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Abstract

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in 

human blood and tissues. Most MAIT cells have an invariant T cell receptor (TCR) α chain 

that uses TRAV1–2 joined to TRAJ33/20/12 and recognize metabolites from bacterial riboflavin 

synthesis bound to the antigen-presenting molecule, Major Histocompatibility Complex (MHC) 

class I-related (MR1). Our attempts to identify alternative MR1-presented antigens led to the 

discovery of rare MR1-restricted T cells with non-TRAV1–2 TCRs. Because altered antigen 
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specificity likely alters affinity for the most potent known antigen, 5-(2-oxopropylideneamino)-6-

D-ribitylaminouracil (5-OP-RU), we performed bulk TCRα and β chain sequencing and single 

cell-based paired TCR sequencing on T cells that bound the MR1–5-OP-RU tetramer with 

differing intensities. Bulk sequencing showed that use of V genes other than TRAV1–2 was 

enriched among MR1–5-OP-RU tetramerlow cells. Whereas we initially interpreted these as 

diverse MR1-restricted TCRs, single cell TCR sequencing revealed that cells expressing atypical 

TCRα chains also co-expressed an invariant MAIT TCRα chain. Transfection of each non-

TRAV1–2 TCRα chain with the TCRβ chain from the same cell demonstrated that the non-

TRAV1–2 TCR did not bind the MR1–5-OP-RU tetramer. Thus, dual TCRα chain expression 

in human T cells and competition for the endogenous β chain explains the existence of some 

MR1–5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and 

non-canonical TCRs on the same T cell means that claims of roles for non-TRAV1–2 TCR in 

MR1 response must be validated by TCR transfer-based confirmation of antigen specificity.

Introduction

Adaptive cellular immunity relies on recombination of the T cell receptor (TCR)-β (TRB), 

TCR-γ (TRG), TCR-α and TCR-δ (TRA/TRD) genomic loci during T cell development 

in the thymus(1). Remarkable TCR diversity is achieved by combinatorial usage of genome-

encoded variable (V), diversity (D), and joining (J) genes, and addition of intervening 

non-templated (N) nucleotides(2). Many T cells recognize peptide antigens in the context of 

highly polymorphic human leukocyte antigen (HLA) molecules(3). In parallel, some T cells 

bind non-peptide antigens presented by non-MHC-encoded antigen-presenting molecules, 

including the MHC-related protein 1 (MR1) and cluster of differentiation (CD)1 proteins 

(reviewed in (4, 5)). Unlike MHC, CD1 and MR1 proteins are almost monomorphic(6), and 

consequently CD1- and MR1-reactive T cells tend to express characteristic TCR motifs, 

shared by many individuals irrespective of their HLA haplotypes(7). These invariant TCR 

motifs(7) recognize unique antigen classes, including pathogen-derived mycobacterial lipids 

for CD1b(8), α-galactosyl ceramides for CD1d(9) and metabolites from active bacterial 

biosynthetic enzymes for MR1(10). These invariant TCRs are thought to have co-evolved 

with cognate nonclassical antigen-presenting molecules in different species(11).

Due to their potential to elicit generalizable population-level immune responses, donor-

unrestricted T cells (DURTs), and the antigens they recognize, are attractive targets of 

vaccination against microbes like Mycobacterium tuberculosis (Mtb)(12). In particular, 

mucosal-associated invariant T (MAIT) cells, which recognize antigens presented by MR1, 

are attractive candidates due to their abundance in the blood(13), their high reactivity 

against several bacterial infections(14–17), and their documented roles in vaccination(18, 

19). MR1 tetramers bind directly to TCRs and allow for unequivocal identification of MAIT 

cells and more diverse MR1-restricted αβ(20) and γδ(21) T cells, and provide a unique 

opportunity to identify novel TCR rearrangements and antigen specificities(22). Human 

MAIT TCRα chains display a characteristic complementarity-determining region (CDR3α) 

formed by a rearrangement between TRAV1–2 and TRAJ33, or sometimes TRAJ12 or 

TRAJ20, with few non-template encoded (N)-nucleotides(22–24), and a biased preference 

for some TRB genes(23, 25, 26). Diversity in TRB gene usage in MAIT cells is potentially 
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associated with recognition of different microbes(25, 27–29) or different ligands(30). 

These canonical MAIT cells have a preferred specificity for 5-(2-oxopropylideneamino)-6-

D-ribitylaminouracil (5-OP-RU) over 6-formylpterin (6-FP)(10, 31, 32). Whereas TCR 

conservation, especially ‘canonical’ TRAV1–2 usage has been considered a key defining 

feature of human MAIT cells for decades, a new direction in the field has resulted from 

identification of ‘non-canonical’ TRAV1–2-negative (TRAV1–2–) and γδ T cells(21) that 

recognize MR1 and suggested to have unique antigen specificities(20, 33–37). MAIT cells 

have broadly reported roles in infection(17), cancer(38), and autoimmunity(39). Hence, 

defining MAIT TCR motifs can be used to infer pathogenic and protective TCR clonotypes 

relevant to immunodiagnosis or vaccination.

Several new technologies and algorithms for high-dimensional TCR sequencing analysis 

have successfully identified clonally expanded populations of antigen-specific T cells, and 

their TCR motifs among large numbers of blood- and tissue-derived T-cells(40–43). These 

sequencing technologies derive TCR sequences either from single cells, which identify 

paired TCRα and TCRβ(44, 45), or bulk genomic(46) or transcriptomic sequencing data(41, 

47). In this study, we sought to use MR1 tetramers and high throughput TCR sequencing 

to identify non-canonical TCR patterns. We observed MAIT cell populations with differing 

binding intensities to the 5-OP-RU-loaded MR1 tetramers. We hypothesized that MAIT cells 

with lower MR1-tetramer binding intensities would reveal unique TCR motifs consistent 

with lower preferential binding to the 5-OP-RU/MR1 antigen complex. Consistently, we 

detected an enrichment of TRAV1–2– TCRs in MR1 tetramer+ MAIT cells, especially 

those with lower MR1-tetramer intensity. However, detailed TCR gene transfer studies 

revealed that the lower tetramer binding was explained by dual expression of canonical 

and non-canonical TCRα chains in the same TRAV1–2+ clonally expanded MAIT cells, 

as opposed to a single non-canonical TCR with lower affinity for MR1–5-OP-RU. Dual 

TCR expression previously observed in HLA-restricted(48) and CD1d-reactive T cells(49), 

but takes on special importance in the MAIT cell system because it can confound the 

assignment of non-canonical TCRs for MR1 specificity. These data establish the need 

to validate the antigen specificity of newly-described TCR motifs from large-dimensional 

sequencing platforms by TCR gene transfer and other alternative techniques(50).

Materials and Methods

Human participants

Lima, Peru: We recruited Peruvian participants with active TB disease, or asymptomatic 

household contacts of TB cases with positive or negative QuantiFERON TB Gold-In-tube 

test results from Lima, Peru, as described previously(51, 52). The Institutional Review 

Board of the Harvard Faculty of Medicine and Partners HealthCare (protocol number 

IRB16–1173), and the Institutional Committee of Ethics in Research of the Peruvian 

Institutes of Health approved this study protocol. All adult study participants and parents 

and/or legal guardians of minors provided informed consent, while minors provided assent. 

The protocol is approved by the Institutional Review Board of Harvard Faculty of Medicine 

and Partners HealthCare, and Institutional Committee of Ethics in Research of the Peruvian 

Institutes of Health.

Suliman et al. Page 3

J Immunol. Author manuscript; available in PMC 2022 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Boston, USA: We obtained de-identified leukoreduction filters (leukopak) samples from 

healthy blood bank donors through the Brigham and Women’s Hospital Specimen Bank, as 

approved by the Institutional Review Board of Partners HealthCare.

Tennessee, Memphis: Peripheral blood mononuclear cell (PBMC) samples were 

obtained from healthy children, adult, and elderly donors from St. Jude Children’s Research 

Hospital (XPD12–089 IIBANK and 1545216.1).

Melbourne, Australia: Spleen (SP) lymphoid tissues were collected from deceased 

donors, whose mortality was caused by conditions other than influenza (DonateLife, 

Australia), after written informed consent was given by next of kin(53). The University 

of Melbourne Human Ethics Committee approved experiments (identification numbers 

1443389.4, 1955465 and 1545216.1).

Flow cytometry analysis

The protocol and primary analysis of Peruvian samples by flow cytometry was reported 

previously(51). MR1 monomers were obtained from The University of Melbourne, 

Australia(10, 22), and used to generate tetramers in Boston as previously described(51). For 

HEK293T cell validation experiments, we used MR1 tetramers obtained from the National 

Institutes of Health (NIH) Tetramer Core facility.

Genomic bulk TCR sequencing (Adaptive Biotechnologies, Seattle)

For TCR sequencing from genomic templates, 3900 MR1 tetramerhi and 4500 MR1 

tetramerint cells were doubly sorted from PBMC samples from Peruvian donor 58–1 after 14 

days of polyclonal T cell expansion. For expansion, 106 cells were cultured with 25 × 106 

irradiated allogeneic PBMC, 5 × 106 irradiated allogeneic Epstein Barr Virus transformed 

B cells, 30 ng/ml anti-CD3 monoclonal antibody (clone OKT3) for 14–16 days, in the 

presence of 1 ng/ml interleukin-2 (IL-2)(52). PBMC samples from healthy Boston blood 

bank donors LP1 and CO2 were not expanded before double cell sorting. Cell numbers 

obtained from the sorted tetramerhi, tetramerint, and tetramerlow populations were 2000, 

5800, 3100, respectively, for LP1 and 1100, 4000, and 2300, respectively, for CO2. High-

throughput TCR sequencing and assignment of V and J genes was performed for the TCRβ 
locus and the TCRαδ locus (Adaptive Biotechnologies, Seattle, WA) using a multiplex PCR 

approach on genomic DNA isolated from sorted T cells using the Qiagen QIAamp DNA 

Mini Kit, followed by Illumina high-throughput sequencing(46).

Sorted single cell paired TCR sequencing

Single-cell TCR sequencing was adapted from a previously published protocol(41). Briefly, 

single MR1-tetramer-binding cells from Peruvian participant 7–3 and blood bank donors 

702A and 703A were sorted into 96-well plate coated with Vapor-Lock (Qiagen) containing 

Iscript cDNA synthesis mixture (Bio-Rad) and 0.1% triton X-100 for direct cell lysis. 

Reverse transcription was performed in a thermocycler (25°C for 5’, 42°C for 30’, 

80°C for 5’). Subsequently, cDNA samples were amplified in a nested PCR reaction 

using Denville Choice Taq Polymerase (Thomas Scientific), using previously described 

primers(41). Briefly, the first external reaction contained a mixture of all TCRα and TCRβ 
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forward primers, combined at 1 μM each, and reverse TRAC and TRBC primers at 10 

μM each: 95°C for 2’, 35 cycles of (95°C for 20”, 50°C for 20”, 72°C for 45”), and 

72°C for 7’. A second internal PCR reaction used a mix of TCRα forward primers at 

1 μM each with a reverse internal TRAC primer at 10 μM, or a mix of TCRβ forward 

primers and reverse TRBC primer, separately at cycling conditions: 95°C for 2’, 35 cycles 

of (95°C for 20”, 56°C for 20”, 72°C for 45”), and 72°C for 7’ using previously described 

primers(41). Amplicons were analyzed on an agarose gel, and bands were excised using a 

UV lamp and purified using the QIAquick Gel Extraction Kit (Qiagen) then sent for Sanger 

sequencing (Genewiz). Sequences were reverse-complemented and analyzed using 4Peaks 

software and mapped to the reference sequences for the genome-encoded V and J segments 

for both the TCRα and TCRβ genes on the ImMunoGeneTics (IMGT) information system 

database. The unmapped sequences were considered N-nucleotides, and/or Dβ segments for 

TCRβ to determine the complementarity-determining region (CDR)-3. CDR3α and CDR3β 
amino acid sequences were predicted by in silico translation, showing productive in-frame 

rearrangements, using the online ExPASy translate tool (https://web.expasy.org/translate/).

For Australian samples, single MR1–5-OP-RU-tetramer+TRAV1–2+ PBMCs from healthy 

donors and spleen tissues were sorted using a FACSAria (BD Biosciences) into 96-

well plates. Paired CDR3αβ regions were determined using multiplex-nested reverse 

transcriptase PCR before sequencing of TCRα and TCRβ products, as previously 

described(41, 54), and reported(55). For paired TCRαβ analyses, sequences were parsed 

into the IMGT/HighV-QUEST web-based tool using TCRBlast1 (kindly provided by Paul 

Thomas and Matthew Caverley), to determine V(D)J regions.

TCR transfection assay

Synthetic TCRα and TCRβ sequences (Genewiz) from MR1 tetramer-binding sorted single 

T cells, separated by self-cleaving Picornavirus 2A (P2A)-linker sequence 

(GGATCCGGCGCCACCAATTTCTCGCTGCTTAAGCAGGCCGGCGACGTCGAAGAG

AACCCCGGGCCCATG), were cloned into a GFP-containing pMIG vector using standard 

restriction digestion and cloning procedures. Human embryonic kidney (HEK293T) cells 

were cultured overnight on a 6-well plate containing 4 mL of Dulbecco’s Modified Eagle 

Medium-10 media supplemented with 10% fetal bovine serum and penicillin-streptomycin 

at 37°C, and were subsequently co-transfected with the pMIG-TCR and pMIG-CD3 

plasmid(56) using FuGENE HD transfection reagent (Promega). Transfected HEK293-T 

cells were analyzed for tetramer binding by flow cytometry 48–72 hours following 

transfection. Antibodies used to stain transfected 293T cells were Brilliant Violet 421-

conjugated anti-human CD3 antibody (Biolegend) and phycoerythrin (PE)-conjugated anti-

human TCRαβ antibody (BD BioSciences).

Results

During a quantitative study of MAIT cells in a Peruvian TB cohort(51), we observed MAIT 

cell populations with variable staining intensities for the 5-OP-RU-loaded MR1 tetramer 

(Figure 1A). This phenomenon was observed in participants with and without evidence 

for Mtb infection and did not seem to be correlated with TB disease. Whereas canonical 
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MAIT TCRs typically show high affinity for MR1–5-OP-RU, we hypothesized that MAIT 

cells with lower tetramer staining intensity may reflect different and variable TCR motifs, 

consistent with their lower affinities to the MR1–5-OP-RU complex. To define TCR gene 

usage in high, intermediate and low staining populations, we sorted MAIT cell populations 

with different MR1-tetramer staining intensities and performed bulk TCRα and TCRβ 
sequencing from genomic DNA and subsequent V- and J-gene assignment of rearranged 

genes. Subsequently, we sorted MAIT cell populations from one Peruvian sample (58–1) 

after polyclonal T cell expansion, and from two random Boston blood bank donors (LP1 and 

CO2) without expansion (Figure 1B). The populations were sorted based on MR1-tetramer 

fluorescence intensities and re-sorted prior to sequencing to ensure purity and preservation 

of MR1-tetramer binding levels (Supplementary Figure 1). Regardless of the source of 

PBMCs, we saw similar patterns with TRAV1–2 TCRs in brightly staining cells, and 

TCRα V-genes other than Vα7.2 (TRAV1–2) were enriched in sorted MAIT populations 

with low and intermediate MR1-tetramer staining (Figure 1B–C). This pattern of atypical 

TRAV gene usage in MAIT cells with lower MR1-tetramer binding relative to MAIT 

cells with high MR1-tetramer staining was observed even after discarding unproductive 

TCRα chains (Supplementary Table 1). Frequencies of TRAV1–2– MAIT cells in blood 

did not differ by TB status in Peruvian samples (Kruskal-Wallis: p=0.75; Figure 1D). 

TRAV1–2– MAIT in these samples (Figure 1B–C) were similar to frequencies previously 

reported in other populations(20) representing a minority of T cells (0.6–40%) but they were 

potentially biologically significant because TCRα diversity diverges from the conventional 

understanding of MAIT cell function.

We sought to explain the discrepancy between the low frequencies of TRAV1–2– MAIT 

cells as determined by flow cytometry (Figure 1D), and the higher frequencies of TRAV1–

2– TCR α chain sequences identified in sorted MAIT cells, as determined by bulk TCR 

sequencing (Figure 1C). Hence, we sorted single cells from populations with different MR1-

tetramer binding levels from one Peruvian participant, where we detected three clear MR1-

tetramer binding levels (MR1-tetramerhigh, MR1-tetramerint, and MR1-tetramerlow), and 

applied a previously described nested PCR protocol to cDNA amplified from each single 

cell(41) to determine the sequences of paired TCRα and TCRβ chains (Figure 2A). Non-

TRAV1–2 TCRα gene usage was enriched in populations with lower MR1-tetramer binding, 

with 15/40 (37.5%) of the MR1-tetramerint cells using TRAV16 and identical CDR3α 
nucleotide sequences, and 14/34 (41.2%) of the MR1-tetramerlow cells using TRAV5, 

of which 13 had identical CDR3α nucleotide sequences, suggesting clonal expansion in 
vivo (Figure 2A and Supplementary Tables 2 and 3). Similarly, we detected TRAV1–2– 

TCRs from single cell-sorted MR1-tetramerlow populations from two healthy blood bank 

donors: 1/33 (3%) and 8/48 (16.7%), but none in MR1-tetramerhigh counterparts (Figure 

2B). Furthermore, the atypical TRAJ33– joining regions were seen more frequently in low 

MR1 tetramer staining cells. Overall, these patterns from oligoclonal T cells (Figure 2) 

matched those of polyclonal T cells (Figure 1) and demonstrated more non-canonical gene 

usage in TCRs among low MR1 tetramer staining T cells.

To validate the MR1-reactivity of these putative MAIT TCRs, we co-transfected human 

embryonic kidney (HEK293T) cells with pMIG vectors expressing CD3 and the paired 

TCRα and TCRβ sequences derived from three clones with non-TRAV1–2 TCR sequences 
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(Figure 3), which showed clear clonal expansion in samples analyzed with bulk (Figure 1B) 

or single cell (Figure 2A) TCR sequencing methods. Next, we measured TCR binding to 

the 5-OP-RU-loaded MR1 tetramer (Figure 3). We also transfected TCRα and TCRβ from 

a canonical MAIT TCR (TRAV1–2-TRAJ33) identified in the bulk-sorted MR1-tetramerhigh 

cells as a positive control (Figure 3). Co-transfected HEK293T cells co-expressed CD3 and 

TCRαβ on the cell surface (Figure 4, left). The 5-OP-RU-loaded MR1-tetramer, but not the 

MR1 tetramer loaded with the non-agonist 6-FP-loaded MR1 tetramer, stained CD3+ cells 

from HEK293T cells transfected with the TRAV1–2+ TCR, as expected. However, the MR1 

tetramers, loaded with either 6-FP or 5-OP-RU, did not bind cells expressing the TRAV1–2– 

TCRs identified in MR1-tetramerlow and MR1-tetramerint populations (Figure 4), despite the 

original detection of these TCR sequences in MR1-tetramer-binding cells (Figures 1 and 2).

To explain the lack of binding between these TRAV1–2– TCRs and 5-OP-RU-loaded MR1, 

we took a closer look at the TCRβ sequences. Unexpectedly, a single TCRβ sequence 

consisting of TRBV24–1-TRBJ2–5 with a unique CDR3 nucleotide sequence was detected 

in 10 out of the 15 TRAV16+ single cells (Supplementary Table 3). Interestingly, the 

same TCRβ nucleotide sequence (TRBV24–1-TRBJ2–5) was paired with the canonical 

MAIT TCRα TRAV1–2-TRAJ33 in 3 wells (Supplementary Table 3). Because the PCR 

reactions were performed in multiplex format, we hypothesized that this particular T cell 

clone expressed two different, functional TCRα chains, but that only one of the PCR 

products dominated the PCR reaction. Hence, to resolve the discrepancy, we re-amplified 

the templates that initially gave rise to a TRAV16-TRAJ11 PCR products, using only the 

TRAV1-specific forward primer, which captures the TCRα variable genes TRAV1–1 and 

TRAV1–2 only, as previously described(41). Using this approach, 10 out of the 15 templates 

initially giving rise to TRAV16-TRAJ11 sequences now gave rise to a PCR product that 

resulted in identical TRAV1–2-TRAJ33 sequences and paired with the same TRBV24–1-

TRBJ2–5 TCRβ (Supplementary Table 3). Whereas we initially interpreted these results as 

non-canonical TCRs binding to MR1, the data were more consistent with clonal expansion 

of a T cell co-expressing one TCR β chain, a TRAV1–2+ invariant MAIT TCR α chain, and 

an additional, non-canonical TCRα chain. If only the canonical TCRα chain binds MR1, 

the lower tetramer binding of these TCRs could be caused by competition of two different 

TCRα chains with the same TCRβ chain (TRBV24–1-TRBJ2–5), analogous to what has 

been described for NKT cells(49).

Finally, to reproduce our finding of dual TCRα expression on MAIT cells in an independent 

experiment, we analyzed paired TCR sequences in MR1-tetramer-binding cells from 

different blood donors(55). Although in this experiment we sorted all MR1 tetramer-binding 

T cells, including the MR1-tetramerhigh ones, we identified cells that co-expressed the 

canonical invariant TRAV1–2+ TCR α chain with a TRAV1–2– α chain in PBMC samples 

from donors of different ages, as well as healthy spleen tissues of deceased donors (Figure 

5). Collectively, our study suggests that dual-TCRα expression is common among MR1-

tetramer-binding MAIT cells in different human populations, tissue types and disease states.
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Discussion:

In this study, we hypothesized that TCRs with decreased affinity for MR1–5-OP-RU 

would reveal new TCR motifs that may prefer MR1 ligands other than 5-OP-RU or 

correlate with TB disease. Our hypothesis was motivated by the reported expansion of 

diverse MAIT cell clonotypes following Salmonella challenge of humans in individuals 

who progress to disease(57), and the discovery of new antigen classes derived from 

the related mycobacterium M. smegmatis(28). However, our search for new TCR motifs 

based on differential binding to the 5-OP-RU-loaded MR1 tetramer was confounded by 

the co-expression of two TCRα chains in the same T cell. The phenomenon of dual 

TCRα co-expression has been previously described for MHC-restricted (58, 59) and CD1d-

restricted(49) T cell subsets. Unlike the TCRβ locus, the TCRα counterpart is not subject 

to strict allelic exclusion, so dual TCRα expression is more common(60, 61). TCRα 
recombination is also known to occur simultaneously on both alleles to maximize productive 

TCRαβ recombination and diversity in the TCR repertoire(62).

The simplest explanation for the lower MR1-tetramer staining, which is also supported 

by these reports of dual TCRα chains in other systems, is that the canonical MAIT TCR 

binds to MR1, but the competition of the two TCRα chains to pair with the same pool of 

available TCRβ chains reduces the MR1-tetramer-binding intensity by reducing functional 

TCR expression on the cell surface. Hence, the hypothesis that these TCRs displayed 

preferential affinity to different MR1 antigens was not supported by the data. Importantly, 

our data point to a potentially common artifact in interpreting TCRα sequences, particularly 

from high-dimensional sequencing data(63). Since research focuses on identifying TCR 

motifs and antigen specificities of non-MHC-restricted DURT cells, including MAIT cells, 

new TCR motifs require systematic validation for MR1-specificity through TCR transfer, 

especially in light of the reported low frequency of TRAV1–2– MAIT cells(13, 20, 33, 34).

We detected dual TCRs or lower tetramer staining in multiple donors studied with different 

methods in two laboratories. These unexpectedly common observations suggest that T cells 

with invariant TCRα chains may even have a higher propensity for expression of two 

TCRα chains compared to conventional MHC-restricted T cells. Several known aspects of 

conserved TCR gene usage on MAIT cells are consistent with this hypothesis. Firstly, innate 

T cells, including MAIT(24, 64), type I NKT cells(65), and germline-encoded mycolyl 

lipid-reactive (GEM) T cells(66), express TCRs that mostly consist of genome-encoded 

segments, and few N nucleotides(7, 67). TCRα recombination starts from the proximal Vα 
and Jα genes, and proceeds outwardly towards distal Vα and Jα segments until a productive 

rearrangement occurs or the cell undergoes apoptosis(2). TRAV1–2 is the second most distal 

TCR Vα gene, located near the 5’ end of the TRA/D locus. The reliance of many invariant 

T cells on distal TCRα rearrangements involving TRAV1–2 raises the possibility that their 

thymic progenitors had extended survival windows during the CD4+CD8+ double positive 

(DP) thymocyte stage(68), when TCRα recombination took place. However, this hypothesis 

warrants additional studies. Importantly, the study emphasizes that validation of the MR1 

reactivities of new TCR motifs identified in MAIT cells should be a standard practice in the 

field, as these TCRs may be artefacts of the dual expression of TCRα chains.
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We restricted the analysis in this study to MR1-tetramer-binding MAIT cells, with the 

aim of identifying unique MAIT TCR motifs, and potentially novel antigenic specificities, 

as recently described(20, 28, 33–35). To our knowledge, a systematic analysis of the 

propensities of MHC-restricted T cells and DURTs for expression of dual TCRα chains has 

not been formally conducted. While our analyses were not intended to directly compare the 

frequency of dual TCRα expression in donor-unrestricted (innate-like) and MHC-restricted 

T cells, our study calls for caution when identifying new TCR motifs, particularly in 

DURTs. These DURTs have unique rules for recognition of non-peptide antigens and 

antigen-presenting molecules(69), and hence, functional validation of new TCR motifs is 

fundamental to this growing field. Collectively, our findings support that TRAV1–2 is the 

dominant TCRα gene used for recognition of MR1–5-OP-RU, consistent with the reported 

low frequency of alternative MAIT TCRα V-genes(13, 20, 33).
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Key points:

• MAIT cells can show different levels of binding to 5-OP-RU-loaded MR1 

tetramers

• Variable tetramer binding levels could be due to co-expression of two TCRα 
chains

• It is critical to verify MR1 binding of TRAV1–2– tetramer+ cells by gene 

transfer
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Figure 1: TRAV1–2– TCR sequences are enriched in MAIT cells with lower MR1 tetramer 
staining intensities
(A) Three examples of variable MR1 tetramer staining intensities by flow cytometry in 

pre-gated T lymphocytes in samples from uninfected, latent, and active TB participants.

(B) Gating strategy for bulk-sorted MAIT cells with different 5-OP-RU-loaded MR1 

tetramer staining intensities is shown. The pie charts depict distribution of TCRα gene 

usage from the different populations.

(C) Gating strategy to identify TRAV1–2– MAIT cells among all MR1-tetramer-binding 

cells is shown.

(D) Proportions of TRAV1–2– MAIT cells among all MR1-tetramer-binding cells in the 

Peruvian samples from healthy participants who are either uninfected or infected with 

Mycobacterium tuberculosis, and active TB patients are shown. Error bars denote medians 

and interquartile ranges.
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Figure 2: Single-cell sorted MAIT cells also show enrichment of TRAV1–2-negative TCR 
sequences
(A) Gating strategy shows single cell-sorted MAIT cells with different 5-OP-RU-loaded 

MR1 tetramer staining intensities in Peruvian latent sample no. 7–3. The pie charts depict 

distribution of TCRα gene usage from the different sorted populations.

(B) Pie charts showing distribution of TCRα V-gene usage in single-cell-sorted MR1-

tetramerhigh and MR1-tetramerlow T cells from two additional healthy blood bank donors.
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Figure 3: 
T-cell receptor sequences for additional validation by HEK293T cell transfection 

experiments. * Templates from this reaction were re-amplified using TRAV1 forward primer 

only with TRAC reverse primer (Figure 4).
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Figure 4: HEK293T cells transfected with non-TRAV1–2 TCRs from MR1-tetramer-sorted cells 
do not bind MR1
The plots show flow cytometry of human embryonic kidney (HEK) 293-T cells co-

transfected with pMIG vectors expressing CD3 and paired TCRα and TCRβ sequences 

from TCR sequences identified in sorted MR1-tetramer-binding populations with different 

MR1-binding intensities. The left panel shows gating of CD3- and CD3+ populations used 

to derive the overlayed histograms are gated on CD3- (grey) and CD3+ (black).

Suliman et al. Page 18

J Immunol. Author manuscript; available in PMC 2022 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Examples of dual TCRα-expressing MAIT cell clones detected in different sample types. 

Codes: CH (Child), AD (Adult), ED (Elderly), SP(Spleen).
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