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Abstract

Current models of early human subsistence economies suggest a focus on large mammal

hunting. To evaluate this hypothesis, we examine human bone stable isotope chemistry of

24 individuals from the early Holocene sites of Wilamaya Patjxa (9.0–8.7 cal. ka) and Soro

Mik’aya Patjxa (8.0–6.5 cal. ka) located at 3800 meters above sea level on the Andean Alti-

plano, Peru. Contrary to expectation, Bayesian mixing models based on the isotope chemis-

try reveal that plants dominated the diet, comprising 70–95% of the average diet.

Paleoethnobotanical data further show that tubers may have been the most prominent sub-

sistence resource. These findings update our understanding of earliest forager economies

and the pathway to agricultural economies in the Andean highlands. The findings further-

more suggest that the initial subsistence economies of early human populations adapting to

new landscapes may have been more plant oriented than current models suggest.

Introduction

The extent to which early human subsistence economies relied on meat versus plant foods is

debated [1, 2]. Current understanding of the earliest subsistence economies of the Andean

highlands suggest that meat was the major subsistence resource. Early Holocene assemblages,

11–5 cal. ka, consistently reveal abundant camelid and deer remains, projectile points, and

scrapers suggesting hunting-oriented economies [3–11]. For example, Rick [4] concluded that,

“The settlement pattern [of the Junı́n region] and the faunal collections [from the site of

Pachamachay] strongly support the hypothesis that vicuña, or similar camelids, were the

major food source for puna [ecosystem] hunter-gatherers.” Such observations are furthermore

consistent with diet breadth models, which suggest that early hunter-gatherer populations

would tend to target high-ranked large mammals before resorting to plant foods [12–14].
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Recent analyses of materials from the Archaic Period sites of Soro Mik’aya Patjxa (8.0–6.5

cal. ka) and Wilamaya Patjxa (ca. 8.9 cal. ka), located on the Andean Altiplano (High Plateau),

provide new opportunities to evaluate these economic models for early highland foragers. Sim-

ilar to previous research, an abundance of projectile points, scrapers, and lithic debitage indi-

cate considerable investment in the hunting of large terrestrial mammals, likely camelid and

deer [15–17]. Preliminary zooarchaeological investigations reveal abundant large-mammal

bone, consistent with a hypothesis of large mammal hunting [15, 18]. Groundstone artifacts,

though informal and infrequent, suggest some degree of investment in plant resources [15,

18]. Distinctive dental wear patterns on the upper incisors, known as lingual surface attrition

of the maxillary anterior teeth suggest intensive tuber processing [19]. Collectively, studies of

the Soro Mik’aya Patjxa and Wilamaya Patjxa materials indicate diverse diets of large mam-

mals and plants with an emphasis on large-mammal hunting, consistent with previous find-

ings at other Andean highland sites.

Despite general agreement of various lines of evidence, the evidence remains indirect.

Preservation biases that favor projectile points and animal bone compared to plant materi-

als could, to some extent, inflate the hunting signal [20–22]. The biases of previous research-

ers who have generally been males from a culture in which hunting is a distinctly masculine

pursuit could furthermore inflate the hunting signal [23]. It was ostensibly for this reason

that ethnography famously revealed plant foods to play a prominent role in forager econo-

mies—Arctic economies aside—in contrast to earlier models that emphasized hunting [24–

26]. Thus, current archaeological models and evidence leave considerable room for inter-

pretive error.

A more direct but previously unexplored measure of early Andean diets is stable isotope

chemistry of human bone. A study of bone isotope chemisty of six early Holocene (8.2–8.0 cal.

ka) individuals, including four children and two adults, from the Andean highlands of Argen-

tina finds evidence for tuber and herbivore consumption with breastfeeding and environmen-

tal aridity enriching the isotopic values [27]. The current analysis examines the diets of 24

Archaic Period foragers at the highland archaeological sites of Soro Mik’aya Patjxa and Wila-

maya Patjxa using stable carbon and nitrogen isotopes in conjunction with more traditional

zooarchaeological and paleoethnobotanical approaches. These assemblages date to the early

Holocene, collectively spanning 9.0–6.5 cal. ka [16, 18]. Given current models of early highland

economies, which point to a mixed diet of animals and plants with an emphasis on large mam-

mals, we should expect to observe the human osteological samples from Soro Mik’aya Patjxa

and Wilamaya Patjxa to exhibit dietary carbon (δ13Cdiet) and nitrogen (δ15Ndiet) values

between those of local fauna and flora with a bias toward the means of the faunal δ13C and

δ15N values.

This expectation follows from well established relationships between the isotopic composi-

tion of human bone and the foods that humans consume [28, 29]. Stable nitrogen isotopes

(δ15N) vary with trophic level. Stable carbon isotopes (δ13C) vary with photosynthetic pathway.

Such isotopic values in human bone chemistry can provide insights into major subsistence

resources including C3 plants, C4 plants, mammals, and fish. Although stable isotope analysis

does not offer taxonomic specificity beyond those broad categories, by coupling isotopic

insights with zooarchaeological and paleoethnobotanical insights, it may be possible to move

beyond preservation biases to gain more accurate estimates of human diets. Given current

understanding of highland Archaic diets, we expect zooarchaeological analysis of the Archaic

Period sites to reveal an abundance of faunal remains including vicuña, guanaco, or taruca

with few small mammal, fish, or bird remains. Paleoethnobotanical analyses should reveal

abundant wild chenopod seeds or tuber remains.
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Materials and methods

Recently discovered human burials and other cultural pit features—possibly roasting or stor-

age pits—at the Early-Late Archaic Period archaeological sites of Soro Mik’aya and Wilamaya

Patjxa afford an opportunity to evaluate models of early subsistence practices on the Andean

Altiplano. A series of radiocarbon dates place Soro Mik’aya Patjxa securely in the Middle to

Late Archaic Periods (8.0–6.5 cal. ka) [16]. Radiocarbon dates and artifact typology broadly

place Wilamaya Patjxa in the Early to Late Archaic Periods (ca. 11–5 cal. ka), with two direct

showing occupation around 9.0 cal. ka [18, 30].

Portions of the two sites were systematically excavated with site matrix and feature fill

screened using 6 mm and 1 mm screens, respectively. For each cultural feature, 10-liter bulk

soil samples were taken for flotation analysis unless the feature consisted of less than 10L, in

which case all feature sediment was collected for flotation. Flotation procedures followed

d’Alpoim Guedes et al. [31] and Lennstrom and Hastorf [32] using a modified version of Wat-

son’s [33] flotation machine.

The excavations revealed 18 cultural pit features at Soro Mik’aya Patjxa and 39 at Wilamaya

Patjxa. From these, 16 individuals were discovered at Soro Mik’aya Patjxa and 12 at Wilamaya

Patjxa. Here, we describe the laboratory methods for the three analytical approaches including

isotopic, zooarchaeological and paleoethnobotanical approaches.

Stable isotope analysis of human bone

Human bone samples were excavated and exported under Peruvian Ministry of Culture Per-

mit numbers 064-2013-DGPA-VMPCIC/MC and 138-2015-VMPCIC/MC. Stable isotope

chemistry is performed in four different labs including the University of California Davis Sta-

ble Isotopes Facility (UCDSIFS), University of California Irvine W.M. Keck Carbon Cycle

Accelerator Mass Spectrometer (KCCAMS) Facility, the University of Arizona Accelerator

Mass Spectrometry Lab (AMS), and the Penn State University Laboratory for Isotopes and

Metals in the Environment (LIME). Collagen extraction for the UCDSIFS and LIME submis-

sions is performed at the UC Davis Archaeometry Lab following the protocol of Eerkens et al.

[34]. Collagen extraction for the KCCAMS submissions follows the protocol described by

Haas et al. [18].

To assess the extent of diagenetic alterations to bone collagen, we consider atomic C/N

ratios with the expectation that reliable readings will exhibit C/N ratios in the range of 3.1–3.6

[35]. As an additional quality control measure, we compare the resultant δ13C and δ15N values

for three of the individuals—SMP9, SMP16, and WMP6—to values previously reported in

radiocarbon analyses performed by The University of Arizona AMS laboratory [16] and the

KCCAMS facility [18].

Baseline δ13C and δ15N values for candidate subsistence resources, including C3 plants, C4

plants, camelid, or freshwater fish, are compiled from published sources [36–40]. To the extent

possible, control samples are restricted to archaeological samples from the central Andean

highlands. For any modern samples included, δ13C values are corrected by +1.5‰ for Suess

effects. For any lowland samples included, δ13C values are offset +2‰ and δ15N values -1.5‰

based on the regression equations of Szpak et al. [38]. δ13C bone collagen samples are adjusted

using a -2.4‰ offset if terrestrial [41] and -3.7‰ offset if aquatic [42, 43] to adjust for meat-

bone offset.

Bayesian mixing models are used to estimate the dietary composition of the Soro Mik’aya

Patjxa and Wilamaya Patjxa individuals using the δ13C and δ15N values of the consumers and

potential food resources. Children (n = 4) are excluded from the model to prevent breast-feed-

ing effects from influencing the results. Previous research shows that trophic offsets can vary
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widely due to a variety of environmental and trophic effects [27, 44, 45]. Given the antiquity of

the system under investigation, the mobility of humans, and the volatility of isoscapes over

time, it is difficult to know which trophic correction factors apply to a dietary regime under

consideration. We therefore consider the range of possible trophic enrichment factors along

with variance terms for both δ13C and δ15N. For δ13C, we use trophic enrichment factors rang-

ing between 4.5–6.0‰, in 0.5‰ increments, with a standard deviation of 0.63‰ [45]. For

δ15N, we use trophic enrichment factors ranging between from 3–6‰, in 1‰ increments,

with a standard deviation of 0.74‰ [45]. Considering all possible combinations of trophic

enrichment factors results in 16 models for evaluation.

All models assume uniformed priors given the lack of prior knowledge on the relative die-

tary contributions of the broad resource classes. Although it might be tempting to draw on

zooarchaeological and archaeobotanical data for informative priors, differential preservation

of faunal and floral artifacts precludes this possibility.

Model runs assume both residual and process error, a chain length of 1 million, burn-in of

5000, thinning of 500, and three chains. For dietary estimates, we report median values and

95% credible intervals for each subsistence resource and each model. Model convergence is

assessed using Gelmen-Rubin and Geweke diagnostics, and the models are compared to one

another using leave-one-out cross-validation information criterion (LOOic) and Akaike Infor-

mation Criterion (AIC) weights [46]. All computation is performed using R statistical comput-

ing language [47] with Bayesian mixing modeling performed using MixSIAR package [46].

Although other packages for mixing modeling are available (e.g., FRUITS [48]), we use Mix-

SIAR [49] because of its currency, documentation, integration with R statistical computing

language, and accessibility via open-source Linux operating systems [50]. All code is made

available in S1 Data.

Zooarchaeological analysis

New faunal data are reported for Soro Mik’aya Patjxa. Wilamaya Patjxa data are derived from

a previous investigation by Noe [18]. For newly reported materials, all animal bone is weighed

and counted. Although abundant, the animal bone is highly fragmented, likely due to intensive

processing, making more precise taxonomic identification difficult. The method presented

here serves to broadly distinguish between human, small mammal, large mammal, bird, and

fish bone. Animal bone fragments are distinguished from human bone based on bone macro-

structure where (a) human bone tends to be more porous than animal bone, (b) cortical bone

tends to be thicker relative to bone diameter in animals compared to humans, (c) diaphyseal

trabecula tends to be present in human but absent in animal bone, and (d) human cranial

vaults tend to have thick dipole while animal cranial vaults tend to be more compact [51].

More detailed faunal analysis is ongoing, but the coarse analytical approach taken here is suffi-

cient to address the broad dietary question at hand.

Paleoethnobotanical analysis

All Soro Mik’aya Patjxa features, which include burial pits and pits of unknown function, are

subject to macrobotanical analysis. Samples are sorted using a stereoscopic light microscope

with 10 to 40X magnification. Due to environmental conditions in the central Altiplano and

the antiquity and exposed nature of the sites, it is highly unlikely that uncarbonized plant

remains would have preserved, so analysis is restricted to carbonized remains. Macrobotanical

remains are sorted into different tissue categories including seeds, wood, and parenchyma.

Parenchyma refers to plant storage tissue. These distinct carbonized tissues with thin-walled

cells are believed to be tuber fragments by paleoethnobotanists working in the Altiplano. All
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specimens are identified to the most specific taxonomic level possible. Paleoethnobotanical

analysis is restricted to Soro Mik’aya Patjxa with Wilamaya Patjxa paleoethnobotanical analy-

sis ongoing.

Results

Isotopic control samples compiled from the Andean literature include 96 large mammals, 84

C3 plants, 29 C4 plants, and 10 fish samples. The data reveal strong clustering of carbon and

nitrogen values by category (Fig 1, Table 1, S1 Table) providing an ideal baseline for compari-

son with the human bone samples reported here (Table 2). Twenty-four individuals from Soro

Mik’aya Patxja (SMP) and Wilamaya Patjxa (WMP) show δ15Ndiet values ranging from 2.0‰

to 8.3‰ with a mean of 3.4‰ (see Fig 1A) and δ13Cdiet values ranging from -24.3‰ to -22.9‰

with a mean of -23.7‰ (see Fig 1B).

Quality control measures indicate that the archaeological stable isotope values reported

here are reliable. Atomic C/N ratios for all but one sample—WMP1—fall within the acceptable

range of 3.1–3.6 (see Table 2), indicating that diagenetic processes have not significantly

altered the collagen [35]. Furthermore, the δ13C and δ15N values from the four previously

reported radiocarbon dates [16, 18, 30] are in close agreement with less than 1.3‰ separating

values reported among the three labs (Table 3).

The δ13C and δ15N values for the human individuals fall closest to the mean of C3 plants

with slight enrichment from some other set of resources indicating C3 dominant diets and

excluding the possibilities that mammals, C4 plants, or fish comprised large portions of the

diets (see Fig 1C). All 16 of the Bayesian mixing models indicate that adult diets were domi-

nated by C3 plants (Table 4). Median C3 plant contribution estimates range from 60–95% and

median mammal estimates range from 3–34% for all 16 models. Gelman and Geweke model

diagnostics are consistently zero or near zero, indicating that all models are plausible.

The best-fit Bayesian mixing model indicates that C3 plants comprised approximately 84%

(73–92%) of the average adult diet with meat comprising just 9% (0–24%), fish 4% (0–13%),

and C4 plants 2% (0–6%; Fig 2). This model generated the lowest LOOic value and the highest

AIC weight, and is based on a δ15N trophic enrichment factor of 6.00±0.74‰ and a δ13C tro-

phic enrichment factor of 5.00±0.63‰. However, five other models produced nearly equiva-

lent AIC weights greater than 0.10 suggesting virtually equivalent model performance. Among

these models, median C3 plant estimates range from 70–95% and mammal estimates range

between 3–23%. These results show that the particular trophic enrichment factors, ranging

from 3.0–6.0‰ for δ15N and 4.5–6.0 for δ13C, have little effect on the broad dietary estimates.

All models indicate a plant dominant diet with median values for C3 plants ranging between

70–95% and mammals ranging between 3–23%. Thus all credible subsistence models indicate

that plant foods comprised the majority of individual diets and meat played a secondary role.

These findings are inconsistent with the working hypothesis of a meat-dominant diet and

instead suggest a plant-dominant diet among early forager populations of the Andean Alti-

plano, 9.0–6.5 cal. ka.

Zooarchaeological and paleoethnobotanical observations offer some taxonomic precision

beyond the broad food categories used in the stable isotope analysis. Excavations at Soro

Mik’aya produced 3193 fragments of animal bone (number of individual specimens or NISP)

from across the site. Of the total specimens, the most frequently identified category included

200 large mammal fragments with only trace amounts of small mammal, bird, and fish bones

reported [15]. Most of these large mammal bones were burned (n = 150; 75%). A previously

published assessment of 341 faunal bone elements from Wilamaya Patjxa faunal assemblage

similarly revealed that camelid and deer bone were the most frequently identified taxa with 17
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camelid and 5 deer elements observed [18]. Notably absent, again, are small mammals, birds,

and fish. These data indicate that the slight enrichment observed in the carbon and nitrogen

values in the human bone was likely due to large mammal consumption and not small mam-

mals, fish, or birds.

The most abundant plant-food specimens in the Soro Mik’aya Patjxa paleoethnobotanical

assemblage is parenchyma tissue, identified as tuber fragments with 52 specimens found in 9

Fig 1. Carbon and nitrogen plots for control samples and 25 human bone samples from Soro Mik’aya Patjxa and Wilamaya Patjxa,

indicating a plant-dominant diet. a) δ13Cdiet values are consistent with those of C3 plants with slight enrichment from some other resource types.

b) δ15Ndiet values are most consistent with those of plants. c) Biplot of δ13C and δ15N values are consistent with a mixed diet principally based on

C3 plants with low levels of enrichment from some other resource. Dietary values assume δ13C TEF = 5.0‰, δ15N TEF = 6.0‰ based on mixing

model results (see Table 4). Dots = individual samples, ellipses = 95% variance ranges for each category, and crosshairs = mean values by category

(see Tables 1 and 2).

https://doi.org/10.1371/journal.pone.0296420.g001
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of 15 features (Fig 3, Table 5). Chenopod seeds are nearly absent with just three wild specimens

observed among three features. The most abundant paleoethnobotanical samples are non-food

resources including wood fragments (n = 448) and grass (Poaceae) seeds (n = 161) observed in

Table 1. Summary statistics for stable isotopic control data for high-altitude Andean food resources and archaeological samples from Soro Mik’aya Patjxa (SMP)

and Wilamaya Patjxa (WMP). See S1 Table for sample data.

population n δ13C mean (‰) δ13C sd (‰) δ15N mean (‰) δ15N sd (‰) references

C3 plants 84 -24.7 2.1 2.9 4.6 [36, 40]

C4 plants 29 -9.0 2.7 2.9 4.9 [36, 38, 40]

freshwater fish 10 -17.1 3.2 7.1 2.2 [40]

large terrestrial mammal 96 -21.2 2.3 6.5 2.4 [39, 52–54]

SMP/WMPdiet* 24 -23.7 0.4 3.4* 0.9 NA

*Dietary values assume δ13C TEF = 5.0‰, δ15N TEF = 6.0‰ based on mixing model results (see Table 4).

https://doi.org/10.1371/journal.pone.0296420.t001

Table 2. Human bone collagen isotopic results for Soro Mik’aya Patjxa and Wilamaya Patjxa individuals. See S2 Table for additional metadata.

burial age classa element labb δ13Craw (‰) δ15Nraw (‰) δ13Cdiet
c (‰) δ15Ndiet

c (‰) atomic C/N date (95% cal. BP)d

SMP 1 child parietal (squama) UCDSIF -18.1 10.8 -23.1 4.8 3.2 n.d.

SMP 2 adult temporal (petrous portion) UCDSIF -18.9 9.9 -23.9 3.9 3.3 n.d.

SMP 3 adult rib 10 (left) UCDSIF -18.9 9.2 -23.9 3.2 3.2 7565–7177 [16]

SMP 4 adolescent rib 1 (left) UCDSIF -19.3 8.2 -24.3 2.2 3.2 7565–7177 [16]

SMP 5 adult hand mid phalanx (right) UCDSIF -18.7 11.3 -23.7 5.3 3.2 6856–6569 [16]

SMP 6 adult metatarsal 5 (left) UCDSIF -19.3 9.2 -24.3 3.2 3.3 7153–6756 [16]

SMP 7 adolescent hand proximal phalanx (right) UCDSIF -19.1 8 -24.1 2 3.2 6780–6510 [16]

SMP 8 adult hand proximal phalanx (right) UCDSIF -19.3 8.5 -24.3 2.5 3.2 7160–6885 [16]

SMP 9 adult hand proximal phalanx (left) UCDSIF -18.5 8.6 -23.5 2.6 3.2 7465–7317 [16]

SMP 10 adult hand proximal phalanx (left) UCDSIF -18.2 9.7 -23.2 3.7 3.2 6907–6574 [16]

SMP 11 adult rib (right) UCDSIF -18.9 9.4 -23.9 3.4 3.2 6883–6669 [16]

SMP 12 adult rib (left) UCDSIF -19.1 9.1 -24.1 3.1 3.2 n.d.

SMP 13 child temporal (petrous portion) UCDSIF -17.9 11 -22.9 5 3.3 6883–6669 [16]

SMP 15 adult hand proximal phalanx (left) UCDSIF -18.8 8.7 -23.8 2.7 3.2 n.d.

SMP 16 adult mandible (right) UCDSIF -18.8 10.1 -23.8 4.1 3.3 7247–7009 [16]

WMP 1 adult tibia frag (side indeterminate) UCDSIF -18.5 9.5 -23.5 3.5 3.9 8990–8650 [30]

WMP 2 adult long bone diaphysis fragment KCCAMS -18.6 8.7 -23.6 2.7 3.3 n.d.

WMP 3 adult bone frag UCDSIF -18.6 9.9 -23.6 3.9 3.4 n.d.

WMP 5 adult left petrous portion UCDSIF -17.9 10 -22.9 4 3.4 n.d.

WMP 6 adolescent indeterminate bone fragment UCDSIF -19.1 9.2 -24.1 3.2 3.6 8992–8651 [18]

WMP 7 adult left scapula KCCAMS -19.1 8.4 -24.1 2.4 3.2 n.d.

WMP 8 adolescent 3rd molar LIME -18.7 9.8 -23.7 3.8 3.2 n.d.

WMP 9 child cranial fragment KCCAMS -18.5 8.7 -23.5 2.7 3.2 n.d.

WMP 10 child cranial fragment KCCAMS -18.3 10.2 -23.3 4.2 3.2 n.d.

mean -18.7 9.4 -23.7 3.4

standard deviation 0.4 0.9 0.4 0.9

*age classes as defined by Buikstra and Ubelaker [55]
bUCDSIF = UC Davis Stable Isotope Facility; KCCAMS = UC Irvine Keck Carbon Cycle Accelerator Mass Spectrometry facility; LIME = Penn State University

Laboratory for Isotopes and Metals in the Environment
cDietary values assume δ13C TEF = 5.0‰, δ15N TEF = 6.0‰ based on mixing model results (see Table 4).
dcalibrated using Southern Hemisphere Calibration Curve 2020 [56].

https://doi.org/10.1371/journal.pone.0296420.t002
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nearly every feature. The wood most likely reflects use as fuel. Similarly the small grass seeds

likely reflect fuel use whether from burning grasses or the dung of camelids [57]. The small

grass seeds are typical of the region, and none of the taxa are suitable for human consumption

but are excellent forage for camelids. This finding is consistent with a model of early wild

tuber consumption and other lines of evidence that suggest intensive tuber use in the region

during the Archaic Period [19, 58, 59].

Discussion

The stable isotope, faunal, and paleoethnobotanical evidence from the sites of Soro Mik’aya

Patjxa and Wilamaya Patjxa converge to indicate that C3 plants, likely wild tubers, comprised

the major component of early forager diets on the Andean Altiplano and that meat, including

Table 3. Inter-laboratory comparison of isotopic results showing consistent results and acceptable atomic C/N ratios. UCDSIFS compared to AMS and KCCAMS.

individual δ13C (‰) δ15N (‰) 14C comparisons

lab lab ID 14C age (B.P.) C/Natomic δ13C (‰) δ15N (‰)

SMP 9 -18.5 8.6 AMS AA107345 [16] 6529±41 3.2 -19.2 7.9

SMP 16 -18.8 10.1 AMS AA107490 [16] 6259±38 3.3 -18.8 9.7

WMP 1 -18.5 9.5 KCCAMS UCIAMS 259854 [30] 8010±25 3.3 -18.4 8.6

WMP 6 -19.11 9.2 KCCAMS UCIAMS 212748 [18] 8035±20 3.2 -18.8 8.2

KCCAMS UCIAMS 212749 [18] 7965±25 3.3 -19.0 8.0

https://doi.org/10.1371/journal.pone.0296420.t003

Table 4. Bayesian mixing model comparison considering different trophic enrichment factors.

model TEFa estimated dietary contribution (%)b Gelman diagnosticc Geweke diagnosticd LOOice Akaike weightf

δ13C δ15N C3 plants C4 plants fish mammals

1 4.5 3.0 60(42–76) 0(0–3) 4(0–47) 34(2–52) 0,0,0 0,0,1 -38.5 0.00

2 5.0 3.0 75(59–88) 1(0–3) 4(0–22) 19(1–36) 2,0,0 0,0,1 -36.3 0.00

3 5.5 3.0 86(75–95) 0(0–3) 3(0–12) 9(0–22) 1,0,0 0,3,2 -34.9 0.00

4 6.0 3.0 94(86–98) 0(0–2) 1(0–6) 4(0–12) 1,0,0 1,2,2 -35.5 0.00

5 4.5 4.0 62(50–78) 1(0–3) 4(0–21) 32(6–48) 0,0,0 0,0,1 -49.8 0.03

6 5.0 4.0 75(63–87) 1(0–3) 4(0–16) 20(2–36) 0,0,0 0,0,1 -48.7 0.02

7 5.5 4.0 86(75–95) 1(0–3) 3(0–11) 9(0–23) 0,0,0 0,6,0 -48.0 0.01

8 6.0 4.0 94(85–98) 0(0–2) 1(0–6) 4(0–13) 0,0,0 1,6,0 -47.6 0.01

9 4.5 5.0 70(57–83) 1(0–5) 5(0–19) 23(3–40) 0,0,0 1,9,0 -52.6 0.13

10 5.0 5.0 78(67–89) 1(0–4) 4(0–14) 16(1–31) 0,0,0 1,5,1 -52.2 0.11

11 5.5 5.0 88(77–95) 1(0–3) 3(0–10) 8(0–21) 0,0,0 0,1,2 -51.7 0.09

12 6.0 5.0 94(86–98) 0(0–2) 1(0–6) 3(0–12) 0,0,0 1,3,0 -51.1 0.06

13 4.5 6.0 79(67–88) 3(0–8) 6(0–17) 10(1–28) 0,0,0 1,10,0 -52.6 0.13

*14 5.0 6.0 84(73–92) 2(0–6) 4(0–13) 9(0–24) 0,0,0 2,0,0 -52.7 0.14

15 5.5 6.0 90(81–96) 1(0–4) 2(0–9) 6(0–17) 0,0,0 0,9,1 -52.6 0.13

16 6.0 6.0 95(88–98) 0(0–2) 1(0–6) 3(0–10) 0,0,0 0,0,9 -52.4 0.12

aTEF = trophic enrichment factor
bposterior probability median (95% range)
cvariables > 1.01, variables > 1.05, variables > 1.1 (27 variables)
dnumber of variables outside 95% confidence level for each of three chains (should be <2, or 5% of 27 variables)
eleave-one-out cross validation information criterion (LOOic) for assessing model efficacy. Smaller values indicate more powerful models.
fAkaike weight for model selection. Larger values indicate more powerful models.

*best approximating model based on LOOic and Akaike weight.

https://doi.org/10.1371/journal.pone.0296420.t004
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vicuña and taruca, played a secondary role. C4 plants, small mammals, fish, and birds appear

to have played negligible roles in these early subsistence economies. The findings presented

here depart from current thinking about early Andean highland diets and force a reconsidera-

tion of existing economic models.

One possible explanation for the unexpected emphasis on plant foods among this early

highland population may be that large mammal populations had been severely reduced by 9

cal. ka. Although the Wilamaya Patjxa assemblage includes the earliest archaeological period

of the region—the Early Archaic Period, 11.0–9.0 cal. ka—it is restricted to the latter end of the

Fig 2. Bayesian mixing model results for the six best-fit models showing that C3 plants comprised the majority of the diet and mammals

played a secondary role in the subsistence economies of Soro Mik’aya Patjxa and Wilamaya Patjxa. a. model 14, b. model 9, c. model 13, d.

model 15, e. model 16, f. model 10 (see Table 4).

https://doi.org/10.1371/journal.pone.0296420.g002

PLOS ONE Isotope chemistry reveals plant-dominant diet among early foragers on the Andean Altiplano

PLOS ONE | https://doi.org/10.1371/journal.pone.0296420 January 24, 2024 9 / 16

https://doi.org/10.1371/journal.pone.0296420.g002
https://doi.org/10.1371/journal.pone.0296420


period [18]. It is currently unclear when human populations first arrived in the region [60],

but if they arrived as early as 11 cal. ka., then humans would have been hunting the region for

2,000 years prior to the earliest individuals under investigation. This would certainly have

been enough time to decimate the region’s animal population in the absence of animal conser-

vation strategies [4]. A second possibility is that the earliest populations simply did not engage

in hunting to the extent previously thought. Previous research suggests that prey choice mod-

els may over-estimate the dietary values of large mammals whether due to physical risk [61],

prey behavior [62], or economic risks associated with long encounter intervals [63]. A third

explanatory possibility is that early highland populations relied heavily on hunting large mam-

mals but incorporated animal digesta into their diets [64], which could simultaneously account

for both the archaeological signatures of hunting—animal bone and projectile points—and the

depleted nitrogen values in human bone chemistry observed here. Evaluating these hypotheses

will ultimately require investigation of earlier archaeological assemblages.

These findings furthermore hold implications for our understanding of domestication in

the high Andes. Pearsall [65] and Kuznar [66] proposed that plant management commenced

after camelids were managed in corrals. In this view, camelids transported plant seeds to cor-

rals where they thrived in soils fertilized by camelid dung, creating a mutually beneficial

Fig 3. Results of paleoethnobotanical analysis from features at Soro Mik’aya Patjxa. Ubiquity is measured as the

proportion of archaeological features containing each taxon. Values based on 15 features, 300L of flotation, and 688

paleoethnobotanical artifacts (see Table 5).

https://doi.org/10.1371/journal.pone.0296420.g003
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relationship between camelids, plants, and human communities. Versions of this model sug-

gest that Chenopodium spp. (including the crops quinoa and kañawa) and the tuber maca

(Lepidium mevenii Walp.) were domesticated in this way. These coevolutionary processes also

likely led to the domestication of potatoes (Solanum tuberosum L.) and up to 15 other species

of roots and tubers in the Andes [67]. Consistent with this model, chenopod seeds, maca

tubers, and managed camelids appeared after about 4,000 years ago at the rock shelter site of

Panalauca where the sizes of chenopod and maca specimens increased through time [65].

Recent research into domestication mutualism supports the Andean version of the camp fol-

lower hypothesis showing that chenopods, tubers, and camelids were likely domesticated in

tandem as complementary foods [68].

While current models suggest initial co-evolutionary processes involving maca, chenopod,

and camelid intensification in the highlands, the paleoethnobotanical evidence presented here

fails to find strong evidence of early intensive chenopod use on the Altiplano during the

Archaic period. This may reflect preservation biases given the small and delicate nature of wild

chenopod seeds. Alternatively, it may be that chenopods did not become economically impor-

tant in the region until sometime after 6.5 cal. ka. A later incorporation of chenopods into the

diet would be consistent with prey choice models given the low post-encounter return rates of

small seeds relative to tubers [69].

The finding of tuber fragments at Soro Mik’aya Patjxa is consistent with the role of tubers

in the early stages of the co-evolutionary process. However, the tuber fragments are unlikely to

be maca, which is a more northerly taxon. Several tuber species could potentially account for

the tubers observed at Soro Mik’aya Patjxa, but they are most likely associated with wild potato

species, which are concentrated in the region and were likely domesticated there [59, 70–72].

Additional sites on the Altiplano should be examined with particular attention to contempora-

neous sites that would assess replicability of the current findings and to non-contemporaneous

sites that would afford diachronic comparisons.

Table 5. Carbonized macrobotanical materials from Soro Mik’aya Patjxa flotation samples.

feature flotation volume (L) human food camelid food fuel total

Chenopodium sp. parenchyma Ruppia sp. Malvaceae Potamogeton sp. Poaceae wood

2 27 0 25 0 2 0 3 57 87

3 23 0 1 1 0 0 8 20 30

4 31 1 4 0 12 0 57 75 149

5 25 0 8 0 2 0 29 33 72

6 18 0 1 0 1 1 4 35 42

7 1 0 0 0 0 0 1 0 1

8 5 0 0 0 0 0 0 2 2

9 10 0 3 0 0 0 5 7 15

10 25 1 0 0 2 0 10 91 104

13 33 0 1 0 0 0 2 19 22

14 12 0 6 0 0 0 1 49 56

14/15* 13 0 2 0 0 0 4 41 47

15 10 0 0 0 0 0 6 8 14

16 48 1 1 0 3 0 28 0 33

17 9 0 0 0 0 0 0 0 0

18 10 0 0 0 0 0 3 11 14

total 300 3 52 1 22 1 161 448 688

*sample contexts mixed. Excluded from ubiquity calculations.

https://doi.org/10.1371/journal.pone.0296420.t005
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In sum, the results presented here are consistent with a model of human-tuber-camelid co-

evolutionary dynamics beginning approximately 9,000 years ago on the Andean Altiplano.

These findings support an updated model of Archaic Period subsistence practices in the cen-

tral high Andes in which forager subsistence economies 9.0–6.5 cal. ka. emphasized plant for-

aging with lesser attention to large mammal hunting and a virtual absence of small animal

hunting and fishing. This resource base may have catalyzed potato and camelid domestication

in the subsequent Terminal Archaic Period after 5 cal. ka [58].

These findings further highlight the need to re-evaluate anthropological understanding of

early forager diets more generally. Current perspectives vary with some models emphasizing

the primacy of plants and others of animals [1, 2] with plant foraging becoming increasingly

important relatively late in time on the eve of agriculture [73]. This may still be so, but the cur-

rent analysis suggests that the shift to plant-foraging economies may have happened relatively

rapidly, evidently having transpired in less than 2,000 years in the Andean case. This observa-

tion resonates with recent archaeological theory and findings that reveal a prominent role for

plant foods in early forager diets [31, 74, 75] and ethnographic findings of the 1960s when,

contrary to dominant thinking of the time, many subsistence economies once thought to be

meat-dominant were shown to be plant-dominant [24, 25]. Stable isotope chemistry gives

archaeologists the opportunity to reliably extend such investigations into the deep past. The

current study arrives at a similar place to the earlier ethnographic findings—plant foods were

central to early human economies.
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