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SUMMARY

Chemotherapy is used to treat most cancer patients,
yet our understanding of factors that dictate res-
ponse and resistance to such drugs remains limited.
We report the generation of a quantitative chemical-
genetic interaction map in human mammary epithe-
lial cells charting the impact of the knockdown
of 625 genes related to cancer and DNA repair on
sensitivity to 29 drugs, covering all classes of chemo-
therapy. This quantitative map is predictive of
interactions maintained in other cell lines, identifies
DNA-repair factors, predicts cancer cell line re-
sponses to therapy, and prioritizes synergistic drug
combinations. We identify that ARID1A loss confers
resistance to PARP inhibitors in cells and ovarian
cancer patients and that loss of GPBP1 causes resis-
tance to cisplatin and PARP inhibitors through the
regulation of genes involved in homologous recom-
bination. This map helps navigate patient genomic
data and optimize chemotherapeutic regimens by
delineating factors involved in the response to spe-
cific types of DNA damage.

INTRODUCTION

Chemotherapy is given to the vast majority of cancer patients and

used based on average responses rather than personalized deci-

sions (Barcenas et al., 2014). Limited improvements in survival by

the use of chemotherapy also highlight the need to develop drugs

and make better use of existing drugs (Early Breast Cancer Tria-

lists’ Collaborative Group, 2005). Furthermore, choosing from

multiple possible chemotherapy options can complicate clinical

decisionmaking. Therefore, optimizing the useof chemotherapies

is a significant and pressing challenge in precision oncology. Che-

motherapies commonly target the heightened proliferation result-

ing from unrestrained cell-cycle and DNA-damage checkpoints

present in cancer cells, but their narrow therapeutic window re-

sults in the dose-limiting toxicities common with these agents.

While tumors that harbor specific alterations in DNA-repair genes
918 Cell Reports 23, 918–929, April 17, 2018 ª 2018 The Authors.
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such as BRCA1, BRCA2, and ERCC1 are more responsive to

certain chemotherapies (Byrski et al., 2012; Olaussen et al.,

2006), our knowledge of relevant biomarkers for chemotherapy

remains limited. Therefore, understanding the impact that tumor

mutations have on modifying drug responses can lead to more

efficient use of chemotherapy.

Recent advances in genomics have led to a dramatic increase

in the rate of discovery of altered genes in patient tumors. This

explosion in knowledge has led to bottlenecks at the level of a

functional understanding of tumor genomes, a key step in thera-

peutic development. Chemical-genetic interaction maps can aid

in elucidating roles for genetic events in cancers by causally link-

ing them to drug sensitivity (Martins et al., 2015; Muellner et al.,

2011). Furthermore, effectively connecting gene alterations with

therapeutics will also require clarity regarding the exact mecha-

nism of drug actions, which are often lacking for classical

chemotherapeutic agents as well as newly developed drugs tar-

geting DNA repair and processing (Cheung-Ong et al., 2013; Hel-

leday, 2011; Liu et al., 2012; Mitchison, 2012). In the case of

PARP inhibitors, their efficacy may be dependent on their ability

to trap PARP onto DNA, leading to DNA double-strand breaks

during replication rather than blocking the repair of single-strand

breaks through enzymatic inhibition of PARP, as initially hypoth-

esized (Helleday, 2011; Murai et al., 2012). It is likely that insights

into the mechanisms of action of chemotherapies will need to be

combined with an understanding of gene function in order to

create predictive models of drug responses in patients.

A key milestone in the field was the discovery that tumor cells

that are deficient in BRCA1 or BRCA2 are sensitive to PARP in-

hibitors in a synthetic lethal manner, ultimately leading to

approval of these agents for the treatment of ovarian cancer.

Mechanistically, this synthetic lethal interaction takes advantage

of a deficiency in homologous recombination (HR) caused by

BRCA1/2 mutation that is necessary to repair DNA lesions

incurred by PARP inhibition (Bryant et al., 2005; Farmer et al.,

2005). With the approval of several PARP inhibitors, both

de novo and acquired resistance to PARP inhibitors have

become an important clinical problem. What appears to be crit-

ical for resistance is the restoration of HR that, in some cases,

can be attributed to secondary intragenic mutations, which re-

stores BRCA1 or BRCA2 functionality (Norquist et al., 2011).

Although additional factors have been reported, little is known
commons.org/licenses/by/4.0/).
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about their relevance to resistance in the clinic (Lord and Ash-

worth, 2013). Central to emerging mechanisms of resistance is

the interplay between two major repair pathways, non-homolo-

gous end joining (NHEJ) and HR. In a competitive model

between these two pathways, the NHEJ factor TP53BP1 sup-

presses HR, and TP53BP1 loss restores HR, facilitating PARP in-

hibitor resistance (Bouwman et al., 2010; Bunting et al., 2010;

Chapman et al., 2012). However, TP53BP1 loss has not been

observed in patients, suggesting that additional factors may

contribute to the resistant phenotype.

Here, we generate a systematic resource that quantitatively

maps the influence of the knockdown of 612 DNA-repair and

cancer-relevant genes on the responses to 31 chemotherapeutic

agents in breast cancer, covering nearly all major Food and Drug

Administration (FDA)-approved chemotherapies. We demon-

strate that the map recovers many knownmodulators of chemo-

sensitivity and is able to link therapies with common mecha-

nisms of action. We show that the map is a predictive tool to

computationally infer cancer cell line drug sensitivity and design

drug combinations with targeted inhibitors of ATR and APEX1.

We also identify ARID1A and GPBP1 as factors whose loss con-

tributes to PARP inhibitor and platinum resistance, a finding that

is supported by data from HGSOC patients. This chemical-ge-

netic interaction map can be used to identify factors that dictate

responses to chemotherapy and aid in the translation from tumor

genomics to therapeutics.

RESULTS

Generation of a Chemotherapy-Based Genetic
Interaction Map in Breast Epithelial Cells
We developed a quantitative chemical-genetic interaction map-

ping strategy to uncover the impact of gene loss on proliferative

responses to a panel of approved chemotherapies as well as

emerging inhibitors of DNA repair. Beyond common tumor sup-

pressor genes, we focused on genes recurrently deleted in

breast and ovarian cancer. We mined The Cancer Genome Atlas

(TCGA) studies as well as the METABRIC breast cancer cohort,

covering over 3,000 samples to identify a set of over 200 breast

and 170 ovarian cancer geneswhose deletion occurredwith high

frequency in these studies (Figure 1A; Table S1) (Cancer

Genome Atlas Network, 2012; Cancer Genome Atlas Research

Network, 2011; Curtis et al., 2012). We also included nearly all

genes known to be involved in DNA repair (n = 134). As a comple-

ment, we assembled a collection of 29 distinct compounds en-

compassing nearly all FDA-approved chemotherapies for breast

and ovarian cancer, four PARP inhibitors, and two other targeted

therapies (Figure 1B). In addition, we profiled two common drug

combinations, for a total of 31 distinct treatments. The map was

generated in MCF10A cells, which are immortal, epithelial,

diploid, HR competent, and devoid of mutations in known

oncogenes (Debnath et al., 2002). By molecular profiling, these

cells are receptor-negative or basal-like, a subtype that has

been shown to be similar in biology and etiology to high-grade

serous ovarian cancer (Cancer Genome Atlas Network, 2012).

Knockdowns were performed using endonuclease-prepared

siRNAs (esiRNAs), which are enzymatically cleaved long dou-

ble-stranded RNAs that exist in a pool with high sequence
complexity and exhibit fewer off-target effects than synthetic

siRNA (small interfering RNA)-based approaches (Kittler et al.,

2007). To generate the chemical-genetic interaction map,

MCF10A cells were transfected with individual esiRNAs,

exposed to either DMSO or drug, and allowed to proliferate for

72 hr before counting. Knockdown of an essential gene, KIF11,

was used as positive control in the screen (Figure S1A). Normal-

ized cell numbers from each knockdown in the presence of drug

or DMSO were compared to identify differences in proliferation

over 8 replicates (4 in each condition), and the significance of

this difference was converted into a signed chemical-genetic

interaction score (S) (Experimental Procedures; Martins et al.,

2015). Positive S scores indicate that the gene loss caused

drug resistance, and negative S scores indicate that gene loss

induced drug sensitivity that could constitute a synthetic lethal

interaction. Analysis of the distribution of scores based on

knockdown of GFP as negative control allowed the assignment

of false discovery rates (FDRs) of 10%, 5%, and <1% to cutoffs

of S = ±3, ±4, and ±5, respectively (Figure 1C). Altogether, we

determined quantitative scores for 19,406 gene-drug interac-

tions and identified 1,042 positive and 740 negative interactions

at S = ±3, corresponding to a 10% FDR (Table S2). These inter-

actions mapped to amedian of 27 positive and 22 negative inter-

actions per drug (Figure S1B).

As a control, we examined the impact of loss of BRCA proteins

on sensitivity to PARP inhibitors, a known synthetic lethal inter-

action (Bryant et al., 2005; Farmer et al., 2005). Loss of BRCA1

or BRCA2 was among the most synthetic lethal with PARP inhib-

itors in our dataset, including strong interactions with the PARP

inhibitor BMN673 (BRCA1 S = �4.4; BRCA2 S = �5.6). This

finding also extended to members of the BRCA pathway,

SHFM1 (S = �2.9) and PALB2 (S = �4.9), which mediate HR

as previously reported (Figure 1D) (Buisson et al., 2010; McCabe

et al., 2006). We also observed strong synthetic lethal interac-

tions between BRCA1/2- and BRCA-pathway genes and DNA

cross-linking agents cisplatin and mitomycin C (BRCA1 with

cisplatin, S = �5.8; and with mitomycin C, S = �5.1) (Figure 1D).

Synthetic lethality of BRCA1with PARP inhibitors is related to the

ability of the drug to trap PARP onto chromatin (Murai et al.,

2014; Shen et al., 2013). Using the map, we asked whether this

trend extends beyond BRCA1 to the entire HR pathway. We

examined known genes involved in HR and found that they

were also often synthetic lethal with PARP inhibitors in a manner

that was related to the degree of PARP trapping onto DNA

(Figure 1E). Illustrating this point, the strongest trapper,

BMN673, had an average score of �2.4 with 19 known compo-

nents of HR (p = 3.1e�4), which was lower than with any other

PARP inhibitor. Since these drugs are comparable inhibitors of

PARP enzymatic activity, our results indicate that synthetic

lethality with loss of components of HR machinery is more

dependent on PARP trapping than enzymatic inhibition. Loss

of the NHEJ factor TP53BP1 has been shown to cause resis-

tance to PARP inhibitors in several models (Bouwman et al.,

2010; Bunting et al., 2010; Chapman et al., 2012). This was

also reflected in the chemical-genetic map, with TP53BP1

knockdown conferring resistance to PARP inhibitors (BMN673

S = 3.3) and DNA cross-linkers (cisplatin S = 4.3) (Figures 1D

and 1E). We conclude that the chemical-genetic interaction
Cell Reports 23, 918–929, April 17, 2018 919
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Figure 1. Design of a Chemical-Genetic Interaction Map and Recapitulation of Known Gene and Drug Relationships

(A) Composition of genes selected for the map. TSGs, tumor suppressor genes.

(B) Selection of 31 drugs profiled in this study.

(C) Distribution of chemical genetic interaction scores (S) for drugs profiled. Scores of 899 GFP knockdowns across all tested drugs are indicated. FDR cutoffs are

based on the percentage of GFP knockdowns falling outside of a given score threshold. Metho, methotrexate; Gem, gemcitabine.

(D) Genetic interactions with BRCA-pathway members BRCA1, BRCA2, SHFM1, and PALB2, as well as the NHEJ factor TP53BP1. Interactions with PARP

inhibitors and crosslinking agents are highlighted, and p values represent the significance of differences between these scores and zero, using a t test. Dotted

lines represent 10% FDR cutoff.

(E) PARP inhibitor scores with annotated HR and NHEJ factors.

(F) Correlation of interaction profiles among drugs that belong to the same or a different class. For each drug class, pairwise correlations were compared against a

background of correlations between drugs from different classes to determine a p value.

(G) Correlation of profiles for PARP inhibitors with two cross-linking agents, cisplatin and mitomycin C. Trapping potency published in Murai et al. (2014).

Data indicate mean ± SD.

See also Figure S1 and Tables S1 and S2.
map recapitulates known drivers of chemosensitivity and resis-

tance in a quantitative fashion and is a resource for the identifica-

tion of potential drivers of the drug response.

Chemical-Genetic Profiles Link Drugs with Similar
Mechanisms of Action
While broad classes of chemotherapeutics target various as-

pects of DNA processing and repair, their exact mechanisms

of action are often unclear (Cheung-Ong et al., 2013). Therefore,

we asked whether the map could be used to link together drugs

based on common mechanisms of action. For a given drug, its

profile of chemical interaction scores represents a high-resolu-

tion phenotype that can be compared to other drugs. Calculating

all-pairwise correlations between drugs revealed that drugs

known to operate in the same general class had a higher average

correlation of profiles as compared to drugs that were unrelated

(Figure 1F, p = 4e�11). Overall, this trend was highest for topo-

isomerase and PARP inhibitors, as well as DNA cross-linkers,

which were all significantly more inter-related compared to
920 Cell Reports 23, 918–929, April 17, 2018
background (Figure 1F). For topoisomerase inhibitors, their pro-

files were highly correlated (mean r = 0.45, p = 4e�15) and

exemplified by the shared profiles of topoisomerase II inhibitors,

etoposide and doxorubicin (r = 0.65, p = 5e�79). The ability to

link drugs with similar mechanisms of action led us to further

investigate the mechanism of action of PARP inhibitors. We

found a strong correlation of profiles comparing PARP inhibitors

with cisplatin and mitomycin C that both work by causing

intra-strand crosslinks that block replication (mean r = 0.35,

p = 6.9e�7). However, this correlation was highly related to

PARP-trapping ability, with the most potent trapper, BMN673,

having the highest correlation with cisplatin (r = 0.51) and mito-

mycin C (r = 0.49) (Figure 1G). Taken together, our results further

support the model whereby PARP trapping creates double-

strand breaks during replication in a manner similar to that of

cisplatin and mitomycin C and that HR is necessary to repair

these lesions. Therefore, the genetic interaction map provides

a high-resolution means to understand similarities and differ-

ences between the mechanisms of action of drugs.
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Figure 2. Prediction of Cell Line Responses from the Chemical-Interaction Map

(A) Consensus interaction map based on coordinate responses with drug classes. All interactions shown have an FDR of category association <0.1%. The

number of drugs in each category is indicated. Thicker edges represent interactions that are also found across cancer cell line collections (p < 0.01).

(B) Overlap with correlation-based chemical-genetic interactions from cancer cell lines. Indicated is the fraction of chemical-genetic interactions at a given score

cutoff (jSj), where the expression of the gene is also significantly associated with resistance or sensitivity to the same drug across cell lines in the CTRP dataset

(p < 0.01). Dotted line represents baseline overlap at random (17.3%).

(C) Prediction of cell line responses to 11 drugs overlapping with the CTRP dataset. Cell lines were scored based on the sum of normalized gene expression for all

genes in the network at a given cutoff (Experimental Procedures). These drug- and cell-line-specific scores are then correlated with the area under curve (AUC)

values reported in the CTRP, and significant predictors are counted (p # 0.05). Red line indicates a sliding average.

(D) Analysis of cell line response predictions based on a score cutoff of 5. For each model, the correlation of predicted AUC versus real AUC is indicated, with

accompanying p values when significant. Genes whose expression contributed the most to the prediction accuracy are indicated (Experimental Procedures).

See also Figures S1 and S2 and Table S3.
Prediction of Cancer Cell Line Responses Using the
Chemical-Genetic Interaction Map
Based on the similarity of profiles between related drugs, we

next sought to combine genetic interactions based on drug class

to identify a consensus chemical-genetic interaction map. In this

consensus map, a connection between a gene and a compound

category reflects a concordance of response across multiple

related drugs and compared against a randomly permuted back-

ground. At an FDR of 0.1% we identified 125 connections be-

tween genes and different drug classes (Figure 2A; Table S3).

While connections spanned all major drug classes, topoisomer-
ase inhibitors, PARP inhibitors, and alkylating agents made up

themajority of this network, whilemicrotubule inhibitors were un-

der-represented due to the lack of genetic interactions in com-

mon across this class of agents (Figures S1C and S1D). Through

the analysis of independent chemical entities sharing a common

mechanism, this map highlights many potential modifiers of drug

responses that are altered in breast and ovarian cancers that

may participate in the DNA-damage response.

The ability of the chemical-genetic interaction map to

identify causal genetic relationships also raises the possibility

that a quantitative map could complement pharmacogenomics
Cell Reports 23, 918–929, April 17, 2018 921
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Figure 3. Prediction of Drug Synergies Using the Chemical-Genetic Interaction Map

(A) Comparison of chemical interaction scores for ATM and ATR knockdown. Positive (green) and negative (red) drugs were selected for combination testing.

(B) Synergy scores between the ATR inhibitor VE-821 and selected drugs.

(C) Relative proliferation of MCF10A cells treated with cisplatin or BMN673 alone or in combination with the indicated dose of VE-821 or CRT0044876 (APEX1

inhibitor) for 72 hr. Drug combinations are normalized to the indicated dose of VE-821 or CRT0044876 alone.

(D) Combination index (CI) values for combinations. Shaded regions represent synergistic CI values indicating strong synergy (<0.3), moderate synergy (0.3–0.7),

or slight synergy (0.7–1). Drug concentrations are at a fixed ratio of 1:1 mM, except for CRT0044876 (CRT), which is fixed at 10 mM.

(E) Percent growth inhibition of MCF10A cells treated with DMSO, a single drug, or drug combinations for 72 hr at the indicated dose. Dotted line represents

expected growth inhibition based on drug additivity. Significance is based on comparison of the observed growth inhibition to this expected value.

Error bars indicate SD except in (A) and (B), where they indicate SEM.
efforts using large panels of cancer cell lines (Barretina et al.,

2012; Basu et al., 2013; Garnett et al., 2012). While previous

studies have used supervised machine-learning approaches

to identify molecular correlates of drug sensitivity across cell

lines, we hypothesized that the relationships identified by

gene knockdown constitute a more direct and causal readout

of gene function that could enhance biomarker identification.

Comparison of 11 drugs in common between our study and

the Cancer Therapeutics Response Portal (CTRP) revealed a

strong degree of overlap between interactions identified in the

chemical-genetic interaction map and genes whose response

was significantly correlated with the drug response (Figure 2B)

(Basu et al., 2013). Furthermore, this degree of overlap was

highly related to the score threshold usedwith 21.5% of interac-

tions overlapping at a cutoff of 3 (p = 2.9e�3) and nearly 60%

overlapping at a cutoff of 8 (p = 3.1e�5), reflecting the quantita-

tive nature of the dataset (Figure 2B). One example of an inter-

action recapitulated in cell lines was ARID1A and etoposide,

with a score of 8.15. This interaction was observed across

496 cancer cell lines where ARID1A expression was strongly

linked with etoposide sensitivity (r = �0.297, p = 1.5e�11) and

low ARID1A expression was highly predictive of resistance to

etoposide (94.8% precision; Figures S2A and S2B). This inter-

action was present in the majority of the 22 tumor lineages

analyzed and strongest in sarcoma lines (r = �0.9; Figure S2C).

Etoposide impairs replication and causes DNA double-strand

breaks by locking topoisomerase II onto DNA (Pommier et al.,

2010). Since ARID1A facilitates the binding of topoisomerase

II onto DNA (Dykhuizen et al., 2013), ARID1A loss could

contribute to resistance by impairing the cytotoxic effect of
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etoposide. Therefore, genetic interaction information comple-

ments cell-line screening efforts and may be used to generate

mechanistic hypotheses that bridge between correlation and

causation.

The significance and quantitative nature of the overlap be-

tween our map and expression-based correlates of drug sensi-

tivity found in cancer cell lines prompted us to explore whether

this map could be used to systematically predict cancer cell

line sensitivity in an unsupervised fashion. For each drug, we

used the relative expression of each of the genes in its network

to derive a drug response prediction for every cell line (Experi-

mental Procedures). We evaluated this method using a sliding

cutoff to define the specific network for each drug and found

that more stringent networks provided increased power to

predict drug sensitivity, with nearly 60%–70%of drugs predicted

accurately at a cutoff between 5 and 6 (Figure 2C). At a cutoff

of 5, predictions were significant for 7 out of the 11 drugs

(Figure 2D). Analysis of the genes that were most informative in

making correct predictions in these cases revealed genes

involved in drug sensitivity and resistance. Knockdown of

EIF4A1 caused resistance to methotrexate (S = 6.5), and in cell

lines, EIF4A1 expression is positively correlated with metho-

trexate sensitivity across 645 cell lines (r = 0.25, p = 1.9e�8),

consistent with the network prediction. Alternatively, SNX24

knockdown was synthetic lethal with paclitaxel (S = �6.8), and

SNX24 expression was negatively correlated with drug sensi-

tivity (r = �0.14, p = 0.0026). Thus, computational analysis of

chemical-genetic interaction maps can be used to complement

cancer cell line screens and may be able to produce biomarkers

that bridge correlation with causation.
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Figure 4. Assessment of Genetic Interactions with PARP Inhibitors and Cisplatin

(A) Interaction profiles of four PARP inhibitors and cisplatin sorted based on average across all 5 drugs. Known factors associated with resistance and sensitivity

are indicated in red.

(B) Assessment of the preservation of interactions betweenMCF10A cells and seven cancer cell linesmeasured through a rescreen of BMN673 chemical-genetic

interactions. A genetic interaction is considered preserved if it is significant (p < 0.01), with the same direction in one or more lines. Each point represents the

cumulative rate of preservation for all interactions scoring past a particular cutoff. Solid lines indicate sliding averages.

(C) Confirmation of resistance interactions using independent synthetic siRNA gene knockdown in cell lines. Knockdown samples were treated with an

approximate IC50 dose of BMN673 and normalized treatment with DMSO. siTP53BP1was used as a positive control for resistance, and siNT4 is the non-targeting

control.

Data indicate mean ± SD. *p < 0.05; **p < 0.005; ***p < 0.0005, by two tailed Student’s t test.

See also Table S4.
Prediction of Drug Synergies Using the Chemical-
Genetic Interaction Map
There has been considerable interest in the development of tar-

geted therapies that inhibit DNA-repair machinery to be used in

combination with agents that generate specific types of DNA

damage (Gavande et al., 2016). We observed that loss of the

DNA-damage signaling kinase ATR induced sensitivity to cross-

linking agents and inhibitors of DNA replication in the consensus

map (Figure 2A). This was in contrast to its closely related
paralog kinase ATM, which was not linked to the response to

these drugs (Figure 2A). We hypothesized that the synthetic

lethal interactions observed with ATR knockdown could be phe-

nocopied with a small-molecule inhibitor of ATR and used to pri-

oritize synergistic drug combinations. We tested the combined

effects of the ATR inhibitor VE-821 with five drugs that were syn-

thetic lethal with ATR knockdown and three drugs that were not

(Figure 3A). Using a matrix screening approach, we measured

the effects of each drug on proliferation and determined a
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Figure 5. ARID1A Loss Associates with Platinum and PARP Inhibitor

Resistance in Patient Cohorts

(A) Impact of ARID1A loss, determined via mutation, homozygous deletion, or

loss of expression, and survival in TCGA serous ovarian cancers.

(B) Progression-free survival of relapsed, platinum-sensitive, high-grade

ovarian carcinomas in a clinical trial of rucaparib, stratified based on ARID1A

mutation status.

The p values are based on log-rank test. HR, hazard ratio; CI, confidence in-

terval of survival.

See also Figure S3 and Table S5.
synergy score reflecting the degree of drug synergy based on the

Loewe excess model (Lehár et al., 2009). Drugs that were syn-

thetic lethal with ATR inhibition were more synergistic than those

that were not predicted to be (p = 0.048, Figure 3B). In particular,

we found that the addition of VE-821 could sensitize MCF10A

cells to cisplatin (ATR, S = �7.7) and BMN673 (ATR, S = �5.0)

(Figure 3C), with a combination index (CI) that was below 1 for

most dose combinations, indicative of true synergy (Figure 3D)

(Chou, 2010). Analysis at doses where synergy was apparent re-

vealed that the combination had a greater than additive impact

on growth inhibition (Figure 3E). We also identified other drug-

gable nodes in the chemical-genetic interaction map and tested

whether resulting combinations had evidence of drug synergy.

The map identified an interaction between the loss of the base

excision repair protein APEX1 and PARP inhibition that was the

lowest with BMN673 (S =�3.9) (Figure 2A). We tested for poten-

tial synergy between BMN673 and a small-molecule inhibitor of

APEX1, CRT0044876 (Madhusudan et al., 2005). CRT0044876

displayed a dose-dependent ability to sensitize MCF10A cells

to BMN673 (Figure 3C) and showed evidence of synergy via CI

calculation as well as a greater than additive response (Figures
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3D and 3E). Therefore, the chemical-genetic interaction map

can be used to prioritize drug combinations, which may increase

the efficacy of chemotherapeutics.

Prediction of Factors Mediating Resistance to PARP
Inhibition
We next evaluated the map as a systematic resource to predict

molecules involved in DNA repair and associatedmechanisms of

resistance to chemotherapy. We focused on PARP inhibitors

olaparib, veliparib, rucaparib, and BMN673, as well as cisplatin,

since this class was highly covered in themap, has similar mech-

anisms of action, and generates DNA damage that depends on

repair via HR (Figure 1E). As controls, BRCA1, BRCA2, PALB2,

and SHFM1 knockdown was synthetic lethal with these agents,

and loss of TP53BP1was associated with resistance (Figure 4A).

An important consideration in interpreting genetic interaction

data from a single cell line is the degree to which such interac-

tions are maintained in other cellular contexts (Ashworth et al.,

2011). To assesswhether interactions weremaintained, we iden-

tified chemical-genetic interactions using the same experimental

approach with BMN673 in a total of 7 additional lines, including

four breast cancer lines and three ovarian cancer lines. After

scoring esiRNAs for their ability to induce resistance or sensi-

tivity to BMN673 in each of these lines (defined based on a cutoff

of p < 0.01), we found that the chemical-genetic interaction score

was highly predictive of whether a particular interaction was pre-

served in other cell lines (Table S4). For example, interactions

with BMN673 that had a score >5 in MCF10A cells were 40%

likely to be validated in 4 or more cell lines (half of all 8 lines

tested) and 70% likely to be validated in at least 2 other lines (Fig-

ure 4B). This trend was also evident for negative interactions,

where an S score < �4 had a 40% chance of being scored as

a synthetic lethal in half the cell lines tested. We note that no

interaction was scored as synthetic lethal in all cell lines. Since

two of the tested lines were BRCA1 mutant (SUM149PT,

UWB1.289), a likely reason for this is that factors whose loss

leads to PARP sensitivity in HR-competent MCF10A cells may

not be relevant in BRCA1 mutant cells that are already HR defi-

cient. Therefore, these data suggest that interaction strength in

MCF10A cells can be used to predict genetic interactions in

other cell lines, highlighting the quantitative nature of this map.

We next sought to validate the top two hits producing resis-

tance, GPBP1 and ARID1A, in additional models. Using indepen-

dent siRNAs, we confirmed that loss of either factor caused

resistance to BMN673 in MCF10A, MDAMB231, SUM149PT,

and UWB1.289 cells at levels comparable to that for loss of

TP53BP1 as a positive control for PARP inhibitor resistance (Fig-

ure 4C). ARID1A loss often occurs through somatic mutation

andhasbeenpreviously linked to the regulationofDNA-repairpro-

cesses (Dykhuizen et al., 2013; Shen et al., 2015). We confirmed

this result in engineered ARID1A�/� MCF10A cells, which were

resistant toBMN673 in comparison toparentalMCF10Acells (Fig-

ures S3A and S3B). We next searched for clinical evidence that

ARID1A loss contributes to resistance to PARP or platinum-con-

taining chemotherapy. In support, we found that ARID1A loss

was linked to poor outcome in TCGA high-grade serous ovarian

cancers (TCGA HGSOCs) receiving platinum as the standard of

care (p = 0.01; Figure 5A; Table S5) (Cancer Genome Atlas
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Figure 6. GPBP1 Loss Causes Upregulation of the Homologous Recombination Pathway

(A) Gene set enrichment analysis of homologous recombination pathway genes using RNA-seq data from GPBP1-knockdownMCF10A cells treated with 0.5 mM

BMN673 or DMSO for 24 hr.

(B) Heatmap representation of expression of HR pathway genes differentially expressed in the presence of BMN673. TPM, transcripts per kilobase million.

(C and D) Quantification of gamma-H2AX foci (C) and RAD51 recruitment (D) after treatment with 500 nM of BMN673 in the presence of the indicated gene

knockdowns in MCF10A cells.

(E and F) Quantification of gamma-H2AX foci (E) and RAD51 recruitment (F) after treatment with 50 nM of BMN673 in the presence of the indicated gene

knockdowns in SUM149PT cells. NT4 was the non-targeting control.

Error bars indicate SEM.

See also Figure S4.
Research Network, 2011). To test whether this observation

extended to PARP inhibitors, we analyzed samples from HGSOC

patients treated with rucaparib in a phase II clinical trial

(ClinicalTrials.gov number NCT01891344) (Swisher et al., 2017).

We did not identify any patients with concurrent BRCA1 and

ARID1A mutations and, therefore, focused our analysis on a

cohort of 154 patients without mutations in HR pathway genes

and identified 10 that had mutations in ARID1A. The progres-

sion-free survival (PFS) for these 10 ARID1A mutant cases was

significantly lower than for the rest of this cohort (p = 0.003;

Figure 5B). All ARID1A mutant cases were HGSOCs, confirmed

by histological analysis (Table S5). These clinical data show that

PARP inhibitors provide no clinical benefit in ARID1A-mutated,

high-grade serous or endometrioid ovarian cancer and warrants

further investigation.

GPBP1 Loss Causes PARP and Platinum Resistance by
Regulating the Expression of Factors Involved in HR
We next investigated the top candidate in our categorical

analysis, GPBP1, a transcription factor of unknown function.

GPBP1 lies on chromosome 5q11, a region focally deleted in

approximately 5% of TCGA HGSOCs and 4% of TCGA

breast cancers. To determine whether GPBP1 plays a role in

the transcriptional response to DNA damage, we performed

RNA-sequencing (RNA-seq) analysis of control and GPBP1-

knockdown MCF10A cells treated with or without BMN673.

qRT-PCR of GPBP1-knockdown cells confirmed 90% knock-

down at the mRNA level in this experiment (Figure S4A). In

response to 24-hr BMN673 treatment, GPBP1 knockdown

caused the upregulation of factors involved in HR based
on gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) (Figure 6A), indicating a potential compensatory mecha-

nism to facilitate repair of lesions incurred by PARP inhibition.

In contrast to control cells, GPBP1 knockdown resulted in the

upregulation of distinct and canonical HR factors such as

BRCA1 and RAD51B in response to BMN673 (Figure 6B).

We next asked whethr this transcriptional response was suffi-

cient to enhance the repair of double-strand breaks incurred by

PARP inhibition and whether this occurred via HR. This hypoth-

esis was particularly intriguing, sinceGPBP1 knockdown caused

resistance to BMN673 in BRCA1 mutant cancer cell lines, sug-

gesting that GPBP1 loss may bypass the requirement of

BRCA1 for HR (Figure 4C). To test this hypothesis, we estab-

lished an HR-deficient and PARP-inhibitor-sensitive MCF10A

model by BRCA1 knockdown, and in this model, knockdown

of BRCA1 and GPBP1 together led to a significant rescue of

BMN673 sensitivity (Figure S4B). Using immunofluorescence,

we found that generation of gH2AX foci after BMN673 treatment

was reduced in BRCA1+GPBP1 versus BRCA1 knockdown cells

(p = 0.045), indicating that GPBP1 loss led to a reduction in the

number of DNA double-strand breaks formed after PARP inhib-

itor treatment (Figure 6C). To determine whether this reduction in

double-strand breaks was due to heightened HR repair capacity,

we examined the recruitment of the strand-exchange protein

RAD51 to damaged chromatin, a mark of commitment to dou-

ble-strand break repair using HR. We found that the recruitment

of RAD51 was increased in BRCA1+GPBP1 versus BRCA1

knockdown cells after PARP inhibition, indicating that GPBP1

loss led to an increase in double-strand break repair through

HR (p = 0.036; Figure 6D). We confirmed these findings in
Cell Reports 23, 918–929, April 17, 2018 925
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Figure 7. Cancers with GPBP1 Loss Display Heightened Expression of HR Genes and Resist Platinum Treatment in Ovarian Cancer

(A) Comparison of gene expression levels of homologous recombination pathway genes in TCGA breast cancers among tumors with GPBP1 homozygous/

heterozygous loss versus diploid copy number variation (CNV) status.

(B) Comparison of gene expression levels of homologous recombination pathway genes in ovarian cancer patients from the TCGA HGSOC dataset with GPBP1

homozygous/heterozygous loss versus diploid CNV status. The p values were calculated by non-parametric Mann-Whitney-Wilcoxon test.

(C) The Kaplan-Meier disease-free survival (DFS) analysis of patients with TCGA HGSOC, with samples with deletion in GPBP1. Boxes represent the interquartile

range, and whiskers indicate 1.5 times the interquartile range.
BRCA1mutant SUM149PT cells, where GPBP1 knockdown also

led to a significant reduction in H2AX foci and increase in RAD51

foci after BMN673 treatment (Figures 6E and 6F), indicating that

GPBP1 loss can also restore HR in cases when BRCA1 is

mutated. These results indicate that GPBP1 loss contributes to

increased double-strand break repair by HR as a mechanism

of PARP inhibitor resistance.

Drawing from our RNA-seq analysis, we next asked whether

the expression of HR factors was also elevated in human cancer

samples harboring GPBP1 loss and whether it might contribute

to drug resistance. There was a strong concordance between

genes upregulated upon GPBP1 knockdown and genes whose

expression level was higher in breast cancers with GPBP1 loss

(Figure 7A). Further analysis of samples with GPBP1 loss in

TCGA ovarian cancer samples also reflected the increased

expression of a number of the same HR factors, indicating a

similar function of GPBP1 in these two disease types (Figure 7B).

We next asked whether this enhancement in HR gene expres-

sion upon GPBP1 loss resulted in drug resistance in ovarian can-

cer patients treated with platinum-containing therapy. In the

TCGA ovarian cohort, survival analysis indicated that GPBP1

loss was associated with poor outcome and resistance to plat-

inum therapy (p = 0.001, via log-rank test; Figure 7C). Therefore,

GPBP1 loss contributes to platinum resistance in ovarian cancer

through the increased expression of genes involved in HR.

DISCUSSION

We present a quantitative map to link the efficacy of chemother-

apeutics to tumor genetics that can serve as a platform for the

functional and therapeutic translation of tumor genomes. In

contrast to most standard genetic screens, this approach pro-

vides a quantitative readout that approximates genetic interac-

tion strength and allows for the comparison of responses across

many drugs. Thismap is able to recapturemany known synthetic
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lethal interactions, and future work may expand on this map

beyond the set of genes screened here, as well as using comple-

mentary technologies such as CRISPR/Cas9 to evaluate the

impact of gene knockout versus knockdown aswell as gene acti-

vation. To aid in integration of these data with ongoing efforts to

systematize cancer-related screens, data from this network have

been deposited into the Cancer Target Discovery and Develop-

ment (CTD2) Dashboard (https://ctd2-dashboard.nci.nih.gov/).

Using insights derived from the chemical-genetic interaction

map, we highlight several vignettes describing how it can be

used to aid in the development of cancer therapeutics. The

mapwas able to identify drugs with similar mechanisms of action

and highlights themechanistic commonalities between PARP in-

hibitors and DNA cross-linking agents that contribute to syn-

thetic lethality with loss of HR pathway genes. Themap identified

interactions that could be recapitulated with small-molecule in-

hibitors of ATR and APEX1, revealing synergistic drug combina-

tions. As a means to highlight the quantitative nature of this

resource for more systematic discovery, we show that computa-

tional analysis of thismap can be used to predict the sensitivity of

tumor cells to chemotherapies. As many large-scale efforts to

screen cancer-cell-line panels with small molecules are ongoing

(Barretina et al., 2012; Basu et al., 2013; Garnett et al., 2012), our

analysis suggests that loss of many of the factors identified in

this map is linked with drug sensitivity in a predictive way. Since

current approaches do not use this functional information, the

map may provide a platform for enhancing methods to predict

drug responses from baseline genomic profiles by bridging cor-

relation with causation (Costello et al., 2014). Future computa-

tional approaches to integrate cell-line screen with chemical-ge-

netic interaction maps could aid in these more established drug

and biomarker development approaches.

We demonstrate several ways to enhance the reliability and

utility of this map. First, we show that related drugs have similar

genetic interaction profiles and that this property can be used to

https://ctd2-dashboard.nci.nih.gov/


identify modifiers of therapeutic responses that are not specific

to a single compound. As specific drugs may have unique off-

targets, such as the case for PARP inhibitors (Knezevic et al.,

2016), analyzing related drugs together may identify genetic in-

teractions linked to their core mechanism of action. Second,

the plasticity in genetic networks has been an impediment to

the identification of genetic interactions that are cell type

independent (i.e., ‘‘hard’’ versus ‘‘soft’’ interactions) (Ashworth

et al., 2011). Rescreening in multiple cancer cell lines showed

that the strength of genetic interaction was proportional to the

likelihood of interaction being conserved in other cell lines.

Therefore our data indicate that the quantitative nature of genetic

interaction maps could be used to distinguish between interac-

tions that are more globally preserved versus those more spe-

cific to the cell line tested.

Based on our categorical analysis, we identified that ARID1A

and GPBP1 loss causes PARP inhibitor resistance. Low

ARID1A expression has been linked with poor outcome and

platinum resistance in HGSOC (Yokoyama et al., 2014) and

clear-cell ovarian cancers (Itamochi et al., 2015; Katagiri

et al., 2012). However, the functional role of ARID1A on DNA

repair is unclear, with conflicting reports of its role in HR (Adam-

son et al., 2012; Shen et al., 2015). Together, these data warrant

a more complete interrogation of the role of ARID1A on PARP

inhibitor resistance. The strongest resistance interaction with

PARP inhibitors and cisplatin was GPBP1, which, as we

show, is involved in the transcriptional regulation of genes

involved in HR. Another transcriptional regulator, CDK12, has

been shown to modulate PARP inhibitor sensitivity in a similar

manner (Bajrami et al., 2014; Johnson et al., 2016). Future

studies may seek to identify the potential interplay between

the targets of CDK12 and GPBP1. Since we observed that

GPBP1 loss is also linked to chemoresistance and poor clinical

outcome, these data warrant a more complete interrogation of

the function and role of GPBP1. Because GPBP1 loss was not

assayed in our rucaparib clinical trial cohort, future work could

determine its clinical association with PARP inhibitor resis-

tance. This work highlights the utility of a systematic chemi-

cal-genetic interaction map as a resource for the identification

of clinically relevant biomarkers of drug susceptibility, as well

as a foundation for integration with other cancer datasets to

enhance drug and biomarker development.

EXPERIMENTAL PROCEDURES

Cell Culture

MCF10A cells were maintained in DMEM/F12 medium supplemented with 5%

horse serum, epidermal growth factor (20 ng/mL), insulin (10 mg/mL), hydro-

cortisone (0.5 mg/mL), cholera toxin (100 ng/mL), and penicillin/streptomycin.

All cell lines were obtained from the ATCC and cultured according to listed

protocols, except for ARID1A�/� MCF10A cells, which were obtained from

Horizon Discovery (Cambridge, UK) and maintained in the MCF10A media

described earlier. Rucaparib was provided by Clovis Oncology; other drugs

were purchased from Selleckchem.

Measurement of Chemical-Genetic Interactions

MCF10A cells were reverse transfected in 384-well plates (1,000 cells per well)

using 5 ng of esiRNA (Sigma) with RNAiMax (0.05 mL per well) as a transfection

reagent in quadruplicate. Cells were transfected for 24 hr, and then the entire

plate was treatedwith one drug at a half maximal inhibitory concentration (IC50)
concentration or DMSO for 72 hr, after which cells were stained with Hoescht

33342 and counted using a Thermo CellInsight high-content microscope.

After drug or DMSO treatment, each plate was median centered to 2,000

cells per well to normalize relative proliferation rates. Plates had aminimum in-

ternal correlation across the 4 replicate wells of 0.7. Each well in the drug-

treated plate was then compared to the same well in the DMSO-treated plate.

We observed an overall linear relationship between drug and DMSO plates,

indicating that most esiRNAs have no effect on drug sensitivity. Next, the set

of 4 normalized replicate values in the DMSO plate was compared to the

same in the drug plate, and both the fold change in cell number and the p value

of significance of this difference in medians were calculated using a modified t

test. The S score of genetic interaction is defined by the negative log10 of the t

test p value and signedwith either positive (gene loss drives resistance to drug)

or negative (gene loss drives sensitivity to drug) values. FDR was calculated

based on the percentage of negative-control knockdowns (GFP) whose score

exceeded a given threshold. The described protocol is available in MATLAB,

and code and raw data to recreate the dataset are available at https://

github.com/BandyopadhyayLab/.
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