
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fast Measurements of Two-Point Statistics in Simulations of Supersonic Isothermal 
Turbulence

Permalink
https://escholarship.org/uc/item/145620xx

Author
Wagner, Rick

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/145620xx
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Fast Measurements of Two-Point Statistics in Simulations of Supersonic
Isothermal Turbulence

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics

by

Richard P. Wagner

Committee in charge:

Michael L. Norman, Chair
Michael Holst
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Alexei G. Kritsuk
David A. Meyer

2023



Copyright

Richard P. Wagner, 2023

All rights reserved.



The dissertation of Richard P. Wagner is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

I am dedicated to finishing.

iv



EPIGRAPH

However, like anything/everything related to turbulence it is not easy.

—A. Tsinober

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Suggested Readings . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Simulations & Enzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Parallelism in Enzo . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Example Parallel Grid Distribution . . . . . . . . . . . . . . . . 17

Chapter 3 Method: SFgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Need for Parallelism . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Design & Overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Design Considerations . . . . . . . . . . . . . . . . . . . 26
3.3.2 Two-Point Functions & Parameters . . . . . . . . . . . . 28

vi



3.3.3 Sampling Parameters . . . . . . . . . . . . . . . . . . . . 28
3.3.4 The Outer Loop . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.5 The Inner Loop: MakePass . . . . . . . . . . . . . . . . . 29

3.4 FastFind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.2 Performance & Limitations . . . . . . . . . . . . . . . . . 36
3.4.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 GetPointPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Selecting Points . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 GatherCellValues . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Grid Indexing . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 CalculateValues & CalculatePDF . . . . . . . . . . . . . . . . . . 63
3.7.1 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Reduce & Write . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8.1 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9.1 Determing the Number of Samples from Variances . . . . 69
3.9.2 Convergence Study . . . . . . . . . . . . . . . . . . . . . 74
3.9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.10 Performance & Scaling . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 4 Scaling Laws and Intermittency in Highly Compressible Turbulence . 78
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Scaling, Structures, and Intermittency . . . . . . . . . . . . . . . 82
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 5 Flux Correlations in Supersonic Isothermal Turbulence . . . . . . . . 88
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Flux Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6 Energy Cascade and Scaling in Supersonic Isothermal Turbulence . . 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 A fourth-order relation . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Numerical verification . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Conclusions and final remarks . . . . . . . . . . . . . . . . . . . 115

vii



Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Support for the Local Engergy Cascade in Compressible Turbulence119
7.2 Observational Support . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Appendix A Syntax Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix B A Brief Introduction to MPI . . . . . . . . . . . . . . . . . . . . . . . 125
B.1 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.2 MPI Alltoall & MPI Alltoallv . . . . . . . . . . . . . . . . . . . . 129

Appendix C Citations of Results Chapters . . . . . . . . . . . . . . . . . . . . . . 131

Appendix D Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



LIST OF FIGURES

2.1 An example of Enzo grids with 3 levels of refinement. . . . . . . . . . . 14

2.2 Grid hierarchy entry data structure. . . . . . . . . . . . . . . . . . . . 16

2.3 AMR hierarchy of the example grids from Figure 2.1. . . . . . . . . . . 16

2.4 Example AMR grids labelled with the owning task. . . . . . . . . . . . 18

2.5 Example hierarchy with the grids colored by task. . . . . . . . . . . . . 19

2.6 AMR hierarchy as owned by each task Ti in the example. . . . . . . . . 19

3.1 Diagram of extracting values along a path from a point. . . . . . . . . 22

3.2 Extracted values and the average for [δvx(x1,x1 + r)]3 along four paths. 23

3.3 Points overlapping grids at different refinement levels. . . . . . . . . . 34

3.4 The grids referenced in the FastFind lookup array. . . . . . . . . . . . . 35

3.5 The flagging field G0,0.FlaggingField. . . . . . . . . . . . . . . . . . . 38

3.6 Random point pairs at four fractions of L, the length of a domain edge. 43

3.7 Point pairs sampled only along Cartesian axes. . . . . . . . . . . . . . 44

3.8 Example hierarchy grids colored by task. . . . . . . . . . . . . . . . . . 48

3.9 Grid count and local grid arrays after initialization. . . . . . . . . . . . 51

3.10 Twelve random point pairs, three for each of four tasks. . . . . . . . . 52

3.11 Arrays after grid cell count. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Arrays after communicating grid cell count. . . . . . . . . . . . . . . . 54

3.13 Arrays after communicating the grid cell indices. . . . . . . . . . . . . 55

3.14 ⟨ΦP⟩, for the different values of P. . . . . . . . . . . . . . . . . . . . . 70

3.15 Average absolute deviation from ⟨Φt⟩. . . . . . . . . . . . . . . . . . . 76

4.1 Time average compensated power spectra and third-order transverse

structure functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Gas mass M(ℓ) as a function of the box size ℓ (left). . . . . . . . . . . 83

ix



4.3 Coherent structures in Mach 6 turbulence at resolution of 10243. . . . 84

5.1 Slices of several instantaneous dynamical fields. . . . . . . . . . . . . . 95

5.2 Power spectra of the driving acceleration and the normalized force. . . 96

5.3 Time-averaged density correlation. . . . . . . . . . . . . . . . . . . . . 97

5.4 Time-averaged measure of Φ(r). . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Time-averaged measure of Φ(r) normalized by the expected approximate

scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Time-average scaling for the l.h.s. and r.h.s. of (6.16). . . . . . . . . . 110

6.2 Compensated scaling for the flux and source terms from (6.16). . . . . 110

6.3 Scaling of the longitudinal flux of total, kinetic and compressive energy. 112

6.4 Time-average scaling of various source terms in (6.9) and (6.10). . . . 114

6.5 As figure 6.2, but for the flux and source terms from an approximate

relation (6.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Compensated scaling for various proxies of the energy injection rate ε0. 118

B.1 Example of an MPI all-to-all collective operation. . . . . . . . . . . . . 129

B.2 Example of an MPI all-to-allv collective operation. . . . . . . . . . . . 130

x



LIST OF TABLES

2.1 Tasks owning example grids. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Grids containing points in example. . . . . . . . . . . . . . . . . . . . . 32

3.2 Hierarchy statistics from a seven-level AMR simulation. . . . . . . . . . 36

3.3 Indices assigned to the example grids as part of GatherCellValues. . . . . 48

3.4 List of points in Figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Single-point statistics for different fields and functions. . . . . . . . . . 72

3.6 The same as Table 3.5, as order-of-magnitude estimates. . . . . . . . . . 73

3.7 Sampling convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



LIST OF FUNCTIONS

3.1 Function FastFindGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Function ContainingGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Function FastFindFlaggedGrid . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Function GetPointPair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Function GetPointPairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Function CountGridsPerTask . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Function BuildMyGridArray . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Function IndexGridsByTask . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Function AssignGridIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Function CountGridCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Function CommunicateCellCounts . . . . . . . . . . . . . . . . . . . . . . . 58

3.12 Function GetCellIndices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.13 Function CommunicateCellIndices . . . . . . . . . . . . . . . . . . . . . . . 59

3.14 Function ReadInGrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15 Function ReadCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.16 Function CommunicateCellValues . . . . . . . . . . . . . . . . . . . . . . . . 61

3.17 Function ReadCellValues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.18 Function CalculatePDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.19 Function Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



LIST OF CODE EXAMPLES

B.1 MPI send and receive function prototypes. . . . . . . . . . . . . . . . . . . 126

B.2 Minimal example of using MPI send and receive functions. . . . . . . . . . 127

xiii



NOMENCLATURE

SFgen Method used to calculate the stastistics of two-point functions, initially named as

a “structure function generator”. See Chapter 3 xxvii, 8, 9, 10, 20, 21, 22, 25, 26, 41,

67, 77, 125, 128

Re Reynolds number, Re = uL/ν, where u is the flow speed, L is a characteristic length

scale, and ν is the viscosity. Re is used to describe the level of turbulence within a

flow xiv, 2

cs The speed of sound in a fluid, defined as cs ≡ 1 for most of the simulations described in

this dissertation xiv, 2, 12

Mach number The root-mean-squared average speed of the fluid in units of the speed of

sound, cs, M = urms/cs xiv, 2, 12

M See Mach number xiv, 2, 3, 5, 12

subsonic Flows with M ≲ 1. See also Mach number 120

transonic Flows with M ≈ 1. See also Mach number 120

supersonic Flows with 1 ≲ M ≲ 10. See also Mach number 122

D The simulation domain. Di refers to the distance along axis i xvi, 12

grid A portion of the simulation. The term grid is used interchangeably to refer to the

arrays holding the physical state variables and the object with methods used to

manage the arrays xiv, xv, xvi, 11, 15, 30

G See grid 30

xiv



NG The total number of grids xviii, 50, 57, 58, 62

Gl,i The set of nested grids in an AMR simulation, where l is the level of refinement and i

is the index of the grid at that leve; 12

G0,0 The first grid in hierarchy, also referred to as the top, or root, grid 15, 56, 57

G.Index A unique integer attribute of each grid ordered by the rank of owning task xviii,

58

G.PhysicalFields Grid arrays representing the physical fields being modeled in the

simulation xvii, 60

refinement factor The integer ratio between the cell widths grids at level l and l + 1 xv,

13, 31

R See refinement factor 13, 31

hierarchy entry The triply linked list used to associate grids 15, 49

task A single computing process with its own memory domain and a unique MPI rank xv,

xviii, 20, 27

rank A positive integer value assigned by MPI to identify tasks xv, 47, 125

T The MPI rank of the current task xv, xviii, 47, 49, 50, 56, 57, 58

NT The total number of MPI tasks xvii, xviii, 28, 53, 57, 58, 59, 60, 61, 62, 66, 69, 129,

130

M The array of grids owned by the owned by the local MPI task, T 29, 49, 50, 51, 56, 57,

60

xv



point A location in D to sample from xvi, xviii

point pair A set of points, x1 and x2, separated by a fixed distance r where x2 ≡ x1+ rr̂,

at which values for analysis are taken xvi, xviii, 28

separation The distance, r, between the points in a point pair xvi, xvii, 28

r See separation xvi, 22, 24, 41, 69

x1 The first point in a point pair xvi, 41, 68, 121

x2 The second point in a point pair xvi, 41, 45, 69, 121

r̂ The unit vector along the line from point x1 to x2 xvi, 21, 29, 41, 42, 43, 45, 46, 68

L A set of separation distances xvi, xvii, 22, 28, 30

NL The number of separation distances in L 28, 62, 66

F The FastFind lookup array used to optimize the search for the grid containing a point

xvi, 31, 32, 33, 35, 36, 37, 39, 40

LF Maximum level of F 31, 32, 35, 36, 37

G The array of grids containing point pairs. G is indexed as Gr,p,i where r is the separation,

p is the index of the pair, and i is the point (1 or 2) xvi, 29, 42, 46, 53, 57, 58, 62

I The array of cell indices for the grids containing each point pair. I is indexed similarly

to G 29, 42, 46, 53, 58

R The array of unit vectors, r̂, for each point pair. R is indexed as Rr,p where r is the

separation, p is the index of the pair 42, 46, 53

xvi



Φ The arrays of physical field values at the point pairs (see G.PhysicalFields). Φ is

indexed as Φr,p,i,f where r is the separation, p is the index of the pair, i is the point

(1 or 2), and f is the field 51, 62, 63

Nϕ The number of physical fields communicated between tasks (the same on every task)

60, 61, 62

mi A one-dimensional integer array mapping the grid field arrays to the arrays used for

communication (the same on every task) 60

NM The number of passes of the MakePass loop xvii, 28, 29, 66, 69, 75

NP The number of point pairs sampled at each separation distance in L during a MakePass

loop (the same on every task) xvii, 28, 29, 30, 41, 46, 57, 58, 62, 64, 66, 69

NΣ The total number of point pairs sampled across tasks andMakePass loops, NP×NM×NT

xvii, 24, 65, 68, 69, 71, 72, 73, 74, 75

µf,r The (likely) uknown “true” or population mean of a two-point function 24, 71

σ2
f,r The (likely) uknown “true” or population variance of a two-point function 24, 71

µ̂f,r Mean of a two-point function from sampling, µ̂f,r = Σµ,f,r/NΣ xvii, 24, 63, 71

σ̂2
f,r Variance of a two-point function from sampling, calculated as σ̂2

f,r = Σσ,f,r/NΣ−(µ̂f,r)
2

xvii, xviii, 24, 63, 71, 74

σ̂f,r Standard deviation of a two-point function from sampling, calculated as σ̂f,r =
√

σ̂2
f,r

xvii, 71

Σµ,f,r Running sum of the values for a two-point function, used to calculate the sample

mean, µ̂f,r xvii, 63, 64, 66

xvii



Σσ,f,r Running sum of the squared values for a two-point function, used to calculate the

sample variance, σ̂2
f,r xvii, 63, 64, 66

P The arrays of binned (discrete) PDF measurements. P is indexed as Pf,r,b where f is the

two-point function, r is the separation, and b is the PDF bin xviii, 22, 24, 28, 29, 63,

64, 65, 66, 77

NB The number of PDF bins for each two-point function xviii, 28, 63, 64, 66

Ff,min Minimum bin value for the PDF Pf 63, 64

Ff,max Maximum bin value for the PDF Pf xviii, 63, 64

Q The edges of the P arrays where the left edge is Qf,r,b and the right is Qf,r,b+1 24, 63,

65, 66

O Over unders counts for P 63, 64, 65, 66

∆f Width of the PDF bins, defined as ∆f = 1
2
log10(Ff,max/ϵf )NB xviii, 64

ϵf Width of the log10 bin around zero for the PDF Pf , see ∆f xviii, 64

J An array of the cells of overlapping points owned by the owned by the local MPI task,

T , ordered by G.Index 50, 53, 55, 58, 59

K An array of the cell indices requested by other tasks ordered by G.Index 49, 50, 53, 55,

59, 60, 61

S An integer array of length NT where the total number of grids owned by task t is St 29,

47, 48, 49, 51, 53, 56, 57, 58, 59, 60, 61

C An integer array of length NG indexed by G.Index with the count of cells from each

grid containing a point from the local task’s point pairs 50, 51, 57, 58, 59, 61, 62

xviii



B An integer array of length ST ×NT with the count of cells in grids owned by the current

task containing points owned by other tasks 51

U A two-dimensional array of floating-point values holding the cell values of physical field

requested by other tasks. Indexed by field and then cell value 50, 51

V A two-dimensional array of floating-point values holding the cell values of physical field

sent by other grids. Indexed by field and then cell value 51

xix



ACRONYMS

CUDA Compute Unified Device Architecture® 123

ESS extended self-similarity 119

HPC high-performance computing 123

ISM interstellar medium 1, 3, 6, 7, 117, 119

MHD magneto-hydrodynamics 7, 11

MIMD multiple instruction, multiple data 123

MPI Message Passing Interface 10, 11, 16, 17, 20, 27, 28, 65, 123

PDE partial differential equation 11, 17

PDF probability density function 22, 24, 26, 28–30, 63, 65

PPM piecewise parabolic method 11, 41

SAMR structured adaptive mesh refinement 12, 14

SIMD single instruction, multiple data 123

SMP symmetric multiprocessing 123

xx



PREFACE

I will address something evident at the beginning, namely the time between when I

am submitting this dissertation and when I did most of the research presented in it. Simply

put, a dissertation takes a substantial amount of dedicated focus, and until recently, I chose

other priorities. Some of these priorities were personal, some were professional, and some

were less chosen than due to circumstances. Regardless, I am extremely grateful to have

the opportunity to complete my doctorate.

Rather than ignore various timeframes at play, the delay will be used as a framing

device to establish the outline of this dissertation. The introduction and method chapters

will primarily lay out the state of the research when I was actively doing research and

provide background for the rest of the dissertation. Then, I will describe the method I

developed, followed by three results chapters published between 2007 and 2103. Finally, in

the conclusions chapter, I will review the relevant science up to the present day. During

that review, I will answer a question that few other doctoral candidates can, namely, how

supported my contributions have been.

The fundamental conclusions of this dissertation (published a decade ago) have

been reproduced repeatedly. While I am proud of my part in those publications, I am also

aware that starting point for that research came from those around me. Therefore, my

wisest action was to put myself where I would have the support to apply my capabilities in

scientific computing to worthwhile problems first presented by my colleagues.
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This dissertation describes my work developing and using SFgen: a fast, MPI-parallel

method for measuring two-point statistics in simulation data produced by the AMR code

Enzo. My research using SFgen focused on measuring several scaling relations in large-scale

simulations modeling the supersonic isothermal turbulence observed in molecular clouds.

This work contributed to research on three-dimensional compressible turbulence, mainly

whether the exchange of energy between scales is local in Fourier space on average, similar

to incompressible turbulence. A reliable model for energy flux between scales in supersonic

turbulence is essential to understanding molecular clouds’ lifecycles and predicting the
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magnitude and scale of their driving sources. Furthermore, since molecular clouds are

the birthplaces of stars, the energy cascade has further implications for several factors of

star formation. The results of my research support a local energy cascade in supersonic

turbulence and have been reproduced by others.
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Chapter 1

Introduction

Turbulence is the graveyard of

theories.

H. W. Liepmann

Stars, like tropical cyclones, only form under certain conditions, and in both cases,

those conditions are only present in particular locations. For tropical cyclones, these

locations are the seven tropical cyclone basins. For stars, formation happens in molecular

clouds, cold (10 − 100K) and highly turbulent regions of the ISM (interstellar medium)

filled with molecular hydrogen (H2) (Hennebelle and Falgarone 2012). Molecular clouds are

subjects of intense research because of their central role in the star formation process, similar

to understanding the climate to improve predictions of extreme weather events (Almazroui

et al. 2021). Molecular clouds and the climate are also both multiscale problems in time

and space that include numerous coupled processes; advances in computing capabilities

(hardware and software) have directly enabled in both areas (Brandenburg and Nordlund

2011; Eyring et al. 2016).

The role of turbulence within the ISM and molecular clouds has been studied for

many reasons, including its impact on the star formation rate and the mass distribution of

1



stars (Hennebelle and Falgarone 2012; Krumholz and McKee 2005). Defining turbulence

can be challenging (see, for example, Appendix A of Tsinober 2004), but the first sentence

of Lele (1994) is appropriate for this context: “Turbulence is a macroscopic state of flow in

which the instantaneous flow variables exhibit a seemingly random variation in time and

in the three spatial coordinates.” Characterizing turbulence can be similarly challenging,

except that turbulent flows have reproducible statistical properties, similar to other chaotic

systems.

The first value commonly used to describe a turbulent flow is the Reynolds number,

Re = uL/ν, where u and L are a characteristic flow speed and length scale, respectively,

and ν is the viscosity (Reynolds 1883). Re is the ratio of the inertial and viscous forces

and is used to describe the level of expected turbulence within a flow. Different flow

configurations will begin to exhibit turbulence above critical Reynolds numbers. For a flow

in a straight cylindrical pipe, this is around Re ≈ 2, 000 (Davidson 2004). Likewise, the

level of turbulence decreases with the Reynolds number and below the critical Reynolds

the flow will be smooth, or laminar. In molecular clouds Re∼108, provided viscosity is the

dominant damping mechanism, rather than magnetic fields (Elmegreen and Scalo 2004;

Hennebelle and Falgarone 2012). The characteristic flow speed in that estimate is a second

value often used to describe compressible turbulence, the Mach number, M = urms/cs,

where urms is the rms speed of the fluid and cs is the sound speed. In molecular clouds the

flow is supersonic with typical values for M of 1 ≲ M ≲ 15 (Elmegreen and Scalo 2004;

Girichidis et al. 2020; Hennebelle and Falgarone 2012), although peaks of M ≈ 50 have

been observed (Mac Low and Klessen 2004).

Without additional energy input, the kinetic energy in a turbulent fluid will dissipate

through viscosity at small scales. For molecular clouds, this dissipation is estimated to occur

on a timescale of ≈ 1Myr (Mac Low 1999). As the motion of the gas slows and becomes

less chaotic, gravity will begin to dominate the kinematics, leading to collapse and potential
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star formation. This dissipation timescale is at odds with the observed ages of molecular

clouds of more than 20Myr (Larson 1981). Supersonic turbulence driven by large-scale

external forces such as galactic shear or feedback from star formation (Hennebelle and

Falgarone 2012) could support molecular clouds against collapse as the motion of the gas

outpaces the work of gravity. Recent models predict that gravitational collapse sufficient

to drive star formation does occur within a few Myr, after which the new stars disrupt

the molecular cloud (Chevance et al. 2020). In this model, the large-scale gravitational

collapse could be the energy source of the supersonic turbulence in the cloud. This model

also requires the steady creation of molecular clouds, possibly through turbulence motion

of the warm ISM.

The dynamics of supersonic turbulence are a substantial part of several other

astrophysical systems, including Wolf-Rayet stars (Moffat and Robert 1994) and black

holes (Hobbs et al. 2011); it also plays a role in inertial confinement fusion (Blue et al.

2005), volcanic eruptions (Ogden, Glatzmaier, and Wohletz 2008), and, unsurprisingly,

aviation, including scramjet fueling (Ingenito and Bruno 2010) and controlling noise from

jet aircraft1 (Jordan and Colonius 2013). In all of these examples, the density of the

gas varies significantly, and unlike incompressible turbulence the velocity, u, has a non-

zero dilational component; that is, ∇ · u = 0 is not a guaranteed property of the flow.

These differences and others break assumptions used to define measurable properties of

incompressible turbulence. In particular, kinetic energy density is not a quadratic invariant

of inviscid compressible flows and is not a conserved quantity advected within the inertial

range, where the inertial range is roughly defined as lengths smaller than the driving scale

and larger than the dissipation scale. In other words, the inertial range is an upper and

lower bound on scales where we may treat the driving (source) and dissipation (sink) terms

1This includes aircraft such as jet airliners that use turbofans. Thrust from turbofans comes from both
the air moved by the fan and the hot engine exhaust. The engine exhaust velocity can reach ≈ 2M while
the flow from the fan is subsonic.
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as zero in the scale-by-scale energy budget (Frisch 1995). However, as stated in Section 4.5

of Elmegreen and Scalo (2004):

Virtually all the phenomenology associated with incompressible turbulence
traces back to the inviscid global conservation of kinetic energy; unfortunately,
compressible turbulence does not share this property.

Perhaps the most fundamental example of this is the Richardson-Kolmogorov

energy cascade (Kolmogorov 1941a,b,c; Richardson 1922) and the specific predictions of

Kolmogorov’s four-fifths law (Kolmogorov 1941a). In three-dimensional turbulence, the

Richardson-Kolmogorov model is based on the premise that, within the inertial range,

structures in the flow, described as eddies, or “blobs of vorticity” (Davidson 2004), of similar

size exchange energy in a cascade from large to small scales, until energy is dissipated by

viscosity at the smallest scales. Richardson described the energy cascade qualitatively in

1922 and in 1941 Kolmogorov proposed the following relation for homogeneous turbulence,

〈
[δu∥(r)]

3
〉
= −4

5
ϵr, (1.1)

where

δu∥(r) ≡ [u(x+ r)− u(x)] · r/r (1.2)

is the longitudinal velocity difference between two points separated by a vector r, r = |r|,

⟨. . .⟩ denotes a spatial average over both x and the possible angles of r, and ϵ is the mean

energy dissipation rate (Kolmogorov 1941a). Equation 1.2 and left-hand side of Equation 1.1

are structure functions, where Equation 1.2 is the first-order longitudinal velocity structure

function, and the left-hand side of Equation 1.1 is the third order version of the same (see

Sayles and Thomas 1977, for a discussion of second-order structure functions in comparison

to autocorrelation). Equation 1.1 can be derived from the von Kármán-Howarth relation

(von Kármán and Howarth 1938) for turbulence that is both homogeneous and isotropic.
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Equation 1.1 is known as Kolmogorov’s four-fifths law, and it is difficult to overstate

its significance: it is well-supported experimentally and any scaling relations for compressible

turbulence must agree with Equation 1.1 in the limit M → 0. Kolmogorov’s four-fifths law

and the experimental evidence also emphatically support the locality of the energy cascade

(i.e., energy transfer between structures of comparable scale) in incompressible turbulence.

But, the derivation of Equation 1.1 is based on the inviscid global conservation of kinetic

energy, therefore, an aspect of its closure model is not valid for compressible flows. Thus,

the linear scaling of
〈
[δu∥(r)]3

〉
in the inertial range of incompressible turbulence is not

assured for M ≳ 1.

Numerical modeling of transonic turbulence (M ≈ 1) showed a slight departure

from the four-fifths law (Porter, Pouquet, and Woodward 2002), which was potentially

attributable to the presence of dilational velocity modes. While further simulations at higher

Mach numbers (1 ≲ M ≲ 3) suggested that intermittency (variations in dissipation seen in

all turbulent flows) could predict deviations from Equation 1.1 in supersonic turbulence

(Padoan et al. 2004), simulations at M > 3 showed that density variations mediate kinetic

energy transfer between scales in supersonic turbulence (Boldyrev, Nordlund, and Padoan

2002; Kritsuk et al. 2006). Since within supersonic turbulence the density and velocity

fields are not strongly coupled, and their power spectra scale differently (see Figures 4, 7,

and 15 of Kritsuk et al. 2007b, and Figure 5.1 in Chapter 5), two questions arose, one very

pragmatic and the other more foundational. For supersonic isothermal turbulence:

• Can Kolmogorov’s four-fifths law be generalized to compressible turbulence by defining

scaling relations using suitable density-velocity correlators?

• Is energy transfer local–i.e., due to interactions of structures of comparable scale–

within the inertial range?

This dissertation describes my contribution to answering those questions, beginning
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with the first and continuing through the second. The latter question is clearly more critical

since a reliable model for the transfer of energy across scales in supersonic turbulence is

essential to understanding the lifecycles of molecular clouds and to estimating the magnitude

and scale of the driving sources (Elmegreen and Scalo 2004; Girichidis et al. 2020; McKee

and Ostriker 2007). My research focused on measuring several scaling relations using data

from large-scale simulations of the supersonic isothermal turbulence observed in molecular

clouds (Kritsuk et al. 2007a; Kritsuk, Wagner, and Norman 2013; Kritsuk et al. 2007b;

Wagner et al. 2012) in the ISM. Modeling, analyzing, and describing every possible dynamic

of molecular clouds is far beyond the scope of this dissertation. Instead, this work was

limited to models of molecular clouds using hydrodynamical simulations of isothermal

turbulence; this was a practical choice, well described in Porter, Pouquet, and Woodward

(1992):

Many complex phenomena are at play in such clouds, besides hydrodynamics:
coupling to a magnetic field, thermal and gravitational instabilities, radiative
transfer, intricate chemistry within MHD shocks, . . .We may consider a simpler
subproblem and analyze what are the relevant observational features that can
thus be recovered. In view of the ensemble of observations just mentioned
and of the fact that the Reynolds numbers in such clouds are huge, a pure
hydrodynamical description in terms of a supersonic flow may suffice in a range
of intermediate scales.

Restricting the problem to isothermal fluids without magnetic fields or other coupled

systems allows the work to bridge the well-established properties of incompressible fluids

and supersonic fluids, including molecular clouds. The results support a local energy

cascade in supersonic turbulence (in particular, see Section 6.5 and Kritsuk, Wagner, and

Norman 2013), which has been reproduced by others (see Chapter 7).
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1.1 Suggested Readings

The results chapters (Chapters 4, 5, and 6) each provide somewhat overlapping

scientific backgrounds on:

• turbulence, both incompressible and compressible;

• various aspects of star formation;

• the observed and predicted physical properties of molecular clouds;

• and numerical modeling of turbulent fluids.

Rather than repeat or paraphrase that information, I would like to highlight a few references

and suggest some additional ones.

The first suggestion is the Space Science Reviews article “Physical Processes in

Star Formation” (Girichidis et al. 2020), which details several of the coupled systems

(MHD, chemistry, stellar feedback, etc.) at work in star formation. The article’s particular

relevance for this dissertation is in Section 4, “Turbulence”, which was largely written

by A. Kritsuk, who, along with Prof. M. Norman, was a coauthor on each of the the

publications included as my results chapters. That section gives a recent and very complete

summary of compressible turbulence and its application to star formation, molecular clouds,

and the ISM. Subsection 4.5, “Scaling Relations and Energy Cascades in Compressible

Turbulence” describes the research timeline which my work was a part of, and includes the

latest progress. I will discuss this article a bit more in Chapter 7.

Four other review articles also cover the relevant aspects of the ISM and star

formation, from both observational and theoretical perspectives. Three are Annual Review

of Astronomy and Astrophysics articles, namely “Interstellar Turbulence I: Observations

and Processes” (Elmegreen and Scalo 2004), “Theory of Star Formation” (McKee and

Ostriker 2007), and “Star Formation in the Milky Way and Nearby Galaxies” (Kennicutt
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and Evans 2012). Section 5 of Elmegreen and Scalo (2004), “Simulations of Interstellar

Turbulence”, is an excellent background on the areas which numerical modeling continues to

contribute to our knowledge of the ISM. The fourth review article is “Turbulent molecular

clouds” (Hennebelle and Falgarone 2012), published in The Astronomy and Astrophysics

Review.

For a background on turbulence, the modern canonical reference is Turbulence: the

Legacy of A. N. Kolmogorov, by Frisch (1995), which provides a concise summary of the

statistical methods used in turbulence research, the theoretical and experimental successes,

and explicitly acknowledges the impact of Kolmogorov’s 1941 work (Kolmogorov 1941a,b,c).

I found several other books valuable. Two are general texts on turbulence, Turbulent Flows

(Pope 2000) and Turbulence: An Introduction for Scientists and Engineers (Davidson 2004),

both of which are broader than Frisch and go into more detail for particular types of flows.

Personally, I preferred the narrative style of Davidson over Pope, which made Davidson

more approachable (note that there is a second edition of Davidson’s book, Davidson 2015).

The next book is Homogeneous Turbulence Dynamics (Sagaut and Cambon 2018), an

extensive monograph that includes several chapters on compressible turbulence.

1.2 Dissertation Outline

Simulations & Analysis Methods Chapter 2 gives a short description of the software

used for the simulations, Enzo (Brummel-Smith et al. 2019; Bryan et al. 2014), to sufficiently

describe the relevant Enzo data structures and how those structures are distributed across

compute processes. Chapter 3 introduces SFgen, the method I developed to rapidly and

efficiently measure high-order scaling relations in large-scale three-dimensional simulations.

SFgen is part of a larger framework that I developed to integrate data analysis directly

into Enzo for use at runtime. Other tools using the framework provide one-dimensional
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statistics, projections of fields, and extracted fields along a ray. I first used these tools

to build synthetic maps of the Sunyaev-Zel’dovich Effect (Hallman et al. 2007). SFgen

itself was created for measuring structure functions as part of the research for Kritsuk

et al. (2007a) and Kritsuk et al. (2007b). Later, the one-point statistics contributed to

the analysis of star-forming molecular clouds undergoing gravitational collapse (Kritsuk,

Norman, and Wagner 2011) and SFgen was also used to analyze turbulence within galaxy

clusters (Vazza et al. 2009).

Results & Publications Chapters 4, 5, and 6 are part of a series of publications

that highlight the use of the method and numerical support for a local compressible

energy cascade. Chapter 4 was published as the conference proceeding “Scaling Laws and

Intermittency in Highly Compressible Turbulence” (Kritsuk et al. 2007a). This research

initiated the method development to explore density-weighted versions of Equation 1.1

motivated by the scaling relations proposed in Fleck (1996). Chapter 4 also provides

additional background on compressible turbulence, structure functions, and the relevant

statistics. Chapter 5 presents the evaluation of an analogue to the four-fifths law based on the

currents and densities of conserved quantities proposed in Falkovich, Fouxon, and Oz (2010)

and was published as “Flux Correlations in Supersonic Isothermal Turbulence” (Wagner

et al. 2012). Chapter 6 evaluated a second relation proposed in Galtier and Banerjee (2011)

and was published as “Energy Cascade and Scaling in Supersonic Isothermal Turbulence”

(Kritsuk, Wagner, and Norman 2013). Combined with the results in Kritsuk et al. (2007b),

these publications provide evidence that the energy cascade within compressible turbulence

is local.

Conclusions I have a (hopefully) somewhat unique opportunity to see how worthwhile

my research contributions were. Chapter 7 explores more recent research in supersonic

turbulence in molecular clouds, and how these results compare to those in the Chapters 4,
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5, and 6.

Nomenclature, Acronyms, & Appendices Lists of acronyms and nomenclature

used are provided in the preliminary pages. Appendix A summarizes the syntax I have

used to bridge between mathematical notation and the pseudocode used to describe the

algorigthms in SFgen. Appendix B is a short description of the MPI (Message Passing

Interface) programming library. Appendix C is a list of peer-reviewed journal articles and

a book by other authors that cite one or more of the results chapters. Appendix D is the

bibliogrpahy of works cited in this dissertation.
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Chapter 2

Simulations & Enzo

It is not sufficient to set up the code

and let the computer zip along. It zips

all right, but to where?

L. Kadanoff

This chapter describes Enzo, an MPI-parallel structured adaptive mesh refinement

code (Berger and Colella 1989; Brummel-Smith et al. 2019; Bryan et al. 2014; Norman

et al. 2007). Enzo models fluids using several coupled PDE (partial differential equation)

solvers that can evolve a simulation of ideal MHD (magneto-hydrodynamics), including

gravity, in a comoving (cosmological) coordinate system. The following sections include a

description of Enzo, focusing on its data structures related to handling the representing

the grids representing the simulation domain and the algorithms used.

For simulations of supersonic turbulence, Enzo solves the Euler equations for density,

ρ, and velocity, u, driven by an external acceleration term F , using the PPM (piecewise

parabolic method) (Colella and Woodward 1984),

∂tρ+∇ · (ρ u) = 0, (2.1)
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∂tu+ u ·∇u = −∇ρ/ρ+ F . (2.2)

To simulate an isothermal gas, the specific heat ratio in the ideal gas equation of state is

set to close to unity, γ = 1.001.

The simulation domain, D, is defined as a period cube with sides of length L = 1.

The density field is initialized with a uniform distribution of ρ(xxx, t = 0) = 1 and the sound

speed is assumed to be cs ≡ 1. The acceleration field F is constructed with power limited

to wavenumbers k/kmin ∈ [1, 2] where kmin = 2π (see Figure 5.2). The initial velocity field

is scaled to F , u(x, t = 0) ∝ F (x, t = 0), so that the root mean squared Mach number is

M = 6. F is spatially fixed such that F (x, t) = ε(t)F0(x) and scaled by the initial energy

injection rate at t = 0 to maintain a constant level of energy in the fluid (Mac Low 1999)

ε0 = ⟨ρ(t = 0)u(t = 0) · F0⟩ , (2.3)

ε(t) =
ε0

⟨ρ(t)u(t) · F0⟩
. (2.4)

This acceleration is a large-scale source of energy and balances the kinetic energy loss caused

by numerical dissipation when modeling strong shocks (Porter, Pouquet, and Woodward

1992). The rate of energy injection, ε(t), varied by ≈ 5% in the simulations and ε0 is

the assumed average rate of energy transfer between scales used when evaluating scaling

relations.

2.1 Data Structures

Enzo implements the SAMR (structured adaptive mesh refinement) strategy pro-

posed by Berger and Colella (1989). In SAMR codes, D is broken into a set of nested grids,

Gl,i, at multiple levels, 0 ≤ l ≤ lmax, where i is the index of the grid on level l referred to

here as the level index. All the grids at a particular level will have the same resolution, or

12



cell spacing, ∆l. At level 0, the grids fill the simulation domain, and their boundaries are

typically defined using recursive bisection so that each grid G0,i will have the same spatial

dimensions and require similar time for each time step. Beyond level 0, the resolution of

nested grids (subgrids) is defined by a positive integer refinement factor R

∆l+1 =
∆l

R
(2.5)

∆l =
∆0

Rl−1
(2.6)

While Enzo supports multiple coordinate systems, non-uniform grid spacing, and various

boundary conditions, this description will focus on Cartesian grids and periodic boundary

conditions at the edges of the simulation domain with equal grid cell widths along each

axis.

Figure 2.1 shows a 16 × 16 two-dimensional simulation domain broken into four

level 0 grids of 8× 8, G0,i=1...4. Except for G0,1, each level 0 grid has subgrids, as does the

level 1 grid G0,2. Lines are drawn within each grid to represent the cell boundaries. The

boundaries and cells shown do not include ghost zones. Ghost zones are additional cells

beyond a grid’s boundaries with data copied from neighboring grids and are required for

the stencil of the solver.

The spatial locations of subgrids in Enzo are constrained in a few ways:

• a grid must be fully within its parent grid;

• its boundaries must align cell edges of its parent grid;

• and the subgrid must cover at least 2 of its parent grid’s cells along each axis.

These conditions prevent a grid from “skipping” a level of refinement by ensuring that

it overlaps with a grid one level higher. However, it can also cause a grid or refinement

region to be broken across two coarser grids—look at grids G1,0 and G1,3 in Figure 2.1
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G0,0

G0,1 G0,2

G0,3

G1,0

G1,2

G1,1

G1,3

G2,0

Figure 2.1: An example of Enzo grids with 3 levels of refinement.

for an example. This isn’t required by SAMR but is a result of Enzo’s parallel SAMR

implementation1. These constraints help when locating subgrids in space for this work, as

we will see in Section 3.4.

References to the grids are stored in a hierarchical tree structure and an array of

linked lists indexed by level. The methods I developed only rely on the tree structure where

each grid Gl,j is a node on the tree and has pointers to:

• Gl−1,i, its parent grid at the higher (less refined) level;

• Gl,j+1, the next grid at the same level with the same parent grid;

1This can make it challenging when populating ghost zones and setting the boundary conditions of
refined grids, see Collins (2009)
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• Gl+1,k, the first grid at the next (more refined) level within the spatial boundaries of

Gl,j;

• and Dl,j, the data structure with the grids’ methods, spatial (left and right edges,

grid spacing, etc.), and physical field data.

These pointers are named ParentGrid, NextGridThisLevel, NextGridNextLevel, and

GridData, respectively. The pointers are set to NULL at initialization to determine the ends

of the tree. Figure 2.2 shows the structure of a node in the hierarchy, and Figure 2.3 shows

the hierarchy for the grids shown in Figure 2.1. Grid G0,0 is usually referred to as the top,

or root, grid.

Outside of the software, the terminology around grids can be a bit loose. Colloquially,

the term “grid” is often interpreted to mean both the node in the hierarchy Gl,i and the

C++ object Dl,i with computationally useful information and methods. I’m going to

contribute a bit to this confusion: In the code, the attributes and methods of the grid

object, Dl,j, are accessed from a hierarchy entry as:

HierarchyEntry *grid;

grid->GridData->Method();

However, I will use the following shorthand in pseudocode for brevity:

HierarchyEntry *grid;

grid->Method();

Terminology can also be confusing when discussing the hierarchy and its relation to level.

Down describes going from coarser to more refined levels, even though the level l is

increasing. Going “up a level” means going from l to l − 1. This comes from the tendency

to visualize the hierarchy starting with the coarsest grids at the top and more refined grids

below. Finally, the number of levels may begin at 1 rather than 0.
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ln−1

ln

ln+1

NULL

Gn−1,i

Gn,j Gn,j+1 NULL

Gn+1,k

NULL

Gn,j Dn,j

Figure 2.2: Grid hierarchy entry data structure. Some of the pointers from grids Gn−1,i,
Gn,j+1, and Gn+1,k are not shown.

l = 0

l = 1

l = 2

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0

Figure 2.3: AMR hierarchy of the example grids from Figure 2.1. NULL references are not
shown.

2.2 Parallelism in Enzo

The primary building block for Enzo’s parallelization is the MPI (Message Passing

Interface)2 (Message Passing Interface Forum 2021). When running in parallel, each Enzo

task has a copy of the hierarchy tree and basic attributes of each grid, like its position

and dimensions of the arrays representing the physical fields. This allows each task to find

neighboring or overlapping grids for boundary condition updates or to see if a subgrid

already overlaps a region requiring refinement. The various physical fields (densities,

velocity, gravitational potential, etc.) are only stored on the task that “owns” the grid to

limit the amount of memory used by each task and avoid unnecessary communication.

A load balancing algorithm distributes the grids among the tasks roughly based

on the total number of cells in a grid. This is because the amount of time to compute a

2Appendix B provides some basic information about MPI for those not familiar with it.

16



solution on each grid scales approximately with the number of cells, and one goal is to

have all the tasks solve the PDEs for their grids at the same time. As described earlier,

grids at l = 0 are typically the same size, and the norm is to use the same number of tasks

as level one grids (this is not strictly necessary). Each taks is assigned a single level zero

grid, and then the subgrids are distributed using the load balancing algorithm. There is no

relationship between the spatial location of the subgrid and the owning task.

2.3 Example Parallel Grid Distribution

The following figures and table provide an example grid hierarchy that will be reused

in Chapter 3:

• Figure 2.4 shows how the grids from Figure 2.1 might be assigned to four MPI tasks,

{T0, T1, T2, T3}.

• Table 2.1 summarizes the distribution.

• Figure 2.5 show the hierarchy with the individual grids shaded by the owning task.

• Figure 2.6 shows the copies of the hierarchy on each task, where filled in grids

represent ones with a portion of the simulation state.

The distribution of grid data amongst the tasks determines when MPI communications

must occur. For example, if T0 needs to compute a value based on cell data from a point

in G0,1, the values will need to be sent from T1 to T0. There may also need to be some

synchronization point so that T0 can request the data and T1 can send it.
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T0

T1 T2

T3

T0

T1

T2

T1

T3

G0,0

G0,1 G0,2

G0,3

G1,0

G1,2

G1,1

G1,3

G2,0

Figure 2.4: Example AMR grids labelled with the owning task.

Table 2.1: Tasks owning example grids. The left columns are ordered by the level and
level index; the right columns are first ordered by task, then level and level index.

↓ Grid Task Ti Grid Task Ti ↓
G0,0 T0 G0,0 T0

G0,1 T1 G1,0 T0

G0,2 T2 G0,1 T1

G0,3 T3 G1,2 T1

G1,0 T0 G1,3 T1

G1,1 T2 G0,2 T2

G1,2 T1 G1,1 T2

G1,3 T1 G0,3 T3

G2,0 T3 G2,0 T3
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l = 0

l = 1

l = 2

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0

T0

T1

T2

T3

Figure 2.5: Example hierarchy with the grids colored by task.

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0T1

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0T0

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0T2

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0T3

Figure 2.6: AMR hierarchy as owned by each task Ti in the example. Highlighted grids
are ones where the owning task has the field data, i.e., ρ and u.
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Chapter 3

Method: SFgen

Once you certify the code, it can go to

work, and you really know that the

answer is going to be true to a given

accuracy

J. Jiménez

This chapter describes the computational aspects (data structures, algorithms, and

communications) of SFgen, the method used to measure scaling relations using the statistics

of two-point1 functions in Enzo simulations. While two-point statistics are frequently

measured in simulations, only a few parallel applications have been published. One is the

parallel structure function generator described in Skory (2010) and incorporated into yt

(Turk et al. 2011). A very recent second example is fastSF (Sadhukhan, Bhattacharya,

and Verma 2021). However, unlike SFgen and the method in Skory (2010), fastSF assumes

that each MPI task has access to the fields in the full simulation domain and is merely

orchestrating the work using MPI. As stated in Chapter 1, SFgen was designed to be run

within Enzo as a simulation evolves to provide immediate analysis results; this required

1SFgen could be adapted to support an arbitrary number of points per sample.
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working with the distributed memory model of the grid hierarchy and parallel performance

(scaling with the number of tasks) to be on par with Enzo’s.

3.1 Background

Measuring the expected (mean) values of scaling relations such as Equation 1.1 is

fundamental to the study of turbulence. As an example, there are the density-weighted

structure functions studied in Chapter 4,

Sp(r) ≡
〈
[δv∥(r)]

p
〉
, (3.1)

where

v(x) ≡ ρ
1
3 (x)u(x) (3.2)

and Equation 3.1 uses the same definitions as Equations 1.1 and 1.2. S3(r) is dimensionally

appealing (Fleck 1996; Kritsuk et al. 2007b), even if not rigorously derived, and reduces

to Kolmogorov’s four-fifths law in the case of incompressibility. To measure two-point

statistics, such as the different orders of structure functions Equation 3.1, SFgen samples

data from many pairs of points to create ensemble averages. Using a set of N random

points xi and unit vectors r̂i, the expected value of S3(r) can be measured as

S3(r) =
1

N

N∑

i=1

[
δv∥(xi,1,xi,2)

]3
, (3.3)

where

δv∥(xi,1,xi,2) = [v(xi,2)− v(xi,1)] · r̂i (3.4)

and

xi,2 ≡ xi,1 + rr̂i. (3.5)
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x3,1

x2,1

x1,1

x0,1

ŷ

x̂

Figure 3.1: Diagram of extracting values along a path from a point. The background image
is of the density-weighted field ρ1/3ux, and the black contour line represents ρ1/3ux = 0.
The region to the left of the contour is moving to the right (ux > 0) and vice versa.

As a simple example, Figure 3.1 shows paths along r = rx̂ originating at four points,

x0,1 . . .x3,1, while Figure 3.2 shows the values of the two-point function δvx(xi,1,xi,1 + rx̂)

along those paths. (Obviously, the points xi,1 in this example are not random.)

Starting from this and ignoring the realities of dealing with computers described in

the rest of this chapter, I can describe the purpose of SFgen (somewhat) briefly: Use simple

random sampling, with replacement, to measure the expected values, µ, variances, σ2, and

PDF (probability density function), P, for a set of scaling relations, and separations, r ∈ L.

The individual samples are the output of a particular two-point function, Ff , using the

values of the physical fields (ϕi,1 and ϕi,2) drawn from two points (xi,1 and xi,2) related
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x3,1

x2,1

x1,1

x0,1

r

〈
[δvx(rx̂)]

3〉

Figure 3.2: Extracted values and the average for [δvx(x1,x1 + r)]3 along four paths.
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through Equation 3.5 as input. E.g.,

ϕi,1 = ϕ(xi,1) = (ρ(xi,1),u(xi,1)) (3.6)

ϕi,2 = ϕ(xi,2) = (ρ(xi,2),u(xi,2)) (3.7)

I denote µf,r and σ2
f,r as the “true”, or population, expected value and variance,

respectively, for a particular two-point function, Ff , and separation, r, while the sample

mean and variances are denoted as µ̂f,r and σ̂2
f,r. The measurement of µ̂f,r is

µ̂f,r =
1

NΣ

NΣ∑

i=1

Ff (ϕi,1,ϕi,2), (3.8)

where NΣ is the total number of point pairs sampled at that separation (see Section 3.3.3).

The variances are determined using

σ̂2
f,r =

{
1

NΣ

NΣ∑

i=1

[Ff (ϕi,1,ϕi,2)]
2

}
− (µ̂f,r)

2 . (3.9)

Each element of Pf,r,b represents the estimated likelihood of a value occurring between in

the range

Qf,r,b ≤ Ff (ϕ1,ϕ2) ≤ Qf,r,b+1 (3.10)

where b is the PDF bin with a left edge of Qf,r,b and a right edge of Qf,r,b+1. Higher order

moments for some two-point statistics may be calculated from the PDFs.

Restated more briefly: sample as many random points as necessary and bin the

values for different functions using the data from those points as input. The two challenges

to this approach are the a priori unknown variances in the PDFs of the two-point functions

and the actual realities of dealing with computers.
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3.2 The Need for Parallelism

Besides the requirement for SFgen to be incorporated within Enzo to provide in-line

analysis, the number of samples needed to reduce the standard error of the mean to an

acceptable level makes parallelism necessary. A deeper discussion around the number of

samples needed to estimate statistical properties of the two-point functions of interest is

covered in Section 3.9. For now, we’ll use an example from one of the publications which

used this method, Kritsuk, Wagner, and Norman (2013), described in Chapter 6. For that

work, 2× 109 point pairs were sampled at 16 different separations in each of 86 datasets.

The two-point functions measured used 23 64-bit floating point numbers at every point

pair. This analysis required communicating and processing 5.4 TB to analyze a single

dataset and 460.5 TB across all of the datasets.

The datasets were uniform grids with 10243 uniform cubic cells totaling 56 GB after

being read into memory. This may seem at odds with the two orders of magnitude greater

data needed. To explain this, consider a measurement of point pairs at a separation of

1/16L, where L = 1 is the length of the grid along one axis. To sample every possible

set of values, one method would be to visit every cell, and then take samples at every

cell intersecting a sphere of radius 1/16 from that cell, similar to the fastSF (Sadhukhan,

Bhattacharya, and Verma 2021) algorithm. We can estimate the number of cells intersected

by the sphere by looking at the surface areas of the sphere and the cells. The area of a

sphere with a radius of 1/16 is A = π/64 ≈ 0.05 and the cell faces are a = (1/1024)2 ≈ 10−6

in area. The number of intersected cells would be around A/a ≈ 5 × 104. Using this

method, the number of pairs would be 5 × 104 × 10243 ≈ 5.4 × 1013 and the amount of

data processed would be 5× 104 × 10243 × 8× 23 ≈ 8.8 PB, where 8 is the precision in

bytes of the 23 values needed per pair. Doing this for every separation and dataset would

take this into exabytes.

Fortunately, robust measurements do not necessarily require all possible information.
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Reasonable estimates of the probability density functions, expected values, and variances

can be made from subsets of the total possible point pairs. Hence, the use of random

sampling in SFgen. However, there is still a significant amount of data to compute, even for

a single dataset. This leads to the use of parallelism and distributing the workload across

many processors to complete the measurements quickly. The tradeoff with parallelism is

the ensuing need to communicate data between computers. Section 3.6 gets into those

details and describes how the tasks request and receive information.

3.3 Design & Overview

This section describes some design guidelines I used, followed by the parameters

controlling SFgen and an overview of its outer and inner loops. For the algorithms, the

pseudocode for the various functions are in their own subsections for reference.

3.3.1 Design Considerations

Similar to experimental science and engineering, efficient computational science is

a compromise between expertise in computer science and expertise in theoretical science.

Efficiency, in this case, is defined practically, in terms of a human’s (my) time to develop

the algorithms and the time to execute them and measure the values of interest. While the

algorithms and overall structure of SFgen evolved over time, some stable principles guided

it. Whenever possible, I tried to

• avoid traversing the hierarchy,

• operate on one-dimensional arrays from beginning to end,

• and limit the number of communication calls.
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These principles came primarily from experience, both my own and those of other Enzo

developers. In addition, there were the usual needs when creating a parallel application,

like balancing the workload across the tasks so that they enter communication phases

simultaneously.

Traversing the Hierarchy The grid hierarchy can contain hundreds of thousands or

even millions of grids. And because it’s implemented as a linked list, the entries are

not guaranteed to be contiguous in memory. As I’ll describe in Section 3.4.2, repeatedly

traveling along its edges as part of an inner loop can add a significant number of operations.

If it was necessary to use the hierarchy, I tried to do it a single time, e.g., part of an

initialization, or to reduce the number of potential paths along its graph.

Operating on 1D Arrays Flexible data structures are convenient but can also be

inefficient if the attributes are not local in memory (cache misses). One-dimensional arrays

of a single datatype are also simpler to work with as part of MPI communications.

Limiting MPI Calls MPI calls have an up-front cost for each call due to the communi-

cation latency between tasks and the need for the library to track and manage the state of

the call through its completion. These costs reduce the effective communication bandwidth

between tasks. By sending as much data as possible in the fewest number of calls, a higher

effective bandwidth rate is achieved, and there are fewer steps in an application to be

blocked waiting for an MPI call to complete. In particular, all-to-all MPI communications

provide a mechanism for all of the tasks to exchange data simultaneously in a single call.

This principle leverages both the bidirectional networks and any optimizations in the MPI

implementation (see Appendix B).
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3.3.2 Two-Point Functions & Parameters

The code has flags to determine which of the two-point functions, Ff will be

computed during a particular analysis run. In practice, this was usually “all of them” since

the time to gather and communicate the physical fields from the point pairs was much

greater than the time to compute a few more functions. Given the set of Ff to be used,

the PDF arrays, Pf , are instantiated on each task, using the following parameters:

Ff , the two-point function being measured for this array.

NL The number of separation distances in L.

NB The number of PDF bins for each two-point function.

Section 3.7 describes how P is populated.

3.3.3 Sampling Parameters

The number of point pairs sampled is determined by the following parameters:

L The set of separations, r, between points, e.g., r ∈ (L/32, L/16, . . .).

NL The count of separations in L.

NP The number of point pairs to use in each sampling iteration.

NM The number of passes through MakePass (see Section 3.3.5).

NT The number of MPI tasks.

The total number of point pairs sampled for each separation will be the product of the

number of tasks, passes, and pairs: NT ×NP ×NM . Maximizing NP is largely based on

memory constraints both the arrays allocated by the application and the buffers used by

MPI. To achieve the total number of points needed, NT or NM can be increased. The
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underlying analysis framework also supports setting the maximum depth of the hierarchy

to use for analysis, which will limit the spatial resolution of the cells sampled. This will

impact the results of the analysis, but does not change the overall method.

3.3.4 The Outer Loop

The broad outline of calculating the two-point functions is relatively simple: first

initialize some necessary data structures; iterate many times sampling points and making

individual measurements; summarize the data and write it out.

• Initialization

– Compute the velocity divergence, ∇ · u.

– Initialize FastFind indices and data structures (see Section 3.4).

– Allocate G, I, and r̂, the arrays for the point pairs (see Section 3.5).

– Initialize the parallel random number generator (see Section 3.5).

– Initialize GatherCellValues grid index, M, and count, S, arrays (see Section 3.6).

– Allocate P, the arrays for two-point function PDFs (see Section 3.7).

• MakePass NM times.

• ReduceData, consolidate the measurements across the tasks (see Section 3.8.)

• Write out the measurements (see Section 3.8.)

3.3.5 The Inner Loop: MakePass

MakePass is called NM times, where each time NP random point pairs for each

separation are sampled and the cell values at those points are used to compute individual

values the two-point functions. Each loop through MakePass does the following steps:
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• GetPointPairs: For each separation in L, generate NP random point pairs (see Sec-

tion 3.5). The algorithm FastFind (see Section 3.4) is used to find the grid containing

each point.

• GatherCellValues: Each task requests and receives cell values for its points (see Section

3.6).

• CalculateValues: Compute two-point function values for individual point pairs and

build the PDFs (described Section 3.7).

3.4 FastFind

Given a point, x, in the simulation volume, the FastFind algorithm returns the most

refined grid G containing x. Consider from Section 3.2 that each analysis of a single dataset

required extracting the cell values at 1.3 × 1011 points. Because FastFind only uses the

information available in a task’s copy of the hierarchy, it does not require any communication

steps. I developed the FastFind algorithm as a simple and efficient mechanism to allow

the mapping of a point in the simulation domain to the most highly-refined overlapping

grid and cell. It combines a coarse-grained search from a lookup table with a depth-first

traversal of the hierarchy. Since the goal is to extract the physical values from the most

refined grids, the challenge is to create a computationally efficient process that will find

one of the highly-refined grids when necessary while traversing as few of the other grids as

possible. (Once the containing grid is found, finding the index of the grid cell is only a few

operations.)

FastFind is designed around Enzo’s data structures, in particular, the AMR hierarchy

structure and Grid class; it’s very likely this algorithm could be adapted to other block-

structured AMR codes, such as RAMSES (Teyssier 2002). Likewise, there’s no dependency

on Cartesian coordinates, only that the domain decomposition of the coarsest grids follows a
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pattern amenable to constant time lookup and that finer grids are linked to the overlapping

coarser grid. A similar algorithm using chaining meshes was developed as the fast sibling

grid search (Bryan et al. 2014; Norman et al. 2007) to identify overlapping grids for boundary

condition updates. The methods differ because of the different goals of identifying all

the overlapping grids of a single grid (i.e., the motivation for a chaining mesh) versus

identifying a single grid overlapping a point (i.e., FastFind). Estimating the computational

(time and space) efficiency of FastFind is somewhat challenging as it’s highly dependent on

the distribution of grids in the hierarchy. But, there are practical constraints on the search

based on how simulations are structured, and this somewhat bounded estimate is given in

Section 3.4.2.

Initialization FastFind uses a 3D array of grids, F, as a lookup table, where LF is the

maximum level of the grids referenced in the array. The array is allocated to fill the

simulation domain with cells sized at level LF − 1. This leverages the constraints regarding

the placement of grids between levels l and l + 1, since a grid at level LF or lower must

fully overlap a cell in F. After allocation, the hierarchy is traversed in a breadth-first order

so that grids at level l are assigned to F, followed by grids at level l + 1, stopping after

completing level LF . This simplifies the creation of F since each grid can populate its entire

overlapping region, with more refined grids overwriting the subsets of their parent grids’

regions. F increases in size (and memory usage) as R3, where R is the refinement factor,

for each additional level of coverage. In practice, I found that covering the level 1 or 2

grids was the appropriate balance between time efficiency and the memory required.

Algorithm FastFind starts by computing the index, ji, of the F cell containing xi. It

then assigns grid G = Fji as the starting point of the search. It then traverses the down

the hierarchy (increasing l), looking for any more highly refined grids containing x. As it

descends the hierarchy, FastFind uses the function ContainingGrid described in Function 3.2
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Table 3.1: Grids containing points in example.

Point Grid
A G0,1

B G1,1

C G2,0

to check if any subgrids contain x. The pseudocode is shown in Function 3.1.

3.4.1 Example

Reusing the AMR grids from the previous examples, Figure 3.3 shows three points

(A,B,C) within grids at different levels. By looking at the figure, we can determine which

grid the FastFind algorithm should return, as shown in Table 3.1. We can compare our

visual inspection with the behavior of FastFindGrid for each point in our example.

Grid Lookup This example assumes that the maximum level of F, LF = 1. F will have

the dimensions 16× 16 and can reference the l = 1 grids, G1,i, but not grid G2,0 at l = 2.

Figure 3.4 shows the array and reference values of F for this example.

FastFindGrid(A)

1. ji is assigned with the index of the cell in F containing A

2. G0,1 will be assigned to G from the lookup of Fj,i

3. G0,1 does not have any subgrids, so the algorithm will not enter the while loop

4. algorithm returns G0,1

FastFindGrid(B)

1. ji is assigned with the index of the cell in F containing B
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2. G1,1 will be assigned to G from the lookup of Fji

3. G1,1 does have subgrids, so the algorithm enters the while loop

4. ContainingGrid(G,B) loops over the subgrids of G1,1 and returns NULL because none

of G1,1’s subgrids overlap x

5. S is set to NULL

6. S evaluates as false, so the while loop is broken

7. Algorithm returns G1,1

FastFindGrid(C)

1. ji is assigned with the index of the cell in F containing C

2. G1,1 will be assigned to G from the lookup of Fji

3. G1,1 does have subgrids, so the algorithm enters the while loop

4. ContainingGrid(G,C) loops over the subgrids of G1,1 and returns G2,0 assigned to S

5. G is set to G2,0

6. G2,0 does not have any subgrids, so the algorithm exits the while loop

7. Algorithm returns G2,0
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Figure 3.3: Points overlapping grids at different refinement levels.
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Figure 3.4: The grids referenced in the FastFind lookup array F using the example AMR
grids and LF = 1. Array regions with level 1 grids are called out with a darker border.
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Table 3.2: Hierarchy statistics from a seven-level AMR simulation.

Level nl = ΣiGl,i nl−1/nl Vl Vl−1/Vl

0 256 1
1 153,680 600 0.21 0.21
2 98,976 0.64 0.012 0.058
3 70,833 0.72 8.2E-04 0.069
4 51,155 0.72 5.3E-05 0.065
5 17,094 0.33 1.6E-06 0.031
6 871 0.05 7.2E-09 0.0044

3.4.2 Performance & Limitations

FastFind relies on Enzo’s spatial decomposition of the simulation by grids for a

constant-time lookup as the first step. This can lead to an orders of magnitude performance

improvement when compared to a simple traversal of the hierarchy. We can make a practical

estimate of FastFind’s efficiency using an AMR simulation with a modest number of possible

refinement levels (7, although only 6 were used) and almost 400, 000 grids (Hallman et al.

2007). The root grid of the simulation was 5123 cells, broken up into 256 level 1 grids of

64× 64× 128 = 524, 288 cells.

Table 3.2 has some basic statistics about the grids at each level of refinement for the

final dataset at redshift z = 0. In the table, ΣiGl,i is number of grids at a given refinement

level, Vl is the volume covered by the grids at that level, and Vl−1/Vl is the relative fraction

of the volume covered by the next level of refinement. From this we can see that l = 1

covers ∼ 20% of the simulation volume and l = 2 covers ∼ 1% of the full volume and ∼ 6%

of the l = 1 grids.

In this example dataset, there are 153, 680 total level 1 grids, with an average of

600 level 1 grids somewhat uniformly distributed amongst the level 0 grids. If LF = 0, F

will be allocated to cover a grid of 8× 8× 8 = 512 cells. 79% of grid lookups would lead to

a traversal of approximately 600 subgrids without a result. For the latter case of the other
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21% of searches, this would lead to around 300 steps along the level 1 hierarchy, or roughly

0.79× 600 + 0.21× 300 = 537 steps per point. The average number of subgrids past level

1 is than one, but there would be frequent traversals a few more steps beyond this level,

with ≥ 94% being missing. Instead, setting LF = 1 requires 1GB of memory on a 64-bit

system, but allows F to reference the level 2 grids, and results in a constant time lookup

for ∼ 99% of points searched for, a two orders of magnitude improvement.

Like the LF = 0 example for the previous simulation, for unigrid simulations (ones

with only level 0 grids), F can be set to the minimum size necessary based on how level 0

is partitioned.

An alternative version of FastFindGrid, is shown in Function 3.3. This checks a

grid’s FlaggingField array to see if a subgrid overlaps the cell containing x. This avoids

traversing the hierarchy when a grid has subgrids, but none of them overlap x, like point B

in the example. It could be more efficient in the case of many small highly-refined regions,

like when modeling stellar collapse. However, it requires an additional setup step where

every grid at level LF or beyond allocates, initializes, and sets its FlaggingField based

on the location of its subgrids. Figure 3.5 shows the field for grid G0,0.

The cost in time of the initialization is relatively minimal, but the cost in memory

of the FlaggingField could be substantial since it covers all or some of the cells in the

simulation. If implemented, making a separate FlaggingField as an array of booleans

(single bits per element) could overcome this drawback. By default, the FlaggingField is

a set of integers so that it can be used to track not just if but why a cell requires refinement.

Anecdotally, I can say that I tried both versions, but that FastFindGrid, as first described,

was sufficient and required less work to handle the setup.
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Figure 3.5: The flagging field G0,0.FlaggingField.
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3.4.3 Pseudocode

Function 3.1: FastFindGrid finds the most refined grid containing a point.
∆F , is grid cell width of the lookup array F. Note that floor or ⌊⌋, is used
to denote that the result of xi/∆F,i is an integer. ContainingGrid is shown in
Function 3.2.

Function FastFindGrid(x : point)

ji =
⌊

xi

∆F,i

⌋

G = Fji

while G.NextGridNextLevel do
S = ContainingGrid(G.NextGridNextLevel,x)
if S then

G = S
else

break
end

end

return G

Function 3.2: ContainingGrid returns the first sibling grid of G containing a
point, or NULL if none do.

Function ContainingGrid(G : grid,x : point)
while G do

if xi ∈ G then
break

end
G = G.NextGridThisLevel

end
return G
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Function 3.3: FastFindFlaggedGrid finds the most refined grid containing a
point. ∆F , is grid cell width of the lookup array F. Note that floor or ⌊⌋,
is used to denote that the result of xi/∆F,i is an integer. ContainingGrid is
shown in Algorithm 3.2.

Function FastFindFlaggedGrid(x : point)

ji =
⌊

xi

∆F,i

⌋

G = Fji

while G.NextGridNextLevel do
k = G.GetGridCellIndex(x)
if G.FlaggingField[k] then

// There is a subgrid overlapping x
// ContainingGrid will return a grid, not NULL

G = ContainingGrid(G.NextGridNextLevel,x)

else
break

end

end

return G
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3.5 GetPointPairs

Despite its name, GetPointPairs is used to generate paired sets of grids and cell

indices, along with a unit vector. These pairs are selected by finding the most refined grid

cells containing each of two points separated by a fixed distance r along a random direction.

Only cell indices are used because the PPM fluid dynamics solver uses a finite volume

method based on the Godunov (1959) scheme, and each cell has a constant value through

its volume. Rather than make (likely incorrect) assumptions about the physical quantities

at a point using interpolation, I chose to use the same value as the dynamical method. The

time and space performance of GetPointPairs is linear. SFgen can make multiple passes to

cap the memory usage. Like FastFind, GetPointPairs works with task-local data to avoid

unnecessary communications.

The function is straightforward and its steps are shown using pseudocode in Functions

3.5 and 3.4. To summarize:

• A set of separation distances L and the number of pairs NP is defined

• For each separation distance r ∈ L, NP pairs of points are created, each with the

following vectors:

– a random unit vector, r̂;

– an initial point, x1 ∈ D;

– a second point, x2 = x1 + rr̂.

• The algorithm assumes periodic boundary conditions, and point x2 is wrapped back

into the domain if it falls outside.

• The grids containing x1 and x2 are found using the function FastFindGrid, described

in Section 3.4
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• The indices of the grid cells containing x1 and x2 are calculated

• The grids, indices, and r̂ are stored in the arrays G, I, R, respectively

3.5.1 Example

Figure 3.6 shows point pairs at different separations in the example AMR grids.

3.5.2 Selecting Points

Random Numbers Each point pair requires five random numbers (two angles and three

coordinates) and a typical dataset required on the order of 109 random point pairs to

estimate the PDF of the high-order two-point functions. This is on the edge of the period

a random number function using 32-bit integers will provide, and some implementations

of the ISO C rand function may be much less (32,767). Combined with the need to

instantiate one or more independent streams of pseudorandom numbers on each MPI

task, an MPI-aware pseudorandom number generator with periods much greater than 109

was desirable. Fortunately, SPRNG (Mascagni and Srinivasan 2000) is a parallel random

generator that handles this issue. SPRNG provides several random number generators;

the one I used was the 64-bit linear congruential generator (LCG). Each stream from this

generator has a period of 264, and the total number of possible streams is more than 108.

This is more than adequate for the number of points needed and MPI tasks used. Calls to

SPRNG are shown as sprng() in Function 3.4.

Random Directions Note that there are several possible means to create a random unit

vector2, the important part is to sample the sphere by unit area, not angle (Cook 1957). A

justification for spherical sampling is shown in Figure 3.7, as compared to sampling points

2A summary of various methods for this can be found at MathWorld
http://mathworld.wolfram.com/SpherePointPicking.html
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Figure 3.6: Random point pairs at four fractions of L, the length of a domain edge. Red
arrows point from x1 along r̂. The pairs are overlayed on the example grids.
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Figure 3.7: Point pairs sampled only along Cartesian axes. Top: A single grid cell
compared to cells at the same refinement level. Bottom: Cells in a refined grid compared
to cells at a higher level. Red shaded areas indicate regions not included in comparison.

only separated along the Cartesian axes, x̂i. This method is convenient when dealing with

uniform grids since it can be done by using arithmetic on array indices (Porter, Pouquet,

and Woodward 2002). But, it does not include all possible points for comparison.
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3.5.3 Pseudocode

Function 3.4: GetPointPair creates two random points within the simulation
domain D, separated by the distance r. It returns the grids containing the
points, their respective cell indices, and the unit vector along their separation
vector. G.GetCellIndex(x) is a grid method that computes the local cell index
assuming a point x ∈ G.

Function GetPointPair(r : distance)
ϕ = 2π sprng()
z = sprng()
θ = cos−1(2z − 1)
r̂ = (sin(θ)cos(ϕ), sin(θ) sin(ϕ), cos(θ))
for i ∈ (0, 1, 2) do

x1,i = sprng()
end
x2 = x1 + rr̂
// Assuming periodic boundary conditions,

// wrap or shift x2 back into D if it falls outside.

// Can’t use just modulo, in case a component of x2 is

negative.

if x2 /∈ D then
for i ∈ (0, 1, 2) do

if x2,i < 0 then
x2,i + = Di

else
x2,i − = Di

end

end

end
G1 = FastFindGrid(x1)
j = G1.GetCellIndex(x1)
G2 = FastFindGrid(x2)
k = G2.GetCellIndex(x2)

return (G1, G2, j, k, r̂)
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Function 3.5: GetPointPairs populates the grid pair, grid cell indices, and
unit vector arrays G, I, and R, respectively.

Function GetPointPairs(L : set of distances, NP : number of pairs)
for r ∈ L do

for p ∈ (0, 1, . . . , NP − 1) do
(G1, G2, j, k, r̂) = GetPointPair(r)
Rr,p = r̂
Gr,p,1 = G1

Gr,p,2 = G2

Ir,p,1 = j
Ir,p,2 = k

end

end

return (G, I,R)
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3.6 GatherCellValues

Basically a hellacious amount of

bookkeeping.

R. Wagner

GatherCellValues orders the grids by task to allow a simultaneous exchange of

information between all the tasks to distribute an arbitrary set of a grid’s cell values to

any set of tasks. Enzo does not maintain a global array index across the hierarchy since

the hierarchy and level arrays are built around the AMR model, where grids will change

over time with the refinement needs and the solvers work level-by-level. By assigning a

unique integer to each grid, ordered by the task rank (T ), grid data can be further ordered

to be uniquely indexed in an array (essentially “grid-major order”). These arrays can then

be used in MPI all-to-all communications. This indexing strategy is used throughout the

communications process to pack data into large arrays.

3.6.1 Grid Indexing

The index is assigned to each grid as G.Index using a depth-first traversal of the

hierarchy by following G.NextGridNextLevel, then following G.NextGridThisLevel. The

indices for each task’s grids are incremented with assignment (see Functions 3.8 and 3.9).

The starting index, Ip, for a task of rank p’s grids is, therefore, a sum of the total grids

owned by tasks of rank ≤ Tp.

Ip =

p−1∑

i=0

Si, (3.11)

where S is an integer array of the count of grids per task; S is populated in Function 3.6.

For the example grids, S = (2, 3, 2, 2) and Ip = (0, 2, 5, 7). Note that 0 is assigned to G1,0,
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Table 3.3: Indices assigned to the example grids as part of GatherCellValues.

Ordered by level and level index Ordered by G.Index
Grid G.Index Task Grid G.Index Task
G0,0 1 T0 G1,0 0 T0

G0,1 4 T1 G0,0 1 T0

G0,2 6 T2 G1,2 2 T1

G0,3 8 T3 G1,3 3 T1

G1,0 0 T0 G0,1 4 T1

G1,2 2 T1 G1,1 5 T2

G1,1 5 T2 G0,2 6 T2

G1,3 3 T1 G2,0 7 T3

G2,0 7 T3 G0,3 8 T3

l = 0

l = 1

l = 2

G0,0 G0,1 G0,2 G0,3

G1,0 G1,2 G1,1 G1,3

G2,0

T0

T1

T2

T3

0 : G1,0 1 : G0,0 2 : G1,2 3 : G1,3 4 : G0,1 5 : G1,1 6 : G0,2 7 : G2,0 8 : G0,3

Figure 3.8: Top: The same as Figure 2.5, with the example hierarchy grids colored by
task. Below: The grid index:grid mapping colored by task.

the subgrid owned by T0, while

G1,2.Index = I1 = S0 = 2 (3.12)

Table 3.3 shows the grid index as it would be assigned using the sample AMR grids and

Figure 3.8 show indices of each grid ordered by task.

For an array ordered by grid index, computing the index of the first element for

a given task depends on whether or not the count of elements per grid is uniform. For
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uniform counts, where each grid has k elements, the starting index for task Tp is

Ip,k = k

p−1∑

i=0

Si. (3.13)

For k = 1, this equivalent to Equation 3.11. When each grid has a distinct count of elements

the index of element j for task Tp is

Ip,j = j +

p−1∑

i=0

Ki (3.14)

where K is an integer array with the counts of elements for each task. This is used in

Functions 3.12 and 3.16, where the indices and values for requested cells are exchanged.

3.6.2 Process

GatherCellValues has several steps. The initialization phase is done once, and the

remaining steps are executed in order during each pass of collecting cell values, after

GetPointPairs. The individual algorithms are summarized in the following list, and each is

detailed in its referenced pseudocode.

Initialization Prior to communications, GatherCellValues counts the number of grids per

task, sets the grid indices (see Section 3.6.1), and creates an array of grids owned by the

current task.

1. Allocate S and intialize its values to 0.

2. CountGridsPerTask: Count the grids per MPI task, populating the array S (Function

3.6).

3. Allocate M as an array of hierarchy entry pointers with length ST .
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4. BuildMyGridArray: Populate M with the grids owned by T (Function 3.7).

5. IndexGridsByTask: Assign an index (G.Index) to each grid in the order of MPI task

rank (Function 3.8). IndexGridsByTask uses a temporary array, N, to track the last

used index for each task’s grids. The total number of grids, NG, is found using the last

index. This algorithm is run by all tasks rather than having one task communicate

the results.

MakePass After GetPointPairs completes during each pass, GatherCellValues requests and

receives the field values at each point’s location.

1. Allocate C, an integer array of length NG, and intialize its values to 0.

2. CountGridCells: Populate C with a count of the cells in each grid containing points,

ordered by grid index (Function 3.10). Cell indices may be repeated if multiple points

are within a single cell.

3. CommunicateCellCounts: Share C to other MPI tasks. Also used to allocate send-

receive arrays and calculate the counts and offsets used in communicating arrays

(Function 3.11).

4. GetCellIndices: Build the array J of cell indices needed by the local task ordered by

grid index and relative order of points (Function 3.12).

5. CommunicateCellIndices: Distribute J to other tasks, and receive requested cell indices

into K (Function 3.13).

6. ReadInGrids: Iterate over the local task’s grids, calling G.ReadCells (Function 3.15),

to copy requested cell values into U (Function 3.14).

7. ReadCells: Iterate over cells, copying cell data into U (Function 3.15).
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S = 2 3 2 2

M = G1,2 G1,3 G0,1

T1

S = 2 3 2 2

M = G1,0 G0,0

T0

S = 2 3 2 2

M = G1,1 G0,2

T2

S = 2 3 2 2

M = G2,0 G0,3

T3

Figure 3.9: Grid count and local grid arrays after initialization.

8. CommunicateCellValues: Iterate over the grid’s owned by the local tasks and populate

U with the physical field cell values; communicate U into the receiving array, V, on

each task (Function 3.16).

9. ReadCellValues: Unpack the receiving arrays into Φ (Function 3.17).

3.6.3 Example

This example goes through several of the GatherCellValues steps using the example

grids and hierarchy. Figure 3.11 shows the grid count array, S, and the array of grids owned

by the local task, M, after initialization before the start of MakePass and GatherCellValues.

As a reminder, the grid indices are shown in Table 3.3.

For this example, we’ll begin with a set of twelve random point pairs, one pair per

task for each three separations r/L ∈ (1/4, 3/8, 1/2), as shown in Figure 3.10. Table 3.4

lists the point pairs sorted by the owning task and separations, along with each point’s

containing grid and cell index.

Figure 3.11 shows the local cell count arrays, C and Figure 3.12 shows the requested

cell counts B after the call to CommunicateCellCounts (Function 3.11). In Communicate-

CellCounts, each task sends a number of elements from C equal to Si to task Ti, so that
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Figure 3.10: Twelve random point pairs, three for each of four tasks. Points are colored
by owning task, and grids are colored by owning task and grid level, where coarser grids
are lighter.
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Table 3.4: List of points in Figure 3.10. Grids are indicated both by level and level index,
as well as grid index. The unit vectors, R, have been omitted.

Point Task r/L Gr,1 Gr,1 Ir,1 Gr,2 Gr,2 Ir,2
a T0 1/4 G0,2 6 22 G0,3 8 3
b T0 3/8 G0,2 6 31 G0,3 8 15
c T0 1/2 G1,1 5 1 G0,0 1 20
d T1 1/4 G0,1 4 16 G0,1 4 3
e T1 3/8 G0,1 4 14 G0,2 6 35
f T1 1/2 G1,1 5 28 G0,1 4 5
g T2 1/4 G0,3 8 10 G0,0 1 13
h T2 3/8 G0,3 8 17 G0,0 1 15
i T2 1/2 G0,2 6 29 G0,0 1 31
j T3 1/4 G1,2 2 0 G0,1 4 25
k T3 3/8 G0,0 1 27 G0,1 4 20
l T3 1/2 G0,3 8 3 G1,1 5 1

each task Ti receives NT × Si elements. The state of the grid cell index arrays, J and K

are shown in Figure 3.13 after the call to CommunicateCellIndices (Function 3.13). The

process to communicate the cell values in CommunicateCellValues (Function 3.16) is similar

to CommunicateCellIndices and not shown.

53



S = 2 3 2 2

M = G1,2 G1,3 G0,1

C = 0 0 0 0 4 1 1 0 0

T1

S = 2 3 2 2

M = G1,0 G0,0

C = 0 1 0 0 0 1 2 0 2

T0

S = 2 3 2 2

M = G1,1 G0,2

C = 0 3 0 0 0 0 1 0 2

T2

S = 2 3 2 2

M = G2,0 G0,3

C = 0 1 1 0 2 1 0 0 1

T3

Figure 3.11: Arrays after grid cell count.

S = 2 3 2 2

M = G1,2 G1,3 G0,1

C = 0 0 0 0 4 1 1 0 0

B = 0 0 0 0 0 4 0 0 0 1 0 2

T1

S = 2 3 2 2

M = G1,0 G0,0

C = 0 1 0 0 0 1 2 0 2

B = 0 1 0 0 0 3 0 1

T0

S = 2 3 2 2

M = G1,1 G0,2

C = 0 3 0 0 0 0 1 0 2

B = 1 2 1 1 0 1 1 0

T2

S = 2 3 2 2

M = G2,0 G0,3

C = 0 1 1 0 2 1 0 0 1

B = 0 2 0 0 0 2 0 1

T3

Figure 3.12: Arrays after communicating grid cell count.
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S = 2 3 2 2

M = G1,2 G1,3 G0,1

C = 0 0 0 0 4 1 1 0 0

B = 0 0 0 0 0 4 0 0 0 1 0 2

J = 16 3 14 5 28 35

K = 16 3 14 5 0 25 20

T1

S = 2 3 2 2

M = G1,0 G0,0

C = 0 1 0 0 0 1 2 0 2

B = 0 1 0 0 0 3 0 1

J = 20 1 22 31 3 15

K = 20 1 22 31 13 15 31 27

T0

S = 2 3 2 2

M = G1,1 G0,2

C = 0 3 0 0 0 0 1 0 2

B = 1 2 1 1 0 1 1 0

J = 13 15 31 29 10 17

K = 28 35 29 1

T2

S = 2 3 2 2

M = G2,0 G0,3

C = 0 1 1 0 2 1 0 0 1

B = 0 2 0 0 0 2 0 1

J = 27 0 25 20 1 3

K = 3 15 10 17 3

T3

Figure 3.13: Arrays after communicating the grid cell indices, where J are the indices
needed by each task, and K are the requested cell indices.
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3.6.4 Pseudocode

Function 3.6: CountGridsPerTask recursively traverses the hierachy and
populates the counting array S with the total number of grids owned by
each task. The elements of S are intialized to 0 and the initial call is
CountGridsPerTask(G0,0,S).

Function CountGridsPerTask(G : grid,S : array of integers)
while G do

CountGridsPerTask(G.NextGridNextLevel, S)
p = G.TaskNumber
Sp ++
G = G.NextGridThisLevel

end

Function 3.7: BuildMyGridArray populates the grid array M with the grids
owned by the local task T . The initial call is BuildMyGridArray(G0,0,M, i = 0).

Function BuildMyGridArray(G : grid,M : array of grids, i : integer)
while G do

BuildMyGridArray(G.NextGridNextLevel,M, i)
if G.TaskNumber == T then

Mi = G
i++;

end
G = G.NextGridThisLevel

end
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Function 3.8: IndexGridsByTask assigns an index to each grid ordered by
rank of the owning task. After allocation, the array N is initialized with a
running total of the grids by task rank. Returns the total number of grids,
NG. The call is IndexGridsByTask(G0,0,M).

Data: N: an integer array of length NT initialized to zero.
Function IndexGridsByTask(G : grid,S : array of integers)

for t ∈ (1, 2, . . . , NT − 1) do
Nt = Nt−1 + St

end
AssignGridIndices(G,N)
NG = NNT

return NG

Function 3.9: AssignGridIndices assigns an index to each grid from the array
N.

Function AssignGridIndices(G : grid,N : array of integers)
while G do

AssignGridIndices(G.NextGridNextLevel,N)
t = G.TaskNumber
G.Index = Nt

Nt ++
G = G.NextGridThisLevel

end

Function 3.10: CountGridCells counts the number of cells in each grid
containing a point from the local task, T . Returns an array of the count
indexed by grid, C.

Function CountGridCells(G : array of grids,C : array of integers)
for r ∈ L do

for p ∈ (0, 1, . . . , NP − 1) do
for i ∈ (1, 2) do

G = Gr,p,i

g = G.Index
Cg ++

end

end

end

return C
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Function 3.11: CommunicateCellCounts Returns B.
Data: B an integer array of length ST ×NT with the count of cells in grids

owned by the current task containing points owned by other tasks; t, u, v
integer arrays of length NT initialized to zero used to track the send
counts, send offsets, receive counts, and receive offsets, respectively.

Function CommunicateCellCounts()
u1 = n = ST

for p ∈ (0, 1, . . . , NP − 1) do
tp = tp−1 + Sp−1

up = pn
vp = n

end
MPI Alltoallv(C,S, t, . . . ,B, u, v, . . . , . . .)

return B

Function 3.12: GetCellIndices builds an array of the cells in each grid
containing a point from the local task, T , ordered by the G.Index. Returns
the array, J.

Data: J: an integer array of length 2NP initialized to zero. O an integer array
of length NG initialized to zero

Function GetCellIndices()
for i ∈ (1, 2, . . . , NG − 1) do

Oi = Oi−1 + Ci−1

end
for r ∈ L do

for p ∈ (0, 1, . . . , NP − 1) do
for i ∈ (1, 2) do

G = Gr,p,i

j = Ir,p,i
g = G.Index
k = Og

Jk = j
Og ++

end

end

end

return J
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Function 3.13: CommunicateCellIndices Returns K.
Data: K an integer array of length ΣBi with the indices of cells in grids owned

by the current task containing points owned by other tasks; s, t, u, v
integer arrays of length NT initialized to zero used to track the send
counts, send offsets, receive counts, and receive offsets, respectively.

Function CommunicateCellIndices()
m = n = 0 // iterators over the grid indices G.Index
for i ∈ (0, 1, . . . , NT − 1) do

si = 0 // send count for task i starts at 0

ui = 0 // recv count for task i starts at 0

for j ∈ (0, 1, . . . ,Si − 1) do
si+ = Cm // add up all local cell counts for grids owned

by task i
m++ //

end
for j ∈ (0, 1, . . . ,ST − 1) do

ui+ = Bn

n++

end

end
for i ∈ (1, 2, . . . , NT − 1) do

ti = ti−1 + si−1

vi = ui−1 + vi−1

end
MPI Alltoallv(J, s, t, . . . ,K, u, v, . . . , . . .)

return K
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Function 3.14: ReadInGrids, copying Nϕ from G.PhysicalFields to U using
the field map mi.

Data: U an array of floating point values with dimensions (Nϕ,ΣBi) holding
the request cell values; O an integer array of length StNT initialized to
zero used to track the offsets of the local task’s grid data in U.

Function ReadInGrids()
n = k = 0
for i ∈ (0, 1, . . . , NT − 1) do

for j ∈ (0, 1, . . . ,ST − 1) do
Ok = n
n+ = Bk

k ++

end

end
for i ∈ (0, 1, . . . ,ST − 1) do

G = Mi

for j ∈ (0, 1, . . . , NT − 1) do
g = jST + i
G.ReadCells(U,Bg,K, Og)

end

end

return U

Function 3.15: ReadCells populates the array of requested cells values, U,
from the physical fields of a grid.

Data: The grid’s physical fields, G.BaryonField; n, the number of cells
requested from this grid; o, the offset of this grid’s data in the request
array.

Function ReadCells(U : array of floating point numbers, n : integer,K :
array of integers, o : integer, )

for i ∈ (0, 1, . . . , Nϕ − 1) do
ϕ = mi

for j ∈ (0, 1 . . . , n− 1) do
k = Ko+j

Ui,o+j = G.BaryonField[ϕ][k]

end

end

60



Function 3.16: CommunicateCellValues distributes the cell values from the
owning tasks to the requesting tasks.

Data: K an integer array of length ΣBi with the indices of cells in grids owned
by the current task containing points owned by other tasks; s, t, u, v
integer arrays of length NT initialized to zero used to track the send
counts, send offsets, receive counts, and receive offsets, respectively.

Function CommunicateCellValues()
m = n = 0
for i ∈ (0, 1, . . . , NT − 1) do

si = 0
ui = 0
for j ∈ (0, 1, . . . ,Si − 1) do

si+ = Cm

m++

end
for j ∈ (0, 1, . . . ,ST − 1) do

ui+ = Bn

n++

end

end
for i ∈ (0, 1, . . . , NT − 1) do

ti = ti−1 + si−1

vi = ui−1 + vi−1

end
for i ∈ (0, 1, . . . , Nϕ − 1) do

MPI Alltoallv(Ui, s, t, . . . ,Vi, u, v, . . . , . . .)
end
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Function 3.17: ReadCellValues, Φ.

Data: Φ: floating point array with dimensions (NL, NT , 2, Nϕ) holding the
physical field values at each point. O, an integer array containing the
offsets of each grid’s data in V.

Function ReadCellValues()
for i ∈ (1, 2, . . . , NG − 1) do

Oi = Oi−1 + Ci−1

end
for r ∈ L do

for p ∈ (0, 1, . . . , NP − 1) do
for i ∈ (1, 2) do

G = Gr,p,i

g = G.Index
j = Og

Og ++
for ϕ ∈ (0, 1, . . . , Nϕ − 1) do

Φr,p,i,ϕ = Vϕ,j

end

end

end

end

return Φ
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3.7 CalculateValues & CalculatePDF

First, the name of the function CalculatePDF is unintentionally misleading, along

with the description of P as probability density functions. At best, these are simple binned

counts until they are normalized by the total counts and bin widths as described in Section

3.8 and Function 3.19.

During initialization, the arrays P are created and the edges of the PDF bins, Q,

are determined by both NB and a pre-defined upper and lower bound for each two-point

function, Ff,min and Ff,max. These bounds are difficult to determine a priori and were set

using values from measures at r = 0 (see Table 3.5 in Section 3.9.1). To track the number

of point pairs falling out of the range (Ff,min, Ff,max), integer counts of pairs greater or

less than the range of a given function are kept in Oo,f,r and Ou,f,r, respectively. Similarly,

running sums of the values and values squared are kept in the arrays Σµ,f,r and Σσ,f,r,

respectively, for each function and separation to be used to calculate the sample mean, µ̂f,r,

and variance, σ̂2
f,r, as part of the reduce step (see Section 3.8). By binning the results as

a PDFs, and not just measuring the expected value and variance, we can later estimate

higher-order moments of each function.

The functions CalculateValues and CalculatePDF are called at the end of MakePass

(Section 3.3.5). CalculateValues builds an array of “diffs”, δf,r,p for each function, f ,

separation, r, and point pair, p, i.e.,

δf,r,p = Ff (Φr,p,1,Φr,p,2) (3.15)

CalculatePDF then iterates over δ, symmetrically binning the values around 0 into

P, incrementing O to count any pairs outside the expected range of Ff , and updating

Σµ,f,r and Σσ,f,r. The process is shown in Function 3.18 for functions binned in log10 space
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around 0 using the values ∆f and ϵf , where by default ϵf = 10−5 and

∆f =
1

2

log10(Ff,max/ϵf )

NB

. (3.16)

3.7.1 Pseudocode

Function 3.18: CalculatePDF, P.
Function CalculatePDF()

for f ∈ F do
for r ∈ L do

for p ∈ (0, 1, . . . , NP − 1) do
if Ff,min ≤ δf,r,p ≤ Ff,max then

Σµ,f,r + = δf,r,p
Σσ,f,r + = (δf,r,p)

2

b = ⌊log10 (|δf,r,p| /ϵf ) /∆f⌋
if δf,r,p < 0 then

b = NB/2− b− 1
else

b + = NB/2
end
Pf,r,b + = 1

else
if δf,r,p < Ff,min then

Ou,f,r ++
else

Oo,f,r ++
end

end

end

end

end

return P
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3.8 Reduce & Write

Data reduction uses the MPI function MPI Allreduce, which can perform common

operations, such as summation, using input from all tasks. This is shown in Function

3.19, where the over-under, running sum, and PDF arrays are summed across all tasks and

normalized by the total effective point count for each function and separation, N∗
fr
, where

N∗
f,r = NΣ − (Ou,f,r +Oo,f,r). (3.17)

The values in P are then normalized by the bin widths to convert them from probability

mass functions to PDFs.

Pf,r,b

(Qf,r,b+1 −Qf,r,b)
→ Pf,r,b (3.18)

On task T0, the PDFs, over and under counts, etc., for each function are written out to

two files: a short text file with the parameters used, the over-under counts, and the sample

means; and an HDF5 file with all of the data collected, including the full P arrays.

3.8.1 Pseudocode

65



Function 3.19: Reduce
Data: R: one-dimensional array of length NL used to receive data; Q:

one-dimensional array of length NB used to receive data
Function Reduce()

N = NT ×NP ×NM

for f ∈ F do
MPI Allreduce(Ou,f , R,NL, . . . ,MPI SUM, . . .)
R → Ou,f

MPI Allreduce(Oo,f , R,NL, . . . ,MPI SUM, . . .)
R → Oo,f

MPI Allreduce(Sigmaµ,f , R,NL, . . . ,MPI SUM, . . .)
R → Σµ,f

MPI Allreduce(Σσ,f , R,NL, . . . ,MPI SUM, . . .)
R → Σσ,f

for r ∈ L do
MPI Allreduce(Pf,r, Q,NB, . . .MPI SUM, . . .)
Q → Pf,r

N∗ = N − (Ou,f,r +Oo,f,r)
Pf,r / = N∗

Σµ,f,r / = N∗

Σσ,f,r / = N∗

for b ∈ (0, 1, . . . , NB − 1) do
Pf,r,b / = (Qf,r,b+1 −Qf,r,b)

end

end

end

return
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3.9 Validity

A calculation that does not include a

calculation of its predictive skill is not

a legitimate scientific product

H. Tennekes

There are three important points to make when discussing the validity of the method:

• Validity in this context is whether or not SFgen measures what is intended. It is not

referring to any type of hypothesis testing, such as whether or not a scaling relation

is supported by the measurements.

• The measurements are only intended to generalize to a particular dataset. More

specifically, it does not address whether or not a particular measurement is stable

over time (Galanti and Tsinober 2004). The measurements could be used to evaluate

the stability or ergodicity of particular relations, but SFgen itself specifically works

at a point in time.

• SFgen also cannot infer whether or not the results generalize beyond the simulation.

That likelihood depends on how well the simulation models the desired physical

system.

Within a single dataset, the physical fields and two-point functions have extreme

variances and, except for density, do not follow well-defined distributions. However, while

there is an infinite number of points within a simulation volume, the samples are selected

from a finite population of grid cells and their pairs at a given r (see the estimates in Section

3.2). The samples are further constrained by the representation of the physical fields as

floating-point numbers, bounded by the number of bits used to represent the exponent

(“IEEE Standard for Floating-Point Arithmetic” 2019). Given this, the expected value,
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variance, and distribution exist for the two-point functions. The central limit theorem

ensures that any measurements through simple random sampling will approach the true

values of each.

This method relies on ensuring that each point pair is an independent and identically

distributed random variable so that an arbitrary level of precision can be achieved by

increasing the number of pairs sampled. There are four key elements to ensuring sample

independence in the method:

• the reliable determination of the most refined grid cell at a point (see Section 3.4);

• random selection of x1 (see Section 3.5.2 );

• and the spherically uniform random selection of the angles defining r̂ (also in Section

3.5.2 ).

The first element ensures that grid cells at every level of refinement are represented

proportionally to their volume minus the volume of their subgrids. The next two elements

use the parallel random number application, SPRNG (Mascagni and Srinivasan 2000). The

software uses SPRNG’s 64-bit linear congruential generator with prime addend (LCG64)

generator. This generator has a period of 264 and supports up to 108 distinct streams,

where a single stream is used on each task. This is more than sufficient for the number of

point pairs required.

Outside of this, the remaining factors impacting the method’s validity are the reliable

retrieval of the physical field values from the point pairs as input to the two-point functions

(see Section 3.6) and determining NΣ to achieve a desirable range for the standard error of

the mean, which is covered in the next section.
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3.9.1 Determing the Number of Samples from Variances

There are qualitative indicators of whether or not the number of samples for a given

two-point function was sufficient, the main one being that the measured relation should

be smooth and continuous along r. Even though there are local extreme values in some

fields, in particular, ∇ · u, the average along the separation eliminates those jumps. If

not enough points are sampled, however, the measured scaling may show sudden changes.

Likewise, while there is no guarantee a particular relation is monotonic with r, their forms

tend to are not suggestive of multiple extrema. In other words, the plots tend to go up or

go down, but not up and down repeatedly.

As an example, Figure 3.14 shows a plot of the flux correlation from Equation 5.10

(see also Chapter 5)

Φ(r) =
〈
(ρu · u′ρ′)u′

∥
〉
+
〈
ρu∥ρ

′〉 (3.19)

where is prime ′ is used to denote values from x2. The plots of Φ(r) in Figure 3.14 were

measured using different numbers of passes, NM = P ∈ (4, 16, 64, 256, 1024), while the

number of tasks (NT = 128) and point pairs (NP = 216) were held constant. The total

number of samples per pass were 223 ≈ 8.4× 106, for a range of NΣ ∈ (3.4× 107, 8.9× 1010).

The data came from a single dataset of the same 1, 0243 uniform grid simulation of

supersonic turbulence used in Chapters 4, 5, and 6, and was part of the validation process

for the publication of Chapter 5. The results from all 1, 364 passes were averaged to create

a somewhat “true” value, noted as ⟨Φt(r)⟩. The plots support a qualitative assessment

that P = 4 is insufficient, while P ≥ 256 may be adequate.

However, when considering a new scaling relation with an unknown distribution

from its combination of fields, it would be better to start with an initial estimate of NΣ

and adjust the number of samples based on actual data. To begin, we can define a target

level of precision, or confidence interval, based on the true (or population) mean for the
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Figure 3.14: ⟨ΦP⟩, for the different values of P, and the average over all 1364 passes. ∆
is the width of a grid cell where r = 1 = 1024∆.
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two-point function, µf,r, and the true (or population) variation σ2
f,r

µf,r = µ̂f,r ± re µf,r (3.20)

where re is an arbitrary “radius of error” to scale the precision. This is certainly ad hoc,

but when combined with the standard error of the mean and a standard score (z-score), it

provides a mechanism to guide the number of samples, i.e.,

µf,r = µ̂f,r ± zp
σ̂f,r√
NΣ

, (3.21)

where

zp =
√
2 erf−1(2p− 1). (3.22)

is the value from a normal distribution for a selected confidence level, p. The well-known

example is for a 95% confidence level, z0.95 = 1.96. Using Equations 3.20 and 3.21 we now

have an initial way to calculate a minimum for NΣ

NΣ ≥
(
zp
re

)2(
σ̂f,r

µ̂f,r

)2

(3.23)

This is not ideal since it is not valid as µf,r → 0, but it provides a starting point, which

can be used iteratively as the measurements of µ̂f,r and σ̂2
f,r become more precise. It also

shows that the number of samples depends on the ratio between the variance and the mean

squared.

This is practically useful for estimating the number of samples needed by substituting

the known means and variances for dimensionally similar single-point statistics. For many

scaling relations, this provides an upper limit on the number of samples needed for a given

level of precision since as the correlation between the inputs generally decrease with scale,

the magnitude of the variance from their products also decrease. Single-point statistics for
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Table 3.5: Single-point statistics for different fields and functions. Blanks are where the
expected value of the mean is 0.

Variable µ σ2 σ2

µ2 min max median κ

ρ 1 3 7 0.006 4× 102 0.5 5× 101

ρ2 4 2× 103 4× 105 4× 10−5 2× 105 0.3 6× 107

log(ρ) −0.6 1 4 −5 6 −0.6 −0.08
log(ρ2) −1 5 2× 101 −1× 101 1× 101 −1 −9
ux 0 2× 101 −1× 101 1× 101 −0.6 4× 101

uy 0 6 −9 8 −0.04 −0.3
uz 0 2× 101 −1× 101 1× 101 −0.8 4× 101

u = |u| 6 1× 101 3 0.004 2× 101 5 2× 102

u2 4× 101 2× 103 2× 103 1× 10−5 4× 102 3× 101 5× 105

u3 4× 102 4× 105 1× 106 5× 10−8 7× 103 1× 102 1× 109

ρ u 6 1× 102 3× 102 0.0006 2× 103 3 1× 104

ρ u2 4× 101 9× 103 5× 104 6× 10−6 2× 104 1× 101 1× 107

ρ u3 4× 102 1× 106 9× 106 3× 10−8 3× 105 7× 101 2× 1010

ρ2 u3 1× 103 3× 108 8× 1010 6× 10−9 3× 107 3× 101 1× 1015

∇ · u 0 1× 105 −2× 104 4× 103 6× 101 −1× 108

ρ∇ · u −3× 101 2× 106 4× 109 −2× 106 2× 105 2× 101 −4× 1011

ρu2∇ · u −1× 103 5× 109 1× 1013 −8× 107 1× 107 4× 102 −3× 1016

several variables are shown in Table 3.5, including the ratio σ2/µ2. Table 3.6 shows the

order of magnitude for the same terms. When combined with the magnitude of confidence

and precision term using a 95% confidence level and re = 0.1, O(z2p/r
2
e) ≈ 102, column

O(σ2/µ2) in Table 3.6 provide a reasonable scale of NΣ.

As an example, the two-point function for the third order density-weighted structure

function S3(r) shown in Equation 3.1 has the same dimensions as ρu3. Referring to Table

3.6 the quick estimate for the number of samples would be NΣ ≥ 108. For completeness,

the actual parameters for ρu3 are

µρu3 = ⟨ρu3⟩ = 365 (3.24)

σ2
ρu3 =

〈(
ρu3

)2〉− µ2
ρu3 = 1.11× 106 (3.25)

Entering these statistics into Equation 3.23, keeping the 95% confidence level and re = 0.1,
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Table 3.6: The same as Table 3.5, as order-of-magnitude estimates.

Variable O(|µ|) O(σ2) O(σ
2

µ2 ) O(|min|) O(|max|) O(|median|) O(|κ|)
ρ 100 100 100 10−3 102 10−1 101

ρ2 100 103 105 10−5 105 10−1 107

log(ρ) 10−1 100 100 100 100 10−1 10−2

log(ρ2) 100 100 101 101 101 100 100

ux 0 101 101 101 10−1 101

uy 0 100 100 100 10−2 10−1

uz 0 101 101 101 10−1 101

u = |u| 100 100 100 10−3 101 100 102

u2 101 103 103 10−5 102 101 105

u3 102 105 106 10−8 103 102 109

ρ u 100 102 102 10−4 103 100 104

ρ u2 101 103 104 10−6 104 101 107

ρ u3 102 106 106 10−8 105 101 1010

ρ2 u3 103 108 1010 10−9 107 101 1015

∇ · u 0 104 104 103 101 108

ρ∇ · u 101 106 109 106 105 101 1011

ρu2∇ · u 103 109 1013 107 106 102 1016

gives

NΣ ≥
(
zp
re

)2(σρu3

µρu3

)2

(3.26)

NΣ ≥
(
1.96

0.1

)2
1.11× 106

3652
(3.27)

NΣ ≥ 384× 9.23× 106 (3.28)

NΣ ≥ 3.55× 109 (3.29)

where an order of magnitude was gained from the product of the coefficients. Hopefully

this exercise and the tables provide more justification for the number of samples described

in Section 3.2 and the results chapters.

I’ll note two other aspects of the number of samples. First, re is the somewhat

free parameter to adjust the number of samples. However, the measurements of the

scaling relations are inputs to other analysis steps, like fitting to the predicted relations
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and calculating higher-order moments. Minimizing (within practical limits) the standard

error from the sampling process reduces the propagated error. Second, the method is

constrained by the total number of point pairs, not the number of scaling relations or

two-point functions. So NΣ is set to handle the worst-case scenario, that is, the products

with large variances compared to their mean, such as ∇ · u. The benefit of this is that

inputs with less extreme ranges have even greater precision.

3.9.2 Convergence Study

To finish the discussion of the method’s validity, let’s return to the qualitative

assessment of Figure 3.14. Dimensionally, Φ(r) is ρ2u3, and from Table 3.6 an initial guess

for NΣ is 1012 at z0.95 and re = 0.1, while Figure 3.14 show that the sampling may have

been sufficient at NΣ ≈ 1010. As confirmation that we are within the intended precision,

we can define a measurement of the error at each separation and sample count, EP(ri),

using the absolute deviation, as shown in Equation 3.30.

EP(ri) = |⟨ΦP(ri)⟩ − ⟨Φt(ri)⟩| (3.30)

This can be extended to an average over all of the separations to give a rough guide to how

well the number of point pairs is capturing the true value of Φ (see Equation 3.31).

ϵP =
1

7

7∑

i=1

EP(ri) (3.31)

Finally, Equation 3.32 is the average error radius for Φ across the separations and the

target level of precision.

ϵt =
1

7

7∑

i=1

|re⟨Φt(ri)⟩| = 0.069 (3.32)

Depending on the accuracy and precision of ⟨ΦP ⟩, ϵP should diminish with σ̂2
f,r like
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Table 3.7: Sampling convergence. Horizontal line indicates the radius of error goal of
ϵP ≤ ϵt = 0.069

NM ϵP ϵ4P/ϵP
4 0.479
16 0.297 0.62
64 0.133 0.45
256 0.055 0.42
1024 0.030 0.55

1/
√
NΣ, or 1/2 for each factor of four increase of NΣ used in this example. Indeed, this

is shown in Table 3.7, using the ratio of ϵ4P and ϵP. As noted above, the target precision

threshold, ϵt was reached at P = 256. To complete the convergence study, Figure 3.15

shows both EP(ri) and ϵP.
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Figure 3.15: Average absolute deviation from ⟨Φt⟩. The solid lines show the average of
the error over ri.
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3.9.3 Summary

In summary, the sampling method in SFgen follows the central limit theorem for the

finite population of values drawn from a simulation dataset. Upper bounds on the number

of samples required to achieve an arbitrary level of precision can be estimated using the

variances from single-point statistics. Evaluations of the standard errors from sampling

show the expected 1/
√
n behavior, where n is the total number of samples.

3.10 Performance & Scaling

I’ll conclude this chapter with a summary of some performance data. Overall, the

method spends ≳ 65% of its time generating points, calculating values for each two-point

function, and binning values in P, while ≈ 10% of the time is used for communications.

The remainder of the time is used to handle data, like building the ordered arrays of cell

indices for the requests, and ≈ 15% going to data wrangling in Functions ReadCellValues

(3.17) and ReadInGrids (3.14). Weak scaling was assessed by comparing the performance for

64 and 512 tasks, which showed an ≈ 4% increase in the average time per pass. This shows

that the method is well suited for generating large numbers of samples through increased

parallelism and for inclusion in large-scale parallel applications.
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Chapter 4

Scaling Laws and Intermittency in

Highly Compressible Turbulence

Abstract

We use large-scale three-dimensional simulations of supersonic Euler turbulence to

study the physics of a highly compressible cascade. Our numerical experiments describe

non-magnetized driven turbulent flows with an isothermal equation of state and an rms

Mach number of 6. We find that the inertial range velocity scaling deviates strongly

from the incompressible Kolmogorov laws. We propose an extension of Kolmogorov’s

K41 phenomenology that takes into account compressibility by mixing the velocity and

density statistics and preserves the K41 scaling of the density-weighted velocity v ≡ ρ1/3u.

We show that low-order statistics of v are invariant with respect to changes in the Mach

number. For instance, at Mach 6 the slope of the power spectrum of v is −1.69 and the

third-order structure function of v scales linearly with separation. We directly measure the

mass dimension of the “fractal” density distribution in the inertial subrange, Dm ≈ 2.4,

which is similar to the observed fractal dimension of molecular clouds and agrees well with
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the cascade phenomenology.

4.1 Introduction

In the late 1930’s, Kolmogorov clearly realized that chances to develop a closed

purely mathematical theory of turbulence are extremely low (Kolmogorov 1985).1 Therefore,

the basic approach in Kolmogorov (1941a,c) (usually referred to as the K41 theory) was to

rely on physical intuition and formulate two general statistical hypotheses which describe

the universal equilibrium regime of small-scale fluctuations in arbitrary turbulent flow at

high Reynolds number. Following the Landau (1944) remark on the lack of universality

in turbulent flows (Landau and Lifshitz 1987), and with information extracted from new

experimental data, the original similarity hypotheses of K41 were then revisited and refined

to account for intermittency effects (Dubrulle 1994; Kolmogorov 1962; She and Leveque

1994). While the K41 phenomenology became the cornerstone for all subsequent develop-

ments in incompressible turbulence research (e.g., Frisch 1995), there was no similar result

established for compressible flows yet (Friedrich 2007; Lele 1994). Historically, compress-

ible turbulence research, preoccupied with a variety of specific engineering applications,

was generally lagging behind the incompressible developments.2 The two major reasons

for this time lag were an additional complexity of analytical treatment of compressible

flows and a shortage in experimental data for super- and hypersonic turbulence. In this

respect, although limited to relatively low Reynolds numbers, direct numerical simulations

(DNS) of turbulence (pioneered by Orszag and Patterson 1972) have occupied the niche of

1“An understanding of solutions to the [incompressible] Navier-Stokes equations” yet remains one of the
six unsolved grand challenge problems nominated by the Clay Mathematics Institute in 2000 for a $1M
Millennium Prize [http://www.claymath.org/millennium/].

2A reasonable measure of the delay is 60+ years passed between the appearance of incompressible
Reynolds averaging (Reynolds 1895) and mass-weighted Favre averaging for fluid flows with variable density
(Favre 1958), although see Lumley and Yaglom (2001) for references to a few earlier papers that dealt with
density-weighted averaging.
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Figure 4.1: Time average compensated power spectra (left) and third-order transverse
structure functions (right) for velocity u and mass-weighted velocities v ≡ ρ1/3u and
w ≡ ρ1/2u. The statistics of v clearly demonstrate a K41-like scaling. Notice strong
bottleneck contamination in the spectra at high wavenumbers.

experiments at least for the most simple flows. One particularly important advantage of

DNS is an easy access to variables that are otherwise difficult to measure in the laboratory

or treat analytically.

A traditionally straightforward approach to data analysis from DNS of compressible

turbulence includes computation of the “standard” statistics of velocity fluctuations. In

addition, the diagnostics for density fluctuations are also computed and discussed as the

direct measures of compressibility. Quite naturally, both density and velocity statistics

demonstrate strong dependence on the Mach number M in supersonic (M ∈ [1, 3]) and

hypersonic (M > 3) regimes, while the variations in turbulent diagnostics at sub- or

transonic Mach numbers are rather small. For instance, at M ≈ 1 the velocity power

spectrum closely follows the K41 scaling and the third order velocity structure functions

scale roughly linearly with separation (Porter, Pouquet, and Woodward 2002). The

density power spectrum in weakly compressible isothermal flows scales as ∼ k−7/3 (Bayly,

Levermore, and Passot 1992), at M ≈ 1 it scales as ∼ k−1.7 (Kritsuk et al. 2007b), and at

M ≈ 6 the slope is −1.07 (Kritsuk et al. 2007b).

Based on the data from numerical experiments, it is well established that: (i) the

velocity power spectra tend to get steeper as the Mach number increases, reaching the
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Burgers slope of −2 asymptotically Biskamp 2003, and references therein; (ii) the density

power spectra instead get shallower at high Mach numbers, approaching a slope of −1 or

even shallower (Kritsuk, Norman, and Padoan 2006); (iii) the density PDF in isothermal

turbulent flows is well represented by a lognormal distribution Biskamp 2003, and references

therein; (iv) the dimensionality of the most singular velocity structures increases from

Ds,u ∼ 1 in a subsonic regime to Ds,u ∼ 2 in highly supersonic (Padoan et al. 2004); (v) the

mass dimension of the turbulent structures decreases from Dm = 3 in weakly compressible

flows to Dm ∼ 2.5 in highly compressible (Kritsuk et al. 2007b).

How can we combine these seemingly disconnected pieces of information into a

coherent physical picture to improve our understanding of compressible turbulence? One

way to do this is to consider a phenomenological concept of a lossy compressible turbulent

cascade that would asymptotically match the incompressible Kolmogorov-Richardson

energy cascade (Kolmogorov 1941c; Richardson 1922) in the limit of very low Mach

numbers. Since incompressible turbulence represents a degenerate case where the density

is uncorrelated with the velocity, the phenomenology of the compressible cascade must

include this correlation. This essentially means that instead of velocity u, which is a single

key ingredient of the K41 laws, one needs to consider a set of mixed variables, ρ1/ηu, where

ρ is the density and η can take values 1, 2, or 3, depending on the statistical measure of

interest (Kritsuk et al. 2007b). For instance, if one is studying the scale-by-scale kinetic

energy budget in a compressible turbulent flow, a mixed variable power spectrum with

η = 2 would be an appropriate choice. To deal with the kinetic energy flux through the

hierarchy of scales within the inertial range, the key mixed variable would be the one with

η = 3.

How will these mixed statistics scale in the inertial range of highly compressible tur-

bulent flows? Will their scaling depend on the Mach number? Can the K41 phenomenology

be extended to cover hypersonic turbulent flows? These and other related questions are in

81



detail discussed in Kritsuk et al. (2007b) based on Euler simulations of driven isotropic

supersonic turbulence with the Piecewise Parabolic Method Colella and Woodward (1984)

and with resolution up to 20483 grid points. In this paper we present the highlights of the

compressible cascade phenomenology verified in Kritsuk et al. (2007b).

4.2 Scaling, Structures, and Intermittency

Nonlinear interactions transfer kinetic energy supplied to the system at large scales

through the inertial range with little dissipation. Let us assume that the mean volume

energy transfer rate in a compressible fluid, ρu2u/ℓ, is constant in a statistical steady state

e.g., Lighthill 1955. If this is true, then

vp ≡ (ρ1/3u)p ∼ ℓ p/3 (4.1)

for an arbitrary power p and, with the standard assumption of self-similarity of the cascade,

the structure functions (SFs) of mixed variable v for compressible flows should scale in the

inertial range as

Sp(ℓ) ≡ ⟨|v(r + ℓ)− v(r)|p⟩ ∼ ℓ p/3. (4.2)

In the limit of weak compressibility, the scaling laws (4.2) will reduce to the K41

results for the velocity structure functions. The scaling laws Sp(ℓ) ∼ ℓζp , where ζp = p/3 are

not necessarily exact. As the incompressible K41 scaling, they are subject to “intermittency

corrections”, e.g. ζp = p/3 + τp/3 (Kolmogorov 1962). The only exception is, perhaps, the

third order relation for the longitudinal velocity SFs, which is exact in the incompressible

case and is known as the four-fifth law (Kolmogorov 1941a). Our focus here is mostly

on the low order statistics (p ≤ 3) for which the corrections are small. Since the power

spectrum slope is related to the exponent of the second order structure function, the K41
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Figure 4.2: Gas mass M(ℓ) as a function of the box size ℓ (left). The mass dimension Dm is
defined as the log-log slope of M(ℓ), see eq. (4). Relative exponents for structure functions
of the transverse modified velocities v versus order p and two hierarchical structure models
with different parameters HS1 & HS2, She and Leveque 1994 that fit the data for p ∈ [0, 3]
(right). Also shown are model predictions for the Kolmogorov-Richardson cascade (K41,
Kolmogorov 1941a,c), for intermittent incompressible turbulence SL94, She and Leveque
1994, for “burgulence” Burg, Bec and Khanin 2007, and for the velocity fluctuations in
supersonic turbulence B02, Boldyrev 2002.

slope of 5/3 is expected to hold for v ≡ ρ1/3u in the compressible case.

Figure 4.1 shows the power spectra of u, v, and w ≡ ρ1/2u and the corresponding

third-order transverse structure functions based on the simulations at Mach 6 (Kritsuk

et al. 2006; Kritsuk et al. 2007b). The power spectrum Σ(k) and the structure function of

v clearly follow the K41 scaling: Σ ∼ k−1.69 and S3 ∼ ℓ1.01 (Kritsuk et al. 2007b), while the

velocity power spectrum E(k) and structure function have substantially steeper-then-K41

slopes: −1.95 and 1.29 (Kritsuk et al. 2006). At the same time, the kinetic energy spectrum

E ∼ k−1.53 is shallow and both solenoidal and dilatational components of w have the same

slope implying a single compressible energy cascade with strong interaction between the

two components (Kritsuk et al. 2007b). These results based on the high dynamic range

simulations lend strong support to the scaling relations described by eq. (4.2) and to the

conjecture from which they were inferred. Previous simulations at lower resolution did not

allow to measure the absolute exponents reliably due to insufficient dynamic range and

due to the bottleneck contamination (Zakharov, L’Vov, and Falkovich 1992).
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Figure 4.3: Coherent structures in Mach 6 turbulence at resolution of 10243. Projections
along the minor axis of a subvolume of 700× 500× 250 zones for the density (upper left),
the enstrophy (upper right), the dissipation rate (lower left), and the dilatation (lower
right). The logarithmic grey-scale ramp shows the lower values as dark in all cases except
for the density. The inertial subrange structures correspond to scales between 40 and 250
zones and represent a fractal with Dm ≈ 2.4. The dominant structures in the dissipation
range (ℓ < 30∆) are shocks with Dm = 2. [Reprinted from Kritsuk et al. (2007b).]
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In 1951, von Weiszäker (von Weizsäcker 1951) introduced a phenomenological model

for scale-invariant hierarchy of density fluctuations in compressible turbulence described by

a simple equation that relates the mass density at two successive levels to the corresponding

scales through a universal measure of the degree of compression, α,

ρn/ρn−1 = (ℓn/ℓn−1)
−3α . (4.3)

The geometric factor α takes the value of 1 in a special case of isotropic compression in three

dimensions, 1/3 for a perfect one-dimensional compression, and zero in the incompressible

limit. From equations (4.1) and (4.3), assuming mass conservation, Fleck (1996) derived a

set of scaling relations for the velocity, specific kinetic energy, density, and mass:

u ∼ ℓ1/3+α, E(k) ∼ k−5/3−2α, ρ ∼ ℓ −3α, M(ℓ) ∼ ℓDm ∼ ℓ 3−3α, (4.4)

where all the exponents depend on the compression measure α which is in turn a function

of the rms Mach number of the turbulent flow. We can now use the data from numerical

experiments to verify the scaling relations (4.4). Since the first-order velocity structure

function scales as ℓ0.54 (Kritsuk et al. 2007b), we can estimate α for the Mach 6 flow,

α ≈ 0.21. Using the last relation in (4.4), we can calculate the mass dimension for the

density distribution, Dm ≈ 2.38. It is indeed consistent with our direct measurement of

the mass dimension for the same range of scales, Dm ≈ 2.39, see Fig. 4.2.

In strongly compressible turbulence at Mach 6, the density contrast between su-

personically moving blobs and their more diffuse environment can be as high as 106. The

most common structural elements in such highly fragmented flows are nested bow-shocks

(Kritsuk, Norman, and Padoan 2006). Figure 4.3 shows an extreme example of structures

formed by a collision of counter-propagating supersonic flows. On small scales within the

dissipation range, these structures are characterized by Dm = 2, while within the inertial
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range Dm ≈ 2.4 (Fig. 2, left). The hierarchical structure (HS) model

ζp/ζ3 = γp+ C(1− βp) (4.5)

She and Leveque (1994) provides good fits to the data for the mass-weighted velocity v

(see Fig. 2, right). Here the codimension of the support of the most singular dissipative

structures

C ≡ 3−Ds,v = (1− 3γ)/(1− β3). (4.6)

If the fit is limited to p ∈ [0, 3], two sets of model parameters β and γ are formally

acceptable (models HS1 and HS2 in Fig. 2). The best-fit parameters of the HS1 model:

β3
1 = 1/3 (a measure of intermittency), γ1 = 0 (a measure of singularity of structures),

and C1 = 1.5 correspond to a hybrid between the B02 model for the velocity fluctuations

(β3
B02 = 1/3, γB02 = 1/9) (Boldyrev 2002) and the Burgers’ model (βBurg = 0, γBurg = 0)

(Bec and Khanin 2007). The HS2 model (β3
2 = 1/6, γ 2 = 1/9, and C2 = 0.8) provides a fit

of roughly the same quality for p ∈ [0, 3], but overestimates the scaling exponents ζp at

p > 4. Since the level of uncertainty in the high order statistics remains high even at a

resolution of 10243 grid points, larger dynamic range simulations are needed to distinguish

between the two options.

If the HS1 option is confirmed, then Mach 6 turbulence is more intermittent than

incompressible turbulence (β3
1 < β3

SL94 = 2/3) and has the same degree of singularity

of structures as burgulence. The singular dissipative structures with fractal dimension

Ds,v = 1.5 can be conceived as perforated sheets reminiscent of the Sierpinski sieve. If the

HS2 option is justified, then turbulence at Mach 6 is even more intermittent, but has the

same degree of singularity of structures as incompressible turbulence (γ2 = γSL94). In this

case the fractal dimension of the most singular structures, Ds,v = 2.2, is slightly higher

than in the B02 model (Boldyrev 2002). Formally, it is also possible that both types of

86



structures are present in highly compressible turbulence, implying multiple modulation

defects and a compound nature of Poisson statistic cf. She and Waymire 1995. In this case,

a linear combination of HS1 and HS2 models would describe the high order exponents best.

4.3 Conclusion

Using large-scale Euler simulations of supersonic turbulence at Mach 6 we have

demonstrated that there exists an analogue of the K41 scaling laws valid for both weakly

and highly compressible flows. The mass-weighted velocity v ≡ ρ1/3u – the primary variable

governing the energy transfer through the cascade – should replace the velocity u in

intermittency models for compressible flows at high Mach numbers.

Chapter 4, in full, is a reprint of “Scaling Laws and Intermittency in Highly

Compressible Turbulence”, which was published in 2007 in AIP Conference Proceedings,

volume 932, page 393, by Alexei G. Kritsuk, Paolo Padoan, Rick Wagner, and Michael L.

Norman. Reproduced with the permission of AIP Publishing. The dissertation author was

the third investigator and author of this paper.
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Chapter 5

Flux Correlations in Supersonic

Isothermal Turbulence

Abstract

Using data from a large-scale three-dimensional simulation of supersonic isothermal

turbulence, we have tested the validity of an exact flux relation derived analytically from the

Navier–Stokes equation by Falkovich, Fouxon and Oz [2010 New relations for correlation

functions in Navier–Stokes turbulence. J. Fluid Mech. 644, 465]. That relation, for

compressible barotropic fluids, was derived assuming turbulence generated by a large-scale

force. However, compressible turbulence in simulations is usually initialized and maintained

by a large-scale acceleration, as in gravity-driven astrophysical flows. We present a new

approximate flux relation for isothermal turbulence driven by a large-scale acceleration,

and find it in reasonable agreement with the simulation results.
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5.1 Introduction

An important rigorously derived result in the statistical theory of incompressible

turbulence is Kolmogorov’s four-fifths law (Kolmogorov 1941a)

〈
[δu∥(r)]

3
〉
= −4

5
ϵr, (5.1)

where

δu∥(r) ≡ [u(r)− u(0)] · r/r (5.2)

is the longitudinal velocity difference between two points, 0 and r, separated by a distance

r = |r|, and ϵ is the mean energy dissipation rate. The four-fifths law is well supported

experimentally and has been traditionally interpreted as a signature of a direct kinetic

energy cascade within the inertial range of scales. Recent work by Falkovich, Fouxon, and

Oz (2010, hereafter FFO), reinterprets the Kolmogorov relation in terms of currents and

densities of the conserved quantities. From this new perspective, FFO derived an analytic

scaling relation for barotropic flows with an arbitrary degree of compressibility, based on

the correlation of currents and conserved fluxes in the inertial range.

There are few analytic relations proposed for compressible turbulence, e.g., the

relation for an isothermal gas based on an effective energy transfer rate (Galtier and

Banerjee 2011), and the lack of experimental results at high turbulent Mach numbers

makes verification of such relations challenging. While supersonic turbulence is observed

in molecular clouds (Heyer and Brunt 2004), and is believed to play an important role in

star formation (McKee and Ostriker 2007), observations are limited by available angular

resolution, projection and finite optical depth effects (Elmegreen and Scalo 2004). At

present, numerical experiments provide the best route for testing theories of compressible

turbulence (Benzi et al. 2008; Brandenburg and Nordlund 2011; Kitsionas et al. 2009;
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Kritsuk et al. 2011; Sytine et al. 2000). Three-dimensional numerical simulations show

that even at very high Mach numbers, a compressible energy cascade can be recovered

with a proper density weighting, ρ1/3u (Kritsuk et al. 2007a; Kritsuk et al. 2007b; Pan,

Padoan, and Kritsuk 2009). Aluie, Li, and Li (2012) have recently presented evidence from

simulations for pressure-dilatation action at large scales, and kinetic energy transfer to the

dissipation scale via a conservative cascade, supporting an earlier analytical proof of the

locality of kinetic energy transfer in compressible turbulence (Aluie 2011).

In this article, we use data from a simulation of supersonic isothermal turbulence to

analyze the exact relation for compressible fluids from FFO. We are particularly interested

in evaluating the role of the properties of the force that acts as a source of momentum and

energy to compensate for the dissipation losses. We discuss the limitations implied by the

assumptions used in the FFO derivation and present a new approximate scaling relation

appropriate for the driving commonly used in numerical experiments on compressible fluid

turbulence (e.g., Kritsuk et al. 2007b; Porter, Pouquet, and Woodward 2002; Schmidt,

Federrath, and Klessen 2008; Wang et al. 2010).

5.2 Flux Correlations

A general relation is derived in FFO, along with a particular case for compressible

turbulence in a barotropic fluid, both of which are based on two-point statistics in the

inertial range. The lower limit of r where the relations are expected to hold is the scale

where dissipation is negligible, while the upper limit is the correlation length of the force.

The correlations involve the densities qa, currents ja, fluxes F a
i , and sources (forcing) fa;

the sources are assumed to be random, statistically stationary, spatially homogeneous,

and isotropic. Beginning with the governing equations, and eliminating terms tied to
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dissipation, a relation involving the densities, fluxes, and forcing is derived:

∇i ⟨qa(0, t)F a
i (r, t)⟩ = ⟨qa(0, t)fa(r, t)⟩ , (5.3)

see FFO for more detail.

In order to eliminate the scale dependence on the right-hand side of (5.3), the

authors assume that on scales much smaller than the correlation length (r ≪ L), the force

is approximately constant,

fa(0, t) ≈ fa(r, t). (5.4)

Therefore, in the inertial range, the correlation of a density and its source is also approxi-

mately constant,

⟨qa(0, t)fa(r, t)⟩ ≈ ⟨qa(0, t)fa(0, t)⟩ ≡ ϵ̄a. (5.5)

Note that this ansatz is essentially carried over from the incompressible case, where there

is no distinction between the large-scale acceleration and large-scale force since the density

is constant. (While we recognize that the assumption of large-scale force per unit volume

is possibly the only viable path to a rigorously derived relation–Galtier and Banerjee

(2011) also relied on the same constraint to come up with an alternative relation for a

compressible case–we emphasize that driving variable-density flows with a large-scale force

would have a nontrivial effect on the turbulence statistics and eliminate the inertial range

in the traditional sense, with respect to the fluid velocity.) Substituting ϵ̄a into (5.3) gives

the correlation function

∇i ⟨qa(0)F a
i (r)⟩ = ϵ̄a, (5.6)

and assuming isotropy, FFO derive the exact scaling relation in a vector form:

⟨qa(0)F a
i (r)⟩ =

ϵ̄ari
d

, (5.7)
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where d is the number of spatial dimensions.

In the case of a barotropic fluid, the densities are q = (ρu, ρ), and the fluxes are

F j
i = ρuiuj + p(ρ)δij for i, j = 1, . . . , d, while F d+1

i = ρui. When dissipation is neglected,

the governing equations are the forced Euler equations:

∂tρ+∇ · (ρ u) = 0, (5.8)

∂t(ρui) + ∂j(ρuiuj + pδij) = f i. (5.9)

Substituting the densities, fluxes, and forcing into (5.7) gives a relation for isothermal

turbulence when p = ρ,

Φ(r) ≡
〈
[ρ(0)u(0) · u(r)ρ(r)]u∥(r)

〉
+
〈
ρ(0)u∥(0)ρ(r)

〉
=

ϵ̄r

d
, (5.10)

where u∥ = u · r/r is the longitudinal velocity,

ϵ̄ = ⟨ρ(0)u(0) · f(0)⟩ , (5.11)

and we have taken the scalar product of both sides of (5.7) with r/r to get (5.10) in a more

convenient scalar form. Unlike ϵ in (5.1), ϵ̄ is the injection rate of momentum squared,

not energy. However, in the incompressible limit, the vector form of (5.10) reduces to a

third-order velocity correlation function implying (5.1).

In numerical experiments of compressible turbulence, the flow is traditionally driven

by a large-scale acceleration a, such that f = ρa, while the exact flux relation (5.10)

was derived under the assumption that f is a smooth, large-scale, field. As noted in

FFO, physically, f may come from a gradient of potential (e.g., external gravitational

acceleration, i.e. f = ρ∇ϕ or a = ∇ϕ). The decorrelation and small-scale variations of

the density at high Mach number make this an important point, as acceleration-driven
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turbulence is important in astrophysics and other areas, such as turbulent convection.

Let us suggest a new flux relation appropriate for this case. Now, instead of

the constant ϵ̄ in (5.11) we shall have the two-point fourth-order correlation function

⟨ρ(0)ρ(r)u(0) · a(r)⟩, which is scale-dependent. The character of this scale-dependence

can be found in the particular case of an acceleration short-correlated in time, when

⟨ai(t)aj(0)⟩ = εijδ(t). The average of the product of any quantity U{a} and a white

noise a is expressed by the formula of Gaussian integration via a variational derivative:

⟨U{a}ai⟩ = εij⟨δU/δaj⟩. In the correlation function we consider, it is the velocity field

which is related to the acceleration (by the equation dui/dt − ui∇ · u = ai) so that

⟨δui(t)/δaj(t
′)⟩ = δijθ(t− t′) where the last factor is the step function. We now obtain

⟨ρ(0)ρ(r)u(0) · a(r)⟩ = ⟨ρ(0)ρ(r)⟩ ε̄ (5.12)

where ε̄ = ⟨u(0) · a(0)⟩. Since the acceleration is a large-scale field, then a two-point

velocity-acceleration correlation function can be replaced by a single-point one. Let us

stress that the constant ε̄ is neither the total energy input nor the work of the external

acceleration.

Of course, in the physical situations of interest, as well as in simulations, the

acceleration cannot be considered short-correlated in time. In this case, the effective

decoupling of the fourth moment into the product of second moments expressed by (5.12) is

not an exact relation but can be suggested as a plausible approximation. We thus come to

the generalization of the flux relation in the following form (up to an order-unity constant):

∇rΦ(r) ≃ ⟨ρ(0)ρ(r)⟩ε̄. (5.13)

For isothermal turbulence driven by a large-scale acceleration, (5.13) provides an ap-

proximate relation connecting the scaling of Φ(r) with that of ⟨ρ(0)ρ(r)⟩ in the intertial
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range.

5.3 Experimental Verification

To appraise the relations from FFO, we have used data from a simulation designed

to study the inertial range statistics of highly compressible turbulence (Kritsuk et al.

2007b). The simulation was performed with an implementation of the piecewise parabolic

method (Colella and Woodward 1984) in the Enzo code (Norman et al. 2007). The forced

Euler equations for an isothermal gas, (5.8) and (5.9), were solved numerically in a cubic

periodic domain with a linear size of L = 1 along each axis, and covered by a uniform

Cartesian grid of 10243 zones, each having sides of length ∆ = L/1024. The turbulent rms

Mach number, M = 6, and a steady rate of energy injection were maintained by a random

acceleration field with power limited to wavenumbers k/kmin ∈ [1, 2], where kmin = 2π/L.

The spatially fixed acceleration field was normalized at every time step so that ⟨ρu ·a⟩ was

constant; the normalization factor had a standard deviation of ∼ 5% during the simulation.

For this work, we used 43 full data snapshots evenly distributed in time in the range

t/τ ∈ [6, 10], where the flow crossing (large eddy turnover) time, τ ≡ L/2M , assumes the

sound speed of unity. For each snapshot, we computed ϵ̄, ε̄, and evaluated Φ(r) for 16

discrete r-values in the range r/∆ ∈ [8, 128], using 232 ≈ 4× 109 random point pairs for

each value of r.

To evaluate the role of various assumptions concerning the forcing and assess the

hypotheses employed by FFO, we compare Φ based on the exact forms (5.6) and (5.10) with

an approximate expression based on (5.13). We begin by examining the spatial distribution

of the force and acceleration in the lower right-hand panels of figure 5.1, which show the

values of the x component of a and f ′, in a slice through the simulation volume at x = 0,

where f ′ ≡ ρ/ρ̄a is the force normalized by the average density. A more quantitative
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Figure 5.1: Slices of several instantaneous dynamical fields through the plane x = 0:
(a) logarithm of the normalized density field log10(ρ/ρ̄) ; (b) velocity field ux (velocity is
normal to the image plane); (c) normalized momentum p′x = ρ/ρ̄ ux; (d) acceleration field
ax; (e) normalized force f ′

x = ρ/ρ̄ ax. N.B.: To account for the distribution of the density
field, the colour maps used for p′x and f ′

x are highly compressed around 0.
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Figure 5.2: Power spectra of the driving acceleration, a (solid black line), and the
normalized force, f ′ = ρa/ρ̄ (solid grey line), from a single flow snapshot.
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Figure 5.3: Dots: time-averaged density correlation; the standard error of the mean of
⟨ρ(0)ρ(r)⟩ is < 0.02. Dashed line: best fit to the data points with a log(r/b) in the range
r/∆ ∈ [20, 90], as indicated by the vertical grey lines.

assessment can be found in figure 5.2, which shows the power spectra of both a and f ′. The

power spectrum of a falls off at k/kmin > 2, while the spectrum of f ′ slowly decreases with

k, and the two are separated by several orders of magnitude above k/kmin ≈ 2. Further,

we measure ϵ̄ = 589, ε̄ = 149, ⟨ρ2⟩ = 3.74, and find that

〈
ρ2
〉
ε̄ = 0.95 ϵ̄, (5.14)

supporting the decoupling suggested in (5.12). This decoupling, combined with the features

of f shown by figures 5.1 and 5.2, indicates that the assumption of an approximately

constant force does not hold in the simulation, as expected.

Next, we will compare Φ to the scaling from (5.13). We find that the density
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correlation is well approximated by a logarithmic form:

⟨ρ(0)ρ(r)⟩ ≃ a log
(r
b

)
(5.15)

with a = −0.46± 0.001 and b = 2.04± 0.01 when fitted in the range r/∆ ∈ [20, 90] (see

figure 5.3). This is expected from the density power spectrum approximately following

∼ k−1 at this particular turbulent Mach number (Kritsuk et al. 2007b). Substituting (5.15)

into (5.13) and integrating radially from 0 to r assuming isotropy, we have

Φ(r) ≃ aε̄

9

[
3 log

(r
b

)
− 1

]
r. (5.16)

Note that (5.16) is a good approximation only for turbulence at M = 6. Simulations with

different Mach numbers will have density power spectra with different slopes, and their

density correlations will have different forms.

Figure 5.4 shows the time-averaged Φ(r), the expected scaling for a large-scale

force using (5.10), and the expected scaling based on a large-scale acceleration and our

approximation (5.16). The accuracy of the approximate flux relation can be assessed in

figure 5.5, where we show Φ(r) normalized by the right-hand side of (5.16), using the values

fitted to the density correlation. The right-hand side of (5.16) follows the actual measured

Φ(r) within ±5% in the range r/∆ ∈ [10, 100], somewhat underestimating Φ at the lower

end of the range, and overestimating it as r increases; this behaviour can be predicted as

the assumed approximations break down for two different reasons. First, from (5.14), the

density correlation and injection rate of specific kinetic energy are not totally decoupled;

this may account for (5.13) underestimating Φ at small scales. Second, as r approaches

L/2, ⟨u(0) · a(r)⟩ → 0, and as (5.4) breaks down, a constant ε̄ on the right-hand side

of (5.13) causes it to excede Φ(r). This departure by Φ(r) from (5.16) at large scales is

determined by the numerical resolution and driving scales; given a similar simulation with
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Figure 5.4: Dots: time-averaged measure of Φ(r); the error bars show the standard error
of the mean. Solid line: expected scaling based on a large-scale force. Dashed line: expected
approximate scaling based on the density correlation. Note that the dashed line is not a fit
to the Φ(r) points, but shows the right-hand side of (5.16) with parameters determined by
the best fit to the density correlation (5.15) shown in figure 5.3.
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Figure 5.5: Time-averaged measure of Φ(r) normalized by the expected approximate
scaling (5.16). The dashed grey lines show ±5% tolerance levels.
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higher numerical resolution, we would expect the agreement to scale relative to the smallest

driving scale.

5.4 Conclusion

We find that the approximate relation we derived for supersonic isothermal tur-

bulence driven by a large-scale acceleration field (5.13) agrees reasonably well with the

simulation results within a sufficiently wide range of scales consistent with the inertial range

presence established in Kritsuk et al. (2007b). This implies support for the original FFO

exact relation (5.3), so it can be anticipated that in a system where (5.5) holds, the exact

relation (5.10) will be satisfied as well. Therefore, figures 4 and 5 demonstrate the strong

sensitivity of the flux correlations in supersonic isothermal turbulence to the nature of

forcing supporting the statistically stationary state. Such sensitivity has been observed in a

similar context of the forced one-dimensional Burgers equation, where an invasive random

force with a ∝ k−1 spectrum (compare with the grey line in figure 5.2) would produce a

non-universal bifractal scaling (Mitra et al. 2005). Likewise, Bahraminasab et al. (2008)

showed that the same Burgers system driven by a force with large-scale correlation in space

and with a Wiener scaling in time exhibits a non-universal scaling for time increments

larger than the correlation time of the force. Comparison with other relations and results

addressing energy transfer in compressible turbulence (Aluie 2011; Aluie, Li, and Li 2012;

Galtier and Banerjee 2011) will help us to understand whether non-universality, observed

here due to the driving mechanism, is a more general property of highly compressible flows.

Chapter 5, in full, is a reprint of “Flux Correlations in Supersonic Isothermal

Turbulence”, which was published in 2012 in Journal of Fluid Mechanics, volume 713,

page 482, by Rick Wagner, Gregory Falkovich, Alexei G. Kritsuk,and Michael L. Norman.

Reprinted with permission. The dissertation author was the first investigator and author
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of this paper.
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Chapter 6

Energy Cascade and Scaling in

Supersonic Isothermal Turbulence

Abstract

Supersonic turbulence plays an important role in a number of extreme astrophysical

and terrestrial environments, yet its understanding remains rudimentary. We use data

from a three-dimensional simulation of supersonic isothermal turbulence to reconstruct an

exact fourth-order relation derived analytically from the Navier–Stokes equations (Galtier

and Banerjee, Phys. Rev. Lett., vol. 107, 2011, p. 134501). Our analysis supports a

Kolmogorov-like inertial energy cascade in supersonic turbulence previously discussed on a

phenomenological level. We show that two compressible analogues of the four-fifths law exist

describing fifth- and fourth-order correlations, but only the fourth-order relation remains

‘universal’ in a wide range of Mach numbers from incompressible to highly compressible

regimes. A new approximate relation valid in the strongly supersonic regime is derived

and verified. We also briefly discuss the origin of bottleneck bumps in simulations of

compressible turbulence.
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6.1 Introduction

Supersonic turbulence is believed to play a key role in a wide range of extreme

astrophysical and terrestrial environments; for example, regulating star formation in

molecular clouds (Hennebelle and Falgarone 2012), feeding supermassive black holes

(Hobbs et al. 2011), creating clumpy structure in hot winds from Wolf-Rayet stars (Moffat

and Robert 1994), controlling air entrainment in high-pressure volcanic eruptions (Ogden,

Glatzmaier, and Wohletz 2008), and affecting fuel mixing and combustion efficiency in

scramjets (Ingenito and Bruno 2010).

Compared to incompressible turbulence, highly compressible turbulent flows are

more complex due to nonlinear coupling of the velocity, density and pressure fields. Shock

waves and vortex sheets change the topology of intermittent dissipative structures in

supersonic turbulence (Pan, Padoan, and Kritsuk 2009). A ‘universal’ scaling of the

mass-weighted velocity v ≡ ρ1/3u was demonstrated in numerical experiments (Kritsuk

et al. 2007a; Kritsuk et al. 2007b) and independently verified in a number of numerical

studies (Federrath et al. 2010; Kowal and Lazarian 2007; Price and Federrath 2010;

Schmidt, Federrath, and Klessen 2008; Schwarz et al. 2010a), suggesting, by dimensional

arguments, the presence of an inertial cascade. More recently, analytical scaling relations for

compressible turbulence were derived and analyzed (Banerjee and Galtier 2013; Falkovich,

Fouxon, and Oz 2010; Galtier and Banerjee 2011; Wagner et al. 2012) and the existence of

an intermediate scaling range dominated by inertial dynamics was demonstrated rigorously

based on coarse-graining (Aluie 2013; Aluie 2011; Aluie, Li, and Li 2012). This contribution

reports on the verification of the new relation presented in Galtier and Banerjee (2011)

with data from a Mach 6 simulation (Kritsuk et al. 2007b) and on the phenomenology that

follows from these results.
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6.2 A fourth-order relation

Consider a system of Navier–Stokes equations for an isothermal compressible fluid

in three dimensions

∂tρ+∇ · (ρu) = 0, (6.1)

∂t(ρu) +∇ · (ρuu) +∇p = η∆u+
η

3
∇(∇ · u) + f , (6.2)

where p = c2sρ is the pressure, cs is the speed of sound, η > 0 is the dynamic viscosity (η is

constant in space and time in isothermal flows) and f(x, t) is a random force. Besides the

usual conservation of mass and momentum expressed by (6.1) and (6.2), let us mention

two additional ideal integral invariants in unforced isothermal fluids: (i) the total energy

density,

⟨E⟩ ≡ ⟨ρu2/2 + ρe⟩, (6.3)

where e = c2s ln(ρ/ρ0) is the specific isothermal compressive potential energy, ρ0 is the mean

density of the fluid and angle brackets ⟨. . .⟩ in this context indicate average over the volume

of the fluid, 1
V

∫
V
(. . .)dV ; and (ii) the mean kinetic helicity,

⟨H⟩ ≡ ⟨u · ω⟩/2, (6.4)

where ω ≡ ∇ × u is the vorticity. In the forced system, the evolution of total energy

density is determined by the balance between the action of large-scale force and small-scale

viscous dissipation

∂t ⟨E⟩ = ⟨ϵ⟩ − η
〈
ω2 − 4d2/3

〉
, (6.5)

where ϵ ≡ u · f is the local energy injection rate and d ≡ ∇ · u is the dilatation.

Assuming that a statistical steady state exists at Re ≫ 1, the following relation for
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homogeneous turbulence in the inertial interval can be derived (Galtier and Banerjee 2011)

⟨d′ (R− 2E − p) + d (R′ − 2E ′ − p′)⟩+∇r ·
〈
[δ(ρu) · δu+ 2δρδe] δu+ δ̃eδ(ρu)

〉
= −4ε,

(6.6)

note a different pressure-dilatation term placement (Banerjee and Galtier 2013). Here

δq(r) ≡ q(x′) − q(x) is the increment in quantity q corresponding to the increment

r = x′ − x, r ≡ |r|, R ≡ ρu · u′ + 2ρe′, R′ ≡ ρ′u′ · u + 2ρ′e, δ̃q ≡ q′ + q, ∇r ≡ êi∂/∂ri

denotes partial derivatives with respect to the increment r, ê = {ê1, ê2, ê3} is an orthonormal

basis,

ε = ⟨u′ · f + u · f ′ + u′ · fρ′/ρ+ u · f ′ρ/ρ′⟩/4 (6.7)

is the mean energy density injection rate and ⟨. . .⟩ denote an ensemble-average.

Equation (6.6) can be written in symbolic form as

S(r) +∇r · F = −4ε, (6.8)

where F (r) is the total energy flux vector and S(r) represents ‘source’ terms on the left-hand

side of (6.6) that depend on the potential component of the velocity and can be expressed

via increments

S(r) =
〈[

δ(dρu)− δ̃dδ(ρu)
]
· δu+ 2

[
δ(dρ)− δ̃dδρ

]
δe+ δdδp− 2dp

〉
. (6.9)

On the basis of empirical evidence (see § 3 below), in supersonic turbulence the pressure-

dilatation contribution to the source at r = 0 is positive, S(0) = −2⟨dp⟩ > 0. Since both e

and p are proportional to c2s , only the first term in (6.9) will contribute to S(r) at high
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Mach numbers (cs → 0)

S(r) ≈ S (r) ≡
〈
[δ(dρu)− δ̃d δ(ρu)] · δu

〉
(6.10)

(cf. equation (16) in Galtier and Banerjee 2011). Vector relation (6.8) should be compared

to a primitive form of Kolmogorov’s (1941) exact and nontrivial four-fifths law,

ρ0∇r · ⟨(δu)2δu⟩ = −4ε (6.11)

(e.g. Frisch 1995, equation (6.8)), which follows from (6.6), assuming incompressibility.

If the force in (6.2) is expressed in terms of the external acceleration, f ≡ ρa, then

ε = ⟨ρu′ · a+ ρ′u · a′ + ρ′u′ · a+ ρu · a′⟩/4. (6.12)

In isotropic turbulence,

ε = ⟨ρu′ · a+ ρ′u′ · a⟩/2 = ⟨δ̃ρ (u′ · a)⟩/2. (6.13)

For incompressible fluids, it can be shown that ε(r) = ρ0⟨u′ · a⟩ ≈ ρ0⟨u · a⟩ ≡ ρ0ε̄, if the

acceleration a(x, t) (and hence the force ρ0a) operate at large scales only. Here, ε̄ denotes

the (constant) average energy injection rate per unit mass.

This conventional technique, however, cannot be carried over to compressible fluid

turbulence. In the limit of large correlation length La of the acceleration a, for r ≪ La

the second term in (6.13) can be reduced to a constant ⟨ρ′u′ · a⟩ ≈ ⟨ρu · a⟩, while the

first cannot. If the force f(x, t) had a large correlation length Lf instead, the first term in

(6.13) would reduce to the same combination ⟨ρu′ · a⟩ = ⟨u′ · f⟩ ≈ ⟨u · f⟩ = ⟨ρu · a⟩ for

r ≪ Lf , but the second could not be decoupled simultaneously. On the basis of (6.13), in

107



supersonic turbulence the large-scale external force assumption is incompatible with the

presence of inertial interval due to strong density variations on all scales (see also Wagner

et al. 2012). If the large-scale acceleration is also short-correlated in time, then the density

can be decoupled for r in the inertial interval ⟨ρu′ · a⟩ ≈ ⟨ρ⟩⟨u · a⟩ (e.g. Wagner et al.

2012). In this case, (6.13) would reduce to

ε ≈ ρ0⟨u · a⟩ = ρ0ε̄ = const. (6.14)

In reality, the large-scale acceleration (e.g. the free-fall acceleration in turbulent

convection) is often not short-correlated in time. Also in simulations, forcing is routinely

employed to mimic the energy cascade incoming from scales larger than the box size; thus

the correlation time cannot be shorter than the large eddy turnover time and it is hard to

expect the decoupling in the form of (6.14).

Nevertheless, the density field in supersonic turbulence has a very short correlation

length Lρ ≪ Lu ≪ La. Since u and a are larger-scale fields, while ρ related to the velocity

gradient is a small-scale quantity controlled by the nonlinearity of governing equations (6.1)

and (6.2), one can expect that ⟨ρu′ · a⟩ ≈ ⟨ρ′u′ · a⟩ ≈ ⟨ρu · a⟩. Hence, even for a with a

finite correlation time, the approximation

ε(r) ≈ ⟨ρu · a⟩ = ε0 (6.15)

is justified for Lρ ≲ r ≪ La. Using a different approach based on coarse-graining, Aluie

(2013) rigorously proved that the energy injection rate is constant at scales sufficiently

separated from the injection scale, if the external acceleration used to support a statistical

steady state is restricted to large scales. We will show how well (6.14) and (6.15) hold in

§ 6.3.

For now, however, let us assume ε(r) = ε0 and integrate (6.8) over a ball of radius
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r, to obtain an approximate scalar relation for isotropic turbulence in symbolic form:

Q(r) + F∥(r) ≃ −4

3
ε0r, (6.16)

where the source function

Q(r) ≡ 1

r2

∫ r

0

S(r)r2dr (6.17)

and the longitudinal flux of total energy

F∥(r) ≡ F · r/r =
〈
[δ(ρu) · δu+ 2δρδe] δu∥ + δ̃eδ(ρu∥)

〉
. (6.18)

The inertial part of the flux dominates at high Mach numbers (cs → 0):

F∥(r) ≈ F∥(r) ≡
〈
δ(ρu) · δu δu∥

〉
(6.19)

– see also (6.10). While approximation (6.19) does not include the flux of compressive

energy density ρe, compressibility is still partly accounted for by the momentum difference

δ(ρu). Also note that F∥(0) = 0, F∥(0) = 0 and Q(0) = 0.

6.3 Numerical verification

To evaluate (6.16), we shall use data from a numerical experiment designed to

study the inertial range statistics of supersonic homogeneous isotropic turbulence (Kritsuk

et al. 2007b). The simulation was carried out following the traditional implicit large

eddy simulation (ILES) approach to the modeling of turbulent flows with strong shocks

(Fernando F. Grinstein and Rider 2007), using an implementation of the piecewise parabolic

method (PPM, Colella and Woodward 1984) in the Enzo code (O’Shea et al. 2004).

The forced Euler equations for an isothermal fluid with the mean density ρ0 = 1 were
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Figure 6.1: Time-average scaling for the left-hand side and right-hand side of (6.16),
including individual contributions from the flux and source terms. Note that F∥(r) < 0
(direct energy cascade) and S(r) > 0 (effective additional energy injection). Error bars
indicate ±1σ variation of the left-hand side of (6.16) in our sample of 86 flow snapshots.
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Figure 6.2: Compensated scaling for the flux and source terms from (6.16). Also shown
are various proxies for the energy injection rate, including the two-point momentum–
acceleration and velocity–force correlation functions, as well as single-point averages with
and without density-weighting. Error bars indicate ±1σ variation of the flux and source
terms in our sample.
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numerically integrated in a cubic periodic domain with a linear size L = 1 covered by a

uniform Cartesian grid of 10243 cells. The turbulent r.m.s. Mach number, M ∼ 6, and

a steady rate of the kinetic energy injection were maintained by a random large-scale

acceleration field, a(x, t) = C(t)a0(x), with power limited to wavenumbers k/kmin ∈ [1, 2],

where kmin = 2π/L. The spatially fixed external acceleration a0(x) was normalized at

every time step to keep the energy injection rate approximately constant in time, ε0 = 140;

the normalization factor C(t) had a standard deviation of ∼ 5% during the simulation.

For this work, we used a subset of 86 full data snapshots evenly distributed in the range

t/τ ∈ [6, 10], where the flow crossing time τ ≡ L/(2csM) ≃ 0.08. For each snapshot, we

computed ε̄ and evaluated S(r), Q(r), F∥(r), and ε(r) = ⟨δ̃ρ (u′ · a)⟩/2 for 16 discrete

values of increment r from the interval r/∆ ∈ [8, 128], where ∆ is the grid spacing, using

231 ≈ 2× 109 randomly selected point pairs for each value of r.

Figure 6.1 compares the scaling of −(Q+ F∥) with the analytical prediction 4ε0r/3,

indicating that the approximate relation (6.16) holds reasonably well. Also shown are

individual contributions for Q and F∥. As expected for direct energy cascade, the flux is

negative across the inertial interval. The source function is positive and a factor of ≈ 3.2

smaller than the flux. It represents the net effect of mean dilatation at scale r (conditioned

on the energy density at this scale) on the associated energy flux. The source can be

understood as a (positive) correction to ε0, associated with the evolving metric in parts of

the volume that are subject to compression. In a different context, such ‘adiabatic heating’

of compressible turbulent fluids was recently considered by Robertson and Goldreich (2012).

Figure 6.2 provides more detail by showing compensated scaling of various terms in

(6.16); note that the inertial sub-range is limited to r ∈ [0.03, 0.1] (Kritsuk et al. 2007b).

On smaller scales, a bump indicating possible bottleneck contamination is clearly visible;

on larger scales, the action of force is felt directly and ε(r) starts to decline. The energy

injection rate ε0 defined in (6.15) gives an accurate measure for ε(r) ≈ 140 in the inertial
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Figure 6.3: Scaling of the longitudinal flux of total, kinetic and compressive energy. At
M ≃ 6, the kinetic energy flux strongly dominates over compressive flux terms. The
exponents of the least-squares fits for r ∈ [0.03, 0.08] are 0.91 ± 0.01, 0.99 ± 0.01 and
0.44± 0.02 for the total, kinetic and compressive fluxes, respectively. Error bars indicate
±1σ variation of the total flux.

interval, while (6.14), which ignores the density–velocity correlation, underestimates the

injection rate by ∼ 15%. The inertial range levels of the flux and source terms, −274± 4

and 86± 1 respectively, are estimated from the least-squares fits. The source terms play a

relatively minor role across the inertial range; both individual flux and source contributions

in (6.16) scale roughly linearly with r, indicating that S(r) ≈ const. This in turn implies

that the kinetic energy cascades conservatively without substantial scale-dependent ‘leakage’

to the compressive potential energy (see also Aluie, Li, and Li 2012).

Figure 6.3 presents an analysis of different components of the flux in (6.18). A

contribution from the inertial term F∥ dominates strongly on all scales, as predicted by

(6.19). Two other terms related to the compressive energy flux are subdominant in the

inertial range. The last term in (6.18) is ∼ 1.6 dex smaller than the second.

Figure 6.4 shows various constituents of S(r) listed in (6.9). As suggested by (6.10),

the dominant contribution comes from dynamic-pressure-dilatation terms proportional to

δu; it is positive in a wide range of r and approximately constant (±4%) at r ∈ [0.006, 0.1].
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Source terms associated with the specific compressive energy difference δe contribute

positively on small scales r ≲ 0.03 and act as a sink at r ≳ 0.03. While their effect on

the inertial range is minimal, they are responsible for an ≈ 40% excess in S(r) centered

around r ≃ 0.004. The resulting small-scale excess in positive S(r) is in turn responsible

for the excess in negative F∥(r) (see figure 6.2). The impact of pressure-dilatation terms

⟨δdδp − 2dp⟩ on S(r) is minor and they can be ignored in the inertial range. As r → 0,

the source is finite and positive: S(r) → −2⟨dp⟩ ≃ 73. The average pressure dilatation

may depend on various factors such as the Mach number, adopted equation of state,

numerical resolution and so on. While for isothermal turbulence at M ∼ 6 we obtain

⟨dp⟩/(γM2) ≈ −1, also negative but substantially smaller (≲ 0.04) absolute values are

reported by Aluie, Li, and Li (2012) and Wang et al. 2012 for ideal gas models at M ≲ 1.

At high Mach numbers, the p.d.f. of dilatation is strongly skewed towards negative values,

making the average pressure dilatation finite and negative.

Since approximations (6.10) and (6.19) hold at M ≫ 1, (6.16) can be reduced to

Q(r) + F∥(r) ≃ −4

3
Cε0r, (6.20)

where the source function Q(r) ≡ r−2
∫ r

0
S (r)r2dr is analogous to (6.17) and C < 1 is a

constant of order unity accounting for the fraction of injected kinetic energy that goes

into excitation of compressive modes that were ignored in (6.10) and (6.19). Figure 6.5

illustrates the quality of approximations at M ≃ 6, where C ≃ 0.84, i.e. ≈ 16% of the

energy input supports modes related to the compressive energy and pressure dilatation.

Note that at M ≃ 6 the right-hand side of (6.20) can be replaced by the incompressible

expression −4ρ0ε̄/3 without substantial loss of accuracy: see (6.14) for the definition of

ε̄. As S (r) ≈ S 0 is nearly constant in the inertial interval, F∥(r) ≃ −4εeffr/3, where

εeff = Cε0 + S 0/4.
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Figure 6.4: Time-average scaling of various source terms in (6.9) and (6.10).

6.4 Discussion

In practical astrophysical applications, where order-of-magnitude estimates are

considered sufficient, relation (6.20) can be more convenient than (6.16). We therefore

explored the scaling of several proxies to F∥, which are more closely related to observables

and to structure functions previously measured numerically. Figure 6.6 illustrates the

scaling of F∥(r) as well as that of the transverse ⟨|δv⊥|3⟩ and longitudinal ⟨|δv∥|3⟩ structure

functions of the mass-weighted velocity and compares these with theoretical expectations

based on (6.16) and (6.20). The inertial range slopes of these proxies are close to linear, so

they provide a convenient way of estimating the value of the total flux F∥ and thereby the

kinetic energy injection rate ε0.

Figure 6.6 shows that F∥(r) ∼ 1.7ε0. The total energy flux F∥ would have an 18%

larger offset, corresponding to a factor of 2. The proxies based on the longitudinal and

transverse structure functions of v overestimate ε0 by factors 3.5 and 4.1, respectively.

These values can be used to estimate the energy injection rate required to sustain turbulent

cascade in the interstellar medium of the Milky Way (Hennebelle and Falgarone 2012).

An interesting feature to notice in figures 6.5 and 6.6 is the extended (∼ 1 dex)
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linear scaling range of F∥, which continues down to r ≃ 0.008 ≃ 8∆. In ILES carried

out with a PPM-based code, all scales below ∼ 16∆ are strongly affected by numerical

dissipation (Porter and Woodward 1994). Scales shorter than ∼ 32∆ are usually identified

with the so-called ‘bottleneck bump’ (Falkovich 1994; Porter, Pouquet, and Woodward

1994), where the energy piles up in the near-dissipation part of the inertial range due to

a steep wavenumber dependence of numerical diffusivity in the dissipation range (∝ k4−5

for PPM, see Porter, Pouquet, and Woodward 1992). Similar bumps are present in the

spectra of velocity, density and various mixed quantities in supersonic turbulence (Kritsuk

et al. 2007b). In structure functions, the bottleneck is expected to be more pronounced at

higher orders (Falkovich 1994); it is also less localized than in power spectra due to mixing

of small- and large-scale information (Davidson and Pearson 2005; Dobler et al. 2003, see,

e.g., a plot of ⟨|δv⊥|3⟩ in figure 6.6 and note that we take an absolute value). The inertial

flux F∥, however, does not show a bump, as expected in the inertial cascade, when an

absolute value operation is not applied.

As we discussed above, the bump in the total flux is associated with the compressive

energy flux contribution ⟨2δρδeδu∥⟩, which becomes comparable to the kinetic energy flux

and also somewhat flattens below the sonic scale at r ≲ rs: δu∥(rs) = cs. This behaviour

may depend on the details of the shock-capturing scheme. Indeed, a PPM implementation

in the Enzo code (O’Shea et al. 2004) produces a growing fraction of dilatational modes

in the velocity power spectrum on scales below 32∆ (see figure 1b in Kritsuk et al. 2010),

which could potentially contribute to the bump build-up.

6.5 Conclusions and final remarks

We verified a relation for correlation functions in compressible isothermal turbulence

(Galtier and Banerjee 2011) with data from a numerical simulation at Mach 6 (Kritsuk et al.
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Figure 6.5: As figure 6.2, but for the flux and source terms from an approximate relation
(6.20).

2007b). While an isotropic version of the relation is not strictly exact, it provides a good

approximation to numerical results. Our analysis of different terms in (6.16) supports a

Kolmogorov-like picture of the energy cascade in supersonic turbulence previously discussed

on a phenomenological level (Kritsuk et al. 2007b) and recently supported theoretically

(Aluie 2013; Aluie 2011; Aluie, Li, and Li 2012). A non-trivial new approximate relation

(6.20) that holds at high turbulent Mach numbers is proposed. The relation represents an

important step beyond phenomenology, as it sheds light on the problem of universality in

compressible turbulence and provides a way to quantitatively predict the energy injection

rate from the scaling of certain combinations of observables. This result can have important

implications for interstellar turbulence, as approximately constant energy transfer rates are

observed in the ISM over more than four decades in length scale (Hennebelle and Falgarone

2012).

The fourth-order scaling relation (6.16) traditionally formulated in terms of the

energy flux is not the only compressible analogue of Kolmogorov’s four-fifths law. Another

approximate relation for homogeneous isothermal turbulence, formulated in terms of fluxes
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and densities of conserved quantities,

∇r ·
〈
ρρ′

[
(u · u′)u′ + c2su

]〉
∼ −⟨ρρ′⟩ ε̄, (6.21)

cf. (6.6), has recently been obtained and verified with the same numerical data (Wagner

et al. 2012). More strictly, this fifth-order flux relation should be viewed as an anisotropic

analogue of the von Kármán–Howarth relation, as it involves correlation functions, but

(6.21) can also be reduced to the four-fifths law in the incompressible limit (Falkovich,

Fouxon, and Oz 2010). Note that the dependence of the density autocorrelation function in

the right-hand side of (6.21) on the increment r varies with the Mach number, as does the

slope of the density power spectrum (Kim and Ryu 2005). Unlike (6.16), an isotropic version

of (6.21) does not have a trivial right-hand side universally linear in r. In a particular case

at M ≃ 6, the density autocorrelation function has a logarithmic dependence on r and a

closed-form analytical representation of the isotropic flux relation is feasible (see (3.3) in

Wagner et al. 2012).

We thus conclude that at least two compressible analogues of Kolmogorov’s four-

fifths law exist, consistent with the extension of the turbulent energy cascade picture to

supersonic regimes. Only the fourth-order energy cascade relation (6.16) is ‘universal’ in the

sense that its right-hand side remains approximately linear in the inertial range at all Mach

numbers. It is worth noting that the fourth-order relation exploits the conservation of total

energy (which is an inviscid invariant), while the fifth-order one follows from conservation

of momentum and involves the momentum density and flux.

We thank Hussein Aluie, Gregory Falkovich and Sébastien Galtier for stimulating

discussions. This research is supported in part by NSF grants AST-0908740 and AST-

1109570. The simulation utilized TeraGrid computer time allocations MCA98N020 and
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Chapter 6, in full, is a reprint of “Energy Cascade and Scaling in Supersonic

Isothermal Turbulence”, which was published in 2013 in Journal of Fluid Mechanics,

volume 729, R1, by Alexei G. Kritsuk, Rick Wagner, and Michael L. Norman. Reprinted

with permission. The dissertation author was the second investigator and author of this

paper.
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Chapter 7

Conclusions

The wonderful thing about scaling is

that you can get everything right

without understanding anything

R. Kraichnan per L. Kadanoff

7.1 Support for the Local Engergy Cascade in Com-

pressible Turbulence

Appendix C contains a list of the 60 peer-reviewed journal articles and one book–by

authors other than myself or my original co-authors–that cite one or more of the results

chapters. Several researchers (Ingenito and Bruno 2010; Kowal and Lazarian 2007; Price

and Federrath 2010; Schmidt, Federrath, and Klessen 2008; Schmidt and Grete 2019)

reproduced the density-weighted results from Chapter 4 and Kritsuk et al. (2007b), to

the point that including density-weighted measures of kinetic energy power spectra and

structure functions have become the norm in articles regarding simulations of turbulence in

the ISM. Other publications (Sekundov and Yakubovskii 2019) were appropriately skeptical
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of the initial density-weighted δρ1/3u structure functions. Section 4.5.2 of Girichidis et al.

(2020) describes this timeline:

This was a clear indication that the energy transfer in supersonic regime
is mediated by density fluctuations and hence ignoring the density velocity
correlations would lead to large errors in the kinetic energy flux across scales
(Fleck 1996; Henriksen 1991; Lighthill 1955; von Weizsäcker 1951). A very näıve
check to make was to consider the third-order structure function of a density-
weighted velocity, v ≡ ρ1/3u, which happened to be linear (Kritsuk et al. 2007b).
The linear scaling at high Mach numbers was then independently confirmed in
(Kowal and Lazarian 2007; Schmidt, Federrath, and Klessen 2008; Schwarz et al.
2010b; Zrake and MacFadyen 2012). These results were consistent with simple
Richardson-Kolmogorov-like energy cascade phenomenology modified to account
for density fluctuations, Π(r) ∼ ρru

3
r/r ∼ ρ0ϵ, and hence triggered a quest for

exact relations describing the energy cascade in compressible turbulence.

This quest is what led to the relations proposed in Falkovich, Fouxon, and Oz (2010) and

Galtier and Banerjee (2011), and the results in Chapters 5 and 6, respectively. The Galtier

and Banerjee (2011) relation was reproduced in Wang et al. (2018, 2013) for subsonic and

transonic turbulence simulations.

Sections 4.5.4 through 4.5.6 of Girichidis et al. (2020) covers numerous other relations

that have been put forth as analogues to Kolmogorov’s 1941 theory. For example, Equation

33 in Banerjee and Kritsuk (2017)

−4ε =∇r · ⟨(δj · δu+ δρδe) δu⟩

+ ⟨δ (j · u+ ρe) δθ + δj · δ (∇e− uθ)− δρδ (eθ)⟩

+ ⟨δj · δg − δu · δ(ρg)⟩

(7.1)

where θ ≡ ∇ · u, j ≡ ρu, and g is the gravitational force. Equation 7.1 refines the relation

in Galtier and Banerjee (2011) (see Equation 6.6 in that article). Ferrand et al. (2020)

explored the scaling of relations based on Banerjee and Kritsuk (2017) and Galtier and

Banerjee (2011) finding good agreement.
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Other relations have been evaluated, such as the velocity structure functioned

weighted by the density correlation used in Padoan et al. (2016)

Sp(r) ≡
⟨ρ(x1)ρ(x2)|u(x2)− u(x1)|p⟩

⟨ρ(x1)ρ(x2)⟩
, (7.2)

which is based on the relation from Falkovich, Fouxon, and Oz (2010). Equation 7.2 was

also used Chira et al. (2019), where they found the expect scaling broken down in the

presence of shocks and small-scale structure. Padoan et al. (2016) and Chira et al. (2019)

are also applying the ESS (extended self-similarity) model from Benzi et al. (1993), which

normalizes structure functions by the third order one to study their scaling outside of the

inertial range. My impression is that this may be an inappropriate application of the ESS

model, since it attempts to define the inertial range based on the scaling of a third order

structure function, which may not apply to supersonic turbulence. Instead, models such as

Equation 7.1 define the inertial range as those scales undergoing a self-similar cascade of

energy.

7.2 Observational Support

Direct measurement of turbulence statistics in the ISM is challenging since the

multi-dimensional space of position, velocity, density, etc., is collapsed into two or three-

dimensional static arrays (Boyden et al. 2018; Burkhart 2021; Girichidis et al. 2020; Koch

et al. 2019). These difficulties are summarized in Haworth et al. (2018):

Observational limitations/complexity. Since the optical depth of the ISM is
highly frequency dependent and different lines probe different ranges of density
and temperature, observations of only one or a few tracers do not provide us with
all of the information available within a theoretical model. Furthermore, real
observations are subject to other processes such as noise, resolution constraints
and interferometric effects that may be significantly different to the limitations
of a numerical model. The ISM is also geometrically complex and evolves on
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timescales beyond the human experience. Observers are therefore limited to a
restricted view of a single snapshot in time.

Despite these challenges, progress has been made, notably in the measure of compressive vs.

solenoidal driving modes in Orion B (Orkisz et al. 2017), which agrees with the predictions

from simulations (Kritsuk et al. 2010). Researchers are also consolidating work on statistical

toolkits for measuring turbulence from observations (Koch et al. 2019) and decomposing

spectroscopic observations into separate velocity and density components (Yuen, Ho, and

Lazarian 2021).

7.3 Summary

I have described my work developing and using a fast method for measuring the

statistics of two-point functions in simulations of supersonic isothermal turbulence. As

described in Chapters 4, 5, and 6, the results support the locality of energy transfer within

the inertial range. Several publications from other researchers have reported similar results

from simulations using different codes. Many practical limitations hamper observational

evidence, but experimental support is emerging.
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Appendix A

Syntax Reference

Describing computational methods can be frustrating. One either feels they are
doing a disservice to the mathematical notation or the code. The code is exact in what it
does but lacks the elegance of the mathematical notation. A vector stored as the variable
x in code could also be an integer, a real number, or even the letter “x”. Being able show a
vector as xi, x, or x⃗ communicates what “x” is in context. Mathematical notation does
well when describing the scientific goals of the methods in this dissertation. I can succinctly
present the individual two-point functions, as in Equation 1.1. However, mathematical
notation becomes convoluted when describing functions, especially complex data structures
that may have both attributes and methods. Since the goal of Chapters 2 and 3 is to
describe computational methods, the following notes summarize the syntax conventions I
have used in this dissertation. Also, the list of nomenclature includes the variables defined
for many data structures.

• CamelCase is used to name complex things (functions, data structures, instances of
classes).

• Functions, ClassMethods, and Algorithms are indicated by SansSerifFont.

• Instances of DataStructures (arrays, instance attributes, etc.) are named using a
fixed-width, or typewriter, font.

• Array indices may either be in subscripts or brackets. Subscript was used mostly for
physcal variables, e.g., xi for a point in 3D space and brackets for data structures,
like SomeArray[k]. The choice is largely to maintain clarity when reading equations
or pseudocode. It is also relevant because many of the multidimensional arrays are
allocated in memory as one-dimensional arrays for efficiency.

• Arrays are index beginning at 0, mostly because the code was written in C and C++,
and it makes computing array offsets a bit clearer.

• Instance attributes or methods may be referenced using dot notation, e.g., B.SomeArray[i]
or C.SomeMethod(x, y).
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• With some exceptions, assignment in pseudocode is shown using the ’=’ operator,
not →.

• As a result, equality in pseudocode is shown via ’==’.

• Parameters passed to functions are essentially global. That is, changes to them persist
when the function exits.

• Some Enzo code elements (attributes, methods, etc.) are renamed for clarity (e.g.,
task vs. processor).

• Likewise, class attributes may be referenced directly in pseudocode rather than
through get or set methods.

• Some function parameters may be replaced by . . . , such as the repetitive MPI datatype
and communicator arguments.
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Appendix B

A Brief Introduction to MPI

The analysis framework I developed that underlies SFgen is integrated with Enzo and
therefore follows the same parallelization strategy. This allows for analysis to be done in-line
during a simulation. It also enables the creation of stand-alone parallel applications that
perform rapid analysis of Enzo datasets outside of simulation runs. In the out-of-band case,
the level of parallelism can be reduced. This may seem like an odd choice, but by requesting
fewer resources the analysis is more likely to be scheduled on HPC (high-performance
computing) systems.

The basic design pattern for MPI applications is to assume that each MPI task
(typically a distinct POSIX process, referred as the rank of the MPI task) is running in
its own memory space, and cannot access the memory of other tasks. Each task guides
its processing based on its rank. This is known as the SIMD (single instruction, multiple
data) model (Flynn 1972), where multiple instances of an application (Enzo and SFgen,
in this case) are started, but each process operates on different data based on its rank to
parallelize the workload.

MPI can support other parallelization models, including MIMD (multiple instruction,
multiple data), where different applications are integrated into the MPI communications
domain. This can be complex to implement and is unsurprisingly less common. There
are also hybrid mechanism that balance number of tasks within a single memory domain
(e.g., a compute node or a GPU) with the amount of memory available in that domain.
Those mechanisms will parallelize some operations using a shared-memory model, like SMP
(symmetric multiprocessing) or NVIDIA’s CUDA (Compute Unified Device Architecture®),
and use MPI when necessary, like when coordinating with tasks on other compute nodes.

The MPI Forum defines the MPI API standard (Message Passing Interface Forum
2021), which is then implemented by different libraries (Gabriel et al. 2004; Gropp et al.
1996; Panda et al. 2021), and specific implementation may be better adapted to different
hardware architectures, particularly the network layer. The basic MPI pattern is for tasks
to exchange information through function explicit calls.

Code Example B.1 shows the function prototypes for the basic send and receive
operations MPI Send and MPI Recv. The following description of the functions is from the
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MPI_Send(

void* data ,

int count ,

MPI_Datatype datatype ,

int destination ,

int tag ,

MPI_Comm communicator)

MPI_Recv(

void* data ,

int count ,

MPI_Datatype datatype ,

int source ,

int tag ,

MPI_Comm communicator ,

MPI_Status* status)

Code Example B.1: MPI send and receive function prototypes.

MPI Tutorials site1:

The first argument is the data buffer. The second and third arguments describe
the count and type of elements that reside in the buffer. MPI Send sends
the exact count of elements, and MPI Recv will receive at most the count of
elements (more on this in the next lesson). The fourth and fifth arguments
specify the rank of the sending/receiving process and the tag of the message.
The sixth argument specifies the communicator and the last argument (for
MPI Recv only) provides information about the received message.

Code Example B.2 shows a code snippet with one task sending the value of an integer to a
second task, adapted from the same site2.

1https://mpitutorial.com/about/
2https://mpitutorial.com/tutorials/mpi-send-and-receive/

126



/* Find out rank , size */

int my_rank;

MPI_Comm_rank(MPI_COMM_WORLD , &my_rank );

int number;

if (my_rank == 0) {

number = -1;

MPI_Send (&number , 1, MPI_INT , 1, 0, MPI_COMM_WORLD );

} else if (my_rank == 1) {

MPI_Recv (&number , 1, MPI_INT , 0, 0, MPI_COMM_WORLD ,

MPI_STATUS_IGNORE );

printf(‘‘Process 1 received number %d from process 0\n",

number );

}

Code Example B.2: Minimal example of using MPI send and receive functions.
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B.1 Key Concepts

There are two MPI concepts that are important to understand in the context
of applications like SFgen : blocking and non-blocking communication; and collective
operations.

Blocking and Non-Blocking Communications MPI functions are either blocking,
where the calling task does not continue until the function returns, or non-blocking, where
the task may continue and then check the status of the function call later. (The examples
above, and all of the functions used in SFgen are blocking.) Using non-blocking calls is
more complex, but may allow tasks to perform other operations while communication is
handle by the network libraries and hardware. Note that tasks may not be blocked by
the function call. The MPI implementation may not actually implement a non-blocking
version of the function, and instead simply wrap the blocking function.

Collective Operations Collective operations are useful functions to address common
use cases, such as

• broadcasting a value from one tasks other,

• distributing portions of an array across other tasks (scattering),

• gathering portions of an array from other tasks,

• of finding the minimum of or summing the elements of an array distributed across
several tasks (reducing).

These collectives are defined as one-to-many, many-to-one, and many-to-many operations.
In the one-to-many case, a single task is the source or destination, while for many-to-many
each task is the source and destination for different portions of the data.

As shown in Section 3.6, SFgen relies heavily on collective operations, specifically
all-to-all and what’s referred to as personalized exchange, or all-to-allv. All-to-all sends a
fixed number of elements from an array between each tasks, so that the send and receive
arrays are the same size, while all-to-allv distributes an arbitrary number of elements
from each tasks send arrays to the other tasks. Each collective operation has its own
costs depending on the network topology, such as a ring, mesh, or hypercube, and this
will vary based the amount of data (message size) being echanged between tasks. An
advantage of using these collective operations is the chance to leverage the expertise that
was part of developing the MPI implementation on a particular system (Faraj and Yuan
2005; Pješivac-Grbović et al. 2007; Sur, Jin, and Panda 2004). The disadvantage is that
SFgen “has been known to break supercomputers due to its heavy communication load”, as
I told my colleague, Stephen Skory, while he was developing the structure function code for
yt (Skory 2010). My recollection is that the specific reason for the creation of the MakePass
loop (see Section 3.3.5) was to reduce the size of the message buffers used in the calls to
MPI all-to-allv operations.
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S = 10 11 12 13 14 15 16 17

S = 20 21 22 23 24 25 26 27

S = 30 31 32 33 34 35 36 37

S = 40 41 42 43 44 45 46 47

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MPI Alltoall(S, n = 2, . . . , R, n = 2, . . . , . . .)

S = 10 11 12 13 14 15 16 17

S = 20 21 22 23 24 25 26 27

S = 30 31 32 33 34 35 36 37

S = 40 41 42 43 44 45 46 47

R = 10 11 20 21 30 31 40 41

R = 12 13 22 23 32 32 42 43

R = 14 15 24 25 34 35 44 45

R = 16 17 26 27 36 37 46 47

T0

T1

T2

T3

T0

T1

T2

T3

Figure B.1: Example of an MPI all-to-all collective operation, where four tasks distribute
two integers to each other task. S and R are the send and receive buffers, respectively. In
the call to MPI Alltoall, the parameter n = 2 is the count of elements to be sent to each
task. S and R must be of size 2×NT

B.2 MPI Alltoall & MPI Alltoallv

Figures B.1 and B.2 are diagrams of calls to all-to-all and all-to-allv, respectively.
TODO: add function prototypes. Tie in motivation for grid index and bookkeeping.
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S = 00 00 00 02 02 03 03

So = 0 0 3 5

Sc = 3 0 2 2

S = 10 10 11 12 12 12 13 13 13

S = 20 21 21 21 22 22 23 23

S = 30 30 31 32 33 33

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Ro = 0 3 3 5

Rc = 3 2 1 2

R = ∅ ∅ ∅ ∅ ∅

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

R = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

MPI Alltoallv(S, Sc, So, . . . , R, Rc, Ro, . . . , . . .)

S = 00 00 00 02 02 03 03

S = 10 10 11 12 12 12 13 13 13

S = 20 21 21 22 22 23 23 23

S = 30 30 31 32 33 33

R = 00 00 00 10 10 20 30 30

R = 11 21 21 21 31

R = 02 02 12 12 12 22 22 32

R = 03 03 13 13 13 23 23 33 33

T0

T1

T2

T3

T0

T1

T2

T3

Figure B.2: Example of an MPI all-to-allv collective operation, where four tasks distribute
an arbitrary count of integers to each other task. S and R are the send and receive buffers,
respectively. The send counts and offsets, Sc and So, and receive counts and offsets, Rc

and Ro, for task T0 are shown at the top. The counts and offsets are integer arrays of size
NT and are used as part of the call to MPI Alltoallv. The size of S on each task must equal
the sum of Sc and the size of R must equal the sum of Rc.
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Orkisz, Jan H., Jérôme Pety, Maryvonne Gerin, Emeric Bron, Viviana V. Guzmán, Sébastien
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