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Understanding and Extending Incremental
Determinization for 2QBF

Markus N. Rabe1, Leander Tentrup2, Cameron Rasmussen1, and
Sanjit A. Seshia1

1University of California, Berkeley
2Saarland University

Abstract. Incremental determinization is a recently proposed algorithm
for solving quantified Boolean formulas with one quantifier alternation.
In this paper, we formalize incremental determinization as a set of in-
ference rules to help understand the design space of similar algorithms.
We then present additional inference rules that extend incremental de-
terminization in two ways. The first extension integrates the popular
CEGAR principle and the second extension allows us to analyze differ-
ent cases in isolation. The experimental evaluation demonstrates that
the extensions significantly improve the performance.

1 Introduction

Solving quantified Boolean formulas (QBFs) is one of the core challenges in
automated reasoning and is particularly important for applications in verification
and synthesis. For example, program synthesis with syntax guidance [1, 2] and
the synthesis of reactive controllers from LTL specifications has been encoded
in QBF [3,4]. Many of these problems require only formulas with one quantifier
alternation (2QBF), which are the focus of this paper.

Algorithms for QBF and program synthesis largely rely on the counterexam-
ple-guided inductive synthesis principle (CEGIS) [5], originating in abstraction
refinement (CEGAR) [6, 7]. For example, for program synthesis, CEGIS-style
algorithms alternate between generating candidate programs and checking them
for counter-examples, which allows us to lift arbitrary verification approaches
to synthesis algorithms. Unfortunately, this approach often degenerates into a
plain guess-and-check loop when counter-examples cannot be generalized effec-
tively. This carries over to the simpler setting of 2QBF. For example, even for a
simple formula such as ∀x.∃y. x = y, where x and y are 32-bit numbers, most
QBF algorithms simply enumerate all 232 pairs of assignments. In fact, even the
modern QBF solvers diverge on this formula when preprocessing is deactivated.

Recently, Incremental Determinization (ID) has been suggested to overcome
this problem [8]. ID represents a departure from the CEGIS approach in that it
is structured around identifying which variables have unique Skolem functions.
(To prove the truth of a 2QBF ∀x.∃y. ϕ we have to find Skolem functions f
mapping x to y such that ϕ[f/y] is valid.) After assigning Skolem functions to



a few of the existential variables, the propagation procedure determines Skolem
functions for other variables that are uniquely implied by that assignment. When
the assignment of Skolem functions turns out to be incorrect, ID analyzes the
conflict, derives a conflict clause, and backtracks some of the assignements. In
other words, ID lifts CDCL to the space of Skolem functions.

ID can solve the simple example given above and shows good performance
on various application benchmarks. Yet, the QBF competitions have shown that
the relative performance of ID and CEGIS still varies a lot between bench-
marks [9]. A third family of QBF solvers, based on the expansion of universal
variables [10–12], shows yet again different performance characteristics and out-
performs both ID and CEGIS on some (few) benchmarks. This variety of perfor-
mance characteristics of different approaches indicates that current QBF solvers
could be significantly improved by integrating the different reasoning principles.

In this paper, we first formalize and generalize ID [8] (Section 3). This helps us
to disentangle the working principles of the algorithm from implementation-level
design choices. Thereby our analysis of ID enables a systematic and principled
search for better algorithms for quantified reasoning. To demonstrate the value
and flexibility of the formalization, we present two extensions of ID that inte-
grate CEGIS-style inductive reasoning (Section 4) and expansion (Section 5). In
the experimental evaluation we demonstrate that both extensions significantly
improve the performance compared to plain ID (Section 6).

Related work. This work is written in the tradition of works such as the Model
Evolution Calculus [13], AbstractDPLL [14], MCSAT [15], and recent calculi for
QBF [16], which present search algorithms as inference rules to enable the study
and extension of these algorithms. ID and the inference rules presented in this
paper can be seen as an instantiation of the more general frameworks, such as
MCSAT [15] or Abstract Conflict Driven Learning [17].

Like ID, quantified conflict-driven clause learning (QCDCL) lifts CDCL to
QBF [18, 19]. The approaches differ in that QCDCL does not reason about
functions, but only about values of variables. Fazekas et al. have formalized
QCDCL as inference rules [16].

2QBF solvers based on CEGAR/CEGIS search for universal assignments
and matching existential assignments using two SAT solvers [5,20,21]. There are
several generalizations of this approach to QBF with more than one quantifier
alternation [22–26].

2 Preliminaries

Quantified Boolean formulas over a finite set of variables x ∈ X with domain
B = {0,1} are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ

We consider all other logical operations, including implication, XOR, and equal-
ity as syntactic sugar with the usual definitions. We abbreviate multiple quan-
tifications Qx1.Qx2. . . . Qxn.ϕ using the same quantifier Q ∈ {∀,∃} by the quan-
tification over the set of variables X = {x1, . . . , xn}, denoted as QX.ϕ.
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An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. Given a propositional formula ϕ over
variables X and an assignment x′ to X ′ ⊆ X, we define ϕ(x′) to be the formula
obtained by replacing the variables X ′ by their truth value in x′. By ϕ(x′,x′′)
we denote the replacement by multiple assignments for disjoint sets X ′, X ′′ ⊆ X.

A quantifier Qx.ϕ for Q ∈ {∃,∀} binds the variable x in its subformula
ϕ and we assume w.l.o.g. that every variable is bound at most once in any
formula. A closed QBF is a formula in which all variables are bound. We define
the dependency set of an existentially quantified variable y in a formula ϕ as the
set dep(y) of universally quantified variables x such that ϕ’s subformula ∃y. ψ is
a subformula of ϕ’s subformula ∀x.ψ′. A Skolem function fy maps assignments
to dep(y) to a truth value. We define the truth of a QBF ϕ as the existence of
Skolem functions fY = {fy1

, . . . , fyn
} for the existentially quantified variables

Y = {y1, . . . , yn}, such that ϕ(x, fY (x)) holds for every x, where fY (x) is the
assignment to Y that the Skolem functions fY provide for x.

A formula is in prenex normal form, if the formula is closed and starts with
a sequence of quantifiers followed by a propositional subformula. A formula ϕ is
in the kQBF fragment for k ∈ N+ if it is closed, in prenex normal form, and has
exactly k − 1 alternations between ∃ and ∀ quantifiers.

A literal l is either a variable x ∈ X, or its negation ¬x. Given a set of
literals {l1, . . . , ln}, their disjunction (l1 ∨ . . . ∨ ln) is called a clause and their
conjunction (l1 ∧ . . . ∧ ln) is called a cube. We use l to denote the literal that is
the logical negation of l. We denote the variable of a literal by var(l) and lift
the notion to clauses var(l1 ∨ · · · ∨ ln) = {var(l1), . . . , var(ln)}.

A propositional formula is in conjunctive normal form (CNF), if it is a con-
junction of clauses. A prenex QBF is in prenex conjunctive normal form (PCNF)
if its propositional subformula is in CNF. Every QBF ϕ can be transformed into
an equivalent PCNF with size O(|ϕ|) [27].

Resolution is a well-known proof rule that allows us to merge two clauses as
follows. Given two clauses C1 ∨ v and C2 ∨¬v, we call C1⊗v C2 = C1 ∨C2 their
resolvent with pivot v. The resolution rule states that C1 ∨ v and C2 ∨¬v imply
their resolvent. Resolution is refutationally complete for propositional Boolean
formulas, i.e. for every propositional Boolean formula that is equivalent to false
we can derive the empty clause.

For quantified Boolean formulas, however, we need additional proof rules.
The two most prominent ways to make resolution complete for QBF are to add
either universal reduction or universal expansion, leading to the proof systems
Q-resolution [28] and ∀Exp-Res [10,29], respectively.

Universal expansion eliminates a single universal variable by creating two copies
of the subformulas of its quantifier. Let Q1.∀x.Q2. ϕ be a QBF in PCNF, where
Q1 and Q2 each are a sequence of quantifiers, and let Q2 quantify over variables
X. Universal expansion yields the equivalent formula Q1.Q2.Q

′
2. ϕ[1/x,X ′/X]∧

ϕ[0/x], where Q′
2 is a copy of Q2 but quantifying over a fresh set of variables X ′

instead of X. The term ϕ[1/x, X ′/X] denotes the ϕ where x is replaced by 1
and the variables X are replaced by their counterparts in X ′.
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Universal reduction allows us to drop universal variables from clauses when none
of the existential variables in that clause may depend on them. Let C a clause
of a QBF and let l be a literal of a universally quantified variable in C. Let us
further assume that l does not occur in C. If all existential variables v in C we
have var(l) /∈ dep(v), universal reduction allows us to remove l from C. The
resulting formula is equivalent to the original formula.

Stack. For convenience, we use a stack data structure to describe the algorithm.
Formally, a stack is a finite sequence. Given a stack S, we use S(i) to denote
the i-th element of the stack, starting with index 0, and we use S.S′ to denote
concatenation. We use S[0, i] to denote the prefix up to element i of S. All stacks
we consider are stacks of sets. In a slight abuse of notation, we also use stacks as
the union of their elements when it is clear from the context. We also introduce
an operation specific to stacks of sets S: We define S.add(i, x) to be the stack
that results from extending the set on level i by element x.

2.1 Unique Skolem Functions

Incremental determinization builds on the notion of unique Skolem functions.
Let ∀X.∃Y. ϕ be a 2QBF in PCNF and let χ be a formula over X characterizing
the domain of the Skolem functions we are currently interested in. We say that a
variable v ∈ Y has a unique Skolem function for domain χ, if for each assignment
x with χ(x) there is a unique assignment v to v such that ϕ(x,v) is satisfiable.
In particular, a unique Skolem function is a Skolem function:

Lemma 1. If all existential variables have a unique Skolem function for the full
domain χ = 1, the formula is true.

The semantic characterization of unique Skolem functions above does not
help us with the computation of Skolem functions directly. We now introduce a
local approximation of unique Skolem functions and show how it can be used as
a propagation procedure.

We consider a set of variables D ⊆ X ∪ Y with D ⊇ X and focus on the
subset ϕ|D of clauses that only contain variables in D. We further assume that
the existential variables in D already have unique Skolem functions for χ in the
formula ϕ|D. We now define how to extend D by an existential variable v /∈ D.
To define a Skolem function for v we only consider the clauses with unique
consequence v, denoted Uv, that contain a literal of v and otherwise only literals
of variables in D. (Note that ϕ|D ∪ Uv = ϕ|D∪{v}). We define that variable v
has a unique Skolem function relative to D for χ, if for all assignments to D
satisfying χ and ϕ there is a unique assignment to v satisfying Uv.

In order to determine unique Skolem functions relative to a set D in practice,
we split the definition into the two statements deterministic and unconflicted.
Each statement can be checked by a SAT solver and together they imply that
variable v has a unique Skolem function relative to D.

Given a clause C with unique consequence v, let us call ¬(C \ {v,¬v}) the
antecedent of C. Further, let Al =

∨
C∈Uv,l∈C ¬(C \ {v,¬v}) be the disjunction
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of antecedents for the unique consequences containing the literal l of v. It is clear
that whenever Av is satisfied, v needs to be true, and whenever A¬v is satisfied,
v need to be false. We define:

deterministic(v, ϕ, χ,D) := ∀D. ϕ|D ∧ χ ⇒ Av ∨ A¬v

unconflicted(v, ϕ, χ,D) := ∀D. ϕ|D ∧ χ ⇒ ¬( Av ∧ A¬v )

deterministic states that v needs to be assigned either true or false for every
assignment to D in the domain χ that is consistent with the existing Skolem
function definitions ϕ|D. Accordingly, unconflicted states that v does not have to
be true and false at the same time (which would indicate a conflict) for any such
assignment. Unique Skolem functions relative to a set D approximate unique
Skolem functions as follows:

Lemma 2. Let the existential variables in D have unique Skolem functions for
domain χ and let v ∈ Y have a unique Skolem function relative to D for do-
main χ. Then v has a unique Skolem function for domain χ.

3 Inference Rules for Incremental Determinization

In this section, we develop a nondeterministic algorithm that formalizes and
generalizes ID. We describe the algorithm in terms of inference rules that specify
how the state of the algorithm can be developed. The state of the algorithm
consists of the following elements:

– The solver status S ∈ {Ready,Conflict(L,x),SAT,UNSAT}. The conflict sta-
tus has two parameters: a clause L that is used to compute the learnt clause
and the assignment x to the universals witnessing the conflict.

– A stack C of sets of clauses. C(0) contains the original and the learnt clauses.
C(i) for i > 0 contain temporary clauses introduced by decisions.

– A stackD of sets of variables. The union of all levels in the stack represent the
set of variables that currently have unique Skolem functions and the clauses
in C|D represent these Skolem functions. D(0) contains the universals and
the existentials whose Skolem functions do not depend on decisions.

– A formula χ over D(0) characterizing the set of assignments to the universals
for which we still need to find a Skolem function.

– A formula α over variables D(0) representing a temporary restriction on the
domain of the Skolem functions.

We assume that we are given a 2QBF in PCNF ∀X.∃Y. ϕ and that all clauses
in ϕ contain an existential variable. (If ϕ contains a non-tautological clause
without existential variables, the formula is trivially false by universal reduction.)
We define (Ready, ϕ,X,1,1) to be the initial state of the algorithm. That is, the
clause stack C initially has height 1 and contains the clauses of the formula ϕ.
We initialize D as the stack of height 1 containing the universals.

Before we dive into the inference rules, we want to point out that some
of the rules in this calculus may not be computable in polynomial time. The
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Propagate

(Ready, C,D, χ, α) v /∈ D
deterministic(v, C, χ ∧ α,D) unconflicted(v, C, χ ∧ α,D)

(Ready, C,D.add(|D| − 1, v), χ, α)

Decide
(Ready, C,D, χ, α) v /∈ D all c ∈ δ have unique consequence v

(Ready, C.δ,D.∅, χ, α)

Sat
(Ready, C,D, χ,1) D = X ∪ Y

(SAT, C,D, χ,1)

Fig. 1. Inference rules needed to prove true QBF

judgements deterministic and unconflicted require us to solve a SAT problem and
are, in general, NP-complete. This is still easier than the 2QBF problem itself
(unless NP includes ΠP

2 ) and in practice they can be discharged quickly by SAT
solvers.

3.1 True QBF

We continue with describing the basic version of ID, consisting of the rules in
Fig. 1 and Fig. 2, and first focus on the rules in Fig. 1, which suffice to prove
true 2QBFs. Propagate allows us to add a variable to D, if it has a unique
Skolem function relative to D. The judgements deterministic and unconflicted
involve the current set of clauses C (i.e. the union of all sets of clauses in the
sequence C). These checks are restricted to the domain χ∧α. Both χ and α are
true throughout this section; we discuss their use in Section 4 and Section 5.

Invariant 1. All existential variables in D have a unique Skolem function for
the domain χ ∧ α in the formula ∀X.∃Y. C|D, where C|D are the clauses in C
that contain only variables in D.

If Propagate identifies all variables to have unique Skolem functions relative
to the growing set D, we know that they also have unique Skolem functions
(Lemma 2). We can then apply Sat to reach the SAT state, representing that
the formula has been proven true (Lemma 1).

Lemma 3. ID cannot reach the SAT state for false QBF.

Proof. Let us assume we reached the SAT state for a false 2QBF and prove the
statement by way of contradiction. The SAT state can only be reached by the
rule Sat and requires D = X ∪ Y . By Invariant 1 all variables have a Skolem
function in ∀X.∃Y. C. Since C includes ϕ, this Skolem function does not violate
any clause in ϕ, which means it is indeed a proof. ut
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Conflict
(Ready, C,D, χ, α) x refutes unconflicted(v, C, χ ∧ α,D)

(Conflict({v,¬v},x), C,D, χ, α)

Analyze
(Conflict(L,x), C,D, χ, α) c ∈ C(0) l ∈ L l ∈ c

(Conflict(L⊗var(l) c,x), C,D, χ, α)

Learn
(Conflict(L,x), C,D, χ, α) var(L) 6⊆ D

(Ready, C.add(0, L), D, χ, α)

Unsat
(Conflict(L,x), C,D, χ, α) var(L) ⊆ D(0) x 6|= L

(UNSAT, C,D, χ, α)

Backtrack
(S,C,D, χ, α) 0 < dlvl ≤ |C|

(S,C[0, dlvl ], D[0, dlvl ], χ, α)

Fig. 2. Additional inference rules needed to disprove false QBF

When Propagate is unable to determine the existence of a unique Skolem
function (i.e. for variables where the judgement deterministic does not hold) we
can use the rule Decide to introduce additional clauses such that deterministic
holds and propagation can continue. Note that additional clauses make it easier
to satisfy deterministic and adding the clause v (i.e. a unit clause) even ensures
that deterministic holds for v.

Assuming we consider a true 2QBF, we can pick a Skolem function fy for each
existential variable y and encode it using Decide. We can simply consider the
truth table of fy in terms of the universal variables and define δ to be the set of
clauses {¬x∨v | fy(x)}∪{¬x∨¬v | ¬fy(x)}. (Here we interpret the assignment
x as a conjunction of literals.) These clauses have unique consequence v and they
guarantee that v is deterministic. Further, they guarantee that v is unconflicted,
as otherwise fy would not be a Skolem function, so we can apply Propagate
to add v to D. Repeating this process for every variable let us reach the point
where Y ⊆ D and we can apply Sat to reach the SAT state.

Lemma 4. ID can reach the SAT state for true QBF.

Note that proving the truth of a QBF in this way requires guessing correct
Skolem functions for all existentials. In Subsection 3.4 we discuss how termina-
tion is guaranteed with a simpler type of decisions.

3.2 False QBF

To disprove false 2QBFs, i.e. formulas that do not have a Skolem function, we
need the rules in Fig. 2 in addition to Propagate and Decide from Fig. 1.
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The conflict state can only be reached via the rule Conflict, which requires
that a variable v is conflicted, i.e. unconflicted fails. The Conflict rule stores
the assignment x to D that proves the conflict and it creates the nucleus of
the learnt clause {v,¬v}. Via Analyze we can then resolve that nucleus with
clauses in C(0), which consists of the original clauses and the clauses learnt so
far. We are allowed to add the learnt clause back to C(0) by applying Learn.

Invariant 2. C(0) is equivalent to ϕ.

Note that C(0) and ϕ are propositional formulas over X ∪ Y . Their equiv-
alence means that they have the same set of satisfying assignments. We prove
Invariant 2 together with the next invariant.

Invariant 3. Clause L in conflict state Conflict(L,x) is implied by ϕ.

Proof. C(0) contains ϕ initially and is only ever changed by adding clauses
through the Learn rule, so C(0)⇒ ϕ holds throughout the computation.

We prove the other direction of Invariant 2 and Invariant 3 by mutual induc-
tion. Initially, C(0) consists exactly of the clauses ϕ, satisfying Invariant 2. The
nucleus of the learnt clause v∨¬v is trivially true, so it is implied by any formula,
which gives us the base case of Invariant 3. Analyze is the only rule modifying
L, and hence soundness of resolution together with Invariant 2 already gives us
the induction step for Invariant 3 [30]. Since Learn is the only rule changing
C(0), Invariant 3 implies the induction step of Invariant 2. ut

When adding the learnt clause to C(0) we have to make sure that Invariant 1
is preserved. Learn hence requires that we have backtracked far enough with
Backtrack, such that at least one of the variables in L is not in D anymore.
In this way, L may become part of future Skolem function definitions, but will
first have to be checked for causing conflicts by Propagate.

If all variables in L are in D(0) and the assignment x from the conflict violates
L, we can conclude the formula to be false using Unsat. The soundness of this
step follows from the fact that x includes an assignment satisfying C(0)|D(0) (i.e.
the clauses defining the Skolem functions for D(0)), Invariant 1 and Invariant 3.

Lemma 5. ID cannot reach the UNSAT state for true QBF.

We will now show that we can disprove any false QBF. The main difficulty
in this proof is to show that from any Ready state we can learn a new clause, i.e.
a clause that is semantically different to any clause in C(0), and then return to
the Ready state. Since there are only finitely many semantically different clauses
over variables X ∪Y , and we cannot terminate in any other way (Lemma 5), we
eventually have to find a clause L with var(L) ⊆ D(0), which enables us to go
to the UNSAT state.

From the Ready state, we can always add more variables to D with Decide
and Propagate, until we reach a conflict. (Otherwise we would reach a state
where D = Y we were able to prove SAT, contradicting Lemma 5.) We only enter
a Conflict state for a variable v, if there are two clauses (c1∨v) and (c2∨¬v) with
unique consequence v such that x |= ¬c1 ∧ ¬c2 (see definition of unconflicted).
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In order to apply Analyze, we need to make sure that (c1∨v) and (c2∨¬v)
are in C(0). We can guarantee this by restricting Decide as follows: We say
a decision for a variable v′ is consistent with the unique consequences in state
(Ready, C,D, χ, α), if unconflicted(v, C.δ, χ∧α,D). We can construct such a deci-
sion easily by applying Decide only on variables that are not conflicted already
(i.e. unconflicted(v, C, χ∧α,D)) and by defining δ to be the CNF representation
of ¬Av ⇒ ¬v (i.e. require v to be false, unless a unique consequence containing
literal v applies). It is clear that for this δ no new conflict for v is introduced
and hence unconflicted(v, C.δ, χ ∧ α,D).

Assuming that all decisions are taken consistent with the unique conse-
quences, we know that when we encounter a conflict for variable v, we did not
apply Decide for v, and hence the clauses (c1∨v) and (c2∨¬v) causing the con-
flict must be in C(0). We can hence apply Analyze twice with clauses (c1 ∨ v)
and (c2 ∨ ¬v) and obtain the learnt clause L = c1 ∨ c2. Since x |= ¬c1 ∧ ¬c2,
the learnt clause is violated by x. As x refutes unconflicted(v, C, χ ∧ α,D) by
construction, it must satisfy the clauses C|D and learnt clause L hence cannot
be in C|D. Further, L only contains variables that are in D, as (c1 ∨ v) and
(c2 ∨ ¬v) were clauses with unique consequence v. So, L would have been in
C|D, if it existed in C already, and hence L is new. We can either add the new
clause to C(0) after backtracking, or we can conclude UNSAT.

Lemma 6. ID can reach the UNSAT state for false QBF.

The clause learning process considered here only applies one actual resolution
step per conflict (L1 ⊗v L2). In practice, we probably want to apply multiple
resolution steps before applying Learn. It is possible to use the conflicting
assignment x to (implicitly) construct an implication graph and mimic the clause
learning of SAT solvers [8, 31].

3.3 Example

We now discuss the application of the inference rules along the following formula:

∀x1, x2. ∃y1, . . . , y4. (x1 ∨ ¬y1) ∧ (x2 ∨ ¬y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) ∧ (1)
(¬x2 ∨ y2) ∧ (¬y1 ∨ y2) ∧ (x2 ∨ y1 ∨ ¬y2) ∧ (2)
(y1 ∨ ¬y3) ∧ (y2 ∨ ¬y3) ∧ (3)
(¬y1 ∨ y4) ∧ (¬y3 ∨ ¬y4) (4)

Initially, the state of the algorithm is the tuple (Ready, ϕ,X,1,1). The rule
Propagate can be applied to y1 in the initial state, as we are in the Ready
state, y1 /∈ X, and because y1 satisfies the checks deterministic and unconflicted:
The antecedents of y1 are Ay1 = x1 ∧ x2 and A¬y1 = ¬x1 ∨ ¬x2 (see clauses
in line (1)). It is easy to check that both Ay1

∨ A¬y1
nor ¬(Ay1

∧ A¬y1
) hold

for all assignments to x1 and x2. The state resulting from the application of
Propagate is (Ready, ϕ,X ∪{y1},1,1). (Alternatively, we could apply Decide
in the initial state, but deriving unique Skolem functions is generally preferable.)
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While Propagate was not applicable to y2 before, it now is, as the increased
set D made y2 deterministic (see clauses in line (2)). We can thus derive the state
(Ready, ϕ,X ∪ {y1, y2},1,1).

Now, we ran out of variables to propagate and the only applicable rule is
Decide. We arbitrarily choose y3 as our decision variable and arbitrarily intro-
duce a single clause δ = {(¬y1∨¬y2∨y3)}, arriving in the state (Ready, ϕ.δ,X ∪
{y1, y2},1,1). In this step we can immediately apply Propagate (consider δ
and the clauses in line (3)) to add the decision variable to the set D and arrive
at (Ready, ϕ.δ,X ∪ {y1, y2, y3},1,1).

We can now apply Backtrack to undo the last decision, but this would
not be productive. Instead identify y4 to be conflicted and we enter a conflict
state with Conflict: (Conflict({y4,¬y4}, x1∧x2), ϕ.δ,X∪{y1, y2, y3},1,1). To
resolve the conflict we apply Analyze twice - once with each of the clauses in line
(4) - bringing us into state (Conflict({¬y1,¬y3}, x1∧x2), ϕ.δ,X∪{y1, y2, y3},1,1).
We can backtrack one level such that D = X ∪ {y1, y2} and then apply Learn
to enter state (Ready, ϕ ∪ {(¬y1 ∨ ¬y3)}, X ∪ {y1, y2},1,1).

The rest is simple: we apply Propagate on y3 and take a decision for y4. As
no other variable can depend on y4 we can take an arbitrary decision for y4 that
makes y4 deterministic, as long as this does not make y4 conflicted. Finally, we
can propagate y4 and then apply SAT to conclude that we have found Skolem
functions for all existential variables.

3.4 Termination

So far, we have described sound and nondeterministic algorithms that allow us
to prove or disprove any 2QBF. We can easily turn the algorithm in the proof
of Lemma 6 into a deterministic algorithm that terminates for both true and
false QBF by introducing an arbitrary ordering of variables and assignments:
Whenever there is nondeterminism in the application of one of the rules as
described in Lemma 6, pick the smallest variable for which one of the rules is
applicable. When multiple rules are applicable for that variable, pick them in
the order they appear in the figures. When the inference rule allows multiple
assignments, pick the smallest. In particular, this guarantees that the existential
variables are added to D in the arbitrarily picked order, as for any existential
not in D we can either apply Propagate, Decide, or Conflict.

Restricting Decide to decisions that are consistent with the unique con-
sequences may be unintuitive for true QBF, where we try to find a Skolem
function. However, whenever we make the 2QBF false by introducing clauses
with Decide, we will eventually go to a conflict state and learn a new clause.
Deriving the learnt clause for conflicted variable v from two clauses with unique
consequence v (as described for Lemma 6) means that we push the constraints
towards smaller variables in the variable ordering. The learnt clause will thus
improve the Skolem function for a smaller variable or cause another conflict for
a smaller variable. In the extreme case, we will eventually learn clauses that look
like function table entries, as used in Lemma 4, i.e. clauses containing exactly
one existential variable. At some point, even with our restriction for Decide, we
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SAT ∃Y. ϕ 2QBF ∀X. ∃Y. ϕ
State Partial assignment of values Partial assignment of functions
Propagation unit propagation unique Skolem function w.r.t. D
Decision unit clause clause with unique consequence
Conflict unit clauses y and ¬y ∃X that implies y and ¬y
Learning clause clause

Fig. 3. Concepts in ID and their counterparts in CDCL

cannot make a “wrong” decision: The cases for which a variable does not have
a clause with unique consequence are either irrelevant for the satisfaction of the
2QBF or our restricted decisions happen to make the right assignment.

In cases where no static ordering of variables is used - as it will be the case in
any practical approach - the termination for true QBF is less obvious but follows
the same argument: Given enough learnt clauses, the relationships between the
variables are dense enough such that even naive decisions suffice.

3.5 Pure literals

The original paper on ID introduces the notion of pure literals for QBF that
allows us to propagate a variable v even if it is not deterministic, if for a literal l
of v, all clauses c that l occurs in are either satisfied or l is the unique consequence
of c. The formalization presented in this section allows us to conclude that pure
literals are a special case of Decide: We can introduce clauses defining v to be
of polarity l whenever all clauses containing l are satisfied by another literal.

That is, we can precisely characterize the minimal set of cases in which v has
to be of polarity l and the decision is guaranteed to never introduce unnecessary
conflicts. The same definition cannot be made when l occurs in clauses where it
is not a unique consequence, as then the clause contains another variable that
is not deterministic yet.

3.6 Relation of ID and CDCL

There are some obvious similarities between ID and conflict-driven clause learn-
ing (CDCL) for SAT. Both algorithms modify their partial assignments by prop-
agation, decisions, clause learning, and backtracking. The main difference be-
tween the algorithms is that, while CDCL solvers maintain a partial assignment
of Boolean values to variables, ID maintains a partial assignment of functions to
variables (which is represented by the clauses C|D). We summarized our obser-
vations in Fig. 3.

4 Inductive Reasoning

The CEGIS approach to solving a 2QBF ∀X.∃Y. ϕ is to iterate over X as-
signments x and check if there is an assignment y such that ϕ(x,y) is valid.
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InductiveRefinement
(Conflict(L,x), C,D, χ, α) y |= ϕ(x|X)

(Conflict(L,x) or Ready, C,D, χ ∧ ¬ϕ(X,y), α)

Failed
(Conflict(L,x), C,D, χ, α) ϕ(x|X) is unsatisfiable

(UNSAT, C,D, χ, α)

Fig. 4. Inference rules adding inductive reasoning to ID

Upon every successful iteration we exclude all assignments to X for which y is
a matching assignment. If the space of X assignments is exhausted we conclude
the formula is true, and if we find an assignment to X for which there is no
matching Y assignment, the formula is false [21].

While this approach shows poor performance on some problems, as discussed
in the introduction, it is widely popular and has been successfully applied in
many cases. In this section we present a way how it can be integrated in ID
in an elegant way. The simplicity of the CEGIS approach carries over to our
extension of ID - we only need the two additional inference rules in Fig. 4.

We exploit the fact that ID already generates assignments x to X in its
conflict check. Whenever ID is in a conflict state, the rules in Fig. 4 allow us to
check if there is an assignment y to Y matching x. If there is such an assignment
y, we can use the soundness argument of CEGIS and exclude x and any other
assignment to X to which y is a solution. The component χ of the solver state
keeps track of domain (i.e. assignments to X) for which we still need to find a
Skolem function. InductiveRefinement removes ϕ(X,y) from χ, representing
that the constant function y is a Skolem function for the domain ϕ(X,y).

This gives rise to a new invariant, stating that ¬χ only includes assignments
to X for which we know that there is a Y satisfying ϕ. With this invariant it is
clear that Lemma 3 also holds for arbitrary χ.

Invariant 4. ∀X.∃Y. ¬χ⇒ ϕ

Upon an InductiveRefinement step, we can choose to either continue in
the conflict state (and learn a clause), or in the Ready state. Either way, the
assignment x that provoked the previous conflicts is now excluded from the
domain and cannot provoke any more conflicts. Thereby, we may even be able
to propagate the variable for which we detected a conflict earlier.

It is easy to check that Propagate preserves Invariant 1 also if χ and α are
not 1. Invariant 2 and Invariant 3 are unaffected by the rules in this section.
To make sure that Lemma 5 is preserved as well, we thus only have to inspect
Failed, which is trivially sound.

A portfolio approach? In principle, we could generate assignments x indepen-
dently from the conflict check of ID. The result would be a portfolio approach
that simply executes ID and CEGIS in parallel and takes the result from whichever
method terminates first. The idea behind our extension is that conflict assign-
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Assume
(Ready, C,D, χ, α) var(l) ∈ D(0)

(Ready, C,D, χ, α ∧ l)

Close
(Ready, C,D, χ, α) D = X ∪ Y

(Ready, C(0), D(0), χ ∧ ¬α,1)

Fig. 5. Inference rules adding case distinctions to ID

ments are more selective and may thus increase the probability that we hit a
refuting assignment to X. Also ID may profit from excluding groups of assign-
ments for which frequently cause conflicts. We revisit this question in Section 6.

Example. We extend the example from Subsection 3.3 from the point where we
entered the conflict state (Conflict({y4,¬y4}, x1 ∧ x2), ϕ.δ,X ∪ {y1, y2, y3},1,1).
We can apply InductiveRefinement, checking that there is indeed a solution
to ϕ for the assignment x1, x2 to the universals (e.g. y1, y2,¬y3, y4). We have the
choice to either additionally do standard conflict analysis and learn a clause, or to
go back to a Ready state - and effectively ignore the conflict. Let us try the latter,
and go to state (Ready, ϕ.δ,X∪{y1, y2, y3},¬x1∨¬x2,1). Now, deterministic and
unconflicted can never show the assignment x1, x2 again and, in fact, y4 will never
be conflicted again.

5 Expansion

Universal expansion (defined in Section 2) is another fundamental proof rule
that deals with universal variables. It has been used in early QBF solvers [10]
and has later been integrated in CEGAR-style QBF solvers [26,32].

One way to look at the expansion of a universal variable x is that it introduces
a case distinction over the possible values of x in the Skolem functions. However,
instead of creating a copy of the formula explicitly, which often caused a blowup
in required memory, we can reason about the two cases sequentially. The rules
in Fig. 5 extend ID by universal expansion in this spirit.

Using Assume we can, at any point, assume that a variable v in D(0), i.e.
a variable that has a unique Skolem function without any decisions, has a par-
ticular value. This is represented by extending α by the corresponding literal of
v, which restricts the domain of the Skolem function that we try to construct
for subsequent deterministic and unconflicted checks. Invariant 1 and Lemma 5
already accommodate the case that α is not 1.

When we reach a point where D contains all variables, we cannot apply Sat,
as that requires α to be true. In this case, Invariant 1 only guarantees us that the
function we constructed is correct on the domain χ ∧ α. We can hence restrict
the domain for which we still need to find a Skolem function and strengthen
χ by ¬α. In particular, Close maintains Invariant 4. When χ ends up being
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equivalent to 0, Invariant 4 guarantees that the original formula is true. (In this
case we can reach the SAT state easily, as we know that from now on every
application of Propagate must succeed. 1)

Note that Assume does not restrict us to assumptions on single variables.
Together with Decide and Propagate it is possible to introduce variables with
arbitrary definitions, add them to D(0), and then assume an outcome with the
rule Assume.

Example. Again, we consider the formula from Subsection 3.3. Instead of the
reasoning steps described in Subsection 3.3, we start using Assume with literal
x2. Whenever checking deterministic or unconflicted in the following, we will thus
restrict ourselves to universal assignments that set x2 to true. It is easy to check
that this allows us to propagate not only y1 and y2, but also y3. A decision (e.g.
δ′ = {(y4)}) for y4 allows us to also propagate y4 (this time without potential
for conflicts), arriving in state (Ready, ϕ.δ′, X ∪ {y1, y2, y3, y4},1, x2).

We can Close this case concluding that under the assumption x2 we have
found a Skolem function. We enter the state (Ready, ϕ,X,¬x2,1) which indicates
that in the future we only have to consider universal assignments with ¬x2. Also
for the case ¬x2, we cannot encounter conflicts for this formula. Expansion hence
allows us to prove this formula without any conflicts.

6 Experimental Evaluation

We extended the QBF solver CADET [8] by the extensions described in Sec-
tion 4 and Section 5. We use the CADET-IR and CADET-E to denote the
extensions of CADET by inductive reasoning (Section 4) and universal expan-
sion (Section 5), respectively. We also combined both extensions and refer to
this version as CADET-IR-E. The experiments in this section evaluate these ex-
tensions against the basic version of CADET and against other successful QBF
solvers of the recent years, in particular GhostQ [33], RAReQS [32], Qesto [23],
DepQBF [19] in version 6, and CAQE [24, 26]. For every solver except CADET
and GhostQ, we use Bloqqer [34] in version 031 as preprocessor. For our ex-
periments, we used a machine with a 3.6 GHz quad-core Intel Xeon processor
and 32 GB of memory. The timeout and memout were set to 600 seconds and
8 GB. We evaluated the solvers on the benchmark sets of the last competitive
evaluation of QBF solvers, QBFEval-2017 [9].

How does inductive reasoning affect the performance? In Fig. 6 we see that
CADET-IR clearly dominates plain CADET. It also dominates all solvers that
relied on clause-level CEGAR and Bloqqer (CAQE, Qesto, RAReQS).

Only GhostQ beats CADET-IR and solves 5 more formulas (of 384). A closer
look at the experimental data revealed that there are many formulas for which

1 Technically, we could replace Sat by a rule that allows us to enter the SAT state
whenever χ is 0, which arguably would be more elegant. But that would require us
to introduce the Close rule already for the basic ID inference system.
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Fig. 6. Cactus plot comparing solvers on the QBFEval-2017 2QBF benchmark.

CADET-IR and GhostQ show widely different runtimes hinting at potential for
future improvement.

GhostQ is based on the CEGAR principle, but reconstructs a circuit rep-
resentation from the clauses instead of operating on the clauses directly [33].
This makes GhostQ a representative of QBF solvers working with so called
“structured” formulas (i.e. not CNF). CADET, on the other hand, refrains from
identifying logic gates in CNF formulas and directly operates with the “unstruc-
tured” CNF representation. In the ongoing debate in the QBF community on the
best representation of formulas for solving quantified formulas, our experimental
findings can thus be interpreted as a tie between the two philosophies.

Is the inductive reasoning extension just a portfolio-approach? To settle this
question, we created a version of CADET-IR, called IR-only, that exclusively
applies inductive reasoning by generating assignments to the universals and
applying InductiveReasoning. This version of CADET does not learn any
clauses, but otherwise uses the same code as CADET-IR. On the QBFEval-2017
benchmark, IR-only and CADET together solved 235 problems within the time
limit, while CADET-IR solved 243 problems. That is, even though the com-
bined runtime of CADET and IR-only was twice the runtime of CADET-IR,
they solved fewer problems. CADET-IR also uniquely solved 22 problems. This
indicates that CADET-IR improves over the portfolio approach.

How does universal expansion affect the performance? CADET-E clearly dom-
inates plain CADET on QBFEval-2017, but compared to CADET-IR and some
of the other QBF solvers, CADET-E shows mediocre performance overall. How-
ever, for some subsets of formulas, such as the Hardware Fixpoint formulas shown
in Fig. 7, CADET-E dominated CADET, CADET-IR, and all other solvers. We
also combined the two extensions of CADET to obtain CADET-IR-E. While this
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Fig. 7. Cactus plot comparing solver performance on the Hardware Fixpoint formulas.
Some but not all of these formulas are part of QBFEval-2017. The formulas encode
diameter problems that are known to be hard for classical QBF search algorithms [35].

helped to improve the performance on the Hardware Fixpoint formulas even fur-
ther, it did not change the overall picture on QBFEval-2017.

7 Conclusion

Reasoning in quantified logics is one of the major challenges in computer-aided
verification. Incremental Determinization (ID) introduced a new algorithmic
principle for reasoning in 2QBF and delivered first promising results [8]. In this
work, we formalized and generalized ID to improve the understanding of the
algorithm and to enable future research on the topic. The presentation of the
algorithm as a set of inference rules has allowed us to disentangle the design
choices from the principles of the algorithm (Section 3). Additionally, we have
explored two extensions of ID that both significantly improve the performance:
The first one integrates the popular CEGAR-style algorithms and Incremental
Determinization (Section 4). The second extension integrates a different type of
reasoning termed universal expansion (Section 5).
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A How does CADET implement the inference rules?

Any implementation of ID has to resolve the nondeterministic choices offered by
the inference rules presented in the previous sections. In this section, we first
discuss how CADET resolved the major design choices for its implementation of
ID [37]. In the second part of this section we then discuss how we implemented
the extensions discussed in Section 4 and Section 5.

Propagation first. The first major design choice of CADET is to propagate
whenever possible. CADET starts solving formulas with checking all variables
for the potential to assign them a unique Skolem function through Propagate
and does so after every decision. To keep computational cost low, CADET only
checks deterministic for variables that do occur as the unique consequence of at
least one clause. Further, the check deterministic is approximated by dropping
ϕ|D to reduce the cost of the check. The check for conflicts is applied cautiously:
unconflicted is only tested for variables that pass the check deterministic. This
way, CADET may find some conflicts much later but saves many conflict checks.

Decision variables. Decision provides a huge degree of freedom. We have to
select a decision variable v and additionally we have to select a set of constraints
δ for v. CADET mimics SAT solvers and uses a VSIDS heuristic, which was pio-
neered by the solver Chaff and is still popular in the SAT community [38]. That
is, for every variable CADET maintains an activity value that gets increased by
1 whenever the variable is resolved in the Analyze rule. After every conflict,
the activity values of all variables get decreased by a small factor.

In contrast to SAT solvers, ID offers more than just two possible “values”

for the decision variable v. Any of the 22
|X|

Skolem functions for v may be a
valid choice at this point and selecting the “correct” function could be as hard
as solving the formula itself. Instead of constructing a “good” function, CADET
chooses to construct the most simple function that still guarantees progress. Given
a variable to take a decision for, CADET chooses a Boolean value b (true by
default) and defines v to be b for all cases in which none of the clauses with unique
consequence applies. Progress is guaranteed, as the clauses learnt for decisions of
this type are guaranteed to be new. The finite number of semantically different
clauses means that the method terminates eventually.

Clause learning. CADET again borrows from SAT solvers and analyzes con-
flicts along an implication graph as introduced in the seminal CDCL paper [31].
CADET stores the clauses with unique consequence for every successful Prop-
agate step and only uses these unique consequences as pivot elements for the
resolution in Analyze. Additionally, CADET restricts the resolution to clauses
whose antecedent is satisfied by the conflicting assignment and whose unique
consequence is on the same decision level as the conflict.

Restarts. Upon a conflict, it makes sense to backtrack the smallest number of
decision levels in order to maintain more of the Skolem functions that we have
derived already. However, in certain intervals, CADET chooses to backtrack to
decision level 0 instead, which resembles restarts in SAT solvers.
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Discussion and open questions. While it is understandable that the first imple-
mentation of ID sticks close to the design choices of SAT solvers, we believe that
there is potential for future improvement. After all, the relative runtimes of the
different inference steps of ID might substantially differ from those of CDCL.
For example, the propagation step in ID is an NP-hard operation - far costlier
than unit propagation. It may pay off to identify cheaper approximations that
reduce the time spent in propagation.

A.1 Implementation of inductive reasoning

The simplicity of CEGAR-based QBF solvers carries over to the integration of
inductive reasoning in ID. Upon every conflict, we apply InductiveRefine-
ment once and continue deriving a conflict clause as normal. For that we need
to maintain a SAT solver instance holding the clauses of the original 2QBF for-
mula. Using the incremental interface of modern SAT solvers, we assume the
assignment to the universal variables and ask the solver for an assignment to the
remaining (existential) variables. If the SAT solver returns such an assignment,
we apply standard generalization techniques to remove universal variables from
the refinement that do not contribute to satisfaction of any clause.

A.2 Implementation of universal expansion

The major question when implementing Assume is when to introduce assump-
tions and which assumptions to select. Introducing too many assumptions can
be quite costly, as we then end up constructing a Skolem function that is only
valid for a small portion of its domain. To limit the number of assumptions by
selecting exactly one literal after every restart.

After experimenting with various heuristics, we settled for a lookahead-style
variable selection [39, Chapter 5]. We believe that the potential cost of unneces-
sary assumptions justifies the computational cost of this heuristic. We determine
the number of propagations of constants and propagations of Skolem functions
following the assignment of the variable. To score a variable, we determine the
propagation counts for both polarities of the variable, c1 and c0, and compute
(c1c2+c1+c2+1)(a+1), where a is the variable’s activity. That is, the product of
propagation counts typically is the dominating factor, such that we mostly select
variables that have a widespread effect on the problem when assigned either way.
This approach has the additional advantage that we sometimes encounter incon-
sistent assumptions, meaning that we get can add some assumptions without the
risk of wasting effort.
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