
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Design and evaluation of Oasis: An active storage framework based on T10 OSD standard

Permalink
https://escholarship.org/uc/item/1426j0p0

ISBN
9781457704284

Authors
Yulai, X
Muniswamy-Reddy, KK
Feng, D
et al.

Publication Date
2011-08-03

DOI
10.1109/MSST.2011.5937220

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1426j0p0
https://escholarship.org/uc/item/1426j0p0#author
https://escholarship.org
http://www.cdlib.org/

Design and Evaluation of Oasis: An Active Storage

Framework based on TIO OSD Standard

Yulai Xiett, Kiran-Kumar Muniswamy-Reddy§, Dan Fengt .. , Darrell D. E. Long+"
Yangwook Kang+, Zhongying Niut, Zhipeng Tant ..

t School of Computer, Huaz}lOng University of Science and Technology

Wuhan National Laboratory for Optoelectronics

+ University of California, Santa Cruz

§ Harvard University

Email: ylxie@smail.hust.edu.cn.kiran@eecs.harvard.edu.dfeng@hust.edu.cn

darrell@cs.ucsc.edu, ywkang@soe.ucsc.edu, niuzhy@gmail.com, zhipengtan@163.com

Abstract-In this paper, we present the design and perfor
mance evaluation of Oasis, an active storage framework for
object-based storage systems that complies with the current TI0
OSD standard. In contrast with previous work, Oasis has the
following advantages. First, Oasis enables users to transparently
process the OSD object and supports different processing gran
ularity (from the single object to all the objects in the OSD)
by extending the OSD object attribute page defined in the TI0
OSD standard. Second, Oasis provides an easy and efficient way
for users to manage the application functions in the OSD by
using the existing OSD commands. Third, Oasis can authorize
the execution of the application function in the OSD by enhancing
the TI0 OSD security protocol, allowing only authorized users
to use the system.

We evaluate the performance and scalability of our system im
plementation on Oasis by running three typical applications. The
results indicate that active storage far outperforms the traditional
object-based storage system in applications that filter data on the
OSD. We also experiment with Java based applications and C
based applications. Our experiments indicate that Java based
applications may be bottlenecked for I/O-intensive applications,
while for applications that do not heavily rely on the I/O op
erations, both Java based applications and C based applications
achieve comparable performance. Our microbenchmarks indicate
that Oasis implementation overhead is minimal compared to the
Intel OSD reference implementation, between 1.2% to 5.9% for
Read commands and 0.6% to 9.9% for Write commands.

I. I NTRODUCTION

Recently, object-based storage [1], which combines the
advantages of the data sharing and secure capabilities of
NAS [22] with the high-speed, direct-access of SAN [21], has

been the subject of extensive research and development in the
storage area. Numerous prototype systems (e.g., Lustre [7],
Panasas [6] and Ceph [23]) using object-based technology
have been developed by the industrial R&D community. The
object-based storage interface standard (also referred to as the
TI0 OSD standard [10]), which is being developed by the
Object-based Storage Device (OSD) technical working group
within the Storage Networking Industry Association (SNlA)
and the INCITS TIO Technical Committee, has defined the
basic command set for the SCSI object-based storage device.

"Corresponding Author, 978-1-4577-0428-4/1 11$26.00 © 201 1 IEEE

It aims to promote object-based storage technology and further
increase the market share for object storage products.

On the other hand, numerous academic research institutions
have made contributions to the TlO OSD standard by integrat
ing various technologies, such as Quality of Service (QoS) [13]
and storage security [12], into the standard. However, the
existing TIO OSD standard does not sufficiently expose the
intelligence/capabilities of object storage devices. Since ob
ject storage devices can manage the location of object data
itself and the object has attributes that contain rich semantic

information, the object storage devices have the potential to
be much more intelligent than a storage device based on the
traditional block interface.

In addition, active storage technology [2] [3] [4] has shown
to be one of the most interesting approaches to express the
intelligence of storage devices. By exploiting the processing
power of the storage device, active storage is not only able
to filter data and reduce the bandwidth requirement on the
network, but also provide aggregation processing capabilities
through the parallelism of the disks.

There have been several efforts to integrate active stor
age technology into the Tl 0 OSD standard. Qin et al. [8]
proposed a hybrid approach to scheduling code in object
based storage device to execute. Both John et al. [9] and
Devulapalli et al. [24] presented an implementation of active
storage framework for the TIO OSD standard. However, their
implementations are preliminary, and do not validate their

systems on a variety of data intensive applications, thus they

cannot fully demonstrate the advantage of object-based tech
nology. Besides, to make the OSD product involved in active
storage framework widely accepted by OSD consumers, we
believe that some important characteristics should be consid
ered. Specifically, supporting transparent and multi-granularity
processing, convenient management and security.

Earlier work has pointed out the importance of the above
characteristics. For example, MVSS [4] has stated the ne
cessity of transparent and multi-granularity processing. Se
curity has been examined in the SRPC framework [31] and
management has been discussed in the work on iOSD [24],

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

Load-managed Active Storage [32] and Lema [26]. Basically,
these characteristics will make OSDs easier to use and more
sophisticated.

In this paper, we present the design and performance
evaluation of an active storage framework called Oasis that
integrates the above features and is based on the current TIO
OSD standard. Specifically, Oasis has the following unique
advantages.

First, Oasis frees users from needing to remember the details

of application junctions (application-specific code that can be
downloaded and executed on the user data, e.g., compression,
classification, etc) and enables users to transparently process
the OSD object. In addition, Oasis supports different process
ing granularity (from the single object to all the objects in the
OSD) by extending the OSD object attribute page defined in
the Tl 0 OSD standard.

Second, Oasis provides an easy and efficient way for users
to manage application functions. Users can conveniently cre
ate, remove and list application functions in the OSD whenever
they like by using existing OSD commands.

Third, as a preliminary security solution, Oasis can autho
rize the execution of the application function in the OSD by
enhancing the TlO OSD security protocol, thus preventing
unauthorized users from intentionally destroying the system.

We also evaluate the performance and scalability of Oasis
by running three typical applications: Database Selection,
Blowfish Decryption and Edge Detection. They are all rep

resentative of the data analysis applications in the real world
and are widely used in various fields. We also examine the
impact of the C and Java programming languages on the code
execution efficiency, and evaluate our system implementation
overhead by comparing Oasis with the Intel OSD reference
implementation. Our work on design and evaluation on the
standard provides an important reference to the OSD commu
nity.

The rest of the paper is organized as follows. We summarize
background and related work in Section II and elaborate the
design and implementation of Oasis in Section ill. In Section
IV, we evaluate the implementation of Oasis and discuss the
results of running various applications on the Oasis prototype.
In Section V, we conclude the paper and point out directions
for future research.

II. BACKGROUND AND RELATED WORK

In this section, we first give an overview of object-based
storage and the TIO OSD standard. Second, we present the
related work on active storage and then motivate our research.

A. Object-Based Storage and the TlO OSD Standard

With the rapidly escalating storage requirements of en
terprises, object-based storage [1] has emerged as one of
the most promising technical solutions to next-generation
storage systems in the past few years. It oftloads storage
management functions from the host operating system to the
intelligent object-based storage device (OSD) that manages its
own storage space and exports an expressive object interface.

Object-based storage systems, such as Lustre [7], Panasas [6]
and Ceph [23] that combine the advantages of NAS [22] and
SAN [21], can provide high throughput, reliability, availability
and scalability.

The object-based storage interface standard (also referred to
as the TI0 OSD standard) aims to promote the development
of the object-based storage technology. A recent revision, i.e.,
the TIO OSD-2, was ratified by ANSI in January 2009. It
defines the basic SCSI object-based storage device commands
(e.g., READ and WRITE command) that are responsible for
reading or writing object data from/to the OSD. Besides, it
defines four kinds of objects, namely, root object, partition
object, collection object and user object. Root, partition and
collection objects are a great aid for addressing and retrieving
user objects, which store user data (such as files and database
records). Each object is identified by an object ID, and consists
of data and attributes that express the specific characteristic of
object (e.g., creation time, access time, etc). These attributes
are organized into pages for identification and reference. Each
attribute item in the attribute page can be indexed by a
combination of attribute page number and attribute number.
Moreover, this standard defines a capability-based security
model. A client wishing to access to storage devices can
acquire a capability from a metadata server and then presents
it to the devices with the I/O requests, thus the storage
devices can authorize the access to object data according to
the capability.

B. Existing Active Storage Approaches

Active storage [2] [3] [4] [25] [26] [27] [28], which enables
computation inside storage devices, has long been an important
way to make device intelligent and optimize the system
performance. In the earliest work, researchers developed var
ious database machines [16] to increase the performance of
database application by exploiting the processing power within
the disk arm. These machines failed to gain wide acceptance as
they used non-commodity hardware and the performance gains
were limited. With the development of the VLSI (Very Large
Scale Integrated circuit) technology that makes it possible for
the disk drive to have more powerful processing capability,
researchers proposed the active disk project [2] [3] to re
examine the database machine work. By partitioning appli
cations (e.g., data mining, image processing) into the host
and disk portions, the Active Disk system is able to obtain

higher throughput and less response time. In response to the
storage and computational demand for DSS (Decision Support
Systems) and data warehousing workloads, Keeton et al. [17]
presented a computer architecture that utilizes "intelligent"
disks, which exploit the low-cost embedded processing ca
pability and improve cost-performance by oftloading general
purpose computation from expensive desktop processors. The
MapReduce [29] [30] software framework also employs a
concept similar to active storage. It splits a large data set
into many pieces and distributes them into many commodity
hardware computers that then process the data locally, and
merges the results into the output. The recent work [28] also

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

provides an approach to deploying active storage technology
on parallel I/O software stack by extending the MPI-IO
interface.

The above work is built on the storage systems based on the
block-level interface. Since object-based storage technology
may be the next wave in the storage field, a lot of studies
have gradually focused on building the active storage system
on object-based storage platforms. Huston et al. [18] presented
diamond, an active storage architecture designed to address the
issue of searching non-indexed data from the massive storage
system. This system uses the concept of object-based storage,
such as object attributes, to perform semantic filter processing
in the device. Piernas et al. [5] presented an active storage
framework for Lustre [7], which is implemented in user space
and proves to be faster and more portable than the previous
kernel-space version [33]. However, these two systems are not
designed for the general object-based storage platform and do
not comply with the TIO OSD standard.

Our work is closely related to Qin et al.'s [8], John et

al.'s [9] and Devulapalli et al.'s [24]. They have also built their
active storage frameworks on the TI0 OSD standard. However,
their evaluation is not comprehensive. In addition, few of
them have taken into account transparent and multi-granularity
processing, flexible management of the application function or
concrete methods to enable the security of execution.

Recently, the SNIA OSD committee devoted themselves
to add OSD intelligence into the third version of TI0 OSD
standard (Le., TIO OSD-3). Researchers from the University
of Connecticut submitted an active storage proposal to the
OSD committee. The proposal elaborates how to enable the
execution of remote methods in a virtual machine environment
in object-based storage devices. The implementation and eval
uation of the standard in our paper is based on our proposal
that defines an extended function object, object commands and
attribute pages to support active storage in OSD and has been
submitted to the SNIA OSD technical working group.

III. OASIS DESIGN AND I MPLEMENTATION

In this section, first we will state the design objective of
Oasis in terms of user case. Then we will elaborate the details
on design and implementations of Oasis.

A. Design Objective and User Case

Our intuitive design objective mainly comes from the user

requirements of transparent and multi-granularity processing,
ease of management and security.

a) Transparent Processing

In most cases, a user of an OSD product doesn't wish to
remember the details of application functions: how these ap
plication functions are programmed, the execution parameters
or the identifiers of the application functions. This makes it
hard for the user to explicitly schedule the application function
to execute.

To enable transparent processing, we have to associate ap
plication functions with OSD objects and store this association

User Kernel

_____________ ______________ s:��_J spac
e

4
�-----------------------,

: Function Scheduler 2 Association Check :
�___ _ __________________ J

Active Storage Module

Fig. 1. Architecture of Oasis

information into the OSD system, so that when the OSD object
is accessed (e.g., READ or WRITE), the associated application
function can be automatically invoked to execute.

b) Multi-granularity Processing

A user might want to encrypt anything from a file to a
whole directory that contains hundreds of thousands of files. In
many cases, encrypting each file one by one is not an efficient
solution. In the OSD, we aim to utilize the existing four kinds
of OSD objects (Le., root, partition, collection and user object)
that represent different granularity to enable multi-granularity
processing.

c) Management

Management policy on previous work [24] [26] [32] has
focused on mapping computation load to available hardware
resource in terms of system performance. In addition to that,
we believe users need an interface for managing application
functions associated with OSD objects. For example, the user
may download a compression algorithm to the OSD if he
wants a file be compressed on the OSD, and may want to
remove the algorithm from the OSD to save the storage space
once it is no longer necessary. Sometimes, the user may just be
curious about which application functions exist on the OSD.
Our objective is to utilize existing OSD commands to enable

efficient management.

d) Security

The execution of an application function must be safe. The
reason is obvious, unsafe execution can result in the wrong
results, e.g, a program accesses an invalid memory space. In
addition, a user may not want the code that he downloaded
to the OSD be used by other users, so access control should
be considered. We will give a preliminary security solution to
deal with these problems in Section ill-F.

B. Architecture Overview

Figure 1 shows the architecture of Oasis in an OSD device.
As depicted in Figure 1, Oasis consists of four modules,

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE EXTENDED PARTITION_ID AND USER_OBJECT_ID VALUE TO THE TlO OSD STANDARD

Partition_ID UsecObjecCID,Function Object ID or Collec- Description
tion Object ID

Oh Oh Root object
Oh lh FFFF FFFF FFFF FFFFh Reserved
lh to FFFFh Oh- FFFF h Reserved
Ih to FFFFh lOOOOh to FFFF FFFF FFFF FFFFh Function Object
lOOOOh to FFFF FFFF FFFF FFFFh Oh Partition

Ih-OFFFh Reserved
lUooh to Bt< t< t< n Well Irnown cOllections
COOO� to FFFFh Reserved

lOOOOh to FFFF FFFF FFFF FFFFh IOOOOh to FFFF FFFF FFFF FFFFh Collection or User object

TABLE II
THE EXTENDED USER OBJECT INFORMATION ATTRIBUTES PAGE CONTENTS

Attribute Number Length Attribute Application OSD Logical
(bytes) Client Settable Unit

Oh 40 Page identification No Yes
lh 8 Partition ID No Yes
2h 8 User object ID No Yes
3h 8 Function Object ID No Yes
4h 8 Parameter Yes No
5h to 8h Reserved
9h variable Usemame
lOh to FFFF FFFEh

namely, the Object Command Handler, the Object Filesystem,
the Association Check and the Function Scheduler. Object

Command Handler gets and analyzes OSD commands and
forwards them to the Object Filesystem that is responsible for
reading and writing the object data, as well as performing
the management of OSD objects and function objects that
represent the offioaded application functions. In this process,
Oasis utilizes the commands that are applied to user objects

to manage function objects only by specifying the partition
identifier of the function objects, thus users (or administra
tors) can easily and conveniently perform the management of
function objects without needing to add new commands to the
existing TIO OSD command set or modify the current TlO
OSD standard. Association Check is responsible for checking
whether there exists any function object associated with the
OSD object that is being read or written, reading the function
object ID and parameters from the OSD objects' attributes
if the association exists, and then passing these information
to the Function Scheduler. Associating the function object
with the OSD object provides a flexible and efficient approach
to invoking the function object to execute and transparently

process the OSD object during the read or write process.
Function Scheduler is responsible for scheduling the related
function objects to execute according to the function object
ID and parameters acquired from the Association Check.

Currently, the Function Scheduler performs schedule work on
a first come first serve basis. However, when two different
function objects need to be scheduled to execute at the same
time, a flexible and efficient scheduling scheme is a must. We
plan to employ sandbox technology similar to iOSD [24] to
solve this problem in our future work. Oasis provides access
control for the execution of the function objects by simply

No Yes
Yes No
... ...

extending the Permission Bit Mask of the capability (see
Section ill-F). The function objects can be executed on the

virtual machine in the user space and the execution results
will be written to the local disk or returned to the client.

C. Function Object

According to the current T1 0 OSD standard, the four kinds
of defined OSD objects are either used for storing user
data (i.e., user object) or used for addressing and retrieving
user data (i.e., root object, partition object and collection
object). The function object is suggested to hold the offioaded
application function (e.g., compression, classification, etc).

Similar to the existing four kinds of objects, a function
object is identified by a function object ID and is located in
a dedicated partition that is identified by a partition_ID set to
Ih-FFFFb (see Table I). Besides, a function object contains
attributes that describe the basic information of the function
object (e.g., creation time, access time, etc). All the function
objects are motivated to be executed in OSD to perform
operations or analyses on user objects. A function object can
be written using the C programming language or a cross

platform language such as Tcl/Python script or JAVA, and
the OSD needs to implement the script interpreter or virtual
machine to execute the corresponding functions. Figure 2
illustrates a piece of C and Java code for a function object
that performs data filtering respectively. Both of them retrieve
the data from the input stream, process the data and pass the
result to the output stream. Except for the input stream and
output stream, such as a file, a buffer or a pipe, there is no
other way to communicate with the outside operation system.

Taking the application function as a kind of object provides
the following benefits. First, similar to the user objects, we

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int tnain(int argc. char *argv[D
{
char ch[50];
long int content=O;
FILE *instream.;
FILE *outstream.;

ift(outstreatn==fopen(argv[2]. '" w+" »��NULL)
{
printf(� .. error");
return. -1;

}
ift(instreatn==fopen(argv[l]. '"r"))I�NULL)
{
do{

}

iftf"gets(ch.50.instreatn�NULL)
break;

iftstrctnp(ch. '"\n"�)
continue;

else
{
contenFatoi(ch);
iftcontent<IOO)

fprintf(outstream., %sn ,ch);

} while(!f"eoftinstreatn));

}
f"close(instreatn);
f"close(outstreatn);
return 0;

}

(a) The function object using C code

i:rnport java.io. *;
itnport java.lang.Integer;
import java.awt. ,..;

Public class sort
{
Public static void tnain(String[] args)throws IOException{

File inputFile � new File(args[O]);
File outputFile � new File(args[1D;
FileReader data � new FileReader (inputFile);
FileWriter result � new FileWriter (outputFile);

BufferedReader br � new BufferedReader (data);
String s;
int i;

While «s � br.readlintO)I�ull){
ifts.lengthO!�O){

}

i� Integer.parseInt(s);
ifti<100){

}

result.write(s);
s= \n" ;

resule.write(s);

data.closeO;
result.closeO;

(b) The function object using Java code

Fig. 2. C and Java code for a function object that perfonns data filtering

can use the current object commands defined in the TIO OSD
standard, such as the CREATE AND WRITE, REMOVE and
LIST commands, to manage the function objects, which makes
it more convenient to download, schedule and execute the
application function. Second, the attributes of the function
object provides a unique and effective way for users to
understand and use the application function. Third, we can
utilize the object-based storage security model to authorize
the execution of the application function. We will elaborate
these advantages in the following sections.

D. Association

Oasis allows users to associate a function object with an
OSD object by saving the function object's ID and its pa
rameters (e.g., encryption keys) in the OSD objects' attributes
that are organized into attributes pages for identification and

reference in the TIO OSD standard. Table II illustrates the
extended User Object Information attribute page that contains
a function object's ID and its parameters. By building the
association through using the objects' attributes, the user
can easily set and retrieve the association information by
using OSD commands. For example, the SET ATTRIBUTES
command in the current TIO OSD standard allows setting an
attribute value in the OSD object information attribute page.

In addition, such an association design gains several salient
advantages. First, the association operation makes it possible
to invoke function objects to execute during the read or write

process to OSD objects, thus making the data processing in
the device completely transparent to the user. Second, this
approach provides a simple and convenient way for users to
flexibly apply different application functions to different kinds
of files. For example, the user can apply an edge detection
algorithm to an image file to acquire the edge feature of the
image by associating the function object that represents the
edge detection algorithm with the user object that represents
the image file, while for the database file that contains millions
of records, the user can apply an efficient database query
to it by associating the function object that represents the
database query with the user object that represents the database
file. Third, associating function objects with different kinds of
OSD objects can support different processing granularity. For
example, associating a function object with the root object will
affect the whole OSD logical unit, while associating a function

object with a partition object will affect all the sub-partitions
and files in it. This allows users to take a flexible and wide
range of granularity according to different applications. For
example, some applications aim at the handling of a single file,
while other applications aim at a large-scale scan processing.

In addition, when more than one application function needs
to be applied to the user data, for example, a file needing
to be compressed first and then encrypted, users can asso
ciate multiple function objects with a single user object at
a time. The execution order among them is determined by
the Attribute Number. The function object identified by the

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

compression - _� _____

encrypt
, , , ,

Filesystern Logical View

sort

C=_--,;.--=:>-
edge

detection
, i___ User dbiect2 , I/==A==��ib�u�te==�� User 0' ·ectl

� OSD Logical Unit
Partition object!

Attribute
Function object1 ID

Parameters I
Function object2 m

Parameters2

Data

Function object3 ID
Parameters3

(Data '\
'--1 -"�� --'l)

Function object4 TD
Parameters4

Data

Fig. 3. Mapping from file to object and an example of the association between function objects and OSD objects in Oasis

Function_ObjecUD with the smaller Attribute Number is
executed first.

Figure 3 shows an example of the association between
function objects and OSD objects in Oasis. As the figure
shows, filel is mapped to user objectl and file2 is mapped to
user object2, while the directory /dir2 is mapped to partition
objectl. Associating the edge detection operation with parti
tion object! will make all user objects mapped from image
files under /dir2 (such as file3 and file4) be processed by
the edge detection function using parameters4. Associating
the sort operation with user object2 will make user object2
mapped from file2 be processed by the sort function using
parameters3. For user object!, two kinds of operations, the
compression and encryption that are identified by function
object! 's and function object2's ID respectively have been
associated with it. This will make user objectl be compressed
first using parameters 1 and then be encrypted using parame

ters2 in the write process, while the reverse processing steps
will occur in the read process.

E. Management of Function Objects

For an administrator or even ordinary users, they are usually
concerned with the following issues:

1) How to simply and flexibly download an application
function to the storage device?

2) How to easily remove an application function from the
storage device?

3) How to conveniently view which application functions
are there in the storage device?

Since an application function is taken as a function object
in the device and is essentially a data stream similar to a
user object, Oasis uses the commands (such as CREATE AND
WRITE, REMOVE and LIST), that are applied to user objects
to manage the function object. The difference is that, as Oasis
uses a dedicated partition to store all the function objects,
thus all the commands directed to the objects with the same
partition identifier as the dedicated partition that holds the
function objects will operate these function objects.

Downloading an application function to storage devices
will result in unpredictable risks, which will be discussed
in Section III-F. Removing an application function from an
object-based storage device helps reclaim space from function
objects that are no longer used. Through sending the LIST
command to an OSD, users can acquire a list of function
objects, including the object' ID and attributes. This provides
a convenient way for users to understand and make use of
the function object and for administrator to better manage the

function object. In fact, in order to confirm which function
objects are associated with a specific OSD object, users can
retrieve the corresponding OSD object attribute page through
the GET ATTRIBUTES command that is defined in the TIO
OSD standard.

As a result, practitioners/designers even do not have to add
a new command, thus reducing the modification to the existing
object file system and facilitating the implementation of active
storage system on OSD platform. In addition, storing function
objects in a dedicated partition makes them easy to find and
access.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

TABLE m
PERMISSIONS BIT MASK FORMAT

F. Preliminary Security Considerations

Executing a function object in an OSD can raise serious
security risks, which are mainly caused by two aspects: bad

code in function objects and illegal users who execute the
function objects.

To ensure the function objects to be downloaded are well
written and secure, Oasis only allows the function objects
developed by the OSD vendor to be downloaded since the
vendor has professional knowledge and tools to write and
validate the code. For common users, they only need to
know what functions a function object can provide (such as,
compression, backup, etc) and decide whether to use this
function, but do not need to consider the implementation
details on this function.

Some malicious users may modify the code that is created
by the vendor and then download it to the OSD. We are trying
to apply a security model that employs the public&private key
to solve this problem. In one possible security solution, the
vendor encrypts every section of code with a private key, and
both users and OSDs have a public key to validate the code.

The malicious users can access the code using a public key
and modify it. But since they do not have the private key, they
cannot encrypt the data. Hence they cannot get past the OSD's
validation check. This prevents the users from downloading
erroneous or unsafe code that may damage the OSD system.

Besides, Oasis can use the OSD security model defined in
the TIO OSD standard to authorize the execution of the func
tion object by simply adding a FUN_EXE bit (see Table III)
to the Permissions Bit Mask field in the capability. Similar
to the READ and WRITE bits that provide access control for
common data read and write operations, the FUN_EXE bit
provides access control for the execution of the application
functions that have been migrated to the object-based storage
device. A FUN_EXE bit set to one allows the function object
to be executed on a user object, while a FUN_EXE bit set
to zero prohibits the execution of the function object on a
user object. A client wishing to access an OSD, requests such
an extended capability from a metadata sever and sends it

to the OSD as the part of the command. The OSD can then
use this capability to authorize the execution of the function
object, thus efficiently preventing unauthorized users from
intentionally destroying the system. An obviously advantage of
such an approach is that it is so simple that it requires minimal
changes to the current TIO OSD security mechanism.

G. Additional Considerations

In addition to the case that multiple function objects can be
associated with a user object, a function object can be also
associated with a number of user objects at a time. When

multiple clients request the same function object to process
different user objects at the same time, the function object
can be executed in different address space.

Moreover, a function object can be used as a system parser,
but not specific to a certain OSD object. In this case, the
function object can monitor system resources, data traffic,
as well as key features such as object attributes. This will
be helpful to designing self-adaptive system. By extending
the semantics of the function object, the object-based storage
system will become more intelligent.

H. Implementation Details

We prototyped Oasis (Object-based Active Storage System)
on the Intel OSD reference implementation (REFv20) [11]
which includes an initiator on the host side and a target on
the OSD side (for one OSD). The initiator contains an OSD
file system (OSDFS), an upper level OSD driver and an iSCSI
device driver, and communicates with the targets on the OSDs
through OSD commands. All the files and directories are
stored as objects in the OSDs.

We implemented the function object in C and Java pro
gramming language. Both the C and Java code are compiled
first before they are downloaded to the OSD. Upon receiving
a piece of C or Java code, the OSD automatically converts
them to function objects, and then assigns a function object ID
for each function object. In accordance with the association
approach outlined in Section ill-D, they will be scheduled
during the read or write process. In our system, we apply a
Java virtual machine in the Linux operating system platform.
Once the function object is scheduled, the java byte code will
be interpreted to run. In the Section IV-C, we will specifically
explore the execution efficiency of these two kinds of code
by running tests on a variety of applications, in other words,
to what extent will adopting a Java virtual machine affect
the code execution efficiency though it enables the portability
when compared to C.

IV. EVALUATION

In this section, we'll first evaluate the performance of Oasis
through three kinds of widely used data analysis applications,
i.e., Database Selection, Edge Detection and Blowfish Decryp
tion respectively, and then analyze the overhead in building an
Oasis system from the aspects of system implementation and
management.

A. Experimental Setup

Our experiment test bed consisted of a host (or client)
and I, 2 or 4 OSDs. All of these nodes have the same
hardware components, each with one Intel 604-pin EM64T

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

TABLE N
CHARACTERISTICS OF DATA ANALYSIS APPLICATIONS

Name Description Input Data % of Data Filtering
Database Selection Non-index select operation that applies to 1 .77GB(33 million line 87.4%

the entire dataset and returns the records that records, each of which is
match a given search condition. a double.)

Edge Detection This application employs sobel edge detec- 584.0MB(I()()()() images, 96.7%
tion algorithm [14] to perform convolution each of which is a 8-bit
operation on entire images and extract the map of 59.8k)
key features (i.e., edge) of them.

Blowfish Decryption This application employs the blowfish algo- 800MB(100 million line 0
rithm developed by Bruce Schneier [20] to records)
decrypt an 8-byte record each time.

Xeon 3.0 GHz processor, 512MB PC2700 DDR-SDRAM
physical memory and a 250GB disk. The host and OSDs
are connected via 1 Gbps Ethernet. All of these machines run
RedHat Linux 2.4.20.

B. Methodology and Workload

We evaluate the performance of Oasis by running three
applications shown in Table IV. We choose these applications
because they are representative of the data analysis applica
tions in the real world and are widely used in various fields.
For example, Database Selection is one of the most important
query operations in the database system that apply to the
entire dataset and return only Detection is an image processing
algorithm that detects the edges or comers of "objects" in a

scene(e.g., this application can detect the facial features of
individuals in an image). Blowfish Decryption is an encryption
algorithm that decrypts data in 8-byte blocks and is widely
used in software such as SSH and in operating systems such
as OpenBSD. We briefly describe these applications in the
second column of Table IV. It should be noted that, we do not
currently employ a real database in the OSD system. Instead,
we have developed a filter applet that filters the records
according to a certain degree of selectivity (e.g., applying a
filter applet with a selectivity factor of ten to the dataset will
return 1110 of the total amount of data) to simulate the non
index operation that applies to the entire dataset. The third
column shows the specified dataset used in each application.
In the last column, we give how much percent of the input
data set would be filtered in the OSD-side. For example, Edge
Detection shows the maximum amount of data filtering of
96.7%, while Blowfish Decryption doesn't filter any data.

In an OSD, all of these three data analysis algorithms are

encapsulated into function objects and have their object IDs
for reference. For the dataset, both the database records and
encryption items are contained in a file that is striped into OSD
objects across all the OSDs. All the images to be processed
are also evenly distributed across all the OSDs and each image
in the OSDs is taken as an OSD object. We begin our test by
running several processes on the host at the same time, and
each process is responsible for reading or writing the OSD
objects in an OSD. The function objects will be invoked to
execute if they are already associated with the OSD objects
that are being read or written. They acquire the execution

parameters (e.g., encryption keys and selection conditions)
from the attributes of the OSD objects and are executed in
the user space to avoid disturbing the system kernel.

C. Application Performance

We evaluate the performance of Oasis by first analyzing the
improvement on overall execution time, and then we look at
the sensitivity analysis results, including the number of OSDs,
the programming language of function objects, and the number
of function objects that are associated with the same OSD
object. We'll mainly analyze two cases: Traditional Storage
(TS) and Active Storage (AS). The former means that the data
stored in an OSD should be shipped to the host to process,
while the latter means that the data should be processed in the
OSD using the function object. It should be noted that, in the
following experiments, all the executed function objects are
implemented in C language unless otherwise indicated (e.g.,

in Figure 6).

a) Performance Improvement

Figure 4 shows the execution time breakdown for different
applications using one host and one OSD. We simply divide
the execution time into a process part and a transfer part. The
process part indicates the execution time of the application
function, including the overhead of copying data from kernel
space to user space, while the transfer part measures the
communication overhead on the interconnect network between
host and OSD. As the figure shows, the AS scheme improves
performance significantly on both Database Selection and
Edge Detection applications, 83.8% and 70.4% respectively.
One can see that these improvements can be attributed to
the dramatic time reduction on the Transfer part, from 292.6s

to 3.9s in Database Selection and from 198.0s to 0.74s in
Edge Detection application. This is because most of the data
has been filtered on the OSD-side, which results in less data
transferred from the OSD to the host. While, the performance
of the AS scheme and the TS scheme in Blowfish Decryption
are almost the same, the reason is that Blowfish Decryption
algorithm doesn't filter data on the OSD-side (see Table IV).

We then look at the scalability of Oasis when the number
of OSDs is increased. Figure 5 shows the performance of
three applications in Oasis for the 1-0SD, 2-0SD and 4-0SD
configurations, respectively. One can see that the performance

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

I. Process DTransfer I I. Process 0 Transfer I I. Process 0 Transfer I

'g' 1400 .----------, 'g' 500 .------------, 'g' 300.------------, (/)
� 1200
S 1000
';:: 800 !:

';;' 400 i--r--,....--------l � 250 1--..,--1""---1 Il

o 600
'§ 400 o
� 200
�

TS AS

S
';:: 300
!:
,2 200
;; g 100

� 0
TS AS

,5 200 .. § 150
'§ 100
g 50
�

TS AS

(a) Database Selection (b) Edge Detection (c) Blowfish Decryption

Fig, 4, Execution time breakdown for different applications with one OSD

1400
1200 'U ! 1000

� 800 "
� 600

450
_ 400
� 350 � 300
';:; 250
S 200

'!l 150 � 100
50

300
! 250
III 200
E � 150
o � 100
� SO w

II : Number of OSDs Number of OSDs Number of OSDs

(a) Database Selection (b) Edge Detection (c) Blowfish Decryption

Fig, 5, Execution time for different applications with different number of OSDs

of TS is scalable with the increase in the number of OSDs for
all of the three applications. This is because the parallelism
in the OSDs results in a great decrease in the transmission
time over the interconnect network. We also observe that, in
Figure 5(a) and Figure 5(b), the AS scheme outperforms the
TS scheme significantly due to the reduction in data transfer,
even with a single active storage node. We see that these
improvements are consistent with the increase in the number of
OSDs. For Blowfish Decryption application (see Figure 5(c)),

as there exists no data reduction in the data transfer, AS
scheme achieves comparable performance with the TS scheme
even though the number of OSDs increases.

b) Impact of Language of Function Object

The C-powered function object may perform well in exe
cution efficiency, but not well in portability when compared

to a Java-powered function object. To analyze the impact of
language of function object, we repeated the experiments with
all three kinds of applications in three cases: processing data
in host (TS), executing function objects written in C language
in OSD (AS (C)) and executing function objects written in Java
language in OSD (AS (Java)).

As illustrated in Figure 6, AS(C) and AS(Java) achieve
comparable performance for both the Database Selection and
Blowfish Decryption applications, while for Edge Detection,
AS(C) far outperforms AS (Java) by a factor of 6.12. It should
be noted that TS in the Edge Detection implementation also

outperforms AS(Java) by a factor of 0.84. The reason for
this is that, since a large number of I/O operations are
required for the Edge Detection algorithm to generate the
output image, the algorithm implementation using the Java
language is significantly slower than the implementation using
the C language. And even such performance degradation with
the Java implementation may compromise the benefits of data
reduction in the Edge Detection application achieved by the
active storage technology.

However, for the application such as Blowfish Decryption,
the algorithm is basically composed of the ADD and XOR in

struction (not I/O bound), so the algorithms using C language
and using java language will result in a comparable speed,
implying that for non-I/O intensive applications, both the C
and Java implementations of function objects can achieve
comparable performance, while for I/O intensive applications,

achieving a cross-platform implementation with the Java pro
gramming language means a potential performance bottleneck
in the active storage system.

c) Impact of Multiple Function Objects

The above evaluation focuses on applying one application
function on user data each time. However, sometimes, users
may want to perform multiple operations on user data at a
time. For example, users may need to first decrypt a large
piece of data and then select the data that they want. Oasis
supports function composition by associating multiple function

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

I [J TS • ASIC) [J ASIJava) I
BOO

]" 700
� 600 cu E SOO
:;::; 400 5 :g 300
l;l 200
� 100

o
Database
Selection

Edge Blowfish
Detection Decryption

Fig. 6. Execution time for all three kinds of applications in the
C and Java programming language. AS(C) means that the executed
function object is implemented in C language, while AS(Java) means
that the executed function object is implemented in Java language.
In this experiment for all three applications, we use four OSDs for
execution.

objects with a single OSD object using object attributes (see
Figure 3).

Figure 7 shows the execution time on a hybrid application
that stacks a Database Selection service on a Blowfish Decryp
tion service with different number of OSDs. We evaluate the
impact of multiple function objects by partitioning this hybrid
application between the host and OSDs, namely, processing
this hybrid application on host (TS), first decryption on OSD
and then selection on host (AS(one)) and processing this
hybrid application on OSDs (AS (two)). The results show that
AS(one) does not improve the system performance, as a matter
of fact, decreases slightly by 0.7%-3.9% when compared to
TS. The reason is that, offloading the Blowfish Decryption
application to the OSDs doesn't bring data reduction across
I/O interconnect, but incurs a small overhead over the tra
ditional object storage system. However, the performance of
AS(two) significantly outperforms TS by a factor of 0.41 to
2.63, and also outperforms AS(one) by a factor of 0.45 to 2.66.
This shows that offloading Database Selection to the OSDs
can significantly improve the system performance. Again, this
is because the Database Selection application reduces the
data needing to transmit over the interconnect network by
filtering data on the OSD side. This indicates that, for a
hybrid application that is composed of multiply applications,
only applications that can make data reduction across the I/O
interconnect can really benefit system performance.

D. Overhead Analysis

a) Implementation Overhead

As depicted in Figure 1, in an Oasis system, the As

sociation Check module has to check whether there exists
any function object associated with the OSD object that is
being read or written by accessing the attributes of the OSD
object during every read or write call even when no function
object is associated with the OSD object. We evaluate this
implementation overhead by comparing the completion time
of reading and writing a file with different file sizes in the

I [J TS • ASlone) [J AS(two) I
450

u-400
� 350
";"300 � 250
15 200 l 150
.. 100

W 50
o

1 2 4
Number of OSDs

Fig. 7. Execution time on a hybrid application that stacks a Database
Selection service on a Blowfish Decryption service with different
number of OSDs. We analyze three cases: processing this hybrid
application on host (TS), first decryption on OSD and then selection
on host (AS(one» and processing this hybrid application on OSDs
(AS(two».

Oasis implementation when no function object is associated to
the user object with the Intel OSD reference implementation
under 1 Gbps interconnect network. As shown in Figure 8, the
implementation overhead of Oasis is minimal, between 1.2%
to 5.9% for the read operation and 0.6% to 9.9% for the write
operation, with the Intel OSD reference implementation as the
baseline.

b) Management Overhead

Oasis manages the function object by cleverly employing
the object commands defined in the current TIO OSD stan
dard. Table V shows the completion time of various object
commands for the management of function objects in Oasis
under 100 Mbps interconnect network. For example, it takes
13.6 ms to create a function object with nrn size by using
the CREATE AND WRITE command, while only 7.8 ms to
delete this function object by using the REMOVE command.
In summary, it incurs an overhead as little as 2.8 ms to 13.6 ms
for managing function objects, implying that Oasis provides an
effective and time-saving way to manage the function objects
by using the existing object commands.

V. CONCLUSIONS AND FUTURE W ORK

In this paper, we presented the design and evaluation of
Oasis, a framework that incorporates the active storage tech
nology into object-based storage systems that comply seam

lessly with the no OSD standard. In contrast with previous
work, our design represents application functions in the OSD
as function objects, allows them to be flexibly controlled by
using the standard OSD commands, and supports transparently
and variable-granularity processing by using object attributes.
In addition, Oasis also supports capability-based access control
by extending the object storage security model.

We prototyped Oasis on the Intel OSD reference implemen
tation and implemented function objects in the C and Java
programming languages, respectively. Experimental results on
data analysis application show that Oasis achieves substantial
performance improvements over the traditional object-based

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

'i'
6 • Intel aSD reference implementation

$ 5 - Oasis l-
e

'i' 24
• Intel aSD reference implementation � .. • Oasis is 1 8 .. 4 I-of!

..
of!

b<l ...
i 3 l-
I!! 2 l- I-...

� 1 2
.� ... oS! � E I

� rII LI
l- I-

E:: 0

oS! 6

r. rl II
-

..
a
E= 0

I K 8K 64K 1 M 4M 8M 1 6M 32M 64M I k 8k 64k 1 M 4M 8M 1 6M 32M 64M
Size of me (byte) Size of me (byte)

(a) read overhead (b) write overhead

Fig. 8. Implementation overhead of Oasis over the Intel OSD reference implementation

TABLE V
COMMANDS OVERHE AD FOR MANAGING FUNCTION OBJECT

Number Management Description
1 Create a 1 KB function object
2 Associate a function object
3 retrieve a 1 KB association information
4 List 5 12bytes function objects
5 Delete a 1 KB function object

storage system in Database Selection and Edge Detection
applications, while Blowfish Decryption doesn't achieve dra
matic performance improvement as it doesn't filter data on
the OSD-side. The data also shows that, though Java-powered
code makes it possible for the application function to execute
in a cross-platform environment, it may result in a system
performance bottleneck with I/O-intensive applications, while
for applications that do not heavily rely on the I/O operations,
implementing the function object with both the Java and C
programming languages will achieve comparable performance.
We also evaluated the overhead of Oasis and demonstrated
that, compared to the Intel OSD reference implementation,
Oasis brings only a small implementation overhead, as little as

1.2% to 5.9% for read and 0.6% to 9.9% for write. Moreover,
Oasis provides an effective and time-saving way to manage
function objects.

In future work, we would like to employ sandbox technol
ogy [24] to enable the concurrent execution of multi-function
objects. We would also like to evaluate the cases when host or
OSDs are heavily loaded. In this case, we would like to employ

the dynamic partition approach [18] to efficiently allocate
computation workload between host and OSDs according to

their processing capability.

ACKNOWLEDGMENTS

We would like to thank DJ Capelis, Ian Adams and anony
mous reviewers for their valuable comments on this paper.
We also thank Hong Jiang, Lei Tian, Yanli Yuan, Quanli
Gui, Chengtao Lu, Yang Hu, Shuibing He, Wenhua Zhang
and Tian Zan for their help in writing this paper. This work
was supported in part by the National Basic Research 973
Program of China under Grant No. 2011CB302301, 863
project 2009AAOIA402, NSFC No. 61025008, 60933002,

Object Commands Completion Time (ms)
CREATE AND WRITE 13.6

SET ATrRIBUTES 2.8
GET ATrRIBUTES 12.1

LIST 4.5
REMOVE 7.8

60873028, Changjiang innovative group of Education of China
No. IRT0725. This work was also supported in part by the
National Science Foundation under award llP-0934401. We
also thank the sponsors of the SSRC and CRlS, including the
National Science Foundation, Los Almos National Laboratory,
LSI, IBM Research, NetApp, Samsung Information Systems
America, Seagate Technology, Northrop Grumman, Symantec,
Hitachi, CITRlS, the Department of Energy Office of Science,
the NASA Ames Research Center and Xyratex.

REFERENCES

[1] M. Mesnier, G. R. Ganger, E. Riedel. Object-based Storage. IEEE
Communications Magazine, Vol. 41, No. 8, pp. 84-91,2003.

[2] A. Acharya, M. Auysal, and J. Saltz. Active disks: Programming model,
algorithms and evaluation. In Proc. of 8th international conference
on Architectural support for programming languages and operating
systems(ASPLOS), 1998.

[3] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large
scale data mining and multimedia. In Proc. of the 24th International
Conference on Very Large Data Bases(VLDB), 1998.

[4] X. Ma, A.L. N. Reddy. MVSS: an active storage architecture. IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, Issue 10, pp.
993 - 1005,2003.

[5] J. Piernas, J. Nieplocha, E. J. Felix. Evaluation of Active Storage
Strategies for the Lustre Parallel File System. In Proc. of SC '07, Nov.
2007.

[6] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, B. Zhou. Scalable Performance of the Panasas Parallel File
System. In Proc. of FAST '08,2008.

[7] Lustre. http://www.lustre.org.
[8] L. Qin, D. Feng. Active Storage Framework for Object-based Storage

Device. In Proc. of the 20th International Conference on Advanced
Information Networking and Applications, Apr. 2006.

[9] T. M. John, A. T. Ramani, J. A. Chandy. Active storage using object
based devices. In Proc. of the second International Workshop on High
Performance I/O Systems and Data Intensive Computing,2008.

[10] SCSI Object-Based Storage Device Commands -2 (OSD-2). Project
TI0/1729-D, Revision 5. TlO Technical Committee, INCITS, Jan. 2009.

[1 1] Intel Corporation. Intel iSCSI Reference Implementation.
http://sourceforge.net/projects/intel-iscsi

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

[12] Z. Niu, K. Zhou, D. Feng, H. Jiang, F. Wang, H. Chai, W. Xiao, C.
Li. Implementing and Evaluating Security Controls for an Object-Based
Storage System. In Proc. of the 24th IEEE Conference on Mass Storage
Systems and Technologies,2oo7.

[13] Y. Lu, D. H. c. Du, T. Ruwart. QoS Provisioning Framework for an
OSD-based Storage System. In Proc. of the 22nd IEEW13th NASA
Goddard Conference on Mass Storage Systems and Technologies,2oo5.

[14] http://www.pages.drexel.edulweg22/edge.html.
[15] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient

Software-Based Fault Isolation. In Proc. of the 14th ACM Symposium
on Operating System Principles,Dec. 1993.

[16] D. J. Dewitt and P. Hawthorn. A Performance Evaluation of Database
Machine Architectures. In Proc. of the 7th International conference on
VLDB,Sep. 19SI .

[17] K. Keeton, D. A. Patterson, and J . M. Hellerstein. The Case for
Intelligent Disks (IDISKs). SIGMOD Record, vol. 27, no. 3, pp. 42-
51 , Sep. 1995.

[IS] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G.
R. Ganger, E. Riedel, A. Ailamaki. Diamond: A Storage Architecture
for Early Discard in Interactive Search. In Proc. of the 3rd USENIX
Conference on File and Storage Technologies (FAST '04),2004.

[19] G. C. Necula, and P. Lee, Safe Kernel Extensions Without Run-Time
Checking. In Proc.of OSDI'96, Oct. 1996.

[20] http://www.schneier.comlcodelbfsh-koc.zip
[21] T. Clark. Designing Storage Area Networks: A Practical Reference for

Implementing Fibre Channel and IP SANS. Second Edition. Addison
Wesley, 2003.

[22] D. F. Nagle, G. R. Ganger, J. Butler, G. Goodson, and C. Sabol. Network
Support for Network-Attached Storage. In Proc. of Hot Interconnects
1999, Aug. 1999.

[23] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long. Ceph: A Scalable,
High-Performance Distributed File System. In Proc.of OSDI'06, 2006.

[24] A. Devulapalli, I. T. Murugandi, D. Xu, P. Wyckoff.
Design of an Intelligent Object-based Storage Device.
http://www.osc.edulresearchlnetwork_file/proje- ctslobjectlpaperslistor
tr.pdf

[25] C. W. Smullen, S. R. Tarapore, S. Gurumurthi, P. Ranganathan, M.
Uysal. Active Storage Revisited: The Case for Power and Performance
for Unstructured Data Processing Applications. Proc. of the 5th confer
ence on computing frontiers,Page(s):293-304,2ooS

[26] S. V. Anastasiadis, R. G. Wickremesinghe, J. S. Chase. Lerna: An
Active Storage Framework for Flexible Data Access and Management.
Proc. of the 14th IEEE International Symposium on High Performance
Distributed Computing, Page(s): 176-IS7,2oo5

[27] Y. Zhang, D. Feng. An Active Storage System for High Performance
Computing. Proc. of the 22nd International Conference on Advanced
Information Networking and Applications, Page(s):644-651,2ooS

[2S] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, P.
Kumar, W. K. Liao, A. Choudhary. Enabling Active Storage on Parallel
110 Software Stacks. Proc. of the IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST),Page(s) :1-12,201O

[29] J. Dean and S. Ghernawat. Mapreduce: Simplified Data Processing on
Large Clusters. Proc. of the USENIX Symposium on Operating System
Design and Implementation, pages 137-150, 2004

[30] M. Zahariz, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving MapReduce Performance in Heterogeneous Environments.
Proc. of the USENIX Symposium on Operating System Design and
Implementation, pages 29-42, 2OOS.

[3 1] M. Sivathanu, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Evolv
ing RPC for Active Storage. In Proc. of 12th international conference
on Architectural support for programming languages and operating
systems(ASPLOS), 2002.

[32] R. Wickremesinghe, J. S. Chase, J. S. Vitter. Distributed Computing with
Load-Managed Active Storage. In Proc. of the 11th IEEE International
Symposium on High Performance Distributed Computing(HPDC), 2002.

[33] E. J. Felix, K. Fox, K. Regimbal and J. Nieplocha. Active storage
processing in a parallel file system. In Proc. of the 6th LCI International
Conference on Linux Clusters: The HPC Revolution, April 2006.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on November 22,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

