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Likelihood-based analysis of longitudinal data from outcome-
related sampling designs

John M. Neuhaus1,*, Alastair J. Scott2, Christopher J. Wild2, Yannan Jiang2, Charles E.
McCulloch1, and Ross Boylan1

1Division of Biostatistics, University of California, San Francisco, California 94143-0560, U.S.A.
2Department of Statistics, The University of Auckland, Auckland, New Zealand

Summary
Investigators commonly gather longitudinal data to assess changes in responses over time and to
relate these changes to within-subject changes in predictors. With rare or expensive outcomes such
as uncommon diseases and costly radiologic measurements, outcome-dependent, and more
generally outcome-related, sampling plans can improve estimation efficiency and reduce cost.
Longitudinal follow up of subjects gathered in an initial outcome-related sample can then be used
to study the trajectories of responses over time and to assess the association of changes in
predictors within subjects with change in response. In this paper we develop two likelihood-based
approaches for fitting generalized linear mixed models (GLMMs) to longitudinal data from a wide
variety of outcome-related sampling designs. The first is an extension of the semi-parametric
maximum likelihood approach developed in and applies quite generally. The second approach is
an adaptation of standard conditional likelihood methods and is limited to random intercept
models with a canonical link. Data from a study of Attention Deficit Hyperactivity Disorder in
children motivates the work and illustrates the findings.
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1. Introduction
Investigators commonly gather longitudinal data to assess changes in responses over time
and to relate these changes to within-subject changes in predictors. With rare diseases or
expensive outcomes (e.g., costly imaging), outcome-dependent sampling plans can improve
estimation efficiency and reduce cost. For example, Hartung et al. (2002) examined
determinants of the time course of Attention Deficit Hyperactivity Disorder (ADHD)
symptom expression in children. ADHD is a relatively rare disorder and the investigators
used an outcome-related sampling plan whereby subjects were sampled on the basis of
whether a teacher or parent suspected that the child exhibited ADHD symptoms instead of
directly on ADHD status, as they would in a standard case-control study. The study also
recruited a sample of children who were not so suspected. Thus, the study data form a
longitudinal study of ADHD outcomes following sampling dependent on a variable
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associated with the baseline ADHD outcome. We call this type of sampling outcome-
related.

Another example comes from the Osteoarthritis Initiative (OAI), a multi-center,
longitudinal, prospective observational study of knee osteoarthritis (OA). The objective of
the study is to understand risk factors for knee OA, OA progression and the natural history
of the disease course. The data set includes clinical evaluation data, radiological (x-ray and
magnetic resonance) images and a biospecimen repository gathered from 4796 men and
women aged 45-79 years. Magnetic resonance images (MRIs) yield both binary and
continuous measurements of OA status and are more accurate but also more expensive than
X-rays. Because of the expense, MRI-based variables have still not been exhaustively
evaluated. To reduce cost and improve estimation efficiency, investigators select a subset of
longitudinal MRIs to evaluate based on X-ray-based variables and clinical data (e.g. pain).
Sets of longitudinal MRIs form an outcome-related cluster sample.

The ADHD and OAI study data, and data from outcome-related samples in general, exhibit
several features that complicate the statistical analysis. Firstly, the chance a cluster is
included in the sample varies from cluster to cluster. Since ADHD is relatively rare,
investigators sampled children suspected of ADHD at a greater rate than children not
suspected in order to yield a sample containing enough outcomes of interest. Secondly, the
referral/sampling variables in the ADHD and OAI studies are not exactly the outcomes of
interest and may be longitudinal themselves. Finally, as with any longitudinal study, the data
exhibit correlation within subjects over time.

We assume that the data of interest consist of clustered or longitudinal responses Yij along
with p-dimensional covariates xij where i indexes clusters (subjects) (i = 1, . . . , m) and j
indexes units within clusters (j = 1, . . . , ni), and that we want to assess the association of
within-cluster changes in x with a known function of E(Y ). We further assume that we have
auxiliary quantities Zi = (Zi1, . . . , Ziki) that are associated with both Yi and xi and that the ith

subject (cluster) is chosen for the study with a probability based on Zi (and possibly xi). We
assume that the objectives of the study are to assess the individual-specific (within-subject or
within-cluster) association of X with Y using all of the data and to examine within-subject
(cluster) aggregation. The most common way to handle individual-specific effects is to use
generalized linear mixed models (GLMMs) since these models enable us to estimate
individual-specific covariate effects (McCulloch et al., 2008). We also seek an approach that
accommodates a wide variety of outcome-related sampling schemes from relatively simple
designs where subject selection depends on a single outcome to more complicated designs
where selection depends on several outcomes, perhaps through subject-specific trajectories.

In a prospective longitudinal study, the standard way to fit generalized linear mixed models
is through maximum likelihood. In the special case of models with only random intercepts,
an alternative method is to condition on the sum of the responses within a cluster and then
use conditional maximum likelihood. This conditioning eliminates the random intercept
from the conditional likelihood. Neither of these approaches is generally valid with data
from an outcome-related sample, however (Neuhaus and Jewell, 1990). In this paper, we
adapt both these likelihood-based methods so that they can handle longitudinal data from
outcome-related sampling designs such as those used in the ADHD and OAI studies. In
particular, we extend a profile likelihood approach developed in a series of papers by Scott,
Wild and Neuhaus (Scott and Wild, 1997, 2001; Neuhaus et al., 2002, 2006) to
accommodate longitudinal data for these sampling designs. We will also correct standard
conditional likelihood methods to provide consistent estimation in canonical link, random
intercept model settings. A key ingredient that enables us to “undo” the effect of the
sampling design in both cases is a model, pr(z | y, x), for the variable z that determines the
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probability of inclusion in the study in terms of the response variables and the covariates.
We illustrate our approaches using data from the ADHD study (Hartung et al., 2002) and
simulation studies.

While this paper focuses on subject-specific models for longitudinal data and likelihood-
based methods, we note that Schildcrout and Rathouz (2010) proposed population-averaged
methods to analyze longitudinal data gathered using outcome sampling designs. In
particular, Schildcrout and Rathouz (2010) assumed that interest lies in fitting a model for
the population-averaged, or marginal, mean E(Yi | xi) and they developed an approach based
on generalized estimating equations to accomplish this.

2. Basic Theory
2.1 Semiparametric Approach

Suppose that we have a cohort or finite population of N clusters with values (zi, yi, xi)
generated independently from some joint distribution. Recall that y contains the longitudinal
responses (e.g. ADHD) and that our model of interest is f(y | x; θ), the conditional
distribution of Y given x in the process that generated the cohort. We have information on all
of the zis and based upon zi we either observe (yi, xi) (set Ri = 1) or do not (set Ri = 0). For
example, in the ADHD study Z is a simple binary variable coding whether or not parents or
teachers suspected that the child was exhibiting ADHD symptoms prior to the start of the
study. Following standard practice in outcome-related sampling (Scott and Wild, 1997,
2001), we work with the likelihood conditional on Ri = 1, since we assume that the marginal
distribution of Ri contains no information about the parameters of interest.

The resulting likelihood is

(1)

since pr(yi, xi | Ri, zi) does not depend on Ri. We can insert the model of interest into the
likelihood using the following decomposition of the joint distribution into conditional
distributions:

Here, g(xi) denotes the marginal density of the covariates xi. In prospective regression the
term in the likelihood involving pr(yi | xi; θ) is orthogonal to the term involving g(xi) so the
latter can be ignored; here they are inextricably inter-related. Since the marginal distribution
of X is of no direct interest and may be very complicated we treat g(x) nonparametrically as
a (potentially infinite-dimensional) nuisance parameter. We will, however, use a parametric
model, r(z | y, x; θ), for pr(z | y, x). In our example we model Z (determined prior to the
study) in terms of Y1, the ADHD state at the first visit, in analyses reported in Section 4. In
other analyses, not reported here, we allowed the distribution of Z also to vary, for example,
with gender. No distributional assumptions were needed because we could use saturated
models. The likelihood (1) now becomes

(2)
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where we use δ = (γ, θ) and have omitted  since we assume that it does not
involve any of (γ, θ, g). We note that if we write ỹ = (z, y) and

then (2) falls into the class of likelihoods in Scott and Wild (2006).

From now on we restrict our attention to the subclass in which Z can take only a finite set of
values, say {v1, . . . , vL}. Let  and suppose that there are  clusters in the
cohort, and  in the sample, for which . Then (2) can be written in the form

(3)

where  denotes the set of sample clusters with  (i.e. clusters with Ri = 1 and 
for ). The semiparametric maximum likelihood methods of Scott and Wild (1997,
2001), expressed in most generality in Section 5 of Scott and Wild (2006), apply precisely to

likelihoods of this form. If we let  denote the profile log-
likelihood of δ = (θ, γ) after maximizing over all possible values g, then Scott and Wild
(2001) show that we can obtain the maximum profile likelihood estimate, , by solving the
score equations derived from

(4)

with

(5)

ρi = (Ni – ni)/qi – 1, and  are strata defined by the values of v. Here we treat q as a
set of unknown parameters (for subtleties in handling q, see Scott and Wild (2006)).
Although q is known, previous research has shown (e.g. Kalbfleisch et al., 1999) that
estimating it improves efficiency, so we follow that approach here. In other words, we can
obtain the maximum likelihood estimator of δ by solving  where ϕ = (δ, q).
The semiparametric efficiency of the resulting estimator has been established by Breslow et

al. (2003) and Lee and Hirose (2010). We can also obtain an estimate of  by treating

 as if it were a likelihood. More specifically, if we let  be the

observed information matrix, then the appropriate block of  gives a consistent

estimate of  under fairly general conditions (see Lee and Hirose (2010) for details).

We have previously developed a profile-likelihood approach that addresses both the
clustering and sampling at differential rates based directly on the outcome variable Y (Scott
and Wild, 1997; Neuhaus et al., 2002, 2006) so that one role of this paper is to extend the
work of Neuhaus et al. (2006) to longitudinal designs that select clusters based on an
auxiliary variable Z which may be related to Y.
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2.2 Generalized linear mixed models
While the previous theory applies generally, for the rest of this paper we shall assume that
our regression model, f(y | x; θ), is a generalized linear mixed model (McCulloch et al.,
2008). Such models specify that, given a random vector bi of parameters specific to the ith

cluster the conditional density of Yij, the response for the jth unit in the ith cluster, is

(6)

where c and d are functions of known form, ϕ is a scale parameter and Δij is a function of μij
= E(Yij | bi, wij, xij) and hence depends on covariates xij through the assumption that

(7)

Here  and  are specified covariate row vectors relating the fixed and random effects,
respectively, to the observations and g is a link function. Given bi, we assume that the
responses Yi1, . . . , Yini are independent. Although the theory applies broadly, our example
and simulations focus mainly on models with random intercepts and slopes, as well as
models with random intercepts only. In such cases, bi = (b0i, b1i)T is a two dimensional
vector, as is wij and we can write the covariate function in (7) as

(8)

where E(b0i) = E(b1i) = 0, var(b0i) = var(b1i) = 1, corr(b0i, b1i) = ρ and where we have
separated β = (γ0, β1, β2)T, into an intercept, a regression parameter associated with a random
slope and a regression parameter with no corresponding random slope term. In this
formulation the random effects have variances equal to 1 and are scaled by σb0 and σb1 in
the model equation to obtain the desired magnitude of variability.

2.3 Conditional likelihood methods
With a canonical link, the parameter Δij in (6) is equal to ηij. In the special case of a random
intercept only GLMM (equation 8 with σb1 = 0), this leads to

The conditional likelihood approach treats the intercepts σb0b0i as fixed constants and
eliminates them from the likelihood by conditioning on their sufficient statistics

. Thus, if we have a random sample of clusters, the conditional
likelihood has the form

(9)

which depends only on xWi and βW, where xWi is the portion of the covariates in (7) that
varies within clusters and βW is the corresponding regression coefficient. Since CL(βW) is a
valid likelihood,we can use standard likelihood theory to make inferences about βW.

Conditional likelihood has a number of advantages over full maximum likelihood. It is
simpler to compute since no numerical integration is required and there is no need to specify
a distribution for the random intercepts, b0i. No model is needed for components of x that
are constant within clusters and so it is robust against their misspecification. It gives
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consistent estimates when the random effects are correlated with one or more of the
predictors (Neuhaus and McCulloch, 2006). Moreover, there is little loss of efficiency in
estimating coefficients of quantities that vary mostly within clusters (Neuhaus and
Lesperance, 1996).

However, the conditional likelihood approach must be corrected to accommodate outcome-
related sampling. Thus, in addition to conditioning on ȳi as above, we also need to condition
on the fact that the cluster has been selected for study based upon zi. Our corrected
conditional likelihood takes the form

(10)

where, as in §2.1, Ri is a binary variable taking the value 1 if the ith cluster is selected for
the study and 0 otherwise. Using Bayes theorem we have,

(11)

(12)

where we assume that the probability of selecting cluster i depends only on the value of zi
(which could partly contain xi). Note that f(y | x, ȳi) is the standard conditional likelihood
term in (9) so the first term is the correction for outcome-related ascertainment. Calculation
of the correction term requires r(z | y, x; γ) (as in §2.1) and the sampling probabilities pr(Ri
= 1 | zi).

For the ADHD data, zi is the binary referral/selection variable at baseline and one just needs
to specify a simple binary regression model for zi1 | yi1. For the OAI data, zi can be more
complicated, e.g., a longitudinal course of X-ray outcomes, and one may need to specify
more complex models. For the ADHD data, pr(Ri = 1 | zi) is unknown but Schildcrout and
Rathouz (2010) provide a range of estimates. For the OAI data and other studies that
subsample existing cohorts, pr(Ri = 1 | zi) will be known since investigators will specify
sampling rates. However, since the profile likelihood (4) also depends on pr(Ri = 1 | zi)
implicitly through the specification of the , it is worthwhile to investigate the potential
effects of misspecifying the sampling rates. Having specified both pr(Ri = 1 | zi) and a binary
regression model for the sampling variable Z, we can then make inferences about βW by
applying standard likelihood methods to CLC(βW).

Note that in one special case, we can ignore the correction term. If zi depends only on ȳi as
in Neuhaus and Jewell (1990), then f(ỹi | xi, ȳi, Ri = 1) reduces to f(zi | ȳi) f(yi | xi, ȳi).
Assuming the first factor does not involve βW, standard conditional likelihood methods then
give valid inferences without the need for any correction.

3. Simulations
We conducted simulation studies to illustrate the magnitudes of bias resulting from ignoring
an outcome-related sampling plan in a cluster-specific analysis and to assess the efficiency
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of estimators based on the corrected conditional likelihood approach (12) with respect to
full, profile likelihood estimators (4). The first set of simulations generated data from simple
models containing only random intercepts and assessed the performance of conditional
likelihood methods. Such models and methods might be appropriate in longitudinal studies
with few repeated measures for each subject since they may be approximately correct. The
second set of simulation studies generated data using more appropriate models for
longitudinal settings, i.e. containing both random intercepts and slopes, and fit such models
to the generated data. Since both profile likelihood (4) and conditional likelihood approaches
(12) depend on specification of pr(Ri = 1 | zi), we conducted additional simulations to
examine the effect of misspecifying the sampling rate pr(Ri = 1 | zi) of the profile likelihood
(4) and conditional likelihood approaches (12). As in Schildcrout and Rathouz (2010), the
simulations generated longitudinal data to resemble the ADHD data. Specifically, the
simulations generated populations of 5000 subjects with auxiliary variable Z = 1 or Z = 0,
along with repeated binary ADHD responses from 4 or 8 visits. We gathered samples of
approximately 150 subjects from each population using an outcome-related sampling design
where sampling depended on the value of an auxiliary variable measured at time 1.

In our initial simulations we generated longitudinal binary responses from simple mixed-
effects logistic models with random intercepts :

(13)

The first set of simulations included two within-cluster covariates: 1) xt, a variable taking on
equally spaced values in (1,n) for n=4 or 8; and 2) xbin, a binary variable taking on values 0
and 1 each with probability 0.5. Additional simulations also included xnorm, a standard
normal variable. The parameter values for the simulations were β0 = –5.5, βt = 0.2, βbin = –
1.0, βnorm = 0.5 and log σb = 1.0, values similar to those obtained from fits of mixed-effects
logistic models using (4) to the ADHD data (Table 3).

We sampled the ith cluster from the sub-populations defined by zi1 = 0 and zi1 = 1, where the
sampling variable zi1 was associated with the outcome Y through the model:

(14)

We set γ0 = –3.2 and γ1 = 3.0 to create strong dependence between Zi1 and Yi1 and a realistic
prevalence of Zi1 = 1. The sampling design kept all clusters with Zi1 = 1, giving from 250 to
300 clusters per simulation repetition, and an equal number of clusters with Zi1 = 0.

We fit three approaches to these data:

1. a profile likelihood approach (4) using a mixed-effects logistic model (13) along
with a logistic model (14) to relate the outcome Y to the sampling variable Z and
the observed rates of sampling the subpopulations with Zi1 = 1 and Zi1 = 0;

2. a corrected conditional likelihood approach (12) using the logistic model (14) and
sampling rates above;

3. a standard conditional likelihood approach that ignored the outcome-related
sampling.

We fit approaches (1) and (2) using R routines written by two of the authors (CW and YJ)
and fit approach (3) using a standard conditional likelihood approach in the R package.
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Table 1 presents relative biases in parameter estimates from the three approaches as means

of the simulation estimates minus true values divided by true values, .
As expected, Table 1 shows that all estimators from the profile likelihood (4) and corrected
conditional likelihood (12) approaches exhibit essentially no bias; nearly all estimated biases
are less than 1.0%. Also as expected, ignoring the outcome-related sampling design by
fitting a standard conditional likelihood approach produced large biases in estimates of βt,
the effect of xt, a variable strongly associated with the response at time 1. However, the
standard conditional likelihood estimators of both βbin and βnorm, effects of variables
independent of xt exhibited essentially no bias.

We also calculated observed estimation efficiencies of the corrected conditional likelihood
(12) estimators relative to the profile likelihood (4) estimators of βt, βbin and βnorm and
report full results in Web Appendix A. The results indicate that the corrected conditional
likelihood (12) estimators of βt were highly efficient and are consistent with those of
Neuhaus and Lesperance (1996) who showed that conditional likelihood estimators are fully
efficient with respect to full maximum likelihood for covariates such as xt that are
maximally different within clusters and that estimation efficiency increases with cluster size.

The next set of simulations generated longitudinal binary responses from a design that
would often be more appropriate for longitudinal studies, namely a mixed-effects logistic
model with random intercepts and slopes:

(15)

The simulations included three covariates to model a longitudinal study of two groups
followed over time: 1) xt, with associated parameter βt, a “time” covariate taking on 8
equally spaced values in (0,1) ; 2) xG, a “group” covariate, with associated parameter βG, a
binary variable taking on values 0 or 1 for half the population; and 3) xI = xG × xt, an
“interaction” covariate, with associated parameter βI. The parameter values for the
simulations were β0 = –4.5, βt = βG = βI = 1.0, log σb0 = 1.0, log σb1 = 0 and corr(b0i, b1i) =
0.5.

We sampled the ith cluster from the sub-populations defined by zi1 = 0 and zi1 = 1, where the
sampling variable zi1 was associated with the outcome Y through the model:

(16)

We set γ0 = –4.5 and γ1 = 4.0 to create strong dependence between Zi1 and Yi1 and a
reasonable prevalence of Zi1 = 1. The sampling design kept all clusters with Zi1 = 1, giving
from 250 to 300 clusters per simulation repetition, and an equal number of clusters with Zi1
= 0.

We fit four approaches to these data:

1. a profile likelihood approach (4) using a mixed-effects logistic model (15) with
random slopes and intercepts along with a logistic model (16) to relate the outcome
Y to the sampling variable Z and the observed rates of sampling the subpopulations
with Zi1 = 1 and Zi1 = 0;
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2. a standard mixed-effects logistic model (15) with random slopes and intercepts that
ignored the outcome-related sampling;

3. a corrected conditional likelihood approach (12) using the logistic model (14) and
sampling rates above;

4. a standard conditional likelihood approach that ignored the outcome-related
sampling. We fit approaches (1) and (3) using R routines written by authors CW,
YJ and RB. We fit approach (2) using the NLMIXED procedure in SAS and fit
approach (4) using a standard conditional likelihood approach in the R package.

The first set of simulations correctly specified the logistic model (16) and used the actual
subpopulation sampling rates. In the second set of simulations, which we report in Web
Appendix A, we misspecified the sampling rates pr(Ri = 1 | Zi1 = 0) to be one-half or twice
the observed rates. That is, we correctly specified that we sampled all subjects with zi1 = 1,
but we misspecified the sampling rates for subjects with zi1 = 0.

Table 2 presents relative biases in parameter estimates as means of the simulation estimates
minus true values divided by true values. As expected, Table 2 shows that all estimators
from the profile likelihood (4) approach exhibit essentially no bias; nearly all estimated
biases are less than 1.0%. Also as expected, ignoring the outcome-related sampling design
by fitting a standard mixed effects logistic model produced large biases in estimates of all
parameters. In particular, the biases in estimates of β0, βt and βG all exceeded 30%. The
conditional likelihood estimators also exhibited large bias, as expected since they remove
the effects of random intercepts, but not slopes, from the likelihood.

Web Appendix A presents estimated biases from a modification of the Table 2 setting where
we misspecify the Z = 0 subpopulation sampling rates in the profile likelihood approach.
These simulation studies also assessed the performance of 95% confidence intervals. To
summarize the findings, misspecifying the sampling rates produced mild bias in estimators
of βt, but essentially no bias in estimates of both βG and βI, effects of variables not as
strongly connected to time 1 as is xt. Coverage rates for βt were poor in settings with
sampling rates misspecified to be one-half the actual rate, but were close to nominal for the
the other two regression parameters, βG and βI. Coverage rates for all three regression
parameters were close to nominal in settings with sampling rates misspecified to be twice
the actual rate.

We ran analogous simulations to assess the effects of misspecifying sampling rates with data
generated from models with only random intercepts and report full results in Web Appendix
A. In general, the results from models with only random intercepts closely corresponded to
those from models with both random intercepts and slopes.

4. Example
We illustrate our results by fitting profile likelihood and conditional likelihood approaches
to data from the ADHD study (Hartung et al., 2002). The data set consists of 138 children
suspected to have ADHD, 117 not suspected to have ADHD, followed up to 8 annual visits.
Covariates of interest included time, gender, ethnicity, and several interactions. The
augmented response included the measured ADHD symptom expression outcome, Yi, as
well as the referral/sampling group variable Zi. Preliminary model fits indicated that
logit{pr(Yij = 1 | visit, b)} followed a non-linear trajectory in the visit variable which we
could appropriately describe using binary indicators for visits 1 and 2, along with a linear
effect of visit. We fit four cluster-specific approaches to these data: 1) the profile likelihood
approach (4) with a binary mixed-effects logistic model with random intercepts and slopes
(15) and the augmented response (Yi, Zi1)T; 2) the profile likelihood approach in 1) that only
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included random intercepts; 3) the corrected conditional likelihood (12) approach; and 4) a
standard conditional likelihood approach that ignored the outcome-related sampling design.
Additional covariates included indicators for female gender, African American and Other
ethnicity, as well as interactions of visit by female gender and visit by African American
ethnicity. We also fit a marginal (population-averaged) model with the same set of
covariates using the approach of Schildcrout and Rathouz (2010) and software they
generously provided. The fit followed the recommendation of Schildcrout and Rathouz
(2010) to fit a very flexible model for the sampling variable Z. The model included all the
predictors above, the ADHD responses, Yij and interactions of Yij with each of the
predictors.

Our general approach is to fit flexible models to describe the relationship between the
referral/selection variable Z and the vector of measured ADHD symptoms, Y. The variable Z
was strongly related to the first outcome, Y1, the closest outcome in time to Z, but only
weakly related to the later outcomes, Y2, . . . , Y8, conditional on Y1. For example, a Wald
test of H0 : γ2 = · · · = γ8 = 0 based on a logistic model yielded a χ2 statistic of 10.6 on 7
degrees of freedom, p=0.16, along with estimates  that were much smaller than . This
makes sense since Z is an attempt to measure the ADHD outcome near the beginning of the
study. Outcomes Y2, . . . , Y8 are progressively farther away from Z and more weakly related.

We modeled the relationship between the referral/selection variable, Z and the measured
ADHD symptom outcome, Y using logit pr(Zij = 1 | yi1) = γ0 + γ1yi1. To implement both
profile likelihood and conditional likelihood approaches we must also specify the ratio

which we can compute using specifications of pr(Zi), the observed p̂r(Z | R = 1) and Bayes
theorem. Following Schildcrout and Rathouz (2010), we assume that approximately 5% of
girls in the population would qualify for referral and consider three different prevalence
rates for the boys: 5%; 10%; and 15%. We calculate the required ratio to be 22.6 for the
girls, and 22.4, 10.6 and 6.7, for the boys and prevalences of 5%, 10%, and 15%,
respectively. Table 3 presents the results for sampling ratios λ(girls) = 22.6, λ(boys) = 22.4.
Web Appendix A presents analogous results for the other two sampling ratio sets.

The estimate of log  for the PL(slp) fit is much larger than its standard error (Table 3),
indicating the need to include random slopes in the model for the ADHD outcomes. As in
Table 1, Table 3 shows that ignoring the outcome-related sampling plan using a standard
conditional likelihood approach produced a very different estimate of the Visit 1 effect than
the profile and corrected conditional likelihood approaches that accommodate the sampling
design. To get a clearer sense of the differences in the model fits we plotted the estimated
longitudinal change for the reference group (Caucasian boys) versus visit for the various
model fits. For the mixed-effects models, the fit is for the average value (0) of the random
effects and, for plotting purposes, we set the intercept for the conditional maximum
likelihood fits (which do not supply an intercept estimate) to that from the PL(int) model fit.

Figure 1 gives those plots and shows qualitative differences in the estimated change over
time. As noted above, the uncorrected conditional likelihood estimator, which fails to
accommodate the outcome-related selection at visit 1 gives a very different estimate there.
Otherwise, the profile likelihood fit assuming only random intercepts and the two
conditional likelihood fits give very similar results with the odds of ADHD increasing up to
visit 3 and beginning to decline. However, those fits differ substantially from the profile
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likelihood fit allowing random slopes as well as random intercepts. In that model, the
longitudinal trend increases and then essentially levels o over visits 3 through 8. The
population averaged approach gives a trend similar to that of the random intercepts and
slopes fit, but with values attenuated compared to the mixed effects model. Given the
different targets of inference from the subject-specific and marginal approaches, such
attenuation is to be expected.

The example illustrates several important points. First, methods such as standard conditional
likelihood that ignore the outcome-related sampling can give drastically incorrect fits.
Second, ignoring random slopes by fitting only random intercept models (and thus
specifying an incorrect dependence structure) can lead to somewhat different qualitative fits
with nonlinear models such as the logistic. Third, we can uncover such omissions in the
dependence structures by fitting the more elaborate model including random slopes as well
as random intercepts. Web Appendix A shows that approaches using the sampling ratios
10.6 and 6.7 for the boys produced noticeable changes in the coefficients of visit 1, female
and the visit by female interaction, variables all related to the sampling process.

5. Discussion
The most common approaches to the analysis of longitudinal data are generalized estimating
equations or GEEs (which typically fit marginal models) and mixed-effects or conditional
regression models (which typically fit conditional models). The advantages and
disadvantages of each approach have been widely debated (Neuhaus et al., 1991; McCulloch
et al., 2008). Key aspects of that debate are: 1) robustness to dependence model
misspecification for GEE methods, 2) cluster-specific interpretations for mixed-effects and
conditional regression approaches (which are often more natural in longitudinal data
settings), 3) more explicit modeling (and correspondingly more detailed information) for
mixed-effects models, and 4) avoidance of distributional assumptions for cluster-specific
intercepts for conditional analysis methods. The work of Schildcrout and Rathouz (2010)
extended GEE approaches to handle outcome-related sampling whereas our work provides
that extension for analysts who prefer to use mixed-effects and conditional approaches.

Our profile and conditional likelihood approaches can accommodate data from simple
schemes, such as the design of the ADHD study, as well as more complicated schemes that
involve several outcomes, such as a longitudinal sample of MRI outcomes sampled based on
trajectories of X-ray measurements in the OAI study. Indeed, OAI investigators are very
interested in comparing subjects who exhibit large within-subject changes in MRI outcomes
with subjects who have little change, but the investigators need to efficiently select subjects
based on, e.g., X-ray measurements.

Although the simulation studies and example data analyses in this paper focus on a
particular binary-outcome, longitudinal model with random intercepts and slopes, our profile
likelihood approach is much more general and applies to a wide variety of longitudinal
responses and auxiliary variables. Given sampling rates, our approach applies in any setting
where we specify fully parametric models to relate the outcome of interest to the covariates
and to relate the sampling variable to the outcomes. Our corrected conditional likelihood
approach also applies more broadly to any canonical link generalized linear model with a
random intercept, for example, it applies to repeated Poisson outcomes.

Conditional likelihood methods are attractive in the setting of cluster-specific intercepts
because they avoid any assumption about the distribution of the intercepts across clusters
and may give robustness to other model violations (Neuhaus and McCulloch, 2006). As we
demonstrated here, standard conditional likelihood methods do not work in the context of
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outcome-related sampling. However, our corrected conditional likelihood method exhibits
little to no bias in our simulation studies with cluster-specific intercepts.

While conditional methods have attractive properties, they only give information about
time-varying predictors (variation within clusters) and discard information that might be
usefully recovered between clusters. As an example, in the ADHD analysis we considered,
we would not be able to characterize average effects for females or African-Americans using
a conditional analysis. And our simulations showed loss of efficiency of up to 25% (see
Web Appendix A) in situations where a predictor had both within- and between-subject
variation, which might be concerning. Furthermore, when the models are more complicated
than cluster-specific intercepts (e.g., cluster-specific intercepts and slopes), then both
standard and corrected conditional analysis methods fail (see Table 2). Taking these
drawbacks together and with demonstrated robustness to parametric assumptions in mixed
effects models (Neuhaus and McCulloch, 2011), we generally prefer the flexibility a orded
by mixed-effects regression methods over conditional approaches, except in extreme
situations.

In summary, we have developed and evaluated two approaches to outcome-related designs
for analysts who wish to fit cluster-specific models. For an outcome process with cluster-
specific intercepts (only) and flexible accommodation of outcome-related sampling designs
our corrected conditional likelihood method performed well. For more complicated
longitudinal outcome settings (such as random intercepts and slopes) we recommend a
profile likelihood approach.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Log odds of ADHD for five estimation methods.
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Table 1

Percentage bias in parameter estimates from three methods fit to simulated longitudinal data from outcome-
related sampling designs: 1) Profile Likelihood (4) with random intercepts (PL(int)); 2) corrected conditional
maximum likelihood (CMLcorr) (12); 3) standard conditional maximum likelihood (CML).

Parameter PL(int) (4) CMLcorr (12) CML

a. ni = 8, xt, xbin

β 0 0.2

β t 0.8 0.6 −72.2

β bin 0.3 0.7 0.5

γ 0 <0.1 <0.1

γ 1 0.7 0.7

log σb −0.3

b. ni = 4, xt, xbin

β 0 0.6

β t −0.5 −0.7 −258.4

β bin −0.4 <0.1 −0.7

γ 0 0.2 0.2

γ 1 1.5 1.6

log σb −0.2

c. ni = 8, xt, xbin, xnorm

β 0 0.3

β t 1.4 1.2 −72.1

β bin −0.1 0.3 −0.7

β norm −0.2 0.1 −0.7

γ 0 <0.1 <0.1

γ 1 2.0 2.0

log σb −0.5
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Table 2

Percentage bias in parameter estimates from four methods fit to simulated longitudinal data from outcome-
related sampling designs: 1) Profile Likelihood (4) with random intercepts & slopes (PL(slopes); 2) standard
mixed effects logistic random intercepts & slopes (STD mixed); 3) corrected conditional maximum likelihood
(CMLcorr) (12); 4) standard conditional maximum likelihood (CML).

Parameter PL(slopes) (4) STD mixed CMLcorr (12) CML

β 0 −0.4 −39.6

β t 1.4 −42.0 50.5 −13.7

β G −0.6 31.8

β I −0.6 −9.8 −36.2 −43.0

log σb0 −0.8 20.8

σ b1 
* 1.1 −14.7

γ 0 0.1

γ 1 −0.1

*
Percentage bias computed for σb1 to avoid division by zero.
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Table 3

Parameter estimates, , with standard errors as subscripts, from four subject-specific methods and one
population-averaged (PA) methods fit to ADHD data. Subject specific methods included Profile Likelihood,
as given in (4), with either random intercepts (PL(int)) or random intercepts and slopes (PL(slp)), standard
conditional maximum likelihood (CML) and corrected conditional maximum likelihood (CMLcorr) as given in
(12)). The population averaged fit (PA(Yi)) used the method of Schildcrout and Rathouz (2010). Sampling
ratios: λgirls = 22.6, λboys = 22.4.

parameter PL(int) PL(slopes) CMLcorr CML PA(Yi)

Intercept –1.050.37 –2.590.63 –1.360.30

visit 1 –3.430.32 –3.550.36 –3.300.34 –0.560.29 –1.360.29

visit 2 –0.620.26 –0.770.30 –0.620.26 –0.620.26 –0.410.24

visit –0.250.04 –0.010.09 –0.250.05 –0.250.05 –0.030.04

Female 0.100.35 0.030.48 –0.330.36

African Amer –0.050.37 0.180.53 0.210.25

Other 0.720.80 1.130.73 0.050.52

visit*Female –0.180.07 –0.160.09 –0.190.07 –0.190.07 –0.120.05

visit*AfrAmer 0.270.06 0.250.08 0.270.06 0.270.06 0.150.04

γ̂0
–5.460.30 –5.460.30 –5.460.32

γ̂1
6.550.80 6.530.80 6.500.78

log σ̂0
0.870.07 1.000.07

log σ̂1
–1.030.12

corr(b0, b1) –0.320.18
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