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Abstract

Quantum metrology with trapped ions

by

Joseph D. Broz

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Hartmut Häffner, Chair

We present the results of an experiment that used the quantized motion of an ion trapped
in a harmonic pseudopotential to test for nonlinear extensions of quantum mechanics. This
test was motivated by the development of a recent, consistent theory of nonlinear quantum
mechanics that, in contrast to previous frameworks, also preserves causality. This experiment
represents the first test of this new theory in a fully quantum system and improved the bounds
on potential nonlinear effects in quantum mechanics inferred from previous experimental
results by about seven orders of magnitude.

We also present the results of an experiment that used two entangled ions to test for local
violations of Lorentz invariance and which tightened the bound on such hypothetical viola-
tions by about half of an order of magnitude. In particular, this experiment used a special
entangled state of the ions, residing within a decoherence free subspace, which is immune
to the dominant source of noise. By comparing our results against a similar experiment,
performed with two non-entangled ions, we verify the expected factor-of-two improvement
in the signal-to-noise ratio predicted by theory. This improvement can be directly attributed
to the use of entanglement and, thus, this work provides a case study of how entanglement
can be leveraged as a resource to fundamentally enhance the performance of spectroscopic
measurements.
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Chapter 1

Introduction

1.1 Motivation
Systems of ions trapped using oscillating electric fields have proven over time to be one

of the most well-controlled, accessible and pristine test beds of quantum mechanics available
for experiment. Using well-focused laser beams, pairs of electronic states in individual ions
can be resonantly selected and precisely manipulated. Effective interactions between the
electronic states of multiple ions can be mediated via the Coulomb repulsion inherently
present when simultaneously trapping multiple ions in the same harmonic confining potential.
This effective interaction can be leveraged to engineer complex many-body entangled states
between the internal electronic states of the ions. In addition, the strongly coupled motion
of the ions itself represents a controllable quantum resource, particularly when combined
with laser cooling capable of lowering the temperature of even large chains of ions near to
its quantum ground state.

These features have allowed trapped ion systems to develop into one of the leading tech-
nological platforms pushing the bounds of the so-called second quantum revolution [25]. In
the first quantum revolution, the theory of quantum mechanics was laid out, convincingly
verified by experiment and used to explain macroscopically observed phenomena that could
otherwise not be explained by classical theory. In contrast, the second quantum revolution
involves engineering well-controlled quantum systems to perform tasks in a way that is fun-
damentally superior to what can be achieved by classical devices. Such tasks fall under the
broad moniker of quantum information processing and includes digital quantum computa-
tion, analog quantum simulation and quantum metrology.

In this thesis, we will describe two quantum metrological experiments performed with
singly-ionized atoms of 40Ca. In the first, we test the superposition principle of quantum
mechanics itself, by building an interferometer out of the two branches of a superposition of
the ground and first excited vibrational states of a single 40Ca ion. According to a recent
theory of nonlinear quantum mechanics [52], such a state is expected to experience a relative
energy shift that depends on the population weightings of these two branches. This theory is
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fully causal, in contrast to previous efforts and, ultimately for this reason, its effects turn out
to be rather difficult to observe with standard atomic or nuclear spectroscopy. In the second
experiment, we explicitly make use of entanglement as a resource by engineering a special
entangled state of the internal electronic degrees of freedom of two ions that is first-order
insensitive to the dominant noise source. We then use this state to experimentally determine,
what was at the time, the most stringent bound on violations of Lorentz invariance for the
dispersion relation of the electron.

1.2 Structure
This document is organized as follows. In Chapter 2 we provide a basic overview of the

most important physical concepts underlying the design of the experiments performed in this
thesis. This is followed, in Chapter 3 with a summary of the basic set of the procedures and
techniques common to these experiments. Then in Chapter 4, we describe the actual physical
apparatus within which these experiments were performed. Finally, in Chapters 5 and 5, we
describe the two experiments comprising the main work of this thesis. In particular, Chapter
5 covers our search for causal nonlinear corrections to quantum mechanics and Chapter 6
covers our search for violations of Lorentz invariance.
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Chapter 2

Theoretical framework

2.1 Introduction
This chapter is intended to provide a general, but basic, overview of the physical concepts

that underlie the trapped ion experiments described in Chapters 5 and 6. In Section 2.2 we
describe how a combination of AC and DC electric fields can be used to confine ionized atoms
in a small region of space and the classical and quantum properties of the structures that a
collection of ions will form when cooled to near to their ground state of motion. In Section
2.3 we describe the electronic structure of the singly-ionized 40Ca atoms that we utilize in
experiments. In Section 2.4 we describe how this internal structure may be experimentally
tuned via the application of an external, static magnetic field. And, finally, in Section 2.6
we describe the dynamical response of an ion’s internal and external degrees of freedom to
a well-focused and coherent laser beam.
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2.2 Trapping ions

Ponderomotive forces and the pseudopotential approximation
The most fundamental reason for ionizing the atoms in our experiments is to leverage

the strong Coulomb force in order to stably pin them down in place. But this ends up being
a nontrivial task due to the fact that it is not possible to confine charged particles in free
space using only static electric fields. This is known as Earnshaw’s theorem [40] and is a
direct consequence of Gauss’s law, which requires that the instantaneous electric flux (and,
thus, force) through any closed surface in free space be zero (see Figure 2.1).

However, if an electric field is allowed to oscillate rapidly in time, then Earnshaw’s the-
orem no longer applies. In this case, an effective, time-averaged force can be generated that
always drives a charged particle towards regions where the magnitude of the (unmodulated)
electric field is weaker [34]. One can then use, for example, an oscillating electric quadrupole
potential to stably trap an ion, which we will discuss in the next section [77, 23].

But first, we describe the nature of this time-averaged force, known as a ponderomotive
force. We start by considering an electric field of the form:

E(r, t) = E0(r)cos(Ωt) (2.1)

The motion of a particle of mass m and charge q placed in this field is described by:

mr̈ = qE0(r)cos(Ωt) (2.2)

Clearly, the field will cause the particle to oscillate at a frequency of Ω. But, if E0(r)
is nonuniform, its mean position will also drift on a slower time scale since the net force

+

Figure 2.1: Illustration of Earnshaw’s theorem. The arrows represent electric flux lines
oriented in such a way as to provide a restoring force to a positively charged test particle
when perturbed in any direction. But this configuration necessarily violates Gauss’s law,
since it implies a net electric flux into the sphere.
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accumulated over each period of its oscillation will generally be nonzero (see Figure 2.2).
This motivates us to explicitly separate the trajectory of the particle into two components:

r = rM + rµ (2.3)

where rµ describes the fast oscillations and rM describes the slower accumulated drift. We
can then Taylor expand the field in Equation 2.2 about rM :

m(r̈M + r̈µ) = q[E0(rM) +∇E0(rM)rµ + . . .]cos(Ωt) (2.4)

Now, because the particle has finite inertia, it is always possible to choose a sufficiently
large Ω such that the following conditions hold:

|E0(rM)| � |∇E0(rM)rµ| (2.5)
|r̈µ| � |r̈M | (2.6)

where both comparisons are meant to be interpreted element-wise1 and the first condition
simply implies that the particle does not have a chance, during a single period of its oscilla-
tion, to substantially probe the curvature of the field. In the following we will also assume
that the drift velocity satisfies the condition |ṙM | � |rµΩ| such that rM does not change
appreciably during a period of oscillation. However, this is not strictly necessary so long as
Equation 2.6 is satisfied [23].

Under these assumptions, the expansion in Equation 2.4 can be truncated after zeroth
order and a solution for rµ can be easily found2:

mr̈µ ≈ qE0(rM)cos(Ωt)

=⇒ rµ(t) ≈ −qE0(rM)

mΩ2
cos(Ωt) (2.7)

And by substituting this into Equation 2.4 and averaging the whole expression over a single
modulation period, we can also find an approximate solution for rM :

〈mr̈M +���mr̈µ〉 ≈
〈
(((((((((
qE0(rM)cos(Ωt) + q∇E0(rM)rµcos(Ωt)

〉
=⇒ mr̈M ≈ − q2

mΩ2
∇E0(rM)E0(rM)〈cos2(Ωt)〉

= − q2

2mΩ2
∇E0(rM)E0(rM) (2.8)

1For example, Equation 2.5 should be written: |[E0(rM )]i| � |[∇E0(rM )rµ]i|, ∀i
2When integrating to get Equation 2.7, we assume that rµ(0) = ṙµ(0) = 0 since any initial non zero

position or velocity is incorporated into rM
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Figure 2.2: Illustration of a Ponderomotive force. The top is a snapshot of the particle’s
position when r > rM . The bottom is a similar snapshot when r < rM . In both cases the
force acts in a direction so as to restore r to rM but, because the electric field E0(r) has a
finite gradient, the magnitude of the force is greater in the former case than in the latter.
When averaged over a full period of modulation, the net force is known as a ponderomotive
force.

where crossed out terms have a time-averaged value of zero.
The last line of Equation 2.8 is the ponderomotive force that we alluded to earlier. We

can rewrite it in terms of a notional potential ψ(rM), known as a psuedopotential:

mr̈M = −∇ψ(rM), ψ(rM) =
q2E2

0(rM)

4mΩ2
(2.9)

which makes it obvious that the ponderomotive force always acts to drive the particle towards
a region where the magnitude of the electric field is weaker3.

In summary, if a charged particle is driven by an alternating electric field, then it will
oscillate. If these oscillations are fast enough, then the particle will not have a chance to
probe the curvature of the field throughout a single period of its motion. Because of the
particle’s inertia, its oscillations will be mostly out of phase with the driving field, such that
the effect of the field on these time scales is always to return the particle to nearly the same
position. But, if the field has a finite gradient, then during the half-period of oscillation when
the position of the particle is greater than its approximate mean, the force it experiences will
be greater than during the other half-period when its position is less than its approximate
mean. The net force experienced by the particle averaged over a full period of oscillation is
known as a ponderomotive force. This is illustrated in Figure 2.2.

3Independent even of the sign of q.
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Paul trap

Figure 2.3: Paul trap. Ions are trapped using a combination of RF and DC potentials applied
to the red/blue blade electrodes and black endcaps.

In practice, the electrode configuration used to trap ions is similar in design to the one
shown in Figure 2.3. Trapping in the radial plane is achieved by driving the red, or ”blade”
electrodes, with an oscillating, radiofrequency (RF) potential VRFcos(Ωt) and, optionally, by
driving the blue electrodes with a static or DC potential Uy. Trapping in the axial direction
is achieved by driving the black electrodes, or ”endcaps,” with a DC potential Uz. The whole
assembly is known as a ”Paul trap” after its inventor Wolfgang Paul [77].

We first consider trapping in the radial direction when Ur = 0. If the length L of the
blade electrodes is large relative to their separation R, then the potential for points near the
center (yellow sphere in Figure 2.3) has the form of an oscillating, two-dimensional electric
quadrupole4:

ΦRF(r, t) =
VRF/2

R̃2
(x2 − y2)cos(Ωt) (2.10)

which generates the electric field:

E(r, t) = −∇ΦRF(r, t) = −VRF

R̃2
(xx̂− yŷ)cos(Ωt) (2.11)

According to Equation 2.9, the ion will then experience the pseudopotential:

ψ(r) =
1

2
mω2

r(x
2 + y2), ωr =

qVRF√
2mR̃2Ω

(2.12)

which has the form of a harmonic confining potential with a radial trapping frequency ωr.
This is illustrated in Figure 2.4.

4R̃ ∼ R. The tilde denotes the possibility that R be scaled by some geometric factor, which can be
determined empirically [60].
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From Equations 2.5-2.6 and our explicit expression for E(r, t), we can check under what
conditions the pseudopotential approximation is valid. In both cases, we find that we require:

ωr

Ω
=

qV√
2mΩR̃2

� 1 (2.13)

From Equation 2.7, we can also find the first-order correction to the pseudopotential approx-
imation for the ion’s trajectory:

ri(t) = Aicos(ωrt+ φi)

[
1 +

√
2

(
ωr

Ω

)
cos(Ωt)

]
(2.14)

where ri ∈ {x, y} and Ai, φi are determined by initial conditions. In this context, the fast
oscillating term in Equation 2.14 is known as micromotion.

All of this implies that there is a trade-off between choosing a larger Ω to improve the
pseudopotential approximation (and reduce the micromotion) and choosing a smaller Ω to
increase the radial trapping frequency (which requires some micromotion to generate the
ponderomotive force in the first place). In our lab, we have a rule of thumb that ωr should
be at least an order of magnitude smaller than Ω. Otherwise, it is possible to have a situation
where the field is still confining, but the breakdown of the approximation is enough to cause
practical problems. The orders of magnitude for our typical choices of trapping parameters
are given in Table 2.1.

It is possible to confine ions in all three dimensions using only RF fields [77]. But for our
purposes, it is more convenient to achieve confinement along the z-direction with DC fields.
Ideally, this is done by applying an equal voltage Uz to both endcaps. Keeping only terms
up to second order, the resulting potential5 is given approximately by:

Φendcaps(r) =
Uz

Z̃2
[z2 − 1

2
(x2 + y2)] (2.15)

Summing this with ψ, the full potential is then:

Φ(r) =
1

2
m[ω′2

r (x
2 + y2) + ω2

zz
2] (2.16)

ω′2
r = ω2

r −
1

2
ω2
z , ω2

z =
2Uz

mZ̃2
(2.17)

So that stable confinement is possible as long as ω2
r > ω2

z/2.
Typically, a nonzero voltage Uy is also applied to break the degeneracy of the trapping

frequencies in the radial plane and allow for full control over the anisotropy of the harmonic
confining potential. The most general form of the Paul trap potential is then:

Φ(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.18)

5Again Z̃ ∼ Z. See footnote 3.
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Figure 2.4: The two-dimensional pseudopotential used to confine ions in the radial plane.
On the left is pictured the unmodulated potential, which has the form of a quadrupole. On
the right is pictured the time-averaged effect of the same potential but now modulated at
an RF frequency of Ω. In both cases, what is shown is a slice through the radial plane of
the full three-dimensional potential which extends a relatively large distance L/2 in both
directions of the (orthogonal) z-axis. Figure adapted from [81].

where:

ωx =

√
q2VRF2

2m2R̃4Ω2
− Uz

mZ̃2
− Uy

mR̃2
(2.19)

ωy =

√
q2VRF2

2m2R̃4Ω2
+

2Uy

mZ̃2
− Uz

mZ̃2
(2.20)

ωz =

√
2Uz

mZ̃2
− Uy

mR̃2
(2.21)
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Physical Parameter Typical Value (order of magnitude)
ωr 2π× 3 MHz
ωz 2π× 1 MHz
Ω 2π× 30 MHz
V 1 kV
R 1 mm
Z 3 mm
M 10−22 g

trap depth [17] 1 eV, corresponding to a temperature of ∼ 104 K

Table 2.1: Typical ion trapping parameters. V , R and Z can vary depending on the specific
design of the trapping electrodes.

Excess micromotion
Usually, it is safe to interpret the pseudopotential in Equation 2.18 quite literally, and

for the remainder of this thesis unless otherwise specified we will. However, micromotion
can cause several deleterious effects, and there are certain cases where it cannot be ignored.
These effects are amplified if, in addition to the intrinsic micromotion required for the pon-
deromotive force, an extraneous or excess micromotion is present in the system. There can
be multiple reasons for this:

• geometric trap imperfections (e.g. misalignment of the radial and axial potential null
points),

• a small phase difference between the RF electrodes,

• spurious RF pickup6 (e.g. on the axial electrodes),

• stray electric fields.

As described in [7], these effects can be incorporated by modifying the description of the
ion’s trajectory in Equation 2.14:

ri(t) ≈ (r′i + Aicos)(ωit+ φi)[1−
√
2(ωr/Ω)cos(Ωt)] + βsin(Ωt) (2.22)

where r′i describes a displacement of the ion’s equilibrium position due to a stray electric
field Ei:

r′i ≈
QEi

mω2
i

(2.23)

6Present when, for example, there is a phase difference between the RF electrodes.
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Figure 2.5: Micromotion. Left: The dashed line represents the trajectory of the ion under
the pseudopotential approximation. In reality, some finite micromotion is necessary to gen-
erate the ponderomotive force. The solid line represents the ion’s trajectory when including
this intrinsic micromotion to first-order. Right: The purple curve illustrates the effect of a
mean displacement of the ion’s position from the null point of the pseudopotential due to
a stray electric field. The red curve illustrates the effect of a phase imbalance between a
pair of RF electrodes. In both cases, the magnitude of the micromotion is increased. This
is termed ”excess” micromotion.

and β is proportional to the phase difference between electrodes. An illustration of these
effects is shown in Figure 2.22.

For the experimental apparatus used in this thesis, stray electric fields were the domi-
nant source of excess micromotion. Such fields can be caused by laser-induced charging of
dielectrics near the trap (for example, the mounting structure for the trap electrodes or even
thin oxide layers formed on the electrodes themselves) and may change over time. Our actual
trapping apparatus includes in-situ compensation electrodes for balancing out the effect of
any stray electric fields (see Chapter 4) such that the trapping point (at least for a single
ion) is at the true null of the quadrupole potentials (radial and axial). The procedure for
doing this is described in detail in [82, 39].

Trapping multiple ions
When there are multiple ions present in a trap, we must also take into account their

mutual Coulomb interaction. If the kinetic energy of the ions is large, then the resulting
dynamics will generally be complicated and chaotic [73]. But with laser cooling, the kinetic
energy can be reduced to within a fraction of its quantum zero-point value. In this case,
the ions will crystallize close to an equilibrium configuration where each ion positions itself
such that the harmonic confining force it experiences is exactly balanced by the inter-ionic
Coulomb repulsion. Since stable trapping requires that the confining strength be set weaker
in the axial direction than in the radial directions, the structure of this crystal will be that
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of a linear chain oriented along the axial direction7. Residual motion is then well-described
by small excursions away from this equilibrium where, to good approximation, the Coulomb
repulsion can be linearized.

In Appendix A, we describe how to find the equilibrium positions and motional structure
for chains containing an arbitrary number of ions (including cases where the mass and charge
of the ions are nonuniform). However, we rarely worked with chains of more than two ions
for the experiments covered in this thesis, so here we will provide a simpler, intuitive analysis
considering only this case.

The equilibrium separation between two ions along the axial direction can be found by
setting the inter-ion Coulomb repulsion equal to the confining force generated by the Paul
trap:

mω2
z

Z

2
=

e2

kZ2
=⇒ Z =

(
2e2

kmω2
z

)1/3

∼ 10 µm for ωz ∼ 2π × 1 MHz (2.24)

where k = 4πε0. Now, we consider small, axial excursions away from equilibrium, character-
ized by the quantities δz1 and δz2 where we assume δz1, δz2 � Z (see Figure 2.6). We are
looking for the first-order, linear response to these perturbations, so we Taylor expand the
Coulomb repulsion:

Figure 2.6: Axial normal modes. Left: Correlated, center of mass motion. Right: Anti-
correlated, stretch motion. z1, z2 are the equilibrium positions of the ions and Z is their
equilibrium separation. δz1, δz2 are small displacements away from equilibrium along the
axial (ẑ) direction.

7Even inside the parameter space of three-dimensional confinement, there still exists a finite ratio
ωradial/ωaxial ≈ 0.77N/

√
logN below which the linearity of the ions will break and the chain will begin

to develop kinks [28].
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F
(2)
C,ẑ =

e2

k[Z + (δz2 − δz1)]2
≈ e2

kZ2

[
1− 2

δz2 − δz1
Z

]
= mω2

z

Z

2
−mω2

z(δz2 − δz1) (2.25)

where F (2)
C,ẑ denotes the Coulomb force, in the z-direction, felt by the second ion due to the

first ion and F
(1)
C,ẑ = −F (2)

C,ẑ. Including the trapping force, the full equations of motion are
then:

m ¨δz1 = mω2
z

Z

2
−mω2

zδz1 −mω2
z

Z

2
+mω2

z(δz2 − δz1) (2.26)

m ¨δz2 = −mω2
z

Z

2
+mω2

zδz2 +mω2
z

Z

2
−mω2

z(δz2 − δz1) (2.27)

If we define the two new coordinates δzcom = δz2 + δz1 and δzstretch = δz2 − δz1, we can
add/substract Equations 2.26, 2.27 to find:

mδ̈zcom = −mω2
zδzcom (2.28)

mδ̈zstretch = −m3ω2
zδzstretch (2.29)

The center of mass coordinate δzcom describes the correlated vibrational motion of the ions
and the stretch coordinate δzstretch describes the anti-correlated vibrational motion. Any
allowed state of motion can be written as some superposition of these coordinates. The
center of mass vibrational frequency, ωz,com = ωz, is the same as the single-ion vibrational
frequency. On the other hand, the frequency of the stretch mode is larger: ωz,stretch =

√
3ωz.

The same procedure can be repeated for displacements in the radial directions. To be
specific, we will consider the x-direction, but the following holds for the y-direction as well.
First, we linearize the Coulomb repulsion:

|FC | =
e2

k[Z2 + (δx2 − δx1)2]
≈ e2

kZ2

[
1−

(
δx2 − δx1

Z

)2]
≈ mω2

z

Z

2
(2.30)

In this case, the force in the z-direction is also affected (see Figure 2.7) but, to first-order in
δx1, δx2, the change is negligible:

F
(2)
C,ẑ = |FC |cos(θ) = |FC |

Z√
Z2 + (δx2 − δx1)2

≈ |FC | (2.31)

F
(2)
C,x̂ = |FC |sin(θ) = |FC |

δx2 − δx1√
Z2 + (δx2 − δx1)2

≈ |FC |
δx2 − δx1

Z
(2.32)
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Figure 2.7: Radial normal modes. Left: Correlated, center of mass motion. Right: Anti-
correlated, rocking motion. The rocking motion also affects the force in the z-direction but,
to first-order in δx1, δx2, this is negligible.

where F (1)
C,x̂ = −F (2)

C,x̂. Including the trapping force, the equations of motion are:

m ¨δx1 = −mω2
xδx1 +

1

2
mω2

z(δx2 − δx1) (2.33)

m ¨δx2 = −mω2
xδx2 −

1

2
mω2

z(δx2 − δx1) (2.34)

And we can define the new coordinates δxcom = δx2 + δx1, δxrocking = δx2 − δx1 such that:

mδ̈xcom = −mω2
xδxcom (2.35)

mδ̈xrocking = −m(ω2
x − ω2

z)δzrocking (2.36)

Once again, the radial center of mass vibrational frequency is equal to the single-ion vi-
brational frequency. ωx,com = ωz. However, as opposed to the axial stretch mode, the
vibrational frequency of the radial rocking mode is smaller than for the center of mass mode:
ωx,rocking =

√
ω2
x − ω2

z .
Several observations can be generalized to larger ion chains:

• For homogeneous chains, there will always be a unique center of mass mode.

We can construct a center of mass mode equation for an N -ion chain the same way as we
did for two, by summing the equivalent of Equations 2.26-2.27 and 2.33-2.34. By symmetry,
the Coulomb repulsion terms on the right-hand side will cancel out and on the left-hand side
we will have

∑N
i mδ̈αi = mδ̈αcom where α ∈ {x, y, z}. However, this only works if all of the

masses are equal otherwise there will not generally be a unique center of mass mode.



CHAPTER 2. THEORETICAL FRAMEWORK 15

• The center of mass mode is the lowest frequency made in the axial direction, but the
largest frequency mode in the axial direction.

The reason for this is that any anti-correlated motion in the axial direction requires the
ions to come closer to each other than their equilibrium separation and this requires more
energy. On the other hand, anti-correlated motion in the radial directions only results in the
ions being further apart from each other.

• The splitting of the mode frequencies in the radial directions is much smaller than in
the axial direction.

This can be understood by noting that a slight change to the position of one ion in the
axial directions causes a change in the separation distance of:

Z + δz

Z
= 1 +

δz

Z
whereas the same perturbation in the radial direction only changes the separation distance
by:

√
Z2 + δx2

Z
∼ 1 +

1

2

(
δx

Z

)2

(2.37)

which is much smaller.

• The lowest-order correction to Equation 2.31 results in a coupling between the radial
rocking mode and the axial stretch mode.

This can be resonantly enhanced if the two modes are similar in frequency [84] and we
have measured this effect experimentally.

Quantum treatment of trapped ion motion
So far our description of ion trapping has been entirely classical. But with laser cooling,

we often work in a regime where the thermal energy of the ions is comparable to their
quantum ground state energy. This means that a full, quantum description of the motion is
necessary. On the other hand, it turns out that treating the confining potential as classical
remains completely sufficient. So we can carry forward all of our previous results and quantize
the ionic motion in an ad hoc manner by constructing the appropriate classical Hamiltonian
and applying the canonical quantization to the motional degrees of freedom. Then one will
find that the Hamiltonian for a linear chain of ions is described by a collection of quantum
harmonic oscillators [51, 47]:,

Ĥ =
∑

α∈(x,y,z)

N∑
l=1

~να,l(â†α,lâα,l + 1/2) (2.38)
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where each l is associated with a normal mode solution to Equation A.14 and â†α,l, âα,l are
annihilation and creation operators satisfying the normal commutation relation:

[âα,l, â
†
α,k, ] = δlk (2.39)

In this basis, the motion of the ith ion relative to its equilibrium position along the α
spatial axis is described by the quantum position and momentum operators:

x̂α,i =
N∑
l=1

β
(α)
i,l

√
~

2miνα,l
(â†α,l + âα,l) (2.40)

p̂α,i = i
N∑
l=1

β
(α)
i,l

√
~miνα,l

2
(â†α,l − âα,l) (2.41)

such that [x̂α,i, p̂α,j] = i~δij. Here β
(α)
l is a normalized vector describing the participation

of the ions in the lth mode (see Appendix A). In general, scales with the number of ions
as β(α)

i,l ∼ 1/
√
N , where this relationship holds exactly for the center of mass modes. The

characteristic spread of the position-space wavefunction for the ion in the lth mode is:

√
〈n|x̂2α,i|n〉 = |β(α)

i,l |
√
2n+ 1

√
~

2miνα,l
(2.42)

where |n〉 refers to the nth Fock state. For a single ion of calcium, this amounts to about
10 nm in the ground state. This justifies our linearization of the Coulomb force in the
preceding section for typical experimental conditions, where the mean Fock state occupancy
〈n〉 is rarely more than 10 (and usually much smaller).

Note: these results assume that the pseudopotential approximation in Equation 2.18
holds exactly. It is possible to perform a similar quantization of the motion while explicitly
taking into account the time modulation [58] of the trapping potentials. The main takeaway
is that the pseudopotential still remains a good approximation even in the quantum case.
The dominant correction manifests when an ion is addressed by laser light. In this case, in
the ion’s frame of reference, it appears as though the light is modulated at the frequency of
its micromotion.
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2.3 Electronic structure of 40Ca+

42S1/2

42P3/2
6.924 ns

40Ca+

Electronic energy 
levels

866 nm
1.481 MHz
866 nm
1.481 MHz

854 nm
1.351 MHz
854 nm
1.351 MHz

393 nm
21.50 MHz
393 nm
21.50 MHz

397 nm
21.57 MHz
397 nm
21.57 MHz

729 nm
136.3 mHz
729 nm
136.3 mHz

850 nm
0.152 MHz
850 nm
0.152 MHz

732 nm
135.3 mHz
732 nm
135.3 mHz

βP

-2βP

2βD

-3βD

42P1/2
6.91 ns

32D5/2
1.169 s

32D3/2
1.176 s

Figure 2.8: Low lying excited state structure of 40Ca+. Lengths denote transition wave-
lengths and frequencies denote the corresponding linewidths. Times characterize the typical
duration that an excited state will be occupied before it spontaneously decays to a lower-
energy state via the emission of a photon. The βs denote the spin-orbit splitting of the Enl

energy levels into fine structure doublets characterized by a particular value of j. These are
labelled according to the standard spectroscopic notation (Equation 2.52) Each fine struc-
ture level has a 2j + 1 degeneracy corresponding to the eigenstates of Ĵz.

Central field approximation
The experiments in this thesis were performed using singly-ionized atoms of 40Ca+, which

has a ground state configuration of [Ar]4s1. Ions (or atoms) with configurations such as
this, containing only a single electron in the valence shell, are said to be hydrogen-like
since they can be pictured as a single, weakly-bound valence electron orbiting a much more
strongly bound, positively-charged and spherically-symmetric8, inner argon core. The low-
lying excited state structure is almost entirely dictated by the coordinates of the valence

8Since the total orbital angular momentum of any closed electronic subshell in an isolated atom must be
zero, the charge distribution of the argon core must be spherically symmetric.
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electron, while the wavefunction for the core electrons remains essentially constant. Thus, we
can provide a reasonable description of the excited state structure with the following central,
single-particle Hamiltonian, which only tracks the coordinates of the valence electron [53]:

ĤCF =
p̂2

2me

+ UCF(r̂) (2.43)

Here, me is the valence electron’s mass9, p̂ is its momentum, r̂ is its separation from the
nucleus and UCF is its potential energy, which results from the combination of its interaction
with the nuclear charge and with the mean field of the inner core.

Coarse structure
Just as with hydrogen, the spherical symmetry of ĤCF implies that states with well-

defined energy also have a well-defined angular momentum L̂ = r̂×mev̂. That is:

ĤCFψnlml
(r̂) = Enlψnlml

(r̂) (2.44)
L̂2ψnlml

(r̂) = ~2l(l + 1)ψnlml
(r̂) (2.45)

L̂zψnlml
(r̂) = ~mlψnlml

(r̂) (2.46)

where the wavefunction can be separated into radial and angular components:

ψnlml
(r̂) = Rnl(r̂)Ylml

(θ̂, φ̂) (2.47)
with Ylml

the normal angular momentum eigenstates (spherical harmonics).
The radial wavefunction Rnl determines the separation between the valence electron

and the nucleus and groups its stationary states into distinct shells, characterized by the
quantum number n, and consisting of states with different angular momenta but a similar
mean nuclear separation. The precise value of the mean nuclear separation depends on l due
to a centrifugal term in ĤCF [41]. Intuitively, states with higher orbital angular momentum
are less likely to be found nearer to the nucleus.

The same is true for hydrogen. However, ĤCF does not have the ”accidental” degeneracy
present in the (nonrelativistic) hydrogen Hamiltonian, where Enl = En [31]. The presence
of the inner electrons acts to shield the valence electron from experiencing the full nuclear
charge but states with smaller l, that spend more time closer to the nucleus, experience less
shielding and, thus, a stronger attraction to the nucleus. This effect is enough to shift the
energy of the |n = 4, l = 0,ml〉 states of 40Ca+ below the energy of the |n = 3, l = 2,ml〉
states and largely defines the ion’s coarse electronic structure. The splitting between the
lowest excited states is on the order of tens of electronvolts (as shown in Figure 2.8), leading
to transition energies in the visible spectrum, which is typical for singly-ionized alkaline
earth metals.

9Or, better, the reduced mass of the valence electron and nucleus.
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In order to fully describe a stationary state of the ion, we must also specify the orientation
of the valence electron’s intrinsic spin. This is defined relative to its observed magnetic dipole
moment µ̂S:

µ̂S = −gsµB
Ŝ

~
(2.48)

where ge ≈ 2 is the electron g-factor and µB = e~/2me is the Bohr magneton. Ŝ obeys an
analogous set of relationships to L̂:

Ŝ2ψnlml
(r̂)|s,ms〉 = ~2s(s+ 1)ψnlml

(r̂)|s,ms〉 (2.49)
Ŝzψnlml

(r̂)|s,ms〉 = ~msψnlml
(r̂)|s,ms〉 (2.50)

except in this case we always have s = 1/2, which restricts ms = ±1/2.
The set of operators {ĤCF, L̂

2, L̂z, Ŝ
2, Ŝz} constitute a complete set of commuting observ-

ables (CSCO) [22] and the corresponding quantum numbers are sufficient to fully specify an
arbitrary stationary state of 40Ca+ as:

|n, l,ml, s,ms〉 =
∫
d3r ψnlml

(r)|r〉|s,ms〉 (2.51)

But note that there is a high degree of degeneracy since states which share the same n
and l but different ml and ms have the same energy under ĤCF. According to the rules of
angular momentum in quantum mechanics, for a given value of l, ml is allowed to be any
of {−l,−l + 1, ..., l − 1, l} leading to a degeneracy of (2l + 1). And since, for each of these
values, ms can be either ±1/2, the total degeneracy of states with energy Enl is twice this
2(2l + 1).

It is standard to label ionic energy levels using the spectroscopic notation:

n2s+1l (2.52)
where we write, for historical reasons, L = 0, 1, 2, 3 as S, P,D, F (and rarely have to consider
higher L). For example, the energy level containing the states |n = 3, l = 2, s = 1/2,ml,ms〉
is referred to as 32D.

Fine structure
The description in the previous section was implicitly nonrelativistic. However, our exper-

iments are sensitive to the fine structure resulting from leading-order relativistic corrections
to the Schrödinger equation. The scale of these effects is on the order of several tenths of
an electron volt (two orders of magnitude smaller than the shielding effect from the inner
electrons for low angular momentum states).

Of several effects at this scale, the so-called spin-orbit correction is the most qualitatively
important since it further breaks the degeneracy of the electronic structure. The underlying
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relativistic concept is the effective magnetic field experienced by a charged particle, in its
own frame of reference, when moving relative to a stationary electric field. This principle
applies to the valence electron because of its orbital motion through the central field. Thus,
it experiences an effective magnetic field, which has the specific form [31]:

Beff =
1

mc2

(
1

er̂

∂UCF

∂r

)
L̂ (2.53)

Beff then back couples to the electron through its magnetic dipole moment, giving rise to
the spin-orbit interaction:

ĤS−O = −µ̂S ·Beff = f(r̂)L̂ · Ŝ (2.54)

ĤS−O can be treated perturbatively, but L̂z and Ŝz do not commute10 with it meaning
that (l,ml, s,ms) are no longer good quantum numbers11 in the sense of degenerate pertur-
bation theory [22]. Instead, we construct the total angular momentum operator:

Ĵ = L̂+ Ŝ (2.55)

which we expect should be conserved in the absence of any external fields (and, therefore,
any external torque). Then:

L̂ · Ŝ =
1

2
(Ĵ2 − L̂2 − Ŝ2) (2.56)

and the associated operators Ĵ2 and Ĵz do commute with ĤS−O, as can be easily checked. So
(l, s, j,mj) are good quantum numbers and the first-order perturbative shift of the energies
due to the spin-orbit interaction can be easily calculated since it is diagonal in the good
basis:

∆E
(nlsj)
S−O = 〈n, l, s, j,mj|ĤS−O|n, l, s, j,mj〉

= β{j(j + 1)− l(l + 1)− s(s+ 1)} (2.57)

βnl =
~2

4m2
ec

2

〈
1

r̂

∂UCF

∂r

〉
(2.58)

The spin-orbit interaction couples the orbital angular momentum to the spin such that, for
stationary states, their relative orientation, as characterized by j, is always well defined.
Moreover, j-states with the same l but different s are no longer degenerate, as is clear from
Equation 2.57. Instead, the energy levels n2s+1l are broken into fine structure doublets
specified by an additional subscript denoting the value of j:

10Recall, that for any angular momentum operator Â, it follows that [Âi, Âj ] = i~εijkÂk.
11Or, equivalently, {Ĥ, L̂2, L̂z, Ŝ

2, Ŝz} no longer form a CSCO.
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n2s+1lj ≡ |n, l, s, j,mj〉 (2.59)

The degeneracy of these fine structure levels is reduced to 2j + 1.
As a final note, we mention that 40Ca does not have hyperfine structure12. This turns

out to be a general feature of any atom whose nucleus has both an even number of protons
and an even number of neutrons13 [66].

Spontaneous emission
When the ion is in an excited state, it will decay down to the ground state (or some

lower-energy excited state) via emission of a photon with some finite probability that grows
exponentially with time. This is known as spontaneous emission and can only be fully un-
derstood with a fully quantum treatment of the electromagnetic force [99]. For our purposes,
this can be treated as a phenomenological fact.

The exponential decay constant is a property of a particular transition and is related to
the corresponding matrix element of the vacuum field operator. Thus, transitions with larger
decay constants also couple more strongly to externally applied fields. The decay constant is
typically referred to as the Einstein A coefficient and is defined such that for two electronic
states |g〉 and |e〉 (|e〉 the higher energy of the two):

dpe
dt

= −Aegpe (2.60)

where pe(t) is the probability of measuring the ion to be in the state |e〉.
When there are multiple lower energy levels, the full decay rate out of the excited level

is equal to:

Ae =
∑
i

Aei (2.61)

where the sum is over all unoccupied, lower energy levels {|i〉}. The inverse of this quantity
is known as the lifetime of the excited state. In Figure 2.8, we give the experimentally
measured lifetimes for the relevant excited states in 40Ca+. We also list the rates associated
with each transition Aei/2π.

12Which results from interactions between the valence electron and higher multipole moments of the
nucleus when present

13Only five stable nuclei have both an odd number of protons and an odd number of neutrons, so for
practical purposes, one can usually assume that an atom with an even mass number has no hyperfine
structure.
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2.4 Zeeman substructure
The remaining 2j+1 degeneracy present in the fine structure levels of 40Ca+ can be broken

by applying a static magnetic field Bext through what is referred to as the Zeeman effect.
If the field is homogeneous, then it couples to the ion solely through its magnetic dipole
moment µ̂:

ĤZeeman = −µ̂ ·Bext (2.62)

where µ̂ has contributions from both the spin of the valence electron and its orbital motion.
The former is given by Equation 2.48. To find the latter we begin by defining the vector
potential:

A =
B

2
(−yx̂+ xŷ) (2.63)

such that :

Bext = ∇×A = Bẑ (2.64)

where we have taken the magnetic field to point in the ẑ-direction without any further loss
of generality since, in the absence of the external magnetic field, the ion does not have a
well-defined absolute orientation in space14. The specific choice of the z-axis is arbitrary but
consistent with our choice of the L̂z and Ŝz operators in the previous section.

Now we can treat the field-ion interaction semi-classically by modifying the canonical
momentum in the central-field Hamiltonian in Equation 2.43 p̂ → p̂+ eA(r̂), such that:

ĤCF →
A

[p̂+ eA(r̂)]2

2me

+ UCF(r̂) (2.65)

=
p̂2

2me

+ UCF +
e2A2

2me

+
e

2me

(p̂ ·A+A · p̂) (2.66)

=
p̂2

2me

+ UCF +
e2A2

2me

+
e

2me

L̂ ·B (2.67)

The first two terms in Equation 2.67 are just the original central-field Hamiltonian ĤCF.
The third, so-called diamagnetic term, term involves a two-photon process where the first
photon induces a magnetic dipole moment that the second photon interacts with. This term
can always be neglected for the field strengths achievable in our laboratory15. The last term
can be interpreted as the interaction of the magnetic field with the magnetic dipole moment

14For this reason, applying a magnetic field is sometimes referred to as ”setting the quantization axis of
the ion.”

15We can ask when e2A2

2m ∼ eBa2
0

2m � µBB, which occurs when B � ~
ea2

0
∼ 105 T.
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due to any anisotropic orbital motion of the valence electron (producing a current-loop in
the classical picture):

µ̂L = − e

2m
L̂ = −glµB

L̂

~
(2.68)

Thus:

µ̂ = −µB

~
(glL̂+ gsŜ) ≈ −µB

~
(L̂+ 2Ŝ) = −µB

~
(Ĵ+ Ŝ) (2.69)

where in the second approximate equality we have taken16 gl ≈ 1 and gs ≈ 2.
With the addition of ĤZeeman, the full Hamiltonian describing the ion’s internal structure

is now:

Ĥ = ĤCF + ĤFS + ĤZeeman (2.70)
where ĤFS describes the leading order fine structure effects including ĤS−O and all of similar
orders of magnitude. In practice, we typically apply a magnetic field of about 4 Gauss, which
leads to Zeeman shifts on the order of |ĤZeeman/h| ∼ µB

h
B ∼ 1 MHz. In comparison, the

spin-orbit term ĤS−O creates a frequency splitting on the order of THz (see Figure 2.8).
Therefore, we can safely treat ĤZeeman as a perturbation on top of the fine structure.

The first-order Zeeman shift of the energy levels is then given by:

∆E
(n,l,s,j,mj)
Zeeman = −〈n, l, s, j,mj|ĤZeeman|n, l, s, j,mj〉 (2.71)

=
µB

~
〈n, l, s, j,mj|Ĵ+ Ŝ|n, l, s, j,mj〉 ·B (2.72)

The states |n, l, s, j,mj〉 are not eigenstates of Ŝ, but we can compute the expectation value
〈n, l, s, j,mj|Ŝ|n, l, s, j,mj〉 using the projection theorem [22]:

〈Ŝ〉 = 〈Ŝ · Ĵ〉
~2j(j + 1)

〈Ĵ〉 (2.73)

Such that the magnetic substates of the fine structure levels are each shifted by an amount17:

∆E
(n,l,s,j,mj)
Zeeman = gJµBBmj (2.74)

that is linear in the magnetic field strength. Here the quantity gJ is known as the Landè
g-factor and is given by:

gJ = 1 +
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
(2.75)

16gl is not exactly one for several reasons including the fact that me should be replaced by the reduced
mass.

17A good quantity to remember here is the µB/h ∼ 1.4 MHz/Gauss.
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42S1/2 ~11 MHz
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Figure 2.9: 40Ca+ Zeeman substructure. (a). For typical operating fields of magnitude
|B| ∼ 4 Gauss, the Zeeman shift of the 40Ca+ fine structure magnetic sublevels is approxi-
mately linear with field strength and proportional to Ĵz. At 4 Gauss, nonlinear corrections
are on the order of several Hz or 1 part per million relative to the linear response. (b).
Substantial mixing between, for example, the 32D5/2 and 32D3/2 does not occur until the
external field reaches a value of around 3 Tesla (where it begins to become comparable to
the effective, internal magnetic field due to the motion of the valence electron around the
nucleus (Equation 2.53).

The first-order shift in Equation 2.74 might as welll have been generated by the notional
interaction −µ̂J ·B with µ̂J = gJµBĴ, even though the actual dipole moment is proportional
to (Ĵ+ Ŝ).

An illustration of the Zeeman effect is given in Figure 2.9. The first-order approximation
of the Zeeman effect is sufficient for all the work performed in this thesis. However, in
Chapter 6 we do need to consider higher-order corrections more quantitatively. It is possible
to treat ĤZeeman on an equal footing with ĤFS by rewriting ĤZeeman in the coupled basis
|n, l, s, j,mj〉, summing it with ĤS−O and then diagonalizing the result. An algorithm for
performing this is given in Appendix B and the result of this more rigorous treatment is
plotted in Figure 2.9(b) for a wide range of magnetic field strengths. At 4 Gauss, the leading
correction to Equation 2.74 (nonlinear in B) is on the order of several Hz.
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2.5 Effect of external electric fields on ion structure
In this section, we ask what effect a static external electric field E(r) generated by the

potential φ(r) has on the internal structure of an ion. Of course, there is an interaction with
the net charge of the ion and, since we assume the ion is trapped, the field at the center
of mass position of the ion r0 must be zero E(r0) = 0. However, this is only ever true in
the time-averaged sense due to the ion’s micromotion, vibrational motion and ubiquitous,
fluctuating ambient field noise. Moreover, a field can have spatial variations over the length
scale of an ion such that E(r0) = 0 but E(r) 6= 0 where r is the position of the valence
electron.

For these reasons, we will assume a quasi-static electric field such that the time depen-
dence is slow relative to the response time of the ion’s internal degrees of freedom18. And
we will expand the electric potential about the center of mass position of the ion, leading to
an interaction Hamiltonian described in terms of the ion’s multipole moments:

ĤE = eΦ(r0)− d̂ · E(r0)−
1

6
Q̂∇E(r0) + . . . (2.76)

where:

d̂i = −er̂i (2.77)
Q̂ij = −e(3r̂ir̂j − |r̂|2δij) (2.78)

are the electric dipole and quadrupole operators. This is a semi-classical treatment, and
Equation 2.76 is exactly analogous to the classical multipole expansion [35] of a charged par-
ticle interacting with an externally sourced potential after performing the canonical quanti-
zation. The quasi-static assumption is reflected in the fact that we do not explicitly reference
time in Φ and its derivatives, since we assume that these are essentially constant over the
interaction time scales which we will consider.

Electric monopole and dipole interactions
The first term on the right-hand side of in Equation 2.76 describes the interaction of the

field with the ion’s net charge, which does not affect its external structure since we assume the
field strengths are small enough such that this quantity is conserved (no further ionization).
The second term is the electric counterpart to ĤZeeman in Equation 2.62. However, in contrast
to its magnetic dipole moment, the electric dipole moment for stationary states of 40Ca+ is
generally zero. This is most easily argued by making use of the parity operator π̂ whose
action is an inversion of spatial coordinates. Fine structure eigenstates have a well-defined
parity [22]:

18In other words, we assume that the time scale over which the electric field changes is slow enough to
be considered adiabatic – no instantaneous jumps between eigenstates of the internal Hamiltonian.
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π̂|n, l, s, j,mj〉 = (−1)l|n, l, s, j,mj〉 (2.79)

and the dipole operator is odd under parity:

π̂d̂π̂† = −eπ̂r̂eπ̂† = er̂e = −d̂ (2.80)

Therefore, taking α to subsume all quantum numbers other than l:

〈α, l|d̂|α, l〉 = 〈α, l|π̂†π̂d̂π̂†π̂|α, l〉 = (−1)2l〈α, l|π̂d̂π̂†|α, l〉 = −〈α, l|d̂|α, l〉 (2.81)

which implies 〈d̂〉 = 0.
Similar to our interpretation of the diamagnetic term in the previous section, the electric

field can induce a dipole moment in the ion by mixing fine structure states, which it will
then interact with. The resulting energy shift can be found with second-order perturbation
theory:

∆E(n,l,s,j,mj) =
∑

(n′,l′,s′,j′,m′
j)

|〈n′, l′, s′, j′,m′
j|d̂ · E|n, l, s, j,mj〉|2

Enl − En′l′
(2.82)

But for the low-lying excited states of 40Ca+, |Enl − En′l′ |/h ∼ 102 THz. And the
numerator in Equation 2.82, which is related to the spontaneous emission rate from the
higher to the lower of {|n, l, j,mj〉|, |n′, l′, j′,m′

j〉} is typically no more than ∼ 102 MHz.
Therefore, the quadratic Stark shift should be on the order of19 10−6 Hz / (V/m)2. For
typical field strengths and parameters of our experiments, this effect is negligible.

Electric quadrupole interaction
In contrast to the dipole operator, the quadrupole operator Q̂:

Q̂ij = −e(3r̂ir̂j − |̂r|2δij) (2.83)

is even under parity, allowing for the possibility of fine structure states with a permanent
quadrupole moment. A finite electric field gradient at the position of the ion will then cause
an energy shift:

∆Equadrupole = −1

6
〈Q̂〉∇E(r0) (2.84)

It turns out that 32D5/2 level of 40Ca+ does have a permanent quadrupole moment. That
is to say, in general:

〈32D5/2,mj|Q̂|32D5/2,mj〉 6= 0 (2.85)
19Which agrees with measured values [100]
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Moreover, because of the static trapping potential in the axial direction (Equation 2.15),
there will always be a finite electric field gradient at the position of the ion:

Eendcaps(r) =
Uz

Z̃2
[xx̂+ yŷ − 2zẑ] =

mω2
z

2
[xx̂+ yŷ − 2zẑ] (2.86)

∇Eendcaps =
mω2

z

2

1 1
−2

 (2.87)

and, thus, a corresponding shift of the 32D5/2 energies. If we assume that the electric field
gradient is entirely due to the trapping potential and that there are no DC potentials applied
to the radial electrodes, then the magnitude of this shift is given by [81, 85, 50]:

∆
D5/2

quadrupole =
mω2

z

e
|Q32D5/2

|A×


−1 if mj = ±5/2

1/5 if mj = ±3/2

4/5 if mj = ±1/2

(2.88)

where |Q32D5/2
| characterizes the magnitude of the 32D5/2 quadrupole moment and is given

by the reduced matrix element:

|Q32D5/2
| = −e〈32D5/2||r̂2C(2)

0 ||32D5/2〉 (2.89)

where C(m)
l is a Racah normalized spherical harmonic

√
4π

2l+1
Y m
l (θ, φ) and 0 ≤ 1 is a geomet-

rical factor that takes into account the orientation of the electric field with the quantization
axis of the ion. This is a small but measurable effect (typically on the order of 1-10 Hz), as
will be discussed in Chapter 6. A detailed derivation of Equation 2.88 is given in [50].
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2.6 Light-ion interactions

Basic interaction
Electromagnetic fields oscillating with frequencies near the frequency splittings of the

bare atomic states are capable of resonantly driving population20 between these states. In
our experiments, we use focused laser beams for this purpose, which are most simply modeled
as traveling, monochromatic plane waves described by a vector potential A in the radiation
gauge ∇ ·A = 0 of the following form:

A(r, t) =
A0

2
ε̂ei(k·r−ωLt) + c.c. (2.90)

where k = (2π/λ)k̂ is the laser beam’s wave vector in terms of its wavelength λ and its
direction of travel k̂ and ωL is its corresponding frequency related by the vacuum dispersion
relation ωL/|k| = c (with c the speed of light in vacuum). The corresponding electric and
magnetic fields are then given by:

E(r, t) = −∂A
∂t

=
1

2
(iωLA0)ε̂e

i(k·r−ωLt) + c.c. (2.91)

B(r, t) = ∇×A =
1

2
iA0(k× ε̂)ei(k·r−ωLt) + c.c. (2.92)

The effect of the vector potential A can be incorporated into the atomic Hamiltonian the
same way as in Equation 2.65. Just as we did there, if we drop the diamagnetic term and use
the fact that [A(r̂), p̂] = 0 in the radiation gauge, then the total semiclassical Hamiltonian
can be broken down into two components Ĥ0 and Ĥint such that [22]:

Ĥ = Ĥ0 + Ĥint (2.93)

where Ĥ0 represents the ”bare” atomic Hamiltonian due to the central field, fine structure
and, perhaps, a static magnetic field as in Section 2.4:

Ĥ0 =
∑
i

Ei|Ei〉〈Ei|, |Ei〉 ∼ |ni, li, ji, (mj)i〉 (2.94)

And Ĥint captures the interaction with the light field:

Ĥint =
e

m
A(r̂) · p̂ =

1

2

eA0

m
e−iωLteik·r̂ε̂ · p̂+ h.c. (2.95)

=
1

2

∑
ij

e−iωLt〈Ei|
eA0

m
eik·r̂ε̂ · p̂+ h.c.|Ej〉|Ei〉〈Ej| (2.96)

20By which we mean the probability of finding the atom in a particular state when measured.
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Interaction picture
It is usually convenient to perform calculations using the time-dependent basis defined

by the transformation |Ẽi〉 = Û |Ei〉, where:

Û = exp(iĤ0t/~) (2.97)

This is referred to as moving to the interaction picture with respect to the bare Hamiltonian
Ĥ0. An arbitrary operator Â in this reference frame is transformed according to:

Â→ ˆ̃A = ÛÂÛ † (2.98)

and the Hamiltonian is redefined as:

Ĥ → ˆ̃H = ÛĤÛ † + i~(∂tÛ)Û † (2.99)
= ÛĤintÛ

† (2.100)

such that the interaction picture Schrödinger equation retains the familiar form:

i~∂t|ψ̃〉 = ˆ̃H|ψ̃〉 (2.101)
ˆ̃H is given explicitly by:

ˆ̃H =
1

2

∑
ij

|Ei〉〈Ej|
[
e−i∆

(−)
ij t〈Ei|

eA0

m
eik·r̂ε̂ · p̂|Ej〉+ e−i∆

(+)
ij t〈Ei|

eA0

m
e−ik·r̂ε̂ · p̂|Ej〉

]
(2.102)

where ∆
(±)
ij = ωL ± Ei−Ej

~ when i > j and ∆
(±)
ji = −∆

(±)
ij . Note that expectation values in

the interaction picture are consistent with the lab frame:

〈ψ̃| ˆ̃A|ψ̃〉 = 〈ψ|Û †ÛÂÛ †Û |ψ〉 = 〈ψ|Âψ〉 (2.103)

Rotating wave approximation
It can be argued (for example in [32]) that the faster-oscillating terms in Equation 2.102

play a less significant role in the time evolution described by Equation 2.101. In this case,
we can make a rotating wave approximation (RWA) by discarding terms that oscillate faster
than some threshold value21. If we assume that the center frequency of the light field is
tuned near a particular transition |Eα〉 → |Eβ〉, such that ωL ∼ ∆

(−)
αβ , then it is often a good

approximation to set the RWA threshold low enough so that only terms including |Eα〉〈Eβ|
21In practice, the validity of this approximation can typically be confirmed through direct simulation.
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in ˆ̃H are retained. This is sometimes referred to as the two-level approximation. In this
case, the counter-rotating terms that oscillate at ∆

(+)
αβ are also neglected, so we have:

ˆ̃HRWA = ~
Ωαβ

2
e−i∆

(−)
αβ tσ̂αβ + h.c. (2.104)

where:

Ωαβ = 〈Eα|
eA0

m
eik·r̂ε̂ · p̂|Eβ〉 (2.105)

and σ̂αβ = |Eα〉〈Eβ|.

Multipole decomposition
Just as in Section 2.5, it is standard to expand the plane wave term in Equation 2.105

about the center of mass position of the ion r̂0. If we label the position of the valence electron
as r̂e = r̂− r̂0, then we have:

〈Eα|
eA0

m
eik·r̂ε̂ · p̂|Eβ〉 = eik·r̂0〈Eα|

eA0

m
[1 + ik · r̂e + . . .]ε̂ · p̂|Eβ〉 (2.106)

It can be shown that the first term in the expansion reduces to an electric dipole interaction
of the form discussed in section 2.5, the second term reduces to the sum of an electric
quadrupole transition of the form discussed in section 2.5 and a magnetic dipole interaction
of the form discussed in section 2.4. The third term leads to an electric octupole interaction
and a magnetic quadrupole interaction and so forth.

The scaling of these terms, from one multipole to the next higher order, goes as ka0,
which is on the order of 10−4 for optical transitions. The ratio of a 2K electric multipole
transition over a 2K magnetic multipole transition goes as ≈ 10−2. Moreover, electric and
magnetic multipole moments of the same order have opposite parity, so generally do not
contribute to the same transition (based on a similar argument as in Section 2.5). For these
reasons, it is usually only necessary to consider the leading order term in Equation 2.106
and it is customary to denote the transition by the multipole interaction corresponding to
this term. For example, electric and magnetic dipole transitions are referred to as E1 and
M1 transitions, respectively. Electric and magnetic quadrupole transitions are referred to
as E2 and M2 transitions, respectively. And so forth. A diagram illustrating the relevant
multipole transitions for 40Ca+ is given in Figure 2.10.

In this thesis, we only work with electric multipole transitions22. The coupling strength
of an arbitrary electric 2K-pole transition between the states |Eα〉 = |n′, l′, j′,m′

j〉 and |Eβ〉 =
|n, l, j,mj〉 can be written as [95]:

22Though, in principle, M1 transitions are available. See Figure 2.10 and [44].
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Figure 2.10: Dominant multipole transitions for 40Ca+. Solid lines represent transitions
utilized in this thesis. Not shown are the various M1 transitions between magnetic sublevels
of other hyperfine levels other than S1/2.

~ΩK
αβ =

K∑
q=−K

gKq(θ, ρ)〈Eα|ĤEK
q |Eβ〉 (2.107)

where gKq(θ, φ) takes into account the geometry of the laser light and its polarization relative
to the quantization axis of the ion23 (see Figure 2.11(a)). This corresponds to the quantity
YKq(k̂) · ε̂ in Appendix C, where it is fully defined. For reference, we plot gKq(θ, ρ) for K = 1
and K = 2 in Figure 2.11. We also plot this function for circularly polarized light (relative
to the direction of propagation k̂) in Figure 2.12, though, in this case, it only depends on
the angle θ between k̂ and the quantization axis of the ion.

The matrix element in Equation 2.107 is given explicitly by:

〈Eα|ĤEK
q |Eβ〉 = 8πeE0(ik)

K−1bK(−1)j
′−m′

j

(
j′ K j

−m′
j q m′

)
〈Eα||Q̂K ||Eβ〉 (2.108)

bK =

√
π
(2K + 1)(K + 1)

K

4

(2K + 1)!!
(2.109)

whereE0 = iωLA0, the term in big parentheses represents a Wigner 3-j symbol and 〈Eα||Q̂K ||Eβ〉
is the reduced matrix element of the K-th order electric multipole operator in the spherical
basis:

23Note: to be consistent with e.g. [85], the geometric factor must include the factor bK as defined in
Equation 2.109.
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E1 Transitions

E2 Transitions

(a) (b)

(c)

Figure 2.11: Geometrical dependence of the coupling strength for linearly polarized light.
The plots in (b) and (c) give the relative coupling strengths (normalized to one) for E1 and
E2 transitions as a function of the geometry between linearly polarized laser light and the
ion as defined in (a) where ε̂‖ is defined as the component of the electric polarization vector
in the plane formed by k̂ and B and ε̂⊥ is the component normal to this plane. Code for
generating these plots for an arbitrary electric 2K-pole interaction is provided in Appendix
C.
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Figure 2.12: Geometrical dependence of the coupling strength for circularly polarized light.
The plots in (b) and (c) give the relative coupling strengths (normalized to one) for E1 and
E2 transitions as a function of the geometry between circularly polarized laser light and the
ion as defined in (a). σ± polarized light is defined by σ̂± = ∓(ε̂1 ± iε̂2)/

√
2 where ε̂1 = ŷ

and ε̂2 = sin(θ)ẑ− cos(θ)x̂. Code for generating these plots for an arbitrary electric 2K-pole
interaction is provided in Appendix C.
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α β K λ E0 ΩK
αβ/2π

S1/2, mj = −1/2 P1/2, mj = −1/2 1 397 nm 7.3× 104 V/m 2.3 GHz
S1/2, mj = −1/2 P1/2, mj = −1/2 1 397 nm 7.3× 105 V/m 23 GHz
S1/2, mj = −1/2 D5/2, mj = −1/2 2 729 nm 7.3× 104 V/m 0.65 MHz
S1/2, mj = −1/2 D5/2, mj = −1/2 2 729 nm 7.3× 105 V/m 6.5 MHz

Table 2.2: Light-ion coupling strengths for typical experimental parameter configurations.
E0 ≈ 7.3× 104 corresponds to 10 mW laser light in a Gaussian beam focused down to a spot
with a waist of 30 µm to and E0 ≈ 7.3×105 corresponds to the same but with a 3 µm waist.

Q̂qK = r̂K
√

4π

2K + 1
Y q
k (2.110)

with Y q
k a spherical harmonic labeled in the standard way. The Wigner 3-j symbol enforces

the selection rules |j′ − j| ≤ K ≤ j′ + j and q = m′
j −mj. And the reduced matrix element

can be related to the Einstein A coefficient for the transition according to:

AK =
cα(2K + 2)(2K + 1)k2K+1

K[(2K + 1)!!]2
|〈Eα||Q̂K ||Eβ〉|2

2j′ + 1
(2.111)

where α is the fine structure constant, c is the speed of light in vacuum and it is important
that the primed state |Eα〉 is the higher energy state (such that the j′ quantum number in
the factor 2j′ +1 corresponds to the higher energy state). Using Equations 2.107, 2.108 and
2.111 we can compute the quantity coupling strength ΩK

αβ for an arbitrary electric multipole
transition. Approximate coupling strengths for several common experimental parameter
configurations are given in Table 2.2. See Appendix C for more details on the derivations in
this section, and code for generating the plots in Figures 2.11, 2.12 and the data in Table
2.2.

Incorporating center of mass motion
Starting with the rotating wave approximation Hamiltonian in Equation 2.104, and drop-

ping the subscripts and tildes we have the Hamiltonian for a simple, two-level system:

Ĥ = ~
Ω

2
e−i∆tσ̂eg + h.c. (2.112)

where we now label the states of the two-level system as |e〉 and |g〉 for excited and ground,
respectively.

Now we would also like to consider the effect of the center of mass motion of the ion so
we explicitly factor out the center of mass coordinate dependence in Ω in Equation 2.105 by
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redefining Ω → Ω̃exp(ik · r̂0) and we also include the quantum description of the vibrational
degrees of freedom as described in Equation 2.38:

Ĥ = ~
Ω

2
eikẑ0cos(θ)e−i∆tσ̂ + ~

ν

2
â†â+ h.c. (2.113)

= ~
Ω

2
eikcos(θ)(â+â†)e−i∆tσ̂ + ~

ν

2
â†â+ h.c. (2.114)

where, for simplicity, we assume a single trapped ion and only consider vibration along the
z-axis. θ is still the angle between k̂ and ẑ. Just as we moved to the interaction picture in
Equation 2.100 with respect to the ion’s internal degrees of freedom, it is also convenient to do
this for the ion’s vibrational motion by defining another unitary operator Ûν = exp[iνâ†ât].
Then:

Ĥ →̂
Uν

~
Ω

2
e−i∆teiη(âe

iνt+â†e−iνt)σ̂ + h.c. (2.115)

where η is the so-called Lamb-Dicke parameter:

η = k · ẑ0 = kcos(θ)
√

~
2mν

(2.116)

The exponential term in Equation 2.115 has the form of a displacement operator D̂(α) =
exp(αâ† − α∗â) with α = iηeiνt [36]. Using Equation 3.30 from reference [15], we can then
resolve the components of the Hamiltonian in the Fock state basis:

Ωmn =
2

~
〈e,m|Ĥ|g, n〉 = 2

~
〈e, n|Ĥ|g,m〉∗ (2.117)

= Ω〈m|D̂(α)|n〉 = Ω

(
n!

m!

)1/2

αm−ne−|α|2/2L(m−n)
n (|α|2) (2.118)

where Lp
q(x) is an associated Laguerre polynomial.

However, it is more insightful to expand Ĥ from Equation 2.115 in η, which is a reasonable
thing to do when η

√
n+ 1 � 1 (the so-called Lamb-Dicke regime). In this case:

Ĥ = ~
Ω

2
e−i∆tσ̂

[
1+ iη

(
âeiνt+ â†e−iνt

)
− η2

2

(
2â†â+1+(â)2e2iνt+(â†)2e−2iνt

)
+ . . .

]
+h.c.

(2.119)
As illustrated in Figure 2.13, the Hamiltonian in Equation 2.119 describes several types

of interactions that can be resonantly selected by tuning the value of ∆:

• Carrier transitions. When ∆ = 0:
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Ĥ ≈ Ĥcarr = ~
Ω

2
(1− η2â†â)σ̂ + h.c. (2.120)

• Blue sideband transitions. When ∆ = ν:

Ĥ ≈ Ĥbsb = ~
iηΩ

2
â†σ̂ + h.c. (2.121)

• Red sideband transitions. When ∆ = −ν:

Ĥ ≈ Ĥrsb = ~
iηΩ

2
âσ̂ + h.c. (2.122)

• Higher order sideband transitions. When ∆ = qν, q ∈ Z:

Transitions to higher order red/blue sidebands can be driven with a coupling strength given
by Ωn,n+1.

Figure 2.13: Lamb-Dicke regime. When the Lamb-Dicke parameter η (Equation 2.116) is
small, the dynamics of a resonantly-selected electronic transition can be described by carrier
transitions, which leave the motional state of the ion unchanged, blue sideband transitions,
which drive |g, n〉 ↔ |e, n+ 1〉, and red sideband transitions, which drive |g, n〉 ↔ |e, n− 1〉.
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Generalizations
If we consider L laser beams interacting with N ions with M relevant vibrational modes

then the Hamiltonian in the interaction picture is given by:

Ĥ = ~
N∑

n=1

L∑
l=1

Tn∑
in=1
jn>in

Ωinjn

2
σ̂injne

−i∆injnlte
i

M∑
m=1

ηnlm(âmeiνmt+â†me−iνmt)
+ h.c. (2.123)

where in refers to one of the Tn stationary states |Ei〉n of the nth ion that satisfy ∆injnl < ∆∗

for some threshold value ∆∗ � ωL.
Spontaneous emission, as discussed in Section 2.3, generally must also be taken into

account when considering the ion’s dynamical evolution. But this requires a fully quantum
treatment of the electromagnetic field. Instead, we can incorporate it in an ad-hoc manner
by way of an approximate master equation [13]. But first we must define the density operator
ρ̂:

ρ̂ =
∑
i

pi|ψi〉〈ψi| (2.124)

ρ̂ describes a classical distribution of quantum states, each realized with a probability of
pi. The Schrödinger equation can be expressed in terms of ρ̂ as:

i~∂tρ̂ = [Ĥ, ρ̂] (2.125)
Equation 2.125 is sometimes referred to as the Liouville equation, which is its classical analog.
It reduces to ∂t|ψ〉 = Ĥ|ψ〉 when ρ̂ = |ψ〉〈ψ| for some |ψ〉, which defines a pure state. Now,
spontaneous emission from the state |Ei〉 to the state |Ej〉 can be incorporated into the
dynamics described by Equation 2.125 by including a sum of terms:

i~∂tρ̂ = [Ĥ, ρ̂] +
∑
ij

γijL(ρ̂; σ̂ij) (2.126)

where γij refers to the Einstein A coefficient for the transition |Ei〉 → |Ej〉 (|Ei〉 assumed to
be the higher energy state) and L(ρ̂; Â) is a Lindblad term of the form [63, 13]:

L(ρ̂; Â) = Âρ̂Â† − 1

2
{Â†Â, ρ̂} (2.127)

Near-resonant excitation
The effect of driving an electronic transition near resonance with laser light is to transfer

population from one state to the other. For simplicity, we will describe this process for
a carrier transition, as described by Equation 2.112, but the same analysis can be used
for any other resonantly-selected two-level system (including motional sideband transitions)
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and the basic procedure can be generalized for the case where we must consider more than
two levels. It is convenient to transform Equation 2.112 into another rotating frame that
preserves the essential physics, by way of the unitary operator Û = exp(−i∆t|e〉〈e|). The
effective Hamiltonian in this rotating frame is then found to be (Equation 2.99):

ĤRF = ~
Ω

2
|e〉〈g|+ ~

∆

2
|e〉〈e|+ h.c. (2.128)

If we take γ to be the spontaneous emission rate from |e〉 to |g〉, then from Equation
2.126, we find the equations of motion:

ρ̇ee = −iΩ
2
ρge + i

Ω∗

2
ρeg − γρee (2.129)

ρ̇eg = −(γ/2 + i∆)ρeg + i
Ω

2
(ρee − ρgg) (2.130)

where ρij = 〈i|ρ̂|g〉 and the time evolution for the other two matrix elements follows immedi-
ately from the hermiticity of the density matrix (ρge = ρ∗eg) and conservation of probability
(ρgg + ρee = 1). This set of equations is often referred to as the optical Bloch equations.

Now we would like to consider the steady-state dynamics obtained for laser drive times
long compared to 1/γ. In this case, we assume that ρ̇ee = ρ̇eg = 0, which allows us to solve
for ρee using Equations 2.129 and 2.130:

ρ(ss)ee =
R

2R + γ/2
(2.131)

where R is given by:

R =
γ

2

∣∣∣∣Ω/2Γ
∣∣∣∣2 (2.132)

and Γ by:

Γ = γ/2 + i∆ (2.133)

For small drive strengths |Ω| � γ/2, ρ(ss)ee has the form of a Lorentzian with a full width
at half maximum (FWHM) of γ:

ρ(ss)ee ≈ |Ω/2|2

(γ/2)2 +∆2
(2.134)

At larger drive strengths |Ω| ∼ γ, the lineshape deviates from a Lorentzian due to an effect
known as power broadening. This results from the fact that ρ(ss)ee in Equation 2.131 saturates
at a population of 1/2 with respect to |Ω|. This is illustrated in Figure 2.14.



CHAPTER 2. THEORETICAL FRAMEWORK 39

10 0 100.000

0.001

0.002

0.003

0.004

ee

2 = 0.01

10 0 10

2

0.0

0.2

0.4

2 = 1

10 0 100.0

0.2

0.4

2 = 10

Figure 2.14: Steady-state excited state probability for a damped two level system. ρ
(ss)
ee

is plotted in blue as a function of laser detuning from resonance for various laser driving
strengths. In the left-most plot, where |Ω| � γ the lineshape has a form of the Lorentzian
as described by Equation 2.134, which is plotted with an orange dashed curve.

AC Stark shift
Generally, approximating resonantly driven transitions as two level systems works quite

well for predicting the dynamics of our experiments given the typical operating parameters
(laser intensities, static magnetic field strengths, detunings, etc.). However, it is often nec-
essary to include a perturbative treatment of off-resonant couplings of the nearest allowed
transitions, which tend to shift the energy levels of the resonant transition [42]. This is
known as the AC Stark effect.

The small parameter we consider is |Ω|/2
∆

� 1. When this condition holds for a particular
carrier transition |e, n〉 ↔ |a, n〉, the energy shift is given by [31]:

δEg = ~
|Ω|2

4∆
(2.135)

δEa = −~
|Ω|2

4∆
(2.136)

where δEg (δEa) corresponds to the shift of the unperturbed energy of the state |g, n〉 (|e, n〉).
These equations hold for both positive and negative ∆ = ωL − (Ea − Eg)/~.

When a carrier transition is driven resonantly but there is also an off-resonant interaction
with another far-detuned transition, only one state of the resonant transition experiences a
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shift24, as illustrated in Figure 2.15(a). However, a very common situation where the AC
Stark shift must be taken into account is when a sideband transition is being driven. In
this case, the detuning is relatively small and the interaction strength of the off-resonant
carrier transition is stronger than the sideband transition by a factor of 1/η. Moreover, both
states of the sideband transition are affected by the Stark shift, so the effect is doubled.
This is illustrated in Figure 2.15(b). For Ω = 2π × 100 KHz and a 2π × 1 MHz vibrational
sideband, a resonant blue sideband transition will also experience a 2π × 5 KHz Stark shift
from the off-resonant carrier interaction. Given η ∼ 0.06, this shift is of the same order as
the coupling to the sideband.

When driving a far-detuned transition, the AC stark shift is the dominant effect in the
small parameter |Ω|/2∆, but a small amount of population will also be driven into the
off-resonantly coupled excited state. This scales as (|Ω|/4∆)2 and provides a limit on the
strength with which sideband transitions can be driven within the two level approximation
(Though, by adiabatically switching on the light, it is possible to significantly suppress these
off-resonant excitations).

(a) (b)

Figure 2.15: AC Stark shift due to an off-resonant carrier transition when resonantly driving
a different carrier transition |g, n〉 ↔ |a, n〉 (a) and a blue sideband transition |g, n〉 ↔
|e, n+1〉 (b). In the case of the blue sideband transition, both energy levels of the resonant
transition are affected, so the effective shift off of resonance is doubled.

24Referencing the labels in Figure 2.15(a), this statement assumes that there either is no coupling allowed
between |e, n〉 ↔ |a, n〉 and/or the detuning of the laser from this transition is much larger.
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Chapter 3

Experimental toolbox

3.1 Introduction
In this chapter, we provide a basic overview of the core techniques used for preparing,

manipulating and measuring trapped ions in the experiments outlined later in this thesis. We
begin in Section 3.2, by describing the two-step photoionization process used to selectively
ionize the desired 40Ca isotope of neutral calcium. Then, in Sections 3.3 and 3.4, we describe
how we prepare 40Ca+ ions in a well-defined quantum state with respect to both its electronic
(Section 3.4) motional (Section 3.3) degrees of freedom. Next, in Sections 3.5 and 3.6, we
describe how we precisely and coherently manipulate the quantum state of the ion using
well-focused, narrow linewidth laser light. In particular, in Section 3.6, we describe how we
can control the electric interaction between two ions, generating entanglement. Finally, in
Section 3.7, we describe how we can read out the state of the ions using a technique known
as electron shelving.
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3.2 Photoionization

Figure 3.1: 40Ca Isotope-selective photoionization scheme. (a) A calcium vapor is produced
by resistively heating a tube filled with calcium granules (see also Chapter 4). Light at 375
and 422 nm is sent perpendicularly to this vapor stream to minimize Doppler shifts and is
used to photoionize neutral 40Ca atoms via the two-step process shown in (b). The 422
nm light is tuned to an S → P transition that is sufficiently different amongst the various
isotopes of calcium to allow for selective photoionization of 40Ca. Note that the vertical axis
is not to scale.

The single ionization energy of calcium is about 6 eV, which corresponds to a wavelength
of around 200 nm. Light so deep in the UV tends to cause charging when incident upon
dielectric materials, which makes it non-ideal for photoionization near the trapping region
[43]. For this reason, we use a two-step process as illustrated in Figure 3.2(b) whereby a
422 nm photon excites the valence electron from the 2S0 state to the 1P1 state and then a
375 nm photon excites it into the continuum. This procedure has the additional benefit of
providing isotope-selective photoionization since the typical isotope-shifts of the 2S0 →1 P1

are on the order of several hundred MHz [64].
Typically, the first step after setting up a new vacuum chamber/trap assembly is to

”check for fluorescence.” This entails generating an in-vacuum calcium vapor cloud, shining
422 nm light on it, and observing for scattered 422 nm light. In a dark room, this signal
should be visible by eye and can be made more pronounced by continuously scanning the 422
nm laser light through resonance. This procedure ensures that there is non-oxidized calcium
loaded in the oven, that the control lines to the oven are properly connected, and that the
422 nm light is properly aligned relative to the atomic vapor cloud (cooling lasers can then
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Figure 3.2: Neutral atomic calcium fluorescence. An image of neutral 40Ca atoms fluorescing
as 422 nm photons are scattered off of a S → P transition (see Figure 3.1). Inset: Images
of the same fluorescence using a CCD camera. On the left, the 422 nm addressing beam is
tuned off of resonance, and on the right it is on resonance.

mass number natural abundance 1S0 ↔1 P1 isotope shift
40 96.9% 0 MHz
42 0.647% 394 MHz
43 0.135% 612 MHz
44 2.09% 774 MHz
46 0.004% 1160 MHz
48 0.187% 1513 MHz

Table 3.1: Calcium natural isotope abundances and isotope shifts. Reproduced from [64].

be coaligned to this path). An image showing what the scattered signal should look like is
given in Figure 3.2.
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3.3 Laser cooling
We use laser cooling to prepare the ions in their motional ground states with high prob-

ability. During experimental operation, cooling is also necessary for crystallization [9] as
discussed in Section 2.2 and to prevent the ions from escaping due to environmental back-
ground heating that will eventually cause their kinetic energy to exceed the trap depth [89,
73].

The principle underlying laser cooling is the fact that photons carry momentum. Thus,
during a scattering event, where a photon is absorbed and then subsequently emitted by an
atom, there is an exchange of momentum between the light and the atom. This interaction
can be engineered to selectively reduce the momentum of the atom. If scattering is then
performed on an atomic cycling transition, such that each spontaneous emission event returns
the atom to its original state (before absorbing the photon), then the procedure can be
repeated continuously, leading to an average cooling force on the atom.

For a harmonically trapped ion, with trapping frequency ν, two parameter regimes nat-
urally arise depending on the relationship between ν and the spontaneous emission rate
γ:

• ν � γ: In this regime, it is sufficient to treat the ion as a free particle since the charac-
teristic time for each scattering event 1/Γ is much less than a single vibrational period
1/ν. Because the absorption linewidth (Section 2.6) encompasses many discrete vibra-
tional sidebands, this is often referred to as the unresolved sideband regime. Cooling
relies on the Doppler effect and is achieved by red-detuning from the electronic tran-
sition. Because γ is large, cooling can be performed very quickly, but this limits the
minimum achievable temperature since there is a non-negligible probability of heating
the ion both during absorption and during emission.

• ν � γ: The so-called resolved sideband regime since, here, the absorption linewidth
is much smaller than the spectral spacing between adjacent vibrational sidebands. In
this regime, one can selectively drive a red sideband of the electronic transition. If, in
addition, the ion is in the Lamb-Dicke regime where the confinement is very strong,
subsequent spontaneous emission is most likely to preserve the temperature of the ion.
This procedure is referred to as resolved sideband cooling and is capable of driving the
ion very close to its vibrational ground state, limited only by the probability of highly
off-resonant blue sideband absorption (or decay). However, the requirement of small
γ limits the rate at which this can be performed.

In practice, we utilize both regimes in a two-step cooling process, each involving a different
electronic transition. In the first step, we Doppler cool the ions down to their fundamental
limit by addressing a short-lived dipole-allowed transition. At this point, the motion of the
ions is sufficiently constrained to allow for selective excitation of the red sidebands of the
long-lived, dipole-forbidden S1/2 ↔ D5/2 transitions. We use this feature in a technique
known as resolved sideband cooling, to further pump the ion’s motion down (very near) to
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its vibrational ground state. In the following subsections, we will give a brief overview of the
experimental implementation. More thorough treatments can be found in, for example, [30,
58, 67].

Doppler cooling
The principle underlying Doppler cooling is the Doppler effect. As illustrated in Figure

3.3, laser light with a wavevector k directed towards an ion that is moving with velocity
v appears to the ion (in its own frame of reference) as if it were frequency-shifted by an
amount:

δDoppler = −k · v (3.1)

This means that the probability that this light will excite some atomic transition, via ab-
sorption of a photon, is velocity-dependent. For example, in the weak-driving limit |Ω| � |Γ|
the steady-state excited state probability is given by (Equation 2.134):

ρ(ss)ee =
|Ω|2

γ2 + 4(ωL − ωa − kv)
=

|Ω|2

γ2 + 4(∆0 − kv)
(3.2)

where ∆0 = ωL − ωa is the frequency detuning of the laser from the transition and where,
for simplicity of the following calculations, we assume that the ion’s motion is restricted
to a single spatial axis that is aligned parallel to the direction of the laser beam such that

v

Lab Frame
of reference

ωa

ωL -v

ωa

ωL

Ion Frame
of reference

ωL + kv

ωa

ωa

ωL - kv

Figure 3.3: Doppler cooling. In the ion’s frame of reference, the laser light is frequency-
shifted by an amount k · v.
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k · v = kv1. In the limit that δDoppler is much smaller than γ and ∆, we can linearize the
steady state population about kv:

ρ(ss)ee ≈
(

|Ω|2

γ2 + 4∆2
0

)(
1 +

8k∆0

γ2 + 4∆2
0

v

)
(3.3)

Since each photon of laser light carries a momentum ~k, each absorption event causes the
ion to experience an impulse ∆p = ~k. This leads to a velocity-dependent, time-averaged
force:

〈F 〉 = ~kγ〈ρ(ss)ee 〉 (3.4)

and, thus, a time-averaged power:

〈Ėabsorption〉 = 〈Fv〉 = ~kγ〈ρ(ss)ee v〉 (3.5)

=

(
|Ω|2

γ2 + 4∆2
0

)(
8k∆0

γ2 + 4∆2
0

)
〈v2〉 (3.6)

The important feature of Equation 3.6 is the fact that its sign is given by the sign of lab-frame
detuning ∆0. In particular, ∆0 < 0 implies that 〈Ėabsorption〉 < 0 meaning that there is a net
flow of energy out of the system. This corresponds to the fact that, in this case, photons
are preferentially absorbed when the ion is moving against the direction of the incident light
since the Doppler effect causes these photons to appear blue-shifted.

The discreteness of the absorption process and the intrinsic randomness in the time of
individual absorption events leads to a fundamental, finite variance of its momentum. This
process can be modeled as a random walk in momentum space and leads to an effective
heating rate [58]:

〈Ėabs
heating〉 =

1

2m

d

dt
〈p2〉 = (~k)2

2m
γρ(ss)ee (3.7)

Likewise, the emission of photons also contributes to the diffusion of momentum:

〈Ėem
heating〉 =

(~k)2

2m
γρ(ss)ee ξ (3.8)

where ξ is a geometric factor that takes into account the fact that the emission events occur
in a random direction that is not restricted to the axis defined by the incident laser beam.
The value of ξ depends on the radiation pattern of the transition. For a dipole transition, it
has a value of ξ = 2/5 [58].

1The following calculations are then easily extended to the more general case if we assume the motion of
the ions along each spatial axis is uncoupled. (A reasonable approximation according to Section 2.2). Note
that, in practice, it is necessary to align the laser beam such that it has at least some projection on each
spatial axis so that all vibrational modes of the ions can be simultaneously cooled.
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Equating the power in and power out allows us to solve for the equilibrium temperature:

T =
~γ
8kB

(1 + ξ)

[
γ

2|∆0|
+

2|∆0|
γ

]
(3.9)

which is minimized when ∆0 = −γ/2, giving the Doppler cooling limit:

Tmin =
~γ
4kB

(1 + ξ) =⇒ 〈â†â〉 = γ

4ν
(1 + ξ) (3.10)

Temperature here is defined under the assumption that the state of the vibrational mode
after cooling can be described by a thermal density matrix [36]:

ρ̂thermal =
e−Ĥ/kBT

Tr(−Ĥ/kBT )
(3.11)

with Ĥ = ~νâ†â.
In practice, we implement Doppler cooling by driving the S1/2 ↔ P1/2 transition, which

has a lifetime of about 7 ns, using 397 nm light, as illustrated in Figure 3.4. For a trap
frequency of 2π × 1 MHz, this results in mean phonon occupancy of around 8 quanta.
Since there is a finite probability that the P1/2 state will decay to the D3/2 state we also
simultaneously shine 866 nm light on the ion in order to repump it into the cooling cycle
whenever it ends up there.
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Figure 3.4: 40Ca+ Doppler cooling scheme. For efficient Doppler cooling, a short-lived (large
γ) transition must be used. We use the 397 nm dipole-allowed S1/2 ↔ P1/2 transition for this
purpose. For weak driving laser intensity, the detuning is optimized at ∆0 = −γ/2. There
is a finite probability that the P1/2 state will decay to the D3/2 state, taking the ion out of
the cooling cycle. For this reason we also continuously drive the D3/2 ↔ P1/2 transition with
866 nm repumping light.



CHAPTER 3. EXPERIMENTAL TOOLBOX 49

Resolved-sideband cooling
When the trapping frequency ν is much larger than the spontaneous emission rate for

a particular electronic transition, the vibrational sideband spectrum is well-resolved and
a red-sideband transition can be selectively excited, removing a single quanta of motional
energy from the ion. We use the dipole-forbidden S1/2 ↔ D5/2 quadrupole transition for this
purpose, which is addressed using a cavity-locked 729 nm laser. However, the lifetime of the
D5/2 state, approximately 1 second, is too large to allow for reasonably efficient cooling. For
this reason, the D5/2 state is quenched by illumination with a second laser with a wavelength
of 854 nm that couples the D5/2 state to the dipole-allowed P3/2 state [67]. Since, in this
configuration, the P3/2 state is barely occupied, it can be adiabatically eliminated and its
effect encapsulated by an effective linewidth for the D5/2 state of approximately Ω2/γ, where
Ω is the coupling strength between D5/2 ↔ P3/2 and γ is the spontaneous decay rate from
P3/2 → S1/2. By tuning Ω a reasonable compromise can be made between maintaining
a relatively small effective linewidth that preserves the resolution of the sidebands and a
reasonably large cooling rate.

A cartoon illustration of the sideband cooling procedure is given in Figure 3.5. Just as
with Doppler cooling, the minimum achievable temperature is fundamentally limited by the
linewidth (in this case the effective linewidth) of the electronic transition. The dominant
heating mechanisms are an off-resonant excitation of a blue-sideband transition with the 729
nm laser followed by a spontaneous decay event on the carrier transition and off-resonant
excitation of the carrier transition followed by spontaneous decay on the blue sideband.
Taking these two processes into account, the equilibrium temperature scales as [58]:

〈â†â〉 ∝ 1

4

(
γ

ν

)2

(3.12)

And, since we assume the resolved sideband limit where γ � ν, this will be very close to the
ground state of motion. For an effective linewidth γ ∼ 100 kHz and a trap frequency of ν ∼
1 MHz, this amounts to an equilibrium phonon occupancy of approximately 10−2 quanta.
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Figure 3.5: Sideband cooling scheme. (Not shown: 866 nm rempumping light).
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3.4 Optical pumping
In order to prepare the ions in a well-defined electronic state, a frequency-selective op-

tical pumping scheme is utilized [83]. As illustrated in Figure 3.6, 729 nm light is used to
continuously drive population from the |S1/2,mj = +1/2〉 state to the |D5/2,mj = −3/2〉
state, while 854 nm light simultaneously pumps population out of the D5/2 level and back
into S1/2. The |S1/2,mj = +1/2〉 ↔ |D5/2,mj = −3/2〉 is most efficient, since there are two
pathways for the ion to be pumped into the |S1/2,mj = −1/2〉 state but only one for the
|S1/2,mj = +1/2〉. Just as with Doppler cooling, an 866 nm laser is used to repump the
D3/2 state.

Figure 3.6: Optical pumping scheme for 40Ca+. For optical pumping into the |S1/2,mj =
−1/2〉 state, the |S1/2,mj = +1/2〉 ↔ D5/2,mj = −3/2|〉 quadrupole transition is the most
efficient. Optical pumping into the |S1/2,mj = +1/2〉 can likewise be achieved by driving
the |S1/2,mj = −1/2〉 ↔ D5/2,mj = +3/2|〉 quadrupole transition.
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3.5 Coherent single-ion control
For the experiments covered in this thesis, coherent manipulations of the electronic state

of the ions are limited to Zeeman substates of the S1/2 and D5/2 fine structure levels of 40Ca+.
If a sufficiently narrow linewidth laser is used to address the ions2, then a single transition
can be resonantly selected and it is appropriate to model the electronic state of the ion as
a two level system. The near-resonant interaction can be modeled by the Hamiltonian in
Equation 2.112 from Section 2.6, which we reproduce here:

Ĥint = ~
|Ω|eiφ

2
e−i∆tσ̂eg + h.c. (3.13)

For a fixed laser geometry, |Ω| is tuned with the intensity of the laser beam, and φ is tuned
with its phase. As before, ∆ is determined by the detuning of the laser frequency ωL from
the frequency splitting of the two electronic energy levels ωa such that ∆ = ωL −ωa and σ̂eg
denotes the operator coupling the lower energy level to the higher energy level. For example,
σ̂eg = |D5/2,mj = 1/2〉〈S1/2,mj = 1/2| in Figure 3.7.

Figure 3.7: Coherent single qubit interaction.

For a resonant laser pulse, ∆ = 0 in Equation 3.13, if the interaction is turned on for a
finite duration T , then the effect on the state of the ion, as found by solving the Schrödinger
i~∂t|ψ〉 = Ĥint|ψ〉, can be described by the unitary transformation:

|ψ(t = T )〉 = Û(T )|ψ(t = 0)〉 (3.14)

where:
2Small relative to the spectral resolution of the Zeeman transitions.
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Û(T ) = e−iĤintT/~ =

(
cos(|Ω|T ) −isin(|Ω|T )e−iφ

−isin(|Ω|T )eiφ cos(|Ω|T )

)
(3.15)

and:

|ψ(t = 0)〉 = a|g〉+ b|e〉 =
(
a
b

)
(3.16)

which ignores the effect of spontaneous emission out of the excited electronic state – valid
when T � 1/γ (γ ∼ 1 second for the D5/2 fine structure manifold).

If the ion is initialized in its ground state, then it can be transformed under Û into any
other possible (physically meaningful) state with an appropriate choice of laser parameters
Ω and T :

|ψ(t = T )〉 = cos(θ
2
)|g〉+ eiϕsin(θ

2
)|e〉 (3.17)

where we’ve taken θ/2 = |Ω|T and ieiφ = eiϕ. The arbitrary two level state in Equation 3.17
has two free parameters3 θ ∈ [0, π] and ϕ ∈ [0, 2π] and it is customary to illustrate these as
a point on the surface of a unit sphere, known in this context as the Bloch sphere [75]. In
this representation, Û(T ; Ω) is equivalent to rotation by an angle θ about an axis in the X-Y
plane of the Bloch sphere that makes an angle of ϕ with the X-axis. For this reason, we
will often refer to Û as a rotation and denote it by Rϕ(θ) or, for convenience, RX(θ), RY (θ)
when the axis of rotation is equal to X or Y , respectively [75] (see Figure 3.8). If the ion is
initialized to the ground state |g〉, as is generally the case at the beginning of any experiment,
then the absolute value of the laser phase φ is irrelevant (that is, we have freedom in deciding
where the X and Y axes lie in the X-Y plane of the Bloch sphere). However, the relative
laser phase of subsequent interactions will matter and this can be controlled by the phase of
the RF applied to the acousto-optic modulator used to modulate the laser light parameters
provided that the laser light phase remains stable (the coherence time of the laser is on the
order of several ms)4.

So far in this section, we have ignored the vibrational state of the ion. The previous
results hold provided the vibrational mode is in a well-defined Fock state5 |n〉, n ∈ N.
Under this condition, the preceding results can also be extended to laser interactions that
drive vibrational sideband transitions, as discussed in Section 2.6, provided we make the
replacements |g〉 → |g〉 ⊗ |n〉, |g〉 → |e〉 ⊗ |m〉 and Ω → Ωmn (as defined in Equation 2.117).

3This is consistent with Equation 3.16, even though a, b ∈ C has 4 degrees of freedom, since conservation
of probability (〈ψ|ψ〉 = 1) and the insignificance of the global phase (|φ〉 and eiα|φ〉 cannot be distinguished
by measurement) remove two of them.

4See Chapter 4 for more details.
5This is true when the laser is pointed in a direction aligned with one of the ion’s vibrational axes, say

ẑ such that for the laser’s k-vector k̂ · ẑ = 1, which we will assume in the remainder of this section. More
generally, this is true when all three vibrational modes of the ion are individually in well-defined Fock states.
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Figure 3.8: Bloch sphere. An arbitrary state |ψ〉 = cos( θ
2
)|g〉 + eiϕsin( θ

2
)|e〉 of the two-level

system {|g〉, |e〉} is parameterized by the two variables θ and ϕ, which can be visualized
as a point on the unit sphere. If the system is initialized in the state |g〉, then |ψ〉 can be
obtained by applying the rotation Rϕ(θ). More generally, Rϕ(θ) can be used to transform
an arbitrary state of the two level system to any other state with the appropriate choice of
the parameters parameters θ and ϕ.

If the vibrational mode participating in the laser interaction is not initialized into a Fock
state, then the two level approximation is no longer generally valid – leading to nontrivial
effects. For example, if an ion is initialized into the state |g〉 ⊗ |0〉 and allowed to evolve
under the resonant action of the Hamiltonian in Equation 3.13 this will result in sinusoidal
oscillations between the ion’s electronic states |g〉 and |e〉 at a frequency of |Ω|:

P (|e〉)(t) = sin2(|Ω|t) (3.18)

These oscillations are typically referred to as Rabi oscillations and, in this context, |Ω| is
referred to as the Rabi frequency. However if, instead, the ion is initialized into the electronic
ground state |g〉 but the motional state begins in, say, a thermal state (Equation 3.11),
then the laser will effectively drive multiple transitions, each with a slightly different Rabi
frequency, as illustrated in Figure 3.9. In this case, the functional form of the time-evolution
in Equation 3.18 is replaced by the weighted sum:

P (|e〉) =
∑
n

p(n)sin2(|Ωnn|t) (3.19)
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where, to leading order, |Ωnn| = |Ω|(1− η2n) (see Equation 2.120). This effect can be used
to experimentally reconstruct the Fock state distribution p(n), though, at least in the Lamb
Dicke regime, it is more practical to use a sideband interaction for this purpose [55], since
the leading order dependency on n is linear in η for sideband transitions. This is one method
for estimating the temperature of the vibrational mode and, thus, the quality of the initial
laser cooling.

Figure 3.9: Hot Rabi oscillations. When the ion is initialized in the electronic ground state
|g〉 but the vibrational mode is initialized in a thermal state the two level approximation
is no longer valid for the dynamics under the interaction defined by Ĥint in Equation 3.13.
In this case, there are multiple pathways to excite the ion into the electronic state |e〉 as
illustrated in (a). The probability of finding the ion in |e〉 at a particular point in time is
then given by the weighted average in Equation 3.19, as illustrated in (b) for various thermal
states characterized by the mean phonon occupation n̄
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3.6 Entanglement
Two quantum systems A and B are said to be entangled when they exhibit a correlated

state described by a wavefunction that cannot be factorized into a product state of the form
[75]

|Ψ〉 = |ψ〉A ⊗ |ψ〉B (3.20)

For example, if we consider two identical ions A and B each containing a pair of electronic
energy levels |g〉 and |e〉, then one such possible entangled state, known as a Bell state [75],
is given by:

|Ψ〉 = (|g〉A|g〉B + eiφ|e〉A|e〉B)/
√
2 (3.21)

which is maximally entangled in the sense that knowledge of the state of one of the ions
yields full knowledge of the state of the other. Entangled states represent an intrinsically
quantum phenomenon since the degree of correlation that they exhibit surpasses what can
be achieved according to the laws of classical physics [5]. Much of the proposed advantage
of quantum information processing devices over classical devices derives from this fact. In
Chapter 6, we will utilize engineered states of the form in Equation 3.21 to improve the
signal-to-noise ratio of a precise measurement of Lorentz invariance beyond what can be
accomplished with two classically correlated ions.

At a minimum, generating a state as in Equation 3.21 requires a physical interaction
between ions A and B6. It is difficult to generate this interaction directly between the
internal states of the ions due to the disparity between the scale of the local atomic charge
distribution (on the order of Angstroms) and the typical separation between the ions in a
linear Coulomb crystal (on the order of microns).

On the other hand, the mutual Coulomb repulsion discussed in Section 2.2 does equate
to a strong, always-on coupling between the individual center of mass motion of co-trapped
ions. This coupling can be used to generate entanglement between the electronic states of a
single ion and the collective, normal mode motion of a chain of ions by driving a sideband
transition. Moreover, if this normal mode is first cooled down to its ground state, then
this interaction can be conditioned on the electronic state of the laser-addressed ion. For
example, a laser pulse tuned to the blue (red) sideband will only drive an electronic transition
if the ion is in its electronic ground (excited) state. This feature can be leveraged to design
a piecemeal pulse sequence that first entangles the electronic state of a single ion with the
collective motion of the chain and then transfers the information encoded in the motion to
the electronic state of another ion [20]. In this way, the collective motion of the ions acts as

6Actually, this is not quite true. For example, it is possible to entangle two ions by performing correlated
measurements of two photons, one spontaneously emitted by each ion and each of which whose polarization
is entangled with the electronic state of their respective ions [70]. In this case, the two ions can be entangled
in the absence of any direct physical interaction.
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a sort of quantum bus, communicating information about the electronic state of one ion to
another.

As first pointed out by Mølmer and Sørensen [72], a similar strategy as outlined above can
be applied more straightforwardly by simultaneously illuminating two ions with a light field
consisting of two distinct tones. The key is to choose the frequencies of the two tones such
that they have an equal, but opposite, detuning from a shared vibrational mode7 of the two
ions. This scenario is illustrated in Figure 3.10 (a). In this case, an energy-conserving two-
photon transition between the electronic states |g〉A|g〉B ↔ |e〉A|e〉B becomes possible. Four
such transitions are simultaneously activated. As shown in [72] (b), these transitions interfere
with one another in such a way that, to first order, the interaction becomes independent of
the precise vibrational state of the ions – provided that the Lamb Dicke approximation is
still valid. The resulting Hamiltonian is:

Ĥ = ~χσ̂(A)
x ⊗ σ̂(B)

x (3.22)

where:

χ ≈ η2Ω2/δ (3.23)

with η the Lamb-Dicke parameter of the participating vibrational mode and Ω proportional
to the electric field amplitude of the light field. Ĥ results in Rabi-like oscillations between
the two-level electronic subspace {|g〉A|g〉B, |e〉A|g〉B} of the ions. And if the interaction is
turned on precisely for the duration t = π/2χ, then a maximally entangled state of the form
in Equation 3.21 is produced, where the phase φ can be controlled through the global phase
of the bichromatic light field.

To obtain the approximate Hamiltonian in Equation 3.22, it is assumed that the detuning
δ from the sidebands is much greater than the direct (single-photon) coupling to these states:

δ � ηΩ. (3.24)

This ensures that the intermediate states of the transition, like |g〉A|e〉B, are not off-resonantly
populated during the interaction. For a fixed laser, this sets a practical limitation on the
strength of the entangling interaction. More generally, off-resonant coupling to higher-order
sidebands, other vibrational modes or other electronic states will also limit the maximum
detuning. However, if the goal is just to generate a maximally entangled Bell state, then
the condition in Equation 3.24 can be relaxed, as described in detail in [93]. The rough
idea is to tune the parameters of the interaction such that off-resonantly excited states are
depopulated at precisely the same moment that the desired states are maximally correlated,
known as the gate time. This is illustrated in Figure 3.11 (a).

The probability that a state |Ψ〉 of the form in Equation 3.21 is generated by the Mølmer-
Sørensen gate is given by:

7Whose motion, in the simplest case, involves equal participation of both ions, which will always be the
case for a pair of co-trapped ions with equal mass.
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laser
intensity

frequency

(a) (b)

Figure 3.10: Mølmer-Sørensen interaction. (a) Frequency spectrum of the bichromatic light-
field used for the Mølmer-Sørensen interaction. ω0 corresponds to the frequency splitting
between the individual electronic states of the ions |g〉 and |e〉 and ν corresponds to the
frequency of the participating vibrational mode. (b) An illustration of the four interfering,
two-photon transition pathways corresponding to the two-photon resonance condition ωr +
ωb = 2ω0, where ωr, ωb correspond to the two tones of the bichromatic light-field.

〈Ψ|ρ|Ψ〉 = 1

2
(ρee + ρgg) + |ρeg| (3.25)

which we will refer to as the fidelity of the gate operation. Here ρ is the density matrix
representing the physical state resulting from an experimental application of the gate. The
first two terms on the right-hand side of Equation 3.25 correspond to the probability of finding
the ions in the joint states |e〉A|e〉B or |g〉A|g〉B, respectively, at the conclusion of the gate.
These probabilities can be measured directly via the electron shelving method described in
Section 3.7. The third term represents the amplitudes of the off-diagonal elements of the
density matrix 〈ee|ρ|gg〉 = 〈ee|ρ|gg〉∗. This can be measured by simultaneously applying a
single-ion π/2-pulse to both ions, referred to as an analysis pulse, with a laser phase of ϕ
relative to the global laser pulse of the bichromatic field, followed by measurement in the
standard basis [86, 6]. The resulting parity signal Π, equal to the sum of the probability of
finding both ions in the same electronic state minus the sum of the probabilities of finding
them in opposite states, will oscillate sinusoidally as a function of the phase ϕ as Π =
Asin(2ϕ + φ). The amplitude of these oscillations A/2 is equal to the amplitude of the
coherence |ρeg|. An experimental example of a parity oscillation is shown in Figure 3.11 (b).
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Figure 3.11: Mølmer-Sørensen Gate. (a) Example population dynamics for a strongly-driven
Mølmer-Sørensen interaction. The states labeledD and S correspond to the states |e〉 and |g〉
(respectively) discussed in the main text. The point in time when the maximally entangled
Bell state is generated, typically referred to as the gate time, is circled in purple. Note that,
at this point the intermediate state populations, colored in red, are fully depopulated. The
circles label experimental data and the solid lines label simulation. (b) An example of a
parity oscillation. The analyzer phase corresponds to the phase of the global analysis pulse.
Circles correspond to experimental data and the red curve corresponds to a sinusoidal fit.
Along with the data in (a), the fidelity of the Bell state produced at the first gate time was
found to be approximately 94%.
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3.7 Measurement
To measure the ions, we scatter light off of the 397 nm S1/2 ↔ P1/2 cycling transition,

which is then focused and directed onto either a photomultiplier tube (PMT) or an EMCCD
camera (see Section 4.5 for technical details). An example image taken using the camera is
shown in Figure 3.13.

Using the electron shelving method [58], we are able to determine whether the ion is
in the D5/2 level. The method is illustrated in Figure 3.12. When the ion is in the S1/2

level, incident 397 nm light will continuously scatter photons. On the other hand, if it is
in the D5/2 level, the ion will be transparent to this light. For a sufficiently long readout
duration and low background light, the two count distributions, bright and dark, can be
reliably distinguished with an appropriate threshold value.

Figure 3.12: Electron shelving method. (a) When the ion is in the S1/2 level, incident 397
nm light will continuously scatter photons. (b) When the ion is in the D5/2 level, it is
transparent to this light.

Figure 3.13: Chain of ions imaged on an EMCCD camera.
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Chapter 4

Experimental setup

4.1 Introduction

Figure 4.1: Main components of the experimental setup.

In this chapter, we sketch the physical apparatus used for trapping and controlling ions
and performing the experiments in this thesis. An outline of the basic components is sketched
in Figure 4.1. The main apparatus consists of the trap assembly used for generating the
electric fields necessary to trap the ions, an oven used for sourcing neutral calcium atoms
and a magnet for setting the quantization axis. All of this is housed in an chamber held at
extreme high vacuum.
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A set of laser beamss is used to photo-ionize the neutral calcium and manipulate the
internal state of the ions. Measurement of the ion’s state is performed using either an
EMCCD camera or a PMT. All control is facilitated through a hardware/software stack
with both real-time and asynchronous capabilities.

4.2 Main apparatus

Figure 4.2: From left to right, the vacuum chamber, trap assembly and calcium oven used for
the experiments in this thesis. The internal pressure of the chamber is kept at ∼ 10−11 mbar.
Contained inside is the trap assembly and a calcium oven, which sources the calcium atoms.

The trap assembly and vacuum chamber used for the experiments described in this thesis
were designed and built by Thaned Pruttivarasin and Michael Ramm. A more detailed
description1 can be found in their theses [81, 82]. Here we provide a summary of the features
relevant for this thesis.

Trap assembly
A diagram of the trap assembly is provided in Figure 4.3. The DC electrodes, or ”end

caps,” are held at a static potential to trap the ions in the axial direction. The RF electrodes,
or ”RF blades,” are driven with an oscillating voltage that generates the pseudopotential for
trapping in the radial plane. Two coupled pairs of compensation electrodes allow compen-
sation of any stray electric fields in the radial plane, which would otherwise induce excess
micromotion. All electrodes are electrically connected to external sources using 1 mm thick,

1Specifically, the ”improved” design described in [82].
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Figure 4.3: Trap assembly. Trap electrodes (gray) are composed of electropolished 316L
stainless steel and supported on a Macor frame (beige). The DC electrodes have a 1 mm
pinhole with rounded edges, which allows for optical access along the axis of the trap. The
tips of the DC electrodes have a diameter of 5 mm. The tip-to-tip distance between endcaps
is 5 mm and the gap between diametrically opposing RF electrodes is 1 mm. Image adapted
from [82].

vacuum-compatible, Kapton-insulated copper wire. And all electrodes are capable of sup-
porting at least several kilovolts while under vacuum [82]. Pinholes through the end caps
provide optical access along the axial direction. The electrodes are supported by an vacuum-
compatible, insulating Macor frame that is rated for continuous operation at temperatures
of up to 800°C. The physical realization of the trap assembly is shown in the middle image
of Figure 4.2.

Calcium oven
A calcium oven is used to source the atoms for experiments. It consists of a stainless

steel tube, open-ended on one side and loosely packed with calcium granules. The tube is
wrapped with a strip of tantalum foil connected by conductive wire to an external current
source. When a sufficiently high current2 is driven through this wire, the oven assembly
is resistively heated to a high enough temperature to sublimate the calcium, which is then
sprayed out of the open end. The oven is mounted below the trap assembly such that

2For trapping single ions, we typically run about 4 A through the oven, but during troubleshooting have
gone as high as 12 A. At about, 10 A the oven begins to glow.
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the direction of the calcium plume is directed vertically upwards. The trap assembly was
originally designed for an experiment with an optical cavity and special precautions were
taken to prevent the calcium spray from coating the mirrors. In particular, the plume is only
able to reach the trapping region through a small 12 mm diameter hole in the base mount.
We found that mounting a laser to the oven was helpful for alignment with this through-hole,
which can otherwise be tedious. The actual oven used is shown in the right image of Figure
4.2. The open end of the oven tube is obscured by foil, but the tantalum strip is visible just
below this.

Vacuum chamber

Figure 4.4: Diagram of the vacuum chamber. The labels correspond to the flanges where the
corresponding component is mounted when the chamber is fully assembled. Image adapted
from [82].

Both the trap assembly and oven are housed inside the main chamber of the vacuum as-
sembly illustrated in Figure 4.4. The main chamber3 is a spherical octagon with eight ports,
allowing for optical through-access along four separate directions. When mounted, the axis
of the trap is oriented along one of these directions. Separate RF and DC feedthroughs en-
able electrical connections to be made between the trapping electrodes and external voltage
sources. The oven feedthrough provides the same function for an external current source.
The angle valve is used to smoothly break vacuum and allows a simple connection to be made

3KPI MCF600-SO2000800
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with, for example, an external turbo pump. When fired, the titanium sublimation pump de-
posits a thin layer of highly reactive titanium onto the interior surface of the chamber, which
acts as a getter, and reduces the internal pressure (if the surface is not already saturated).
We continuously run an ion pump while under vacuum, which is the main mechanism for
maintaining (and typically improving) the quality of the vacuum over time. It also provides
a limited ability to monitor the internal pressure, since this is related to the current through
the pump. But field emission saturates this signal at about 10−9 mbar.

The average time that an ion can be contained within the trap is referred to as the trap’s
lifetime. If the ion is continuously laser-cooled, the lifetime is primarily determined by the
internal pressure of the chamber (for a given trap depth). In our setup, pressures on the
order of 10−11 mbar, resulted in lifetimes on the order of at least a week (typically, the cooling
lasers would become unstable before the ion was lost). Starting with an opened chamber,
we achieved this pressure with the following procedure:

1. With a turbomolecular pump connected through the angle valve, pump down the
pressure to about 10−8 mbar, as measured by a residual gas analyzer (RGA).

2. If this is successful, confirm the quality of the chamber’s seal by spraying helium
gas around the exterior while simultaneously monitoring the partial pressure with the
RGA.

3. If no leaks are detected, place the chamber in a convective oven, set so that the tem-
perature slowly ramps over several hours to about 180°C (this accounts for differences
in the thermal expansion coefficients of the various materials).

4. Maintain this temperature while continuing to pump down with the turbo until an
adequate pressure is reached (typically on the order of several days to several weeks,
depending on the cleanliness of the interior surface). At these temperatures pressures
of around 10−8 mbar are reasonable.

5. Slowly ramp down the temperature, close the angle valve and remove the turbo pump.

6. Fire the titanium sublimation a few times, which should lower the pressure another
order of magnitude or so (this effect is rather immediate).

7. Activate the ion pump.

Fortunately, this procedure only needed to be performed once for the experiments in this
thesis. The final pressure was estimated to be on the order of 10−11 mbar.

Magnetic field
We apply a magnetic field to the calcium ions to resolve the Zeeman levels and set their

quantization axis. We generate this using a collection of Sm2Co17 magnets placed inside



CHAPTER 4. EXPERIMENTAL SETUP 66

of 3D-printed holders designed by Nicole Greene and shown in Figure 4.5. The magnitude
and direction of the field are controlled by adjusting the number of layers of magnets in the
various holders. Typically, we worked with a magnetic field of around 4 Gauss.

Figure 4.5: Magnets and holders. In the working configuration, two pairs of these are used.
One pair each for both the horizontal and vertical directions, placed on opposite sides of the
chamber. Pictures were taken by Nicole Greene.

4.3 Trapping electronics
To generate a suitable confining potential for the ions, the trap electrodes are driven

with a collection of DC and RF voltage signals with magnitudes on the order of 0.1-1 kV.
Connections to the external sources are made through the various chamber feedthroughs,
which are internally connected to the electrodes via copper wire. In the following section,
we describe the basic setup. Note that whenever a common point is indicated in a circuit
diagram, it refers to a single-star ground, which is an electrically isolated copper sheet. Any
circuit elements not explicitly referenced to this ground are assumed to be floating. This
design is meant to prevent ground loops.

DC electronics
The voltages on the end caps and compensation electrodes are sourced by iseg SHQ222M

low-noise, high-voltage power supplies. Both end caps are held at about +800 V, corre-
sponding to a single-ion axial trapping frequency of around 1 MHz. The voltages on the
micromotion compensation electrodes have to be adjusted every so often but rarely need
to be set to a magnitude higher than several hundred volts. The signal from the isegs is
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routed into the chamber through a low-pass, PCB filter board mounted directly to the DC
feedthrough labeled in Figure 4.4. Each low-pass filter consists of a simple, two-pole RC
design with cutoff frequencies of around 1 kHz.

DC feedthrough

iseg

Figure 4.6: Low pass filter for DC electrodes.

RF electronics
To create the pseudopotential in the radial plane, the RF electrodes are driven with

an oscillating voltage with a frequency of around Ω ∼ 2π × 30 MHz and an amplitude of
Vp-p ∼ 300 V. This signal is generated by a Rhode & Schwarz SMB100A connected in series
with a low-noise Mini Circuits ZHL-20W-13 RF amplifier. The output impedance of the
amplifier is Zo = 50 ohms, whereas the electrodes are essentially capacitors with a total
capacitance of Ctrap ≈ 30 pF. It is impractical to drive any purely reactive load Zl from a
source with real output impedance since all of the power is reflected back to and dissipated
in the source:

|Preflected| =
∣∣∣∣Zl − Zo

Zl + Zo

∣∣∣∣2 (4.1)

To convert the input impedance of the trap into a real value, we combine an inductor,
of inductance L, in parallel with the trap capacitance to form the resonator illustrated in
Figure 4.7(a). The inductor is constructed by wrapping several loops of copper wire around
a low-loss, iron-powder, toroidal core4. If the series resistance R is small, then the resonance
frequency ω will occur when the reactance of the inductor is approximately equal to the
reactance of the trap capacitance:

ωL =
1

ωCtrap
=⇒ ω =

1√
LCtrap

(4.2)

In this case, an impulse of current sent into the circuit will oscillate back and forth between
the inductor and capacitor until its energy is finally dissipated on the resistor. On resonance,
the input impedance is purely real as desired:

4Amidon, material 6.
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Figure 4.7: Impedance matching circuit. (a) The resonant circuit is used to convert the
trap capacitance to a real impedance. Each trap electrode contributes about 15 uF of
capacitance for a total of Ctrap ∼ 30 pF. Based on this value, the inductor is then chosen to
achieve the desired resonance frequency of approximately 30 MHz. The main contribution to
the non-ideal series resistance R tends to be due to the inductor (core loss and skin effect).
(b) By coupling into the resonator through a transformer, the magnitude of the real input
impedance of the resonator can be matched to Z0. Here N = Np/Ns is the ratio of primary
to secondary turns for the transformer. k is a dimensionless coupling constant, such that the
mutual inductance of the transformer is M = kL. We assume this to be ≈ 1 for the analysis
in the main text. In practice, k can be determined with the equation k =

√
1− L′

p

Lp
where

L′
p is the inductance of the primary coil with the secondary short-circuited and Lp is its

inductance with the secondary open [3, 21]. The effect of a non-unity k on the transformer
circuit is described in detail in [3].

Zresonator
in =

L

CtrapR
(4.3)

However, choosing L such that ωres = Ω, means that Zresonator
in will be on the order of

tens of kohms (for Ctrap ∼ 30 pF). So, according to Equation 4.1, most of the power will still
be reflected back into the source. For this reason, rather than drive the resonator directly,
we inductively couple into it through a step-up transformer as shown in Figure 4.7(b). The
transformer is constructed by wrapping another wire a different number of times around the
same ferrite core. According to the normal rule for transformers, the input impedance is
determined by the ratio of turns N as:
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Ztransformer
in =

(
Np

Ns︸︷︷︸
N

)2

Zresonator
in (4.4)

Now we can achieve the desired input impedance Ztransformer
in = Z0 by setting the ratio of

turns as:

N =

√
Z0

Zresonator
in

=

√
Z0RCtrap

L
(4.5)

Equation 4.4 is equivalent to saying that there is a voltage gain over the transformer of:

Gv =
Vs
Vp

=
Zresonator

in
Z0

=

√
L/C

RZ0

(4.6)

Alternatively, this can be written in terms of the quality factor of the resonator Q = ω/δω:

Gv =

√
Q
√
L/C

Z0

(4.7)

From which it is clear that to maximize the Gv, one should also maximize Q. For R ∼ 1Ω,
we achieve a voltage gain of Gv ∼ 20, while also matching the input impedance of the trap
electrodes to the source.

Based on the design principles just discussed, we use the following procedure to build the
full impedance matching circuit. First, we build a resonator with the appropriate frequency
while also optimizing the quality factor. The parameters involved are the core/wire materials
and coil geometry. Then, we add the primary coil to the core, starting with a low number of
turns and then working up while optimizing on the transmitted power5 and coupling. Note
that it is important not to try and optimize the quality factor this way. For a properly
matched circuit, this will only be half of the maximum value since, in this case, half of the
power is being dissipated by the source. This last point is illustrated in Figure 4.9.

The actual impedance matching circuit used in experiments, includes several additional
elements, as illustrated in Figure 4.8 and described in the caption.

5Typically, we determine this by driving the circuit through a directional coupler and measuring the
reflected power
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Figure 4.8: Additional components. The blocking capacitors Cb and bias voltage circuit
allow us to generate a DC quadrupole potential in the radial plane. The blocking capacitors
are chosen such that Cb � Ctrap. The capacitive dividers Cd’s, allow us to monitor Vtrap.
Cd1 is chosen such that Cd1 � Ctrap to avoid loading the circuit.

Figure 4.9: Impedance matching is achieved in practice by adjusting the number of turns on
the primary coil while monitoring the transmitted power. One should not try to optimize the
quality factor this way since the measured value will be half of its maximum when the circuit
is properly matched to the source. In the plot to the right, the green dashed line corresponds
to Q = 1

R

√
L
C

. The orange dashed line is half of that value. And the vertical black dashed
line corresponds to N as given by Equation 4.5. The simulation assumes Ctrap = 30 pF,
Z0 = 50 Ω, R = 1 Ω and a resonance frequency of 30 MHz.
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4.4 Laser system and addressing optics
The six continuous wave diode laser sources we use to prepare and control the ions are

housed in a separate, temperature-stabilized room and routed to our experiment via fiber
optical cables. We share these sources with the various other experiments in the lab, which
reduces the human cost of maintenance. A detailed description of the optical setup in the
laser room is provided in [81]. The 375 nm and 422 nm lasers, used for photo-ionizing neutral
calcium, are free-running. The 397 nm, 854 nm and 866 nm lasers used for addressing the
short-lived dipole transitions in 40Ca+ are locked using a Pound-Drever-Hall scheme [27]
to external reference cavities whose effective cavity lengths can be tuned remotely via piezo
actuators. The 729 nm used for coherent manipulation of the ion is unique in that it requires
a sub-kHz linewidth and a high-degree of long-term stability. The details of this laser are
described in a separate section.

In Figure 4.10 we provide a schematic outlining the relative orientation of the lasers into
the trap. In Figure 4.11 we provide a schematic of the optical control components used
to further manipulate the laser light after it has been received on the optical table for the
experiment.

729 nm laser
The 729 nm laser light is used to produce and manipulate coherent superpositions of

the S1/2 and D5/2 states and, therefore, is required to have a uniquely narrow linewidth
and long-term stability. This is accomplished by locking the diode output to a high-finesse
cavity from Stable Laser Systems using a DLpro Fast Analog Linewidth Control (FALC)
circuit [81]. A rough upper bound on the effective laser linewidth, at the position of
the ions, is determined by Ramsey spectroscopy of the two-ion, magnetic field insensitive
(|S1/2,mj = −1/2〉|S1/2,mj = 1/2〉 + |D1/2,mj = −1/2〉|D1/2mj = 1/2〉)/

√
2 state, from

which we estimate an FWHM value of ≈ 500Hz (Figure 4.12) [19].
The cavity-locking process has the unintended consequence of imprinting sidebands on

the laser spectrum at the frequency of the FALC’s control loop. Since these features are
heavily suppressed by the cavity, they can be observed in a beat note measurement between
the light coming directly out of the diode and the same light after being transmitted through
the cavity. An example measurement is shown in Figure 4.13.

The position of the servo bumps, at ± 750 kHz, tends to coincide with our axial trapping
frequency and can cause significant driving of the carrier transition when exciting the axial
sidebands. We can reduce the strength of the servo bumps by lowering the gain on the
FALC, but there is a limit before the lock becomes unstable. Instead, we use the filtered
light transmitted through the cavity to run our experiments.

But the intensity is very weak, so we use a two-stage injection locking scheme to provide
sufficient amplification. Details of this scheme can be found in [2] and also in Dylan Gorman’s
thesis [39], but the essential idea is that the light transmitted through the cavity is used
to seed another free-running 729 nm diode, known as the supervisor. If the supervisor’s
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Figure 4.10: Orientation of addressing beams relative to vacuum chamber. The 375 nm, 397
nm and 422 nm light is all output from the same fiber. The orientation is chosen such that
the 397 nm beam has an equal projection on all trapping axes in order to provide efficient
Doppler cooling. Two separate 729 nm beam paths are used. The ”global” 729 nm beam
is directed through a pinhole in the endcaps and along the axis of the trap so that it can
simultaneously address all ions. The diameter of the pinhole and the distance of the endcap
from the trapping point prevents us from focusing the beam waist down to more than about
100 µm. The ”local” 729 nm beam is directed down into the chamber from an elevated
position and focused through a custom-built objective (Table 4.1). We can achieve a spot
size with a diameter of several µm so this beam can be used for single-ion addressing.
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Figure 4.11: Lattice room optical layout. A sketch of the optical setup in the experiment
room (known as the lattice room for historical reasons). Typical laser intensities are dis-
played, as measured directly after the fiber from the laser room and directly before entering
the vacuum chamber. During experiments, fine-tuning of the laser frequencies is accom-
plished using a collection of acousto-optic modulators (AOMs) arranged in standard single
pass (sp) or double pass (dp) configurations. The RF modulation signals used to drive the
AOMs are all sourced from AD9910 direct digital synthesizer chips controlled by an Ar-
tiq Sinara control crate [12] and then sent through MiniCircuits RF amplifiers (2 W). The
frequencies shown next to the AOMs correspond to their center frequencies and the sign in-
dicates whether we out-couple the positive or negative first-order modulation sidebands. A
remote-controlled shutter is used to quickly switch off the photo-ionization beams after the
desired number of ions has been trapped. Additional details regarding the 729 nm paths are
provided in Section 4.4. Not shown: various half and quarter waveplates and a cylindrical
lens used for shaping the output beam from the TA.
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(a) (b)

Figure 4.12: Effective laser linewidth measurement. (a) Ramsey spectroscopy of the
state (|S1/2,mj = −1/2〉|S1/2,mj = 1/2〉+ |D1/2,mj = −1/2〉|D1/2,mj = 1/2〉)/

√
2. This

state is insensitive to magnetic field noise (both branches of the superposition have
the same g-factor) but sensitive to laser phase noise. The orange curve is the fit of
the data (blue curve) to a Gaussian decay envelope. If we assume that the phase
noise of the laser is slow relative to the wait times, we can use the fitted decay
constant to make a crude estimate for the laser linewidth of approximately 500Hz.
(b) It’s interesting to compare the result in (a) to Ramsey spectroscopy on the
(|S1/2,mj = −1/2〉|D1/2,mj = 1/2〉+ |D1/2,mj = −1/2〉|S1/2,mj = 1/2〉)/

√
2 state, which

is insensitive to laser phase noise, but sensitive to magnetic field noise. The coherence
time is significantly longer, implying that, in many cases, our coherence times are limited
by laser phase noise.

frequency is close enough to the seed, it will lock to it and output at the seed frequency.
The supervisor’s free-running frequency is adjusted by adjusting its temperature and drive
current. In general, the lock tends to become less stable as the is driven at higher currents
and/or higher temperatures, which both correspond to a larger output power. This is why
we require the use of two stages.

Typically, we set the injection diodes to a fixed temperature and then adjust the currents
as needed during the operation of the experiment and as determined by monitoring a beat
note signal between the output of the master diode and another point in the beam path
downstream of the second injection locking stage. If one of the injection diodes becomes
completely unlocked, the beat note signal disappears. But often, it will only become ”par-
tially” unlocked, resulting in an excessively noisy spectrum. The current is then adjusted to
recover a clean signal (there is a bit of an art to the process).

Once the 729 nm light is received on the experiment’s optical table, it is fed through a
tapered amplifier (TA). The long 20 m optical fiber used to route the light from the laser
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Figure 4.13: Servo bumps. Beat note measurement where 729 nm light output from the
diode is overlapped on a polarizing beam splitter with the same light after being transmitted
through a cavity and modulated at 80 MHz by an AOM. The intensity of the overlapped
light is measured on a photo-diode. The strong sidebands at around 750 kHz (and higher
multiples) are due to the cavity-locking process and are known as servo bumps.

room tends to induce significant polarization noise, which is inevitably converted to intensity
noise at the position of the ions due to the polarizing beam splitters we use to maintain a
well-defined linear polarization. The TA reduces this effect since we use a seed intensity well
into the saturation regime (approximately 35 mW). To avoid over-seeding and damaging the
TA, the seed intensity is fixed by a PID, which feeds back to an 80 MHz AOM in the laser
room and uses a photodiode measurement of pickoff light from a mirror before the TA. This
is the primary reason for the additional AOM single passes on the local and global beam
paths shown in Figure 4.11. But we find that these are also useful when modulating the light
with many tones, since, in this case, using the double pass would also result in the various
sum tones being imprinted on the light.

The standard deviation of intensity fluctuations on the light measured directly after the
TA is about 1% of its mean. But by the time it makes it to the vacuum chamber, this is
increased to about 4%. We found that we could further reduce this to about 2% by covering
the entire beam path with boxes, as shown in Figure 4.14.
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Figure 4.14: 729 nm laser intensity stability. Driven excitation of a S1/2 ↔ D5/2 transition
before and after boxing the beam path (rightmost image). Blue circles are data points and
the orange curve is a fit to signal with Gaussian decay envelope. From the fitted decay
constant, we estimate the relative intensity fluctuations (see Chapter 2).

4.5 Imaging
Ions are imaged by collecting 397 nm light scattered off of the S1/2 ↔ P1/2 transition

in a directional orthogonal to that of the laser beam. The scattered light is collected by a
custom-built objective, designed by Jan Benhelm [6]. The known specifications are listed
in Table 4.1. Importantly, the objective was designed to focus both 397 and 729 nm light6,
so it can be simultaneously used for single-ion addressing with the help of a dichroic mirror
(see Figure 4.15). Once the 397 nm light passes the dichroic mirror it is split into two paths
with a pellicle, one goes to an EMCCD camera and the other to a PMT.

For measurement, the PMT has the advantage of high quantum efficiency and a direct
interface with the real-time control stack used to run the experiments. This allows conditional
logic to be performed based on measurement results in real-time. The EMCCD, a Nuvu HNu
512, is currently not supported by the control hardware so we can only talk to it in real-time
(by, for example, sending a TTL pulse to trigger a detection window), but not listen to it.
The quantum efficiency of the Nuvu EMCCD is quite good (∼ 95%) and we can reliably
distinguish between a dark and bright ion with as low as several hundred µs of exposure time.
However, we found that we needed to switch over to a binary threshold method for state
discrimination, as opposed to the Gaussian fit method described in [82] and used previously
(see Figure 4.16).

6but only on the optical axis

focal length f-number NA
70 mm f/1.6 0.3125

Table 4.1: Known objective specifications.
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Figure 4.15: Imaging setup. The same objective is used to collect 397 nm light scattered off
the ion and to focus down 729 nm light onto the ion for single-ion addressing. The rotation
of the upper imaging platform by 90°indicated in the figure is about the axis connecting the
dichroic mirror with the EMCCD camera. Figure is adapted from [81, 39].

Figure 4.16: Camera readout fidelity as a function of readout duration. 104 camera exposures
are taken with the 397 nm and 866 nm light shining on the ion, resulting in the bright
distribution as labeled in the rightmost plot. And another 104 exposures are taken with
the 866 nm light off, resulting in the dark distribution (population is quickly shelved in the
D3/2 state). For low exposure times, the binary threshold method (illustrated in right-most
images) significantly outperforms the Gaussian fit procedure outlined in [82]. The region of
interest used for these data points was 10x10 pixels large.
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4.6 Hardware and software control
Running a trapped-ion experiment requires the coordination and control of a number

of devices, often interfaced by different computers and, in some cases, shared with other
experiments. Sometimes this coordination must be specified in real time. For example, a
pulse sequence consists of turning on and off a sequence of laser pulses for precise durations.
For these tasks we use an Artiq control system [12]. Other tasks do not require real-time
control but do require asynchronous communication with a distributed collection of devices
spread over the lab’s local network. For these tasks, we use the LabRAD7 control software
developed by the John Martinis group at UCSB.

Since the functionalities provided by LabRAD and Artiq are different, it is straightfor-
ward to combine them within a single control procedure, which we often do. For example,
the Artiq control system lacks support for our EMCCD camera. So when using the camera
to measure the ions at the culmination of a pulse sequence, we communicate with it via a
LabRAD server. In an ”initialize” stage we set the user-specified camera parameters (e.g.
region of interest, exposure time, number of exposures, etc.), and then, while the experiment
is running, we have Artiq generate a TTL pulse that triggers the camera to take an exposure
at a specific point in time (the point at which we would like to measure the state of the
ions). Since we cannot coordinate with the camera in real-time, we allow the image data to
accumulate in the camera’s buffer and then transfer this information to the control PC where
it is processed and stored, all of which is performed asynchronously so as not to interfere
with the real-time execution of the experiment.

In the remainder of this chapter, we will describe the LabRAD and Artiq implementations
in separate subsections. The entire control stack is more of a prototype than a finished
product (though currently completely functional). It represents the first effort in the lab
to integrate the Artiq control system into the preexisting architecture. For this reason, the
focus will not be to flesh out the details but, rather, to provide a rough sketch of the basic
structure and most important components, where to find things and what they do, to provide
enough information for future students to pick up the development.

A schematic illustrating some of the basic components of the stack is provided in Figure
4.17 and a listing of some of the most important files and directories pertaining to the control
code is found in Table D.1. In what follows, unless otherwise specified, file locations will
refer to the main experimental (lattice) control computer.

LabRAD control
Essentially, LabRAD provdies us with a remote procedure call (RPC) protocol, whereby

evaluation of some function defined in a LabRAD server8, living somewhere on the local
network, can be requested via TCP by another program, living somewhere else on the local

7https://github.com/labrad/pylabrad/wiki
8A basic example server, written in Python, can be found at ∼/LabRAD/common/tutorial/test-server.py

https://github.com/labrad/pylabrad/wiki
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Figure 4.17: Hardware/software control stack. The two main control systems we use for
running experiments are LabRAD and Artiq. LabRAD consists of a collection of servers
running on computers distributed throughout the lab, which can be accessed from anywhere
on the local network via remote procedure calls. Servers can either interface with physical
devices (yellow boxes) or be self-contained software packages (e.g. parametervault or sd_-
tracker_global). Artiq facilitates the real-time control of hardware that includes RF signal
generators and TTL input/ouputs. The user primarily interacts with both of these controls
through the Artiq GUI located on the main (lattice) control computer.

network. This allows for a highly modular architecture. Servers can be run on different com-
puters, in different languages and can be shared simultaneously by multiple end-users. For
example, on the main experimental control computer (called the ”lattice control computer”
in Figure 4.17) we run a GUI (called the ”Artiq GUI”), which is the primary way that a user
interacts with the experimental controls. This GUI contains modules written in Python3
that allow the user to monitor and specify parameters of the laser control system located
in the laser room9. But the software that provides the actual interface to the various laser
control devices is run in Python2 on a computer located in the laser room. LabRAD makes
the integration of these different software packages seamless.

The first step in getting LabRAD up and running for experiments is to run the LabRAD
web manager and lattice_control node server. A desktop icon on the lattice control computer
allows this all to be done with a single click. The code launched by the desktop icon can be

9Code located at ∼/lattice/artiq/artiq/dashboard/laser_room
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found at ∼/launch_scripts/labrad_startup.sh. Once this is done, the lattice_imaging node
server should be run on the lattice imaging computer (Windows machine), which primarily
facilitates communication with the EMCCD camera.

Artiq control
Artiq is an open-source control suite, developed by M-Labs, that provides a high-level

Python API for describing experiments, which can then be compiled down and run on an
FPGA kernel that communicates with a collection of dedicated physical devices in real-time
with sub microsecond resolution. For us, it essentially replaces the pulser and scriptscanner
developed internally for running real-time experiments [82, 81]. These tools worked very
well, but we found that there was a barrier to adding new features due to a lack of detailed
documentation and since, on the software side, this required a working knowledge of event-
driven programming and, on the hardware side it required the design and fabrication of
new digital electronics boards. Artiq’s high-level API, modular hardware architecture and
well-maintained documentation10 together overcome all of these limitations.

Artiq ships ready to run experiments out of the box. But we have built a minimal API
on top of that based on the architecture of the scriptscanner software. This is all defined
in the PulseSequence class, which inherits from the base EnvExperiment class provided by
Artiq, and can be found at11 ∼/artiq/artiq/.pulse_sequence/pulse_sequence.py on the main
experimental control computer. PulseSequence does the following:

• Resets and initializes all of the Artiq hardware.

• Determines scan parameters.

• Loads all needed parameters from the parametervault LabRAD server.

• Initializes the camera or PMT for measurement.

• Iterates through the scan parameters and for each scan point, runs code from a user-
defined subsequence() function.

• For each shot composing the scan point, runs code from a user-defined sequence()
function.

• Performs measurement with the camera or PMT.

• Compiles the measurement data, plots it and stores it to file.

• Resets the hardware to its initial state.
10https://m-labs.hk/artiq/manual/
11This is just a fork of the main Artiq github repo, so to incoporate any recent Artiq updates, they must

be manually merged.

https://m-labs.hk/artiq/manual/
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More technical details regarding the experimental control software, including the organi-
zation of the code on the experimental computer and some pulse sequence examples, are
provided in Appendix D.
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Chapter 5

Bounding causal nonlinear quantum
mechanics

5.1 Introduction
Linear time evolution is a fundamental assumption of quantum mechanics [76]. Nonethe-

less, it has been demonstrated that reasonable theories relaxing this constraint, theories of
so-called nonlinear quantum mechanics (NLQM), can be self-consistently designed [8, 97, 98,
24]. But rigorous experimental tests of these theories have been performed [91, 33, 10, 18,
96, 65] and, in all cases, no nonlinear effects were observed. Moreover, these NLQM theories
have proven, quite generally, to violate causality when extended to the case of multipartite
systems [37, 38, 78].

However, a fully causal NLQM (cNLQM) framework, building on earlier work by Kibble
[54], has recently been proposed by David Kaplan and Surjeet Rajendran [52]. The interest
in this work extends beyond simple theoretical curiosity since it predicts measurable effects
that turn out to be poorly bounded by previous experiments. This is surprising given
the remarkable success that standard quantum mechanics has demonstrated in accurately
predicting the results of the immense amount of experiments performed in well-controlled
quantum systems in recent years. The reason underlying the lack of sensitivity to the new
theory in these systems is that (a) in the proposed cNLQM framework one is no longer free
to separate out the center of mass (COM) degrees of freedom and (b) the magnitude of the
nonlinear effects is generally decreased as the spread of the physical wavefunction increases.

This dependency on the center of mass coordinates means that standard atomic and
nuclear spectroscopy, the gold standard in precision metrology, fails to provide a sensitive
testbed for cNLQM unless the COM coordinates are localized on a scale comparable to the
internal atomic or nuclear degrees of freedom, which is generally not possible. According to
the authors of [52], the best estimate for the previously existing bounds on cNLQM, inferred
from the current uncertainty in measurements of the Lamb shift, is just a factor 104 less
than the leading order linear effects. This motivates the need for tailor-made experiments
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specifically designed to be sensitive to causal nonlinear effects. This is especially true given
the sweeping implications a nonlinear theory of quantum mechanics would hold across all
areas of physics including cosmology, gravity and quantum information processing [52, 1].

In this chapter, we summarize an experiment that was designed and performed to test
cNLQM using a single trapped 40Ca+ ion [14]. The key feature of this experiment is that
spectroscopy is performed directly on the quantized COM motion of the ion, which is tightly
confined in a standard Paul trap. In short, a superposition of the ground and the first excited
harmonic state of the ion is prepared and Ramsey interferometry is performed. The energy
splitting between these two states is much smaller than many of the ion’s experimentally
accessible electronic transitions, which would ordinarily make them a poor choice for a
precision experiment. But, as will be explained, the superposition of these states turns out to
be highly susceptible to casual nonlinear effects, more than compensating for this limitation.
Via this method, we can provide an improved bound of 5.4 ×10−12 on the magnitude of
the unitless factor that scales the causal nonlinearity in a perturbative treatment. This
represents an improvement of about seven orders of magnitude compared to the previous
best estimates.

5.2 Theoretical background
When applied to a physical system, the hallmark of a nonlinear theory of quantum me-

chanics is the presence of terms in the system’s Hamiltonian that are nonlinear with respect
to its wavefunction. These terms can be interpreted as an interaction of the wavefunction
with itself and, thus, tests of NLQM can be viewed as tests of the superposition principle
since, even in an isolated system, a superposition of two states will generally no longer be
stable in a nonlinear theory [1]. This self-interaction of the wavefunction also poses the
central challenge in the preservation of causality in a nonlinear theory. This is due to the
two seemingly contradictory features of standard quantum mechanics that the response of
the wavefunction to some local interaction is instantaneous and that the wavefunction of an
entangled multi-particle state is a nonlocal property shared by all constituent particles. This
means, for example, that by performing a local operation on one-half of an EPR pair whose
constituent particles are separated by a sufficiently large distance, one can superluminaly
affect the other half of the pair through their shared wavefunction. In standard quantum
mechanics, it is well-established that this superluminal effect on the wavefunction cannot
be used to transmit information – thus preserving causality. However, this protection is no
longer guaranteed in nonlinear theories, since the self-interaction of the wavefunction can
convert a local action into a nonlocal interaction [37].

This is not to say that such a nonlocal interaction is a necessary condition of a nonlinear
theory. As first pointed out by Polchinski, there do exist restricted forms of nonlinearities
that are strictly causal [78]. Recently, and for the first time, a systematic approach for
incorporating causal nonlinear evolution into quantum mechanics has been developed by
David Kaplan and Surjeet Rajendran [52]. Their approach differs from previous constructions
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of NLQM in that nonlinear evolution is incorporated directly into quantum field theory
(QFT) rather than as a modification to non-relativistic, single-particle quantum mechanics
as has conventionally been the case. Interestingly, it is shown in [52] that, through this
approach, the seemingly unmotivated constraints imposed by Polchinski can be derived as a
direct consequence of QFT. The basic idea presented in [52] is to introduce nonlinearities into
a system’s time-evolution by shifting any relevant bosonic field operators by a small amount
proportional to the expectation value of the field operator acting on the full quantum state,
which in some sense adds a sort of classical field interaction where the field is sourced by
the position-space distribution of the system’s interacting particles. In this way, causality is
manifestly preserved through the normal machinery of field theory.

Beyond preserving causality, the QFT-first approach of the cNLQM framework presented
by Kaplan and Rajendran has a couple of other features that differentiate it from previous
NLQM theories. Firstly, it is a field-dependent theory. This means that it does not preclude
the possibility that nonlinear effects scale differently with different interacting field theories.
This feature is at odds with the motivation put forth by Steven Weinberg in his approach
to NLQM [97, 98] where he hoped to propose precision tests of quantum mechanics that
were independent of any specific field theory. Secondly, the new cNLQM theory breaks the
basis-independence of linear quantum mechanics. Instead, just as in QFT, the position basis
becomes the preferred basis. This feature is essential to the preservation of causality in the
theory. This is because in cNLQM the self-interaction of a particle’s wavefunction is treated
as a ”physical” interaction1 rather than as a simple abstract addition of terms to its equations
of motion. And the locality of this ”physical” interaction is most naturally described in the
position basis.

The special significance of the position basis in cNLQM is also the main reason why
bounds set by previous tests of NLQM are inapplicable to the causal theory. For example,
in the experiment performed by Bollinger et al. [10] nonlinear time-evolution was tested by
performing Ramsey interferometry on a superposition of two hyperfine states of a 9Be+ ion
confined in a Penning trap [23]. A general feature of nonlinear time-evolution is that the
phase measured by a Ramsey experiment on a two-level system will no longer be independent
of the relative population weighting of the two branches of the superposition. That is to say,
for a superposition of the two hyperfine states | ↑〉, | ↓〉:

|ψ(t)〉 = √
p| ↑〉+

√
1− peiφ(t)| ↓〉 (5.1)

one should expect a dependence of φ on p if nonlinearities are present in the Schrödinger
equation. This fact is used in the experiment to obtain a quite stringent bound on any
possible nonlinearities on the order of a fraction 10−27 of the binding energy per nucleon of
the 9Be nucleus.

But the fundamental assumption made in obtaining this bound is that the Schrödinger
equation can be expressed in an arbitrary basis – in this case, the approximate two-level basis

1In some sense, Kaplan and Rajendran’s theory can be considered as a more literal interpretation of
”wave-particle duality.”
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{| ↑〉, | ↓〉}. Under this assumption, φ is predicted to include a term due to the potential non-
linearity φnl, which scales with p, the probability of finding the ion in a particular hyperfine
state – a rather abstract modification of the Schrödinger equation given its basis-independent
description. The bound on the nonlinearity is then obtained by failing to measure such a
dependence on p at the limits of the sensitivity of the experiment. In contrast, the nonlinear
effect predicted by cNLQM is assumed to be due to an electromagnetic field sourced by the
properties of the ion and distributed in space according to the position-space expectation
value of the wavefunction. However, the local strength of this field is damped by the large
position-space spread of the ion’s wavefunction due to its orbital motion in the Penning trap,
severely compromising the sensitivity of the experiment.

It is helpful to illustrate cNLQM with an example, which will also set the stage for de-
scribing our experimental test of its predictions2. Though cNLQM is, by design, a fully
relativistic theory capable of handling multiple particles (as verified in [52]), it also predicts
novel phenomena in the single-particle, non-relativistic limit. For example, treated pertur-
batively, a single particle with charge q and Hamiltonian Ĥ is predicted to have the following
nonlinear time evolution:

i~∂tΨ(t,x) =

(
Ĥ + ε̃γ

q2

4πε0

∫
d4x1|Ψ(t1,x1)|2Gr(t,x; t1,x1)

)
Ψ(t,x) (5.2)

where ε̃γ is a small unitless parameter that scales the strength of the nonlinear perturbation
and Gr is the relativistic retarded Green’s function from the spacetime coordinates (t1,x1)
to (t,x). The nonlinear term added to the standard Hamiltonian in Equation 5.2 admits
the simple interpretation of a classical Coulomb potential sourced by the quantum proba-
bility distribution of the charged particle’s position. The causality of this self-interaction is
protected by the Green’s function.

In the nonrelativistic limit, when ||H||/~ � c/|x1 − x|, Equation 5.2 becomes:

i~∂tΨ(t,x) =

(
H + ε̃γ

q2

4πε0

∫
d3x1

|Ψ(t,x1)|2

|x1 − x|

)
Ψ(t,x) (5.3)

where it is clear that the denominator of the integrand scales with the full position-space
spread of the wave function, damping the perturbation accordingly. This is the primary effect
responsible for the poor sensitivity of previous experimental tests of NLQM when applied to
the causal theory.

This is not to say that it is impossible to design a sensitive experimental test of cNLQM3.
One rather straightforward way to accomplish this goal is to take advantage of the net
charge and tight and stable spatial confinement of a trapped ion by performing Ramsey

2This example is based on notes from personal communications with David Kaplan
3Under the reasonable assumption that our observed universe is classical in the sense that it has a

significant overlap with the complete wavefunction of the total universe. See [52] for a discussion of this
point.
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interferometry on a superposition of the ground and first excited Fock states of one of its
vibrational modes. If one prepares such a state:

|ψ(t = 0)〉 = √
p|0〉+

√
1− peiφ0|1〉 (5.4)

(p assumed to be real) and allows it to evolve for some time T , then the dominant nonlinear
effect is an additional p-dependent phase accumulation between the two branches of the
superposition state:

|ψ(t = T )〉 = √
p|0〉+

√
1− peiφ0+iφL(T )+iφNL(p,T )|1〉 (5.5)

Here, φL(T ) is a phase accumulated due to standard quantum mechanics and proportional to
the frequency of the harmonic oscillator and φNL(p, T ) is the p-dependent phase accumulated
due to the nonlinear term. They are given by:

φL(T ) = νT (5.6)

φNL(p, T ) = ε̃γ
1− 9p

30
√
2π~

e2

4πε0x0
T (5.7)

where ν is the angular trap frequency of the harmonic oscillator, e is the fundamental charge
of the electron, x0 =

√
~/mν is the characteristic length scale of a harmonic oscillator

with mass m and frequency ν and ε̃γ is a unitless parameter that scales the strength of the
nonlinearity in this perturbative calculation (the subscript γ indicates that this nonlinear
term is associated with an electromagnetic field). The expressions in Equations 5.6 and
5.7 are found by plugging in the standard quantum mechanical oscillator Hamiltonian into
Equation 5.3 and solving perturbatively, to leading order in ε̃γ, given the initial state in
Equation 5.4.

All of the parameters on the right-hand side of Equation 5.7, except for ε̃γ, are either
known or can be experimentally controlled. The total relative phase of the superposition
state at time T (Equation 5.5), Φ(T, p) = φ0 + φL(T ) + φNL(p, T ) can be measured directly
using Ramsey interferometry [71]. The phase due to the nonlinearity φNL(p, T ) can then be
disambiguated by repeating the Ramsey experiment with two different values of p, which
allows us to compute:

∆φNL({pi}, T ) = Φ(T, p1)− Φ(T, p2) = φNL(T, p1)− φNL(T, p2) (5.8)

The quantity ∆φNL({pi}, T ) then allows us to make an empirical estimate of the strength
of the nonlinearity ε̃γ. This method is particularly nice since, by default, it eliminates many
potential systematic sources of uncertainty in the estimate like those due to slow drifts over
time of the trap frequency ν or initial phase φ0, which might result from unstable trapping
potentials or laser parameters.
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Even for standard experimental parameters, the φNL is not expected to be particularly
small. For example, if a 40Ca+ ion has a ν ∼ 1 MHz trap frequency and is prepared in the
superposition state described in Equation 5.4 it will accrue a phase of order 1010 × ε̃γ for
each millisecond of interrogation time. Ramsey experiments like this have been performed
[88] with interrogation times exceeding tens of milliseconds. But these experiments are
generally performed for a fixed p = 0.5, which maximizes the Ramsey contrast. So these
results cannot directly distinguish between φL and φNL. Though, for these experiments,
given reasonable assumptions about the intensity stability of the laser used to generate the
initial state and, thus, assumptions about the variance of the actual value of p generated
from run-to-run, one should already guess that the bound on ε̃γ will be tighter than the 10−4

estimate obtained from Lamb shift measurements4. Nonetheless, a dedicated experiment
that directly measures ∆φNL({pi}, T ) from Equation 5.8 in order to obtain an unambiguous
estimate of ε̃γ is warranted. In the remainder of this chapter, we describe the design and
implementation of an experiment that does just that.

We make two final remarks to conclude this section. First, the quantity computed in
Equation 5.7 assumes an isotropic quantum harmonic oscillator for simplicity. In general,
ion trap experiments are performed in an anisotropic regime. If we label the trap frequency
for the vibrational degree of freedom along which we generate the superposition state as
νz (formally labeled simply as ν in Equation 5.7) and label the trap frequencies for the
other two spatial degrees of freedom as νx,y, then the anisotropy can be accounted for by
multiplying φNL by a factor of

√
νxνy/νz. Secondly, if the ion’s vibrational modes are not

initialized precisely into the ground state but, rather, a low-temperature thermal state (as
would be the case for imperfect laser cooling), then this must be taken into account in the
calculation of x0 in Equation 5.7. In general, the increased spread of the spatial wavefunction
will reduce the strength of the nonlinear signal in addition to reducing the contrast of the
Ramsey oscillations.

5.3 Experimental implementation
To test the new theory of cNLQM, we perform a Ramsey experiment, as described in the

previous section, using a single 40Ca+ ion confined in a three-dimensional Paul trap with trap
frequencies of νz ≈ 2π × 1.01 MHz, νx ≈ 2π × 2.52 MHz and νy ≈ 2π × 2.79 MHz along the
three spatial axes. Here, the z-direction is taken to be along the axial direction of the trap,
as defined in Chapter 2. As described in Chapter 4, confinement along the axial direction is
particularly stable since the axial trapping potential is sourced by DC electrodes as opposed
to the RF potential used to generate the pseudopotential in the x and y directions. For this
reason, it is along this direction that we ultimately prepare the Fock state superposition for
the Ramsey experiment.

4Given the p-dependence of φNL, fluctuations in p will manifest as a decoherence mechanism in the
Ramsey experiment provided that ε̃γ is nonzero
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At the outset of each experimental run, the ion is prepared in the electronic state
|42S1/2,mj = −1/2〉 using optical pumping. By subsequently exciting either the |42S1/2,mj =
−1/2〉 ↔ |32D5/2,mj = −1/2〉 or |42S1/2,mj = +1/2〉 ↔ |32D5/2,mj = +1/2〉 and compar-
ing the excitation probabilities, we confirm that the ion is indeed prepared in the |42S1/2,mj =
−1/2〉 with a rough lower bound of 99% probability (though we expect that this probability
is likely higher by at least an order of magnitude). The vibrational state of the ion along the
axial direction, is likewise prepared with greater than 93% probability in its ground state
using a combination of Doppler cooling and resolved sideband cooling. This probability is
calculated5 by taking the measured ratio of the maximum excitation of blue sideband versus
red sideband transitions as well as by fitting measured blue sideband Rabi oscillations to
Equation 3.19. Characteristic data for these measurements is illustrated in Figure 5.1. The
vibrational motion of the ion along the two radial directions is only Doppler-cooled to a
mean thermal phonon occupancy of approximately 3 quanta.

Figure 5.1: Axial mode temperature measurements. (a) After preparing the ion in the
state |42S1/2,mj = −1/2〉 and laser cooling its axial motion, blue and red sidebands of the
|42S1/2,mj = −1/2〉 ↔ |32D5/2,mj = −1/2〉 transition are driven with well-focused laser
light. By assuming a thermal distribution for the axial vibrational state and comparing
the maximum excitation probabilities, a mean phonon occupancy of n̄z ≈ 0.073 quanta is
estimated. In practice, this is determined by performing spectroscopy on these transitions.
(b) A complementary estimate of n̄z is found by driving a blue sideband Rabi oscillation
and performing a least squares fit, again assuming a thermal distribution. In agreement with
(a), this results in an estimate of n̄z ≈ 0.077 quanta.

Once the ion is initialized into the state6 |S, nz = 0〉, the next step is to prepare a
5Under the assumption that the ion is prepared in a low-temperature thermal state.
6For the remainder of this section we will simplify the notation describing the ion’s state as

|42S1/2,mj = −1/2〉 = |S〉, |32D5/2,mj = −1/2〉 = |D〉. We will also suppress the radial vibrational states,
which don’t play a direct role in the dynamics.
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superposition of the ground and first excited Fock state. The simplest way to accomplish
this is to address the blue sideband with a controlled laser pulse amounting to a rotation of
the ion’s state RBSB

φ0
(θ), in the notation of Section 3.5, such that:

RBSB
φ0

(θ)|S, nz = 0〉 = cos(θ)|S, 0〉+ sin(θ)eiφ0|D, 1〉 (5.9)

where we drop the explicit reference to the nz in the Fock state description here and for the
remainder of this section. In this case, the experimental sequence is as illustrated in Figure
5.2(a). After a free evolution time of T , the two branches of the superposition in Equation
5.9 accumulate a relative phase with respect to the addressing laser of:

Φ(T, p) = φ0 +
B

2
(gD − gS)T + φNL(T, p) (5.10)

where p = cos2(θ) is the population of the electronic ground state and B is the magnitude
of the magnetic field at the position of the ion. After a time T , a blue sideband π-pulse
is used to map the relative phase information onto the electronic populations that are then
measured via the electron shelving method. The problem with this method is the sensitivity
of the phase to the ambient magnetic field, the stability of which limits the interrogation
time to only a few milliseconds (see Figure 5.3).

To overcome this limitation, we instead use a combination of carrier and blue sideband
pulses to generate the state [88]:

|D〉 ⊗ (cos(θ)|0〉+ sin(θ)eiφ0|1〉) (5.11)

where the electronic state of the ion is disentangled from the superposition of Fock states.
The procedure for preparing this state consists of two steps. First, a superposition with
the desired population weightings is generated on the electronic states by driving a carrier
transition. Second, a blue sideband π pulse is applied. Since, ideally, the ion is initially
cooled down to its ground state of motion, this second blue sideband pulse only affects the
population in the electronic state |S〉 – thus mapping the superposition of electronic states
onto the vibrational state of the ions. At the end of the interrogation time, a second blue
sideband π-pulse is used to remap this superposition onto the ion’s electronic states and then
a final carrier π/2-pulse is used to write the relative phase information of this state onto the
electronic populations. An illustration of this procedure is provided in Figure 5.2(b).

At the end of the experiment, the probability of measuring the ion to be in the state |D〉
is explicitly given by:

P (T ) = B − A(T )

2
cos[Φ(T, θ) + ξL] (5.12)

Here 0 ≤ A(T ) ≤ 1 is the signal contrast, which will generally be less than one when θ 6= π/2
and will also generally decrease superlinearly in time due to decoherence. B ≈ 1/2 is an
offset that is expected to be very close to 1/2 but may deviate slightly from this value due
to imperfect state preparation and off-resonant excitations of the laser interactions. The
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parameter ξL is an offset in phase that depends on several relatively stable experimental pa-
rameters, like the detuning of the laser pulses from resonance, but can also be fully controlled
modulo 2π by adjusting the phase of the final carrier pulse relative to the initial pulse.
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Figure 5.2: Pulse sequences for testing cNLQM. A simple experiment that is sensitive to
cNLQM is Ramsey interferometry performed on a superposition of the states |S, 0〉 and
|D, 1〉, as illustrated in (a). But this superposition is also sensitive to ambient magnetic
fields, which limits the interrogation time. An alternative approach is to use a combination
of carrier and blue sideband pulses to generate a superposition of the ground and first excited
Fock states, which is disentangled from the magnetic field sensitive electronic states. This
method is illustrated in (b). A further improvement can be made by applying a sequence
of carrier and blue sideband pulses midway through the interrogation time, as shown in (c).
This has the effect of swapping the probability amplitudes between the two Fock states,
analogous to a spin echo pulse in a standard Ramsey experiment, and provides two benefits.
First, it cancels out the effect of drifts in the initial phase φ0 (due, for example, to drifting
trap potentials) provided that these drifts are slow relative to T . Second, it results in a
direct measurement of ∆φNL (Equation 5.8), which otherwise requires two measurements.
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Figure 5.3: Noisy carrier Ramsey. Measured Ramsey oscillations as a function of inter-
rogation time on a superposition of the electronic states |42S1/2,mj = −1/2〉 ⊗ |0〉 and
|32S5/2,mj = −1/2〉 ⊗ |0〉. Because these two states have different g-factors and, thus, dif-
ferent magnetic field susceptibilities, the coherence time of the superposition is limited by
ambient magnetic field fluctuations.

We gauge the performance of the Ramsey experiment by applying a small detuning ∆
from resonance to the first blue sideband pulse, which, in the rotating frame, breaks the
degeneracy of the |0〉 and |1〉 states leading to a time-dependent contribution to the phase
Φ (Equation 5.8) of ∆T . The resulting Ramsey oscillations are plotted in red in Figure
5.4(a) from which the coherence time can be estimated to be on the order of several tens of
milliseconds. The dominant decoherence source is found to be reasonably well modeled by
a Markovian heating of the vibrational mode, presumably caused by ambient electric field
fluctuations at the position of the ion and, perhaps, high-frequency noise on the trapping
potential [89]. If the ion is cooled down to its ground state and allowed to freely evolve, the
effect of this heating can be incorporated into the dynamics of the system with the following
master equation [16]:

i~∂tρ̂ = 2γ(N + 1)L(ρ̂; â) + 2γNL(ρ̂; â†) (5.13)

where L are Lindblad terms as defined in Equation 2.127, â is the annihilation operator for
the vibrational mode, γ is a constant that characterizes the strength of the heating and N
is the mean phonon occupancy of the environment, which is taken to be large enough such
that N � 〈â†â〉(t) for all times t of interest. Practically speaking, Equation 5.13 describes
a random process where the vibrational mode may spontaneously absorb a phonon from the
environment. When n phonons are absorbed, the state of the system after the final blue
sideband pulse will be |S〉(α0|n〉+α1|n+1〉) and the result of the final π/2-pulse, regardless of
Φ, will be a symmetric distribution of {|S〉, |D〉} – diminishing the averaged signal contrast.

More precisely, under Equation 5.13, if the ion is initially prepared in a thermal state with
a mean phonon occupancy of n0 = 〈â†â〉(t = 0)〉 then at some later time t it will have evolved
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into a thermal state with a mean phonon occupancy of â†â(t)〉 = n0(1 − e−γt). Thus, for
times t, such that γt� 1, the increase of the ion’s mean phonon occupancy is approximately
linear. Figure 5.5 shows the results of independently measuring the temperature of the
ion’s vibrational mode as a function of time, from which we estimate that γ ≈ 10 quanta
per second. The black dashed curve in Figure 5.4(a) shows the results of simulating the
decay curve for the full Ramsey experiment, including heating, under the assumption of
this independently measured value of γ. The good agreement between this simulated decay
envelope and the measured data verifies our claim that heating is the dominant decoherence
process. We further verify this claim by performing the experiment illustrated in Figure
5.2(c), which includes a sequence of laser pulses midway through the experiment, analogous
to a spin echo, that should effectively cancel out any slow drifts of φ0 (due for example to
slow drifts of the laser or the trapping potential), which we expect to be the next most
significant source of decoherence. We find the coherence time to be largely the same as for
the un-echoed Ramsey experiment.

To extract Φ from the electronic population measurements described by Equation 5.12,
we perform three independent measurements at a fixed T but with three separate values of
ξL, as controlled by the phase of the laser pulse. The values of ξL are separated by ninety
degrees such that ξ(3)L = ξ

(2)
L +π/2 = ξ

(1)
L +π. The targeted value of ξ(1)L is chosen to minimize

the standard deviation of Φ(τ):

|δΦ(τ)| =

√√√√∑
i

(
∂Φ

∂Pi

δPi

)2

(5.14)

which occurs when Φ(T ) + ξ
(1)
L = π/2. Here Pi is the population measurement associated

with ξ(i)L and δPi is its standard deviation, nominally dominated by quantum projection noise
(QPN) [49]. This is illustrated in Figure 5.6.

As discussed in the previous section, a potential nonlinear signal in the phase is most
easily disambiguated by measuring Φ for two different values of p = cos2(θ) and taking
the difference ∆φNL (as in Equation 5.7). This method has the added benefit of being
robust against slow drifts of the signal due to drifting trap potentials or laser parameters.
For our experiment, we choose θ1 and θ2 such that the ground state population of the
Ramsey superposition is initialized at either p = 0.2 or p = 0.8. The nonlinear signal ∆φNL

grows linearly with interrogation time T . But this effect must contend with the contrast
decay, which increases the uncertainty of the signal (Eq. (5.14)) and which favors shorter,
more frequent measurements [48]. The combination of these effects results in an optimal
interrogation time, which we determine experimentally by measuring ∆φNL(T ) at various T
and computing the sample standard deviation. These results are normalized to an integration
time of 1 s and plotted in Fig. 5.4(b). The blue-shaded region is a corresponding simulation
that assumes only QPN and vibrational heating bounded by 7 ≤ ˙̄n ≤ 13 quanta/s. Based
on this data, we fix T = 15ms.
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Figure 5.4: cNLQM experimental performance [14]. (a) Measured P (τ), as described by Eq.
(5.12) (red). The black dashed line is the predicted decay envelope taking into account only
heating of the vibrational mode at a rate of 10 quanta/s. The reasonable agreement between
the predicted and measured decay suggests that the Ramsey signal contrast is dominated
by this heating process. (b) The black circles represent the sample standard deviation from
repeated measurements of ∆φNL(τ) taken at various interrogation times and normalized
to an integration time of 1 s. The blue shaded region bounds the simulated predictions
assuming only QPN and a heating rate between 7 and 13 quanta/s (lower and upper edge
of the region, respectively). The dark blue line corresponds to 10 quanta/s.
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Figure 5.5: Heating rate measurement. The black circles represent measurements of the
mean phonon number of the vibrational mode at various times. The blue curve is a linear
fit to the data.

Figure 5.6: Three point Ramsey measurement. In order to extract the phase due to the
hypothetical nonlinearity, for each fixed value of t and p, three separate measurements are
performed with varying ξL separated from one another by ninety degrees.
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5.4 Results
A sketch of the full experimental procedure that we used in our test of cNLQM is given

in Figure 5.7. It begins with a passive calibration of the two initial ground state populations,
corresponding to θ1 and θ2, and of the Ramsey superposition used to obtain our measurement
of ∆φNL. For the most part, this consisted of a measurement of the |D〉 state population
after the first carrier pulse. This value was then recorded and used in the final calculation
of ε̃γ. However, if either θi drifted enough from the nominal values of 0.2 and 0.5 (due,
for example, to drifts in the laser parameters) we would adjust the intensity of the laser
pulse. After this, a three-point Ramsey measurement was performed to find the optimal
bias point of the laser phase. These were performed with an initial ground state population
of approximately 1/2 to maximize the contrast of the signal. Finally, a pair of three-point
Ramsey measurements were performed, one for each value of θi. These six phase estimates
(each obtained from 200 sequential measurements) were performed in a random order to
scramble any correlated drifts of Φ. Using the results of these six measurements a single
value of ∆φNL was computed, from which an estimate of ε̃γ was estimated, according to
Equation 5.7. In total, this amounts to 1500 single-shot experiments to obtain a single
estimate of ε̃γ.

Figure 5.7: cNLQM experimental procedure. See text for more details.

This sequence was ultimately repeated about ten thousand times over the course of a
week. In Figure 5.8(a) we illustrate the resulting measurements of the three parameters in
Equation 5.12 as a function of time for a single day’s worth of data. The red dots show
data taken at 15 ms divided by the golden ratio (1 +

√
5)/2 ≈ 9.27ms, which does not
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improve the estimate of the nonlinearity but allows us to rule out the remote possibility
that ∆φNL(T=15 ms) modulo 2π vanishes even though the perturbation is not small. The
distribution of ε̃γ computed from the measured values of ∆φNL(T=15 ms) and θi is shown
in Fig. 5.8(b). The black curve is a Gaussian fit. The mean value is determined to be
5 ± 5.4 × 10−12 where the reported uncertainty corresponds to 1 standard deviation. The
average uncertainty of the individual measurements computed using standard propagation
of error and assuming only QPN is found to be 7.7× 10−11, which is in good agreement with
the sample standard deviation 8.2× 10−11.
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Figure 5.8: cNLQM results [14]. (a) (top to bottom) The measured contrast, frequency
and offset over a full day of data collection. The blue circles represent data taken at an
interrogation time of 15 ms and the red circles were taken at a time of 15 ms divided by the
golden ratio (≈9.3 ms). (b) The distribution of ε̃γ estimated from the data. The mean value
is 5± 5.4× 10−12. The black curve is a Gaussian fit to the distribution.

In summary, using Ramsey spectroscopy on a superposition of the ground and the first
excited state of the axial vibrational mode of a trapped 40Ca+ ion, we have bounded the
unitless scaling factor ε̃γ of a hypothetical electromagnetic nonlinear perturbation to the
Schrödinger equation to a value on the order of 10−11. Compared to the previous best esti-
mate of this bound, based on measurements of the Lamb shift of hydrogen, this represents
an improvement of roughly seven orders of magnitude. In principle, this result could be
improved with longer averaging times, longer coherence times, higher mass atoms, larger
trapping potentials, and, perhaps, more sophisticated motional state superpostions. In most
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cases, these improvements will lead to modest gains in spectroscopic performance, as we
touch on in the concluding chapter of this thesis. As a final note, we emphasize that cN-
LQM is field-dependent. Here we have provided a bound on electromagnetic fields, but the
framework presented by Kaplan and Rajendran [52] is quite general and can be used to treat
any interacting field theory. For example, it is interesting to think about how one might
design complementary experiments that test for similar nonlinearities in gravitational fields,
though, due to their small mass, atomic systems are likely ill-suited for this purpose.
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Chapter 6

Using entanglement to improve the
bounds on Lorentz symmetry

6.1 Introduction
The frequency sensitivity of Ramsey spectroscopy can be enhanced by the use of entan-

glement [11]. However, the same mechanism responsible for this improvement also causes an
increased susceptibility to noise [48]. This calls into question whether entanglement is a use-
ful resource in metrology. However, in many real systems, it is possible to engineer entangled
states that are simultaneously sensitive to a particular signal of interest and insensitive to
the dominant noise source [83]. In this chapter, we describe a Ramsey experiment that uses
such a state, composed of two entangled 40Ca+, to provide empirical bounds on potential
violations of local Lorentz symmetry – improving the previous bounds by a factor of two to
four [68]. In addition to this improvement, a comparison of this work with a similar experi-
ment that was previously performed [80] using two unentangled 40Ca+ provides a real-world
case study on how entanglement can be leveraged to improve the sensitivity of precision
measurements. We find that entanglement fundamentally improves the frequency sensitivity
of the experiment by approximately a factor of two, matching theoretical predictions.

6.2 Violations of local Lorentz invariance
Local Lorentz invariance (LLI) is a fundamental assumption of relativity, requiring that

the laws of physics remain unchanged when transforming from one local, inertial frame
of reference to another. Nonetheless, some modern theories aimed at resolving remaining
inconsistencies in our understanding of nature, such as the unification of general relativity
and the standard model, suggest that Lorentz invariance may be broken at high enough
energies. For example, energies approaching the Planck scale [57, 56, 79]. Motivated by
these results, experimental efforts to push the already stringent experimental bounds set on
Lorentz invariance remain an active area of research.
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If the LLI of an electron is violated, then this would manifest as a dependence of its
dispersion relation on its orientation in space-time. If LLI violations indeed become rele-
vant near the Planck scale, then one might expect that the fractional shift of the electron
dispersion should be given by the ratio of the electroweak and Planck energy scales, which
is on the order of 10−17 [56]. Thus, it is possible for low-energy systems with extraordinary
spectroscopic sensitivity to probe for such violations.

Trapped ions can be used for this purpose [80, 68]. The basic idea is as follows. An
ion is prepared in a superposition of two anisotropic electronic orbitals with distinct spatial
orientations as defined by an applied magnetic field. As the Earth rotates relative to some
fixed frame, usually taken to be the Sun, so too does the magnetic field and, with it, the
orientation of these orbitals. Thus, a hypothetical LLI violation should result in a periodic
modulation of the energy difference between the atomic orbitals that is commensurate with
the sidereal day. Using Ramsey spectroscopy, this energy difference can be measured allowing
one to observe such a periodic energy variation if present or, if absent, bound it at the limits
of the sensitivity of the experiment.

The energy difference between the electronic orbitals due to LLI violations can be com-
puted according to the Standard Model Extension (SME) [57], a theoretical framework that
extends the standard model by allowing for all possible LLI violations that do not also vio-
late any other fundamental symmetries. In the nonrelativistic limit, the SME predicts that
the Hamiltonian of the electron should be perturbed by the Hamiltonian [46, 56, 80]:

δĤ = −C(2)
0

p̂2 − 3p̂2z
6me

(6.1)

where me is the electron mass, p̂ is its total momentum and p̂z is the projection of its
momentum along the applied magnetic field. The quantity C(2)

0 is a spherical tensor defined
in the laboratory frame that characterizes the magnitude of the LLI violation [46] and is
what we aim to measure through experiment.

Labeling the cartesian components of C(2)
0 in the laboratory frame with lowercase letters,

the effect of the Hamiltonian in Equation 6.1 on the D5/2 fine structure level 40Ca+ is to
induce a direction-dependent energy shift of [80]:

fLLI =
ELLI

h
= C

(2)
0 [2.16× 1015 − 7.42× 1014m2

J ] Hz (6.2)

= −8.9(2)× 1015(Cxx + Cyy − 2Czz) Hz (6.3)

Note that the quadratic dependence of ELLI on mJ , the projection of the valence electron’s
angular momentum on the magnetic field. This will be an important feature when we
consider decoherence free states in the following sections. Finally, we point out that the
transitions1 |D±1/2〉 ↔ |D±5/2〉 experience the maximum frequency shift under δĤ and, so,
are most useful for spectroscopy.

1Here, and for what follows, we will only consider D states that belong to the D5/2 manifold. So, without
ambiguity, we will use the shorthand |DmJ

〉 ≡ |DJ ,mJ〉.
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It is conventional to transform the tensor C(2)
0 into a standard reference frame for ease of

comparison with other experiments. The sun-centered celestial equatorial frame (SCCEF),
which is centered on the sun, is typically used for this purpose. In the SCCEF, fLLI in
Equation 6.2 is transformed into

Labeling the cartesian components of the SCCEF with capital letters, the frequency shift
for the two ions that we will use for the experiment is given by [46]:

fSCCEF
LLI = Acos(T ) +Bcos(T ) + Ccos(2T ) +Dsin(2T ) (6.4)

where T is the time measured since the vernal equinox and the coefficients A,B,C and D
depend on the colatitude at which the experiment is performed, the direction of the applied
magnetic field and the components CMN of the tensor C(2)

0 expressed in the laboratory frame
(which we distinguish from the lab frame coordinates through the use of the capital letters).
In our experiment, we will fit our experimental data to the function in Equation 6.4 to obtain
bounds on the components CMN , which translates to bounds on any hypothetical space-like
LLI violations of the electron.

6.3 Entanglement enhanced metrology
Ramsey spectroscopy is used to measure the frequency difference ω∆ = (E↑ − E↓)/~ be-

tween two fiducial quantum states |↓〉 and |↑〉 that can be prepared, controlled and measured
with high fidelity. The technique proceeds as follows. After initializing the system in the
state |Ψ〉 = |↓〉, a π/2-pulse2 is used to prepare the superposition:

|Ψ〉 = |↓〉 RY (π/2)−−−−−→ (|↓〉+ |↑〉)/
√
2 (6.5)

The state |Ψ〉 is then allowed to freely evolve for a time τ , at which point ω∆ has been written
onto an integrated phase difference ϕ = ω∆τ between the two branches of the superposition:

|Ψ〉 free evolution−−−−−−−→
τ

(|↓〉+ e−iϕ(τ)|↑〉)/
√
2 (6.6)

A final π/2-pulse with a phase φL relative to the first maps the frequency information onto
the populations of the fiducial states:

|Ψ〉
RφL

(π/2)
−−−−−→

√
P↓|↓〉+ e−iφL

√
P↑|↑〉 (6.7)

where the probability of measuring the states |↓〉, |↑〉 are given respectively by:
2see Section 3.5.
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P↓ =
1

2

[
1 + cos

(
ϕ(τ) + φL

)]
(6.8)

P↑ =
1

2

[
1− cos

(
ϕ(τ) + φL

)]
= 1− P↓ (6.9)

An estimate of the frequency ω∆ (modulo 2π) can be extracted from population mea-
surements with an uncertainty of:

|δω∆| =
δP↓

|dP↓/dω∆|
(6.10)

If the Ramsey procedure is repeated M times on N independent, but identically prepared,
subsystems then, choosing φL such as to minimize Equation 6.10, one can derive the op-
timal frequency uncertainty of |δω∆|min = (MN)−1/2τ−1. Or, equivalently, a fundamental
frequency sensitivity of S = 1/|δω∆|min =

√
MNτ . The scaling of the minimum uncer-

tainty with 1/τ is a consequence of the time-energy uncertainty relation [11]. The scaling
with 1/

√
N is due to the statistical independence of the measurements performed on each

subsystem and is often termed the Standard Quantum Limit (SQL) [49].
In theory, entanglement can be used to enhance the frequency sensitivity of this exper-

iment [11]. Rather than preparing the N subsystems into uncorrelated superpositions, one
can prepare the maximally entangled N -particle state:

|ΨN〉 =
(
⊗N

i=1 |↓〉+⊗N
i=1|↑〉

)
/
√
2 (6.11)

Under free evolution, this state picks up an integrated relative phase of Nϕ:

|ΨN〉 =
(
⊗N

i=1 |↓〉+ e−iNϕ(τ) ⊗N
i=1 |↑〉

)
/
√
2 (6.12)

Effectively amounting to an amplification of the frequency signal by a factor of N . This
phase can be extracted by simultaneously performing π/2-pulse on each subsystem and then
measuring the joint observable:

Π̂N =
N⊗
i=1

σ̂z (6.13)

where σ̂z = |↓〉〈↓ | − |↑〉〈↑ | is defined in the usual way.
The expectation value ΠN = 〈Π̂N〉 is the parity signal discussed in Section 3.6. Thus,

we will refer to the combination of π/2-pulses and the evaluation of ΠN as a single parity
measurement. It can be verified directly, that the action of the global π/2-pulse is to map
the states |+〉, |−〉:
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|±〉 =
(
⊗N

i=1 |↓〉 ± ⊗N
i=1|↑〉

)
/
√
2 (6.14)

to states of even and odd parity, respectively. It follows that the probability of measuring a
state with positive parity at the end of the experiment is given by:

ΠN = cos
(
N [ϕ(τ) + φL]

)
(6.15)

On the other hand, the quantum projection noise corresponding to the probability of mea-
suring a state with even parity is functionally equivalent to δP↓. Therefore, the frequency
sensitivity of the entangled Ramsey spectrometer is given by S =

√
MNτ , a

√
N improve-

ment over the SQL – a fact which has been verified by experiment [45, 74, 69, 59]. The
linear scaling of sensitivity with N is often referred to as the Heisenberg Limit (HL).

In practice, it is difficult to translate Heisenberg limited spectroscopy into any actual
metrological gain. This is because real systems are inevitably subject to noise that causes
random fluctuations of the frequency splitting between the branches of the Ramsey super-
position. These fluctuations are integrated into the Ramsey phase such that the effect tends
to grow with the interrogation time τ , resulting in a reduced Ramsey oscillation contrast.
For example, the cosine terms in Equation 6.8 must be prepended by a scale factor A(τ),
which will generally tend towards zero with τ . This reduces the value of the denominator
in Equation 6.10, increasing the frequency uncertainty. Thus, an optimal measurement time
emerges that makes the trade-off between longer interrogation times that are more sensitive
to the signal of interest and shorter interrogation times that are less susceptible to noise.

Unfortunately, the same mechanism that lends itself to the phase amplification for the
entangled system also tends to amplify the effect of the noise. Therefore, the optimal mea-
surement time for the entangled Ramsey spectrometer will generally be shorter than for
the non-entangled system. To make a fair comparison of the corresponding sensitivities, we
consider a total measurement duration T , during which M = T/τ repeated experiments can
be performed, then we have:

Suncorrelated =
√
NTτuncorrelated (6.16)

Sentangled = N
√
Tτentangled (6.17)

where the τi refer to the optimal measurement times for the two different cases. Since
τentangled/τuncorrelated is expected to decrease as a function of N , the benefit of using en-
tanglement is brought into question. In fact, for many plausible noise models, such as
when the frequency fluctuations can be described as a white noise process [48], we find that
τentangled/τuncorrelated = 1/N , exactly negating the enhancement from the phase amplification
and reducing the scaling of the entangled system’s performance to the SQL.

However, under certain circumstances, it is possible to create a set of entangled states
that are impervious to the effects of specific noise – a so-called Decoherence Free Subspace
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(DFS) [61, 62]. For example, if the noise is global such that its effect on each subsystem
is identical, then any linear combination of states that are degenerate energy eigenstates of
the Hamiltonian governing the noise source will belong to such a DFS. In some cases, given
a heterogeneous collection of two-level systems, it is possible to construct an entangled two-
level subspace that is decoherence-free with respect to the dominant noise source while, at
the same time, sensitive to the signal of interest. For example, given two co-trapped 40Ca+

ions it is possible to prepare the state [83]:

|ΨDFS〉 = (|D−1/2〉|D+1/2〉+ eiφ|D−5/2〉|D+5/2〉)/
√
2 (6.18)

The component states of |ΨDFS〉 are degenerate with respect to the Zeeman Hamiltonian
(Equation 2.62) since the Zeeman energy depends linearly on the value of mJ . On the other
hand, they are non-degenerate under the Hamiltonian describing LLI violations (Equation
6.2) since this energy shift depends only on m2

J

In the following two sections we will describe how, by using a two-ion entangled state of
the form in Equation 6.18, we can enhance the spectroscopic sensitivity of a real-world mea-
surement, when compared to an analogous experiment performed with two unentangled ions.
In Section 6.4 we will discuss how comparing the spectroscopic sensitivities between these
two cases is complicated by the fact that the unentangled system is no longer uncorrelated.
Instead, the global nature of the magnetic field noise results in a measurable correlation
between the two unentangled ions, which persists long after the single-ion Ramsey states
have decohered. Nonetheless, we will find that the use of entangled two-ion states results in
a fundamental enhancement in the spectroscopic sensitivity by a factor of two – exceeding
even the N1/2 improvement predicted when going from the SQL to the HL. In the final
section of this chapter, we will describe experimental results that verify this improvement.

6.4 Spectroscopy with classically correlated 40Ca+ ions
Following the procedure outlined in Section 6.3, we can perform Ramsey spectroscopy

on two unentangled 40Ca+ ions, each prepared in the state:

|Ψ−〉 = (|D−1/2〉+ |D−5/2〉)/
√
2 (6.19)

which can be prepared via the following sequence of laser pulses:

|S−1/2〉
RA

Y (π/2)
−−−−−→(|S−1/2〉+ |D−5/2〉)/

√
2

RB
Y (π)

−−−→(|D−1/2〉+ |D−5/2〉)/
√
2 (6.20)

where the superscripts A and B on the rotation operators denote a laser pulse that addresses
either the transition |S−1/2〉 ↔ |D−5/2〉 or |S−1/2〉 ↔ |D−1/2〉, respectively.
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The state |Ψ−〉 is sensitive to both potential violations of local Lorentz invariance as well
as the local magnetic field, each contributing to a shift in the frequency splitting between
the two component states of the superposition. Thus, after an interrogation time of τ , the
state |Ψ−〉 will pick up a Ramsey phase:

|Ψ−〉
free evolution−−−−−−−→

τ
(|D−1/2〉+ e−i(ϕB+ϕLLI)|D−5/2〉)/

√
2 (6.21)

where we have explicitly separated the contribution to the phase from Lorentz invariance vio-
lations ϕLLI and from the Zeeman effect ϕB. Per Equation 6.16, the sum of these frequencies
can be measured with an uncertainty of (2M)−1/2τ−1 where M corresponds to the number
of repetitions of the experiment. The factor of 1/

√
2 comes from the fact that measurements

are performed on two independent ions.
The sensitivity of this approach is damped by the strong magnetic field fluctuations

present in the vicinity of the ions. These cause a frequency jitter that uniformly randomizes
the Ramsey phase (modulo 2π) in a time on the order of several milliseconds (see Figure
5.3), limiting the interrogation time τ to a small value. On the other hand, if we can assume
that the magnetic field experienced by both ions is identical, then this implies that even
long after the individual population oscillations of each ion have been washed out, finite
correlations will persist in the joint populations. We can see this by performing an inversion
of the pulse sequence in Equation 6.20 and computing the expectation value of the parity
operator, which is equivalent, in this case, to the covariance of σ̂(1)

z ⊗ σ̂
(2)
z :

Π = cov(σ̂(1)
z , σ̂(2)

z ) = PSS + PDD − PSD − PDS =
1

2
(6.22)

where the subscripts S and D refer to the states S−1/2 and D−5/2, respectively, and we have
used Equations 6.8 and 6.9 to compute the terms in Equation 6.22. For example, assuming
φL = 0 since it does not affect the calculation:

PSS = PS · PS =

〈
1

4

(
1 + cos(ϕB + ϕLLI)

)2〉
ϕB

=
1

4

[
1 + 2

〈
cos(ϕB + ϕLLI)

〉
ϕB

+

〈
cos2(ϕB + ϕLLI)

〉
ϕB

]
=

3

8
(6.23)

Here the angle brackets indicate averaging over ϕB, which we assume is uniformly random
modulo 2π. Similar calculations give PDD = 3/8 and PSD = PDS = 1/8 such that Π = 1/2,
as stated in Equation 6.22.

The finite value of the parity/covariance cov(σ̂(1)
z , σ̂

(2)
z ) indicates that measurements of

joint observables of the two ions might reveal some information about the signal of interest
ϕLLI . But the example calculation in Equation 6.23 suggests that it will be difficult to
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differentiate ϕLLI from ϕB since they both contribute to the total phase in a similar way.
We can remedy this by preparing one of the ions in the state:

|Ψ+〉 = (|D+1/2〉+ |D+5/2〉)/
√
2 (6.24)

such that the total wavefunction is given by the product state:

|Ψ±〉 =
1

2
|Ψ−〉 ⊗ |Ψ+〉 =

1

2
(|D−1/2〉+ |D−5/2〉)⊗ (|D+1/2〉+ |D+5/2〉) (6.25)

The Zeeman shift between the states in |Ψ+〉 has the same magnitude but opposite sign of
the Zeeman shift affecting the states in |Ψ−〉. This results in a distinguishable effect between
the negative correlation of the two ions due to the random ϕB and the positive correlation
due to ϕLLI . The parity signal for Ramsey spectroscopy performed with the state |Ψ±〉 is
given by:

Π =
1

2
cos(2ϕLLI) (6.26)

Interestingly, the phase of this signal is amplified by a factor of two, the same factor that
would occur for an entangled state. According to Equation 6.17, this leads to a factor of

√
2

increase in the frequency sensitivity. However, the contrast of the signal is also reduced by a
factor of two. And, according to Equation 6.10, the sensitivity scales linearly with contrast.
Thus, the overall frequency sensitivity of this method is equal to (M)−1/2τ−1, which is the
same as for a Ramsey measurement performed on a single ion in the absence of magnetic
field noise. An experimental measurement of this signal is presented in Figure 6.1.

An alternative approach to deriving the result in Equation 6.26 begins by rewriting the
product state |Ψ±〉 in the basis {|±〉, |±′〉}:

|+〉 = (|D−1/2〉|D+1/2〉+ |D−5/2〉|D+5/2〉)/
√
2 (6.27)

|−〉 = (|D−1/2〉|D+1/2〉 − |D−5/2〉|D+5/2〉)/
√
2 (6.28)

|+′〉 = (|D−1/2〉|D+5/2〉+ |D−5/2〉|D+1/2〉)/
√
2 (6.29)

|−′〉 = (|D−1/2〉|D+5/2〉 − |D−5/2〉|D+1/2〉)/
√
2 (6.30)

If we first ignore the effects of magnetic field noise, then after a Ramsey interrogation time
of τ the density matrix of ρ± = |Ψ±〉〈Ψ±| is given in this basis by:

ρ± =
1

2

|+〉 |−〉 |+′〉 |−′〉




P++ P+− 0 0 |+〉
P+− P−− 0 0 |−〉
0 0 P+′+′ P+′−′ |+′〉
0 0 P+′−′ P−′−′ |−′〉

(6.31)
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where:

P++ = cos2(2ϕLLI) (6.32)
P−− = sin2(2ϕLLI) (6.33)
P+− = cos(2ϕLLI)sin(2ϕLLI) (6.34)
P+′+′ = cos2(2ϕLLI + 2ϕB) (6.35)
P−′−′ = sin2(2ϕLLI + 2ϕB) (6.36)
P+′−′ = cos(2ϕLLI + 2ϕB)sin(2ϕLLI + 2ϕB) (6.37)

Magnetic field noise can then be incorporated by averaging Equation 6.31 over ϕB to obtain
the mixed state:

〈ρ±〉ϕB
=

1

2

|+〉 |−〉 |+′〉 |−′〉




P++ P+− 0 0 |+〉
P+− P−− 0 0 |−〉
0 0 1

2
0 |+′〉

0 0 0 1
2

|−′〉

(6.38)

The interpretation of the result in Equation 6.38 is as follows. After some time t that is
short relative to τ but longer than the coherence length of the magnetic field sensitive states
|±′〉, it is as if we have randomly prepared the system in the decoherence free subspace {|±〉}
with a probability of 1/2. The other half of the time, the system is prepared in an equal
mixture of the states |±′〉. Since a global π/2 rotation maps the triplet-like |+′〉 to a state
with even parity and the singlet-like |−′〉 to a state with odd parity, together they produce
zero net contribution to a subsequent parity measurement.

This analysis makes clear the form of the parity signal derived in Equation 6.26 – in
particular, the factor of two amplifying the phase ϕLLI and the factor of 1/2 scaling the
contrast. Furthermore, it becomes clear that any additional noise source present in the
system that does affect a deterministically prepared entangled DFS state will equally affect
the classical correlations present in the mixed state in Equation 6.38. Thus, in this case,
entanglement provides an unambiguous practical enhancement by a factor of two to the
spectroscopic sensitivity of the experiment.

Ramsey spectroscopy performed on the state |Ψ±〉 is the technique that was used in [80]
to derive the previous strongest bound on local Lorentz invariance violations. Following [83],
we used this technique to measure the small quadrupole shift3 of the fine structure levels
D1/2 and D5/2 that was described in Section 2.5. The results are presented in Figure 6.2.
We find that the scaling of this shift with the axial center of mass vibrational frequency
goes as -1.5 mHz/kHz near the operating point of ≈830 kHz. In addition, we measured the

3The orientation of the magnetic field remained constant for all results in this chapter.
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long-term stability of the axial center-of-mass frequency using resonance spectroscopy on a
sideband transition and found it to be stable to within a few hundred Hz for over half a day.
We will see in Section 6.6, that this signal is too small to contribute to the bounds we set
on LLI violations.

Figure 6.1: Parity measurement of two classically correlated ions. The parity signal is
measured as function of interrogation using the state given in Equation 6.25. The red circles
correspond to measurements and the blue curve corresponds to a fit to equation 6.26. In
this case, the oscillations are due to the small quadrupole shift between the Zeeman levels
|D5/2, mJ = 1/2〉 and |D5/2, mJ = 5/2〉 described in Section 2.5.
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Figure 6.2: Quadrupole shift as a function of axial trap frequency. The circles correspond
to measurements of the electric quadrupole shift between the D1/2 and D5/2 fine structure
levels (vertical axis) as a function of the axial center-of-mass trap frequency (horizontal
axis) obtained from parity scans similar to the one illustrated in Figure 6.1. The blue curve
corresponds to a linear fit with a slope of -1.5 mHz/kHz.

6.5 Spectroscopy with entangled 40Ca+ ions
To prepare the entangled state |ΨDFS〉 in Equation 6.18, we first laser cool both axial

vibrational modes of the ions down to near their ground state using sideband cooling (Section
3.3) and then perform the following procedure. First, the two ions are prepared in the state
|S−1/2〉|S−1/2〉 via optical pumping (Section 3.4) using global laser beams. Next, a local laser
beam focused on only one of the ions4 is used to optically pump that ion into the state
|S+1/2〉. By driving Rabi oscillations with the local beam and taking the ratio of the square
of the frequencies observed on each ion, we estimate that the fractional intensity overlap of
local beam onto the second ion is on the order of 10−3 (see Figure 6.3). Following optical

4Using the setup described in Section 4.4.
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pumping, a Mølmer-Sørensen (MS) gate, like the one described in Section 3.6, is used to
generate the entangled state:

|S−1/2〉|S+1/2〉
MS−−→ (|S−1/2〉|S+1/2〉+ |D−1/2〉|D+1/2〉)/

√
2 (6.39)

Finally, two π pulses are used on the transitions |S−1/2〉 ↔ |D−5/2〉 and |S+1/2〉 ↔ |D+5/2〉,
which we label as C1 and C2, respectively. Since each of these pulses is resonant with only
one of the ions, a global laser beam can be used for this purpose. The final state is as desired:

|ΨDFS〉 = (|D−1/2〉|D+1/2〉+ |D−5/2〉|D+5/2〉)/
√
2 (6.40)

Figure 6.3: Local beam addressing. Both ions are prepared in the state |S−1/2〉|S−1/2〉 and
the local beam, focused on only one of the ions, is used to drive Rabi oscillations. The red
data corresponds to the oscillations measured on the focused ion. The blue data corresponds
to the oscillations measured on the other ion. By taking the squared ratio of the observed
oscillation frequencies, we estimate an intensity overlap of about 0.2% of the local beam on
the unfocused ion.

Generating the MS interaction for the gate in Equation 6.39 is somewhat complicated by
the fact that two separate electronic transitions are involved. This is similar to the case of
entangling ions of different species [94, 4]. Two pairs of laser tones are required. The average
frequency of each pair is centered on one of the electronic transitions |S−1/2〉 ↔ |D−1/2〉 and
|S+1/2〉 ↔ |D+1/2〉, which we label as C3 and C4, respectively. The detuning of each tone in
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a pair relative to their center frequency is chosen to be slightly greater than the frequency of
the axial center-of-mass mode (by approximately 10 kHz). The transition diagram for this
interaction is illustrated in Figure 6.4 (a).

Figure 6.4: Dual carrier Mølmer-Sørensen gate. [68] (a) The transition diagram for the dual
carrier Mølmer-Sørensen interaction. The axial center of mass frequency is labeled as ν in
the lower plot and the detuning of the individual laser tones from the sideband transition
frequencies is labeled δMS. (b) Measured population dynamics for the dual-carrier MS
interaction. The circles represent experimental data points and the curves represent theory.
At a gate time of approximately 100 µs, the fidelity of preparing the state in Equation 6.39
was found to be approximately 94%, which we believe was primarily limited by intensity
fluctuations of the addressing laser.

We generate the six laser tones used in the preparation of |ΨDFS〉 using the configuration
illustrated in Figure 6.5. In particular, the four tones used for the MS gate are derived from
a common laser source using two AOMs with one in a double-pass configuration and the
other in a single-pass configuration. In this case, the double-pass is used to write the carrier
tones C3 and C4 onto the laser and the single-pass is used to split each one of these into the
bichromatic pairs used for the MS. With this setup, in addition to producing the tones C3
and C4, the tone (C3 + C4)/2 is also coupled into the final beam. Care must be taken that
this frequency is not resonant with any auxiliary transitions.
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Figure 6.5: Laser control for preparation of an entangled DFS state. The double-pass AOM
on the right is used to write the carrier frequencies C1-C4 onto the laser beam. At most
two of these are driven at any given time, but it is necessary to use four different sources
since the RF sources used cannot switch back and forth between two different frequencies
coherently. Adjustable apertures are used to block unwanted, higher-order tones generated
by the AOMs. However, when the double-pass is simultaneously driven by both C3 and C4,
a tone with a frequency equal to their average will be produced that is too close in frequency
to the carriers to be effectively blocked out. Care must be taken that this frequency is not
resonant with any unwanted transitions in the ion.

When driving the dual-carrier MS interaction, each pair of bichromatic tones causes a
Stark shift of the opposite carrier transition, found empirically to be on the order of several
tens of kHz. To tune up the MS gate, we first prepare both ions in the same electronic
ground state, either |S−1/2〉 or |S+1/2〉, and then calibrate the single-carrier MS gate while
still addressing the ions with all four tones. This procedure is then repeated for the other
ground state. With this method, we were able to prepare the state in Equation 6.39 with
a fidelity of approximately 94% as measured using the technique described in Section 3.6.
We believe the primary factor limiting this fidelity was the intensity fluctuations of the laser
light driving the gate dynamics. The fractional size of these fluctuations was measured to
be around 5% using a photodiode placed near the point before the laser enters the chamber.
In addition to affecting the interaction strength of the MS gate (see Section 3.6), these
fluctuations also cause effective frequency noise due to the unbalanced Stark shifts.

To perform Ramsey spectroscopy using |ΨDFS〉, we roughly follow the procedure outlined
in Section 6.3. The exact procedure that we use is illustrated in Figure 6.6 (a) and an
example of the resulting parity measurements is given in Figure 6.6 (b). To account for
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drifts in the contrast of the Ramsey signal, we take two independent measurements for each
experimental estimate of the Ramsey phase. These phase measurements are offset by 90
degrees as dictated by the phase of the laser light pulse used to drive the final π/2 rotations.
We set the common laser phase offset of the final pulses to bias both of these data points near
the zero-crossing of the parity signal where the frequency sensitivity is greatest (Equation
6.10). Once the Ramsey phase has been measured we use this information to update the
laser phases for the next measurement so that we are constantly sitting at the optimal bias
points.

These updates are necessary because of slow drifts of the absolute phase offset of the
Ramsey signal due, for example, to systematic drifts in the laser parameters, which might
affect the initial phase between the two branches of the prepared entangled state. To cancel
out this effect, we perform the two-point Ramsey measurement at two different waiting times
of 5 ms and 100 ms5. By computing the relative phase between these two measurements,
we can cancel out the effect of any such drifts that can be neglected over the timescale of a
single shot of the experiment (on the order of 0.1 seconds). It is evident in Figure 6.6 (b),
that the contrast of the parity signal has degraded when going from a 5 to 100 ms wait time.
This can primarily be attributed to the spontaneous decay of the ions from the excited D5/2

manifold, which has a lifetime of approximately one second (Section 2.3).
Finally, we point out that there is a measurable magnetic field gradient at the position

of the ions. This contributes to an energy shift between the components of the DFS state.
We find that this gradient is relatively stable over time and believe that it is primarily due
to the single permanent magnet that we use to set our quantization axis. Nonetheless, we
cancel out this effect by performing two sets of experiments where the states of the ions are
swapped. We label these states:

|ΨR〉 = (|D+1/2〉|D−1/2〉+ |D+5/2〉|D−5/2〉)/
√
2 (6.41)

|ΨL〉 = (|D−1/2〉|D+1/2〉+ |D−5/2〉|D+5/2〉)/
√
2 (6.42)

The effect of the magnetic field gradient on these two states is equal in magnitude but
opposite in sign. Thus, by taking the average of the phase estimated for both configurations
we cancel out this effect.

In summary, a single estimate of the energy difference between the components of the
DFS state due to a hypothetical LLI violation consists of eight individual measurements. A
single two-point measurement was performed at two separate wait times and repeated for
both of the states |ΨR〉 and |ΨL〉. Altogether, this amounts to a total measurement time
of roughly 40 seconds. In the final section of this chapter, we will describe how we used
measurements like these to place an improved bound on LLI violations.

5The difference of these waiting times is chosen to be commensurate with the period of the 60 Hz to
integrate out any remaining systematic effects due to fluctuations in the magnetic field from the power lines.
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Figure 6.6: Entangled Ramsey spectroscopy. (a) The experimental pulse sequence. (b)
Parity measurements were performed at 5 ms (red) and 100 ms (blue) waiting times. In
practice, we measure only two points of the Ramsey fringe to extract both the phase ϕ0

and the contrast. By varying the phase of the final π/2-pulses, we can bias the Ramsey
oscillations such that these points are taken near the zero-crossing of the parity signal where
the sensitivity is greatest (near the points of greatest slope). Using the phase estimates
measured at each waiting time, we can determine the relative phase shift δφ, eliminating the
effect of any slow drifts. [68]

6.6 Results
Using the Ramsey scheme outlined in the previous section, we, more or less, continu-

ously monitored the frequency splitting between the component states of |ΨDFS〉 over four
days. The experimental results are plotted in the bottom frame of Figure 6.7. After every
ten minutes of measurement time, we performed independent measurements of the carrier
frequencies and the magnetic field magnitude and then used these results to optimize the
performance of the pulse sequence. Measured deviations of the magnetic field strength from
its mean are plotted in the top frame of Figure 6.7.

Other than drifts in the offset of the Ramsey phase and the presence of a finite magnetic
field gradient – both of which are nullified by the measurement scheme – the only other known
systematics that might affect the estimation of LLI violation at the limits of the sensitivity
of the experiment are the quadratic Zeeman shift and the electric quadrupole shift. The
quadratic Zeeman shift can be calculated as a function of the magnetic field strength [92]
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Figure 6.7: Measurements of the energy difference between the |D−1/2〉|D+1/2〉 and
|D−5/2〉|D+5/2〉 states of 40Ca+. Here we plot our experimental measurements of the magnetic
field, Ramsey contrast, and frequency splitting of the |D−1/2〉|D+1/2〉 and |D−5/2〉|D+5/2〉
states over roughly four days. The gray circles in the bottom frame represent the raw fre-
quency data. The blue circles represent the same data binned in one-hour intervals. The
red curve is a fit to Equation 6.4. [68]

and scales approximately as 4.5 mHz/mG. Using the measured values of the magnetic field,
we apply a correction to our frequency estimates based on this calculation. On the other
hand, based on the results in Section 6.4, the electric quadrupole shift is expected to vary,
through drifts in the axial trapping potential, by several tenths of a mHz over the full-time
scale of our measurements. Based on the bottom frame of Figure 6.7 it seems reasonable to
suspect that these fluctuations can be ignored. This is confirmed in the full calculation of
the bounds on CMN , where we find that the inclusion of these fluctuations does not impact,
to order-of-magnitude, the uncertainty of our estimates on these parameters (obtained by
fitting the measured data to Equation 6.4).

To derive bounds on LLI violations from our data, we fit it to Equation 6.4 and translate
the fitted values and associated uncertainty into the components CNM described in Sec-
tion 6.2. This translation requires a value for the orientation of the magnetic field in the
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laboratory frame. We determine that the magnetic field is oriented parallel to the surface
of the Earth with an angle of approximately 68° east of true north by performing excita-
tion spectroscopy on several different S1/2 ↔ D5/2 transitions and taking advantage of the
dependency of their coupling strengths on the direction and polarization of the addressing
laser relative to the orientation of the magnetic field (Section 2.6). Using this calculation we
find that, on average, we improve the bounds on LLI violations to about 5 × 10−19, which
represents about a half an order of magnitude improvement over the previous best bounds
[80]. The specific bounds on the CMN components that we derived can be found in Table 1
of [68].

To compare the performance of Ramsey spectroscopy using two entangled DFS states
with the performance of two classically correlated states [80], we compute the Allan devia-
tion for both experiments and plot the results in Figure 6.6. Roughly speaking, the Allan
deviation is a measurement of the variance of the frequency estimate as a function of total
measurement duration τ . One should assume that for longer τ , more independent measure-
ments of the frequency can be taken and their average can be used to produce a more precise
frequency estimate. However, this assumption will fail if additional systematics, unaccounted
for in the analysis, cause drifts in the underlying sample distribution. As shown in Figure
6.6, for both the case of two unentangled and two entangled ions, the Allan deviation is well
fit as a function of 1/

√
τ , revealing no evidence of correlated noise or systematics over the

full duration of the experiments. Furthermore, these results reveal that for the entangled
state the frequency uncertainty scales as 1.72 Hz/

√
τ , whereas for the mixed state, it scales

as 3.54 Hz/
√
τ . Thus, the entangled state outperforms the mixed state by roughly a factor

of two, matching the prediction computed in Section 6.3 and demonstrating that, under
certain circumstances, entanglement can enhance the spectroscopic sensitivity of real-world
measurements.
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Figure 6.8: Allan deviation [68] The black circles represent the Allan deviation corresponding
to frequency measurements taken using two classically correlated ions [80]. The red circles
represent the Allan deviation corresponding to the unbinned frequency measurements taken
in this work and summarized in Figure 6.7 using a deterministically prepared entangled state.
The blue lines represent fits to the data from which we find that σ = 1.72 Hz/

√
τ and σ =

3.53 Hz/
√
τ for the entangled and mixed states, respectively. The factor of two improvements

in frequency uncertainty achieved by the entangled state matches the theoretical predictions
derived in Section 6.3 and demonstrates the viability of using entanglement to enhance
precision measurements in real-world systems. The dashed line represents the ideal case of
an entangled state limited only by quantum projection noise.
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Chapter 7

Conclusion

In this thesis, we have presented the results of two experiments that used well-controlled
quantum systems composed of trapped 40Ca+ ions to perform precise tests, with unprece-
dented sensitivity, of physical theories predicting novel phenomena. In both cases, by failing
to observe any such phenomena, we have set more stringent empirical bounds on these the-
ories. In this chapter, we will summarize these results and provide some outlook on the
prospect of future work.

Test of causal nonlinear quantum mechanics
In Chapter 5, we described an experiment testing the linearity of time evolution in quan-

tum mechanics [14]. Theories predicting a violation of this linearity have been previously
proposed [8, 97, 98, 24] and carefully tested [91, 33, 10, 18, 96, 65]. However, naive gen-
eralizations of these theories have all generally led to violations of causality, limiting their
viability. Recently, a new theoretical framework for causal nonlinear quantum mechanics
has been developed [52], but, interestingly, it turns out to be poorly tested by standard
atomic and nuclear spectroscopy and weakly bounded by previous experiments. The reason
for this is that the new theory incorporates nonlinearities as a physical self-interaction of a
system’s wavefunction. For particles sensitive to electromagnetic fields, this is manifest as an
interaction of the system’s wavefunction with a field sourced by its expectation value. Thus,
for, say, a superposition of the electronic states of an atom to be sensitive to this effect, its
center of mass motion would need to be constrained to a volume comparable to the spread
in its internal degrees of freedom.

To overcome this limitation, we made use of the net charge and tight confinement of a
40Ca+ ion contained in a Paul trap. In this context, the causal nonlinearity can be interpreted
as a Coulomb field sourced by the position-space probability distribution of the ion, which
acts to repel it. If the ion is prepared in a superposition of two distinct positions in space,
then this field will interact differently with both branches of the superposition causing a
relative energy shift that can be measured using a Ramsey experiment. We performed
such an experiment, using a superposition of the ground and first excited state of the ion’s
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vibrational motion, as defined by the harmonic pseudopotential that binds it in place. A
characteristic feature of the nonlinear interaction is that the Ramsey phase accumulated
by the ion during the experiment will depend sensitively on the relative population present
in the two branches of the superposition. We leveraged this feature by performing pairs of
Ramsey experiments using superpositions with two distinct relative population weights, thus
allowing us to rule out most systematics. Using this technique, we were able to set a fractional
bound on the order of 10−12 for any potential electromagnetic nonlinear perturbations of the
Schrödinger equation. This represents about a seven-order-of-magnitude improvement of the
previously best-estimated bounds on this theory [52].

In addition to setting a more stringent bound on the theory, this experiment serves as
an easy-to-understand example of how causal nonlinear quantum mechanics affects quantum
systems and the limitations and strategies that might be employed to probe for these effects.
The sensitivity of our experiment can be improved by using a heavier ion with a higher trap
frequency (so that it is more tightly localized in space), by reducing the ion’s heating rate or
by increasing the number of repetitions of the experiment. In all cases, the sensitivity of the
experiment scales modestly x1/2 with these parameters so, for realistic values, one might only
hope to achieve an improvement of several orders of magnitude. On the other hand, it might
be possible to use more sophisticated measurement protocols along with superpositions of
more complicated states, like strings of ions or squeezed states to achieve more substantial
gains.

Test of local Lorentz invariance
Lorentz symmetry is a fundamental assumption of relativity, dictating that the laws

of physics remain unchanged when moving from one inertial reference frame to another.
Nonetheless, some modern theories predict that this symmetry might be broken at high
enough energy. Currently, the extraordinary spectroscopic sensitivity that can be achieved
using atomic systems is sufficient to probe for such effects at theoretically relevant scales,
despite the low energy scales of these systems. Previously, the most stringent bounds on the
hypothetical Lorentz symmetry violations of the electron were set by an experiment using
trapped 40Ca+ ions [80]. This result was achieved despite the presence of large magnetic
field fluctuations in the system by taking advantage of the correlated effect of this noise on
two co-trapped ions.

In Chapter 6, we present the results of an experiment [68] that builds on this previous
work by performing a similar test of Lorentz symmetry using two entangled 40Ca+ ions,
prepared in a decoherence free state. We empirically verify the expected gain of a factor of
two in spectroscopic sensitivity obtained by using a pair of entangled, rather than correlated
but unentangled, ions, predicted by theory. This enhancement is directly attributable to the
entanglement of the ions, thus providing an experimental example of how entanglement might
be leveraged as a resource to improve precision measurements. By additionally collecting
more measurement statistics, we improved the best bounds on Lorentz symmetry violations
of the electron by a factor of two to four, to a value of about 5× 10−19.
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In principle, it is possible to extend this technique to larger systems of ions. For example,
in comparison with Equation 6.18, a decoherence free state of the form (|D1/2D−1/2D−1/2D1/2〉+
|D5/2D−5/2D−5/2D5/2〉) might be prepared, which is insensitive to both the magnetic field
and its gradient, while remaining sensitive to signatures of Lorentz violations. On the other
hand, scaling up spectroscopy with classically correlated ions is nontrivial. For example, the
decoherence free subspace will generally contain multiple states with different sensitivities
to LLI violations. Thus, it is likely the benefit of using entangled states of 40Ca+ ions might
increase with system size, at least theoretically. However, there are practical challenges to
scaling up the preparation of high-fidelity entangled states to larger system sizes. And, on
the other hand, F7/2 state of Yb+ is an order of magnitude more sensitive to hypothetical
Lorentz violations than the D5/2 states of 40Ca+ [29, 90], making this a much more attractive
testbed. More recent experiments using magnetic field insensitive clocks states [87] and so-
phisticated dynamical decoupling techniques [26] have since improved the bounds on Lorentz
violations by several orders of magnitude by using single trapped Yb ions.
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Appendix A

Normal mode structure

In this appendix, we provide a general derivation of the normal mode structure for an
N -ion change where each ion is allowed to have a different mass and/or degree of ionization.

Figure A.1: A linear ion chain. When the ions are perturbed by a small amount δrj away
from their equilibrium positions, the ith ion will experience a force Fi({rj}j)

Linear equilibrium positions
As illustrated in Figure A.1, we consider N ions confined in the three-dimensional har-

monic potential:

Φ =
1

2

N∑
i=1

mi[(ω
(x)
i )2 + (ω

(y)
i )2 + (ω

(z)
i )2] (A.1)
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and interacting via mutual Coulomb repulsion such that the force Fi on ion i at location
ri = (xi, yi, zi) is given by:

Fi({rj}Nj=1) =

−mi(ω
(x)
i )2xix̂−mi(ω

(y)
i )2yiŷ −mi(ω

(z)
i )2ziẑ

+
∑
i, j,
i 6=j

qiqj[(xi − xj)x̂+ (yi − yj)ŷ + (zi − zj)ẑ]

k[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]
(A.2)

where k = 4πε0 and qi is the charge of the ith ion1. The first term on the RHS is the force
due to the trapping potential. The second term is the inter-ion Coulomb repulsion.

If the kinetic energy of the ions is small, then, since ω(z) is necessarily less than ω(x,y),
the ions will crystallize into a linear chain oriented along the ẑ-direction. The equilibrium
positions r0i of the ions in this configuration are found by setting the force on each ion equal
to zero:

Fi({r0j}Nj=1) = 0 =

−mi(ω
(x)
i )2x0i x̂−mi(ω

(y)
i )2y0i ŷ −mi(ω

(z)
i )2z0i ẑ

+
N∑
i, j,
i 6=j

QiQj[(x
0
i − x0j)x̂+ (y0i − y0j )ŷ + (z0i − z0j )ẑ]

4πε0[(x0i − x0j)
2 + (y0i − y0j )

2 + (z0i − z0j )
2]

(A.3)

But, for a linear chain, symmetry dictates that x0i = y0i = 0, so this expression reduces to:

F
(z)
i ({rj = r0j}Nj=1) = −mi(ω

(z)
i )2z0i +

i−1∑
j=1

qiqj
k(z0i − z0j )

2
−

N∑
j=i+1

qiqj
k(z0i − z0j )

2
= 0 (A.4)

which can be solved to find the linear equilibrium positions. It is worth pointing out that
Equation A.4 does not depend on the ionic masses. This is because, in the axial direction, the
ions only interact with each other through their charge. Therefore, if two linear ion crystals
have identical charge configurations, their equilibrium positions will also be the same.

Normal modes
Now, if the system experiences a small perturbation away from its equilibrium configu-

ration: r0i → r0i + δri, the first-order, linear response is:
1We don’t specify the degree of ionization or the sign of the charges, but we do require that all ions have

the same charge sign.
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Fi =
N∑
j=1

[
∂Fi

∂rj

]
r0i

δrj (A.5)

where the bold script denotes an additional three-dimensional index over Cartesian coordi-
nate space so that:

∂Fi

∂rj
δrj =


∂F

(x)
i

∂xj

∂F
(x)
i
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i

∂zj
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(y)
i

∂xj

∂F
(y)
i

∂yj

∂F
(y)
i

∂zj
∂F

(z)
i

∂xj

∂F
(z)
i

∂yj

∂F
(z)
i

∂zj


δxiδyi
δzi

 (A.6)

Thus, the force on the ith ion along the α-direction (α ∈ {x, y, z}) due to the displacement
of the jth ion is:

δF
(α)
ij =

∂F
(α)
i

∂rj

∣∣∣∣
r0i

· δrj =
∂F

(α)
i

∂xj

∣∣∣∣
r0i

δxj +
∂F

(α)
i

∂yj

∣∣∣∣
r0i

δyj +
∂F

(α)
i

∂zj

∣∣∣∣
r0i

δzj (A.7)

But it is easily checked that, for the force in Equation A.2:

∂F
(α)
i

∂βj

∣∣∣∣
r0i

= 0 unless α = β (A.8)

That is to say, the motion decouples along the different spatial axes. So we can write
Newton’s equation to first-order:

mi
¨δαi =

N∑
j=1

[
∂F

(α)
i

∂αj

]
r0i

δαj

= −
N∑
j=1

K(α)
ij δαj (A.9)

Where the explicit form of K(α)
ij can be computed directly from Equation A.2:

K(α)
ij =


mi(ω

(α)
i )2 − cα

N∑
j=1,
j 6=i

qiqj
k|z0i −z0j |3

, i = j

cα
qiqj

k|z0i −z0j |3
, i 6= j

(A.10)

with cx,y = 1, cz = −2.
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Equation A.9 describes a coupled, linear spring-mass system. Following the standard
procedure for solving such problems, we make the ansatz:

δαi = β
(α)
i exp(iνt) (A.11)

In other words, we assume that all ions move along a particular spatial axis α at the same
frequency but with different, though dependent, relative amplitudes β(α)

i . The quantity β(α)
i

is sometimes referred to as the mode participation since it describes how much the ith is
involved in the motion of the mode β(α). If we introduce the mass-weighting:

β̃
(α)
i =

√
miβ

(α)
i (A.12)

K̃(α)
ij =

K(α)
ij√
mimj

(A.13)

Then the N independent solutions2 for (ν, β(α)) can be found by solving the eigenvalue
equation:

[K̃(α) − ν21]β̃
(α)

= 0 (A.14)

For each coordinate axis α, there will be N independent solutions {(νl, β(α)
l )}Nl=1 known

as the normal modes of the system. These are illustrated for both a homogeneous and
heterogeneous ion chain in Figure A.2. Code for computing these modes can be found in
IonSim.jl at https://github.com/HaeffnerLab/IonSim.jl.

2One for each kinetic degree of freedom along a particular spatial axis so that there are 3N in total.

https://github.com/HaeffnerLab/IonSim.jl
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+
+

Figure A.2: Normal mode structure for a 4-ion linear Coulomb crystal. An illustration of the
normal mode structure for a 4-ion linear Coulomb crystal found by solving Equation A.14
with characteristic trap frequencies of 5 MHz and 1 MHz for the radial and axial direction,
respectively. This is done both for a homogeneous system (upper row) and a heterogeneous
(bottom row) system. In the homogeneous case, these characteristic frequencies refer to the
eigenfrequency for the unique center-of-mass modes of vibration. In the heterogeneous case,
they refer to the lowest (highest) eigenfrequencies of vibration in the axial (radial) direction.
The lengths of the arrows indicate the relative participation of the ion in the mode (i.e. for
ion i and direction α they correspond to β(a)

i in Equation A.11).
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Appendix B

Zeeman shift algorithm

All code written in Julia.

Fine structure Zeeman shift

1 using WignerSymbols # WignerSymbols v2.0.0
2 using LinearAlgebra
3
4 h = 6.626070039125929e-34 # [m²�kg�s�¹] (Planck constant)
5 �B = 9.27400994e-24 # [J�T�¹] (Bohr magneton)
6 """
7 finestructure_zeemanshift(
8 B; l, s, j, mj, fine_splitting, gl=1, gs=2, returnstate=false
9 )

10
11 Given a magnetic field `B`, this calculates the Zeeman shift for the fine structure
12 state defined by |l, s, j, mj>.
13
14 `finesplitting` should be a list of the frequency splitting of the fine structure multiplets.
15 Only the relative frequencies matter and this list should be given in order of increasing j.
16
17 `gl`, `gs` are the orbital and spin g-factors, repsectively.
18
19 If `!returnstate` returns the eigenergy corresponding to the state that asymptotically
20 approaches |l, s, j, mj> in the limit of zero field.
21
22 If `returnstate` returns a tuple with the eigenergy as before, but also the corresponding
23 eigenstate which will generally not be equal to |l, s, j, mj> when the field is nonzero.
24 """
25 function finestructure_zeemanshift(
26 B; l, s, j, mj, finesplitting, gl=1, gs=2, returnstate=false
27 )
28 # We are going to iterate over all (j, m_j) so we give the user's input a special label
29 J = j
30 mJ = mj
31 # jvalues = all possible values of j according to rules of angular momentum in QM
32 jvalues = collect(abs(l-s):l+s)
33 @assert J in jvalues # check that user input is an allowed angular momentum value
34 # check that the fine_splitting has the appropriate length
35 @assert length(jvalues) == length(finesplitting)
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36
37 # construct the fine structure hamiltonian in the coupled |l s; j m�> basis
38 # (this will be diagonal)
39 coupled_basis_order = Dict()
40 basisvector = 1 # keeps track of the ordering of the basis
41 finestructure = Real[]
42 for (ji, j) in enumerate(jvalues)
43 for mj in -j:j
44 push!(finestructure, finesplitting[ji])
45 coupled_basis_order[(j=j, mj=mj)] = basisvector
46 basisvector += 1 # keep track of the ordering of the basis
47 end
48 end
49 Hfs = diagm(0 => finestructure)
50
51 # construct Zeeman hamiltonian in the uncoupled |l m�; s m�> basis
52 # (this will be diagonal)
53 uncoupled_basis_order = Dict()
54 basisvector = 1 # keep track of the ordering of the basis
55 zeeman = Real[]
56 for ml in -l:l
57 for ms in -s:s
58 push!(zeeman, (�B / h) * B * (gl * ml + gs * ms))
59 uncoupled_basis_order[(ml=ml, ms=ms)] = basisvector
60 basisvector += 1 # keep track of the ordering of the basis
61 end
62 end
63 Hz = diagm(0 => zeeman)
64
65 # compute basis transformation, T, from |l s; j m�> -> |l m�; s m�> using
66 # Clebsch-Gordan coefficients
67 T = zeros(Real, size(Hz))
68 for j in jvalues
69 for mj in -j:j
70 for ml in -l:l
71 for ms in -s:s
72 uncoup_indx = uncoupled_basis_order[(ml=ml, ms=ms)]
73 coup_indx = coupled_basis_order[(j=j, mj=mj)]
74 if ml + ms != mj
75 T[uncoup_indx, coup_indx] = 0
76 end
77 cgcoefficient = clebschgordan(l, ml, s, ms, j, mj)
78 if cgcoefficient != 0
79 T[uncoup_indx, coup_indx] = cgcoefficient
80 end
81 end
82 end
83 end
84 end
85 # Now we can use T, to change the basis of Hz from |l m�; s m�> -> |l s; j m�>.
86 # Then, we can add this to Hfs (already in coupled basis) and diagonalize
87 # the whole thing to find the eigenergies and eigenstates.
88 H = Hfs + inv(T) * Hz * T
89 perturbedenergies, perturbedstates = eigen(H)
90 # index of the state that asymptotically approaches |l s; j m�> in the limit of B=0
91 JmJindex = coupled_basis_order[(j=J, mj=mJ)]
92 # if !returnstate (default) just return an eigenergy
93 if !returnstate
94 return perturbedenergies[JmJindex]
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95 end
96 # if returnstates return a tuple, first element eigenenergy
97 # and second element corresponding eigenstate
98 return perturbedenergies[JmJindex], perturbedstates[:, JmJindex]
99 end

100

Hyperfine structure Zeeman shift

1 """
2 hyperfinestructure_zeemanshift(
3 B; l, s, j, i, f, mf, hyperfinesplitting; gl=1, gs=2, gi=0,
4 returnstate=false,
5 )
6
7 Given a magnetic field `B`, this calculates the Zeeman shift for the hyperfine structure
8 state defined by |l, s, j, i, f, mf>.
9

10 `hyperfinesplitting` should be a list of the frequency splitting of the hyperfine structure
11 multiplets. Only the relative frequencies matter and this list should be given in order of
12 increasing f.
13
14 `gl`, `gs`, `gi` are the orbital, spin and nuclear g-factors, repsectively.
15
16 If `!returnstate` returns the eigenergy corresponding to the state that asymptotically
17 approaches |l, s, j, i, f, mf> in the limit of zero field.
18
19 If `returnstate` returns a tuple with the eigenergy as before, but also the corresponding
20 eigenstate which will generally not be equal to |l, s, j, i, f, mf> when the field is nonzero.
21 """
22 function hyperfinestructure_zeemanshift(
23 B; l, s, j, i, f, mf, hyperfinesplitting, gl=1, gs=2, gi=0,
24 returnstate=false,
25 )
26 # We are going to iterate over all (f, mf) so we give the user's input a special label
27 F = f
28 mF = mf
29 # jvalues = all possible values of f according to rules of QM angular momentum addition
30 fvalues = collect(abs(j-i):j+i)
31 @assert F in fvalues # check that user input is an allowed angular momentum value
32 # check that the hyperfinesplitting has the appropriate length
33 @assert length(fvalues) == length(hyperfinesplitting)
34
35 # construct hyperfine hamiltonian in coupled |j i; f m_f> basis (this will be diagional)
36 coupled_basis_order = Dict()
37 basisvector = 1 # keeps track of the ordering of the basis
38 hyperfinestructure = Real[]
39 for (fi, f) in enumerate(fvalues)
40 for mf in -f:f
41 push!(hyperfinestructure, hyperfinesplitting[fi])
42 coupled_basis_order[(f=f, mf=mf)] = basisvector
43 basisvector += 1 # keep track of the ordering of the basis
44 end
45 end
46 Hhfs = diagm(0 => hyperfinestructure)
47
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48 # construct Zeeman hamiltonian in uncoupled |j mj; i mi> basis (this will be diagonal)
49 uncoupled_basis_order = Dict()
50 basisvector = 1 # keep track of the ordering of the basis
51 zeeman = Real[]
52 for mj in -j:j
53 for mi in -i:i
54 g = landegj(l, j, s) # note this function internally assumes gl=1, gs=2
55 push!(zeeman, (�B / h) * B * (g * mj + gi * mi))
56 uncoupled_basis_order[(mj=mj, mi=mi)] = basisvector
57 basisvector += 1 # keep track of the ordering of the basis
58 end
59 end
60 Hz = diagm(0 => zeeman)
61
62 # compute basis transformation T from |j i; f mf> -> |j mj; i mi> using CG coeffs
63 T = zeros(Real, size(Hz))
64 for f in fvalues
65 for mf in -f:f
66 for mj in -j:j
67 for mi in -i:i
68 uncoup_indx = uncoupled_basis_order[(mj=mj, mi=mi)]
69 coup_indx = coupled_basis_order[(f=f, mf=mf)]
70 if mj + mi != mf
71 T[uncoup_indx, coup_indx] = 0
72 end
73 cgcoefficient = clebschgordan(j, mj, i, mi, f, mf)
74 if cgcoefficient != 0
75 T[uncoup_indx, coup_indx] = cgcoefficient
76 end
77 end
78 end
79 end
80 end
81 # Now we can use T, to change the basis of Hz from |j mj; i mi> -> |j i; f mf>.
82 # Then, we can add this to Hhfs (already in coupled basis) and diagonalize
83 # the whole thing to find the eigenergies and eigenstates.
84 H = Hhfs + inv(T) * Hz * T
85 perturbedenergies, perturbedstates = eigen(H)
86 # index of the state that asymptotically approaches |j i; f mf> in the limit of B=0
87 FmFindex = coupled_basis_order[(f=F, mf=mF)]
88 # if !returnstate (default) just return an eigenergy
89 if !returnstate
90 return perturbedenergies[FmFindex]
91 end
92 # if returnstates return a tuple, first element eigenenergy
93 # and second element corresponding eigenstate
94 return perturbedenergies[FmFindex], perturbedstates[:, FmFindex]
95 end
96
97 # Compute the lande g-factor for the fine structure level
98 function landegj(l::Real, j::Real, s::Real=1//2, gs::Real=2, gl::Real=1)
99 Lexp = (gl - 1) * ((j*(j+1) + l*(l+1) - s*(s+1)) / (2*j*(j+1)))

100 Sexp = (gs - 1) * ((j*(j+1) - l*(l+1) + s*(s+1)) / (2*j*(j+1)))
101 return 1 + Lexp + Sexp
102 end
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1 using Plots
2 B = range(0, 2.5, 100)
3 p = plot(
4 xlabel="Magnetic field strength (Gauss)", ylabel="Frequency (MHz)",
5 title="Zeeman shift of the 3²D(5/2) hyperfine levels of �³Ca�",
6 size=(500, 500), legend=false
7 )
8 l = 2; j = 5/2; i = 7/2
9 hyperfinesplitting = [33.7, 26.1, 19.8, 14, 9.1, 0] * 1e6

10 for f in 1:6
11 for mf in -f:f
12 hps = hyperfinestructure_zeemanshift.(
13 B * 1e-4, l=l, s=1/2, j=j, i=i, f=f, mf=mf, hyperfinesplitting=hyperfinesplitting
14 )
15 plot!(B, hps ./ 1e6, color="black")
16 end
17 end
18 display(p)

Figure B.1: Zeeman shift of the 32D5/2 hyperfine levels of 43Ca+.
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Appendix C

Electric multipole transition matrix
elements

Following [95], we imagine an electric field with the following spatial component:

E(r) = E0exp(ik · r) + c.c. (C.1)

interacting with the electric 2K-pole of a single transition in a single-electron atom. The
corresponding semiclassical interaction Hamiltonian:

ĤEK =
K∑

q=−K

[YKq(k̂) · ε̂]ĤEK
q (C.2)

where k̂ = k/|k| can be parameterized in terms of the angles θ, ρ relative to the quantization
axis (see Figure 2.11) and YE

Kq(k̂) is defined in terms of the spherical harmonic vectors:

YKq(k̂) =

√
K + 1

2K + 1
YK,K−1,q(k̂) +

√
K

2K + 1
YK,K+1,q(k̂) (C.3)

YKlq(k̂) = (−1)K−q
√
2K + 1

1∑
p=−1

(
K 1 l
−1 p q − p

)
Y q−p
l (k̂)êp (C.4)

with Y m
l the normal spherical harmonics and êp, the spherical basis unit vectors:

ê0 = ẑ, ê±1 =
∓(x̂± iŷ)√

2
(C.5)

describing the orientation of the valence electron relative to the nucleus (so, e.g. ê0 is parallel
to the quantization axis set by a static magnetic field).

The qth component ĤEK
q of ĤEK is given by:



APPENDIX C. ELECTRIC MULTIPOLE TRANSITION MATRIX ELEMENTS 139

ĤEK
q = 8πE0(ik)

K−1

√
(2K + 1)(K + 1)

4πK

1

(2K + 1)!!
Q̂K,q (C.6)

with Q̂K,q is the Kth multipolar moment of the atom in the spherical basis:

Q̂K,q = r̂KCK
q (C.7)

where e is the fundamental unit of charge and Racah normalized spherical harmonics:

CK
q =

√
4π

2K + 1
Y q
k (C.8)

The matrix element characterizing the strength of a transition between the states |E〉 =
|n, l, j,mj〉 and |E ′〉 = |n′, l′, j′,m′

j〉 is given by:

〈E ′|ĤEK
q |E〉 = 8πeE0(ik)

K−1

√
(2K + 1)(K + 1)

4πK

1

(2K + 1)!!
〈E ′|Q̂K,q|E〉

= 8πeE0(ik)
K−1

√
(2K + 1)(K + 1)

4πK

1

(2K + 1)!!
(−1)j

′−m′
j×(

j′ K j
−m′

j q m′

)
〈E ′||Q̂K ||E〉 (C.9)

where the last line follows from the Wigner-Eckart theorem and the term in big parentheses
is the Wigner 3-j symbol. The term 〈E ′||Q̂K ||E〉 is a reduced matrix element, which can be
related to the Einstein A coefficient for the transition:

AK =
cα(2K + 2)(2K + 1)k2K+1

K[(2K + 1)!!]2
|〈E ′||Q̂K ||E〉|2

2j′ + 1
(C.10)

where c is the speed of light in vacuum, α is the fine structure constant and the primed coor-
dinates must denote the higher energy state (such that j′ in the above equation corresponds
to the total angular momentum quantum number for the higher energy state). Code for
computing these matrix elements in terms of the multipole order, laser geometry, Einstein
A coefficient and strength is provided below.

1 using WignerSymbols
2 using BigCombinatorics: DoubleFactorial
3 using LinearAlgebra:dot
4 import SphericalHarmonics.sphericalharmonic as sphericalharmonic
5
6 # Cartesian unit vectors
7 x = [1, 0, 0]
8 y = [0, 1, 0]
9 z = [0, 0, 1]

10
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11 # Spherical basis unit vectors
12 ep = -(x̂ + 1im * ŷ) / √2
13 em = (x̂ - 1im * ŷ) / √2
14 e0 = ẑ
15
16 # Y_Klq(�, �) as defined in Equation A6 of https://doi.org/10.1103/PhysRevResearch.5.013219
17 # Though there is a typo and the spherical harmonic in this equation should be Y_l^(q-p)
18 function Y_Klq(�, �, K, l, q)
19 Y = [0, 0, 0]
20 e = [em, e0, ep]
21 for (i, p) in enumerate([-1, 0, 1])
22 if abs(q - p) > l
23 continue
24 else
25 Y += wigner3j(K, 1, l, -q, p, q-p) * sphericalharmonic(�, �, l, q-p) * e[i]
26 end
27 end
28 return (-1)^(K - q) * sqrt(2K+1) * Y
29 end
30
31 # Y_Kq�¹�(�, �) as defined in Equation A11 of https://doi.org/10.1103/PhysRevResearch.5.013219
32 function Y_KqE(�, �; K, q)
33 √((K+1)/(2K+1)) * Y_Klq(�, �, K, K-1, q) + √(K/(2K+1)) * Y_Klq(�, �, K, K+1, q)
34 end
35
36 # Q_Kq^E from Equation A20 in https://doi.org/10.1103/PhysRevResearch.5.013219
37 # (modulo the reduced matrix element)
38 function Q_KqE(K, q; Jf, Mf, Ji, Mi)
39 (-1 + 0im)^(Jf - Mf) * wigner3j(Jf, K, Ji, -Mf, q, Mi)
40 end
41
42 function matrixelement(;
43 order, # order of the multipole (1 for dipole, 2 for quadrupole, etc.)
44 Ji, Mi, Jf, Mf, # i (initial), f (final) total angular momentum numbers �Ĵ²�, �Ĵz�
45 Li=nothing, Lf=nothing, # intial/final orbital angular momentum �L̂²�
46 # (only used for enforcing parity)
47 E=1, lambda=2�, khat, epsilon, # Electric field strength of laser, wavelength,
48 # direction and polarization direction
49 A=1, # Einstein A coefficient
50 only_geometry_dependent=false
51 )
52 # enforce parity rules
53 if !isnothing(Lf) && isnothing(Li)
54 isodd(abs(Lf - Li)) && iseven(order) && return 0.
55 iseven(abs(Lf - Li)) && isodd(order) && return 0.
56 end
57 k = 2�/lambda
58 e = 1.60217663e-19 # charge magnitude of electron
59 alpha = 0.0072973525693 # fine structure constant
60 c = 299_792_458 # speed of light
61 K = order # 1 for dipole, 2 for quadrupole, etc.
62 theta = acos(khat[3]) # z-component
63 phi = atan(khat[2], khat[1]) # y-component, x-component
64 Jlarger = Jf > Ji ? Jf : Ji
65 rme_num = sqrt(K * DoubleFactorial(2K + 1)^2 * (2Jlarger + 1) * A)
66 rme_denom = sqrt(alpha * c * (2K + 2) * (2K + 1) * k^(2K + 1))
67 reduced_matrixelement = rme_num / rme_denom
68 linestrength = 0
69 for q in -K:K
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70 h = (1im * k)^(K-1)*e*E*Q_KqE(K,q;Jf=Jf,Mf=Mf,Ji=Ji,Mi=Mi) * reduced_matrixelement
71 if only_geometry_dependent # g-functions from Christian Roos's thesis
72 if q == Mf - Mi
73 linestrength += dot(Y_KqE(theta, phi; K=K, q=q), epsilon)
74 break
75 end
76 else
77 linestrength += dot(Y_KqE(theta, phi; K=K, q=q), epsilon) * h
78 end
79 end
80 bK = 8� * √((2K+1) * (K+1) / (4�*K)) * (1 / DoubleFactorial(2K+1))
81 linestrength *= bK
82 return linestrength
83 end

For example:

1 import PyPlot
2 const plt = PyPlot
3 using LaTeXStrings
4
5 Ji = 3/2
6 Jf = 3/2
7 Mi = -1/2
8 Mf = 3/2
9 order = 3

10 N = 100
11 theta = collect(range(0, �/2, N))
12 rho = collect(range(0, �/2, N))
13 Z = zeros(N, N)
14 for i in 1:N, j in 1:N
15 khat = sin(theta[i]) * x + cos(theta[i]) * z
16 epsilon = sin(rho[j]) * y + cos(rho[j]) * (sin(theta[i]) * z - cos(theta[i]) * x)
17 Z[i, j] = abs(
18 matrixelement(
19 order=order, Jf=Jf, Mf=Mf, Ji=Ji, Mi=Mi, khat=khat, epsilon=epsilon,
20 only_geometry_dependent=true
21 )
22 )
23 end
24 cc = plt.contourf(rad2deg.(rho), rad2deg.(theta), Z, levels=10, cmap="Greys_r")
25 clb=plt.colorbar(label="a.b.u.")
26 clb.ax.tick_params(labelsize=12)
27 plt.contour(rad2deg.(rho), rad2deg.(theta), Z, levels=10, linewidths=0.5, colors="k")
28 plt.ylabel(L"$\theta(�)$", fontsize=20)
29 plt.xlabel(L"$\rho(�)$", fontsize=20)
30 plt.grid("on", color="black", linewidth=0.2, linestyle="dashed")
31 plt.title(L"$|\Delta m|=$" * "$(abs(Int(Mf - Mi)))", fontsize=20)
32 plt.show()
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Figure C.1: Example calculation of the geometric portion of an electric multipole transition
matrix element. Here we plot the geometric dependence of an electric octupole between
a j = 3/2 and j = 3/2 state (e.g. D3/2 ↔ P3/2, though this is dominated by the dipole
component).
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Appendix D

Experimental control software

An example of a user-defined pulse sequence is given in Section D. This code performs
a Ramsey experiment. The class attribute PulseSequence.accessed_params determines the
parameters to be read out from parametervault and loaded into the FPGA. Any parameter
listed here will also be displayed in the experimental control window (see Figure D.1).

The class attribute PulseSequence.scan_params is a dictionary where the key refers to the
name of the experiment to be performed and the values are a tuple with the form ([a string
corresponding to the window of the plotter in which to plot the results], ([parametervault
parameter to be scanned], default starting value of parameter], [default ending value of
the parameter to be scanned], [number of scan points], [parameter units])). If a scannable
parameter is defined here, it shows up as a scan widget in the experimental control window
(see Figure D.1). The scan to be run in a specific experiment can then be chosen with the
scan_selection spinbox. One can also choose to have non-uniform scan steps or a random
ordering by interacting with the scan widget. Multi-dimensional scans are also supported
by defining a nested dictionary for PulseSequence.scan_params.

The function run_initially contains any code, which can be run before the main scan.
This code is executed asynchronously by Artiq during the ”prepare” stage and while queued
in the scheduler. This is generally where subsequences (which will be defined in a bit) are
imported using the add_subsequence() method. This is also where subsequence() functions
are set using the set_subsequence() method1. Functions which are set as subsequences() are
run only at the beginning of every scan point and not for every shot of the experiment. For
example, in the Ramsey experiment if one chooses to scan the wait time, then every choice
of wait_time corresponds to a data point, but the experiment is repeated for several shots
for each data point2 to build up statistics. Any functions set as subsequences will only be
run once for each choice of wait_time.

Finally, the function Ramsey() defines the actual pulse sequence that defines the main
action of the experiment. The name of this function must match one of the dictionary keys

1Note that there is a confusing double-use of the term subsequence here.
2set by the parametervault parameter StateReadout.repeat_each_measurement or by the PulseSequence

class attribute self.N
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for PulseSequence.scan_params.
An example subsequence, RabiExcitation, used by the Ramsey PulseSequence is shown

in Section D. Subsequences contain most of the low-level Artiq code for performing tasks
like setting DDS frequencies and turning on and off TTLs. Parametervault parameters can
be loaded into subsequences as shown in the example code, but listing a parameter here will
not cause it to show up in the experimental control window. A subsequence instance must
contain a method named subsequence(). This is the code that will be executed when the
subsequence is run. Subsequences can also be combined. For example, the StatePreparation
subsequence in the example is a composite subsequence consisting of Doppler cooling, optical
pumping and sideband cooling.

A desktop icon on the main experimental control computer is available for starting up the
Artiq control software and GUI. This runs the script contained in ∼/launch_scripts/artiq_-
startup.sh. The default plotter is a cheap knock-off of the RealSimpleGrapher ported to
Python3 and called the RealComplicatedGrapher can be run with another desktop icon,
which runs the script ∼/launch_scripts/rcg_startup.sh.



APPENDIX D. EXPERIMENTAL CONTROL SOFTWARE 145

file/folder location description
∼/artiq/artiq/dashboard The code for all of the additional features

added to the Artiq GUI is contained here.
∼/artiq/artq/frontend/artiq_dash-
board.py

Code must be modified here to incorporate
any new GUI features (defined in the dash-
board directory) to the main Artiq GUI.

∼/artiq/artiq/applets/plot_pmt.py The code for the PMT plot applet.
∼/artiq/artiq/applets/rcg/ A folder containing all of the code for the

main grapher.
∼/artiq/artiq/applets/ rcg/RealCompli-
catedGrapherConfig.py

The basic configuration for the grapher can
be set here (e.g. adding tabs or plots).

∼/artiq/artiq/applets/rcg/fitting/ fit_-
functions

New fit functions defined here will be auto-
matically exposed to the user.

∼/artiq/artiq/master/worker_impl.py A small modification to this file has been
made so that the data from experiments
is automatically saved in the /home/lat-
tice/data directory in the appropriate for-
mat.

∼/artiq/artiq/.pulse_sequence/ pulse_se-
quence.py

The PulseSequence class is defined in this
file.

∼/artiq-master/HardwareConfiguration.py This is the configuration file used for speci-
fying the details about the Artiq hardware.
At a lower level, this information can in-
stead be modified directly in the device_-
db.py file in the same directory.

∼/artiq-work/ For Artiq to know about a pulse sequence
or subsequence it must be contained in this
directory.

∼/launch_scripts The code run when clicking on any one of
the launch icons on the lattice control com-
puter is defined here (e.g. for launching the
Artiq GUI, LabRAD server, RealCompli-
catedGrapher, etc.)

Table D.1: Location of important Artiq control files and directories.
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Ramsey pulse sequence example code

1 from pulse_sequence import PulseSequence
2 from subsequences.rabi_excitation import RabiExcitation
3 from subsequences.state_preparation import StatePreparation
4 from artiq.experiment import *
5
6 class Ramsey(PulseSequence):
7 PulseSequence.accessed_params = {
8 "Ramsey.wait_time",
9 "Ramsey.phase",

10 "Ramsey.selection_sideband",
11 "Ramsey.order",
12 "Ramsey.channel_729",
13 "Ramsey.detuning",
14 "Ramsey.echo",
15 "Rotation729L1.pi_time",
16 "Rotation729L1.line_selection",
17 "Rotation729L1.amplitude",
18 "Rotation729L1.att",
19 "Rotation729L2.pi_time",
20 "Rotation729L2.line_selection",
21 "Rotation729L2.amplitude",
22 "Rotation729L2.att",
23 "Rotation729G.pi_time",
24 "Rotation729G.line_selection",
25 "Rotation729G.amplitude",
26 "Rotation729G.att",
27 "RabiFlopping.detuning",
28 }
29
30 PulseSequence.scan_params = dict(
31 Ramsey=[
32 ("Ramsey", ("Ramsey.wait_time", 0*ms, 5*ms, 100, "ms")),
33 ("Ramsey", ("Ramsey.phase", 0., 360., 20, "deg")),
34 ("Ramsey", ("Rotation729G.amplitude", 0., 1., 10, "")),
35 ])
36
37 def run_initially(self):
38 self.stateprep = self.add_subsequence(StatePreparation)
39 self.rabi = self.add_subsequence(RabiExcitation)
40 self.rabi.channel_729 = self.p.Ramsey.channel_729
41 self.set_subsequence["Ramsey"] = self.set_subsequence_ramsey
42 if self.p.Ramsey.channel_729 == "729L1":
43 self.pi_time = self.p.Rotation729L1.pi_time
44 self.line_selection = self.p.Rotation729L1.line_selection
45 self.amplitude = self.p.Rotation729L1.amplitude
46 self.att = self.p.Rotation729L1.att
47 elif self.p.Ramsey.channel_729 == "729L2":
48 self.pi_time = self.p.Rotation729L2.pi_time
49 self.line_selection = self.p.Rotation729L2.line_selection
50 self.amplitude = self.p.Rotation729L2.amplitude
51 self.att = self.p.Rotation729L2.att
52 elif self.p.Ramsey.channel_729 == "729G":
53 self.pi_time = self.p.Rotation729G.pi_time
54 self.line_selection = self.p.Rotation729G.line_selection
55 self.amplitude = self.p.Rotation729G.amplitude
56 self.att = self.p.Rotation729G.att
57
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58 @kernel
59 def set_subsequence_ramsey(self):
60 self.amplitude = self.get_variable_parameter("Rotation729G_amplitude")
61 self.rabi.duration = self.pi_time
62 self.rabi.amp_729 = self.amplitude
63 self.rabi.att_729 = self.att
64 self.rabi.freq_729 = self.calc_frequency(
65 self.line_selection,
66 detuning=self.Ramsey_detuning,
67 sideband=self.Ramsey_selection_sideband,
68 order=self.Ramsey_order,
69 dds=self.Ramsey_channel_729
70 )
71 self.wait_time = self.get_variable_parameter("Ramsey_wait_time")
72
73 @kernel
74 def Ramsey(self):
75 self.stateprep.run(self)
76 self.phase_ref_time = now_mu()
77 self.dds_729.set(
78 self.carrier_frequency,
79 amplitude=self.initial_carrier_amplitude,
80 phase_mode=PHASE_MODE_TRACKING,
81 ref_time_mu=self.phase_ref_time
82 )
83 self.dds_729_SP.set(
84 self.sp_freq_729,
85 amplitude=self.Excitation_729_single_pass_amplitude,
86 phase_mode=PHASE_MODE_TRACKING,
87 phase=0.,
88 ref_time_mu=self.phase_ref_time
89 )
90 delay(5*us)
91 if not self.Ramsey_echo:
92 self.dds_729_SP.sw.on()
93 delay(self.NLQM_carrier_duration)
94 self.dds_729_SP.sw.off()
95 else:
96 self.rabi.duration = self.pi_time / 2
97 self.rabi.run(self)
98 delay(self.wait_time / 2)
99 self.rabi.duration = self.pi_time

100 self.rabi.run(self)
101 delay(self.wait_time / 2)
102 self.rabi.duration = self.pi_time / 2
103 if self.selected_scan_name == "Ramsey_phase":
104 self.rabi.phase_729 = self.get_variable_parameter("Ramsey_phase")
105 self.rabi.run(self)

Rabi excitation subsequence example code

1 from artiq.experiment import *
2 import numpy as np
3 from artiq.coredevice.ad9910 import PHASE_MODE_TRACKING, PHASE_MODE_CONTINUOUS
4
5 class RabiExcitation:
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6 freq_729="Excitation_729.rabi_excitation_frequency"
7 amp_729="Excitation_729.rabi_excitation_amplitude"
8 att_729="Excitation_729.rabi_excitation_att"
9 phase_729="Excitation_729.rabi_excitation_phase"

10 channel_729="Excitation_729.channel_729"
11 duration="Excitation_729.rabi_excitation_duration"
12 line_selection="Excitation_729.line_selection"
13 sp_amp_729="Excitation_729.single_pass_amplitude"
14 sp_att_729="Excitation_729.single_pass_att"
15 use_bichro=False
16 phase_mode=PHASE_MODE_TRACKING
17 dp_phase_mode=PHASE_MODE_CONTINUOUS
18 phase_ref_time=np.int64(-1)
19 ramp_has_been_programmed= False # always initialize to False;
20 # gets set to True inside setup_ramping
21
22 @kernel
23 def setup_ramping(self):
24 # This function programs the appropriate ramp into the DDS memory.
25 # If a PulseSequence wants to use ramping, call setup_ramping() inside
26 # its set_subsequence function.
27 # To disable ramping for a PulseSequence, the easiest way to do this is
28 # comment or remove the call to setup_ramping() in the set_subsequence function.
29 r = RabiExcitation
30 self.get_729_dds(r.channel_729)
31 self.prepare_pulse_with_amplitude_ramp(
32 pulse_duration=r.duration,
33 ramp_duration=25.0*us,
34 dds1_amp=r.amp_729)
35 r.ramp_has_been_programmed = True
36
37 def subsequence(self):
38 r = RabiExcitation
39 self.get_729_dds(r.channel_729)
40 if r.ramp_has_been_programmed:
41 self.dds_729.set(r.freq_729,
42 amplitude=0.,
43 ref_time_mu=r.phase_ref_time)
44 else:
45 self.dds_729.set(r.freq_729,
46 amplitude=r.amp_729,
47 phase_mode=r.dp_phase_mode,
48 ref_time_mu=r.phase_ref_time,
49 )
50 self.dds_729.set_att(r.att_729)
51 sp_freq_729 = 80 * MHz + self.get_offset_frequency(r.channel_729)
52 if r.use_bichro:
53 self.single_pass = self.dds_729_SP_bichro
54 else:
55 self.single_pass = self.dds_729_SP
56 self.single_pass.set(sp_freq_729, amplitude=r.sp_amp_729, phase_mode=r.phase_mode,
57 phase=r.phase_729 / 360., ref_time_mu=r.phase_ref_time)
58 self.single_pass.set_att(r.sp_att_729)
59 delay(5*us)
60 if r.ramp_has_been_programmed:
61 self.dds_729_SP.sw.on()
62 self.execute_pulse_with_amplitude_ramp(
63 dds1_att=r.att_729,
64 dds1_freq=r.freq_729)
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65 self.dds_729_SP.sw.off()
66 else:
67 with parallel:
68 self.dds_729.sw.on()
69 self.single_pass.sw.on()
70 delay(r.duration)
71 with parallel:
72 self.dds_729.sw.off()
73 self.single_pass.sw.off()

Figure D.1: Example of an Artiq generated experimental control window.
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