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Babies, Variables, and Relational Correlations
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Computer Science Department, Cognitive Science Program
Indiana University

Bloomington, IN 47405

Abstract

Recent studies have shown that infants have access to highly
useful language acquisition skills. On the one hand, they can
segment a stream of unmarked syllables into words, based only
on the statistical regularities present in it. On the other, they
can abstract beyond these input-specific regularities and gen-
eralize to rules. It has been argued that these are two separate
learning mechanisms, that the former is simply associationist
whereas the latter requires variables. In this paper we present
a correlational approach to the learning of sequential regular-
ities, and its implementation in a connectionist model, which
accommodates both types of learning. We show that when a
network is made out of the right stuff, specifically, when it has
the ability to represent sameness and the ability to represent
relations, a simple correlational learning mechanism suffices
to perform both of these tasks. Crucially the model makes dif-
ferent predictions than the variable-based account.

Background
Two recent papers inSciencehave demonstrated the remark-
able language learning abilities that are possessed by infants.
In both cases the infants were presented with sequences of
syllables embodying some sort of regularity and later tested
with sequences that agreed or disagreed in certain ways with
the training set. In the experiments of Saffran, Aslin, and
Newport (1996), eight-month-olds heard strings of syllables
consisting of randomly concatenated three-syllable “words,”
sequences which never varied internally. Thus the transition
probabilities within words were higher than between words.
Later the infants were able to differentiate between these
words and non-word three-syllable sequences which they had
either heard with less frequency than the words or not heard
at all. This is taken as evidence that they had picked up the
statistics in the training set. Marcus, Vijayan, Bandi Rao,
and Vishton (1999) presented seven-month-olds with series
of three-syllable sequences separated by gaps. Each sequence
consisted of two different syllables arranged in a fixed pat-
tern, AAB, ABB, or ABA. For example, in the ABB condi-
tion, the presented patterns included sequences such asle di
di andji je je. Later the infants responded differently to novel
sequences of three syllables which matched the pattern they
had been trained on than to novel sequences which did not.
This is taken as evidence that they had in some sense picked
up the rule implicit in the training patterns.

Marcus et al. (1999) and Pinker (1999) argue that the two
studies, taken together, point to at least two distinct learn-
ing mechanisms which are behind language learning. One
of these, revealed in the experiments of Saffran et al. (1996),

can learn relationships such as the tendency forti to imme-
diately follow ga. It is sensitive to the content of the items,
not caring about the similarity among different items. For
Pinker (1999), this is just theassociationismproposed in the
eighteenth century by Hume and still proposed as the funda-
mental mechanism of the mind by modern connectionists and
others. The other mechanism, revealed in the experiments of
Marcus et al. (1999), can learn relationships such as the fact
that the first syllable in a sequence is the same as the second
but different from the third. This mechanism ignores spe-
cific content, caring only about sameness or difference. In
this sense the second mechanism seems to requirevariables,
placeholders which are ignorant of their specific content. For
Pinker (1999), this mechanism is an instantiation of what was
proposed by the early rationalists and what we think of today
as “symbolic.” Thus Marcus et al. (1999) and Pinker (1999)
now believe that the mind, specifically the portion of it used
in language learning, is both associationist and symbolic.

The question, as Marcus et al. (1999) make clear, is not
whether connectionist networks can learn to solve both kinds
of tasks, but what sorts of mechanisms are required and
whether these differ for the two tasks. In this paper, we
present a model of the learning of regularities in patterns
which accommodates both kinds of patterns in terms ofcor-
relations. We argue that a correlational account, to deal with
the tasks in Marcus et al.’s experiment, needs two mecha-
nisms in addition to those usually found in such accounts,
neither of which amounts to explicit variables. We show
how a connectionist network implementing this theory (the
PLAYPEN architecture) can learn aspects of the Saffran et al.
task, as well as the Marcus et al. task. What is crucial about
this account is not that it handles variable-like behavior within
a correlational framework but that it makes predictions that
differ from the variable-based account.

Pattern Regularity Learning
Saffran et al.’s and Marcus et al.’s experiments are not di-
rectly comparable. In Saffran et al.’s experiments, the bound-
aries between the patterns must be extracted, while these are
provided in Marcus et al.’s task. However, both are learning
tasks in which the learner is presented repeatedly with pat-
terns consisting of sequences of syllables and extracts some
sort of regularity from the sequences.

We agree with Marcus et al. and Pinker that there are other
differences in what is going on in these two tasks, but we
believe that both are fundamentally statistical, based on the
extraction ofcorrelations from input patterns. The main dif-



ference, we argue, lies in what sort of correlations: whether
they are content-specific, as in Saffran et al.’s experiments, or
relational and based on similarity among the elements within
the sequences, as in Marcus et al.’s experiments.

We will consider tasks that are more general than those in
the two original sets of infant experiments, what will refer
to aspattern regularity learning . A learning trial for such
a task consists of a pattern (not necessarily auditory) com-
posed of elements arranged in a particular way (either sequen-
tially or spatially), and the regularity consists of tendencies
for patterns to resemble each other in particular ways. Re-
semblances between patterns make reference to theposition
of elements within their patterns, where position may be de-
fined spatially or temporally. Regularity could be concerned
only with a single pattern position and not with intra-pattern
relationships; for example,all patterns begin withba . But we
will only be concerned with regularities that make reference
to intra-pattern relationships, as was the case in both sets of
infant experiments.

Content-Specific Regularities

In Saffran et al.’s experiments, the resemblances between pat-
terns concern thespecific contentof the patterns. That is, it
is particular syllables which are involved in the regularities;
certain combinations of syllables tend to recur. The simplest
content-specific regularities (other than those that make ref-
erence to only a single pattern element) are those involving
pairwise co-occurrences of specific elements or element fea-
tures. Examples of such regularities are the following:ba
tends to be followed bygu ; syllables beginning withb tend
to be followed by syllables beginning withg.

But the regularities in Saffran et al.’s experiments are more
complex than these. Rather than simple pairwise regulari-
ties, the regularities concern co-occurrences of pairwise co-
occurrences. Examples of suchhigher-order regularities are:
whengu is preceded byba , it tends to be followed byli ;
when a syllable beginning withg is preceded by a syllable
beginning withb, it tends to be followed by a syllable begin-
ning with l .

Not surprisingly, these statistical, content-specific regular-
ities can be handled in a straightforward fashion in connec-
tionist networks. Weights in most connectionist networks
representcorrelations between elements, and the regulari-
ties we have been describing are just that. However, correla-
tions between correlations, as in the higher-order regularities,
require “handle” units responsible for pairs of particular ele-
ments. These handle units can then be joined by connections
whose weights encode the higher-order correlations. Figure 1
shows a network of this type. The network is of the attractor
(generalized Hopfield) type, and weights are adjusted using
the Contrastive Hebbian Learning algorithm (Hopfield, 1984;
Movellan, 1990). For simplicity’s sake, we assume separate
units for the different pattern positions, ignoring the (non-
trivial) problem of how element representations are shared
across different positions, and we consider only the case of
patterns consisting of three elements. Pairwise regularities
are represented by strong weights joining pairs of PATTERN
units to single CORRELATION units. Higher-order regular-
ities are represented by strong weights on connections join-
ing CORRELATION units. Note that this approach assumes

that higher-order regularities presuppose the pairwise regu-
larities which they are built on. Note also that when there are
multiple higher-order regularities, as in Saffran et al.’s experi-
ments, for example, the CORRELATION layer permits these
different regularities to be kept separate: one set of units and
connections might represent theba gu mipattern, another the
vi ja lo pattern.

position 2position 1 position 3

PATTERN

CORRELATIONS

Figure 1:Network for learning content-specific regularities. Only
some units and connections are shown.

Just what gets learned by such a network and how it gener-
alizes depend on how the pattern elements are represented.
We assume multiple levels of representations differing in
coarseness. That is, at the least coarse level, the elements
are represented in terms of the largest number of classes; at
the most coarse level, they are grouped in terms of a small
number of classes. Representations in connectionist networks
also differ in the extent to which they are distributed vs. lo-
cal. Assuming local representations for the sake of simplicity,
syllables might be represented at multiple levels of coarse-
ness as shown in Figure 2. Thus the syllablebis turns on a
unit specific to that syllable, a unit responding to all syllables
beginnin withb and a unit responding to all consonant-vowel-
consonant syllables.

CVC

tasbistibabi

_s_ib_

CV

Figure 2:Representation of syllables at multiple levels of coarse-
ness. Only a few units are shown. Arrows represent excitatory con-
nections joining units at different levels of coarseness. Not shown
are inhibitory connections forcing winner-take-all at a given level.



Relational Regularities
Alternately, regularity within a set of patterns may be in terms
of the similarity of elements within patterns; that is, the reg-
ularity may berelational rather than content-specific. Again
the regularities may be pairwise or higher-order. Examples
of pairwise relational regularities are the following:the first
element is the same as the second element; the first element
tends to begin with the same consonant as the second ele-
ment; the first element is different from the second. Examples
of higher-order relational regularities are the following:the
first element tends to be the same as the second element and
different from the third; when the first element begins with the
same consonant as the second element, the second element
has the same vowel as the third.

In these terms, then, Marcus et al.’s experiments involved
both pairwise and higher-order relational regularities, as well
as pairwise and higher-order content-specific regularities,
though only the relational regularities are reflected in the test
items.

In what follows, we discuss how relational regularities, as
well as content-specific regularities, are handled within the
PLAYPEN architecture.

Accommodating Relational Regularities in a
Connectionist Network
Our claim is that relational regularities, like content-specific
regularities, are correlations, that is, that they involve statis-
tical patterns of co-occurrence. Further we show how rela-
tional correlations can be learned in a connectionist network
that differs from more conventional networks in that it has
an explicit means of representing and learning about similar-
ity/difference. This requires two augmentations to conven-
tional networks: (1) a second dimension (the “binding” di-
mension), in addition to activation, along which units vary,
and (2) “handle” units which respond to either sameness or
difference on the binding dimension.

We view the task presented to the learner in Marcus et al.’s
experiments as one ofgrouping, a fundamental aspect of all
perceptual processing, both by humans and machines. Pre-
sented with a visual or auditory scene, people attempt both to
segment it into distinct regions and to group regions together.
They segment and group by making use of featural similarity,
proximity, and common fate, as well as top-down knowledge
of the domain. For segmentation, proximity obviously plays a
large role, but for grouping, featural similarity may override
proximity. Thus in rhythm perception, where grouping has
been studied extensively (Handel, 1989), two elements that
are separated by another may be grouped together because
of their similarity to each other on some dimension. While
segmentation and grouping are in some sense opposing pro-
cesses, both amount to thebinding together of regions that
would otherwise not be associated with one another.

Thus any cognitive architecture that handles segmentation
or grouping must offer a solution to the “binding problem,”
the problem of how to represent the short-term situation in
which distinct cognitive units are treated as part of the “same
thing.” This problem has been discussed extensively in recent
connectionist literature, and a family of related connectionist
solutions has been proposed (Shastri & Ajjanagadde, 1993).
All of these involve the augmentation of conventional archi-

tectures and algorithms with a further dimension in addition
to activation along which processing units can vary. We will
refer to this as the “binding dimension.” Binding two units
then corresponds to coincidence of those two unit’s values
on the binding dimension. Most often the binding dimension
involves the firing of units, and binding itself is synchroniza-
tion of firing (Hummel & Biederman, 1992; Mozer, Zemel,
Behrmann, & Williams, 1992; Shastri & Ajjanagadde, 1993;
Sporns, Gally, Reeke, & Edelman, 1989). InPLAYPEN we
make use of a simpler approach: alongside its activation, each
unit is characterized by anangle, ranging from 0 to2� radi-
ans. The particular value taken by a unit’s angle is not what
is relevant; it is its value relative to that of other units in the
network. Units with similar angles are temporarily “bound”
together, treated as “the same thing”; units with very different
angles (differences close to� radians) are treated as “different
things.”

To permit the representation and learning of relational cor-
relations, we need one further augmentation. Rather than
taking the form of simple connections between units, rela-
tional correlations are implemented via “handle” units called
relation units. These are of two types,sameness units,
which tend to be activated if their input units are activated
and have similar angles, anddifference units, which tend to
be activated if their input units are activated and have dif-
ferent angles. Each of these units represents a pairwise re-
lational correlation of one type or the other, and the con-
nections joining these units represent higher-order relational
correlations. Thus the architecture we proposed for learning
content-specific correlations (Figure 1) becomes that shown
in Figure 3 for relational regularities. Again the network is
of the attractor type. We have modified the standard input
and activation functions and the Contrastive Hebbian Learn-
ing algorithm (Movellan, 1990) to accommodate angles and
relation units. For details, see Gasser and Colunga (1998).
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Figure 3: PLAYPEN network for learning relational regularities.
Only a few units are shown. Difference relation units appear as di-
amonds, sameness relation units as ovals. Unit angles are indicated
by arrows. A single unit within each pattern position has been acti-
vated, leading to the activation of some relation units.



Note that each unit in this network (as in the network in
Figure 1) has specific content, but in addition, at any point in
time, through its angle, each unit also represents a hypothesis
about how the elements in the pattern are to be grouped.

Simulation of Marcus et al.’s Experiment

Now consider again the task of Marcus et al.’s experiment.
First, we agree with Seidenberg and Elman (1999) that
knowledge about syllable similarity would have been learned
prior to the experiment so should already be in place in the
architecture. For thePLAYPEN model, this knowledge takes
the form of connections (via sameness and difference units)
representing the similarity or difference between syllables or
syllable features. When the units representing pairs of sylla-
bles are clamped in the PATTERN layer, that is, when their
activations are fixed at some positive value but their angles
are still allowed to vary, these connections cause similar syl-
lables to have the same angle and different syllables to have
different angles.

We again assume a range of degrees of coarseness in sylla-
ble encodings and, for simplicity, local encodings. The pre-
sentation of a pattern, say,le le di, takes the form of the
clamping of PATTERN units corresponding to these sylla-
bles in the relevant sequential positions. Syllable units at
greater degrees of coarseness are activated (inhibitory con-
nections between incompatible syllable units prevent all syl-
lable units from being activated as a result of feedback from
the coarse units). Further because of the built-in (or previ-
ously learned) relational connections implementing similar-
ity, the angles of the syllables take on a pattern representing
the groupingof the pattern elements: the first two elements
make up one group, the third element another. The activated
PATTERN units cause particular CORRELATION units to be
activated. For example, the difference unit representingle in
second position anddi in third position and the difference unit
representing some CV syllable in second position and some
CV syllable in third position are both activated. Contrastive
Hebbian Learning results in the strengthening of connections
both into and between the activated CORRELATION units,
as well as possibly the weakening of other connections that
are not joined by activated units. Figure 4 shows some of the
units and connections that are involved.

We simulated Marcus et al.’s task by training networks of
this type on one of the three grammatical rules: AAB, ABA,
or ABB. In each case, the set of training patterns consisted of
four different syllable sequences, each formed by randomly
combining syllables following the appropriate grammatical
rule. Each network was trained on 50 repetitions of the train-
ing set.

The networks were then tested on 12 sequences, four each
of the three kinds of grammatical rules, by clamping the units
corresponding to each sequence. Each of the test sequences
was novel; that is, it was formed by combinations of syllables
that had never been seen before.

Since training the network leads to the strengthening and
weakening of connections into and within the CORRELA-
TIONS layer, test patterns should result in more activation
on the CORRELATIONS layer if they are consistent with the
training set. Thus familiarity with a test pattern was mea-
sured in the network as activation of the CORRELATIONS

CV CV
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Figure 4: PLAYPEN Network implementing Marcus et al. Only a
few units are shown. Connections implementing similarity between
PATTERN element units and inhibitory connections between incom-
patible element units are not shown. The activated (black) units in
the PATTERN layer are those that would be active following the pre-
sentation of the patternle le di. Four of the relation units that would
be activated as a result of this are shown, and ten connections that
would be strengthened during the resulting learning. Two of these
connections, those joining the units in the CORRELATIONS layer,
represent higher-order relational correlations.

units. Because the PATTERN units include very general ones
(for example, one that is activated for any CV syllable in
second position), the CORRELATIONS layer should be acti-
vated relatively highly even by specific syllable sequences it
has not been trained on, as long as they are consistent with
the training rule.

The average results from 10 networks trained on each
grammatical pattern are shown in Figure 5. The total activa-
tion of the CORRELATIONS layer was averaged over four
trials of each of the test words. The expected interaction
between training rule and testing rule is highly significant
(p < :001). As shown in Figure 5, the CORRELATIONS
layer is more activated for novel sequences that follow the
grammatical rule the network was trained on than for novel
sequences that follow either of the other two rules.

There are several points to note about the way the network
learns the tasks.

1. Each unit in the network encodes content information as
well as relational information. Thus an activated COR-
RELATION unit represents at the same time the co-
occurrence of particular syllables (or syllable types if it is
connected to relatively coarse PATTERN units) and the co-
occurrence of syllables bearing a particular similarity rela-
tion to one another.

2. Though it cannot perform the segmentation that is a part
of Saffran et al.’s task, this network can learn the content-
specific correlations in the three-syllable patterns in the
task. Since each of the patterns consists of three different
syllables, the PATTERN units would take on three differ-
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Figure 5: Networks that have been trained on sequences follow-
ing a certain grammatical pattern respond with more activation to
novelsequences obeying that same pattern than to novel sequences
obeying other patterns.

ent angles for each pattern, activating difference units in
the CORRELATIONS layer and resulting in learning on
the connections between these units (representing higher-
order content-specific regularities).

3. While this was not true of Marcus et al.’s task, a set of pat-
terns may embody more than one higher-order relational
regularity. For example, in a set of four-element patterns,
some patterns might be consistent with the rule AABB and
others consistent with the rule ABBA. While we are un-
aware of experiments testing the ability of subjects to ex-
tract such rules, we assume that the ability to learn multiple
rules is necessary for language acquisition. A network like
that in Figure 4 (but with four positions) could learn both
regularities, each as patterns of connections between the
six pairwise relational regularities.

Contrasting Two Accounts of Relational
Pattern Learning

A Rule-Based Account
A number of models have been proposed to handle the re-
sults of Marcus et al.’s experiments (Christiansen & Curtin,
1999; Seidenberg & Elman, 1999). Here we contrast only
ours and the rule-based account proposed by Marcus (forth-
coming). Marcus argues that tasks such as this one, in fact
higher cognition and language generally, rely on the learning
and manipulation ofexplicit rules containingabstract vari-
ables, placeholders that apply to any member of a given class.

Having been trained on a pattern learning task of the type
in Marcus et al.’s experiments, the learner extracts an explicit
rule of the form AAB, where A and B are now abstract vari-
ables in Marcus’s sense, and the variables are all associated
with some class, say the class of CV syllables (the experi-
ments demonstrate only that infants generalize to other mem-
bers of this class).

Now consider what patterns will be recognized as familiar
after training. Obviously patterns that are identical to those

appearing during training are familiar; if the learner heard the
sequencele le diduring training, that sequence will be recog-
nized later on because it matches the AAB rule. Likewise any
pattern consisting of three members of the relevant class for
the variables in which the first two elements are identical also
matches. So if the relevant class is CV syllables, even if the
syllableskoandbi did not appear during training, the pattern
ko ko biwill be treated as familiar, apparently just as familiar
asle le di since all members of the class match the variables
equally well. Furthermore, the sequencesle le leandko ko ko
are also familiar since, assuming these variables behave like
those in first-order predicate calculus, the rule does not force
the third element to be different from the first and second.1

Now consider what patterns would fail to be treated as fa-
miliar. Since identity is all-or-none, patterns in which the first
two elements are only similar, such asle l" di (where" is the
vowel in bed) would be treated as unfamiliar. Likewise pat-
terns in which the elements are outside the class over which
the variables are defined would not be recognized. Thus,
again assuming that CV syllables are the relevant class,les
les diswould not be seen as familiar.

The Relational Correlation Account

The relational correlation account that we have presented in
this paper differs from the rule-based account in that content
still matters. This is because, even when what is learned are
relational, rather than content-specific, correlations, the cor-
relations apply only to a certain range of elements. The ex-
tent of this range depends on the encoding coarseness of the
PATTERN units in question, but given a range of degrees of
coarseness, we can expect some relatively content-specific re-
lational correlations to be learned, along with some more gen-
eral relational correlations.

The implication is that the network’s response will depend
on the degree of similarity between the training and test pat-
terns, as well as on whether the training rule is followed. Pat-
terns that are identical to the training patterns should result
in the greatest familiarity. Those that are similar should be
treated as less familiar. Those that are quite different, as in
Marcus et al.’s experiments, should be still more surprising
(though still less so than novel patterns that do not follow the
rule).

For the network, the notion of the class over which a vari-
able is defined does not exist. Because CVC syllables share
some features with CV syllables, we can expect some gen-
eralization to CVC patterns that follow the rule, especially if
they share segments with the training syllables.

Further, sameness and difference have equal status in the
network, so trained on AAB patterns, the network cannot help
but learn that the third element is different from the first and
second, as it learns that first and the second are the same.
This contrasts with the rule-based approach which requires
the learning of an extra predicate to encode the distinctness
of the third element.

Finally, difficulty of pattern learning should depend on the
number of distinct syllables in the word. When a pattern has

1Of course, the learner could also extract in addition the explicit
constraint that the third element differs from the first and second, but
this would seem to be learning “more” than just the rule, so harder
or less likely.



three distinct elements, the built-in connections implement-
ing inter-element similarity and difference cause the activated
PATTERN units to repel each other’s angles, resulting in three
different angles. However, depending on the magnitude of
the weights connecting the units, there is also an attractor in
the network at which there are only two different phase an-
gles. At the same time, relation units can represent only bi-
nary relations, and strong associations between relation units
can only develop for different relational regularities involv-
ing the same two objects (as in Marcus et al.’s experiments).
ThusPLAYPEN has a strong preference fortwo, and in a four-
syllable version of Marcus et al.’s experiment, we would ex-
pect that sequences such as ABCC would be confused with
AABB and ABBB. In symbolic models, on the other hand,
there is no built-in preference for a particular number of vari-
ables.

Conclusions and Future Work
In this paper we have shown how a connectionist network
with a mechanism for grouping together activated units (an-
gles) and a mechanism for representing primitive relational
knowledge explicitly (relation units) can learn the task of
Marcus et al.’s experiments. While aPLAYPEN network is
perhaps not a conventional neural network, we do not believe
it has variables hidden in it. But whether it does or not, the
key issue should be whether this model makes different pre-
dictions from alternate models, specifically from rule-based
models. We have argued in the last section that this is the
case. Most of these predictions are testable, and we are cur-
rently performing an experiment using visual patterns and
adult subjects to test the role of similarity to training patterns
in the learning of relational regularities. Preliminary results
indicate that subjects are more accurate and faster at judging
the familiarity of patterns following the training rule when
their content is similar to that in the training patterns, as pre-
dicted by our model.

Another potential contribution of our model is the placing
of “rule” learning in the context of segmentation and group-
ing. If we are right, then for auditory patterns such as those
in the two sets of infant experiments discussed here, the con-
siderable research on rhythm processing (Handel, 1989) is
relevant and should lead to a range of predictions. For ex-
ample, we might expect the relative timing or loudness of the
syllables in patterns to play a role in what is learned.

Relations obviously play a fundamental role in human cog-
nition, and we have argued elsewhere that the relational cor-
relation framework embodied inPLAYPEN accommodates re-
lations without sacrificing the distributed representations and
simple Hebbian learning that characterize connectionist net-
works. Indeed the original motivation forPLAYPEN was the
learning of spatial relation terms in language rather than the
learning of sequences of syllables. We believe the importance
of Marcus et al.’s experiments is not to demonstrate that in-
fants can make use of variables but to show that they are good
learners of relational correlations, a capacity that will be cru-
cial as they are exposed to language in all its complexity.
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