume adiabatic electrons, i.e. δni =

δne = eδφ/Te, and for simplicity we have neglected variations parallel to the magnetic

field, as well as finite Larmor radius corrections to the mean fields. Eq. (1.9) can be further

simplified by considering the pressure equation for the small scale modes. Operating on Eq.

(1.4) with the operator
∫
d3v̄µ (ωci/p0⊥i), the Laplacian of the perpendicular ion pressure

can be shown to evolve according to

∂

∂t
∇2

⊥δp⊥i = ω∗d (1 + ηi)∇2
⊥
eδφ

Ti
+
c

B

(
b̂×∇∇2

⊥δφ
)
· ∇ 〈p⊥i〉

− c

B

(
b̂×∇〈φ〉

)
· ∇∇2

⊥δp⊥i − 2
c

B
∇ ·
[(

b̂×∇∇〈φ〉
)
· ∇δp⊥i

]
− 2

c

B
∇ ·
[(

b̂×∇∇δφ
)
· ∇ 〈p⊥i〉

]
+

∫
d3v̄

µωci
p0⊥i

∇2
⊥S3, (1.10)

where we have again dropped finite Larmor radius corrections to the mean fields. Substi-

tuting Eq. (1.10) into Eq. (1.9) yields:

d

dt

(
1− ρ2

s∇2
⊥
) eδφ
Ti

= csρs

(
b̂×∇ lnn0

)
· ∇eδφ

Ti

+ τ−1csρ
3
s

[(
b̂×∇ lnn0 (1 + ηi)

)]
· ∇∇2

⊥
eδφ

Ti

− τ
c

B

(
b̂×∇δφ

)
· ∇ 〈ni〉 −

c

B
ρ2
s∇ ·

[(
b̂×∇∇〈φ〉

)
· ∇δp⊥i

]
− c

B
ρ2
s∇ ·

[(
b̂×∇∇δφ

)
· ∇ 〈p⊥i〉

]
+ τ

∫
d3v̄S3 +

1

2
ρ2
s

∫
d3v̄

µωci
p0⊥i

∇2
⊥S3. (1.11)

Equation (1.11) may be further simplified by noting

∇ ·
[(

b̂×∇∇〈φ〉
)
· ∇δp⊥i

]
+∇ ·

[(
b̂×∇∇δφ

)
· ∇ 〈p⊥i〉

]
≈
(
b̂×∇∇2

⊥δφ
)
· ∇ 〈p⊥i〉 = −

(
b̂×∇〈p⊥i〉

)
· ∇∇2

⊥δφ,



13

where we have used ∇ ln δψ > ∇ ln 〈ψ〉. Thus, Eq. (1.11) can be written in the simplified

form:

d

dt

(
1− ρ2

s∇2
⊥
) eδφ
Ti

= csρs

[
b̂×∇ (lnn0 + 〈ni〉)

]
· ∇eδφ

Ti

+ τ−1csρ
3
s

[
b̂×∇ (ln p0⊥i + 〈p⊥i〉)

]
· ∇∇2

⊥
eδφ

Ti
+ Ξnl, (1.12)

where Ξnl ≡ τ
∫
d3v̄S3 + (1/2) ρ2

s∇2
⊥
∫
d3v̄µ (ωci/p0⊥i)S3 and we note that both 〈ni〉 and

〈p⊥i〉 are both normalized quantities. From the form of Eq. (1.12) it’s clear that aside

from the convection of potential vorticity, here given by S ≡ (1− ρ2
s∇2

⊥) eδφ/Te, mean

field fluctuations in density and pressure introduce perturbations to the diamagnetic drift

velocity. As an aside, it is useful to note that while the potential vorticity for drift waves

is usually defined as (1− ρ2
s∇2

⊥) eδφ/Te + lnn0, here however it is convenient to use the

above definition, since as is shown below, only the nonlinear terms contribute to the form

of the adiabatic invariant.

Turning now to local nonlinear interactions, Ξnl can be written as

Ξnl ≡ ρ2
s

c

B
∇ ·
{[

b̂×∇
(
eδφ

Ti
+ δp⊥i

)]
· ∇⊥∇⊥δφ

}
− ρ2

s

c

B
∇ ·
〈[

b̂×∇
(
eδφ

Ti
+ δp⊥i

)]
· ∇⊥∇⊥δφ

〉
. (1.13)

From Eq. (1.13), it’s clear that the local nonlinearity corresponds to the linear combination

of E×B convection, plus a diamagnetic drift induced by the pressure fluctuations. As our

principle focus is on nonlocal interactions with the large scale mean fields, we neglect the

nonlinear diamagnetic term in order to reduce the description of the system of the small

scales to a single field. Thus, we approximate local interactions via

Ξnl ≡ ρ2
s

c

B
∇ ·
{(

b̂×∇eδφ
Ti

)
· ∇⊥∇⊥δφ

}
− ρ2

s

c

B
∇ ·
〈(

b̂×∇eδφ
Ti

)
· ∇⊥∇⊥δφ

〉
.

(1.14)
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Here it is convenient to compare the form of Eq. (1.12) with existing models of drift

wave turbulence commonly studied. First, since we are considering electrostatic turbu-

lence, and have neglected variations along the magnetic field, Eq. (1.12) has a structure

similar to, but not isomorphic to, classic reduced two-dimensional fluid models such as the

Hasegawa-Mima equation [19]. In particular, aside from the addition of a convective non-

linearity of the scalar potential (already noted in Ref. [13]), nonlinear diamagnetic terms

due to fluctuations in the large scale density and pressure are also apparent. The latter of

these effects is the non-local counterpart of the local pressure nonlinearity well known to

exist in reduced models of ion pressure gradient turbulence [20]. The former is typically

dropped, due to the local counterpart being proportional to δni = δne ≈ eδφ/Te, such that

aside from non-adiabatic corrections, it goes to zero identically. Also, since in the expan-

sion performed above, instead of taking τ = Te/Ti →∞, as is usually done in deriving the

Hasegawa-Mima equation, we truncate the moment hierarchy after lowest non-trivial order

in b ≡ k2
⊥ρ

2
i . Thus, we also have a correction to the linear dynamics due to the diamagnetic

term arising from the equilibrium ion pressure. Finally, while the local nonlinearity [Ξnl,

given by Eq. (1.14)] is the same as that usually studied in the Hasegawa-Mima equation

(namely the polarization nonlinearity), this nonlinearity appears as the difference between

the unaveraged and averaged contributions. One can formally understand the origin of the

averaged term in Eq. (1.14) by considering that in the two scale analysis employed above,

we have written a given field as the sum of its mean and rapidly fluctuating components,

i.e. ψ = 〈ψ〉+ δψ, where the average in slab geometry may be defined as

〈· · · 〉 ≡
∫ x+X

x

dx

X

∫ y+Y

y

dy

Y

∫ t+T

t

dt

T
(· · · ) .

Here (X, T ) correspond to the spatial and temporal ranges averaged over, and can thus

be understood to set the fastest scale on which the mean fields may vary. It then follows

that we may write a given field ψ = ψ (x, t,X, T ), such that 〈ψ〉 = 〈ψ〉 (X, T ), and
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δψ = δψ (x, t,X, T ) = ψ − 〈ψ〉 (where by construction 〈δψ〉 = 0). Hence, modulations

due to the large scale mean field component can be seen to induce slow variations in the

rapidly fluctuating component. Thus, the second term in Eq. (1.14) can be seen to have the

effect of subtracting off slow variations in the local polarization nonlinearity induced by

the large scale mean field. In the next section we will use this property in order to derive a

set of amplitude equations for the small scale turbulence in which their phase space (both

spatial as well as spectral) evolution will be largely set by modulations due to the mean

field components.

1.1.2 Wave Kinetic Formulation

Our motivation throughout this work is the self-consistent description of a bath of small

scale rapidly oscillating modes evolving in the presence of slowly varying large scale fields.

Thus, a minimal description of this system can be seen to be composed of two elements:

The first is the modelling of the wave-wave interactions among the small scale modes [Ξnl

in Eq. (1.12)]. Because we are interested in a fairly broad spectrum of dispersive modes,

weak turbulence theory provides a suitable method for describing these interactions. The

second component corresponds to modelling the effect of slow modulations of the small

scale modes due to the large scale fields, and the subsequent back reaction on to the large

scale evolution. Here, significant conceptual, as well as mathematical simplification can

be made in modelling this interaction via utilizing the presence of any adiabatic invariants

which may be present. Indeed, any description of this disparate scale interaction must nec-

essarily respect the added constraints of any adiabatic invariants present within the system.

Fortunately, both of these components may be included within a wave kinetic descrip-
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tion. It is convenient to rewrite Eq. (1.12) in Fourier space as

∂

∂t

(
1 + k2

⊥ρ
2
s

)
δϕk + iωkδϕk = − csρs

∑
k=k1+k2

(
b̂× k1

)
· k2

(
〈n〉k1 − 〈ϕ〉k1

)
δϕk2

+ csρ
3
s

∑
k=k1+k2

(
b̂× k1

)
· k2k

2
⊥2

(
〈p〉k1 + 〈ϕ〉k1

)
δϕk2

+ Ξk, (1.15)

and

Ξk = csρ
3
s

∑
k=k1+k2

(
b̂× k1

)
· k2k

2
⊥2δϕk1δϕk2

− csρ
3
s

∑
p

∫
dx

〈(
b̂×∇eδφ

Ti

)
· ∇⊥∇⊥δφ

〉
p

ei(p−k)·x, (1.16)

where since any averaged quantity is necessarily a function of the large scale variables

(X, T ), we have used 〈· · · 〉 (X) =
∑

p 〈· · · 〉p exp (ip · x), and introduced the normaliza-

tion ϕ ≡ eφ/Te. Eq. (1.16) can by further simplified as

Ξk = csρ
3
s

∑
k=k1+k2

(
b̂× k1

)
· k2k

2
⊥2δϕk1δϕk2

− csρ
3
s

∑
p

δp,k

〈(
b̂×∇δϕ

)
· ∇⊥∇⊥δϕ

〉
p
,

Ξk = csρ
3
s

∑
k=k1+k2

(
b̂× k1

)
· k2k

2
⊥2δϕk1δϕk2 , (1.17)

where the last step follows since, by construction |p| < |k|. From Eq. (1.15) an equation
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for the turbulence intensity evolution can be written

∂Ik
∂t

+ i

∫
dqeiq·x (ωk + ω−k+q) 〈δϕkδϕ−k+q〉

= −csρs
∫
dqeiq·x

∑
k=k1+k2

Lk1,k2,k
(
〈n〉k1 − 〈ϕ〉k1

)
〈δϕk2δϕ−k+q〉

− csρs

∫
dqeiq·x

∑
−k+q=k1+k2

Lk1,k2,−k+q
(
〈n〉k1 − 〈ϕ〉k1

)
〈δϕk2δϕk〉

+ csρ
3
s

∫
dqeiq·x

∑
k=k1+k2

Mk1,k2,k

(
〈p〉k1 + 〈ϕ〉k1

)
〈δϕk2δϕ−k+q〉

+ csρ
3
s

∫
dqeiq·x

∑
−k+q=k1+k2

Mk1,k2,−k+q
(
〈p〉k1 + 〈ϕ〉k1

)
〈δϕk2δϕk〉

+ Ck [Ik] , (1.18)

where

Ck [Ik] ≡ csρ
3
s

∫
dqeiq·x

∑
k=k1+k2

Mk1,k2,k 〈δϕ−k+qδϕk1δϕk2〉

− csρ
3
s

∫
dqeiq·x

∑
−k+q=k1+k2

Mk1,k2,−k+q 〈δϕkδϕk1δϕk2〉 ,

Lk1,k2,k ≡
(k1 × k2)z
1 + k2

⊥ρ
2
s

,

Mk1,k2,k ≡
(k1 × k2)z
1 + k2

⊥ρ
2
s

k2
⊥2.

Here Ik ≡
∫
dqeiq·x 〈δϕk+qδϕ−k〉 is a Wigner function describing the evolution of the

turbulence intensity modulated by a slowly varying mean field component, and b̂ has been

taken to be along the z axis. Eq. (1.18) may be significantly simplified by utilizing the

scale separation between the large scale mean fields and the small scale modes. Also, since

for the mean flows which we will consider, the mean pressure and density perturbations are

weak relative to electrostatic perturbations, it is useful to consider the simplified limit of
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negligible density and pressure fluctuations. This limit is particularly interesting since the

nonlinear structure of Eq. (1.18) can be seen to be isomorphic to the 2-D Euler equation,

except with a potential vorticity given by S = (1 + k2
⊥ρ

2
s)ϕk instead of SH = k2

⊥ϕk.

Carrying out the expansion in |k1| and |q|, Eq. (1.18) can be written to lowest surviving

order as

∂Ik
∂t

+
∂ωk
∂k

· ∂Ik
∂x

=
−1

(1 + k2
⊥ρ

2
s)

2

∂

∂k
(v0 · k⊥) · ∂

∂x

[(
1 + k2

⊥ρ
2
s

)
Ik
]

+
1

(1 + k2
⊥ρ

2
s)

2

∂

∂x
(v0 · k⊥) · ∂

∂k

[(
1 + k2

⊥ρ
2
s

)
Ik
]

+ Ck [Ik] , (1.19)

where v0 ≡ csρs (ẑ×∇〈ϕ〉). Eq. (1.19) may be written as a conservation law by multi-

plying by (1 + k2
⊥ρ

2
s)

2, yielding [13]:

∂Nk

∂t
+

∂

∂k
(ωk + v0 · k⊥) · ∂Nk

∂x
− ∂

∂x
(v0 · k⊥) · ∂Nk

∂k
= Ck [Nk] , (1.20)

where Nk ≡ (1 + k2
⊥ρ

2
s)

2
Ik. Such that, up to local interactions, Nk can be seen to be

adiabatically conserved in the presence of slow incompressible flow variations. The form

of this adiabatic invariant is not surprising: As mentioned above, for 2-D hydrodynamic

turbulence, whose potential vorticity is given by SH = k2
⊥ϕ, the potential enstrophy density

NH
k = k4

⊥Ik may be shown to be adiabatically invariant in the presence of a slowly varying

large scale mean flow. Here, S = (1 + k2
⊥ρ

2
s)ϕk, such that for the case of an incompressible

flow (〈n〉k1 → 0), it’s not surprising that the drift wave potential enstrophy density, Nk =

(1 + k2
⊥ρ

2
s)

2
Ik is adiabatically conserved.
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1.1.3 Mean Field Evolution

Similarly, from Eq. (1.3) the evolution of the ion and electron particle densities are

described by

∂ 〈ni〉
∂t

− ∂

∂t
ρ2
i∇2

⊥
e 〈φ〉
Ti

+ csb̂ · ∇
〈
v‖i
〉

= vthiρi

(
b̂×∇ lnn0

)
· ∇e−b/2 e 〈φ〉

Ti
−
〈 c
B

(
b̂×∇δφ

)
· ∇δni

〉
+
c

B
ρ2
i

〈(
b̂×∇δφ

)
· ∇∇eδφ

Ti

〉
+

1

2

∂

∂t
ρ2
i∇2

⊥ 〈p⊥i〉

+
1

2

c

B
ρ2
i

〈(
b̂×∇δφ

)
· ∇∇2

⊥δp⊥i

〉
− 1

2

c

B
ρ2
i

〈(
b̂×∇∇2

⊥δφ
)
· ∇δp⊥i

〉
,

(1.21)

and

∂ 〈ne〉
∂t

+ csb̂ · ∇
〈
v‖e
〉

=
c

B

(
b̂×∇ lnn0

)
· ∇ 〈φ〉 − c

B

〈(
b̂×∇δφ

)
· ∇δne

〉
, (1.22)

where we have assumed the small scale component to be well approximated as electrostatic,

and we have neglected mean field nonlinearities. Subtracting Eq. (1.22) from Eq. (1.21)

yields the vorticity equation given by:

∂

∂t
ρ2
i∇2

⊥
e 〈φ〉
Ti

=
v2
A

c
ρ2
i b̂ · ∇∇2

⊥
〈
A‖
〉

+
1

2
vthiρi

(
b̂×∇ lnn0

)
· ∇∇2

⊥
e 〈φ〉
Ti

− c

B
ρ2
i∇ ·

〈[
b̂×∇

(
eδφ

Ti
+ δp⊥i

)]
· ∇⊥∇⊥δφ

〉
. (1.23)

As discussed above, for simplicity we will drop the flux induced by the nonlinear diamag-

netic component, yielding

∂

∂t
ρ2
i∇2

⊥
e 〈φ〉
Ti

=
v2
A

c
ρ2
i b̂ · ∇∇2

⊥
e
〈
A‖
〉

Ti
+

1

2
vthiρi

(
b̂×∇ lnn0

)
· ∇∇2

⊥
e 〈φ〉
Ti

− c

B
ρ2
i∇ ·

〈(
b̂×∇eδφ

Ti

)
· ∇⊥∇⊥δφ

〉
. (1.24)
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Ohm’s law can be obtained from the parallel velocity moment of the electron equation,

yielding:

vA
c

∂

∂t

e
〈
A‖
〉

Te
+ vAb̂ · ∇

(
e 〈φ〉
Te

−
〈
p‖e
〉

n0Te

)
+
vA
B

(
b̂×∇

〈
A‖
〉)
· ∇ lnP

(0)
‖

=
vA
c
η∇2

⊥
e
〈
A‖
〉

Te
, (1.25)

where we have introduced a collisional resistivity such that large scale resistive instabilities

may be treated. Neglecting finite Larmor radius effects, Eq. (1.25) can be reduced to

vA
c

∂

∂t

〈
A‖
〉

+ vAb̂ · ∇ 〈φ〉 =
vA
c
η∇2

⊥
〈
A‖
〉
. (1.26)

Equations (1.20), (1.24) and (1.26) can be closed by noting that

∇⊥ ·
〈(
b̂×∇δϕ

)
· ∇⊥∇⊥δϕ

〉
≈ − ∂2

∂x2

∑
k

kxky

(1 + ρ2
sk

2
⊥)

2Nk, (1.27)

such that the mean field equations are coupled to the turbulence evolution. Equations

(1.20), (1.24) and (1.26) provide a simple tractable set of equations for describing a va-

riety of multi-scale phenomena. Contained as limiting cases of the above equations are the

reduced MHD (RMHD) equations obtained by setting Nk → 0 and neglecting diamagnetic

corrections, as well as secondary instabilities such as zonal flows (i.e. b̂ · ∇ → 0). Before

proceeding further, it is useful to briefly review regimes in which different closures of Eq.

(1.20) are appropriate.
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1.2 Phase Space Dynamics

It is instructive to rewrite Eq. (1.20) in the following form

dNk

dt
≡ ∂Nk

∂t
+
dx

dt
· ∂Nk

∂x
+
dk

dt
· ∂Nk

∂k
= C [Nk] , (1.28)

where
dk

dt
= − ∂

∂x
(ωk + v0 · k) , (1.29)

dx

dt
=

∂

∂k
(ωk + v0 · k) . (1.30)

A number of observations can be immediately made from the structure of Eq. (1.28). The

first is that Eq. (1.28) can be easily seen to have a form reminiscent of the Boltzmann

equation, where the rhs can be understood to correspond to a wave collisional operator.

This analogy is however imperfect. While particle collisional operators must necessarily

conserve particle number, momentum, and energy, the rhs of Eq. (1.28) only conserves the

latter two. This result may be easily seen to follow from the well known Manley-Rowe

relations. Furthermore, while the wave collisional operator undoubtedly plays a strong role

in many regimes, particularly those of weak flow shear, since we are primarily interested

in multi-scale interactions, it is convenient to consider the collisionless limit such that only

non-local interactions are kept. Equation (1.28) may then be written as:

∂Nk

∂t
+

∂

∂x
·
[
∂

∂k
(ωk + v0 · k)Nk

]
+

∂

∂k
·
[
− ∂

∂x
(ωk + v0 · k)Nk

]
= 0. (1.31)

From Eq. (1.31) it’s clear that in this limit the potential enstrophy density evolves as an

incompressible fluid in a four dimensional phase space given by (x,k). This conservation

law can be easily seen to significantly impact the dynamics of both the large scale flow

and the small scale turbulence. This follows since the potential enstrophy density may

be written as Nk = (1 + k2
⊥ρ

2
s)Ek, where Ek is the energy of the small scale turbulence.
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Thus, any variation in k⊥ induced by non-local interaction with the large scale flow, must

necessarily induce a transfer of energy between the large scale flow and the small scale

turbulence, in order to preserve the adiabatic constraint. In particular, any increase in k⊥

will necessarily transport energy to the large scale flow. Thus, an understanding of the

phase space dynamics of the drift wave turbulence in the presence of a large scale shear

flow pattern, can provide insight into the direction and strength of non-local energy trans-

fer between these two components. In the following sections, we consider idealized flow

patterns where either statistical or exact solutions of Eq. (1.31) can be found.

1.2.1 Stationary Shear Flow Pattern

Considering the trivial limit of a constant shear flow pattern given by v0 = ŷv′0yx,

where ŷ is taken to be in the poloidal direction, and x̂ is in the radial direction. From Eq.

(1.29), the time evolution can be trivially solved, yielding [5]:

kx = k0x − k0yv
′
0yt, ky = k0y, (1.32)

such that |kx| → ∞ as t → ∞, and energy is necessarily transferred to the large scale

flow. This solution can be seen to be valid in two regimes: for stationary shear flows strong

enough to drive the turbulence into the damped region (not explicitly included here) before

the wave packet displaces a distance comparable to the correlation length of the shear flow,

or for a drift wave packet moving resonantly with the shear flow pattern. Here, the term

resonance, is used to indicate a wave packet whose radial group velocity is equivalent to the

radial phase velocity of a poloidally symmetric shear flow structure with frequency Ω and

radial wave number qx. For the latter scenario, Eq. (1.32) can be easily seen to correspond

to a poor approximation to the dynamics of the wave packet. This follows, since the radial

group velocity of the wave packet is also a function of kx, such that an initially resonant
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wave packet will be rapidly pushed off resonance.

1.2.2 Wave Trapping

A somewhat more realistic model corresponds to a stationary poloidally symmetric

shear flow pattern undergoing oscillations in the radial direction. This model may be easily

generalized to flow structures with a finite radial phase velocity by transforming to a frame

uniformly moving in the radial direction. From Eqs. (1.29) and (1.30), it can be easily

shown [21]:
dkx
dx

= −ky
c

B

1

vgrx

∂2φ̄

∂x2
, (1.33)

ky = const = k0
y . (1.34)

Upon integration an expression for the trajectory of kx can be written as

(kxρs)
2 =

[
1 +

(
k

(0)
y ρs

)2
] [

1 +
(
k

(0)
⊥ ρs

)2
]

1− (v0y/v∗e)

[
1 +

(
k

(0)
⊥ ρs

)2
]

·


v0y

v∗e
+

(
k

(0)
x ρs

)2[
1 +

(
k

(0)
⊥ ρs

)2
] [

1 +
(
k

(0)
y ρs

)2
]
 , (1.35)

where k(0)
x and k(0)

y correspond to the value of kx and ky at v0y (x = 0) respectively [where

v0y (x = 0) is taken to be zero for simplicity], and we assume |v0y/v
∗
e | <

[
1 +

(
k

(0)
⊥ ρs

)2
]−1

,

such that the denominator before the braces in Eq. (1.35) is nonzero and positive (well sat-

isfied in most applications). From this expression it’s clear the trajectories of the wave

quanta can be separated into two categories:

a.) trapped: wave quanta whose kx passes through zero, and are thus reflected by the

shear flow,
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b.) passing: wave packets whose group velocity is large enough such that the shear flow

is incapable of reversing their direction.

A trapping criterion for a given quasi-particle can be easily derived from Eq. (1.35), yield-

ing ∣∣∣∣v0y

v∗e

∣∣∣∣ =
vy
cs

Ln
ρs

>

(
k

(0)
x ρs

)2[
1 +

(
k

(0)
⊥ ρs

)2
] [

1 +
(
k

(0)
y ρs

)2
] , (1.36)

where vy is the amplitude of the oscillatory shear flow. Note that a trapped wave packet

undergoes closed orbits in phase space, such that no net energy is transferred to the large

scale flow.

1.2.3 Stochastic Regime

In the previous section the trajectories of wave quanta in the presence of a shear flow

pattern composed of a single mode with a given Ω and qx were considered. Here, it is

useful to consider the more general case of a spectrum of large scale modes.

The presence of multiple modes can qualitatively alter the trajectories of the drift wave

packets. This follows, since as the phase space islands associated with different modes

begin to overlap, the previously integral orbits become stochastic, necessitating a statistical

description of the drift wave packet’s orbits. In order to estimate when a statistical de-

scription is appropriate, it is convenient to introduce an effective Chirikov parameter [22]

defined by Kch = ∆vgrx/∆ (Ω/qx), where ∆vgrx is the range of wave packet group ve-

locities trapped by a given island (i.e. island width), and ∆ (Ω/qx) is the spacing between

between islands. Assuming
(
k

(0)
⊥ ρs

)2

< 1, the width of the phase space islands may be

approximated from Eq. (1.36), i.e. ∆vgrx ≈ 2v∗ek
(0)
y ∆kxρ

2
s, and ∆kxρs ≈

√
v0y/v∗e , such

that ∆vgrx ≈ 2
√
v∗ev0yk

(0)
y ρs. For Kch > 1 the trajectories of the wave packets can be well

approximated as stochastic, and for Kch < 1, the system will remain largely integral, such

that the results from the previous section remain valid. Considering the limit Kch > 1,
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quasi-linear theory provides a useful means of describing the evolution of the drift wave

packets. Separating Nk into a mean and fluctuating piece, i.e. Nk = 〈Nk〉 + Ñk, and

averaging Eq. (1.31), yields:

∂ 〈Nk〉
∂t

+ vgr ·
∂

∂x
〈Nk〉+

∂

∂x
·
〈
v0Ñk

〉
− ∂

∂k
·
〈
∂

∂x
(k · v0) Ñk

〉
= 0, (1.37)

where the system may be closed via the fluctuation equation:

Ñk =
−i

Ω− vgr · q

{
k · (ẑ × q)q · ∂ 〈Nk〉

∂k
+ i (ẑ × q) · ∂ 〈Nk〉

∂x

}
φ̄q. (1.38)

The general form of the mean field equation can thus be seen to contain both real space

and k-space diffusion contributions, as well as cross terms. For simplicity, we introduce

the limit qx � qy, such that the lowest order expression may be written as [5]

∂ 〈Nk〉
∂t

+ vgrx
∂

∂x
〈Nk〉 =

∂

∂kx

(
Dk

∂ 〈Nk〉
∂kx

)
. (1.39)

The term on the right hand side of Eq. (1.39) corresponds to k-space diffusion introduced

via non-local interaction with the mesoscale flow, with a diffusion coefficient of the form

Dk = k2
y

∑
q R (Ω, q) q4

x

∣∣φ̄q∣∣2, and the response function R (qx,Ω) = πδ (Ω− vgrxqx),

where for simplicity the growth rate of the large scale mode has been assumed to be small

such that the non-resonant contribution to the response function is negligible. Thus, within

this regime, a robust transfer of energy to the large scale flows can be seen to exist.



Chapter 2

Low-q resonances, transport barriers,

and secondary electrostatic convective

cells

2.1 Introduction

A detailed theoretical understanding of the physical mechanism triggering internal

transport barrier formation near low-q resonant surfaces remains elusive. This topic is

particularly relevant, as the power input required for inducing an internal transport barrier

depends sensitively on the mean current distribution and the presence of integer q surfaces.

Note that a standard paradigm often employed to describe transport barrier formation –

Reynolds stress driven shear flow inducing a local steepening of the pressure gradient, thus

triggering a transport bifurcation via equilibrium E×B flow shear – may not be sufficient,

since this phenomenology by itself does not uniquely specify the spatial location of the

transport barrier. Thus, a necessary component of any theory of ITB formation must be to

link the ITB triggering mechanism to the presence of the low-q surface. Many candidate

26
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Figure 2.1: Sketch of pressure profile in presence of convective mode. Broken line corre-
sponds to original pressure profile and the solid line corresponds to corrugated profile.

mechanisms have been proposed. These include, but are not limited to (see Ref. [23] for

a review): magnetic islands creating local, sharp gradients in profiles [24], sheared electric

fields responding to magnetic topology changes or energetic particle dynamics [25], or

“rarefaction” of resonant surfaces and its effect on global (i.e. ballooning) modes [26, 27]

(also, see Ref. [28] for a discussion of parallel velocity affects). However, in light of recent

experimental observations [29], a major challenge to any model of ITB formation at low-q

resonances is the need to simultaneously explain all of the experimental observations:

a.) the possibility of a purely electrostatic trigger mechanism, since magnetic perturba-

tions are not observed in some cases

b.) a region of profile flattening (i.e. “corrugation”) at the resonant surface, which sug-

gests strong, but localized, mixing or transport in that region

c.) the appearance of a transport barrier, due to strong E×B shear flow, in the region

immediately nearby the low-q resonance (sketched in Fig. 2.1).

As a means of explaining the experimental observations a.) - c.), detailed gyrokinetic sim-

ulations [30] have been performed to support the hypothesis of zonal flows being generated

near “gaps” in the density of rational surfaces localized in the vicinity of low-q resonances.
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However, any ITB theory based on zonal flow formation alone is inherently unable to sat-

isfy observations b.) and c.). In particular, a self-consistent description of transport near

low-q surfaces requires the simultaneous evolution of both the Reynolds stress driven shear

flows, and the underlying micro-turbulence intensity profile. This suggests that a critical el-

ement linking shear flows to low-q surfaces is the spatial profile of the turbulence intensity

and its response to the appearance of a low-q surface. We note that considering the numer-

ous studies of complex nonlinear spatial dynamics of drift wave turbulence, considerations

of the linear properties of the micro-turbulence near a low-q surface are not sufficient to de-

termine its saturated nonlinear structure. Furthermore, observations b.) and c.) can be seen

to be compatible, since strong localized mixing can induce the formation of E × B shear

flows in the layer where∇P and∇n steepen immediately adjacent to the mixing zone [31].

In addition, Reynolds stress driven shear flows are necessarily strongest in regions of large

fluctuation intensity gradient. Considered together, this further reinforces the necessity of

understanding how low-q resonances ‘structure’ both the turbulence intensity and the shear

flow profiles. For example, a local peak in the intensity profile at the resonant-q surface

could lead to the formation of a dipolar shear layer around the resonant-q surface, as well

as driving localized mixing at the resonant surface [32]. Together, these could steepen the

profiles immediately adjacent to the surface.

An equally important element in describing transport near low-q surfaces, is the struc-

ture of the shear flow profile. In particular, while Reynolds stress driven axisymmetric

shear flows, coupled with a description of the micro-turbulence dynamics, presents a pos-

sible route toward a description of transport near low-q surfaces, a more natural and direct

approach is to instead consider the impact of weakly non-axisymmetric shear flows. Indeed

the breaking of axisymmetry by a large scale shear flow has the advantage of introducing

both local profile relaxation via the intrinsic mixing of the flow, as well as introducing

strong shear flows in the adjacent regions. Furthermore, since non-axisymmetric shear
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flows are strongly inhibited by magnetic shear, this mechanism would tightly link their ap-

pearance to regions of weak magnetic shear, thus providing a simple explanation for why

ITBs are often observed to form in OAMq profiles, which typically have weak magnetic

shear.

The specific physical mechanism which we propose is a low-m secondary cell, driven

by nonlocal transfer of energy form high-k, radially co-located drift wave turbulence. This

structure is a finite m, n analogue of the zonal flow (which has m = n = 0), and is some-

what similar in concept to the idea of a “convective cell" originally proposed by Dawson

and Sagdeev [33, 34]. These secondary cells are strongly localized near resonant sur-

faces, and damped by friction (as are zonal flows), field line bending, viscosity, Landau

resonance, etc. In normal shear discharges they usually have negligibly small width, but

become broader and stronger in regimes of weak magnetic shear, which are characteris-

tic of the regimes of OAMq plasmas we consider. In contrast to zonal flows, convective

cells combine both strong mixing at the resonant surface and the generation of shear flows

nearby, thus constituting a simple mechanism for satisfying critical elements of the above

observations.

In the following, a simple dynamical model describing the self-consistent evolution

of a low-m secondary convective cell driven by drift wave turbulence is developed and

analyzed. The paper is organized as follows: Section II introduces the model equations, in

Section III the cell excitation criterion is derived, Section IV discusses nonlinear properties

of the drift wave-convective cell system, Section V presents a simplified transport model,

and Section VI presents the conclusions and a discussion of future work.

2.2 Basic Equations

Similar to zonal flows, secondary convective cells are mesoscale phenomena, i.e. they

evolve on larger (slower) spatial (temporal) scales compared to the microscopic scales, but
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smaller (faster) in comparison to those on which the equilibrium profiles vary. This scale

separation, allows the description of the system to be separated into two elements, namely:

a.) a dynamical model of the large scales which incorporates stresses induced by small

scales,

b.) a model of the turbulence and how it responds to large scale cellular flow.

In the following, a description of both the large and small scale models are presented.

Emphasis is placed on clearly delineating the regime in which convective cells are most

likely to be excited, as well as on the critical physical elements which determine their

evolution.

2.2.1 Dynamical Model of Mean Field Evolution

Here we are interested in deriving an expression describing the evolution of the large

scale mean flow in the presence of a background of ambient drift wave turbulence. The

gyrokinetic equation for the total distribution function of ion gyrocenters is given by [18]

∂f toti

∂t
+ Ẋ · ∂f

tot
i

∂X
+ U̇

∂f toti

∂U
= C

(
f toti

)
, (2.1)

where

Ẋ = U

(
b̂+

〈B⊥〉α
B

)
+ vd +

c

B
b̂×∇〈ψ〉α , (2.2)

U̇ = − e

mic

∂
〈
A‖
〉
α

∂t
− e

mi

(
b̂+

〈B⊥〉α
B

)
· ∇ 〈ψ〉α −

1

mi

(
b̂+

〈B⊥〉α
B

)
· ∇ (µωci)

− c

B
Ub̂×

(
b̂ · ∇b̂

)
· ∇ 〈ψ〉α , (2.3)

vd = b̂×

(
µ

mi

∇ lnB + U2 b̂ · ∇b̂
ωci

)
.
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Here C (f) is the gyrokinetic collision operator, µ ≡ (miv
2
⊥) / (2ωci),

〈· · · 〉α ≡ (2π)−1 ∫ 2π

0
dα (· · · ), ψ = φ − (1/c)A⊥ · v⊥, and φ, A, and B⊥ are perturbed

quantities. Eq. (2.2) contains the parallel velocity along a general perturbed magnetic field,

drifts due to generalized magnetic geometry, and the E×B drift, with finite β corrections.

Eq. (2.3) includes both the electrostatic and inductive component of the parallel electric

field and the mirror force. Also, the last term in Eq. (2.3) is necessary in order to cancel the

finite divergence of the E×B drift in generalized geometry, so that phase space volume is

conserved. Finally, we note that the polarization drift appears via the transformation from

gyrocenter coordinates to particle coordinates.

The ordering used is similar to the standard gyrokinetic ordering, i.e.:

∂t
ωce

∼ f

F0

∼ eφ

Te
∼ ε

where ε = ρi/L0 is the gyrokinetic expansion parameter, and L0 is the smallest equilibrium

scale length. In this analysis we are primarily concerned with considering magnetohydro-

dynamic (MHD) stable, low-q surfaces for which tearing modes, and other electromagnetic

instabilities are not present. Thus, we anticipate weak electromagnetic fluctuations, and it

is therefore convenient to take the low β limit for which β ∼ ε . Thus, we are left with the

remaining parameters ordered as

A‖

Bρi
∼ A⊥

Bρi
∼ β

ρi
L0

∼ ε2,

Note that the low β ordering utilized here, will likely be violated after the formation of

the transport barrier, however here our primary interest is understanding the triggering

mechanism for the ITB. Applying this ordering procedure, evaluating the gyro-averages,

and writing the distribution function as f toti = F0i + fi, where F0i is the equilibrium piece
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(assumed to be Maxwellian), and fi is a fluctuating quantity, Eq. (2.1) yields the expression

∂fi
∂t

+
{
Ub̂+

c

B
b̂× J0 (λ)∇φ+ vd

}
· ∇fi = − c

B
b̂× J0 (λ)∇φ · ∇F0i

+

{
e

mi

b̂+
c

B
Ub̂×

(
b̂ · ∇

)
b̂

}
· J0 (λ)∇φ∂F0i

∂U
+ C (fi) . (2.4)

It is convenient at this point to separate the fields into a slowly evolving mean field compo-

nent as well as a rapidly fluctuating small scale component (whose evolution is described

in the following section). Defining ψ = ψ̄ + ψ̃, where ψ̄ and ψ̃ represent the slow and

rapidly varying portions respectively, and averaging Eq. (2.4) over the fast scales defined

as 〈· · · 〉 = (XT )−1 ∫ t+T
t

∫ x+X
x

dt′dx′ (· · · ), where x is a radial variable, and X and T

correspond respectively to meso length and time scales, yields:

∂f̄i
∂t

+
{
Ub̂+ vd

}
· ∇f̄i = − c

B
b̂×∇φ̄ · J0 (λ)∇F0i

+

{
e

mi

b̂+
c

B
Ub̂× b̂ · ∇b̂

}
· J0 (λ)∇φ̄∂F0i

∂U

−
〈 c
B
b̂× J0 (λ)∇φ̃ · ∇f̃i

〉
+ C (fi) , (2.5)

Here ∇ ln ψ̄ < ∇ ln ψ̃, such that the mean field nonlinearity is subdominant to the fluctua-

tion nonlinearity. This approximation, while valid for relatively weak mean flows, needs to

be reexamined for the case of intense mean flows in which tertiary instabilities may occur.

Also note that for the case of convective cells, the mean field nonlinearity requires some-

what more careful attention than for the case of zonal flows. For zonal flows, the mean

field nonlinearity is strictly a sink of free energy, i.e. any tertiary instability necessarily

results in the break up of the zonal flow. However, for the case of convective cells, for

which m 6= 0, tertiary instability of a zonal flow, may in fact act as a source of free energy

for the convective cell. This introduces the possibility of two mechanisms of excitation of
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convective cells [35]: indirect excitation via Kelvin-Helmholtz instability of zonal flows,

or direct excitation via modulational instability of drift wave turbulence. Here we focus on

the latter, and leave the former for future analysis.

2.2.1.1 Vorticity Equation

Applying the integral 2π
∫
dUdµ (ωci/mi) to Eq. (2.5), and noting the spatial depen-

dence of the Jacobian, yields an equation for the evolution of the density of gyrocenters

given by

∂N̄i

∂t
+∇ ·

(
b̂n0V̄‖i

)
+
Tic

eB
b̂×∇ lnB · ∇P̄⊥i +

Tic

eB
b̂×

(
b̂ · ∇

)
b̂ · ∇P̄‖i

=
c

B

(
b̂×∇ lnN0

)
· ∇
(

1− ηi
b

2

)
exp

(
− b

2

)
φ̄

− c

B
b̂× lnB · ∇

(
1− b

2

)
exp

(
− b

2

)
φ̄− c

B
b̂×

(
b̂ · ∇

)
b̂ · ∇ exp

(
− b

2

)
φ̄

− c

B

〈
b̂×∇

(
1 +

b

2

)
exp

(
− b

2

)
φ̃ · ∇Ñi

〉
+
c

B

〈
b̂×∇ b

2
exp

(
− b

2

)
φ̃ · ∇P̃⊥i

〉
,

(2.6)

where b = k2
⊥ρ

2
i , ηi ≡ Ln/LT , LT and Ln are the ion temperature and density gradi-

ents respectively. Note that a rigorous treatment of the gyrokinetic collision operator in

generalized geometry, including full neoclassical effects is currently unavailable. Since a

detailed treatment of the gyrokinetic collision operator is not the focus of this analysis, it’s

contributions to the vorticity equation will be temporarily suppressed for simplicity.

At this point it is necessary to transform from gyrocenter moments into particle fluid

moments. In order to obtain a simple expression for the evolution of the particle density it

is convenient to exploit the smallness of (k⊥ρs)
2 for the mean fields. Keeping terms up to

second order in (k⊥ρs)
2, yields the expressions [18]

Ni = ni +
b

2

(
p⊥i + 2

e

Ti
φ

)
, (2.7)
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V‖i =

(
1 +

b

2

)
v‖i, (2.8)

P‖i = p‖i +
b

2

(
p‖i + p⊥i − ni + 2

eφ

Ti

)
, (2.9)

P⊥i = p⊥i + b

(
2p⊥i − ni + 2

eφ

Ti

)
, (2.10)

Substitution of Eqs. (2.7-2.10) into Eq. (2.6) and expanding in b, yields a reduced equation

for the ion density

∂n̄i
∂t

+∇ ·
(
b̂v̄‖i

)
+ ωd∇p̄⊥i + ωdκp̄‖i −

1

2
ρ2
i

∂

∂t
∇2

⊥p̄⊥i − ρ2
i

∂

∂t
∇2

⊥
eφ̄

Ti
− 1

2
ρ2
i∇ ·

(
b̂∇2

⊥v̄‖i

)
= ω∗d

eφ̄

Ti
− 1

2
ρ2
iω

∗
d (1 + ηi)∇2

⊥
eφ̄

Ti
− (ωd∇ + ωdκ)

eφ̄

Ti
− c

B

〈
b̂×∇φ̃ · ∇ñi

〉
− c

B
ρ2
i

〈
b̂×∇φ̃ · ∇∇2

⊥
eφ̃

Ti

〉
− 1

2

c

B
ρ2
i

〈
b̂×∇φ̃ · ∇∇2

⊥p̃⊥i

〉
− 1

2

c

B
ρ2
i

〈
b̂×∇∇2

⊥φ̃ · ∇p̃⊥i
〉

, (2.11)

where p⊥i → p⊥i/p⊥oi, p‖i → p‖i/p‖0i, ni → ni/n0, and the drifts are defined as

ω∗d = vthiρib̂×∇ lnn0 · ∇,

ωdκ = vthiρib̂×
(
b̂ · ∇

)
b̂ · ∇,

ωd∇ = vthiρib̂×∇ lnB · ∇,

and vthi ≡
√
Ti/mi. Similarly, the electrons are described by the nonlinear drift kinetic

equation

{
∂

∂t
+
(
vd +

c

B
b̂×∇φ+ Ub̂

)
· ∇
}
f tote

+

(
e

me

b̂ · ∇φ− µ
ωce
me

b̂ · ∇ lnB − c

B
Ub̂×

(
b̂ · ∇b̂

)
· ∇φ

)
∂f tote

∂U
= C

(
f tote

)
, (2.12)
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A similar calculation gives the evolution equation for the density of electrons as

∂n̄e
∂t

+∇ ·
(
b̂v̄‖e

)
+ ωd∇p̄⊥e + ωdκp̄‖e

= ω∗d
eφ̄

Ti
− (ωd∇ + ωdκ)

eφ̄

Ti
− c

B

〈
b̂×∇φ̃ · ∇ñe

〉
, (2.13)

where p̄‖e → p̄‖e/p0e and p̄⊥e → p̄⊥e/p0e. Taking the difference between Eqs. (2.11) and

(2.13), applying Eq. (2.15), and utilizing quasi-neutrality then yields

∂

∂t
∇2

⊥
eφ̄

Ti
= −vA

e

Ti
b̂ · ∇∇2

⊥Ā‖ −
ωd∇
ρ2
i

p̄⊥ −
ωdκ
ρ2
i

p̄‖ −
1

2
ω∗d (1 + ηi)∇2

⊥
eφ̄

Ti
− 1

2
b̂ · ∇∇2

⊥v̄‖i

− c

B

〈
b̂×∇φ̃ · ∇∇2

⊥
eφ̃

Ti

〉
− 1

2

∂

∂t
∇2

⊥p̄⊥i −
1

2

c

B

〈
b̂×∇φ̃ · ∇∇2

⊥p̃⊥i

〉
+

1

2

c

B

〈
b̂×∇∇2

⊥φ̃ · ∇p̃⊥i
〉

, (2.14)

where p⊥ and p‖ represent the total perpendicular and parallel pressure, A‖ → (vA/c)A‖,

the ∇ · b̂ = −b̂ · ∇ lnB terms are neglected, and Ampere’s law, given by

v‖i − v‖e = − c

4πn0e
∇2

⊥A‖, (2.15)

has been used to eliminate the parallel velocity components. Eq. (2.14) provides a descrip-

tion of vorticity evolution appropriate for mesoscale phenomena.

2.2.1.2 Ohm’s Law

In contrast to zonal flows, convective cells, while poloidally extended, have a weak but

finite radial component of velocity. This weak spatial asymmetry necessitates the inclusion

of resistivity in order to allow the plasma to diffuse through the magnetic field. Hence,

in this section it is convenient to model the role of collisions via the explicit inclusion of

parallel resistivity.



36

Taking the first order moment of Eq. (2.12), yields the expression

vAb̂ · ∇
(
p̄‖eτ −

eφ̄

Ti

)
= − e

Ti
η∇2

⊥Ā‖, (2.16)

where η ≡ η‖ is the parallel collisional resistivity, and τ ≡ Te/Ti. Here we consider the

evolution of mesoscale phenomena (large in comparison to the electron skin depth), such

that electron inertia may be ignored. We have also again neglected terms proportional to

b̂ · ∇ lnB. This expression for Ohm’s law interpolates between two well known regimes.

For large scale dynamics in which finite Larmor corrections may be neglected, Eq. (2.16)

reduces to vAb̂ · ∇φ̄ = η∇2
⊥Ā‖, which corresponds to the electrostatic limit of the resistive

MHD Ohm’s Law. Also, for scales in which k⊥ρs ≈ 1, in the low collisionality limit, and in

the absence of temperature fluctuations, Eq. (2.16) reduces to the adiabatic response limit

n̄/n0 = eφ̄/Te. Here, however, since convective cells correspond to mesoscale phenomena,

and collisions play an essential role in allowing the convective cell to diffuse through the

magnetic field, we are interested in considering the more generalized form given by Eq.

(2.16).

2.2.1.3 Pressure and Ion Parallel Velocity Evolution

In order to close the system given by Eqs. (2.14) and (2.16), it is necessary to derive

expressions for the evolution of the electron and ion pressure, as well as the parallel ion

velocity. In the following, since we consider the limit of weak magnetic inhomogeneity

and b < 1, we will only keep the lowest order contributions. Thus, the perpendicular and

parallel ion pressure equations can be written as

∂p⊥i
∂t

+ b̂ · ∇v‖i = ω∗d (1 + ηi)
eφ

Ti
− c

B
b̂×∇φ · ∇p⊥i, (2.17)

∂p‖i
∂t

+ 3b̂ · ∇v‖i = ω∗d (1 + ηi)
eφ

Ti
− c

B
b̂×∇φ · ∇p‖i, (2.18)
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where again collisions have been temporarily suppressed. Similarly for electrons

∂p⊥e
∂t

+ b̂ · ∇v‖e = ω∗d (1 + ηi) τ
−1 eφ

Ti
− c

B
b̂×∇φ · ∇p⊥e, (2.19)

∂p‖e
∂t

+ 3b̂ · ∇v‖e = ω∗d (1 + ηi) τ
−1 eφ

Ti
− c

B
b̂×∇φ · ∇p‖e. (2.20)

Also, an equation for the ion parallel velocity can be easily derived by taking the parallel

velocity moment of Eq. (2.5):

∂v‖i
∂t

= −v2
thib̂ · ∇

(
eφ

Ti
+ p‖i

)
− c

B
b̂×∇φ · ∇v‖i, (2.21)

Eqs. (2.14,2.16,2.17-2.21) form a closed set of equations describing the evolution of the

convective cell. In the next section, these equations will be simplified into a single equation,

providing a simple and intuitive description of the large scale mean flow.

2.2.1.4 Equation for Convective Cell Evolution

Here we seek to simplify the system given by Eqs. (2.14,2.16,2.17-2.21). Eq. (2.14)

can be simplified by taking the Laplacian of Eq. (2.17)

∂

∂t
∇2

⊥p⊥i + b̂ · ∇∇2
⊥v‖i = ω∗d (1 + ηi)∇2

⊥
eφ

Ti
+
c

B

(
b̂×∇∇2

⊥φ
)
· ∇p⊥i

− c

B

(
b̂×∇φ

)
· ∇∇2

⊥p⊥i − 2
c

B
∇ ·
[(
b̂×∇∇φ

)
· ∇p⊥i

]
,

(2.22)

where we have used the approximation

∇2
⊥

[(
b̂×∇φ

)
· ∇p⊥i

]
≈ −

(
b̂×∇∇2

⊥φ
)
· ∇p⊥i +

(
b̂×∇φ

)
· ∇∇2

⊥p⊥i

+ 2∇ ·
[(
b̂×∇∇φ

)
· ∇p⊥i

]
. (2.23)
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Performing an average over the rapid spatial and temporal scales on Eq. (2.22), and insert-

ing the result into Eq. (2.14) yields:

∂

∂t
∇2

⊥
eφ̄

Ti
=
v2
A

η

(
b̂ · ∇

)2
(
p̄‖eτ −

eφ̄

Ti

)
− ωd∇

ρ2
i

p̄⊥ −
ωdκ
ρ2
i

p̄‖ − ω∗d (1 + ηi)∇2
⊥
eφ̄

Ti

− c

B

〈
b̂×∇φ̃ · ∇∇2

⊥
eφ̃

Ti

〉
, (2.24)

where the last term on the right of Eq. (2.22) has been dropped as discussed in Chapter 1,

and Eq. (2.16) has been used to eliminate the ∇2
⊥Ā⊥ term. In order to further simplify Eq.

(2.24), we calculate the linear response of Eqs. (2.18) and (2.20), to obtain

p̄‖e = −3i
b̂ · ∇
ω

v̄‖e + i
ω∗d
ω

(1 + ηi) τ
−1 eφ̄

Ti
, (2.25)

p̄‖i = −3i
b̂ · ∇
ω

v̄‖i + i
ω∗d
ω

(1 + ηi)
eφ̄

Ti
. (2.26)

v̄‖e can be obtained from Eqs. (2.15) and (2.16), and is

v̄‖e = v̄‖i −
v2
Aρ

2
i

η
b̂ · ∇

(
τ p̄‖e −

eφ̄

Ti

)
. (2.27)

Similarly for v̄‖i, we find

v̄‖i = −iv
2
thi

ω
b̂ · ∇

(
eφ̄

Ti
+ p̄‖i

)
. (2.28)

Utilizing Eq. (2.26), Eq. (2.28) can be written in terms of φ̄, yielding:

v̄‖i = −iv
2
thi

ω

[
1 +

3v2
thi

ω2

(
b̂ · ∇

)2
]−1

b̂ · ∇
{

1 + i
ω∗d
ω

(1 + ηi)

}
eφ̄

Ti
. (2.29)
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The second term in the denominator, can be estimated as

3v2
thi

ω2

(
b̂ · ∇

)2

∼ m2
(ωci
ω

)2 (ρi
a

)2
(

∆x

Ls

)2

,

wherem is the poloidal mode number of the cell, a is the minor radius, and ∆x is the radial

extent of the cell. For realistic parameters, in regimes of weak magnetic shear, this term is

negligible. Thus, Eq. (2.29) may be reduced to

v̄‖i = −iv
2
thi

ω
b̂ · ∇

{
1 + i

ω∗d
ω

(1 + ηi)

}
eφ̄

Ti
. (2.30)

Similarly, v̄‖e can be written as

v̄‖e =

[
1− 3iτ

v2
Aρ

2
i

ηω

(
b̂ · ∇

)2
]−1

· b̂ · ∇
{
v2
Aρ

2
i

η

[
1− i

ω∗d
ω

(1 + ηi)

]
− i

v2
thi

ω

[
1 + i

ω∗d
ω

(1 + ηi)

]}
eφ̄

Ti
, (2.31)

where the second term in the denominator can be estimated as

3τ
v2
Aρ

2
i

ηω

(
b̂ · ∇

)2

∼ m2τS
(ωci
ω

)(ρi
a

)3

β
1/2
i

(
∆x

Ls

)2

.

Here βi is evaluated using the ion temperature, and S is the Lundquist number defined

as S ≡ (vAa/η). This term is negligible for realistic parameters, so Eq. (2.31) can be

approximated as

v̄‖e = b̂ · ∇
{
v2
Aρ

2
i

η

[
1− i

ω∗d
ω

(1 + ηi)

]
− i

v2
thi

ω

[
1 + i

ω∗d
ω

(1 + ηi)

]}
eφ̄

Ti
. (2.32)



40

Hence, from Eq. (2.25) the electron parallel pressure can be written as

p̄‖e = −3i
v2
Aρ

2
i

ηω

(
b̂ · ∇

)2
{

1− i

(
vthi
vA

)2
η

ωρ2
i

}
eφ̄

Ti
+ i

ω∗d
ω

(1 + ηi) τ
−1 eφ̄

Ti
, (2.33)

where we have dropped the i (ω∗e/ω) (1 + ηi) terms inside the brackets in Eq (2.32), since

they are smaller than the second term in Eq. (2.33) by factors of 3
(
vAk‖ρi

)2
/ (ηω) and

3v2
thik

2
‖/ω

2 respectively. Employing analogous approximations for the perpendicular elec-

tron and ion pressure, Eq. (2.24) can then be written as

∂

∂t
∇2

⊥φ̄ = −v
2
A

η

{
1− i

ω∗d
ω

(1 + ηi)− i
ωd∇ + 3ωdκ

ω

[
1− 2i

(
vthi
vA

)2
η

ωρ2
i

]}
∇2

‖φ̄

− i
ω∗d
ω

ωdκ + ωd∇
ρ2
i

(1 + ηi)
(
1 + τ−1

)
φ̄− ω∗d (1 + ηi)∇2

⊥φ̄

− c

B

〈
b̂×∇φ̃ · ∇∇2

⊥φ̃
〉
− γd∇2

⊥φ̄+ νc∇2
⊥∇2

⊥φ̄, (2.34)

where ∇‖ ≡ b̂ · ∇, and fourth order terms of ∇‖ have been neglected. The terms on the

right hand side of Eq. (2.34) correspond to field line bending, coupling to the equilibrium

pressure gradient in generalized magnetic geometry, diamagnetic drift, Reynolds stresses

induced by the micro-turbulence, and the last two terms correspond to generic forms for

neoclassical friction and classical viscosity. While corrections due to finite Larmor radius

effects and generalized magnetic geometry perturb the mode structure and the growth rate

of the cell, the three critical elements within this description correspond to magnetic field

line bending, collisional damping, and Reynold’s stresses. In the simplest picture, these

three elements combine to set the radial width of the mode, the magnitude of the large

scale damping, as well as the strength of the instability drive. More explicitly, resistive

field line bending plays a dual role: acting in combination with collisional viscosity as a

mechanism for large scale damping, as well as setting the radial extent of the convective

cell. Both of these properties are critical elements within the description, since the radial
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extent of the mode determines the width over which the cell mixes and, in analogy with the

drift wave-zonal flow system, large scale damping is expected to determine how well the

cell regulates the turbulence intensity. Another necessary component within our description

corresponds to the Reynolds stresses exerted by the small scale micro-turbulence. This term

provides the mechanism for spectral transfer of energy from small to large scales, and is

the dominant mechanism of cell drive.

2.2.2 Model of Turbulence Intensity Evolution

Wave kinetics provides the simplest framework for describing the evolution of the

small scales. This description provides both easy visualization of the drift wave dynamics,

as well as a simple mathematical framework to self-consistently incorporate multi-scale

interactions. The wave kinetic equation for drift wave turbulence is given by [13]

∂Nk

∂t
+

∂

∂k
(ωk + v0 · k) · ∂Nk

∂x
− ∂

∂x
(ωk + v0 · k) · ∂Nk

∂k
= γkNk −∆ωkN

2
k , (2.35)

where Nk is the wave quanta population, defined by Nk ≡ (1 + k2
⊥ρ

2
s)

2
Ik, Ik is a Wigner

function defined as Ik =
∫
dqeiq·x

〈
φ̃k+qφ̃−k

〉
, (where the averaging is over the fast tem-

poral scales), ωk is the linear frequency, and vgr = dωk/dk is the group velocity. Here,

nonlocal interactions between the large scale shear flow and the drift wave turbulence are

described by the advection and refraction of the drift wave packets, corresponding to the

second and third terms respectively on the left hand side of Eq. (2.35). The right hand side

of Eq. (2.35) has the form of an effective collision operator, where the first and second

terms represent growth and local self-saturation, respectively. From Eq. (2.35) an expres-

sion for the the evolution of the mean turbulence intensity in the presence of a large scale
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shear flow can be easily derived as [5]

∂ 〈N〉
∂t

+ vgrx
∂ 〈N〉
∂x

=
∂

∂kx

(
Dk

∂ 〈N〉
∂kx

)
+ γk 〈N〉 −∆ωk 〈N〉2 . (2.36)

The first term on the right hand side of Eq. (2.36) corresponds to k-space diffusion intro-

duced via nonlocal interaction with the convective cell (i.e. random shearing), the second

term corresponds to spatial mixing of the turbulence intensity profile by the convective

cell. The k-space diffusion coefficient has the form Dk = k2
y

∑
q R (k, q) q4

x

∣∣φ̄q∣∣2, where

the resonance function is R (k, q) = γk/
(
γ2
k + (ωq − vgrxqx)

2). Here, qx corresponds to

the radial wave number of the large scale mode, ωq is the frequency of the large scale mode,

and γk is understood to represent the drift wave self-decorrelation rate set by the condition

of quasi-stationary turbulence γkNk −∆ωkN
2
k ≈ 0. Note that this broadened form of the

response function interpolates between the case of weak local interactions where the re-

sponse function asymptotes to R (k, q) → πδ (ωq − vgrqx), as well as the case of strong

local interactions in which the broadening of the resonance is significant.

2.2.3 Self-Consistent Model

Eqs. (2.34) and (2.35) provide a self-consistent description of the coupled dynamics

of the drift wave-convective cell system. Here, we are interested in formally closing the

system of equations. This can be easily done by utilizing the expression

〈
b̂×∇φ̃ · ∇∇2

⊥φ̃
〉
≈ − ∂2

∂x2

∑
k

kxky

(1 + ρ2
sk

2
⊥)

2Nk. (2.37)

From Eqs. (2.37) and (2.34), one can follow the two-scale, adiabatic closure used in Refs.

[5, 36] to derive a Fourier transformed evolution equation for the convective cell

v2
Aq

2
y

ηL2
s

(
1− i

ω∗d
ω

)
d2φq
dq2

x

=
{
[νc + νT (qx)] q

2
x + [γd − i (ω − ω∗d)]

}
q2
xφq, (2.38)
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where the magnetic curvature terms have been dropped and

νT = c2s
∑
k

R (k, q)
ρ2
sk

2
y

(1 + ρ2
sk

2
⊥)

2kx
∂ 〈N〉
∂kx

. (2.39)

Here, ρs = cs/ωci, cs =
√
Te/mi and (1 + ηi) has been absorbed into ω∗d. For ∂ 〈N〉 /∂kx <

0 (true for all practical cases), the turbulent viscosity will be negative, and thus correspond

to a source of free energy for the mean flow, a result familiar from previous studies of the

drift wave-zonal flow system. Note that the inclusion of magnetic curvature would allow

the cell to couple directly to the free energy contained within the pressure gradient, and

thus admit additional unstable roots. Here, for simplicity, we choose to focus exclusively

on unstable roots associated with modulation instability of the drift wave turbulence, as

this will allow for an uncluttered presentation of the physics underlying the convective cell.

Finally, Eq. (2.38) is derived using q‖ = qy (x/Ls), where x = r − rm,n, and rm,n is the

m,n rational surface.

Eqs. (2.36) and (2.38) constitute a closed, self-consistent description of the dynamics of

a low-m, electrostatic vortical cell evolving in the presence of drift wave turbulence. Unlike

zonal flows, the resonant finite-m convective cell drives radial transport (since ṽr 6= 0) and

also is damped by field line bending and collisional viscosity, as well as by friction between

trapped and untrapped particles. Thus, the convective cell is more strongly damped than

the zonal flow, which is (linearly) damped only by collisional friction and viscosity. The

width of the cell is determined by the interplay between field line bending (i.e. proportional

to magnetic shear!) and viscosity. Thus, finite m, n convective cells are always localized at

k·B = 0 resonances and are more damped than zonal flows, and so are usually subdominant

to zonal flows. However, in the weak shear regimes characteristic of OAMq plasmas, they

can be considerably broader and more robust than in normal shear regimes.
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2.3 Excitation criterion

Here, we are interested in identifying the excitation criterion for the convective cell. In

order to simplify the notation throughout the analysis, Eq. (2.39) is approximated as:

|νT (qx)| ≈ c2s
γk

γ2
k + (qxvgr)

2 〈N〉 ≈
4DGB

1 + (4ρsqx)
2

〈N〉
NML

, (2.40)

where vgr/γk ≈ 4v∗e/ω
∗
e ≈ 4ρs, NML = (ρs/Ln)

2, and DGB = (ρs/Ln) csρs. A solution

to Eq. (2.38) can be found using a WKB analysis. We require convergent solutions for

<qx → ∞, and since the potential of Eq. (2.38) has a double well structure, we apply

φq (0) = 0 for odd modes, and φ′q (0) = 0 for even modes. The rhs of Eq. (2.38) has

six zeros in the coefficient of φq, resulting in singularities in the WKB solution. Thus,

we must find a solution near these regions and match to the surrounding WKB solutions.

Performing the asymptotic analysis yields the eigenvalue conditions for the odd and even

modes (respectively) as (details contained in Appendix A):

∆x

∫ q2

q1

dqx
√

Ξ (qx) = π

(
lo −

1

2

)
, (2.41a)

∆x

∫ q2

q1

dqx
√

Ξ (qx) = π

(
le −

1

2

)
+ δ , (2.41b)

tan δ = − 1√
2

exp

(
−4

3
∆x

(
− dΞ

dqx
|q=q1

)1/2

q
3/2
1

)
, (2.42a)

Ξ (qx) ≡
(

1− i
ω∗d
ω

)−1 [(
νc − |νT (qx)|
|νT (0)|

)
∆x2q2

x +
∆x2

|νT (0)|
[γd − i (ω − ω∗d)]

]
∆x2q2

x .

(2.42b)

Here, lo and le are integers ≥ 1, ∆x ≡ (|νT (0)| η)1/6 (Ls/ (vAqy))
1/3, and q1 and q2 are the

roots (in the complex plane) of Eq. (2.42b) with |q1| < |q2|. A branch cut is made between

q1 and q2, in order to ensure the kernel of Eqs. (2.41a) and (2.41b) is single valued, and
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the contour of integration is chosen to run just below this branch cut. Note that since the

real piece of δ is negative definite, the even mode with le = 1 is always the most unstable

solution. Thus, for the remainder of this analysis we will focus exclusively on this mode,

although the general properties of other modes would not differ significantly. At this point

it is convenient to introduce the following definitions

N ≡ 〈N〉
NML

, ν̂c ≡
νc
DGB

, Γ ≡ 1

γk
[γd − i (ω − ω∗d)] , ζ ≡ 1

8

(
N − Γ

ν̂c
− 1

4

)
+

1

16
.

Making the change of variables, z = ρ2
sq

2
x − (1/8) (N − Γ− ν̂c/4) /ν̂c, Eq. (2.41b) can be

rewritten as:

1

2

√
νc

|νT (0)|

(
∆x

ρs

)3(
1− i

ω∗d
ω

)−1/2 ∫ zc

−zc

dz

√
(zc − z) (zc + z)

z + ζ
=
π

2
+ δ , (2.43)

zc =
1

8

√(
N − Γ

ν̂c
− 1

4

)2

− Γ

ν̂c
, (2.44)

and |ζ| > |zc|. Evaluating the integral in Eq. (2.43) then yields:

π

2
+ δ =

2

3

√
νc

|νT (0)|

(
∆x

ρs

)3(
1− i

ω∗d
ω

)−1/2√
zc + ζ

{
ζE
(

2zc
zc + ζ

)
− (ζ − zc) K

(
2zc
zc + ζ

)}
.

(2.45)

Here K and E are complete elliptical integrals of the first and second kind respectively [37].

Expanding this expression to first order in ν̂c, yields a recursive expression for the growth

rate of the mode

Γ ≈ N −
( 3π

2
+ δ

1− ε

)2/3
ν

2/3
c

η1/3

(
vAqy
Ls

)2/3(
1− i

ω∗d
ω

)1/3
1

γk
, (2.46)
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ε ≡ 3

4
α

(
ln

(
16

α

)
− N − 2Γ

N − Γ

)
,

α ≡ 1

4

N

(N − Γ)2 ν̂c .

In order to obtain a simple excitation criterion for the convective cell, it is useful to neglect

the ω∗d dependence in the second term in Eq. (2.46) (a higher order ω∗d correction), then the

lowest order imaginary component of yields ω ≈ ω∗d. Thus, Eq. (2.46) becomes

N ≈ γd
γk

+

( 3π
2

+ δ

1− ε

)2/3
ν

2/3
c

η1/3

(
vAqy
Ls

)2/3
1

γk
. (2.47)

Here, since we are interested in an excitation criterion, the growth rate has been taken to

zero, and ε is defined above, except with Γ → γd/γk. The first term in Eq. (2.47) is the con-

tribution from scale-independent collisional damping, familiar from descriptions of zonal

flows, and the second term corresponds to damping due to magnetic shear (field line bend-

ing) and collisional viscosity. Note that although νc/DGB � 1 for all practical cases, α

may still be significant due to the factor of (N − Γ)2 in the denominator. This surprisingly

strong dependence on the collisional viscosity and field line bending can be understood

by considering the coupled effect of these two damping mechanisms. As shown below,

stronger field line bending leads to more localized modes in real space, so the rapid vari-

ation of the mode structure will then enhance the contribution from collisional viscosity

(note that the anomalous viscosity possesses scale dependence!), leading to a stronger sta-

bilizing effect. Furthermore, since the mode is ultimately localized by the presence of col-

lisional viscosity, it’s clear that even for modest values, the saturated turbulence intensity

can be strongly affected.

A numerical solution of Eq. (2.45) [with ω∗d = 0, in order to compare with Eq. (2.47)]

is plotted in Figs. 2.2 and 2.3. As can be seen from examination of Figs. 2.2 and 2.3,

or Eq. ( 2.47), for strong magnetic shear or viscosity the cell is strongly damped, so it
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Figure 2.2: Saturated intensity of drift wave turbulence for three values of magnetic shear
with the parameters γd/γk = 1, η/DGB = 1/10, β = 1/20, m = 2, and ρ∗ = 0.01. The
solid curve corresponds to Ls/Ln = 20, the broken curve to Ls/Ln = 10, and the last
curve to Ls/Ln = 1.

plays no role in regulating turbulence levels. In the opposite limit, the damping effects of

field line bending and collisional viscosity are limited, thus leading to a lower level of sat-

urated turbulence, and an increase in cell size (which determines the extent of cell-induced

mixing), and flow shear. Thus in this limit, the approximate scaling of the excitation thresh-

old of the turbulence intensity in the presence of the convective cell will roughly scale as

〈N〉 /NML ∼ γd/γk plus a small correction. This scaling is similar to the results from

previous drift wave-zonal flow studies. Thus, while low-m convective cells may exist for

normal q profiles, they can be expected to be much broader and more active (i.e. with

higher flow velocities and stronger flow shear) in regimes of weak magnetic shear. Associ-

ated fluctuation levels will be concomitantly reduced in such weak shear regimes, as well.

This leads us to the important conclusion that low-m convective cells are most important

in regions of weak magnetic shear, such as often exist for OAMq profiles.

Here it is useful to consider the structure and properties of the convective cell. In

real space, an approximate form of the cell structure can be calculated by inverse Fourier

transforming Eq. (2.38). This procedure is complicated by the scale dependence of νT (qx),
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Figure 2.3: Saturated intensity of drift wave turbulence for three values of viscosity for the
parameters γd/γk = 1, η/DGB = 1/10, β = 1/20, m = 2, and ρ∗ = 0.01. The solid curve
corresponds to νc/DGB = 0.01, the broken curve to νc/DGB = 0.05, and the last curve to
νc/DGB = 0.1.

which prevents νT (qx) from behaving like a simple diffusion coefficient. A crude estimate

can be obtained by solving Eq. (2.38) (in real space) for the case of νT (qx) ≈ νT (0) =

const. The asymptotic form of the radial cell profile is then given by

φ (x) ∼ 1

x3/4
exp

(
i
2

3

( x

∆x

)3/2
)

. (2.48)

A more detailed asymptotic calculation of the convective cell potential profile is shown in

Fig. 2.4. The width of the cell, which sets the scale of the flat spot or corrugation over

which profiles are mixed, scales as ∆x ≡ (|νT (0)| η)1/6 (Ls/ (vAqy))
1/3, and increases

with Ls.
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Figure 2.4: Sketch of radial eigenmode of convective cell.

Another observation that can be made from Eq. (2.48) is that, while φ decays alge-

braically, the strength of the flow shear increases as
∣∣v′y∣∣ ∼ x1/4. Thus, the magnitude of

Dk in Eq. (2.36) is stronger away from the rational surface, suggesting that the convective

cell will suppress turbulence away from the resonant surface more strongly than it will af-

fect turbulence at the resonant surface. This appears consistent with the dual observations

of persistent transport or mixing at the surface (needed for the local flat spot) along with

flow shear suppression of turbulence nearby the surface. Note that shear suppression by

both m 6= 0 flow components and m = 0 zonal flows, has been observed in simulations

[38].

We also note that this mechanism has a power threshold determined by the critical

fluctuation intensity level (Ncrit) required to drive the convective flow against damping due

to friction, line bending and viscosity, as shown in Eq. (2.47). Using a simple, standard

model of ITG turbulence [39] to relate heat flux to turbulence intensity, along with power

balance, yields:

Qcrit = −χcrit
∂Ti
∂r

≈ vthiTiηiε
−1/2
T τ 2Ncrit, (2.49)
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Pin ∼ RrbQcrit ∼ RrbvthiTiηiε
−1/2
T τ 2Ncrit, (2.50)

where

Ncrit ≈ Γ +

( 3π
2

+ δ

1− ε

)2/3
ν

2/3
c

η1/3

(
vAqy
Ls

)2/3
1

γk
.

Here, εT ≡ LT/R, R is the major radius, and rb is the radius of the barrier. The power

threshold clearly increases for stronger friction, and decreases for weaker magnetic shear.

2.4 Nonlinear evolution of convective cell

In the above discussion, an estimate of the excitation criterion for the destabilization of

the convective cell was presented. That analysis provided insight into the regimes in which

a convective cell is likely to be active, as well as the scale over which it is expected to mix.

Here we discuss purely nonlinear properties of the drift wave-convective cell system which

are not easily incorporated into the quasi-linear analysis. Specifically, we focus on the role

of trapping/detrapping of wave packets (quasi-particles) as they propagate in the cell field.

As discussed further below, this topic is critical as the presence of a significant population

of trapped quasi-particles can substantially impact the quasi-linear analysis utilized above

[40].

One of the utilities of the wave kinetic description is that it allows for the simple visual-

ization of micro-turbulence dynamics via the phase space evolution of drift wave packets.

More specifically, instability of secondary structures requires transport of micro-turbulence

to high-k⊥. Within the above description, this transport is induced via quasi-linear diffusion

of the drift wave turbulence by the large scale shear flow (random refraction). A necessary

condition for the validity of this quasi-linear description, is that the phase space trajectories

of the quasi-particles be stochastic. In the limit of small Kubo number (defined as the ratio

of the autocorrelation time of the shear flow structure to the shearing time τ−1
cc = v′0y), this

condition can be satisfied via resonance overlap in phase space (Chirikov criterion). The
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resulting ray chaos induces diffusive transport of the quasi-particles to high-k⊥, which can

be approximated via the k-space quasi-linear diffusion coefficient appearing in Eq. (2.36).

Alternatively, for a temporally stationary but spatially chaotic shear flow pattern of low

amplitude (conditions under which use of the quasi-linear equation is strictly justified),

diffusion in k-space follows directly.

For the important case of finite amplitude flows in the limit of large Kubo number (i.e.

stationary shear flow structures), purely integrable orbits may form in phase space due to

the strong nonlinear modification of quasi-particle orbits. These coherent structures are

not compatible with the quasi-linear description, since they are capable of ‘impeding’ the

transport of quasi-particles to high-k. One particular phase space structure which is of

interest here is that of trapped quasi-particles, which can be induced by velocity wells in

the shear flow pattern. Due to trapped quasi-particles undergoing closed orbits in phase

space, no net energy need be transferred from the trapped quasi-particle population to the

large scale shear flow. This is in contrast to the case of untrapped quasi-particles. They are

instead exposed to the global shear flow pattern, allowing them to be transported to higher

k⊥. Thus, quasi-particle trapping suggests a means by which intense shear flow patterns

may be nonlinearly saturated [5].

Our motivation in considering this topic is that in order to understand which types

of flow patterns are likely to be dominant near low-q surfaces, it’s necessary to consider

the “competition” between different Reynolds stress driven flow structures (i.e. m = 0

vs. finite-m). Criteria which provide insight into the importance or relevance of a given

flow pattern can be divided into two categories. The first is the stability threshold, as this

criterion must necessarily be satisfied for a particular flow pattern to be established. Thus,

it provides insight into the parameter regimes in which a specific flow pattern is likely to

be observed. In the above, we have already noted that for the case of weak magnetic shear,

the stability threshold for convective cells asymptotes to that of zonal flows. Hence, for
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reversed magnetic shear configurations, zonal flows have only a marginal advantage over

convective cells with regards to their respective excitation criterion. Also, in contrast to

zonal flows, the mean field nonlinearity within the vorticity equation can act as both a sink

or a source of energy for a finite-m flow, allowing for dual mechanisms of excitation (note

that tertiary instabilities are most important in regimes of weak magnetic shear).

Nonlinear saturation mechanisms define a second property which yields insight into the

relative importance of a specific flow structure. This property is critical, as once a flow pat-

tern is excited, the efficiency of the flow in regulating the turbulence intensity will depend

sensitively on its saturation mechanism. As noted above, for the case of weak magnetic

shear, magnetic field line bending plays only a marginal role in damping convective cells,

hence the collisional saturated intensity of (m 6= 0) convective cells is only mildly reduced

in comparison to zonal flows. To this we add that as shown below, due to the finite mixing

present within a convective cell (see Fig. 2.5) quasi-particles can be detrapped by the large

scale convection. This can easily be seen by considering that the “depth” of a shear well

increases in proportion to the strength of the shear flow. Hence, for the case of a purely

poloidal flow, the fraction of trapped quasi-particles will increase as the shear flow inten-

sifies. However, for the case of a finite-m flow, as the strength of the shear flow increases,

both the strength of the shear wells, as well as the efficiency of radial convective transport

increase, allowing the cell to circumvent quasi-particle trapping as a means of nonlinear

saturation.

2.4.1 Nonlinear wave trapping

Here we discuss two independent wave trapping mechanisms which may be induced by

a shear flow structure. The first mechanism which we consider corresponds to the classic

zonal flow trapping mechanism discussed in Ref. [21]. This solution is pertinent to this

analysis since, as alluded to above, it is strongly modified for the case of weakly non-
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Figure 2.5: The top figure shows a sketch of an oscillating shear profile. The locations
of the orbits of the trapped quasiparticles are indicated. The bottom figure shows a sketch
of velocity contours in the perpendicular plane, with arrows indicating the direction of the
velocity flow. The cells clearly provide a mechanism for the quasiparticles to be transported
between shear wells.

axisymmetric flows. Similarly, we demonstrate the existence of a novel wave trapping

mechanism, relevant in the limit of strongly non-axisymmetric flow structures, or strongly

anisotropic turbulence.

We begin by briefly reviewing the derivation of a simple trapping mechanism for the

case of m = 0 flows. Considering the characteristics of the W.K.E. given by Eqs. (1.28)

and (1.29), for the general case ofm 6= 0, an equation for the evolution of kx can be derived

as
d2kx
dt2

= −ky
dx

dt
·
∂v′y
∂x

− v′y
dky
dt
− kx

dx

dt
· ∂v

′
x

∂x
− v′x

dkx
dt

. (2.51)

As discussed in the next section, the solutions to Eq. (2.51) are in general chaotic. However,

here we are able to identify two simple solutions which are particularly pertinent to our

analysis. The first solution corresponds to the classic zonal flow wave trapping solution

discussed above (see also [21]), which may easily be recovered by setting ∂/∂y = 0 and
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substituting Eqs. (1.28) and (1.28) into Eq. (2.51)

d2kx
dt2

= 2v∗e
(kyρs)

2(
1 + (k⊥ρs)

2)2 ∂v′y∂x kx ≈ 2v∗e (kyρs)
2 ∂v

′
y

∂x
kx, (2.52)

where for v∗e∂v
′
y/∂x ≈ const < 0 (note the dependence on the branch of micro-turbulence)

can be recognized as the equation for a harmonic oscillator, with a bounce frequency given

by ωb =
√

2v∗ev
′′
y (kyρs).

The second solution which we consider is a novel wave trapping mechanism, induced

by the finite radial component of the non-axisymmetric shear flow. Due to the non-axisymmetric

nature of this solution, it will be necessary to simultaneously solve the four coupled equa-

tions given by Eqs. (1.28) and (1.29). For simplicity, we consider purely non-axisymmetric

stationary flows with only a single harmonic present. Note that this second trapping mech-

anism will be composed of two distinct components. The first is an oscillation of the orbits

of the wave quanta induced by the mesoscale flow. These oscillations – which vary on a

time scale given by τ−1
os ∼ qyv

∗
e – are quite general to a wide variety of different wave

quantum orbits and are simply a result of the sign of the velocity shear seen by the wave

quantum flipping as it traverses from one cell to another in the poloidal direction. Thus,

this component is present in any solution where |vgry| > |vy|. Because of its generality,

this component of the solution will provide very little information about the overall orbit

of the wave quantum. The second component which is relevant to this analysis is a drift

of wave quanta induced by the shear flow, and varies on a time scale given by τ−1
cc ∼ v′0y.

Whether this net drift is oscillatory or divergent determines if the wave quantum remains

trapped by the flow. Utilizing these two time scales, a two scale perturbative analysis may

be performed on Eqs. (1.28) and (1.29) (details of the derivation are presented in appendix
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B), yielding the bounce frequency

ωcc = v′0y (k0yρs)

√
2−

(
qx
qy

)2

(k0yρs)
2, (2.53)

which provides a trapping criterion given by

1

2

(
qx
qy

)2

(k0yρs)
2 < 1. (2.54)

Note that while Eq. (2.54) does not contain any explicit dependence on v0y/v
∗
e , the width

of the separatrix of the islands in the kx-x plane will depend sensitively on the strength

of the shear flow via Eq. (2.B12). Hence, similar to the zonal flow trapping solution, the

width of cell induced islands increases as v0y/v
∗
e becomes stronger. Furthermore, while Eq.

(2.54) places a strong restraint on the value of ky, it places no restraint on the strength of

kx. Thus, this trapping solution, while of limited applicability for isotropic turbulence, may

play a potentially important role for poloidally extended anisotropic turbulence. Also note

that, as nonlinear wave trapping is only important in regimes in which the autocorrelation

time of the shearing pattern is long in comparison to the bounce frequency of wave quanta,

Eq. (2.53) provides an upper bound on the rate in which the shear flow pattern may vary.

Finally we note, that while for a generalized mesoscale flow both of these solutions are

strongly modified, each solution strongly affects overall transport via the introduction of

nontrivial phase space topology.

2.4.2 Convective cell induced ray chaos

As is clear from Eqs. (1.28) and (1.29), this system possesses a Hamiltonian structure

where

δω (x, y, kx, ky) = ωk + v0 · k, (2.55)
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acts as the effective Hamiltonian. As noted above, for the axisymmetric case of qy = 0,

the quasi-particle orbits which this Hamiltonian describes are particularly simple, i.e. since

ky is a constant of the motion, the contours of N = N (x, y, kx, ky) evolve in the three

dimensional space given by (x, y, kx). After applying the constraint δω (x, y, kx, ky) =

const, this further restricts the contours to a two dimensional surface within this space.

Hence, if a cross section of the phase space is taken at constant y, the orbits of the quasi-

particles will necessarily have solutions described by N = N (δω (x, kx) , ky). However,

considering the more general case of a weakly non-axisymmetric flow with small but finite

qy, ky will be modulated by the weak radial component of the cell, removing one of the

constants of motion. Thus, the space in which the quasi-particle is allowed to wander is

increased by one dimension. For arbitrarily small values of qy many of the surfaces on

which the wave packet traversed in the unperturbed system are likely to remain intact.

However, as qy is increased, an increasing number of these surfaces are destroyed, leading

to chaotic orbits.

Here we consider a mean electrostatic potential of the form

φ̄ = φA sin (qxx) +
∑
i

φ
(i)
NA sin

(
q(i)
x x+ ψ(i)

)
cos
(
q(i)
y (y − V0yt)

)
, (2.56)

where φA and φNA correspond to the axisymmetric and non-axisymmetric components of

the flow respectively, ψ is the relative phase of the non-axisymmetric component in compar-

ison to the axisymmetric component, and V0y is the phase velocity of the non-axisymmetric

component. This flow, while clearly an idealization, is capable of approximating a wide

variety of shear flow structures relevant to laboratory plasmas.

In order to remove the time dependence in Eq. (2.56) it is convenient to transform to

a frame moving with the same phase velocity as the shear flow structure. This is most
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conveniently done via introducing the generating function given by:

S (k′,x, t) = k′ · x− k′yV0yt, (2.57)

where the canonical transformation is then defined as

k =
∂S (k′,x, t)

∂x
= k′, x′ =

∂S (k′,x, t)

∂k′
= x− V0ytŷ, (2.58)

and

δω (k′,x′, t) = δω (k,x, t) +
∂

∂t
S (k′,x, t) , (2.59)

which after substituting Eq. (2.58) into the electrostatic potential given by Eq. (2.56), and

evaluating the time derivative, Eq. (2.59) can be rewritten as

δω (k′,x′) = k′ · v0 (x′) +
k′y

1 + k′2⊥ρ
2
s

[
v∗e − V0y

(
1 + k′2⊥ρ

2
s

)]
. (2.60)

Thus, in this frame the Hamiltonian has no explicit time dependence. Note that for co-

propagating flow structures with V0y = v∗e , the system approaches the hydrodynamic inte-

grable limit. Thus for this limit, dispersion (along with non-axisymmetry of the shear flow)

of the drift wave turbulence introduces the non-integrable perturbation. Alternatively for

counter-propagating flows, only non-axisymmetry is required for non-integrability. Thus,

in contrast to the purely axisymmetric case, electron and ion branches of drift wave turbu-

lence are likely to interact somewhat differently with non-axisymmetric shear flow struc-

tures.

In the following, the phase space structures present for a number of different limits

of Eq. (2.60) are discussed. Poincaré surface of sections are computed for constant val-

ues of y. These simulations are performed by considering a large number of initial kx

and x values (where δω is kept constant for each initial condition), and integrating for-
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ward in time. The accuracy of the numerical integration is verified both by checking that

δω is constant throughout the integration (to within a relative error of 10−6), and that the

simulation results are qualitatively unchanged as the accuracy of the numerical solver is

increased. Note that for this section we are primarily concerned with gross properties of

the phase space structure, such that while increased accuracy would make the details of

phase space structures clearer, for this section such accuracy is not required. However, in

subsequent sections where greater resolution is required, the accuracy of the solver will be

subsequently increased.

2.4.2.1 Stationary flows

As discussed above, the qy = 0 limit possesses particularly simple solutions. Here

we look for solutions of a more general form by considering weakly non-axisymmetric

structures, but with V0y = 0. In order to minimize the dimensionality of the parameter

space of the system, we consider the limit where only a single harmonic is present. A

Poincaré surface of section for the parameters qy/qx = 1/20 and |v0y| /v∗e = 0.04 is plotted

in Fig. 2.6(b). In comparison with the qy = 0 zonal flow case shown in Fig. 2.6(a),

it’s clear that the region of trapped wave quantum orbits has been replaced by a dense

area filling stochastic region. The efficiency of non-axisymmetric flows in destroying the

trapped particle orbits can be easily understood by considering the two dimensional nature

of the structure. For a purely non-axisymmetric flow, O-points smoothly evolve into X-

points as wave quanta traverse the poloidal circumference [the cos (qyy) term in Eq. (2.56)].

Thus a particle which is initially trapped by an O-point will be scattered by an X-point as

it traverses the circumference of the confinement device. In this way, arbitrarily weak non-

axisymmetric flows are capable of breaking closed KAM surfaces associated with trapped

wave quanta.

Similarly, it is instructive to increase the strength of the shear flow pattern. For the
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Figure 2.6: Poincaré surface of sections in the kx-x plane. The plot on the left is for qy = 0.
The plot on the right is for the parameters qy/qx = 1/20 and |v0y| /v∗e = 0.04.

parameters qy/qx = 1/20 and |v0y| /v∗e = 0.2 (shown in Fig. 2.7), it is clear that while

the region inside the separatrix is still largely chaotic, this figure contains a clearly visible

region in which integrability has been restored. Note that these closed KAM surfaces, do

not correspond to trapped wave quanta, instead they are periodic orbits in which a wave

quantum traverses a single velocity well after each rotation around the poloidal circumfer-

ence (i.e. traversing successive O-points in the radial direction). Also note that the width

of the stochastic region has significantly increased, which is simply a result of the width of

the separatrix in the qy = 0 integrable region increasing. Note that for both Figs. 2.6(b)

and 2.7 the KAM surfaces associated with untrapped wave quanta remain intact. These

surfaces may be broken via stronger non-axisymmetry, increased v0, violation of the strict

periodicity utilized in this simple analysis, or as discussed below, the inclusion of a finite

phase velocity.

2.4.2.2 Time periodic flows

In the previous section, the Hamiltonian of a stationary flow structure was studied in

various limits. Here we find it useful to generalize to a time periodic flow profile, i.e. one

moving in the poloidal direction with a constant phase velocity. This limit is interesting as

many weakly non-axisymmetric flow structures propagate with a nearly constant poloidal
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Figure 2.7: Poincaré surface of section in the kx-x plane. This plot is for qy/qx = 1/20 and
|v0y| /v∗e = 0.2.

phase velocity (drift tearing modes, secondary convective cells, etc). Thus, this analysis

can be understood to correspond to a study of coherent non-axisymmetric flow structures

with short wavelength drift wave turbulence.

Considering the simple case of V0y = v∗e , Poincaré surface of sections are plotted in

Figs. (2.8) and (2.9)(with qy increased by a factor of two in comparison to the previous

section to reduce the run time of the routine). In order to provide a more complete picture

of the phase evolution of the system, we have plotted a larger area in phase space, such that

the role of integral structures at high-kx is evident. As can clearly be seen, in comparison

with the case of stationary flows, the phase space is significantly more chaotic. While

the chaotic region remains localized for small v0y/v
∗
e , as the strength of the shear flow is

increased, it’s clear that nearly all KAM surfaces are destroyed, allowing the system to

enter into a state of global chaos.
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Figure 2.8: Poincaré surface of sections in the kx-x plane. The plot on the left is for
qy/qx = 1/10 and |v0y| /v∗e = 0.1. The plot on the right is for the parameters qy/qx = 1/10
and |v0y| /v∗e = 0.2.
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Figure 2.9: Poincaré surface of sections in the kx-x plane for the parameters qy/qx = 1/10
and |v0y| /v∗e = 0.3.

The phase space of a counter-rotating mode translating with a constant velocity V0y =

−v∗e is shown in Figs. 2.10 and 2.11. Similar to the co-rotating case, the onset of global

chaos occurs for approximately v0y/v
∗
e ≈ 0.3. Note that while the density of points in

Fig. 2.11 is much larger in the region of formerly trapped quasi-particles, the exterior

KAM surfaces associated with this region have been broken. The increased density of

points can instead be understood to correspond to residual correlations of the trapped quasi-

particle orbits, or a region of locally small Lyapunov exponents surrounded by one with

substantially larger values.
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Figure 2.10: Poincaré surface of sections in the kx-x plane. The plot on the left is for
qy/qx = 1/10 and |v0y| /v∗e = 0.1. The plot on the right is for the parameters qy/qx = 1/10
and |v0y| /v∗e = 0.2.
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Figure 2.11: Poincaré surface of sections in the kx-x plane for the parameters qy/qx = 1/10
and |v0y| /v∗e = 0.3.

As discussed above, trapped wave quantum orbits were predicted to exist for the case

of strongly anisotropic turbulence [Eq. (2.53)]. While these solutions have been found nu-

merically for the case of a stationary shear flow, they become more prominent for counter-

rotating flows. The degree of anisotropy of the turbulence may be controlled by varying the

constant of motion δω. Choosing δω such that kyρs ≈ 0.1 [see Fig. 2.12(b) for a distribu-

tion of ky], and the parameters qy/qx = 1/8 and v0y/v
∗
e = 0.45, Fig. 2.12(a) demonstrates

the presence of closed KAM orbits for kx as large as kxρs ≈ 0.5. For Figs. 2.10 and 2.11,

where there is no signature of this trapping mechanism, kyρs varied between magnitudes of

0.3−1.2, hence the turbulence was primarily isotropic for the region in which this trapping

mechanism is predicted to be active, thus demonstrating that the presence of these orbits

depends sensitively on the degree of anisotropy of the turbulence.
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Figure 2.12: Poincaré surface of sections in the kx-x and ky − x plane for the parameters
qy/qx = 1/8 and |v0y| /v∗e = 0.45. The value of y chosen was 90 degrees out of phase with
previous plots, such that the 3-D nature of the trapping solution is evident.

2.4.2.3 Generalized Hamiltonian: inclusion of axisymmetric component

In the previous sections the special case of a purely non-axisymmetric flow struc-

ture was considered. Here we are interested in understanding the more general case in

which both a non-axisymmetric flow component as well as an axisymmetric component

are present. For the case of φNA/φA = 0.2, a Poincaré surface of section is plotted in Fig.

2.13. Fig. 2.13 indicates that while there exists a thin stochastic layer near the separatrix,

the kx-x plane is largely integrable. This result is not surprising, since, as discussed above,

for a purely non-axisymmetric flow O-points smoothly evolve into X-points providing a

robust means of breaking KAM tori regardless of the poloidal harmonic of the flow. This is

in contrast to systems which possess a strong axisymmetric component. For these systems,

as wave quanta traverse the poloidal circumference, the relative strength of an O-point will

be modified by the non-axisymmetric component, effecting a transition to stochasticity for

wave quanta near the separatrix, but leaving KAM tori further inside the separatrix intact.

Thus, for the limit of φNA/φA � 1, nonlinear wave trapping can be seen to introduce a

robust means of impeding the transport of wave quanta to high-k⊥, and thus quenching the

transfer of energy to large scales.
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Figure 2.13: Poincaré surface of section in the kx-x and ky − x plane for the parameters
qy/qx = 1/10 and φNA/φA = 0.2.

Considering now the case of φNA/φA = 0.8, Fig. 2.14 demonstrates the existence of a

large region of stochasticity. We have chosen a somewhat narrower view than in previous

plots such that the details of the phase space are made evident. From Fig. 2.14 it’s clear

that the elliptic point located near x = 0, kx = 0 has bifurcated into three elliptic points

and two hyperbolic points. Also, note that the region immediately surrounding the three

elliptic points, while stochastic, is significantly darker than the surrounding stochastic sea,

indicating the tendency of particles to spend a disproportionate amount of time in this

region. A similar phase space structure was observed in Ref. [41], and was classified

as a stochastic layer trap. This stochastic layer trap corresponds to a sticky phase space

domain capable of strongly affecting the statistics of the overall system due to wave quanta

spending a disproportionate amount of time localized to this region. Thus, for a strong non-

axisymmetric component, while KAM tori associated with the unperturbed orbit are largely

broken, residual correlations introduce a degree of phase space stickiness, which is capable

of strongly impacting the overall transport of the system. Note that this sticky domain is

localized around kx = 0, thus wave quanta which enter this quasi-trap are strongly confined

in both position as well as wave number space.
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Figure 2.14: Poincaré surface of section in the kx-x and ky − x plane for the parameters
qy/qx = 1/10 and φNA/φA = 0.8.

In summary, the introduction of a weak non-axisymmetric perturbation to the zonal

flow shear profile has been shown to break KAM tori associated with nonlinearly trapped

wave packets and so produce chaotic orbits. The absence of these KAM tori allows for

nonlinear wave trapping to be largely circumvented as a saturation mechanism for the large

scale shear flow. Note that while in this analysis we have focused on the convective cell

as the symmetry breaking mechanism, the presence of any appreciable non-axisymmetric

component to the shear flow profile will likely have a similar effect. Also note that this

result has been obtained in the limit of an infinite Kubo number, the ideal region for wave

trapping to occur.
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2.5 Transport Model

In the above, an excitation threshold as well as key properties of the linear mode struc-

ture and nonlinear dynamics of the convective cell were discussed. These investigations

utilized idealized models in order to illustrate these fundamental characteristics clearly.

Due to the idealized nature of these models however, much of the self-consistent time de-

pendent dynamics of the micro-turbulence and shear flows has been lost. Here, we seek

to recover this information and demonstrate the form of different time dependent solutions

of the convective cell and drift wave system in various parameter regimes. Emphasis is

placed on understanding how these different solutions impact the formation of ITBs, and

thus the amount of input power required. In particular, a simple set of zero dimensional

amplitude equations are derived and used to phenomenologically model the formation of

an ITB. While this simple phenomenological model is incapable of accurately represent-

ing the detailed spatial structure of the drift wave-convective cell system, it does allow

insight into the interplay between turbulence intensity, Reynolds stress driven zonal flows

and convective cells, mean E × B flows, as well as their relation to mechanisms which

trigger transport barriers.

2.5.1 Model equations

The system of equations we consider are similar to those utilized in Refs. [42, 43]

(also, see Refs. [44, 45]), and are given by

∂ε

∂t
= γP ′ε− a1v

2
ccε− a2v

2
EBε− a3ε

2, (2.61)

∂vcc
∂t

= b1εvcc − b2vcc, (2.62)

∂P ′

∂t
= −c1εP ′ − c2P

′ +Q, (2.63)
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vEB = d1P
′2. (2.64)

The terms on the right hand side of Eq. (2.61) have clear analogues to terms contained

within Eq. (2.36). Specifically they correspond to linear growth, convective cell shearing,

mean flow shear, and local self-saturation of the turbulence intensity. Similarly, by analogy

with Eq. (2.38), Eq. (2.62) contains convective cell generation via Reynold’s stresses as

well as linear damping. Here, the linear damping is understood to represent field line bend-

ing, viscosity, friction, and potentially collisionless processes, which in the context of a

zero dimension model all have the same functional form. Also, the pressure equation con-

tains both turbulent and neoclassical transport coefficients, as well as heat input. Finally,

the mean flows are slaved to the pressure gradient via Eq. (2.64). Note that these equations

should be understood to apply near the location of a low-q resonance where the convective

cell is most active.

2.5.2 Solution to reduced two field system

Before analyzing the complete system of equations given by Eqs. (2.61)-(2.64), it is

convenient to consider the two field system given by Eqs. (2.61) and (2.62) where P ′ is

utilized as the control parameter, and Eq. (2.64) closes the system. This simplified model

is instructive, as many of the fixed point states which occur in the full system are present

within this reduced model. Thus it provides a means of clearly illustrating much of the

complete system’s underlying behavior, with significantly less clutter (see Table I for a

summary). In this simple limit there exist three fixed points. The first can be trivially seen

to occur for v2
cc = 0 and ε = 0. Performing a simple linear stability analysis around this

point yields purely real eigenvalues with a stability condition given by γ < a′2P
′3, where

a′2 ≡ a2d
2
1. For stable solutions, this point possesses the dual properties of low transport

(only neoclassical) and high mean field shear, and thus may be understood to correspond

to an ITB mode.
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Table 2.1: Summary of the values of the fixed points and stability criteria for the two field
model.

Fixed Points Stability Criteria
ITB ε = 0, v2

cc = 0 γ < a′2P
′3

CCR ε = (b2/b1) , v2
cc = (1/a1) [γP ′ − a′2P

′4 − a3 (b2/b1)] γP ′ > a′2P
′4 + a3 (b2/b1)

UR ε = (1/a3) (γP ′ − a′2P
′4) , v2

cc = 0 γP ′ < a′2P
′4 + a3 (b2/b1)

The second solution which is pertinent to this analysis is localized around ε = b2/b1

and v2
cc = (1/a1) [γP ′ − a′2P

′4 − a3 (b2/b1)]. The eigenvalues for this mode are generally

complex and have a stability condition given by γP ′ > a′2P
′4 + a3 (b2/b1). Thus, eigen-

modes centered around this point may be understood to correspond to spiral modes. This

eigenmode structure leads to a self regulating system, where the turbulent transport is not

completely quenched, but is significantly reduced via convective cell shearing. Thus, it is

convenient to refer to this state as a convective cell regulated (CCR) state. Also, for the

case of a3 ≈ 0 the stability criteria for the ITB state and the CCR state are complementary,

i.e. once the CCR fixed point goes unstable, the ITB state becomes an attractor. Thus, it’s

easy to see that transitions from CCR to ITB mode are readily attainable. Note that for

the two field model, P ′ is utilized as the control parameter. In the next section P ′ will be

replaced by the heat flux Q, as P ′ will be allowed to vary dynamically.

The last fixed point present within this reduced model corresponds to

ε = (1/a3) (γP ′ − a′2P
′4) and v2

cc = 0. The eigenvalues for this point are real, with a

stability condition given by γP ′ < a′2P
′4 +a3 (b2/b1). Thus, this state is relevant for strong

cell damping (large b2) in which the cell is submarginal (also note this solution necessar-

ily appears before the ITB mode). We refer to this state as the unregulated (UR) state of

the system. Note that unlike the CCR state, the UR state’s stability criterion possesses

a large region of coexistence with the ITB state, making bifurcations between these two

states difficult. Hence, it’s clear that the role of the CCR mode is to provide an efficient

means of entering the ITB mode, by avoiding the difficult UR→ITB transition route. Also
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note that while this large region of coexistence of the UR and ITB modes makes transitions

between these two solutions difficult (a minus for confinement), this region of coexistence

also allows for the possibility of hysteresis (a plus).

2.5.3 Three field evolution

Considering the three field model given by Eqs. (2.61)-(2.64), we may identify fixed

point solutions in direct analogy with the previous section. Beginning with the ITB state,

where the fixed point is now given by ε = 0, v2
cc = 0, and P ′ = Q/c2. Performing a

linear stability analysis about this point yields pure real eigenvalues with a stability criterion

γ < a′2 (Q/c2)
3, which can be seen to be identical to that found for the two field model in

the previous section. This isomorphism is not surprising as the role of P ′ is essentially

replaced by Q in the three field model.

For the CCR state, the fixed point is given by

ε =
b2
b1
≡ N , P ′ =

Q

c1N + c2
≡ q, v2

cc =
{
γ − a′2q

3
} q

a1

− a3

a1

N . (2.65)

Note that while this fixed point is similar to the two field case, the nontrivial dependence

of P ′ on Q (note the N dependence in the denominator) will introduce somewhat more

complex stability criteria. The eigenvalue condition for perturbations around this point is

cubic, and in general complex. Here we are primarily interested in the stability criteria near

this fixed point, thus it is convenient to apply the Routh-Hurwitz method (which provides

a set of criteria for all roots having negative real parts), yielding the nontrivial stability

criteria:

γq > a′2q
4 + a3N , (2.66)
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and

[a3N + (c1N + c2)]
[
a3 (c1N + c2) + c1qγ − 4a′2c1q

4
]
> 2a3b2

(
a′2q

4 + a3N − γq
)
,

(2.67)

where Eq. (2.66) is isomorphic to the two field system, and can be recognized as being

merely the reality condition of the fixed point of v2
cc. However, with the addition of Eq.

(2.67), a more stringent criterion applies to the stability of the CCR mode. This added

constraint will be shown to be crucial to the CCR→ITB bifurcation.

Finally, for the state with v2
cc = 0, but ε 6= 0, referred to in the two field model as the

UR state, the fixed points are given by v2
cc = 0, P ′ = Q/χst, where χst ≡ c1ε+ c2 is given

by

0 = −a3

c1
χ5
st + a3

c2
c1
χ4
st + γQχ3

st − a′2Q
4. (2.68)

Thus, while for the two field model only a single fixed point existed for v2
cc = 0, but

ε 6= 0, here multiple solutions may exist, depending on the parameter regime. Insight can

be gained into the behavior of these solutions via numerical solution of Eqs. (2.61)-(2.64).

In order to focus exclusively on the behavior of this set of modes, and their transition to

the ITB mode, we choose a parameter regime with strong cell damping, so that Eq. (2.66)

is never satisfied. Fig. 2.15(a) shows the evolution of the turbulence intensity, convective

cell amplitude, and pressure gradient vs. time. The heat input is initially zero, but is

linearly increased with time. For small t only one root of Eq. (2.68) exists, whose value

can be seen to increase in time [see Fig. 2.15(b)]. However as time evolves a second root

appears. We refer to these roots as the weak UR (WUR) and strong UR (SUR) transport

modes. Also note for this parameter regime, the ITB fixed point becomes stable at roughly

t ≈ 125 (in arbitrary units). Thus, while the system is clearly in SUR for t . 190, there

is coexistence with both the ITB and WUR states for t ≈ 125 through t ≈ 190, thus

illustrating the difficulty of (S)UR→ITB transitions. From Fig. 2.15(a), it’s clear that the
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Figure 2.15: (a) The evolution of turbulence intensity, convective cell amplitude, and pres-
sure gradient are denoted respectively by the solid, the broken, and broken-dotted. (b)
Roots of Eq. (2.68) for times t1 ≈ 103, t1 ≈ 155, t1 ≈ 180, and t1 ≈ 192 denoted by
the solid, broken-dotted, broken, and dotted lines respectively. UR fixed point solutions
disappear coincident with transition to ITB state.

system transitions into ITB mode at roughly t ≈ 190. This bifurcation results from the

fixed point solutions of the WUR and SUR modes vanishing, as shown in Fig. 2.15(b).

The coexistence of multiple stable fixed points allows for the possibility of hysteresis

between the SUR and ITB modes. This hysteresis is demonstrated in Fig. 2.16(a), where

we have linearly increased the power input until the system bifurcates into ITB mode, and

then ramped down the power linearly at the same rate. As can clearly be seen, a large

region of hysteresis is present. Note that the width of this region is exaggerated due to the

turbulence intensity going almost exactly to zero before the ITB mode becomes unstable.

That is, the ITB mode becomes unstable at Q = 1, such that the turbulence intensity

begins to grow at this point, however because the amplitude of the turbulence intensity is

nearly zero, the amplitude remains negligible until roughly Q ≈ 0.6. More precisely, the

eigenvalue for the ITB mode (there of course exist three, but two are trivially stable) is given

by λ =
[
γ − a′2 (Q/c2)

3] (Q/c2). For large Q, the system decays exponentially with a rate

that scales as Q4, thus rapidly damping the eigenmode for Q > 1. In contrast, for small Q,

the eigenmode is amplified, but with a far weaker growth rate, thus leading to a wide region

of hysteresis. This discrepancy may be easily corrected via the introduction of a weak noise

term into Eq. (2.61), whose magnitude is chosen to be three orders of magnitude smaller
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Figure 2.16: (a) The evolution of turbulence intensity, convective cell amplitude, and pres-
sure gradient are denoted respectively by the solid, the broken, and broken-dotted. The
arrows delineate whether the power is being increased or decreased. A clear region of
hysteresis is observed. (b) Same as (a) but with noise added.

than the linear growth rate such that the underlying dynamics are largely unperturbed. The

results of the simulation of the modified system are shown in Fig. 2.16(b), where the width

of the hysteresis region can be seen to be significantly reduced.

In order to consider the CCR→ITB transition, the large scale damping may be reduced

in comparison to the above simulations, such that the inequalities in Eqs. (2.66) and (2.67)

are satisfied, allowing for the cell to be destabilized. As shown in Figs. 2.17(a) and 2.17(b)

(with the noise term turned off), after a transient burst by the convective cell, the system

begins to approach SUR mode. However, as the input power is increased, the system tran-

sitions into CCR mode. As can be seen in Fig. 2.17(b), the eigenmode corresponds to an

inward spiral, as anticipated from the two field calculation. Once the input power becomes

large enough, the stability criterion given by Eq. (2.67) is violated, resulting in a transition

into ITB mode. Note that this transition occurs with significantly less input power than in

the SUR→ITB bifurcation. Thus, while entry into ITB mode is possible in the absence of

the convective cell, the power threshold for such a transition is substantially higher. This

significant reduction in input power for entry into ITB mode may be understood to result

from CCR mode pushing the system into the basin of attraction of the ITB attractor. Thus,

once the CCR fixed point becomes unstable, ITB mode may be readily accessed.

We now consider the impact of holding the power input fixed after the CCR fixed point
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Figure 2.17: (a) The evolution of turbulence intensity, convective cell amplitude, and pres-
sure gradient are denoted respectively by the solid, the broken, and broken-dotted, where
the cell damping has been substantially reduced. (b) 3-D phase space of ε, vcc, and P ′. Af-
ter transient burst of convective cell, system begins to approach SUR mode, subsequently
transitions into CCR mode, and finally transitions into ITB mode once CCR fixed point
becomes unstable.

becomes unstable, but before the ITB attractor appears. As is evident from Figs. 2.18(a)

and 2.18(b), after the CCR fixed point goes unstable, the system undergoes a Hopf bifur-

cation into a limit cycle solution. From Fig. 2.18(a), it is clear that this solution results

in bursty transport. Transition from this state into the quiescent ITB mode is possible via

further increasing the input power.

In summary, four distinct modes of the system are predicted by the simple model:

a.) the ITB mode corresponds to an ε = v2
cc = 0 solution (i.e. zero microturbulence,

convective cell) which is accessible for high input power regimes. This mode should

be understood to correspond to a somewhat idealized state of an experimental ITB,

since for an experimental system, MHD modes (not contained within this simple

model), are likely to degrade transport for high β values, and push the system away

from this attractor.

b.) (S)UR mode represents a high transport state which exists for strong large scale

damping. Transition into ITB mode is possible via this mode, however at a cost of

high input power. Fairly wide regions of hysteresis were observed however, suggest-

ing that while reaching ITB mode via this mode is costly initially, it may be possible
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Figure 2.18: (a) The evolution of turbulence intensity, convective cell amplitude, and pres-
sure gradient are denoted respectively by the solid, the broken, and broken-dotted, where
rate of power input is held fixed after the CCR fixed point becomes unstable. (b) 3-D phase
space of ε, vcc, and P ′. Same plot as Fig. 2.17(b), however power input is held fixed after
instability of CCR fixed point. System fails to reach ITB mode, instead is absorbed into
limit cycle solution.

to significantly reduce the input power afterward without back transitioning.

c.) CCR mode corresponds to a regime of cell regulated transport. This mode is active

for regimes of weak large scale damping (low collisionality and magnetic shear),

and has been shown to provide a means for the system to access ITB mode with

a minimum of input power. Hysteresis between CCR and ITB mode plays no role

in this transition scenario, as the ITB attractor doesn’t appear until after the CCR

mode becomes unstable, hence there is no regime of coexistence between these two

attractors.

d.) limit cycle solutions, characterized by bursty transport, were obtained via a super-

critical Hopf bifurcation of the CCR mode for input powers slightly above the CCR

stability criteria. Upon subsequently increasing the power input, beyond the thresh-

old of the ITB attractor, the system transitions into ITB mode. Also note that because

the limit cycle solution appears via a supercritical Hopf bifurcation, there is no hys-

teresis between the CCR and limit cycle solutions.
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2.6 Conclusion

In the above analysis we have proposed an ITB trigger mechanism which addressed

key components of experimental observations of ITB formation, namely:

a.) an electrostatic trigger mechanism

b.) profile flattening or “corrugation” at the rational surface

c.) barrier formation nearby the rational surface.

The addition of a novel candidate ITB trigger mechanism to an already crowded field is

necessary, as existing theories of ITB formation appear to be largely incompatible with the

above observations. Also, this mechanism is particularly attractive as it provides a simple

and direct means of linking the transport barrier to the region nearby the low-q surface.

Alternatively, the generation of shear flows near low-q surfaces may be linked to the

response of micro-turbulence to the appearance of the low-q resonance. In particular, cou-

pling of many co-located high m, n harmonics has been shown to lead to strongly inho-

mogeneous structures in the vicinity of the low-q surface [46]. Such coupling has been

shown to overcome magnetic shear damping and result in localized peaks in the fluctuation

intensity profile. Since such localized peaks necessarily imply a sharp slope in the fluctu-

ation intensity profile, their resulting Reynolds stress naturally produces flow shear which

is strongest nearby the resonant surface, thus triggering the formation of a transport barrier

there. This scenario will be explored further in a future publication. Also, we note that

these two possibilities are not mutually exclusive, and may in fact work in synergy.

To summarize, the main results of this paper are as follows:

a.) secondary convective cells, while generally subdominant to zonal flows, are likely to

be active near regions of weak magnetic shear. This follows as a result of field line

bending being substantially reduced in these regions
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b.) secondary convective cells satisfy the experimentally observed criteria of strong mix-

ing at the low-q surface and strong shear nearby the resonant surface

c.) nonlinear wave trapping is unlikely to be effective in saturating the growth of convec-

tive cells. This follows as a result of the non-axisymmetric component of the shear

flow removing ky as an integral of motion of the system, and thus breaking the KAM

tori associated with the trapped quasi-particle orbits

d.) the power input required to trigger a mean flow bifurcation into an ITB state has been

shown to be significantly reduced via the CCR→ITB mode transition scenario

In conclusion, we remind the reader that this paper has proposed a novel mechanism for the

formation of ITBs nearby low order resonant-q surfaces. This mechanism centers on a low-

m electrostatic convective cell, excited by modulational instability of ambient drift wave

turbulence and damped by friction and field line bending. Thus, such cells are probably

significant only in conditions of weak magnetic shear, as often exist near OAMq profiles.

Appendix A: Derivation of Convective Cell Eigenvalue Con-

dition

In this appendix we provide details of the derivation of Eqs. (2.41a) and (2.41b). We

begin with Eq. (2.38), which we rewrite here for convenience as

0 =
∂2φ (p)

∂p2
− Ξ (p)φ (p) , (2.A1)
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Figure 2.19: Sketch of local Stokes structure in the complex p plane. Dotted lines indicate
Stokes lines in the vicinity of turning points. The location of zeros in the potential are
denoted by points. Finally, the solid line is an example of a path through the various WKB
regions.

where

Ξ (p) ≡
(

1− ω∗d
ω

)−1 [(
νc − |νT (p)|
|νT (0)|

)
p2 +

∆x2

|νT (0)|
[γd − i (ω − ω∗d)]

]
p2, (2.A2)

and p ≡ ∆xqx. A WKB solution can be readily derived from Eq. (2.A1), yielding:

φWKB (p) =
C

(Ξ (p))1/4
exp

(
i

∫ p

dp
√
−Ξ (p)

)
+

D

(Ξ (p))1/4
exp

(
−i
∫ p

dp
√
−Ξ (p)

)
,

(2.A3)

where C and D correspond to arbitrary constants. The potential given by Eq. (2.A2)

possesses six roots, two of which are zero, and the other four which we will label ±p1

and ±p2, are generally complex. As is clear from the form of Eq. (2.A3), each of these

roots, correspond to singularities in the WKB solution. Thus, connection formulas will

be required in order to match WKB solutions valid in different regions. This asymptotic

analysis is complicated due to the necessity of performing the analysis in the complex p

plane. This requires an understanding of the location of the Stokes lines [lines for which

the real part of the exponents in Eq. (2.A3) vanish], such that the matching can be carried

out unambiguously. A sketch of the local Stokes structure in the complex p plane is shown

in Fig. 2.19, which will serve as a ‘guide’ for the asymptotic analysis carried out below.
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Considering first the region near p = 0, or the limit:

|p|2 <
∣∣∣∣ ∆x2

|νT (0)|
[γd − i (ω − ω∗d)]

∣∣∣∣ , (2.A4)

(where we have ignored the νc term for simplicity), Eq. (2.A2) may then be approximated

as

Ξ (p) ≈
(

1− ω∗d
ω

)−1
∆x2

|νT (0)|
[γd − i (ω − ω∗d)] p

2 ≡ Vp0p
2, (2.A5)

such that the solutions of Eq. (2.A1) have the form

φ (p) = A
√
pK1/4

(√
Vp0p

2/2
)

+B
√
pI1/4

(√
Vp0p

2/2
)

. (2.A6)

As can be seen by examination of Eq. (2.A2), Ξ (p) is invariant as p → −p, thus it is only

necessary to consider positive values of p. Hence, as a boundary condition at p = 0 we

apply φ (0) = 0 for odd modes and ∂φ (p) /∂p|p=0 = 0 for even modes. For brevity, we will

only discuss even modes, although the derivation for odd modes would follow analogously.

Applying the boundary condition ∂φ (p) /∂p|p=0 = 0, yields the relation A =
(√

2/π
)
B.

Next it is necessary to match this solution with the WKB solution in the limit
√
Vp0p

2/2 >

1. Note that this limit is nontrivial, as Eq. (2.A4) must be simultaneously satisfied. The

self-consistency constraint can be easily derived as Vp0 (1− ω∗d/ω) > 22/3, which can be

rewritten as ∣∣∣∣∣
(

1− ω∗d
ω

)−1/3
∆x2

|νT (0)|
[γd − i (ω − ω∗d)]

∣∣∣∣∣ > 22/3. (2.A7)

Which for the case of weak magnetic shear is well satisfied in nearly all relevant regimes.

Assuming the condition given by Eq. (2.A7) is satisfied, Eq. (2.A6) may be expanded as

φ (p) ≈ B (p)

{√
2 exp

(
−1

2

√
Vp0p

2

)
+ exp

(
1

2

√
Vp0p

2

)}
, (2.A8)
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where B (p) is an arbitrary p dependent quantity, whose specific form is not required in

order to obtain the lowest order eigenvalue condition. Matching to the WKB solution

whose potential is approximated by Eq. (2.A5) yields the WKB expression valid in region

I of Fig. 2.19

φI (p) = B (p)

{√
2 exp

(
i

∫ p

0

dp
√
−Ξ (p)

)
+ exp

(
−i
∫ p

0

dp
√
−Ξ (p)

)}
. (2.A9)

Similarly, near p1, Ξ (p) can be expanded to linear order yielding the expression

∂2φ (p)

∂p2
=

(
−∂Ξ (p)

∂p

)
|p=p1 (p1 − p)φ (p) , (2.A10)

whose general solution is given by φ (s) = EAi (s) + FBi (s), where Ai and Bi are Airy

functions of the first and second kind respectively, E and F are arbitrary constants, and

s ≡ (−∂Ξ/∂p|p=p1)
1/3 (p1 − p). Following a similar matching procedure as that outlined

above for both s > 0 and s < 0, yields the WKB expression valid in region II as

φIIA (p) = B (p)

{
b

2
sin

[∫ p

p1

dp
√
−Ξ (p) +

π

4

]
+ cos

[∫ p

p1

dp
√
−Ξ (p) +

π

4

]}
,

(2.A11)

where

b ≡ 2
√

2 exp

{
4

3

(
−∂Ξ

∂p
|p=p1

)1/2

p
3/2
1

}
.

Following an analogous procedure near p2, and implementing the boundary condition

φ (<p→∞) = 0, yields the WKB expression also valid in region II

φIIB (p) = B′ (p) sin

[∫ p2

p

dp
√
−Ξ (p) +

π

4

]
, (2.A12)
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matching Eqs. (2.A11) and (2.A12) yields the expression for the eigenvalue:

∫ p2

p1

dp
√
−Ξ (p) = π

(
le −

1

2

)
+ δ, (2.A13)

where le is a positive integer, and δ is defined by Eq. (2.42a).

Appendix B: Derivation of Convective Cell Trapping Crite-

rion

Here we present a derivation of a trapping solution induced by the convective cell. It is

convenient to consider the limit of weak shearing such that τcc/τos > 1. This assumption

allows the use of a multi-scale perturbative analysis, with an expansion parameter given by

ε ∼ k⊥ρs ∼ (v0y/v
∗
e) ∼ (qy/qx). Note that as shown in the next section via numerical

simulation, convective cell induced wave trapping may take place for moderate values of

k⊥ρs. However, here we assume the weakly dispersive limit, allowing the use of the ap-

proximation δω ≈ v∗eky (1− k2
⊥ρ

2
s) + v0 · k, as an analytic expedient. The slow drift of the

wave packets will be obtained via separating the solution into fast and slow variables, i.e.

d

dt
→ d

dt
+ ε

d

dT
, kx (t, T ) = kx (t, T ) + εkx (T ) , (2.B1)

where t and T are treated as independent variables. It is also convenient to take a simple

limit of Eq. (2.56), such that the electrostatic potential can be written as

φ̄ = φ0 sin (qxx) cos (qyy). In contrast to zonal flow wave trapping, which is centered

around maximums or minimums of the shear flow, convective cell wave trapping is local-

ized to the zeros of the poloidal velocity. Thus, it is convenient to shift our spatial coordi-

nate to ξ = x − (π/2) (1/qx), and utilize the expansion
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φ̄ ≈ φ0 cos (qyy)
(
1− (1/2) (qxξ)

2 + (1/24) (qxξ)
4 − · · ·

)
. Considering first the evolution

of the poloidal coordinate, the lowest order equation is given by

dy(0) (t)

dt
= v∗e , (2.B2)

⇒ y(0) (t) = v∗et+ y (0) = v∗et, (2.B3)

where y (0) = 0 for simplicity. This lowest order term corresponds to the non-dispersive

component of the poloidal phase velocity, which uniformly translates the quasi-particle in

the poloidal direction. The next nonzero contribution is given at second order by:

dy(2) (t)

dt
= −v∗e

v0y

v∗e

(
qxξ

(1) (t)
)
cos (qyy (t))− v∗e

(
k(1)
x (t)2 + 3k(1)

y (t)2) ρ2
s, (2.B4)

where the zeroth order contribution to the radial coordinate vanishes by assumption. Inte-

grating Eq. (2.B4), yields

y(2) (t) = −v∗e
v0y

v∗e

∫ t

dt′
(
qxξ

(1) (t′)
)
cos (qyy (t′))− v∗e

∫ t

dt′
(
k(1)
x (t′)

2
+ 3k(1)

y (t′)
2
)
ρ2
s.

(2.B5)

Approximations to k
(1)
x , k(1)

y and ξ(1) will be obtained perturbatively from Eqs. (1.28)

and (1.29). However, here we note that y(2) (t) cannot be solved in a purely perturbative

manner, i.e. although y(2) (t) is small in comparison to y(0) (t), expanding in y(2) (t) inside

the cosine is of course not justified, as y(2) (t) will in general be large for long t. Hence, it

is convenient to separate the contributions from y(2) (t) into two distinct forms

y(2) (t) = rv∗et+ f (t) , (2.B6)

where r is a constant, corresponding to a frequency shift in the lowest order solution, and

f (t) is a bounded function. The self-consistency of this form will be checked at the end of



82

the derivation.

Considering now the radial component, the lowest order nonzero contribution can be

written
dqxξ

(1) (s)

ds
= −2

qx
qy
k(1)
y (s) k(1)

x (s) ρ2
s +

v0y

v∗e
sin (s) , (2.B7)

where the change of variables s = v∗e (1 + r) t has been introduced. Integrating Eq. (2.B7)

yields:

qxξ
(1) (s) = −2

qx
qy

∫ s

ds′k(1)
y (s′) k(1)

x (s′) ρ2
s −

v0y

v∗e
cos (s) , (2.B8)

The first term on the R.H.S. of Eq. (2.B8) corresponds to the radial group velocity of

the wave packet, whereas the second term in this expression results from the radial flow

component of the convective cell.

Similarly, the lowest order nonzero contribution to the poloidal wave number is given

by k(1)
y = k0y = const. The next non-vanishing contribution may be obtained by taking the

poloidal component of Eq. (4.A2), yielding:

dk
(3)
y (s)

ds
= −v0y

v∗e

qy
qx
k(1)
x (s) cos (s)− k0y

v0y

v∗e

(
qxξ

(1) (s)
)
sin (s) , (2.B9)

⇒ k(3)
y (s) = −v0y

v∗e

qy
qx

∫ s

ds′k(1)
x (s′) cos (s′)− k0y

v0y

v∗e

∫ s

ds′
(
qxξ

(1) (s′)
)
sin (s′) .

(2.B10)

In order to close the system of Eqs. (2.B5), (2.B8), and (2.B10) it will be necessary to

solve for k(1)
x . This can most conveniently be done via Eq. (2.51), which to the lowest

non-vanishing order can be written as

d2k
(1)
x (s)

ds2
= −k0y

v0y

v∗e

qx
qy

sin (s) , (2.B11)

which yields the solution

k(1)
x (s) = k0y

v0y

v∗e

qx
qy

sin (s) . (2.B12)
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Utilizing Eq. (2.B12), Eqs. (2.B5), (2.B8), and (2.B10) may be solved, yielding:

qyy
(2) (t) =

{
1

2

(
v0y

v∗e

)2

− (k0yρs)
2

[
3 +

(
qx
qy

)2(
v0y

v∗e

)2
]}

qyv
∗
et

+
1

2

(
v0y

v∗e

)2

sin (qyv
∗
e (1 + r) t) cos (qyv

∗
e (1 + r) t) , (2.B13)

qxξ
(1) (s) =

v0y

v∗e

{(
qx
qy

)2

(k0yρs)
2 − 1

}
cos (qyv

∗
e (1 + r) t) , (2.B14)

k(3)
y (s) = −1

2
k0y

(
qx
qy

)2(
v0y

v∗e

)2

(k0yρs)
2 sin2 (qyv

∗
e (1 + r) t) . (2.B15)

From Eq. (2.B13), r and f (t) may be recognized to be

r =

{
1

2

(
v0y

v∗e

)2

− (k0yρs)
2

[
3 +

(
qx
qy

)2(
v0y

v∗e

)2
]}

, (2.B16)

f (t) =
1

2

(
v0y

v∗e

)2

sin (qyv
∗
e (1 + r) t) cos (qyv

∗
e (1 + r) t) , (2.B17)

which both have the assumed form. Using Eqs. (2.B12-2.B15) and Eq. (2.51), the slow

drift of the quasi-particle may be obtained after time averaging over a single period of the

rapid temporal oscillations. The lowest non-vanishing equation enters at the fourth order,

and is given by

d2kx (S)

dS2
= −2

(
v0y

v∗e

)2(
qx
qy

)2

(k0yρs)
2

[
1−

(
qx
qy

)2

(k0yρs)
2

] 〈
cos2 (s)

〉
s
kx (S)

− 2

(
v0y

v∗e

)2(
qx
qy

)2

(k0yρs)
2 〈cos2 (s)

〉
s
kx (S)

+

(
v0y

v∗e

)2 {〈
sin2 (s)

〉
s
−
〈
cos2 (s)

〉
s

}
kx (S) , (2.B18)
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where 〈· · · 〉s ≡
∫ 1

0
ds (· · · ). Performing the averages, Eq. (2.B18) can be reduced to

d2kx (S)

dS2
= −

(
v0y

v∗e

)2(
qx
qy

)2

(k0yρs)
2

[
2−

(
qx
qy

)2

(k0yρs)
2

]
kx (S) , (2.B19)

which for
1

2

(
qx
qy

)2

(k0yρs)
2 < 1, (2.B20)

corresponds to a simple harmonic oscillator with a bounce frequency in dimensional units

given by

ωcc = v′0y (k0yρs)

√
2−

(
qx
qy

)2

(k0yρs)
2, (2.B21)

which completes the derivation of the bounce frequency and trapping criterion.

Part of this chapter has been published in Physics of Plasmas, C. J. McDevitt and P. H.

Diamond, 14, 112306 (2007). C. J. McDevitt was the primary investigator and author of

this paper.



Chapter 3

Multi-Scale Interaction of a Tearing

Mode with Drift Wave Turbulence: A

Minimal Self-Consistent Model

3.1 Introduction

MHD stability continues to be a critical consideration in the design of magnetic con-

finement devices, especially tokamaks. It has long been known that MHD instabilities can

and do limit discharge performance. For example, the low-β, current gradient driven dis-

ruption is usually explained in terms of interaction between magnetic islands developing

from tearing instabilities. The β-limit and the associated high-β disruption are usually asso-

ciated with pressure gradient driven ballooning or kink modes. In recent years, appreciation

of the importance of neoclassical tearing modes (NTMs) has risen considerably. NTMs are

driven by the bootstrap current (i.e. produced by the pressure gradient and toroidicity), and

result from the interaction of seed currents with parallel and cross-field transport and the

resulting feedback loop between the island, the local currents and the pressure gradient. In

85
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simple terms, island induced flattening of the pressure gradient drives further island growth.

The details of NTM theory are numerous and a review is far beyond the scope of this paper.

The interested reader is referred to ([47, 48, 49, 50, 51, 52]). However, it is instructive

to note that polarization currents and cross-field turbulent transport are both thought to be

critical to NTM evolution. Since the cross-field transport is driven by ambient micro turbu-

lence, and the turbulent advection of vorticity which drives the nonlinear polarization drift

also is responsible for generating zonal flows, the statement that NTM evolution is strongly

coupled to the ambient turbulence dynamics appears irrefutable. Therefore, a successful

theory of NTM evolution must treat the low-m island and the high m, n and kr turbulence

consistently, and on an equal footing.

Tokamaks are not the only confinement devices where the interaction of turbulence

with large scale MHD is important. The Reversed Field Pinch (RFP) has long been charac-

terized by disappointing confinement, which is a consequence of the nonlinear interaction

and overlap of the same m = 1 tearing modes which drive the poloidal currents (i.e. the

“dynamo”) to sustain the magnetic configuration. Recently, however, a spontaneous transi-

tion to a quasi-single helicity (QSH) state of good confinement was predicted on the basis

of numerical simulations and subsequently observed in experiment [53, 54, 55, 56]. The

QSH state is predicted to appear for Hartmann numbers below a critical value, i.e. for

H = 1/
√
νη < Hcrit [57], where H has been normalized to the Alfven time and the minor

radius of the plasma. While the collisional resistivity η in RFP plasmas may be sufficient to

be compatible with theH < Hcrit condition [58], the viscosity ν is certainly not, since neo-

classical corrections to the classical ion viscosity are negligible for RFP geometry. Thus,

ν must be interpreted as a turbulent viscosity, which can be due to ambient turbulence

driven by resistive interchanges, drift-ITG modes, or other tearing modes (residual in the

QSH state). Thus, we once again arrive at a problem which requires the simultaneous,

self-consistent treatment of low-m MHD and high-k turbulence.
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The problems of NTM evolution in tokamaks and evolution of the QSH state in a RFP

are both multi-scale problems, in that they require treatment over a broad range of dis-

parate space and time scales. Interestingly, another such problem is drift wave-zonal flow

interaction, in which high-k drift waves drive an n = 0, m = 0 zonal flow and, in turn, are

regulated by its shear. Either an analytical or computational approach to such multi-scale

problems requires what is, in effect, a dynamic subgrid scale model, which allows feedback

of the resolved scales on the unresolved (small) scales. In the case of the NTM, or tearing

modes in RFPs, the feedback will be due to:

a.) large scale flow shears, which strain high-k modes

b.) large scale mixing (i.e. radial) flows, which modify the turbulence profile

c.) modification of the density, temperature, etc, profiles by the large scale mode, which

in turn, alters the excitation of turbulence.

Note that b.) and c.) have no counterpart in the zonal flow problem, since flows there are az-

imuthally symmetric. However, it is again interesting to mention that the ‘inverse cascade’

which drives zonal flow formation is a good example of a process which lies outside the

standard ansatz of enhanced turbulent dissipation, which forms the underpinning of most

subgrid models. Indeed, since inverse energy transfer is generic to drift wave turbulence,

it is readily apparent that a multi-scale model requires more physics content then enhanced

dissipation, alone.

It is an understatement to say that the multi-scale problem is hideously complicated.

Thus, we have sought to further the cause of simplicity by defining the absolutely minimal

working model, namely that of low-m resistive (current gradient driven) tearing evolution in

the presence of electrostatic drift wave turbulence in a cylinder. The tearing mode dynam-

ics are described by reduced MHD (RMHD) and the small scale, large-m mode dynamics
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are described by an electrostatic fluid model, such as the Hasegawa-Mima, Hasegawa-

Wakatani, or fluid ITG equations. This minimal model avoids the geometrical complexity

of toroidal effects, facilitates analytical progress and physical insight, and permits easy

visualization. Moreover, even further simplification is made possible by exploiting the dis-

parity in space-time scales between the tearing mode and the background drift waves. In

particular, for a tearing mode with wave-vector q [here q = (qx, qθ, and qz), where qx is

comparable to the inverse layer width and qθ, qz are standard notations], and for drift waves

with wave vector k, it is the case that γq � ωk, qθ � kθ, and qx < kx. It is thus apparent

that the tearing mode adiabatically modulates the background drift wave population, and

the interaction may be treated using a wave-kinetic equation for the evolution of an adia-

batic invariant of the drift wave population. Thus, the minimal model ultimately reduces

to:

a.) RMHD for the tearing mode, including the effects of stresses and fluxes driven by

the drift waves

b.) a wave kinetic equation forN (k, x, t), the drift wave population density proportional

to the spectral density. Here N is strained and advected by the tearing mode flows.

Note that albeit simple, the ‘minimal model’ defines a closed self-consistent feedback loop

for the interaction of low-m MHD and high-k drift waves. This feedback loop is shown

schematically in Fig. (3.1). Since the drift wave stresses and transport fluxes (directly

related to N ) evolve in response to straining and mixing by the tearing mode, our minimal

model does indeed qualify as a ‘dynamic subgrid-scale model’.

To orient the reader, we think it worthwhile at the outset to survey the physics of multi-

scale interaction in the minimal model. As noted above, a critical element of the multi-scale

problem is the effect of stresses and transport of small scales on large scales. These effects
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Figure 3.1: Minimal Multi-scale Model.

are nearly always the result of quadratic nonlinear interaction, so that schematically:

∂

∂t
Lq ∼ Linear Terms +

∑
k

Ck,qAk+qB−k ,

where A and B are amplitudes of small scale modes and Ck,q is a coupling coefficient.

Here, Lq is the amplitude of the large scale mode. As |q| � |k|, it is natural then to

express this interaction in terms of the population density of the small scales. Thus, the

equation for Lq may be re-expressed as:

∂

∂t
Lq ∼ Linear Terms +

∑
k

Ck,qf (−k) δNq (k, t) ,

where δNq ∼ |Ak|2 and Bk = f (k)Ak. The output of this procedure is a set of ’mean

field’ equations for the low-m perturbation in the presence of the high k, ωk background.

Indeed, the high→low coupling enters via the modulation of the high-k background popu-

lation by the low-m perturbation. This modulation induces a stress or ’pondermotive force’

(related to that familiar from Langmuir turbulence) on the low-k mode. In RMHD, three
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nonlinearities are present, namely v · ∇ψ in Ohm’s law, v · ∇∇2
⊥φ and B · ∇∇2

⊥ψ in the

vorticity equation. For purely electrostatic background turbulence, the first and third of

these vanish, leaving the polarization nonlinearity as the only channel for high→low in-

teraction. Interestingly, this is precisely the same nonlinearity which is responsible for the

coupling of high-k drift wave beat interactions into zonal flows and convective cells. It is

no surprise then, that the end-product of this mean field calculation is a negative turbulent

viscosity. The sign is, or course, a consequence of the fact that energy flows from small to

large scales, as it does in the case of zonal flow formation. That phenomenon in turn may

be understood as a simple incarnation of the more general concept of an inverse cascade.

Throughout this paper, we use the term “inverse cascade” as a general catch-all phrase for

transfer of energy to large scales. Thus, our use of “inverse cascade” includes modulational

instability generation of zonal flows, Reynolds stress driven large scale flows, etc., as well

as strictly local transfer of energy to large scales. Note that this mechanism can drive low-

m vortical flows at resonant surfaces even when the tearing mode is linearly stable (i.e.

∆′ < 0). Hence, one broader implication of the multi-scale problem is that high-k energy

fluctuation is channeled to low m, n resonant surfaces, as well as to scale-independent

friction drag. Energy deposited at such low order rational q surfaces is dissipated both by

resistivity (via field line bending) and by frictional drag. This intriguing question of the

ultimate fate of energy coupled to large scales via inverse cascade will be discussed further

in the conclusions.

The second critical element of the multi-scale problem is the feedback of large scales

on small. This closing of the loop allows the feedback of large→small, which makes the

model self-consistent. Use of a wave kinetic equation for N , i.e.

∂

∂t
Nk +

∂

∂k
(ωk + k ·V) · ∂

∂x
Nk −

∂

∂x
(ωk + k ·V) · ∂

∂k
Nk = γkNk + C (Nk) ,

where V is the velocity of the mean field, ωk is the linear frequency of the drift waves, and
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C (Nk) is the collisional operator, provides a useful framework for understanding the vari-

ous feedback loops. Since qx � qy, tearing mode flows are primarily poloidal. Hence, the

radially sheared poloidal flows generated by the low-m mode will shear and regulate the

high-k turbulence in a manner similar to the way zonal flows regulate drift waves (see Fig.

(3.2)). This effect is accounted for by the ∂/∂x (kyVy) ∂Nk/∂kx term in the wave kinetic

equation, which results in amplification of kx. Note that strong shears can trap background

drift waves [40, 21], producing a strongly nonlinear multi-scale interaction. Another inter-

esting feedback loop operates via Vx∂Nk/∂x. This corresponds to tearing-mode induced

modification of the turbulence profile. The Vx∂Nk/∂x term also accounts for turbulence

spreading [59, 60, 61], a process which is potentially important in NTM evolution. Fi-

nally, the modifications in ∇P , ∇T , ∇n induced by the tearing mode can feed-back on

γk, the local growth or excitation rate for the high-k turbulence. It is interesting to note that

low→high feedback occurs in both k space (via shearing) and position space (via radial

mixing). These two processes can act synergistically, as well.

We note here that the problem of how a tearing mode interacts with background turbu-

lence is one with a long, albeit intermittent, history in magnetic fusion theory. Most of the

previous attempts have focused on a search for anomalous dissipation in the Ohm’s Law,

such as a turbulent electron viscosity [62, 63, 64] or resistivity [65]. The hope here was to

find a dissipation mechanism which was robust in the limit of small collisional resistivity.

These models all focused on nonlinearities in Ohm’s Law, did not consider feedback on

the ambient micro turbulence, and so were not self-consistent. Other studies have consid-

ered the effect of incoherent emission from high-k modes as a ‘trigger’ for [66] or a means

of ‘accelerating’ [67] the linear growth of low-m. Neither of these studies treated feed-

back self-consistently. However, we wish to emphasize that incoherent emission effects are

potentially important and merit further study. Ongoing research strongly suggests that in-

coherent emission from higher harmonics can substantially accelerate the growth of low-m
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Figure 3.2: Zonal shear flows are similar to the shear flows of thin, low-mmagnetic islands.

NTM’s.

In this paper, then, we present a minimal model of multi-scale interaction between

high-k drift waves and a low-m tearing mode in a cylinder. The basic model is set forth

and mean field equations for the low-m dynamics are derived. The wave-kinetic equation

for the drift wave population density is presented and discussed, and the key physics of

the high-k
low-m feedback loops is elucidated. We study the stability, scales and growth

rates of both a low-m, electrostatic vortex mode and a low-m tearing mode, with ∆′ >

0. The key small scale→large scale effect (for the case of electrostatic turbulence) is a

negative turbulent viscosity. For realistic parameters, this effect dominates inertia, and thus

(along with field line bending) sets the scale of the tearing layer. Outgoing wave boundary

conditions are imposed in order to control the rapid oscillations induced by the negative

viscosity. In contrast to most cases in MHD, a real frequency is also induced. We also

sketch an outline of the ‘Rutherford’ calculation for the case of a finite size island. The
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meaning and interpretation of the Rutherford theory in the presence of self-consistently

evolving background turbulence are discussed.

The remainder of this paper is organized as flows: In Sec. 2 we discuss the general

multi-scale formulation of the problem. In Sec. 3 we present a linear theory of the tearing

instability in the presence of a negative viscosity. In Sec. 4 we provide a discussion of

the coupled evolution of a magnetic island in a background of ambient micro turbulence.

Finally, Sec. 5 contains the conclusions and a discussion of broader issues and future work.

3.2 Formulation

3.2.1 Wave Kinetic for Small Scale Drift Waves

As shown in [68, 5] for the case of drift wave-zonal flow systems, wave kinetics is a

useful formalism for studying modulational instabilities. Zonal flows induce a nonlinear

frequency shift in the wave kinetic equation via a Doppler shift, and modulation of the

diamagnetic drift velocity. The modulation of the drift wave turbulence by the zonal flow

reacts back on the zonal flow through the polarization nonlinearity. This can be shown to

lead to a nonlocal transfer of energy from the drift waves to the zonal flow, thus amplifying

the initial shear perturbation. A schematic flow chart of the drift wave-zonal flow system is

given in Fig. (3.3).

In this work we will be focusing on low m 6= 0 modes, for which the above picture

is somewhat modified. For the case of a low-m tearing mode, both the inverse cascade

and the current gradient (via the tearing mechanism) can drive large scale flow. Also, the

back-reaction on the drift wave turbulence is more complex. Aside from shearing the drift

wave turbulence as in the case of zonal flows, a low-m tearing mode will react back on the

turbulence both by modifying the pressure profile (flattening the pressure gradient inside

the island and potentially steepening it outside), and perturbing the magnetic field topology,
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Figure 3.3: Schematic of drift wave-zonal flow phenomenon.

thus modifying the effective local magnetic shear. The structure of the high-k turbulence

should be calculated in the evolving magnetic geometry which incorporates the island. A

schematic flow chart of the low-m tearing mode interaction with drift wave turbulence is

given in Fig. (3.4).

In order to derive a wave kinetic equation for the small scales, it is useful to first identify

a quantity which varies adiabatically. One might expect an adiabatic invariant such as wave

action, of the form Nk = Ek/ωk. However, as was shown in [13, 11], the actual adiabatic

invariant for a drift wave system in the presence of mean flows is Nk = (1 + ρ2
sk

2
⊥)

2 |φ>k |
2.

This quantity can be recognized as the drift wave potential enstrophy, which is a measure

of the vorticity density associated with the drift waves. Note however, for zonal flows, with

kθ = 0, the wave action and potential enstrophy are identical. We note in passing that,

similar to the 2D Euler equation, the Hasegawa-Mima equation corresponds to a law of

conservation of potential vorticity along fluid trajectories. Thus, it is not surprising that

the ‘adiabatic invariant’ is the potential enstrophy. However, in contrast to the Hasegawa-

Mima equation, the 2D Euler equation possesses no ‘waves’. This observation could lead
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Figure 3.4: Schematic of Low-m mode interaction with drift wave turbulence.

one to conclude that a description of incompressible 2D hydrodynamic turbulence via a

wave kinetic equation is impossible, since their are no “wave quanta”. However, as shown

by [11], a wave kinetic equation can be derived from the 2D Euler equation, where in this

limit, the adiabatic invariant is the enstrophy density which can be interpreted as the “roton”

number density.

Proceeding with the derivation of the wave kinetic equation, it is convenient to separate

the fields into a large scale, mean field piece plus a small scale fluctuation defined by:

f< (x) =
∑

|k|<|kc|

f<k exp (ik · x) , (3.1)

f> (x) =
∑

|k|>|kc|

f>k exp (ik · x) , (3.2)

where |kc| defines the cutoff scale between the small scale and large scale systems. Apply-

ing this scale separation procedure, an equation for the micro turbulence, which is similar to

the Hasegawa-Mima equation [19], but retains the mean field contribution, can be written
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as

0 =

(
∂

∂t
+

c

B0

(ẑ×∇φ<) · ∇
)
eφ>

Te

+ v∗e
∂

∂y

eφ>

Te
− ρ2

s

(
∂

∂t
+

c

B0

(ẑ×∇φ<) · ∇
)
∇2

⊥
eφ>

Te
. (3.3)

Here, ρs = cs/ωci, cs =
√
Te/mi, v∗e = cTe/ (eB0Ln) is the electron diamagnetic drift

velocity, and ẑ is in the direction of the mean magnetic field. We are primarily interested in

investigating the nonlocal interaction of drift waves with large scale, low-mmodes. Hence,

local interactions between drift waves, i.e. the quadratic nonlinearities in φ>, have been

dropped. Local interactions will be introduced later via the insertion of a phenomenological

collisional operator in the Boltzmann equation for the wave number density. Also, note the

addition of an advective term representing the large scale mean flow.

Exploiting the scale separation and averaging over the fast scales, a wave kinetic equa-

tion for the evolution of the drift wave potential enstrophy density in the presence of a

weakly varying background can be written (see [13] for details)

∂

∂t
Nk +

∂

∂k
(ωk + k ·V0) ·

∂

∂x
Nk −

∂

∂x
(ωk + k ·V0) ·

∂

∂k
Nk = S , (3.4)

ωk =
v∗eky

1 + ρ2
sk

2
⊥
, V0 =

c

B0

(ẑ×∇φ<) , Nk =
(
1 + ρ2

sk
2
⊥
)2
Ik .

Here Nk is the enstrophy density, Ik is a Wigner function defined as

Ik =
∫
dqeiq·x

〈
φ>k+qφ

>
−k
〉
, and the brackets represent an average over the small, rapidly

varying scales. The second term on the left in Eq. (3.4) corresponds to the advection term

with a doppler shift due to the mean flow. Here the “mean flow” is the flow associated with

the MHD mode. The third term describes the refraction of the drift waves as a result of

any spatial dependence of the real frequency (i.e. spatial variations of the density gradient),

and through the weak spatial variation of the mean field. Notice that in the absence of
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the source term S, this amounts to the conservation of wave quanta number Nk along ray

trajectories. The source term S can be symbolically written as S = γkNk −∆ωkN
2
k . The

first term corresponds to the linear drive of the drift waves, which should be computed in

the presence of the tearing mode. This is necessary since the island will modify both the

local profiles and the drift wave mode structure. The second term corresponds to the non-

linear like-scale interaction. In the absence of the nonconservative source term, Eq. (3.4) is

isomorphic to the Vlasov equation, and thus provides a particularly convenient description

of the intensity field of the drift wave turbulence.

3.2.2 Mean Field Equations for Large Scale Tearing Mode

In the previous section we introduced a wave kinetic formulation which allowed us to

describe the development of the drift wave turbulence in terms of an adiabatically varying

wave population density Nk. This approach enables us to develop a dynamic subgrid scale

model for drift wave-MHD interaction. This model is ‘dynamic’ since there is feedback,

via shearing and modulation, by the large scale flows on the small scale turbulence, which

exerts a stress on it. We are now interested in a description of the mean field (i.e. tearing

mode) equations in the presence of the background micro turbulence. We describe the

MHD fields at low m via RMHD. This description ignores a number of effects that become

important in the low collisionality, high temperature regime. However, it constitutes the

absolute minimal description of unstable tearing mode dynamics. Furthermore, as has

been observed in drift wave-zonal flow systems, the background turbulence behaves as a

source of energy for the large scales, and drives mean flows via the stress term. Thus,

we seek to understand how the inclusion of this external drive affects the evolution of the

tearing mode. For this reason, it will be convenient to begin with as simple a description as
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possible. The RMHD equations are given by

0 =
∂

∂t
ψ +

c

B0

(ẑ×∇φ) · ∇ψ − vA
∂

∂z
φ− ηc∇2

⊥ψ , (3.5)

0 =
∂

∂t
∇2

⊥φ+
c

Bo

(ẑ×∇φ) · ∇∇2
⊥φ− vA

∂

∂z
∇2

⊥ψ −
c

B0

(ẑ×∇ψ) · ∇∇2
⊥ψ

− νc∇2
⊥∇2

⊥φ . (3.6)

Here ẑ points in the direction of the equilibrium magnetic field, ψ has been normalized to

vA/c, and the Alfven velocity is defined as vA = B0/
√

4π, where ρ0 has been set equal to

one. Since the small scales are described by an electrostatic model, small scale magnetic

perturbations are neglected. Thus, the stream function and flux function can be written

as φ = φ< + φ>, ψ = ψ<. Substituting these definitions into Eqs. (3.5) and (3.6) and

averaging, gives the large scale equations:

0 =
∂

∂t
ψ< +

c

B0

(ẑ×∇φ<) · ∇ψ< − vA
∂

∂z
φ< − ηc∇2

⊥ψ
< , (3.7)

0 =
∂

∂t
∇2

⊥φ
< +

c

Bo

(ẑ×∇φ<) · ∇∇2
⊥φ

< − vA
∂

∂z
∇2

⊥ψ
< − c

B0

(ẑ×∇ψ<) · ∇∇2
⊥ψ

<

− νc∇2
⊥∇2

⊥φ
< +

c

B0

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉
. (3.8)

Note the absence of a stress term within the induction equation. This precludes the ap-

pearance of a turbulent resistivity. As considered in [69, 5], electrostatic fluctuations can

generate an anomalous resistivity through the
〈
ñẼ‖

〉
term. This anomalous resistivity can

be calculated by modulating the parallel acceleration term with respect to ψ<, which can

be written symbolically as δ
〈
ñẼ‖

〉
∼
∑

k Ck (δNk/δψ
<)ψ<. However, in this simple

model for electrostatic drift waves (as can be seen from Eq. (3.4)), Nk is unaffected by



99

perturbations in ψ< (δNk/δψ
< = 0). This is a consequence of assuming that drift waves

and Alfven waves decouple, which is valid only in a low beta plasma. In the finite beta

regime, perturbations of ψ< would enter into the wave kinetic equation by bending the

mean magnetic field lines, and then modulating the frequency of the drift-Alfven modes as

discussed in [70]. Just as the negative viscosity excites low-m flows which are similar to

zonal flows, this effect could drive a low-m magnetic field similar to a zonal field. Also,

note that for a large magnetic island, the effective magnetic shear at the X point differs

substantially from that of the O point. Thus, for large magnetic perturbations, ψ< would

modulate Nk through modifications of the local magnetic shear leading to δNk/δψ
< 6= 0,

and so produce a turbulent resistivity. However, for the present ’minimalist’ study we will

not consider this possibility.

The simple averaging procedure employed above, reduces the system into a set of re-

solved equations for the large scales, and a population density equation for the unresolved

small scales. However, while the phase information of small scale fluctuations is averaged

out, the evolution of the intensity Nk ∼
〈
φ>k φ

>
−k
〉

evolves dynamically via modulations

by the large scale mean field. Thus, Eqs. (3.4, 3.7, 3.8) provide a minimal self-consistent

description of the drift wave-tearing mode system.

3.2.3 Closure of Drift Wave-Tearing Mode System

In order to close the drift wave-tearing mode system, it is necessary to explicitly write

the Reynolds stress term within the RMHD equations in terms of the drift wave enstrophy.
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After integrating by parts twice, the Reynolds stress 〈(ẑ×∇φ>) · ∇∇2
⊥φ

>〉 can be written

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉
(x, t) = −

(
∂2

∂x2
− ∂2

∂y2

)〈
∂φ>

∂x

∂φ>

∂y

〉
(x, t)

+
∂2

∂x∂y

[〈(
∂φ>

∂x

)2
〉

(x, t)−

〈(
∂φ>

∂y

)2
〉

(x, t)

]
,

(3.9)

where we have written the brackets in the form 〈...〉 (x, t), to emphasize that the averages

are over the fast spatial and temporal scales, such that a slow spatial and temporal depen-

dence remains. After Fourier transforming, the stress terms can be rewritten in terms of the

drift wave enstrophy density:

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉
(x, t) = −

(
∂2

∂x2
− ∂2

∂y2

)∫
dk

kxky

(1 + ρ2
sk

2
⊥)

2Nk (x, t)

+
∂2

∂x∂y

∫
dk

(
k2
x − k2

y

)
(1 + ρ2

sk
2
⊥)

2Nk (x, t) . (3.10)

From this expression it is clear that for isotropic turbulence, both integrals vanish. Thus,

a necessary condition for a finite contribution to the mean field vorticity equation from

the background drift wave turbulence is either anisotropy of the equilibrium drift wave

spectrum, or a ’seed’ asymmetry, which arises from the large scale mean fields which

modulate the drift wave spectrum. The latter is the subject of the present discussion, as

we are concerned with tearing interaction with the ambient drift wave turbulence.

Considering small deviations from the equilibrium drift wave spectrum N0
k (i.e. seed

asymmetries), Eq. (3.4) can be linearized for small perturbations of the form (δNk, φ
<) ∼

eiq·x−iωqt+γqt, yielding an expression for the response of the drift waves to the tearing mode

field:

δNk =
c

B0

−1

(ωq − q · vgr) + i (γq + γk)

{
qy
∂N0

k

∂x
− i (k× q)z q ·

∂N0
k

∂k

}
φ< . (3.11)
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Here, ωq and γq correspond to the real frequency and growth rate of the MHD mode respec-

tively, and are assumed slow in comparison to the ambient drift wave turbulence, γk is the

linear growth rate of the drift wave turbulence, and vgr = ∂ωq/∂k. The first term in brack-

ets corresponds to the spatial modification of the turbulence profile due to modulations of

the large scale mean field. For purposes of simplicity, in this analysis we will consider a

spatially uniform turbulence profile, and thus focus purely on the k space dynamics (the

second term in brackets). We note that ∂N0
k/∂x - driven contributions to δNk will enter

with a phase π/2 different from ∂N0
k/∂k - driven contributions. These may be especially

important to the finite-sized island evolution problem. Also, notice that the linearization

above is purely for convenience. Though the W.K.E. (naively) appears to be nonlinear, it is

actually bilinear (ignoring the collision operator), so that even for strong modulation fields,

the response of Nk may be calculated by the method of characteristics. Physically, such

strong modulations can cause trapping of drift waves in the island flows. Substituting Eq.

(3.11) into the polarization drift term of the vorticity equation [Eq. (3.10)] gives to lowest

order

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉

= −c2s
∫
dk

ρ2
sk

2
y

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2)kx∂N0

k

∂kx

∂4φ<

∂x4

− c2s

∫
dk

ρ2
sk

2
x

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2)ky ∂N0

k

∂ky

∂4φ<

∂y4

+ c2s

∫
dk

ρ2
s

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2)

·
(
k3
x

∂N0
k

∂kx
+ k3

y

∂N0
k

∂ky

)
∂2

∂x2

∂2φ<

∂y2
,

= −νxx
∂4φ<

∂x4
− νyy

∂4φ<

∂y4
+ νxy

∂2

∂x2

∂2φ<

∂y2
, (3.12)
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where

νxx = c2s

∫
dk

ρ2
sk

2
y

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2)kx∂N0

k

∂kx
, (3.13)

νyy = c2s

∫
dk

ρ2
sk

2
x

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2)ky ∂N0

k

∂ky
, (3.14)

νxy = c2s

∫
dk

ρ2
s

(1 + ρ2
sk

2
⊥)

2

γk(
γ2
k + (q · vgr)2) (k3

x

∂N0
k

∂kx
+ k3

y

∂N0
k

∂ky

)
. (3.15)

Inserting these expressions into the large scale vorticity equation yields

0 =
∂

∂t
∇2

⊥φ
< +

c

B0

(ẑ×∇φ<) · ∇∇2
⊥φ

< − vA
∂

∂z
∇2

⊥ψ
< − c

B0

(ẑ×∇ψ<) · ∇∇2
⊥ψ

<

− νxx
∂4

∂x4
φ< − νyy

∂4

∂y4
φ< + νxy

∂2

∂x2

∂2

∂y2
φ< . (3.16)

Here the collisional viscosity has been dropped, since it is, in general, negligible compared

to the turbulent viscosity. The stress terms (i.e. the last three terms on the right of the

vorticity equation) have the form of an “anomalous” or “turbulent” viscosity. Note that

for kx
∂N0

k

∂kx
< 0 (i.e. N0

k ∼ |k|−α, which is observed in all studies and predicted by all

models of drift wave turbulence), the value of νxx (the dominant term for the tearing mode

ordering ∂/∂x � ∂/∂y, which applies on large scales), will be negative. The presence of

a negative viscosity on large scales due to nonlocal interactions with the background micro

turbulence is a result familiar from considerations of drift wave-zonal flow systems. In

simple terms, it is a consequence of the fact that in 2D (here the strong B0 enforces quasi-

two-dimensionality), fluid kinetic energy tends to inverse cascade (producing large scale

growth), rather than forward cascade which, produces dissipation at large scales. However,

our purpose in emphasizing the result here is that with one exception [66], there has been

very little effort put into investigating the impact of a turbulent source on tearing mode

physics. Also, ref. [66] did not self-consistently treat the back-reaction of large scales on

small scales.
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We estimate the magnitude of the anomalous viscosity, using a mixing length argument.

For drift waves, we can approximate eφ>/Te ∼ 1/ (k⊥Ln), where Ln is the perpendicular

length scale over which the density varies. The magnitude of the turbulent viscosity can

then be estimated to be |νxx| ≈ c2s
γk

1
k2
⊥L

2
n
≈ c2s

γk

ρ2s
L2

n
. Finally, estimating the linear drift wave

growth rate to be of the order of the drift wave linear frequency, γk ≈ v∗eky ≈ cs/Ln, yields

an estimate of the turbulent viscosity as |νxx| ≈ ρs

Ln
ωciρ

2
s ∼ DGB. Here DGB denotes the

gyro-Bohm diffusivity, which is far in excess of the ion-ion collisional viscosity ρ2
i /τii, or

the neoclassical viscosity. To estimate the relative sizes of the turbulence driven flux and

linear inertia, we compare νxx ∼ DGB with γTw2
T , where γT and wT are the usual tearing

mode growth rate and linear layer width, respectively. A simple calculation yields the con-

clusion that turbulent stresses will exceed inertia for DGB > (∆′a)7/5 (1/S)2/5 (Ls/am)2

DGB > (∆′a)
7/5

(1/S)2/5 (Ls/am)2 . (3.17)

Here S = τR/τA. Thus, in practical terms, the turbulent stresses always exceed inertia.

Hence, the turbulent Reynolds stress is seen to be the dominant microscopic effect on the

large scales.

Note that the above analysis has been done for the case of homogeneous turbulence.

As discussed in Appendix C, this analysis needs to be extended to include the affect of

magnetic shear on the mode structure of the micro turbulence. Also, as seen in Appendix

C, the radial length scales of the micro turbulence depend strongly on their linear frequency.

Thus, a linear fluid theory of ITG turbulence is briefly summarized in Appendix B.

As explained in Appendix C a strong nonlocal transfer of energy from the small scale

micro turbulence to the large scale MHD modes is found for modes with qy significantly

smaller than qx. This result is in qualitative agreement with Eq. (3.16) for modes with

∂/∂x � ∂/∂y, which is the relevant tearing mode ordering. However, due to the added

complexity of the wave kinetic equation when magnetic shear is included, we will use
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the simple expression given by Eq. (3.16), for the remainder of this analysis. However,

inclusion of magnetic shear on the ambient micro turbulence would not qualitatively change

our analysis.

3.3 linear theory of the tearing instability in the presence

of a negative turbulent viscosity

The negative turbulent viscosity derived above has a magnitude far in excess of the

collisional viscosity present within typical plasmas. Furthermore, for the universally ob-

served case where kx
∂N0

k

∂kx
< 0, the turbulent viscosity will be negative, such that energy is

fed to the large scales. In considering the effect of a negative viscosity on tearing modes

and magnetic islands, it is instructive to first consider the form of the RMHD equations

near the resonant surface. Considering perturbations of the form f (~x, t) = f (x) eiqyy+γqt,

Eqs. (3.16) and (3.5) can be linearized to give

γq
∂2φ<

∂x2
= iqyvA

x

Ls
J + νxx

∂4φ<

∂x4
, (3.18)

ηcJ = γqψ
< − iqyvA

x

Ls
φ< , (3.19)

where J is the parallel current, and Ls is the shear length, x = r − rm,n, and rm,n is

the m,n rational surface. Also, since we are considering modes strongly localized around

the resonant surface, we have applied the ordering ∂/∂x � ∂/∂y. In the limit in which

the inverse growth rate of the tearing mode is long in comparison to the skin time of the

resistive layer (τ ∼ δ2/ηc where δ is the width of the resistive layer), ψ can be assumed to

be constant. Making use of this approximation and substituting Eq. (3.19) into Eq. (3.18)

yields:

−νxx
∂4φ<

∂x4
+ γq

∂2φ<

∂x2
=
q2
yv

2
A

ηc

x2

L2
s

φ< − qyvA
ηc

x

Ls
ψ0 . (3.20)
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From Eq. (3.20) three regimes can be distinguished: First, in the limit of weak viscosity

|νxx| � γT δ
2, the viscous term can be dropped and the system reduces to that treated by

ref. [14]. In the opposite limit, for which |νxx| � γT δ
2, Eq. (3.20) reduces to the viscosity

dominated limit, which was analyzed for the positive viscosity case by refs. [71, 72].

Finally, an electrostatic limit can also be distinguished (ψ0 = 0). This regime describes

an electrostatic vortex driven by an inverse cascade of energy to low but finite m, where

resistive field line bending ultimately limits the width of the cellular flow. This regime can

be easily seen to correspond to the purely MHD limit of the convective cell treated in the

previous chapter.

Turning to the second regime (i.e. viscosity dominated), it is clear that a strong negative

viscosity will have a strong impact on the linear dynamics of the reconnecting mode, i.e.

the counterpart, for this study, of the traditional tearing mode. Integrating Eq. (3.19) across

the resistive layer, and writing Eq. (3.20) in dimensionless units gives

0 = sgn (νxx)
∂4Φ

∂σ4
+

1

α

∂2Φ

∂σ2
+ σ (1 + σΦ) , (3.21)

∆′ = −iωq
ηc
xν

∫
dσ (1 + σΦ) , (3.22)

where ∆′ = (ψ′ (0+)− ψ′ (0−)) /ψ0, α = i |νxx| /ωqx2
ν , σ = x/xν , Φ = qyvA

ωq

xν

Ls

φ<

ψ<
0
, xν =

(ηc |νxx|)1/6
(

Ls

qyvA

)1/3

. In the limit ξ2/α ∼
∣∣∣ x2

ν

νxx
ωq

∣∣∣ < 1 (i.e. the viscous dominated

regime), the inertial term (second term on the right) is negligible, and Eq. (3.21) reduces to

0 = sgn (νxx)
∂4Φ

∂σ4
+ σ (1 + σΦ) . (3.23)

In order to lower the order of the above equations, it will be convenient to introduce the
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Fourier transform defined by

Φ (σ) =

∫ ∞

−∞
dqxe

−iqxσΦ (qx) . (3.24)

Here the integration is over the solutions within the singular layer. Eqs. (3.22) and (3.23)

then become
d2Φ (qx)

dq2
x

− sgn (νxx) q
4
xΦ (qx) = 2πi

d

dqx
δ (qx) , (3.25)

∆′ = −iωq
ηc
xν

(
2πδ (qx) + i

dΦ (qx)

dqx
|qx=0

)
. (3.26)

The solution of Eq. (3.25) is given by

Φ (qx) = iπsgn (qx)
Φhom (|qx|)
Φhom (0)

. (3.27)

Substituting Eq. (3.27) into Eq. (3.26) gives the eigenvalue relation in terms of the homo-

geneous solution

∆′ = −iπωq
ηc
xν

1

Φhom (0)

dΦhom

dqx
|qx=0 . (3.28)

Before discussing the effect of a negative viscosity on the reconnecting mode, it is

useful to briefly review the positive viscosity case
(
kx

∂N0
k

∂kx
> 0
)

. Following [71] closely,

the homogeneous solution of Eq. (3.25) is given by

Φhom (qx) = A
√
qxI 1

6

(
q3
x

3

)
+B

√
qxK 1

6

(
q3
x

3

)
, (3.29)

where A and B are arbitrary constants, and I and K represent modified Bessel functions.

Since the I solution diverges exponentially for large qx, we retain only the K piece. Ex-

panding Eq. (3.29) (with A set to zero), yields to first order

Φ (qx) ≈ B

(
π

61/6

Γ
(

5
6

) − 1

61/6

π

Γ
(

7
6

)qx) . (3.30)
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After inserting Eq. (3.30) into Eq. (3.28), the dispersion relation obtained is

γq =
61/3

π

Γ
(

7
6

)
Γ
(

5
6

) η5/6
c

ν
1/6
xx

(
qyvA
Ls

)1/3

∆′ ,

≈ .48
Γ
(

7
6

)
Γ
(

5
6

) η5/6
c

ν
1/6
xx

(
qyvA
Ls

)1/3

∆′ ∼ P−1/6τ−2/3
η τ

−1/3
A , (3.31)

which is identical to the expressions derived by [71, 72]. Note that the limit νxx → 0 is

unimportant, since the result of Eq. (3.31) is valid only for the viscosity dominated regime.

Furthermore, the growth rate can be seen to be (weakly) inversely proportional to νxx.

Physically this can be understood as viscous damping reducing the strength of the fluid

eddies driven by the linear J×B force.

Now, we consider the more subtle case of a negative viscosity
(
kx

∂N0
k

∂kx
< 0
)

. It is useful

to first consider the form of Eq. (3.23) in real space, i.e.

0 = −∂
4Φ

∂σ4
+ σ (1 + σΦ) . (3.32)

Note that the effect of changing the sign of the fourth order derivative is to introduce

solutions that oscillate rapidly, which we are unable to match to the second order exte-

rior solution. It is useful at this point to construct an eikonal formulation of the solution

of Eq. (3.32), for large σ. We proceed by considering solutions of the form Φ (σ) =

f (σ) eiψ(σ) − 1/σ, where f (σ) corresponds to a slowly varying amplitude, and ψ (σ) cor-

responds to a rapidly varying phase. Eq. (3.32) then becomes:

0 = − d4

dσ4

(
feiψ − 1

σ

)
+ σ

(
1 + σ

(
feiψ − 1

σ

))
. (3.33)

Only solutions which die off slower than 1/σ are relevant for large σ. This allows us to

drop the fourth derivative of 1/σ. Taking derivatives, and separating the real and imaginary
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parts, gives to lowest order:

0 = −f (ψ′)
4
+ σ2f , (3.34)

0 = 4f ′ (ψ′)
3
+ 6f (ψ′)

2
ψ′′ , (3.35)

where f ′ and ψ′ denote derivatives with respect to σ. Eqs. (3.34) and (3.35) can then easily

be solved, yielding:

Φ (σ) = sgn (σ)
D

|σ|3/4
exp

(
i
2

3
|σ|3/2 + iφD

)
+ sgn (σ)

E

|σ|3/4
exp

(
−i2

3
|σ|3/2 + iφE

)
− 1

σ
. (3.36)

The oscillatory terms in this expression result from balancing the fourth order viscous term,

against σ2Φ, the linear J × B force. It follows that the γqψ< term plays no role in deter-

mining the structure of the oscillations. Thus, the general form of this solution can be

understood as a consequence of coupling the electrostatic vortex mode to the low-m tear-

ing mode, which connects to the ideal MHD exterior. From this expression we note that

the oscillations die off more slowly than the residual tearing mode term. Hence, unless

some other mechanism damps the oscillations, it is not possible to match the oscillatory

solutions to the exterior solution. In Fourier space, this can be understood by considering

the homogeneous solution of Eq. (3.25), which is

Φhom (qx) = A
√
qxJ 1

6

(
q3
x

3

)
+B

√
qxY 1

6

(
q3
x

3

)
. (3.37)

Two observations concerning this equation are possible. First, upon Fourier transforming

Eq. (3.37), the solutions in real space can be seen to undergo oscillations which are ninety

degrees out of phase with one another. Thus, fixing the ratio of the amplitudes A/B is

equivalent to setting the phase of the oscillations. Second, since both of these solutions

converge for qx →∞, neither solution can be dropped. These considerations leave us with



109

an undetermined constant A/B in the eigenvalue relation, which can be written as

∆′ = −iπ
2

1

61/6

Γ
(

5
6

)
Γ
(

7
6

) ωq
ηc
xν

(
31/3

21/6
+

1

61/6

A

B

)
. (3.38)

From this expression it is clear that another boundary condition is needed in order to

specify A/B in the dispersion relation, Eq. (3.38). This extra boundary condition corre-

sponds to setting the phase of the oscillations of the solution. Thus, the boundary condition

cannot be determined from the solution in the exterior region alone. It is plausible from

physical considerations then to impose outgoing wave energy boundary conditions [73].

Thus, we see that the effect of the negative viscosity is to set up normal mode solutions

which carry energy from the layer, near the k ·B0 = 0 surface, toward the exterior region

where the the propagating waves are absorbed by ion Landau damping or some other dis-

sipative mechanism. Like other familiar cases of outgoing wave boundary conditions, the

damping does not appear explicitly in the theory, as outgoing wave boundary conditions

tacitly presume a sink for the outgoing wave.

As shown in Appendix A, this outgoing wave energy condition implies that A/B is

pure imaginary, so the dispersion relation takes the form

γq ∼
ηc
xν

∆′ ∼ η
5/6
c

|νxx|1/6

(
qyvA
Ls

)1/3

∆′ , (3.39)

Re (ωq) ∼
η

5/6
c

|νxx|1/6

(
qyvA
Ls

)1/3

∆′ , (3.40)

where ∆′ is purely real. Note that here the growth rate and frequency have the same scal-

ing. This is primarily a consequence of neglecting the electron pressure gradient and

other “two fluid” and kinetic effects. Including the electron and ion diamagnetic drift

into the mean field equations yields a dispersion relation of the form γ6
ν/ (1 + ic1)

6 ∼

− (ωq − ω∗e)
5 (ωq − ω∗i ), where c1 is a number of order unity set by matching to the eikonal
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solution. In the limit γν � ω∗e , which is relevant for drift tearing modes, the real frequency

is given approximately by Re (ωq) ≈ ω∗e .

3.4 Outlook for nonlinear island evolution

The classical Rutherford regime [15] corresponds to a filamented ‘near equilibrium’

state, which evolves slowly and self-similarly in time. Consistent with self-similarity, the

magnetic island width grows with a power of time (i.e. proportional to t), as opposed to

exponentially in time, as in the linear phase. It is interesting to note that in the presence of

turbulence at the ‘typical’, Gyro-Bohm level, the negative viscosity term dominates inertia,

even in the linear phase. However, it is by no means clear that the negative viscosity is

a-priori negligible in the Rutherford phase. Furthermore, since the Rutherford phase is one

of slow evolution, keeping finite flow excitation by negative viscosity compels us to also

retain damping of the low m flows.

While a complete discussion of the nonlinear island evolution is beyond the scope of

this paper, we can, however, sketch elements of the calculation here. First, as mentioned

in the proceeding paragraph, it is important to take note of the conceptual distinction be-

tween the classical Rutherford state and the nonlinear evolution of the reconnecting mode

discussed here. In the classic Rutherford calculation, the balance is first plus third order

J×B force vs. inertia, so

(B · ∇J)(1) + (B · ∇J)(3) =
d

dt
∇2

⊥φ . (3.41)

For island width exceeding tearing layer width (i.e. wI > xT ), (B · ∇J)(3) > d
dt
∇2

⊥φ, so

the balance simplifies to

(B · ∇J)(1) + (B · ∇J)(3) ≈ 0 , (3.42)



111

or

B · ∇J = 0 , (3.43)

so J = J (ψ) can be inserted into Ohms Law, yielding a differential equation for the

evolution of the island width. Here, for finite island size, the balance becomes

(B · ∇J)(1) + (B · ∇J)(3) =

(
d

dt
∇2

⊥φ

)
R

− ∂2

∂x2

(∫
d~k

kxky

(1 + ρ2
sk

2
⊥)

2 δNk (x, t)

)
+ γ

[
∇2φ

]
. (3.44)

Here
(
d
dt
∇2

⊥φ
)
R

refers to the inertia of the reconnecting mode, the second term on the RHS

refers to the modulation of the turbulent vorticity transport (i.e. Reynolds stress) by the

island and γ [∇2φ] refers to the neoclassical flow damping [74, 75], which may need to

account for island-induced toroidal symmetry breaking. For typical background turbulence

levels, reconnecting mode inertia is already subdominant, so

B · ∇J = − ∂2

∂x2

(∫
d~k

kxky

(1 + ρ2
sk

2
⊥)

2 δNk (x, t)

)
+ γ

[
∇2φ

]
. (3.45)

Thus, the J×B force equals the imbalance between the flow drive induced by modulation

of the Reynolds stress and the flow damping. Both of the latter two depend upon island size.

Note that in the complete absence of an island, Eq. (3.45) reduces to the marginality con-

dition for the modulation stability of a low-m vortex or zonal flow (for m = 0). Similarly,

neglecting both turbulence modulation and flow damping recovers “classical Rutherford”,

namely B ·∇J = 0. Thus, the structure outlined in Eq. (3.45) recovers both of the requisite

limiting cases. It follows that

J = J (ψ) + (B · ∇)−1

{
− ∂2

∂x2

(∫
dk

kxky

(1 + ρ2
sk

2
⊥)

2 δNk (x, t)

)
+ γ

[
∇2φ

]}
. (3.46)
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so that the island current is the sum of a ∆′-driven contribution (associated with the ho-

mogeneous solution J (ψ)) and a contribution due to the competition between flow gen-

eration and damping. Note that both δN (k, x, t) and γ in Eq. (3.46) must be computed

as a function of the island width wI , and will depend nonlinearly upon it. Note also that,

as mentioned after Eq. (3.46), retaining both ∂N0
k/∂x and ∂N0

k/∂k contributions to δNk

guarantees turbulence driven contributions to the current J that are both real and imaginary.

Further discussion of the finite island calculation is beyond the scope of this paper, and will

be addressed in a future publication.

We emphasize that a self-consistent description of the drift wave turbulence with the

magnetic island is essential. That is, as the magnetic island evolves, the large heat conduc-

tivity along magnetic field lines will flatten the temperature profile, killing the free energy

source of the turbulence. Thus, the external source may be turned off for sufficiently large

islands. However, turbulence driven by the temperature gradient outside the island, pre-

sumably steepened, may diffuse inward due to local interactions (i.e. collisions between

quasi particles). This “spreading” of the turbulence may allow for the micro turbulence to

be present in linearly stable regions.

3.5 Conclusions and Discussion

In this paper, we have explored a minimal self-consistent model of the multi-scale in-

teraction of a tearing mode with ambient, electrostatic drift wave turbulence. The principal

results of this paper are:

a.) its self-consistent formulation in terms of Reynolds stress effects of small scales

(drift waves) upon large scales (tearing mode), along with the back-reaction of large

scale straining and shearing flows on small scale turbulence. Here, the multi-scale

interaction is described by nonlinear modulation of the drift wave intensity field by
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the tearing mode flows.

b.) the identification of the negative turbulent viscosity as the principal effect of electro-

static drift wave turbulence on a simple, low-m tearing mode.

c.) the calculation of the growth rate of a ’reconnecting mode’ (with ∆′ > 0), which

couples to an ideal MHD exterior. This is the analogue of the familiar tearing

mode, but with negative viscosity providing the coupling to background turbulence.

Moreover, for typical “mixing length level” turbulence amplitudes, inertia is neg-

ligible, even in the linear growth phase. The reconnecting mode has growth rate

γq ∼ η
5/6
c

|νxx|1/6

(
qyvA

Ls

)1/3

∆′ and layer width ∆q = (ηc |νxx|)1/6
(

Ls

qyvA

)1/3

. Outgoing

wave boundary conditions must be imposed to match the inner layer to the MHD

exterior.

In addition to presenting the specific results enumerated above, we take this opportunity to

discuss two broader implications of this work. First (as discussed in Sec. 4), the theory

of finite size magnetic islands must be extended to encompass excitation of island flows

by turbulence modulation and the damping of flows due to breaking of axisymmetry. Any

imbalance between these two effects will produce a current which in turn affects island

size. Second, in reference to the finite size island case, the reader should keep in mind

that the turbulence intensity profile (∼ N (k, x, t)) is not static. In particular, flattening of

∇xN within an island will likely steepen ∇xN in adjacent regions, which results in either

a ‘back-wash’ of turbulence spreading or the possible formation of a transport barrier, since

steep∇xN in turn implies enhanced flow and flow shear drive via Reynolds stress [76, 24].

Clearly, some sort of bifurcation condition delimits the boundary between these two very

different ‘basin’s of attraction’ for the system state. Significant further work is required to

elucidate this transition.
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We also again emphasize here that this model is indeed a ‘minimalist’ ‘toy’ model,

which omits many detailed effects relevant to NTM evolution in tokamaks. These include,

but certainly are not limited to the effects of toroidicity and bootstrap current drive, the

effects of turbulent heat transport on island evolution, neoclassical modifications of the

polarization drift, island-induced modifications of the density, temperature and turbulence

intensity profiles, incoherent emission from turbulence, spreading of turbulence from adja-

cent regimes into the island, etc, etc. Indeed, the list is endless! Many years of interesting

research will be necessary to resolve these and the other interesting questions pertinent to

the theory of multi-scale interaction of turbulence with MHD.

Appendix A: Outgoing Wave Energy Boundary Conditions

In order to calculate the ratio A/B in Eq. (3.38), it is necessary to match our exact

solution Eq. (3.37) to the outgoing piece of the eikonal solution. The fluctuating piece of

Eq. (3.36) can be rewritten

Φ̃ (σ) = sgn (σ)
D

|σ|3/4
eikx|x|+iφD + sgn (σ)

E

|σ|3/4
e−ikx|x|+iφE , (3.A1)

where kx is defined as kx = (2/3)
√
|x|/x3/2

ν . kx can be related to the frequency through the

dispersion relation Re (ωq) ∼ (ηc∆
′) /xν , which yields kx = (2/3)

√
|x|ω3/2

q / (ηc∆
′)3/2.

Thus, the sign of vgr can be determined from v−1
gr = ∂kx/∂ωq. Applying the outgoing wave

energy boundary condition then gives (for large values of x i.e. x� xν)

Φ̃ (x) = sgn (x)
D

|σ|3/4
eikx|x|+iφD . (3.A2)

We are now interested in matching the exact solution to the eikonal solution, in order to
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determine the ratio A/B. The exact solution in Fourier space can be written as

Φ (qx) = −i π2

Γ (1/6)

1

61/6
sgn (qx)

{
A

B

√
|qx|J 1

6

(
|qx|3

3

)
+
√
|qx|Y 1

6

(
|qx|3

3

)}
. (3.A3)

This solution can be rewritten in real space as

A

B

1

2π

∫
dqxe

iqxσsgn (qx)
√
|qx|J 1

6

(
|qx|3

3

)
=
A

B

31/6

4

Γ (2/3)

Γ (1/6) Γ (7/6)
σ 0F3

(
2

3
,
5

6
,
7

6
;
σ6

1296

)

− A

B

1

9

π

35/6

(
2

3

)1/3
Γ (−4/3)

Γ (1/6) Γ (7/6)
σ3

· 0F3

(
7

6
,
4

3
,
3

2
;
σ6

1296

)
, (3.A4)

and:

1

2π

∫
dqxe

iqxσsgn (qx)
√
|qx|Y 1

6

(
|qx|3

3

)
= −i3

2/3

12
σΓ (2/3) 0F3

(
2

3
,
5

6
,
7

6
;
σ6

1296

)
+

61/3

180

Γ (−1/3) Γ (11/6)

Γ (7/6)
σ3

0F3

(
7

6
,
4

3
,
3

2
;
σ6

1296

)
+ i

σ5

120
1F4

(
1;

4

3
,
3

2
,
5

3
,
11

6
;
σ6

1296

)
, (3.A5)

where pFq is a generalized hypergeometric function. Matching Eq. (3.A3) to Eq. (3.A2),

with the use of Eqs. (3.A4) and (3.A5), leads to A/B = i. A plot comparing the eikonal

solutions to the exact solutions is given in Fig. (3.5).

Appendix B: Linear Theory of ITG Turbulence for a Cylin-

drical RFP

In the above analysis we considered an absolutely minimal model of the background

micro turbulence in order to illuminate a number of the salient features of the tearing mode-
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Figure 3.5: Plots of eikonal solutions versus exact solution. The solid lines correspond to
the exact solutions, whereas the broken lines correspond to the eikonal solutions.

drift wave interaction. Here, we are also interested in introducing a somewhat more sophis-

ticated model of the ambient micro turbulence by including the impact of magnetic shear

on the linear mode structure. As will be seen below, when magnetic shear is added to the

system, the extent of the radial localization, and thus the degree of anisotropy, all affect the

linear dynamics. Consider a set of fluid equations similar to those given in Lee-Diamond

[77], except with the addition of a curvature term, which is important for the RFP. Thus:

0 =
∂

∂t

(
1−∇2

⊥
)
φ+ v∗e

(
1− 2

Ln
R

+ κ∇2
⊥

)
∂

∂y
φ− 2

R

∂

∂y
P +∇‖v‖ (3.B1)

− (ẑ×∇φ) · ∇∇2
⊥φ

0 =
∂

∂t
v‖ +∇‖ (φ+ P ) + (ẑ×∇φ) · ∇v‖ (3.B2)

0 =
∂

∂t
P + (ẑ×∇φ) · ∇P + v∗κ

∂

∂y
φ+

Γ

τ
∇‖v‖ (3.B3)

v∗e ≡ −
cTe
eB

d(lnn0)

dx
, τ ≡ Te

Ti
, ηi ≡

d(lnTi)/dx

d(lnn0)/dx
, κ ≡

(
1 + ηi
τ

)
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φ ≡ eΦ

Te
, vz ≡

vzi
cs
, P ≡ Pi

〈Pi0〉
Ti
Te

The space and time scales are in units of ρs and ω−1
ci respectively, R is the curvature of the

mean magnetic field, Ln is the the density gradient, and Γ is the ratio of specific heats. Note

that the nonlinearity within the equation for the electrostatic potential is the same as in the

Hasegawa-Mima equation. However, unlike the previous model, the parallel dynamics are

included, and the vorticity equation is coupled to the pressure via a curvature term. Both

the inclusion of parallel dynamics as well as magnetic curvature provide linear drives.

Assuming a radially inhomogeneous sheared slab geometry, the radial eigenmode equa-

tion is given by:

0 = ∂xxφk(x) +

(
1− 2

R

ky
ωky

Γ

τ

)(
ky
ωky

)2(
x

Ls

)2

φk(x)− k2
yφk(x)

+

(
ωky

v∗eky
+ κ

)−1(
1− 2

Ln
R
−

ωky

v∗eky

)
φk(x)−

(
ωky

v∗eky
+ κ

)−1
2

R

ky
ωky

κφk(x) (3.B4)

where x is the radial distance from the resonant surface defined by k · B = 0. Choosing

boundary conditions such that the growing mode is localized, gives solutions of the form

φk(x) ∼ e−
i
2
µkx

2

, µk = − 1

Ls

|ky|
|ωky |2

(
ωky − iγky

)(
1− 2

R

ky
ωky

Γ

τ

) 1
2

(3.B5)

where, for the RFP, the shear is negative. The parameter µk introduces two length scales:

a.) Re (µk) = 1/x2
t which sets the length scale over which the mode varies in the radial

direction.

b.) Im (µk) = 1/x2
i which gives the envelop width of the mode.
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Figure 3.6: Figure (a.) shows a plot of the linear growth rate and frequency. The solid line
denotes the real part of ωq(Ln/cs)/5 and the broken line denotes and growth rate γq(Ln/cs).
Figure (b.) displays a plot of the real and imaginary part of µk. The solid line denotes the
real part of µ and broken line corresponds to the imaginary part of µ plotted as a function
of ky

Substituting Eq. (3.B5) into Eq. (3.B4), gives the linear dispersion relation

0 =
(
1 + k2

y

)
ω2
ky

+ v∗eky

[
i

|Ls|
1

v∗e
sign (ky)

(
1− 2

R

ky
ωky

Γ

τ

) 1
2

+ k2
yκ+ 2

Ln
R
− 1

]
ωky

+
2

R
κk2

yv
∗
e +

i

|Ls|
κsign (ky) k

2
yv

∗
e

(
1− 2

R

ky
ωky

Γ

τ

) 1
2

(3.B6)

From the dispersion relation Eq. (3.B6), µk can be computed . For typical RFX parameters

Te

Ti
= 2, ηi = 15, a

Ls
= q′/ε = −1/8, R

a
= 1.6, Γ = 5/3, ε = a/Rm, where a and Rm are

the minor and major radius’ respectively, plots of the linear frequency and growth rate are

shown in Fig. (3.6).

Appendix C: Wave Kinetic Equation for ITG Turbulence in

Sheared Magnetic Field

For a self-consistent description of the drift wave-tearing mode system, it is necessary

to consider the effect of magnetic shear on the micro-turbulence. Indeed, for finite island
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size, one should even compute the linear stability of high-n turbulence taking the magnetic

geometry of the island into account. Radial magnetic shear will ultimately lead to modes

being localized near resonant surfaces. Thus a radial length scale, which is in general

different from that of the poloidal length scale, will emerge.

We begin by considering a set of fluid equations, given in Appendix B, which model

ITG turbulence in the presence of a sheared magnetic field. For the following analysis it

will be necessary to approximate the radial structure of ITG modes for the system. As a

lowest order approximation, we will use the linear eigenmodes (derived in Appendix B).

While this approximation is crude, it will provide some insight into the effect of anisotropic

radially localized turbulence on the anomalous viscosity.

The large scale RMHD equations are coupled to the micro turbulence only through

Nk ∼ 〈φ>φ>〉. Thus, it is sufficient to derive a single WKE describing the evolution of

〈φ>φ>〉. However, considering Eqs. (3.B1-3.B3), it’s clear that 〈φ>φ>〉 will be coupled to

the cross terms 〈φ>P>〉 and 〈φ>V >
z 〉, which will, in turn, couple to 〈P>P>〉, 〈V >

z V
>
z 〉, and

〈P>V >
z 〉, thus defining a set of six coupled nonlinear WKE’s. For simplicity, we will drop

the cross terms appearing in the equation for 〈φ>φ>〉, leaving us with only a single WKE.

Note that while this approximation is crude, the qualitative structure of the anomalous

viscosity introduced into the RMHD equations will be insensitive to the details of the WKE,

but vary sensitively with the various length scales characteristic of the turbulence.

The derivation of the WKE for ITG turbulence follows ref. [78] closely, and is outlined

below. The primary difference is that the linear dynamics are determined via ITG equations,

and that the result is generalized for the case of strong magnetic shear (relevant for a RFP).

We begin by considering solutions of the form

(φ> (~x, t) , P> (~x, t) , V > (~x, t)) =

∫
d2k (φ>k (x, t) , P>

k (x, t) , V >
k (x, t)) eiky+ikzz ,

(3.C1)
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where ky has been written as k. Thus Eq. (3.B1) will now take the form

0 = ∂t
(
1− ∂xx + k2

)
φ>k (x, t) + iV ∗

e k

(
1− 2

Ln
R

+ κ
(
∂xx − k2

))
φ>k (x, t)

− 2i

R
kP>

k (x, t) + ikzV
>
k (x, t)− i

∑
k=k1+k2

k1φ
<
k1

(x, t)
(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x, t)

+ i
∑

k=k1+k2

k2∂xφ
<
k1

(x, t)
(
1− ∂xx + k2

2

)
φ>k2 (x, t) . (3.C2)

Here the summations are short hand notation for integrations, i.e.∑
k=p+q →

∫
dpdqδ (−k + p+ q). It is now useful to separate the time dependence of

the small scale fields into a slowly varying amplitude (resulting from the modulations of

the large scale mean fields), and a rapidly varying piece, so that:

(φ>k (x, t) , P>
k (x, t) , V >

k (x, t))

→
(
ak (t) e−iωktφ>k (x) , bk (t) e−iωktP>

k (x) , ck (t) e−iωktV >
k (x)

)
, (3.C3)

where φ>k (x) is the linear eigenmode, and x is defined as the distance from the rm,n

resonant surface (k1 = m1/r and k1z = n1/R). We can now define a Wigner func-

tion as Ik (y, t) =
∫
dpeipy 〈ak+p (t) e−iωk+pta−k (t) e−iω−kt〉. We choose the normalization∫

dxφ>k (x)φ>−k (x) = 1 for the radial eigenmodes, where µ(r)
−k = −µ(r)

k and µ(i)
−k = µ

(i)
k .

An equation describing the evolution of the intensity of the drift wave turbulence can be

derived by multiplying Eq. (3.C2) (with k → −k) by φ>k′ (x, t), and adding the same equa-

tion with -k ↔ k′. Setting k′ = k+p, where p corresponds to the wave number of the large
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scales, and dropping the cross terms gives:

φ>−k (x)φ>k+p (x)

(
∂

∂t
+ i (ω−k + ωk+p)

)(
a−k (t) e−iω−ktak+p (t) e−iωk+pt

)
= i

∑
−k=k1+k2

ak+pe
−iωk+ptak2e

−iωk2
tk1φ

>
k+p (x)

(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x)φ<k1 (x, t)

− i
∑

−k=k1+k2

ak+pe
−iωk+ptak2e

−iωk2
tk2φ

>
k+p (x)

(
1− ∂xx + k2

2

)
φ>k2 (x) ∂xφ

<
k1

(x, t)

− i
∑

k+p=k1+k2

a−ke
−iω−ktak2e

−iωk2
tk1φ

>
−k (x)

(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x)φ<k1 (x, t)

+ i
∑

k+p=k1+k2

a−ke
−iω−ktak2e

−iωk2
tk2φ

>
−k (x)

(
1− ∂xx + k2

2

)
φ>k2 (x) ∂xφ

<
k1

(x, t) .

Here ωk includes the real frequency and growth rate of the linear mode. In order to simplify

the notation we define ãk (t) = ak (t) e−iωkt. Expanding the linear piece in the ratio p/k �

1, averaging over the fast scales, integrating across the distribution of resonant surfaces,

applying the operator
∫
dpeipy, and using the normalization condition gives the evolution

equation for Ik which is:

(
∂

∂t
+ vgr

∂

∂y
+ γk

)
Ik = S1 + S2 + S3 + S4 (3.C4)

S1 = i

∫
dpeipy

∫
dx

∑
−k=k1+k2

〈ãk+pãk2〉 k1φ
>
k+p (x)

(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x)φ<k1 (x)

S2 = −i
∫
dpeipy

∫
dx

∑
−k=k1+k2

〈ãk+pãk2〉 k2φ
>
k+p (x)

(
1− ∂xx + k2

2

)
φ>k2 (x) ∂xφ

<
k1

(x)

S3 = −i
∫
dpeipy

∫
dx

∑
k+p=k1+k2

〈ã−kãk2〉 k1φ
>
−k (x)

(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x)φ<k1 (x)

S4 = i

∫
dpeipy

∫
dx

∑
k+p=k1+k2

〈ã−kãk2〉 k2φ
>
−k (x)

(
1− ∂xx + k2

2

)
φ>k2 (x) ∂xφ

<
k1

(x)

where γk includes both the linear growth rate of the ITG mode, as well as the shear damping

piece. In order to evaluate the nonlinear terms it is useful to inverse Fourier transform the
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ensemble averaged terms [13] i.e. for S1

〈ãk+p (t) ã−k+k1 (t)〉 =
〈
ã(−k+k1)+(p−k1) (t) ã−k+k1 (t)

〉
(3.C5)

=

∫
dy′e−i(p−k1)y′I−k+k1 (y′, t)

Inserting this expression into S1 gives

S1 = i

∫
dk1dy

′dpk1e
i(y−y′)peik1y

′
I−k+k1 (y′, t)

·
∫
dxφ>k+p (x)

(
1− ∂xx + k2

2

)
∂xφ

>
k2

(x)φ<k1 (x)

The other nonlinear terms can be treated similarly. It is now necessary to evaluate the

spatial integrals. To lowest order, φ<k1 (x) may be treated as a constant and pulled out of the

integral. However, since we are anticipating that the large scale mean fields vary strongly in

the radial direction, we instead expand φ<k1 (x) about the rm1,n1 resonant surface. Keeping

up to second order in the power series expansion for φ<k1 (x), and performing the spatial

integrals gives

∂

∂t
Nk +

∂

∂k
(ωk + δωk)

∂

∂y
Nk −

∂

∂y
δωk

∂

∂k
Nk = γkNk − F [φ<]Nk −∆ωkN

2
k , (3.C6)

δωk =
k
[(

1 + k2 − 1
2
µik
) (
k2 − 1

2
µik
)

+
(

1
4
µrk
)2](

1 + k2 − 1
2
µik
)2

+ 1
4
(µrk)

2

∂φ<

∂x
,

Nk =

[(
1 + k2 − 1

2
µik

)(
k2 − 1

2
µik

)
+

1

4
µ2
rk

]
Ik .
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Figure 3.7: Plot of C (q) as a function of qy and qx.

F [φ<] = − µrk∂xφ
<(

1 + k2 − 1
2
µik
)2

+ 1
4
µ2
rk

+

[(
1 + k2

) (
k2 − 3µik

)
+

3

4
|µk|2

]
µrk∂krk∂yyφ

<(
1 + k2 − 1

2
µik
)2

+ 1
4
µ2
rk

+
1

2

k

|µk|2

[
k2

(
1 + k2 − 1

2
µik

)
− 1

4
|µk|2

]
µrk∂xxxφ

<(
1 + k2 − 1

2
µik
)2

+ 1
4
(µrk)

2

−
[
1

2
µ2
rk +

(
1 + k2 − 1

2
µik

)(
µik +

1

2
k∂kµik

)
− 1

4
kµrk∂kµrk

]
· ∂xyφ

<(
1 + k2 − 1

2
µik
)2

+ 1
4
µ2
rk

+
1

2

(
1 + k2 − 1

2
µik

)
kµrk∂kµrk∂xyφ

<[(
1 + k2 − 1

2
µik
)2

+ 1
4
µ2
rk

]2 ,

Following a similar procedure as in the homogeneous case shown above (explained in

detail in [78]), Eq. (3.C6) can be linearized and inserted into Eq. (3.8). This allows the

polarization nonlinearity in the vorticity equation for the large scales to be written as:

〈
(ẑ×∇φ>) · ∇∇2

⊥φ
>
〉
(x, t) = C (q)φ<. (3.C7)
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The structure of C (q) is plotted in Fig. 3.7as a function of qy and qx for the parameters

given in Appendix B, and with α = −3, which is the exponent of the equilibrium wave

action spectrum.

Here qx and qy should be interpreted as inverse radial length scales associated with the

large scale mode. The dark portions of the graph correspond to negative values of C (q).

It’s apparent that the above structures die off rapidly for large poloidal wave numbers (small

poloidal scales), however the magnitude of C (q) remains much more pronounced for large

radial wave numbers (small radial scales). This leads one to expect strong excitation of

poloidally extended, narrow radial structures, as is the case with a tearing mode or zonal

flow.

This chapter has been published in Physics of Plasmas, C. J. McDevitt and P. H. Dia-

mond, 13, 032302 (2006). C. J. McDevitt was the primary investigator and author of this

paper.



Chapter 4

Transport of Parallel Momentum by

Collisionless Drift Wave Turbulence

4.1 Introduction

Interest in toroidal momentum transport has been recently stimulated by the discovery

of ‘spontaneous’ or ‘intrinsic’ rotation [79] and the realization that such intrinsic rotation

may be required to suppress resistive wall modes in ITER [80], where neutral beam injec-

tion (NBI) is of limited utility and high cost. Spontaneous rotation refers to the observation

that tokamak plasmas appear to rotate toroidally, at quite healthy velocities, in the absence

of any apparent toroidal momentum input.

Theoretical approaches to the problem of turbulent transport of toroidal momentum and

intrinsic rotation have focused on attempts to calculate the various elements of the momen-

tum flux [81]. Various works include calculations of the momentum diffusivity χφ [82],

calculations of the momentum convection velocity V in various models [83, 84, 85, 86],

and calculations of the residual stress driven by fluctuations and ∇P , which can act as a

local anomalous momentum source [87]. Most of the calculations of off-diagonal flux el-

ements involve some assumption of a mechanism for broken k‖ spectral symmetry, since
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〈
ṽrṽ‖

〉
∼
〈
∇yφ̃∇‖φ̃

〉
requires

〈
k‖
〉
eff

6= 0 for a significant non-diffusive component. In

one case, such symmetry breaking occurred via an interesting interplay of curvature cou-

pling and ballooning structure [85]. In scenarios involving the electric field shear, progress

was facilitated by drawing upon previous results for the effect of shear on turbulence and

transport [88, 89, 90, 91]. Other approaches have invoked the effects of blobs or other

coherent structures [92]. Most of the calculations implemented so far have been extremely

simple and based on fluid models. Even the few kinetic calculations have not treated the

response of both resonant and non-resonant particles and have not addressed parallel ac-

celeration effects. However, the general structure of a kinetic model has been discussed, to

some extent, in Ref. [93].

In this chapter, we focus primarily on the structure of the resonant component of the

radial flux of parallel momentum. While our emphasis is on resonant particle contributions

to the radial momentum flux, a momentum conservation theorem is derived such both wave

fluxes and the exchange of momentum between resonant particles and waves can be read-

ily accounted for. Similarly, the momentum conservation theorem provides a generalized

expression for the total momentum flux The detailed structure of the resonant particle mo-

mentum flux is explicitly derived, accounting for diffusive, convective, and residual stress

terms. It is found that the magnitude and sign of the off-diagonal terms depend sensi-

tively on the linear mode properties of the underlying turbulence, as well as the strength

of the radial electric field shear. Thus, making possible strong transitions in the direction

and magnitude of the momentum flux induced by off-diagonal components as the plasma

undergoes transport bifurcations, or the properties of the linear modes are varied.

The remainder of this chapter is organized as follows. In section II a momentum con-

servation theorem is proved emphasizing the dual role of waves and resonant particles in

transporting momentum. Section III contains a derivation of the structure of the resonant

particle momentum flux, with a discussion of its relation to experiment and to previous
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work. Finally, in section IV we conclude.

4.2 Momentum Conservation Theorem

In this section we discuss the conservation of momentum and the structure of the

momentum budget relation in the mean field theory of drift wave turbulence. We assume

a simple geometry r, θ, φ and leave extensions to toroidal geometry to a future paper. A

momentum conservation theorem is proven, with special emphasis placed on delineating

the roles of resonant particles and waves in momentum balance and transport. Starting

from the gyrokinetic equation in collisionless electrostatic turbulence:

0 =
∂F (s)

∂t
+

∂

∂x
·
(
ẊF (s)

)
+

∂

∂v‖

(
V̇‖F

(s)
)

, (4.1a)

where

Ẋ = v‖b̂ +
c

B
b̂×∇

〈
Φ̃
〉
α

, V̇‖ = − qs
ms

b̂ · ∇
〈
Φ̃
〉
α
, (4.1b)

and, 〈· · · 〉α ≡ (2π)−1 ∫ 2π

0
dα (· · · ). The mean field equation follows as

∂
〈
F (s)

〉
∂t

+
∂

∂x
·
〈
ẊF (s)

〉
+

∂

∂v‖

〈
V̇‖F

(s)
〉

= 0. (4.2)

Here it is convenient to rewrite Eq. (4.2) in the form of a parallel momentum equation.

Defining the parallel plasma momentum as
〈
P‖
〉

=
∑

sms

∫
d3v̄v‖

〈
F (s)

〉
, where the ve-

locity moment is defined as
∫
d3v̄ ≡ 2π

∫
dµdv‖ (ωcs/ms), and µ is proportional to the

magnetic moment µ ≡ msv
2
⊥/ (2ωcs). Taking the velocity moment of Eq. (4.2), multiply-

ing by the mass of the plasma species, and summing over species, yields:

∂
〈
P‖
〉

∂t
+

∂

∂x
·
∑
s

∫
d3v̄
〈
Ẋmsv‖F

(s)
〉

=
∑
s

∫
d3v̄
〈
V̇‖msF

(s)
〉
. (4.3)
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Thus, the overall plasma momentum may be understood to evolve due to spatial fluxes

induced by fluctuating E×B flows, and a sink/source term introduced by parallel forcing

by the fluctuating electrostatic field. In order to understand the nature of this sink/source

of parallel momentum, it is useful to briefly review the form of the familiar quasi-linear

energy conservation theorems of the 1D Vlasov equation. For that familiar system, energy

balance may be stated in either of two equivalent ways: as the conservation of the sum of

resonant particle (ε
RP

) and wave (ε
W

) energy densities, i.e.

d

dt
(ε

RP
+ ε

W
) = 0, (4.4a)

or as the conservation of the sum of particle and field energy density, i.e.

d

dt
(ε

P
+ ε

F
) = 0. (4.4b)

The equivalence of these two results follows from the fact that ε
W

= ε
F

+ ε
NRP

, i.e. waves

(collective modes) are supported both by non-resonant particles (whose energy density is

denoted by ε
NRP

, where ε
P

= ε
RP

+ ε
NRP

) and fields. We observe that Eq. (4.4a) can be

alternatively re-cast in terms of the quasi-particle density N (wave quanta density – usually

action density) by noting that ε
W

= N (k,x, t)ωk, so that the sum of resonant particle

energy and quasi-particle energy is conserved [94].

Similarly, for momentum we can write:

d

dt
(PRP + PW ) = 0, (4.5a)

and
d

dt
(PP + PF ) = 0. (4.5b)

Here PRP is the resonant particle momentum density, PW is the wave momentum density
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(sometimes referred to as the pseudo-momentum density), and PP = PRP + PNRP is the

total particle momentum density. For electrostatic turbulence, the field momentum PF

is necessarily zero (Ẽ × B̃/4πc2 = 0, since B̃ = 0). This simple observation can be

immediately seen to have two important consequences. First, Eq. (4.5b) reduces to the

trivial relationship dPP/dt = 0, indicating that the total mechanical momentum of the

system is conserved. In the electrostatic limit, Eq. (4.3) may be easily seen to reduce in an

analogous way, i.e.

∑
s

∫
d3v̄
〈
V̇‖msF

(s)
〉

=
ε⊥
4π

∑
s

〈
b̂ · ∇Φ̃∇2

⊥Φ̃
〉
,

= − ε⊥
8π

〈
b̂ · ∇

∣∣∣∇⊥Φ̃
∣∣∣2〉 = 0,

where we have used the the gyrokinetic Poisson equation [Eq. (4.A3)], assumed periodic

boundary conditions in the parallel direction, and used an approximate form of ε⊥ (k) for

simplicity (see Appendix A).

The second consequence of the field momentum vanishing is that PW , which in gen-

eral accounts for both field as well as non-resonant particle momentum, can be seen to be

directly linked to fluctuations in the non-resonant particle momentum, i.e.

PW = δPNR, (4.6)

where δPNR ≡ PNR − P
(0)
NR is the momentum associated with the fluctuation driven non-

resonant particle flow, and P (0)
NR is the zeroth order non-resonant particle momentum den-

sity, associated with the background (mean) flow. Equation (4.6) is a simple, albeit im-

portant, identity which is applicable to any system of electrostatic turbulence, including

electrostatic drift waves.

Similarly, the gyrokinetic analog of Eq. (4.5a) can be constructed by considering the
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quasi-linear expression for the resonant particle parallel momentum, i.e.

∂
〈
PR
‖

〉
∂t

+
∂

∂r

(
ΠR
rr + ΠR

rv

)
= SRvx + SRvv, (4.7)

where

ΠR
rr = −π

( c
B

)2 ∑
s,k,ω̄

msk
2
θ

∫
d3v̄v‖δ

(
ω̄ − k‖v‖

)
J2

0 (k⊥ρ⊥)
∂
〈
F (s)

〉
∂r

∣∣∣Φ̃k,ω̄

∣∣∣2 , (4.8)

ΠR
rv = −π c

B

∑
s,k,ω̄

qsk‖kθ

∫
d3v̄v‖δ

(
ω̄ − k‖v‖

)
J2

0 (k⊥ρ⊥)
∂
〈
F (s)

〉
∂v‖

∣∣∣Φ̃k,ω̄

∣∣∣2 , (4.9)

SRvx = −π c
B

∑
s,k,ω̄

qsk‖kθ

∫
d3v̄δ

(
ω̄ − k‖v‖

)
J2

0 (k⊥ρ⊥)
∂
〈
F (s)

〉
∂r

∣∣∣Φ̃k,ω̄

∣∣∣2 , (4.10)

SRvv = −π
∑
s,k,ω̄

q2
s

ms

k2
‖

∫
d3v̄δ

(
ω̄ − k‖v‖

)
J2

0 (k⊥ρ⊥)
∂
〈
F (s)

〉
∂v‖

∣∣∣Φ̃k,ω̄

∣∣∣2 . (4.11)

Here we have inserted the quasi-linear plasma response to electrostatic perturbations [i.e.

Eq. (4.25) given below] in order to obtain explicit expressions for the flux and source terms,〈
PR
‖

〉
indicates that only resonant particles are included in the integration and ω− ωEB ≡

ω̄ + k‖
〈
v‖
〉
. Similar to the equation for the total plasma momentum [Eq. (4.3)], a source

term (here given by SR‖ ≡ SRvx + SRvv) is again present. However, unlike the previous case,

this term can be easily seen to be non-zero in the electrostatic limit. In order to understand

in more detail the origins of this sink/source of resonant particle parallel momentum it

is convenient to rewrite the source term SR‖ in terms of the gyrokinetc susceptibility (see

Appendix A), yielding:

SR =
1

4π

∑
k

k‖Imχk,ωk
ε⊥ (k) k2

⊥

∣∣∣Φ̃k

∣∣∣2 , (4.12)

where ωk is defined by ReDk,ω = 0. Equation (4.12) may be rewritten in the simplified
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form as

SR = −2
∑
k

k‖γkNk. (4.13)

Here Nk is the wave action density, and is defined by

Nk ≡
1

8π

∂Dk,ω

∂ω

∣∣∣∣
ω=ωk

ε⊥ (k) k2
⊥

∣∣∣Φ̃k

∣∣∣2 . (4.14)

Thus, the expression for resonant particle momentum [Eq. (4.7)] can be written as

∂
〈
PR
‖

〉
∂t

+
∂

∂r

(
ΠR
rr + ΠR

rv

)
= −2

∑
s

k‖γkNk. (4.15)

As discussed further below, Nk may be understood to correspond to a population of wave

quanta. Thus, as is clear from the form of Eq. (4.15), resonant particle momentum is

conserved up to wave-particle interaction with the ambient wave population.

From Eq. (4.15) it is clear that a description of wave evolution is required in order to

account for the sink/source introduced by wave-particle interaction. This can be accom-

plished by recalling the quasi-linear wave-energy (“Poynting”) theorem for drift waves:

∂

∂t
εωk

+∇ · Sk +Qk = 0, (4.16)

i.e. that wave energy density εωk
evolves via divergence of the wave energy density flux Sk

and local dissipation Qk. Here, εωk
, Sk and Qk are given, respectively, by:

εωk
=

1

8π
ωk

∂Dk,ω

∂ω

∣∣∣∣
ωk

ε⊥ (k)
∣∣∣Ẽ⊥

∣∣∣2 , (4.17a)

Sk = − 1

8π
ωk

∂Dk,ω

∂k

∣∣∣∣
ωk

ε⊥ (k)
∣∣∣Ẽ⊥

∣∣∣2 , (4.17b)

Qk =
1

4π
ωkImDk,ωk

ε⊥ (k)
∣∣∣Ẽ⊥

∣∣∣2 . (4.17c)
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Equation (4.16) is a straightforward adaptation of a more general result for waves in a

dielectric medium to the special case of drift waves, which we consider here. The drift-

kinetic equivalent of Eqs. (4.16,4.17) are proven in Refs. [95, 96]. In order to relate the

spatial momentum flux to the wave energy εk, it is convenient to rewrite Sk utilizing

0 = dω

(
∂Dk,ω

∂ω

)
+ dk ·

(
∂Dk,ω

∂k

)
,

⇒
(
∂Dk,ω

∂k

)
= −vgr

∂Dk,ω

∂ω
,

thus,

Sk = vgrεk. (4.18)

Equation (4.16) can now be rewritten as a parallel wave momentum equation using the

definition
〈
Pw
‖

〉
≡
∑

k k‖Nk =
∑

k

(
k‖/ωk

)
εk

∂
〈
Pw
‖

〉
∂t

+∇ ·Πw
‖ = −Sw‖ , (4.19)

where

Πw
‖ ≡

∑
k

k‖vgrNk, (4.20)

Sw‖ ≡
1

4π

∑
k

k‖ImDk,ωk
ε⊥ (k) k2

⊥

∣∣∣Φ̃k

∣∣∣2 =
−1

4π

∑
k

k‖γk
∂Dk,ω

∂ω

∣∣∣∣
ω=ωk

ε⊥ (k) k2
⊥

∣∣∣Φ̃k

∣∣∣2 ,
= −2

∑
k

k‖γkNk, (4.21)

and vgr is the group velocity of the underlying waves. Summing Eqs. (4.15) and (4.19)

yields the momentum equation

∂

∂t

(〈
PR
‖
〉

+
〈
Pw
‖
〉)

+∇ ·
(
ΠR
r,‖ + Πw

r,‖
)

= 0. (4.22)
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Finally, we note that from Eq. (4.6) the total momentum fluctuation can be written as

δP‖ =
〈
PR
‖

〉
+
〈
Pw
‖

〉
, since wave momentum and non-resonant particle momentum are

identical in the frame of the background plasma. Thus, Eq. (4.22) can be written as

∂δP‖
∂t

+∇ ·
(
ΠR
r,‖ + Πw

r,‖
)

= 0. (4.23)

Note that Eq. (4.23) eliminates the local force in (4.15), in favor of the mean radial flux

of parallel wave momentum Πw
r,‖. More generally, Eq. (4.23) relates the total fluctuation-

induced parallel force on the plasma to the sum of the fluxes of resonant particle and wave

momentum. In the next section, an explicit expression for the resonant particle flux is de-

rived, however before proceeding further, it is useful to comment on some basic properties

of the wave momentum flux. First, we note that for a “balanced” spectrum of drift wave tur-

bulence (i.e.
〈
k‖
〉
≡
∑

k k‖Nk/
∑

kNk = 0), Πw
r,‖ can be easily seen to vanish identically

for vgr
(
−k‖

)
= vgr

(
k‖
)
. Thus, parallel symmetry breaking, i.e. an imbalance in the par-

allel propagation of the drift wave population, is required in order to induce a finite radial

flux of parallel momentum. As further discussed below, k‖ symmetry breaking also plays

an important role in determining the sign and magnitude of the off-diagonal contribution to

the resonant particle flux, thus identifying
〈
k‖
〉

as a critical quantity in the description of

parallel momentum transport. While a comprehensive description of k‖ symmetry breaking

is beyond the scope of this chapter, we remark that as is well known, the presence of E×B

shear is capable of inducing a finite
〈
k‖
〉

[88, 89, 90, 91], and thus introduce a potentially

large contribution to the overall parallel momentum transport due to wave fluxes. We note

that although this mechanism is not unique (another obvious example would be growth

asymmetry), for regions of strong E × B shear, such as the H-mode pedestal, it is likely

dominant.
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4.3 Calculation of Resonant Particle Flux

In this section, we present the calculation of the parallel momentum flux carried by

resonant particles. The quasi-linear gyrokinetic equation for the evolution of the resonant

particle (i.e. ion) momentum is given by

∂

∂t

〈
PR
‖
〉

+
∂

∂r

〈
ΠR
r,‖
〉

= mi

∫
d3v̄V̇‖F̃

R
i , (4.24a)

where the resonant particle momentum flux is

ΠR
r,‖ =

〈
ṽErP̃‖i

〉
= min0

∫
d3v̄v‖

dR

dt
F̃R
i , (4.24b)

and F̃R
i is the resonant, linear ion response. As shown in Section II, the rhs corresponds to

momentum exchange between waves and particles and cancels identically with its counter-

part in the k‖ moment of the wave kinetic equation. Hence, the rhs is hereafter neglected,

and we need only focus on
〈
ΠR
r,‖

〉
. Also, we note that since me � mi, electrons carry a

negligible fraction of the total momentum, such that only the ion component of the momen-

tum flux need be calculated. As usual in quasi-linear theory, we simply plug the resonant

linear response F̃R
i into

〈
ΠR
r,‖

〉
to calculate the flux. The linear response F̃R

i,k is:

F̃R
i,k =

−J0 (λ)

ωk − ωEB − k‖v‖
c2s

{
kθ
ωci

∂ 〈Fi〉
∂x

+ k‖
∂ 〈Fi〉
∂v‖

}
eΦ̃k

Te
, (4.25)

where λ ≡ k⊥ρ⊥ and ωEB ≡ kθ 〈vE〉. After some straightforward algebra [evaluation of

Eqs. (4.8-4.11)], we obtain the resonant ion momentum flux

〈
ΠR
r,‖
〉

= n0mi

[
−χφ

∂

∂r

〈
v‖
〉

+ Vr
〈
v‖
〉

+ S

]
, (4.26a)
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where for a shifted Maxwellian 〈Fi〉,

χφ =
√

2π
∑
k

(kθρi)
2 vti∣∣k‖∣∣Ω2Γ0 (b) e−Ω2

∣∣∣∣∣eΦ̃k

Ti

∣∣∣∣∣
2

, (4.26b)

Vr =

√
π

2

∑
k

(kθρi)
2 vti∣∣k‖∣∣ 1

Ln
Γ0 (b)

∣∣∣∣∣eΦ̃k

Ti

∣∣∣∣∣
2

e−Ω2

{
1− ηi

ηcriti

− ω̄k

ω∗i
− ηiΩ

2

}
, (4.26c)

and

S =
√
π
∑
k

(kθρi)
2 v

2
ti

Ln

1∣∣k‖∣∣ΩΓ0 (b)

∣∣∣∣∣eΦ̃k

Ti

∣∣∣∣∣
2

e−Ω2

{
1− ηi

ηcriti

− ω̄k

ω∗i
− ηiΩ

2

}
. (4.26d)

Here the notation is standard, so ηcriti = 2 [1 + 2b (1− I1/I0)]
−1, Ω = ω̄k/

√
2k‖vti, b =

k2
⊥ρ

2
i , I0 and I1 are the modified Bessel functions, v∗e,i are the electron and ion diamagnetic

velocities, ω̄k is the Doppler shifted wave frequency defined by ωk − ωEB ≡ ω̄k + k‖
〈
v‖
〉
,

and ω∗e,i = kθv∗e,i, τ = Te/Ti, Γ0 = I0e
−b etc.

Some discussion of the transport coefficients χφ, Vr and S is appropriate at this point.

Predictably, χφ ∼ χi but χφ 6= χi, on account of the structure of resonant coupling to the

spectrum of wave phase velocities. χφ (and obviously, the entire resonant particle flux) de-

cays rapidly [∼ exp (−Ω2)] for non-resonant particles, and may be written as χφ ∼ 〈ṽ2
E〉 τac

where τac is set by the dispersion in the distribution of the ion transit rate. Of course,

χφ ∼ DGB for “mixing length estimate” fluctuation levels. The convection velocity Vr

is rather sensitive and model dependent. Vr is inward (corresponding to a pinch) for ITG

modes in the resonant regime near threshold (|Ω| . 1). For regimes far from threshold

(Ω � 1) Vr is necessarily outward, however as noted above, the magnitude of this term

is then negligible. Near marginality, but for electron drift waves, the sign of the convec-

tive term depends sensitively on ηi, and requires a quantitative description of the micro-

turbulence spectrum. Note that the convective term scales as Vr/χφ ∼ 1/ (Ω2L⊥), a profile

scale length. Thus, the resonant particle pinch complements the non-resonant turbulent
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convection (TurCo) pinch [85], derived for toroidal geometry. The latter is non-resonant

(and so must represent wave transport), is inward for electron drift waves, can attain either

sign (depending on plasma parameters) for ITG modes and has Vr/χφ ∼ 1/R [i.e. O (ε)

smaller], but is insensitive to the resonance function. In other words, if the percentage

weighting of resonant particles is lower than ε, TurCo provides the main convection effect.

On the other hand, near marginal stability, where the percentage of resonant particles is

high, the resonant particle pinch is the primary cause of convection. Furthermore, near

marginality |ω̄k � ω∗i| and |Ω2| . 1, so that

Vr
χφ
≈ 1

Ω2

1

Ln

{
1− ηi

ηcriti

}
,

so that for unstable ITG, the∇Ti driven pinch is inward in rough agreement with Ref. [83],

but the ∇n driven pinch is outward, opposite to the non-resonant pinch predicted in Ref.

[84]. Considering now the third term in the resonant momentum flux given by Eq. (4.26a),

since S/Vr ≈ Ωvti, S must vanish in the absence of symmetry breaking (i.e. S → 0

as
〈
k‖
〉
→ 0). As is also clear, for regimes of finite symmetry breaking, the sign of the

residual stress follows identical rules to that of the resonant particle convection term, but

multiplied by sgn
(〈
k‖
〉)

. Finally, it should be noted that this analysis has not addressed the

nature of particle transport or the non-adiabatic electron response. Considering these will

surely introduce additional momentum transport effects related to the interplay of particle

and momentum transport. Such cross coupling is discussed further in Refs. [87, 86].

4.4 Conclusion

The principle results from the above analysis can be listed as follows:

a.) a derivation of a momentum conservation theorem accounting for the exchange be-

tween, as well as momentum fluxes induced by, waves and resonant particles
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b.) an explicit evaluation of the structure of the radial flux of resonant particle momen-

tum.

Considering item (ii) first, strong off-diagonal components to the resonant component of

the parallel momentum flux have been derived. This flux consists of a diffusive flux (with

χφ ∼ χi but not χφ 6= χi), a convective flux which may be inward in certain regimes,

and a residual stress piece, explicitly dependent upon the symmetry breaking mechanism

(i.e. the origin of
〈
k‖
〉
6= 0). With regard to (i), the extension of well known energy and

momentum conservation theorems, familiar from the 1D Vlasov equation, to gyrokinetic

modes, corresponds to a straightforward, but practically important step in describing the

transport of parallel momentum in a strongly magnetized plasma. In particular, unlike pre-

vious studies, which typically focus on either the resonant or non-resonant components

of the total momentum flux, and neglect momentum exchanges between these two com-

ponents, this approach provides a systematic, and conceptually intuitive, framework for a

comprehensive treatment of parallel momentum transport.

Appendix A: Derivation of Gyrokinetic Susceptibility

In this appendix we derive an explicit expression for the wave action density from

the gyrokinetic equation, and relate it to momentum exchange between resonant particles

and waves. The induced plasma response to an external electrostatic perturbation may be

written as

δF ind
k,ω =

J0 (λ)

ω − ωEB − k‖v‖

{
c

B

(
b̂× k

)
· ∂ 〈Fs〉

∂x
− qs
ms

k‖
∂ 〈Fs〉
∂v‖

}
Φ̃tot
k,ω ≡ Lk,ωΦ̃

tot
k,ω,

(4.A1)



138

where Φ̃tot = Φ̃ind + Φ̃ext. Considering the gyrokinetic Poisson equation, an equation for

the induced response may be written as

k2
⊥Φ̃ind

k,ω = 4π
∑
s

qs

∫
d3v̄

{
J0 (λ) δF ind

k,ω +
[
J2

0 (λ)− 1
] qsΦ̃ind

k,ω

Ts
〈Fs〉

}
, (4.A2)

where it’s understood that δF ind
k,ω is species dependent. Eq. (4.A2) may be simplified via the

following notation

ε⊥ (k) k2
⊥Φ̃ind

k,ω = 4π
∑
s

qs

∫
d3v′J0 (λ) δF ind

k,ω, (4.A3)

where ε⊥ (k) ≡ 1 +
∑

s (k2
Ds/k

2
⊥) [1− I0 (bs) exp (−bs)]. This permittivity may be prof-

itably understood to correspond to a “gyrokinetic vacuum” [97]. While this operator may

be defined exactly in Fourier space, it is convenient to expand in bs. To lowest non-trivial

order:

ε⊥ (k) ≈ 1 + k2
Diρ

2
i ≈ k2

Diρ
2
i .

Thus, to lowest order, this operator may be understood to reduce to a constant, which we

shall denote by ε⊥ ≡ k2
Diρ

2
i . This observation is useful as it makes real space generaliza-

tions trivial.

After substitution of Eq. (4.A1) into Eq. (4.A3), the induced response of the electro-

static field can be written in terms of the external perturbations, yielding:

(1 + χk,ω) ε⊥ (k) k2
⊥Φ̃ind

k,ω = 4π
∑
s

qs

∫
d3v′J0 (λ)Lk,ωΦ̃

ext
k,ω, (4.A4)
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where the susceptibility has been defined by

χk,ω = −4π
∑
s

qs
ε⊥ (k) k2

⊥

∫
d3v̄

J2
0 (λ)

ω − ωEB − k‖v‖{
c

B

(
b̂× k

)
· ∇ 〈Fs〉 −

qs
ms

k‖
∂ 〈Fs〉
∂v‖

}
. (4.A5)

The dispersion relationship is defined as

0 = Dk,ω ≡ 1 + χk,ω, (4.A6)

with a growth rate approximately given by

γk =
−ImDk,ω

∂Dk,ω/∂ω

∣∣∣∣
ω=ωk

. (4.A7)

Part of this chapter appears in Physics of Plasmas, P. H. Diamond, C. J. McDevitt, O. D.

Gurcan, T. S. Hahm and V. Naulin, 15, 012303 (2008). C. J. McDevitt was a contributing

author to this paper.



Chapter 5

Summary and Conclusions

In the above, multi-scale methods have been utilized to describe the interaction of

small scale micro-turbulence with large scale flow structures. Reduced, but self-consistent

models have been derived to describe transport barrier formation, magnetic reconnection

in the presence of drift wave turbulence, as well as plasma rotation. These models, while

highly simplified, allow for non-trivial feedback loops between the large scale mean fields

and the small scale fluctuations to be readily incorporated. In particular, the inclusion of

secondary flow structures resulting from modulational instability of the ambient drift wave

turbulence have been seen to play a conspicuous role in both transport barrier formation

and magnetic island evolution.

Considering the former, secondary flow structures driven by the background turbulence

have been shown to facilitate the formation of transport barriers. While it is generally ap-

preciated that zonal flows, in regimes of low collisionality, may impact the power threshold

for barrier formation, in this thesis we have shown that for regimes of weak magnetic shear,

poloidally extended finite-m cellular flows are likely to become prevalent. The importance

in distinguishing finite-m flows and the special case of poloidally symmetric m = 0 flows,

can be readily understood by considering that poloidally symmetric flows are incapable

of radial mixing. Similarly, while zonal flow drive is strongly dependent on the intensity
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and spatial profile of the background turbulence, they possess no direct dependence on the

q-profile. This is in contrast to finite-m flows which are strongly coupled to low-q resonant

surfaces by resistive field line bending. Hence, we anticipate finite-m cellular flows to play

a significant role in determining the transport properties near low-q resonant surfaces.

Similarly, the nonlinear evolution of drift wave turbulence in the presence of finite-m

cellular flows has been investigated. It is found that the phase space of the micro-turbulence

is largely stochastic, thus justifying the use of quasi-linear theory even in the extreme limit

of a stationary coherent mode. This is in contrast to axisymmetric flows, in which the auto-

correlation time of the flow pattern must be comparable or shorter than the bounce time of

a wave quantum, in order to effect a stochastization of ray orbits. As a corollary, nonlinear

wave trapping has been found to be circumvented for purely non-axisymmetric modes, as

trapped quasi-particle orbits are destroyed for arbitrarily small qy values.

Aside from the MHD stable regime discussed above, we have also investigated the evo-

lution of linearly unstable tearing modes in the presence of drift wave turbulence. The

dominant interaction is found to occur via the modulation of the drift wave turbulence by

the tearing mode flows. This interaction may be straightforwardly incorporated into the

mean field equations via a simple closure procedure, yielding a negative viscosity as the

dominant effect of the drift waves on the tearing mode evolution. A linear eigenmode anal-

ysis was carried out, identifying the modified reconnection rate and resistive layer width.

The multi-scale methods employed above, aside from providing a useful framework for

understanding non-local energy transport and thus secondary instabilities, are capable of

providing a powerful and intuitive means of describing spatial fluxes of quantities such as

energy and momentum. This follows, since the wave kinetic equation can be easily trans-

formed into an equation describing the evolution of wave energy or momentum via multi-

plication by the energy or momentum per wave quantum, i.e. ωk and k‖ respectively. Any

description of energy or momentum transport based purely on wave kinetics is, however,
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incomplete as it ignores transport induced via resonant particles. In this thesis, a simplified

version of the wave kinetic formalism utilized in Chapters 2 and 3 has been extended to

include the exchange of momentum with resonant particles. The extended formalism has

been employed in the description of parallel momentum transport in strongly magnetized

plasmas. Expressions for parallel momentum flux induced either by waves or resonant

particle have been derived, providing a comprehensive description of parallel momentum

transport.
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