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Significance

We present a comprehensive 
assessment of neuronal cell-type-
specific gene expression and 
alternative splicing changes in 
ASD cortex, directly comparing 
RNA-seq results from bulk tissue 
with isolated neurons. We 
observe strong signatures of cell 
stress and neural-immune/
inflammatory pathway activation 
present within ASD neurons—a 
signal that is typically attributed 
to astrocyte/microglial 
populations. Our findings also 
provide further evidence for the 
hypothesized imbalance of 
excitatory to inhibitory neuronal 
activity in the brains of 
individuals with ASD. Moreover, 
we find that the transcriptomic 
architecture of ASD interacts 
substantially with age, thus 
revealing windows of opportunity 
for treatments that target specific 
molecular pathology.
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NEUROSCIENCE

Neuron-specific transcriptomic signatures indicate 
neuroinflammation and altered neuronal activity in ASD 
temporal cortex
Pan Zhanga,b,c, Alicja Omanskad,e , Bradley P. Andere,f, Michael J. Gandalc,g,h,i,1,2 , Boryana Stamovae,f,1,2 , and Cynthia M. Schumannd,e,1,2

Edited by Huda Akil, University of Michigan-Ann Arbor, Ann Arbor, MI; received July 12, 2022; accepted December 28, 2022

Autism spectrum disorder (ASD) is a highly heterogeneous disorder, yet transcriptomic 
profiling of bulk brain tissue has identified substantial convergence among dysregu-
lated genes and pathways in ASD. However, this approach lacks cell-specific resolution. 
We performed comprehensive transcriptomic analyses on bulk tissue and laser-capture 
microdissected (LCM) neurons from 59 postmortem human brains (27 ASD and 32 
controls) in the superior temporal gyrus (STG) of individuals ranging from 2 to 73 years 
of age. In bulk tissue, synaptic signaling, heat shock protein-related pathways, and RNA 
splicing were significantly altered in ASD. There was age-dependent dysregulation of 
genes involved in gamma aminobutyric acid (GABA) (GAD1 and GAD2) and glutamate 
(SLC38A1) signaling pathways. In LCM neurons, AP-1-mediated neuroinflammation 
and insulin/IGF-1 signaling pathways were upregulated in ASD, while mitochondrial 
function, ribosome, and spliceosome components were downregulated. GABA synthesiz-
ing enzymes GAD1 and GAD2 were both downregulated in ASD neurons. Mechanistic 
modeling suggested a direct link between inflammation and ASD in neurons, and pri-
oritized inflammation-associated genes for future study. Alterations in small nucleolar 
RNAs (snoRNAs) associated with splicing events suggested interplay between snoRNA 
dysregulation and splicing disruption in neurons of individuals with ASD. Our findings 
supported the fundamental hypothesis of altered neuronal communication in ASD, 
demonstrated that inflammation was elevated at least in part in ASD neurons, and 
may reveal windows of opportunity for biotherapeutics to target the trajectory of gene 
expression and clinical manifestation of ASD throughout the human lifespan.

ASD | transcriptome | neuron-specific

Autism spectrum disorder (ASD) defines a heterogeneous set of complex neurodevelop-
mental disorders affecting 1 in 54 children in the USA according to current estimation 
(1, 2) and confers lifelong challenges. ASD is characterized by difficulties with social 
communication as well as a repetitive, restricted repertoire of behaviors and interests (3). 
Population, family, and twin studies all indicate a strong genetic component contributing 
to risk for ASDs (4, 5), with heritability estimates of ~70% (6). However, the genetic 
causes and pathophysiology of ASD are varied and often complex.

Despite this heterogeneity, transcriptomic analyses of postmortem human brain have 
elucidated substantial convergent molecular-level pathology associated with idiopathic 
and syndromic forms of ASD (7–13). Multiple studies have profiled the transcriptomes 
of postmortem brain regions from individuals diagnosed with ASD (7, 8, 11, 13), 
including the temporal cortex implicated due to its critical importance in speech and 
language function (7, 8, 11, 13). The most consistent findings include disruption of 
neuronal/synaptic activity and activation of innate immunity/glial markers (7, 8, 11). 
Alternative splicing and non-coding RNAs have also been shown to be dysregulated in 
ASD brains (8).

Most previous transcriptomic studies, however, profiled homogenate brain tissue and 
have therefore been unable to pinpoint the underlying specific cell types in which gene 
expression is altered. Single-nucleus RNA-sequencing (sn-RNAseq) datasets have started 
to be generate in postmortem ASD cortex (12, 13), identifying substantial changes in 
upper-layer excitatory neurons and microglia, consistent with observations from bulk 
tissue. As such sn-RNAseq datasets currently primarily profile the 3′ end of highly 
expressed genes within each cell, these data characterize neither lowly expressed coding 
and noncoding genes, nor splicing alterations that may contribute to altered neuronal 
function in ASD.

Here, we performed the systematic study using transcriptomic profiling to directly 
compare both bulk cortical tissue and laser capture microdissected (LCM) neurons from 
anatomically well-defined superior temporal gyrus (STG) samples from 59 subjects (27 
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with ASD and 32 controls) ranging from 2 to 73 years of age 
(Fig. 1 and Dataset S12). The STG modulates language processing 
and social perception, thereby playing a critical role in integrating 
a breadth of information to provide meaning to the surrounding 
world (14). Structural and functional imaging studies have long 
implicated STG in ASD (14, 15); however, molecular-level 

changes in neurons remain unknown. This study aimed to identify 
neuron-specific transcriptomic changes in ASD brain by identi-
fying differentially expressed genes, differential splicing (DS) 
events, age-related gene expression changes across the lifespan, 
and co-expression networks to reveal gene modules altered in 
ASD. We also applied mechanistic modeling approaches to 
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pinpoint pathways and genes directly linked to ASD in neurons. 
(Fig. 1).

Results

Global Gene Expression Changes in ASD STG. RNA sequencing 
was performed on bulk tissue STG of 59 human brains, 27 
from individuals with ASD and 32 from neurotypical controls, 
ranging from 2 to 73 years of age. Following quality control, we 

comprehensively characterized differential gene expression (DGE) 
and local splicing alterations in ASD. After adjusting for known 
covariates and correcting for multiple comparisons, we found 194 
differentially expressed genes between individuals with ASD and 
controls (FDR < 0.05). Of these, 143 were upregulated and 51 
were downregulated (Fig.  2A  and Dataset S1), with a median 
absolute fold change of 1.45 (range 1.11 to 4.04, Fig. 2A). We 
observed significant concordance between our DGE results and 
previous data of the same region from different samples (13) 
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(SI Appendix, Fig. S1, Spearman ρ = 0.37 for t statistics among 
all genes, P value < 10−16).

Functional and pathway enrichment analyses indicated an 
over-representation of heat-shock proteins (HSPs) and HSP-
related chaperones, which were upregulated in ASD subjects. This 
included HSP70 family members HSPA1A and HSPA1B; HSP40 
family members DNAJB1 and DNAJB4; small HSP20 family 
members HSPB1 and HSPB8; and HSP-binding chaperons BAG3 
and PTGES3 (Fig. 2 C and D). HSPs are involved in stress 
response, immune activation, and inflammation(17, 18), all of 
which were upregulated in ASD postmortem brain (7). 
Downregulated genes were mainly enriched in pathways related 
to synaptic function (Fig. 2D), consistent with previous findings 
(7). Notably, two important voltage-gated potassium channel- 
related genes KCNH3 and KCNIP1 were among the most down-
regulated (Fig. 2C), which may relate to disrupted neuronal excit-
ability hypothesized in ASD (19, 20).

As age-dependent expression alterations have been reported in 
ASD brain (21), we employed an analytical model accounting for 
age and the interaction between age and diagnosis. Fourteen genes 
showed age-dependent DGE between ASD and control (Dataset 
S2). Gene set enrichment analysis (GSEA) indicated that genes 
with significant diagnosis-by-age interaction were enriched in 
immune/inflammation pathways and synaptic-related pathways. 
(SI Appendix, Fig. S9).

Interestingly, genes involved in gamma aminobutyric acid (GABA) 
synthesis (GAD1 and GAD2) (22) were downregulated in ASD only 
during late adulthood (Fig. 2E). This may indicate an age-dependent 
dysregulation of GABA signaling in ASD neurons, or a decrease in 
the proportion of GABAergic neurons in ASD brains (23).

Given mounting evidence suggesting potential mechanistic 
overlap between neurodevelopmental and neurodegenerative dis-
orders, particularly with respect to genes involved in synapse and 
brain connectivity (24), we evaluated the overlap between our 
ASD findings with published results in Alzheimer’s disease (AD). 
Using results from Mount Sinai/JJ Peters VA Medical Center Brain 
Bank (MSBB) cohort (25), we demonstrated that the changes we 
detected in ASD were significantly overlapped with transcriptomic 
alterations observed in AD from the same brain region (Odds 
Ratio = 1.6, P = 1.9 × 10−8, SI Appendix, Fig. S8).

DS events in the bulk tissue transcriptome were evaluated using 
LeafCutter (26). Among 35,505 intron clusters identified by 
LeafCutter, 308 clusters (297 unique genes) showed significant 
DS between ASD patients and controls (FDR < 0.05). The 297 
genes did not show significant functional enrichment (Fig. 2F and 
Dataset S5).

To place subtle changes across the ASD STG transcriptome 
into a systems-level context, we performed weighted gene corre-
lation network analysis (WGCNA) to build gene co-expression 
networks (27), identifying 31 modules of co-expressed genes 
(Methods and Dataset S3). Seven modules significantly associated 
with ASD diagnosis, two of which were strongly enriched for 
ASD-associated genetic risk factors (Modules Block-M1 and 
Block-M10, Fig. 2B).

Module Block-M1 was upregulated in ASD STG and its gene 
members were enriched in RNA splicing and mRNA metabolic 
pathways (Dataset S4). Notably, significantly upregulated HSPs 
were also members of the Block-M1 module (Dataset S3). HSPs 
contribute to RNA splicing during stress (28). Downregulated 
modules in ASD were mostly enriched for synaptic functions 
(Block-M3, Block-M10, Block-M14, Block-M19, Block-M31; 
Dataset S4). Cell-type enrichment analysis also indicated these 
downregulated modules were enriched in marker genes for both 

excitatory and inhibitory neurons (Fig. 2B), suggesting a broad 
disruption of neuronal and synaptic processes in ASD STG.

Genes in the upregulated module Block-M1 and one downreg-
ulated module (Block-M10) were enriched in high-confidence 
ASD risk loci (29, 30), mutationally constrained (31), and highly 
intolerant to mutations (pLI > 0.99) genes (32), as well as regu-
latory target genes of CHD8, which has clear links to at least a 
subset of ASD cases (33) (Fig. 2B, see SI Appendix, SI Methods for 
the details of all curated, hypothesis-driven gene sets. Dataset 
S14). Many hub genes for module Block-M10 encoded synaptic 
proteins (SI Appendix, Fig. S2 and Dataset S3). This module was 
also enriched for ASD common risk alleles from ASD GWAS data 
(34). Together this suggested a causal role of synaptic dysfunction 
in ASD etiology.

Neuron-Specific Gene Expression and Splicing Alterations in ASD 
STG. To provide cell-type specificity for the observed transcriptomic 
changes, we performed laser capture microdissection to capture 
neurons using STG sections taken from the same subjects profiled 
using bulk RNA-seq (SI  Appendix, Figs.  S6 and S7). We then 
interrogated ASD-associated gene expression and splicing alterations 
using the same bioinformatic pipelines as above. Across 13,458 
neuron-expressed genes, 83 were significantly differentially expressed 
between ASD subjects and controls at FDR <0.05, of which 52 were 
upregulated and 31 downregulated (Fig. 3A and Dataset S6). Median 
absolute fold change in expression between subjects with ASD and 
controls was 2.48 (range 1.29 to 9.72; Fig. 3A). The concordance of 
neuronal DGE with bulk tissue DGE was low (Spearman ρ = 0.18 
for t statistics across all genes, SI Appendix, Fig. S3), suggesting our 
analysis captured ASD signatures unique to neurons.

Upregulated genes in ASD neurons were highly enriched in 
pathways related to growth and differentiation (Fig. 3E). 
Specifically, the AP-1 transcription factor complex components 
(35) FOS, JUN and JUNB were all upregulated in ASD neurons, 
among other growth/differentiation regulators such as SOX9, 
S1PR1, and PPP1R16B (Fig. 3D). The AP-1 transcription factor 
complex is known to regulate many downstream biological pro-
cesses (35). Indeed, we found upregulated B cell signaling adap-
tor gene BCL10 and NFκB inhibitor delta gene NFKBID in 
ASD neurons (Fig. 3D). Up-regulation of both NFKBID and 
AP-1 point to dysregulated inflammation in ASD neurons. In 
addition, the inward-rectifier potassium ion channel gene 
KCNJ2 was also upregulated in ASD neurons (Fig. 3D). 
Interestingly, both KCNJ2 and AP-1 subunit FOS were involved 
in regulating excitability and plasticity at the cholinergic synapse 
(36–38).

Downregulated genes in ASD neurons are primarily enriched in 
mitochondrial function and oxidoreductase activity (Fig. 3E). 
Specifically, comparing to bulk tissue STG, more subunits of the 
NADH:ubiquinone oxidoreductase (complex I) were downregulated 
in neurons, and their effect sizes were larger (SI Appendix, Fig. S4). 
Our results provide evidence that compared to bulk tissue, mito-
chondrial dysfunction is much more profound in STG neurons.

While LCM captured both excitatory and inhibitory neurons, 
we note that GAD1 and GAD2 genes are among the most down-
regulated in ASD neurons (Fig. 3D). The coordinated down-reg-
ulation of both GABA synthesizing enzymes suggest that the level 
of GABA neurotransmitter may be decreased in ASD neurons, 
providing support to the excitation to inhibition (E/I) imbalance 
hypothesis of ASD (19, 20, 39).

By testing the interaction between diagnosis and age, three 
genes (HTRA2, aka OMI; ZNF765; and PCDHB18P) showed 
age-dependent differential expression in ASD neurons (Dataset S7; 
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no pathway enrichment was detected for neuronal genes with 
significant diagnosis-by-age interaction). For example, age trajec-
tories of serine peptidase HTRA2 were opposite in ASD brains 
compared to controls (Fig. 3B). In healthy brains, the expression 
of HTRA2 was much higher before age 30 and decreases with age, 
while its expression levels begin lower and increase with age in 
ASD STG neurons.

To further evaluate potential overlap between ASD and neuro-
degenerative processes in neurons, we compared our neuronal 
findings with results from MSBB. Changes in ASD neuronal 
transcriptome were also significantly overlapped with transcrip-
tomic alterations observed in AD from the same brain region (odds 
ratio = 1.4, P = 0.01, SI Appendix, Fig. S8).

We also quantified local splicing events in the neuronal tran-
scriptome. After adjusting for multiple testing, LeafCutter iden-
tified 1,292 significant differential spliced intron clusters (1,177 
unique genes) out of 17,250 total intron clusters at FDR < 0.05 
(Fig. 3C and Dataset S8). No functional enrichment was 
observed for the 1,177 genes. We observed more disruptions in 
local splicing events in ASD neurons than in bulk tissue (308 
DS out of 35,505 events in bulk tissue, 1,292 DS out of 17,250 
events in neurons; P < 2 × 10−16 test of proportions).

Neuron-Specific Networks Pinpoint Subtle Changes in the 
Neuronal Transcriptome in ASD. Co-expression network analysis 
on neuronal data identified 18 modules, each containing between 
101 and 998 co-expressed genes (Dataset S9). Four modules were 

significantly upregulated in ASD neurons, while one module was 
downregulated (Fig. 4A).

The upregulated neu-M5 co-expression module was highly 
represented by the DGE analysis signal. Upregulated genes 
JUN, JUNB, and NFKBID were all hub genes of neu-M5 mod-
ule. Neu-M5 module also captured additional AP-1 subunits 
and interactors, such as FOSL2 (40) and IRF3 (41, 42). Neu-
M5 module was enriched in immune response pathways, pro-
viding further evidence that AP-1-mediated neuroinflammation 
was elevated in ASD neurons (Fig. 4C and Dataset S10). Hubs 
of Neu-M5 also contained multiple ion channel-related genes, 
such as sodium ion channel gene SCN1B, potassium channel 
genes KCNJ2 and KCNJ10, and solute carrier gene SLC40A1 
(Fig. 4C and Dataset S9). Coordinated upregulation of various 
ion channels suggested that membrane transport was activated 
in ASD neurons, consistent with heightened excitability. Neu-
M5 was significantly overlapped with module M16 from 
Voineagu et al. (7). M16 was also enriched in immune/inflam-
matory response and was up-regulated in ASD (7). Our data 
refined our understanding of the neuroinflammatory changes 
in ASD to include a neuronal component. Additionally, down-
regulated neu-M17 module was enriched in mitochondrial 
function and contained the most differentially expressed mito-
chondrial genes, such as ATP synthase subunits ATP5F1B and 
ATP5PF (Fig. 4F and Dataset S9).

Neuronal co-expression networks further captured signals that 
were not detected by DGE analysis. Neu-M6 module was 
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upregulated in ASD, and among its hub genes were several insulin 
signaling pathway components, including insulin-like growth factor 
(IGF) receptor IGF1R, IGF binding protein IGFBP5, insulin recep-
tor substrate IRS2 as well as CBL-associated SORBS1 (Fig. 4D and 
Dataset S9). Our results provided direct molecular-level evidence 
that insulin signaling was altered in ASD neurons.

Among all five significantly disrupted modules, none were 
enriched for ASD common variants and only one upregulated 
module (Neu-M16) showed enrichment in highly confident ASD 
risk genes, as well as in several other curated gene sets (Fig. 4A). 

Neu-M16 was enriched in synaptic functions (Fig. 4E and Dataset 
S10). Further, cell-type analysis showed that Neu-M16 was also 
highly enriched in excitatory neurons (Fig. 4B), with CAMK2A 
and CAMK2B among its hub genes (Dataset S9). The upregulation 
of Neu-M16 suggested elevated excitatory signal in ASD 
neurons.

We further tested whether significantly disrupted neuronal 
modules were enriched in any neuron subtypes. Upregulated neu-
ronal modules in ASD were only enriched in excitatory neuron 
subtypes, while enrichment of inhibitory neurons was only 
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Fig.  4. Co-expression and Mechanistic Network Analysis of the ASD Neuronal Transcriptome. (A) Hierarchical clustering of neuronal gene co-expression 
modules by module eigengenes. Module–diagnosis associations were shown below each module. Enrichment for ASD GWAS common variants is shown for 
each module. Enrichment against literature-curated gene lists is shown on the bottom. (B) Module enrichment for neuron subtypes. Expression profiles of 
neuron subtypes were obtained from ref. 16. Red asterisks indicate significant enrichment. (C–F) Functional enrichment (Top) and top 50 hub genes (Bottom) for 
module Neu-M5 (C), Neu-M6 (D), Neu-M16 (E) and Neu-M17 (F). Edges represent co-expression (Pearson correlation > 0.5). Co-expressed partners with evidence 
of protein-protein interaction (PPI) were connected by solid black lines. PPI data was compiled from well-characterized PPI databases (SI Appendix, SI Methods). 
(G) Bayesian network representing the relationships among modules (ellipse) and ASD diagnosis (diamond). The thickness of the arrow is proportional to the 
number of times that a connection was detected during a bootstrap of 500 times. (H) The estimated gene regulatory network (Bayesian network) for 21 hub 
genes in Neu-M5. (I) Dopamine network built by IPA from neuron DEGs (FDR < 0.1, 225 genes). A network of 17 upstream regulators (orange diamonds) were 
predicted to drive the changes of 74 observed target genes (23 of which were shown based on node connectivity ≥ 2, ellipse). ELK1 was differentially expressed 
in neurons, and it was also predicted as an upstream regulator.
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observed for downregulated modules (Fig. 4B). This provides 
additional evidence for altered neuronal activity in ASD neurons, 
consistent with the findings in our DGE analysis.

To gain mechanistic insights from our neuronal data, we used 
Bayesian network inference (43–45) to distinguish between 
direct module-trait associations and indirect module-trait cor-
relations. Our Bayesian network contained 19 nodes, including 
18 neuronal co-expressed gene modules represented by module 
eigengenes, plus a binary node representing ASD diagnosis. Our 
results indicated that Neu-M5 was directly associated with ASD, 
conditioned on all other modules (Fig. 4G). This provided fur-
ther evidence that neuroinflammation was directly associated 
with ASD in neurons.

We further used Bayesian network to prioritize among hub 
genes of Neu-M5 module for future validation. We focused on 
21 genes within Neu-M5 that were also significant differentially 
expressed genes (DEGs). The Bayesian network learned from these 
21 hub genes is shown in Fig. 4H. Genes with the highest degree 
of connectivity in this network included BCL10, ELL, and 
GTF2IRD2B, which can be potential targets for functional 
evaluations.

As an orthogonal approach, we identified the upstream regulators 
and built mechanistic networks in Ingenuity Pathway Analysis 
(IPA® ) with the differentially expressed genes in captured neurons 
(FDR < 0.1, 225 genes, Dataset S13). Dopamine was predicted as 

a top upstream regulator with the mechanistic network presented 
in Fig. 4I. This dopamine network contained 17 upstream regulators 
predicted to drive the observed changes of 74 target genes, including 
AP-1 subunits JUN, JUNB, FOS, and GABA synthetase GAD1 
and GAD2. Moreover, there were seven genes (BCL10, JUN, JUNB, 
KCNJ2, ELL, S1PR1, and SDC2) from this mechanistic network 
that overlapped with the 21 genes identified by the Bayesian net-
work analysis. This further highlighted the involvement of these 
genes in ASD, since they were identified independently by different 
modeling approaches.

Small Noncoding RNAs Are Selectively Downregulated in ASD Neurons  
and Correlate with Altered Local Splicing. When investigating 
the genes downregulated in ASD neurons more closely, we 
noticed a striking pattern that 51 out of the 59 neuron-expressed 
small nucleolar RNA (snoRNA) (46) genes were downregulated 
in ASD neurons, and 13 were significantly downregulated at  
P-value < 0.05 (Fig. 5A and Dataset S6). Dysregulation of snoRNAs 
was not observed in bulk tissue (Dataset S1), and snoRNAs were 
undetectable in a recent ASD single-cell study (12). snoRNAs are 
involved in the modification and maturation of ribosomal RNAs 
(rRNAs) and small nuclear RNAs (snRNAs) (47). Interestingly, 
both ribosome and spliceosome components were among the most 
downregulated in ASD neurons (Fig. 3E). Moreover, snRNAs were 
also downregulated in ASD neurons, with 23 out of 24 snRNA genes 
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Fig. 5. Coordinated Dysregulation of snoRNAs in ASD Neurons. (A) Volcano plot showing differentially expressed genes in ASD neurons compared to control. 
snoRNA genes were colored red. (B) Significant correlation between snoRNA expression (x-axis) and intron PSI (y-axis). Introns are labeled with the name of 
overlapping gene locus. Gene loci that are correlated with more than 3 snoRNAs were shown. (C) Scatter plot showing the correlation between GOT1 intron 5 
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on GRCh37. (D), PSI of GOT1 intron 5 is downregulated in ASD neurons.
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downregulated in ASD and 13 significantly downregulated at P value 
< 0.05 (SI Appendix, Fig. S5 and Dataset S6) Table 1.

As snoRNAs and snRNAs are known to be critical regulators of 
alternative splicing (48–51), and splicing alterations are strongly 
implicated in ASD and observed in LCM-captured neurons, we next 
examined alterations in splicing events that may be associated with 
snoRNA dysregulation. We calculated the correlation between 
snoRNA expression level and each local splicing event in neuronal 
data, followed by FDR correction for multiple comparisons. We 
identified 835 gene loci in neurons with at least one intron whose 
percent spliced in (PSI) was significantly correlated with snoRNA 
gene expression (Dataset S11). Of these 835 intron clusters, 196 
were significantly dysregulated in ASD neurons (Dataset S11). 
Several intron clusters correlated with multiple snoRNAs and cor-
responded to genes involved in synaptic functions (Fig. 5B). For 
example, GOT1 encodes the glutamic-oxaloacetic transaminase 
known to function as an essential regulator of glutamate level (52). 
PSI of intron 5 of GOT1 was highly correlated with the expression 
level of multiple snoRNA genes (Fig. 5C). GOT1 intron 5 was also 
differentially spliced between ASD and control (Fig. 5D). DS of 
GOT1 gene may change the level of glutamate and thus leads to an 
imbalance of E/I in neuronal communication in ASD neurons.

Discussion

Bulk Tissue Transcriptome Findings Reveal Downregulated 
Neuronal and Synaptic Function Processes, Upregulation of 
HSPs, and Unfolded Protein Response (UPR) in ASD Temporal 
Cortex. Our bulk tissue analyses revealed a potential causal role 
of downregulated neuronal processes and synaptic functions in 
ASD etiology, consistent with findings from previous bulk-tissue 
transcriptomic studies on the same brain region (7). Previous studies 
also reported dysregulated alternative splicing events in ASD brain 
(8, 53). DS analysis in bulk STG found several synaptic genes, 
including CANCA2D1, CAMK4, CLASP2, CNTNAP1, EPHB1, 
KALRN, NRXN3, SOS2 and SYNGAP1, differentially spliced in 
ASD. SYNGAP1 isoforms have been shown to differentially regulate 
synaptic plasticity and dendritic development (54). This further 
signifies the importance of studying alternatively spliced isoforms 
in ASD brain.

We also observed a coordinated upregulation of multiple HSPs 
and HSP-related chaperones in ASD STG. HSPs can serve as acti-
vators and regulators of the immune system (18), and upregulated 

HSPs may induce immune responses in ASD brain. They also play 
a role in facilitating alternative RNA splicing (28). Previous studies 
found that both immune response and RNA splicing are upregulated 
in ASD brain (7, 8, 11), and our results signify that upregulated 
HSP-related pathways potentially contribute to these observations. 
HSPs and HSP-related chaperones are normally induced in response 
to stress. The upregulation of HSPs in ASD neurons may relate to 
elevated endoplasmic reticulum (ER) stress since both UPR and 
apoptosis are also upregulated in our ASD bulk data (Fig. 2D). ASD-
linked rare or de novo mutations in synaptic genes can lead to mis-
folded proteins and cause ER stress (55), itself coupled to heightened 
inflammation and neurotoxic cell death (56). ER stress-related genes 
are also dysregulated in the middle frontal cortex of subjects with 
ASD (57). Our data suggest that ER stress is a major response to 
ASD genetic mutations, and ER stress activates UPR, including the 
production of HSPs and chaperones. UPR further induces multiple 
downstream processes such as inflammation and immune response 
(58). Limiting the effect of ER stress and UPR may be a promising 
therapeutic avenue for ASD.

ASD Neuronal Transcriptome Reveals Upregulated 
Neuroinflammation and Altered Neuronal Activity. We observed a 
strong upregulation of AP-1 transcription factor components in ASD 
neurons. AP-1 subunits FOS, JUN and JUNB were upregulated at 
FDR < 0.05, and FOSL2 was upregulated at nominal P < 0.05. AP-1 
regulated gene expression in response to various stimuli, including 
cytokines, growth factors, stress signals, infections and inflammation/
neuroinflammation (35). In ASD neurons, AP-1 activation likely 
induces broad inflammatory response, since several immune and 
inflammation-related genes were also strongly upregulated. These 
included NFKBID and BCL10, which were involved in the NF-κB 
pathway and were upregulated at FDR < 0.05. In addition, the 
interferon regulatory factor IRF3 is upregulated at P < 0.05, and IRF3 
is co-expressed with AP-1 subunits. The simultaneous upregulation 
of AP-1 subunits, NFκB-related genes and interferon regulatory 
factors suggested that immune and inflammation responses were 
activated in ASD neurons. Upregulated immune response and 
neuroinflammation have been consistently observed in ASD 
patients by bulk tissue transcriptomic studies largely implicating 
glial cells (7, 8). However, our results demonstrated that immune/
neuroinflammatory response was clearly activated in ASD neurons, 
and may be mediated by transcription factor AP-1.

We also observed strong downregulation in ASD STG neurons 
of GAD1 and GAD2 genes, involved in the biosynthesis of the 
inhibitory neurotransmitter GABA. In contrast, CAMK2A and 
CAMK2B genes, which are essential for aspects of plasticity at 
glutamatergic excitatory synapses, are upregulated at nominal 
significance. In addition, co-expressed gene modules that were 
upregulated in ASD neurons were mainly enriched in excitatory 
neurons, while the downregulated module was primarily enriched 
in inhibitory neurons. These data supported the hypothesis that 
ASD reflects imbalance of E/I in neuronal communication, also 
reported in several brain regions in ASD (19, 20, 39). This is a 
report providing molecular-level evidence for imbalance of E/I in 
neuronal communication specifically in STG neurons in ASD.

Future studies will focus on the role of snoRNAs in ASD neurons, 
and other long and small modulatory non-coding RNAs. Given the 
emerging role of snoRNAs as alternative splicing regulators (50, 
51), we hypothesize that a coordinated downregulation of multiple 
snoRNAs correlates with elevated dysregulation of local splicing 
events in ASD neurons. Our data provide evidence supporting this 
hypothesis; however, no causal relationship can be determined. It 
will be critical to determine if snoRNA dysregulation plays a causal 
role in ASD etiology, and if so, pinpoint the underlying mechanism 

Table 1. Summary of genes discussed in this manuscript

Noted Categories Genes

E/I signal CAMK2A*; CAMK2B*; GAD1*; GAD2*; 
GOT1*

Growth / differentiation FOS*; FOSL2*; IRF3*; JUN*; JUNB*; 
PPP1R16B*; S1PR1*; SOX9*

Heat shock BAG3†; DNAJB1†; DNAJB4†; HSPA1A†; 
HSPA1B†; HSPB1†; HSPB8†;  
PTGES3†

Immune / inflammation BCL10*; NFKBID*

Insulin signaling IGF1R*; IGFBP5*; IRS2*; SORBS1*

Ion channel KCNH3†; KCNIP1†; KCNJ10*; KCNJ2*; 
SCN1B*; SLC40A1*

Mitochondrial ATP5F1B*; ATP5PF*

Age-associated GAD1†; GAD2†; HTRA2*; PCDH-
B18P*; ZNF765*

*observed in STG neurons.
†observed in bulk STG.
The category of each gene is based on what we discussed in this manuscript.

http://www.pnas.org/lookup/doi/10.1073/pnas.2206758120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2206758120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2206758120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2206758120#supplementary-materials
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and possibly relate to transcript isoforms driving ASD brain and 
neuronal phenotype.

In our study, the concordance of ASD-associated transcriptomic 
changes in bulk tissue and LCM neurons was relatively low. This 
is not surprising given bulk tissue contains various different neu-
ronal and non-neuronal cell types. Neuron-specific changes could 
be masked by changes in other cell types when profiling bulk 
tissue. The lack of concordance highlighted the necessity of spe-
cifically isolating and profiling each cell type to identify cell-type-
specific transcriptomic signatures.

Age-Associated Differential Expression in STG Points to Altered 
Neuronal Activity in ASD. In bulk tissue, genes involved in 
GABAergic signaling (GAD1 and GAD2) were upregulated with 
age in controls, while downregulated with age in ASD. Multiple 
lines of evidence have pointed to deviations in the production, 
transmission, and reception of GABAergic inhibitory interneurons, 
including decreased numbers of GABAergic interneurons (especially 
Parvalbumin neurons) (59) and reduced density of GABA receptors 
(60–62). Our findings indicated that the reduction of GAD1 and 
GAD2 mRNA levels in ASD brain became more profound with 
age, consistent with the observations at cellular level. In addition, 
SLC38A1, involved in neurotransmission at glutaminergic and 
GABAergic synapses (63), was downregulated in ASD relative to 
control STG. SLC38A1 is implicated in Rett Syndrome (64) and 
mitochondrial disorders, and its decrease may contribute to the 
observed alterations in synapse formation and neural connectivity.

In LCM neurons, the expression of HTRA2 was higher below 
age 30 and decreases with age in control neurons, while lower at 
younger ages and increasing with age in ASD neurons. HTRA2 
is important in maintaining mitochondrial homeostasis (65) and 
inducing apoptosis. It is implicated in pathogenesis of neurode-
generation, hypoxic-ischemic damage, and is proposed as a poten-
tial treatment target in neurological diseases (66). Attenuated 
HTRA2 activity may lead to neuronal cell death, altered chaperon 
activity and autophagy and has been linked to Parkinson’s disease 
(67). In addition, increased active form of the OMI/HTRA2 serine 
protease has been positively correlated with cholinergic alterations 
in AD brain (68). Thus, it is plausible that the altered expression 
of HTRA2 with age we observed in ASD brain may be associated 
with neuronal alterations during development. These findings 
further support the hypothesis of altered neuronal E/I activity, 
neuroinflammation, cell death, and mitochondrial dysfunction, 
implicated in ASD (69) and suggest treatment windows to target 
specific genes to alter their expression trajectories with age.

In summary, our age-related findings support the premise brain 
development in individuals with ASD deviates from that of the neu-
rotypical trajectory beginning in childhood and continues to evolve 
across the lifespan (70, 71). Although the STG remains relatively 
unexplored (72–74), other brain regions display early excess followed 
by reductions in volume, connectivity, and cell densities as people 
with ASD age through adulthood. Initial excess and overconnectivity 
may lead to hyperexcitation, rendering the brain vulnerable to age- 
related and pro-inflammatory mechanisms contributing to later 
degenerative outcomes. Our findings of altered neuroinflammatory 
expression patterns, taken together with reports of excessive micro-
glial activation in STG (74, 75), implicate immune dysfunction in 
the pathophysiology of ASD that may exacerbate with age. 
Additionally, we found significant relationships with our ASD tran-
scriptome profiles and AD profiles in the same brain region (25), 
supporting recent theories of increased susceptibility to neurodegen-
erative and cognitive decline (76, 77). Lastly, our findings of an 
age-related decrease in GAD expression in bulk STG tissue, and an 
overall downregulation of GAD in neurons, further supports the 

hypothesis that GABAergic inhibitory neurons are disproportionally 
affected in ASD throughout the lifespan.

Mechanistic Modeling Highlighted Pathways and Genes That 
Were Directly Associated with ASD in Neurons. We applied two 
orthogonal approaches to gain mechanistic insight from our LCM 
neuron data. Bayesian network inference built a network from 
co-expressed modules and further prioritized hub genes within 
selected module(s), identifying BCL10, ELL and GTF2IRD2B as 
genes having driving roles in ASD. The approach from Ingenuity 
Pathways Analyses first identified upstream regulators that align 
with the observed expression changes in our dataset and elucidated 
that they share a predicted association with dopamine signaling 
pathways. Expansion of the regulatory network to include another 
layer of DEGs in our dataset indicated strong overlap and regulatory 
connections to many key genes involved in neuronal function and 
inflammation (GAD1, GAD2, and many transcriptional regulators). 
Interestingly, the expansion of the IPA network further converged on 
regulatory molecules BCL10 and RNA polymerase II, of which the 
former was directly identified in the independent Bayesian approach, 
and the latter associated with ELL. Together these two independent 
approaches highlight the role of inflammatory pathways and genes 
in ASD etiology.

Limitation and Future Studies

Although our study had a relatively large sample size of 59 human 
brains, there are inherent limitations to utilizing postmortem human 
brain tissue, including variability in cause of death, co-morbid con-
ditions, medication use, postmortem interval (PMI), etc., Future 
studies will have the advantage of more in-depth clinical information 
available from newer brain tissue collections such as Autism BrainNet 
(SFARI) and the NIH Biobanks to evaluate the relationship of cel-
lular and molecular findings with clinical characteristics. Most of 
our subjects were male, consistent with the 4:1 ratio of males/females 
with ASD; future studies should include a larger female cohort to 
adequately evaluate sex differences. Additionally, the development 
of novel tools for profiling the transcriptome such as scRNA-seq 
allows for analyses of individual cell types at high resolution; however, 
snRNA-seq currently does not provide the depth of coverage to 
quantify low-expressed genes and local splicing, especially in human 
brain samples that we were able to achieve with LCM neuron sam-
ples. Our study, however, did not distinguish neuronal subtypes, as 
we found Histogene the most reliable cell body staining method for 
maintaining tissue quality and accurate neuronal identification. Our 
future studies will expand on current findings, particularly age-re-
lated changes in GAD implicating GABAergic interneurons, to map 
expression in specific cell types in multiple brain regions, in relation 
to clinical characteristics, across the human lifespan.

Methods

Bulk Tissue RNA Extraction and Library Preparation. Tissue and clinical data 
collection procedures were approved by the institutional review board (IRB) and 
Human and Anatomical Specimens Tissue Oversight Committee (HASTOC) at the 
University of California, Davis School of Medicine. Informed consent was obtained 
from next-of-kin at the time of brain tissue collection for follow-up to collect donor 
clinical information to confirm diagnoses by the Autism Tissue Program (now Autism 
BrainNet).

Human brain tissue was collected, sectioned coronally and flash-frozen. The 
STG was identified anatomically according to “Atlas of the Human Brain” fourth 
edition (Maj, Majtanik, Paxinos 2015). Total RNA was extracted using the Direct-zol 
RNA MiniPrep (Zymo Research #R2051).

Fifty nanograms of RNA from each sample were used to create strand-specific 
total RNA libraries with the NuGEN Ovation Universal RNA-Seq System v2 and 
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processed in parallel on the Sciclone NGS automated workstation (Perkin Elmer) 
according to manufacturer protocol.

Laser Capture Microdissection, RNA Extraction, and Library Preparation. 
Using a Leica LMD-6000 laser capture microdissection system, 100 neurons 
from each sample were laser captured directly into lysis buffer. RNA was 
extracted using the PicoPure total RNA kit according to manufacturer protocol. 
Strand-specific rRNA depleted RNA libraries were prepared from 10 μL of the 
final neuronal RNA.

RNA Sequencing, Read Mapping, Quantification of Gene Expression, and 
QC. RNA-Seq was performed on Illumina HiSeq4000. Libraries were sequenced to 
~50 million 2 × 150 bp reads per sample. Reads were aligned to the GRCH37.p13 
(hg19) reference genome using STAR. Gene-level quantifications were calculated 
using featureCounts (v1.6.4). Sample outliers were defined as samples with stand-
ardized sample network connectivity Z scores < −2 (78), and were removed. Using 
this method, five samples from bulk data, and five samples from neuron data were 
removed. Batch effects were accounted for using metrics derived from PicardTools 
(v2.21.2).

DGE and Differential Alternative Splicing. DGE analyses were performed 
using DESeq2 (1.22.2)(79) with default parameters. Local splicing analysis was 
performed using LeafCutter (26) as previously described (10).

Co-expression Network Analysis. Weighted gene co-expression network 
analysis (WGCNA) (27) was performed to define modules of co-expressed genes 
from RNA-seq data.

Functional Enrichment Analysis. Gene ontology (GO) enrichment was per-
formed using the gProfileR R package (80) and the fGSEA algorithm as imple-
mented in the clusterProfiler R package (81).

Enrichment analyses were also performed using several established, hypoth-
esis-driven gene sets. Significance was determined from permutation-derived 
null distribution.

Cell Type Enrichment Analysis. Cell-type enrichment analysis was performed 
using the Expression Weighted Cell Type Enrichment (EWCE) package in R (82).

GWAS Enrichment Analysis. Stratified LD score regression (sLDSC) (83) was 
used to test whether a gene set of interest is enriched for SNP-heritability in a 
given GWAS dataset.

Ingenuity Pathway Analysis. Ingenuity Pathway Analysis (IPA®, QIAGEN) tools 
were used to predict the upstream regulators and to build mechanistic networks (84).

Designing and Learning the Bayesian Network Structure. Each of the 18 
module eigengenes from our neuron co-expression data serves as one random 
variable (node) in our Bayesian network (BN). In addition, we also include diag-
nosis (ASD or CTL) as a binary random variable (node). This design allows us to 

distinguish between modules that are directly associated with ASD and those 
that are indirectly associated with ASD (45).

Prioritizing Genes within Neu-M5. To prioritize genes within the Neu-M5 mod-
ule, we first identified 21 genes within Neu-M5 that are also significant DEGs. 
We then built Bayesian network among the 21 genes with method described in 
the above section. We selected genes with the highest number of connections as 
nodes likely to influence the expression of many other genes within the module.

Alzheimer’s Disease Datasets. Alzheimer's disease DGE data was obtained 
from the Mount Sinai/JJ Peters VA MSBB study (25) through Synapse via accession 
number syn30821563.

Data, Materials, and Software Availability. All custom code used in this man-
uscript is available at https://github.com/gandallab/ASD_STG_LCM_RNAseq (85). 
RNA-seq data from this study is available through the database for Genotypes 
and Phenotypes (dbGaP Study Accession ID: phs003208) (86).
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