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GWAS of the electrocardiographic 
QT interval in Hispanics/Latinos 
generalizes previously identified 
loci and identifies population-
specific signals
Raúl Méndez-Giráldez  1, Stephanie M. Gogarten  2, Jennifer E. Below3, Jie Yao4,  
Amanda A. Seyerle1,5, Heather M. Highland1, Charles Kooperberg6, Elsayed Z. Soliman7,8, 
Jerome I. Rotter4, Kathleen F. Kerr  2, Kelli K. Ryckman9, Kent D. Taylor4, Lauren E. Petty10,11, 
Sanjiv J. Shah12, Matthew P. Conomos2, Nona Sotoodehnia13,14, Susan Cheng15,  
Susan R. Heckbert13,16, Tamar Sofer  2,17,18, Xiuqing Guo4, Eric A. Whitsel1,19, Henry J. Lin4,20,  
Craig L. Hanis10, Cathy C. Laurie2 & Christy L. Avery1,21

QT interval prolongation is a heritable risk factor for ventricular arrhythmias and can predispose to 
sudden death. Most genome-wide association studies (GWAS) of QT were performed in European 
ancestral populations, leaving other groups uncharacterized. Herein we present the first QT GWAS of 
Hispanic/Latinos using data on 15,997 participants from four studies. Study-specific summary results 
of the association between 1000 Genomes Project (1000G) imputed SNPs and electrocardiographically 
measured QT were combined using fixed-effects meta-analysis. We identified 41 genome-wide 
significant SNPs that mapped to 13 previously identified QT loci. Conditional analyses distinguished six 
secondary signals at NOS1AP (n = 2), ATP1B1 (n = 2), SCN5A (n = 1), and KCNQ1 (n = 1). Comparison 
of linkage disequilibrium patterns between the 13 lead SNPs and six secondary signals with previously 
reported index SNPs in 1000G super populations suggested that the SCN5A and KCNE1 lead SNPs 
were potentially novel and population-specific. Finally, of the 42 suggestively associated loci, AJAP1 
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was suggestively associated with QT in a prior East Asian GWAS; in contrast BVES and CAP2 murine 
knockouts caused cardiac conduction defects. Our results indicate that whereas the same loci influence 
QT across populations, population-specific variation exists, motivating future trans-ethnic and 
ancestrally diverse QT GWAS.

The QT interval (QT), as measured by the resting 12-lead electrocardiogram (ECG), provides a non-invasive 
assessment of ventricular repolarization, the prolongation or shortening of which is an established risk factor for a 
spectrum of cardiovascular diseases, including sudden cardiac death (SCD)1. Although SCD accounts for roughly 
10–20% of total mortality in industrial countries, prevention and treatment remains incomplete, resulting in a 
majority of cases occurring in the absence of clinical features that would elicit medical attention2. Additional 
efforts to understand underlying biology are therefore needed.

QT genome-wide association studies (GWAS) provide a means at informing SCD biology, if not prevention 
and treatment3, because approximately 10% SCD cases are caused by torsades de pointes4. QT also is heritable5 
and reliably measured6. Moreover, GWAS-identified QT SNPs have been associated with a >30% increase in 
risk of SCD, results replicated by some studies7,8, but not others9,10. In contrast, SCD GWAS have been difficult 
to perform, likely reflecting the small sample sizes, phenotypic heterogeneity, and outcome measurement error 
that characterize existing studies11, therefore resulting in a limited number of loci identified to-date7,12. Together, 
these findings motivate additional, well-powered GWAS of QT to improve understanding of QT prolongation 
and SCD.

Currently a majority of GWAS of QT have been conducted in populations of European ancestry13–19, although 
modestly sized studies of African Americans20,21 and East Asians22,23 also have been published. Few QT GWAS 
have included Hispanic/Latino populations, which will constitute 31% of the U.S. population by 206024 and shoul-
der increased burdens of QT prolonging and SCD-predisposing obesity and diabetes as compared to European 
ancestral populations25,26. Here we present the first QT GWAS of Hispanic/Latinos.

Results
This GWAS included 15,997 individuals of Hispanic/Latino ancestry from four cohorts ranging in size from 883 
to 11,932 participants. Study participants were predominantly female (64%), middle aged (mean = 49 years), and 
obese (mean body mass index = 30 kg/m2) (Supplementary Table 1). The prevalence of diabetes ranged from 8.0% 
(Women’s Health Initiative, WHI) to 45.6% (Starr County, reflecting a study design with approximately equal 
proportions of participants with and without diabetes).

Genome-wide Association Analysis. After study-specific quality control and filtering by effective sample 
size (see Methods), studies contributed between 5,997,534 (Starr County) and 17,322,742 (Hispanic Community 
Health Study/Study of Latinos, HCHS/SOL) imputed SNPs (Supplementary Table 2), which together represented 
17,586,686 unique SNPs. A total of 41 SNPs at 13 of the 35 previously identified QT loci19 were genome wide 
significant (Fig. 1, Table 1 and Supplementary Table 3), with no evidence of genomic inflation (study-specific λ 
range: 0.98–1.02, Supplementary Figures 1 and 2; λ = 1.01). A total of 42 suggestive loci (P-val < 5 × 10−6) were 
also identified (Supplementary Table 4); notably, 26 of the 42 suggestive loci only passed the effective sample 
size filter in the HCHS/SOL study, likely reflecting their rarity (i.e. minor allele frequency [MAF] < 0.05). Both 
genome-wide significant and suggestive loci demonstrated wide variation in minor allele frequency across ances-
tries (Supplementary Tables 3, 4), although very limited reporting of suggestive loci or publication of GWAS 
summary statistics from imputed data limited comprehensive evaluation of suggestive loci.

For the 13 lead (i.e. locus-specific and most significant) SNPs in previously detected QT loci, little evidence 
of heterogeneity among studies was detected (Cochran’s Q test P-val > 0.05) and study-specific estimates exhib-
ited directional consistency in estimated effects with the exception of rs12626657 at the KCNE1 locus. Eleven of 
the 13 lead SNPs were correlated (r2 > 0.20; Supplemental Table 5; LD calculated separately in 1000G African 
[AFR], Ad Mixed American [AMR], East Asian [ASN], and European [EUR] super populations) with previ-
ously reported genome-wide significant index SNPs. However, the SCN5A (rs3922844) and KCNE1 (rs12626657) 
Hispanic/Latino lead SNPs demonstrated little correlation with previously reported QT lead SNPs. KCNE1 lead 
SNP rs12626657 (Hispanic/Latino MAF = 0.15, Table 1) also was monomorphic in the EUR 1000 Genomes super 
population.

Sequential conditional analysis (see Methods) identified four loci with evidence of secondary signals (i.e. 
SNPs that were uncorrelated with lead SNPs, Table 2): NOS1AP (Fig. 2; two secondary signals, rs3934467 and 
rs73017364), ATP1B1 (Fig. 3; two secondary signals, rs1320977 and rs1138486), SCN5A (Fig. 4; one secondary 
signal, rs6762565), and KCNQ1 (Fig. 5); one secondary signal, rs78695585). All six secondary signals at these four 
loci were correlated (r2 > 0.20) with previously identified lead SNPs in the European 1000G super-population 
(Supplementary Table 5). Wide variation in the linkage disequilibrium (LD) structure for the secondary sig-
nals also was observed. For example, SNPs correlated (r2 > 0.20; Supplementary Table 5) with the ATP1B1 lead 
SNPs and secondary signals spanned ~400 kb (Fig. 3). In contrast, the secondary signals at NOS1AP, SCN5A, 
and KCNQ1 (Figs 2, 4, and 5) were characterized by fewer correlated SNPs and narrower flanking intervals. (See 
Supplementary Figure 3 for locus zoom plots for genome wide significant loci without evidence of secondary 
signals).

Generalization analysis. Next we evaluated 34 index SNPs reported as genome-wide significant by the larg-
est QT GWAS published to-date in up to 103,000 European ancestry individuals19. A total of 27 of the 34 (79%) 
previously identified index SNPs generalized to Hispanic/Latinos (r-value < 0.05) (Supplementary Figure 4), with 
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effects similar to those in the original GWAS. Of note, eight of the 27 index SNPs that generalized also were 
associated with QT in Hispanic/Latinos at genome-wide significant levels (RNF207, NOS1AP, ATP1B1, SLC8A1, 
SLC35F1, KCNQ1, LITAF, and SETD6). Among the seven index SNPs that did not generalize at the KCNJ2, 

Figure 1. Manhattan plot of results from QT GWAS of 15,997 participants of Hispanic/Latino ancestry. The 
y-axis represents −log10(P-value) and truncated at 25. SNPs, ordered by chromosome and position, are shown 
on the x-axis. Significant loci are labelled as the nearest gene.

Locus Lead SNP Chr
Position 
(hg19) A1 A2 CAF β (ms)

Direction 
of β

SE 
(ms) P-val Phet

RNF207 rs7531322 1 6,299,823 C G 0.30 1.73 ++++ 0.24 1.04e–12 0.17

NOS1AP rs12143842 1 162,033,890 T C 0.22 3.46 ++++ 0.25 3.30e–42 0.35

ATP1B1 rs12035622 1 169,102,340 A T 0.19 −2.36 −−−− 0.27 8.77e–18 0.73

SLC8A1 rs35450971 2 40,754,314 T C 0.79 1.71 ++++ 0.26 8.37e–11 0.45

TTN rs55863869 2 179,647,546 A G 0.84 −1.92 −−−− 0.30 2.40e–10 0.42

SCN5A rs3922844 3 38,624,253 T C 0.37 1.77 ++++ 0.22 9.52e–16 0.06

SLC35F1 rs2078383 6 118,706,643 T C 0.25 1.83 ++++ 0.25 2.07e–13 0.82

KCNH2 rs35760656 7 150,658,678 A G 0.35 1.70 ++++ 0.23 4.21e–13 0.50

KCNQ1 rs12271931 11 2,478,519 A G 0.93 3.92 ??++ 0.57 4.07e–12 0.13

LITAF rs735951 16 11,693,536 A G 0.41 −1.55 −−−− 0.22 5.92e–13 0.78

SETD6 rs185639574 16 58,550,052 T G 0.34 −2.53 −−−− 0.24 6.67e–27 0.52

PRKCA rs56152251 17 64,280,153 A G 0.44 −1.60 −−−− 0.21 6.64e–14 0.85

KCNE1 rs12626657 21 35,828,173 A G 0.15 2.69 +++− 0.31 1.14e–17 0.01

Table 1. Genome-wide significant loci identified in a GWAS meta-analysis of n = 15,997 participants of 
Hispanic/Latino ancestry from four studies, that were previously reported. Chr: chromosome number. Position: 
base pair position in Build 37 (hg19). A1, A2: coded/non-coded alleles. β: effect estimate in ms. Direction of 
β: direction of the effect estimates per study following this order: WHI, MESA, HCHS/SOL and Starr County; 
‘?’ means the SNP is not present in that particular study. SE: standard error. Phet: P-val for Cochran’s Q test of 
homogeneity among cohorts.

Locus SNP Chr Position (hg19) A1 A2 CAF β (ms)
Direction 
of β

SE 
(ms) P-val PHet

NOS1AP rs3934467 1 162,182,677 T C 0.28 1.62 ++++ 0.24 2.26e–11 0.78

rs73017364 1 162,184,746 T C 0.87 1.73 ++++ 0.31 3.74e–08 0.65

ATP1B1 rs1320977 1 169,073,388 A G 0.15 −2.30 −−−+ 0.29 2.61e–15 0.02

rs1138486 1 169,101,935 T C 0.14 −2.46 −−−? 0.31 6.98e–15 0.55

SCN5A rs6762565 3 38,582,191 T C 0.19 −1.65 ?−−? 0.29 1.94e–08 0.19

KCNQ1 rs78695585 11 2,644,544 A G 0.04 3.48 ++++ 0.59 2.82e–09 0.63

Table 2. Genome-wide significant secondary SNPs from previously reported regions, identified in meta-
analyzed conditional analysis. Chr: chromosome number. Position: the base pair position in Build 37 (hg19). 
A1, A2: coded/non-coded alleles. CAF: coded allele frequency. β: effect estimate in ms for the highest associated 
SNP upon conditional analysis. Direction: the direction of the effect estimates; order is WHI, MESA, HCHS/
SOL, and Starr County; ‘?’ means the SNP was not present for a particular study. SE: standard error (ms). Phet: 
P-val for Cochran’s Q test of homogeneity among cohorts, for the highest associated SNP upon conditional 
analysis.
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Figure 2. Locus zoom plots of the NOS1AP gene region showing SNP p-values from the primary (A) and 
conditional analyses (B,C). The lead SNP in the primary analysis is the previously reported rs12143842 (panel 
A), the secondary lead SNP after conditioning on rs12143842 is rs3934467 (panel B), and the secondary lead 
SNP after conditioning on rs12143842 and rs3934467 simultaneously is rs73017364 (panel C).

Figure 3. Locus zoom plots of the ATP1B1 gene region providing p-values from the primary (A) and 
conditional analyses (B,C). The lead SNP in the primary analysis is the previously reported rs12035622 (panel 
A), the secondary lead SNP after conditioning on rs12035622 is rs1320977 (panel B), and the secondary signal 
after conditioning on rs12035622 and rs1320977 simultaneously, is rs1138486 (panel C).
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C3ORF75, GFRA3, GMPR, CAV1, AZIN1, and ANKRD9 loci, the consistency in directions of estimated associ-
ations between the HCHS/SOL and Arking et al.19 is higher than what is expected by chance (p-value = 0.01 on 
a binomial test), suggesting that at least some of the variants that did not generalize are in fact associated with 
QT in Hispanics/Latinos and that non-generalization was due to lack of power (Supplementary Figure 4 and 
Supplementary Table 6).

Bioinformatic characterization. For several of the genome-wide significant SNPs associated, we identified 
strong experimental evidence for transcriptional activation in heart tissue, including the ATP1B1, TTN, SCN5A, 
and KCNH2 loci. Conversely, SLC35F1, SETD6 and KCNE1 had weaker evidence for transcriptional activation; 
and NOS1AP, KCNQ1 and LITAF had epigenetic marks identifying them as putative enhancers of gene transcrip-
tion. (See Supplementary Table 7 for additional results of bioinformatic characterization).

Discussion
In this investigation, the first GWAS of Hispanic/Latinos, we identified 13 loci associated with QT at the 
genome-wide significant thresholds. Although all genome-wide significant loci were reported in earlier QT 
GWAS13,15–17,19–22, we also identified potential evidence of novel and population-specific SNPs at the SCN5A 
and KCNE1 loci. Further, we reported several suggestive and biologically plausible loci as promising candi-
dates for future follow-up. Together, our results underscore the utility of extending GWAS to include currently 
under-represented populations to enable improved characterization of the genomics of complex traits like QT.

The majority of participants included in GWAS to-date, including QT GWAS, are of European descent27,28, 
which limits the relevance of medical genomics globally and fails to leverage human diversity to identify novel 
loci and improve fine-mapping resolution. Hispanics/Latinos – long understudied in large scale genomics 
efforts - may be particularly informative for QT GWAS due to an increased prevalence of QT- prolonging and 
SCD-predisposing obesity and diabetes25,29. Indeed, loci common to QT, obesity, and diabetes have been iden-
tified (e.g. KCNQ1)30,31. Further, while studies have reported a decreased SCD incidence in Hispanic/Latinos 
compared to African Americans or European Americans32,33, these discordant observations - consistent with 
the “Hispanic paradox” of lower cardiovascular disease risk despite higher risk factor levels - may reflect eth-
nic misclassification, selective migration and incomplete cause of death ascertainment rather than decreased 
SCD incidence34–38. In addition to shouldering a greater burden of QT-increasing risk factors, Hispanic/Latino 

Figure 4. Locus zoom plots of the SCN5A gene region providing p-values from the primary (A) and 
conditional analyses (B). The lead SNP in the primary analysis is the previously reported rs13922844 (panel A), 
and the secondary lead SNP after conditioning on rs13922844 is rs6762565 (panel B).

Figure 5. Locus zoom plots of the KCNQ1 gene region providing p-values from the primary (A) and 
conditional (B) analyses. The lead SNP in the primary analysis is the previously reported rs12271931 (panel A), 
and the secondary lead SNP after conditioning on rs12271931 is rs78695585 (panel B).
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populations are composed of differing proportions of European, African, and Amerindian ancestry39. Therefore, 
including Hispanics/Latinos in GWAS allows examination of SNPs that may be uncommon, rare, or absent in 
other populations. For example, the KCNE1 index SNP rs12626657, which appeared to be population-specific, 
was monomorphic in European populations, but is common in AMR and ASN populations. Thus, the overar-
ching genetic architecture and risk factor profiles of Hispanic/Latino populations may be uniquely positioned to 
inform the biology underlying QT prolongation and its downstream consequences, e.g. SCD.

Despite the expected benefits of studying Hispanic/Latinos for mapping novel QT loci, our novel genome-wide 
significant findings were limited to the identification of two potentially population-specific SNPs at established 
loci. Interestingly, SCN5A lead SNP rs3922844 was identified as the lead SNP in PR interval40 and QRS41 GWAS in 
African American populations. Thus, while the same loci may influence QT across global populations, ancestrally 
specific SNPs also exist. Limited success mapping novel loci may reflect several factors including sample size. 
Yet, several suggestive and biological plausible loci deserve mention, particularly AJAP1, CAP2, and BVES. For 
example, a prior QT GWAS in East Asian populations also reported that SNPs at the AJAP1 locus, a chromosomal 
region with few ties to cardiac conduction, were suggestively associated with QT22. CAP2, located approximately 
one mega base from the previously described GMPR QT locus19, also is commonly deleted in 6p22 syndrome, 
a condition characterized by developmental delays and heart defects42,43. Interestingly, CAP2 murine knockouts 
developed cardiac conduction defects, leading to sudden cardiac death from complete heart block44. Finally, an 
effort using epigenomic signatures to validate loci suggestively associated with QT19 reported that mice homozy-
gous for loss-of-function BVES alleles exhibited cardiac conduction and pacemaker defects. Knockdown of bves 
in zebrafish also produced shortening of the action potential duration, a QT correlate45.

Clearly AJAP1, CAP2, and BVES remain suggestive until formal replication is achieved. Yet, it is important 
to again highlight the wide variation in minor allele frequencies observed across global populations. Thus, in 
the absence of an independent, large population of Hispanic/Latinos with the requisite genotype and electro-
cardiographic characterization, future attempts at replication and novel locus identification should consider 
multi-ethnic populations of European, African, and Amerindian descent given the tri-admixed nature of 
Hispanic/Latinos populations39. Indeed, further advances in genotype arrays designed to capture African and 
Amerindian-specific content, combined with improved reference panels, will likely enable large trans-ethnic 
meta-analyses, thereby negating the current practice of race/ethnic-specific analyses. Trans-ethnic GWAS also 
would be valuable for locus refinement and fine-mapping, given that several loci, including ATP1B1, remain 
prohibitively large in size, making identification of underlying functional variants difficult. Further potentially 
fruitful avenues of inquiry also could include evaluation of exome or whole-genome sequencing data, given the 
existence of highly penetrant mutations for QT46, which have undergone limited characterization in diverse 
racial/ethnic populations despite repeated calls for greater diversity in large-scale genomics research47.

Despite many strengths, this work had several limitations that deserve consideration. The main limitation 
of our work is sample size, given that prior QT GWAS in European ancestral populations had sample sizes that 
for some loci that exceeded 100,000 participants. Yet, we successfully generalized 79% of previously identified 
loci, despite a considerably smaller sample size. Evidence of population-specific signals and biologically plau-
sible suggestive loci not previously detected by prior large GWAS further underscore the value of examining 
under-represented populations. Second, generalizability of study results to Hispanic/Latinos is unknown. 
However, studies such as the HCHS/SOL included large samples of Hispanic/Latino participants from diverse 
countries of origin, helping to ensure that relatively broad representation was achieved. Finally, similar to a pre-
viously published African American QT GWAS20, our study participants were predominantly female and obese, 
with a high prevalence of diabetes. It is unclear how these characteristics, known to affect QT25,26,48, might have 
affected study findings or the ability to compare results across populations with differing characteristics.

In summary, our meta-analysis of four Hispanic/Latino populations generalized a majority of the previ-
ously identified QT loci, thereby demonstrating the global relevance of these loci. We also detected novel and 
potentially population-specific signals, one of which was monomorphic in European populations and another 
that has been reported in GWAS of other cardiac conduction traits in African Americans, possibly indicating 
population-specific variation in the genetic architecture underlying QT. Finally, we reported several highly prom-
ising and biologically plausible suggestive loci not identified in previous GWAS with substantially larger sample 
sizes. There is a delicate balance between the use of QT measurements tailored to particular subpopulations ver-
sus their generalization to the general population to prevent TdP and/or prescribing drugs that minimize the risk 
of causing the latter, as pointed by Diemberger et al.49 and Poluzzi et al.50. Together, these findings underscore the 
utility of including genetic data of diverse racial/ethnic groups within GWAS in an attempt to better understand 
the genetic architecture of complex phenotypes like QT.

Methods
Study populations. This meta-analysis included 15,997 participants of Hispanic/Latino descent from 
the following four studies: the HCHS/SOL (n = 11,932)51,52, the Multi-Ethnic Study of Atherosclerosis (MESA, 
n = 1,431)53, Starr County Study (n = 883)54, and the WHI (n = 1,751)55 (see Supplementary Materials and 
Methods).

Electrocardiography. Within each cohort, ECGs were recorded by certified technicians using standard 
12-lead apparatus and protocols. In the case of HCHS/SOL, MESA and WHI, the QT duration is the maximum 
time in ms between the earliest onset of the QRS complex to the latest offset of the T wave among the median QT 
intervals across all 12 leads (see Supplementary Table 2). Participants with poor quality ECGs, atrial flutter or 
fibrillation on ECG, intraventricular conduction delay, a paced rhythm, or a QRS duration ≥ 120 were excluded 
from analysis.
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Genotyping and imputation. Participants were genotyped on either the Affymetrix Genome-Wide 
Human SNP Array 6.0 (MESA, Starr County, and WHI) or an Illumina custom array that consisted of the Illumina 
Omni 2.5 M array (HumanOmni 2.5-8v1-1) and ~150,000 custom SNPs selected to include ancestry-informative 
markers, variants characteristic of Native American populations, previously identified GWAS loci, and other 
candidate gene polymorphisms (HCHS/SOL)39 (Supplementary Table 2). Following study-specific genotype QC 
(Supplementary Table 2), imputation was performed for approximately 38 million SNPs based on the 1000G 
phase 1 reference panel56.

Statistical Analysis. A maximum of 17,586,686 imputed SNPs (Supplementary Table 2 for details) were 
examined for associations with QT under an additive genetic model using linear regression (MESA, Starr County, 
and WHI) or linear mixed models (HCHS/SOL)39. The association of each SNP with QT was adjusted for age, sex, 
heart rate, ancestral principal components, and study site/region, when appropriate, to maintain consistency with 
previously published QT GWAS19. Associations in the HCHS/SOL study were further adjusted for beta-blocking 
medication use, a significant predictor of QT in HCHS/SOL, sampling weights, and genetic analysis group39.

We excluded SNPs that either mapped to the same base pair position or the same rsid, identified using the 
UCSC Table browser (https://genome.ucsc.edu/cgi-bin/hgTables). We also excluded SNPs with imputation qual-
ity metrics <0.3 or with small effective sample sizes (effN < 30), defined within each study for each SNP as: 

= × × − × ×effN MAF MAF N Imputation Quality2 (1 ) ; where N is the number of participants. Fixed- effects 
inverse variance meta-analysis was then performed using METAL57 on genomically controlled study-specific 
summary statistics to combine effect estimates (β coefficients) and standard errors (SE). Heterogeneity among 
studies was assessed by Cochran’ Q test. Complete meta-analysis results are available on dbGAP (https://www.
ncbi.nlm.nih.gov/gap) with accession number phs000930.

Genome wide significant associations were defined as SNPs with P-value < 5 × 10−8 (Bonferroni correction 
for ∼106 independent variants). Suggestive associations were those with P-val < 5 × 10−6. To identify secondary 
signals, we performed sequential conditional analyses by adjusting for significant Hispanic/Latino lead SNPs until 
no remaining genome-wide significant SNPs remained. Population-specific SNPs were defined as SNPs in low LD 
(r2 < 0.20)58,59 with previously reported SNPs in the population in which the SNP was discovered [using 1000G 
Project phase-160 summary results (EUR, AMR, AFR, ASN) and the Application Program Interface (API) in Perl 
provided by ENSEMBL (http://useast.ensembl.org/info/docs/api/variation/variation_tutorial.html)].

Generalization. For SNPs previously reported as significantly associated with QT in published GWAS (i.e. 
P-value < 5 × 10−8), we used the approach by Sofer et al. to examine evidence for generalization61, i.e. the repli-
cation of SNP-phenotype associations in a population with different ancestry than the population in which the 
associations were first identified. Briefly, Sofer et al.’s approach assigned an r-value to every index SNP, and the 
generalization null hypothesis testing generalization of the QT index SNPs to Hispanic/Latinos was rejected 
when the r-value < 0.05, controlling the false discovery rate. For each SNP, we presented confidence intervals 
of the association effect in the discovery study19 alongside confidence intervals of the effect in Hispanic/Latino 
populations.

Functional Annotation. We used epigenetic data from the ENCODE62 and RoadMap63 projects to func-
tionally annotate significant loci (lead SNP, secondary signals, and any SNPs in high LD (r2 > 0.80) with lead 
SNPs or secondary signals in Hispanic/Latinos) using the HaploReg v4.1 on-line resource64 and the Chromatin 
15-state model, based on ChromHMM provided within the latter. Functional annotation was restricted to heart 
tissue (fetal heart, right and left atrium and left ventricle). Although the LD pattern used in HaploReg v4.1 is 
based on the AMR 1000G Phase-1 super-population, the data on ENCODE and RoadMap come from indi-
viduals of heterogeneous (or unknown) ancestry (https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b-
64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15). In addition to the summary of the functional annotation 
results, Supplementary Table 8 provides biological function and previously known polymorphisms for the 13 
genome-wide significant loci associated with QT in Hispanic/Latinos.
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