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Abstract 

C01\1PUTER-AIDED PROGRA.l\1l\11NG 

FOR MULTIPROCESSING SYSTE1\1S 

by 

Min-You Wu 

Daniel D. Gajski 

Technical Report 88-19 

Information and Computer Science 
University of California at Irvine 

Irvine, CA 92717 

As both the number of processors and the complexity of problems to be 
solved increase, programming multiprocessing systems becomes more difficult 
and error-prone. This report discusses parallel models of computation and 
tools for computer-aided programming (CAP). Program development tools 
are necessary since programmers are not able to develop complex parallel 
programs efficiently. In particular, a CAP tool, named Hypertool, is 
described here. It performs scheduling and handles the communication 
primitive insertion automatically so that many errors are eliminated. It also 
generates the performance estimates and other program quality measures to 
help programmers in improving their algorithms and programs. Experiments 
have shown that up to a 300% performance improvement can be achieved by 
computer-aided programming. 
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1. Intrcxluction 

High performance machines can be built using more than one processing element 

(PE). The main problem in multiprocessing, however, is not only how to build a sys­

tem, but also how to use it. That requires development of parallel algorithms and pro­

grams that can be executed efficiently. There are three basic approaches to parallel 

program development. One school of thought believes that parallelization is a complex 

problem that can be only performed manually. However, programmers are error-prone 

and not very efficient in solving problems with hundreds of tasks. For example, system 

deadlock is the most common problem, and is difficult to detect once the program is 

developed. The second school of thought believes that a restructuring compiler will 

automatically restructure sequential programs into parallel programs. However, the 

parallelism revealed in this way is restricted by the algorithms embodied in the sequen­

tial programs. The third school believes in interactive program development with the 

assistance of computer-aided programming (CAP) tools. This approach recognizes that 

some tasks, such as algorithm design, are creative while others, such as task scheduling 

and synchronization insertion, are solved efficiently using CAP tools. These tools also 

generate performance estimates and quality measures to guide programmers in 
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improving their programs and algorithms. In this way, optimal performance can be 

obtained with increased productivity. 

In this paper, we describe parallelization problems and a CAP tool for developing 
I 

programs on message-passing systems. In section 2, we address some essential issues in 

parallelization and define several types of efficiency losses. The performance of a mul-

ti processing system is related to these efficiency losses. Two basic problems, namely, 

partitioning and communication, are discussed. Several methods to reduce communica-

tion overhead and processor suspension are presented. In section 3, we describe our 

program development methodology and the partitioning & merging (P&M) method. A 

CAP tool called Hypertool is introduced in section 4. Hypertool takes a partitioned 

program and generates parallel code for execution on hypercube machines. Hypertool 

also generates performance estimates and quality measures for the parallel code. A per-

formance comparison of manually and automatically generated code is presented in Sec-

tion 5. 

2. Parallelization and Efficiency 

2.1. Parallelization issues for nrultiprocessing system; 

A multiprocessing system may be modeled as m Fig. 2.1. Several identical PEs 

are connected by a communication network with a certain topology. Each PE has a 

mam processor (MP) and a memory module (MM). Some systems may have one or 

more communication co-processors ( CCPs) in each PE to perform communication 

activities. Two types of multiprocessing systems can be identified by the types of com-

munication schemes. In a shared memory system, communication between PEs is car-

ried out via a shared memory. To exchange data, the producing processor stores data 
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into the shared memory, from which the consummg processor retrieves it. In a 

message-passing system, communication is performed by sending data directly from one 

PE to another, with no shared memory. 

The success of multiprocessing technology depends on successful parallelization of 

application problems [GaPe85], which in turn, requires good partitioning of problems 

and minimization of communication between partitions. Parallelization problems 

include algorithm design, partitioning style selection, granularity determination, load 

balancing, and minimization of network contention. 

The programmer must design an efficient parallel algorithm for the application 

problem. After algorithm development, the partitioning style and granularity are 

determined. For example, a matrix problem could be partitioned along matrix rows, 

columns, or blocks. The basic rule is to partition problems along dependencies in order 

to cut dependencies as little as possible and thus reducing the amount of communica­

tion between partitions. Granularity determines sizes of the partitions. Usually, fine 

granularity partitions have more parallelism and more dependencies, while crude gran:u­

larity partitions have less parallelism and less dependencies. The choice of granularity 

is affected by the amount of dependencies and the communication overhead. Another 

source of performance degradation is unbalanced loading of PEs which causes some PEs 

to be suspended while waiting for data from other PEs. Finally, when the amount of 

communication exceeds a certain percentage of the network capacity, serious network 

contention may result. To reduce network contention, not only dependencies among 

tasks must be minimized, but also the tasks need to be mapped to PEs such that the 

network traffic is minimized. All of these parallelization problems cause efficiency 

losses. 
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2.2. Efficiency loss 

For multiprocessing systems, the speedup is defined as S = Ts / Tp, where Ts is 

the execution time of the best sequential program, and Tp is the execution time of the 
J 

parallel program. The efficiency is defined as µ = S / N, where N is the number of 

PEs. The value ofµ is usually less than one, indicating efficiency loss in parallelization. 

The efficiency loss may come from parallel algorithms, coding, and PE suspension. 

a. Efficiency loss from algorithm parallelization. Although sequential algorithms 

may be applied to parallel systems, the best sequential algorithm may not be the best 

parallel algorithm. To exploit more parallelism, programmers should design new paral­

lel algorithms instead of parallelizing sequential algorithms. A parallel algorithm may 

require more overall computation to solve a given problem than a sequential algorithm. 

The efficiency loss from algorithm parallelization is defined as ELA = TA / Ts, where 

TA is the execution time of the parallel algorithm coded as a sequential program 

without any communication primitives. 

For some algorithms, such as the Wave Equation and Matrix Multiplication 

[FJL088], the same algorithm may be used for both sequential and parallel machines, 

and ELA is equal to 1. However, some parallel algorithms are very inefficient. For 

example, the Jacobi parallel algorithm for Laplace equations is not as efficient as its 

sequential counterpart, the Gauss-Seidel algorithm [Jenn77]. The former converges 

much more slowly than the latter. Figure 2.2 shows the number of iterations for con-

vergency of the two algorithms. Note that the number of iterations, and thus efficiency 

loss from the algorithm, may differ as much as one hundred or more. 

b. Efficiency loss from coding. When a parallel algorithm is coded into a parallel 

program, overhead is introduced which causes efficiency loss. This overhead includes 
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communication overhead, PE initializations, selection statements, and duplication of 

operations. The efficiency loss from coding is defined as ELc = (.f TR,] / TA, where 
1=1 

TR, is the running t}me (not including the suspension time) of each PE. 

Communication overhead includes time spent on message packing and initializa-

tion of message transfer on main processors. There are two kinds of message packing. 

One is to pack several elements of the same data type that are not stored contiguously. 

For example, Figure 2.3(a) shows the diagonal elements of a matrix being packaged 

and then sent. The other is to pack different types of elements. In Fig. 2.3(b ), three 

different elements, force, position, and temperature are packaged and sent to another 

PE. 

PE initialization includes getting identification parameters, setting topologies, and 

opening communication channels. 

Selection statements are used frequently to select different code segments in each 

PE for boundary conditions. For example, each of the four code segments in Fig. 2.4 

may or may not be executed on a particular PE. 

Finally, to reduce communication overhead and suspension time, some operations 

may be duplicated on different PEs. For example, in Fig. 2.5( a), the statement a= b* c 

is executed on one PE, and the result broadcasts to each PE. In Fig. 2.5(b ), a= b* c is 

executed on each PE, so that no communication is required. 

ELc for most problems increases with the number of PEs. If the parallel program 

is running on a single PE, ELc is usually not equal to 1, since the overhead from PE 

initialization and selection statements still exists. 
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c. Efficiency loss from processor suspension This efficiency loss is defined as 

N 
ELp = NTp / ~TR,, where Tp is the execution time of the parallel program on N PEs. 

i=l 

Since TR, +TB =Tp ( i = 1, 2, ... , N), where TB is the total suspension times for PE i, 
I I 

J 

EL p = I + [ ~1 TB, I i ~1 TR,). Th us, the efficiency loss depends on the ratio of the total 

suspension time and total running time for all PEs. Processor suspension results from 

load imbalance and message dependencies. If the algorithm does not have enough 

parallelism, the efficiency loss from processor suspension may be great. 

Load balance, in its normal sense, means an equal load for each PE. When the 

load of each PE is not balanced, a lightly loaded PE will become suspended. Even if all 

PEs are equally loaded, processor suspension can still occur due to message dependen-

cies. For example, in Fig. 2.6( a), we divide a program into two equal parts without 

dependencies and load them onto two PEs, resulting a balanced load. However, if one 

part depends on the other, even though the load is "balanced", one of the PEs becomes 

suspended, as shown in Fig. 2.6(b ). Therefore, the correct meaning of load balance 

should be that all PEs are running without any suspension, we call this complete load 

balancing. When the load is completely balanced, not only the load is equal for each 

PE, but also dependencies do not cause processor suspension. 

Dependencies can lead to processor suspens10n m two ways. When PE i needs 

data to execute but the data has not been generated by PE j, PE i will be suspended. 

Even if the data has been generated by PE j and on the way to PE i, PE i may 

become suspended due to the message transmission time. In the latter case, we say the 

message transmission time is not tolerated. 

In summary, all efficiency losses can be classified as one of the above efficiency 
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losses. Overall, the efficiency can be expressed as µ = 1 / EL A ELcEL p. 

2.3. Methods for perforrm.nce i~roveIIEnt 

To increase the efficiency, we must design better algorithms, reduce computation 

and communication overhead, and reduce processor suspension time. A parallel algo­

rithm must be designed to maximize parallelism and minimize dependencies, in order to 

achieve small efficiency loss. The problem has to be properly partitioned into several 

tasks. The dependencies among these tasks are the main reason for efficiency losses 

from processor suspension and coding. The dependencies on a shared memory system 

are the data, storage, and control dependencies [PeGW87], while in a message-passing 

system, the only dependency is the message dependency. 

A parallel program usually consists of serial and parallel segments of codes, parti­

tioned along its natural boundaries. The parallel parts can be further partitioned along 

iteration boundaries. If there are no dependencies between iterations, they can be exe­

cuted on different PEs without communication. If the iterations are dependent with 

each other, the alignment method and minimum-distance method [PeGW87] may be 

used t.o reduce or even eliminate these dependencies. If dependencies still exist after 

applying these methods, tasks must exchange data. Problem data is to be partitioned 

to minimize dependencies among tasks and maximize parallelism, however, these two 

goals may contradict each other. Figure 2.7 shows an example of the Gauss-Seidel 

algorithm. When we partition the matrix into squares, we have less dependencies and 

less parallelism (Fig. 2. 7( a)). On the other hand, if we partition it into strips, we have 

more parallelism and more dependencies (Fig. 2. 7(b)). 

We may use more memory space to eliminate some dependencies. For example, in 

matrix multiplication, where C = A * B, each PE can store a sub-block of matrix A 
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and a sub-block of B [FJL088]. This algorithm must exchange data at each computa­

tion stage. On the other hand, if each PE stores the entire matrix B, the communica­

tion required above can be eliminated. This represents a trade-off between communica­

tion overhead and memory space. Also, communication can be reduced by duplicating 

operations. As previously stated, we must pay a price for duplication of operations in 

order to eliminate some message transfers. 

Packing reduces the number of message transfers, and consequently eliminates 

some message initialization overhead. Whenever a PE sends several messages to another 

PE, these messages may be packed together to form a message package. However, the 

packing and unpacking themselves are overhead. Furthermore, message packing may 

delay certain message transfers since the earlier-generated message has to wait for the 

later message to be generated. 

The efficiency loss from coding comes from both computation overhead and com­

munication overhead. Efficient use of multiprocessing systems requires relatively crude 

granularity to reduce overhead. The overhead which dominates the performance 'of 

computation determines granularity (MJGS85). If the major overhead is in initializing 

tasks, the task granularity is considered. The task granularity refers to the average 

amount of computation in a task. If the overhead from communication is dominant, we 

consider the communication granularity, which refers to the average amount of com­

putation between two consecutive communications. 

Fine granularity exploits more parallelism, but increases efficiency loss. Crude 

granularity, on the other hand, reduces efficiency loss but decreases parallelism 

(MJGS85). Figure 2.8 shows the relationship between granularity, parallelism, 

efficiency, and speedup. If granularity is too small, large overhead leads to low efficiency 

and decreased speedup, although parallelism increases. On the other hand, when 
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granularity is too large, there is not enough parallelism for speedup. 

The granularity is also determined by dependencies. When there are few depen­

dencies, fine granularity may be used without increasing efficiency loss. When many 

dependencies exist, the overhead of communication becomes the dominate part of 

efficiency loss. If overhead is very large, crude granularity may be used with loss of 

parallelism. When overhead decreases, medium or fine granularity is possible [BrOP86J. 

The datafl.ow approach becomes practical when overhead is reduced to several opera­

tions. The spectrum of granularity is shown in Fig. 2.9. 

In general, granularity should be comparable to overhead to keep efficiency loss 

small. Furthermore, granularity should be crude enough to tolerate the message 

transmission time. Current message-passing systems have relative large overheads so 

that only crude granularity is used in partitioning. Since the overhead is getting 

smaller on the new generation machines, medium granularity may be used in the near 

future. 

3. Program Developmmt Aid 

3.1. Program developrrent rrethods 

The main goal of parallel program development is to reduce efficiency losses. One 

approach advocates sophisticated dependency analysis and extraction of parallelism 

from sequential programs by restructuring sequential programs into parallel programs 

[KKPL81). However, since sequential programs were developed from sequential algo­

rithms, the restructuring method cannot extract more parallelism than that available in 

those algorithms. If the extracted parallelism is not large enough, processor suspension 
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becomes the major source of efficiency loss. 

Another approach focuses on developing parallel algorithms and partitioning data 

manually [Seit85], [FJL088], [GuMo88]. This approach tries to partition a problem 
J 

into subproblems of almost equal size to balance load for each PE, and to reduce the 

dependencies among these subproblems. The quality of programs developed is depen-

dent on programmers' experience and problem regularity. For problems with irregular 

structures, the combined effect of dependencies and overhead is hard to estimate manu-

ally, causing poor granularity and load distribution. For example, load balancing may 

require some code segments to be moved from one PE to another, which may increase 

dependencies. These dependencies may lead to more processor suspension, resulting in 

even worse load imbalance. This approach may cause high efficiency losses from coding 

and processor suspension. Furthermore, since scheduling and communication is per-

formed manually, debugging programs is difficult. 

3.2. The CAP approach 

The third approach uses friendly environments and automation to help program-

mers develop high quality programs with increased productivity. 

Several research efforts have demonstrated the usefulness of program development 

tools for multiprocessing. There are two types of tools. One provides software develop­

ment environment and debugging facilities. POKER [Snyd84] is a parallel program-

ming environment for message-passing systems, which has been ported to the Cosmic 

Cube [SnSo86]. POKER provides a debugging environment and a graphic representa­

tion of communication structure. DAPP [ApMc85] accepts program code with inserted 

synchronization primitives and produces a report of parallel access anomalies, that is, 

pairs of statements that can access the same location simultaneously. Polylith 
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(PuRG87] was designed for prototyping parallel algorithms. It supports development of 

architecture-independent parallel programs. In this environment, task communications 

are specified by virtual connections, instead of physical processor connections, to sim­

plify many data tn;tnsmission issues. 

The other type of tool performs some program transformation. Most tools of this 

type are based on the theory of program restructuring (PaKL80]. PTOOL [ABKP86] 

performs sophisticated dependency analysis, including advanced interprocedural flow 

analysis. It identifies parallel loops, extracts global variables, and provides a simple 

explanation facility. This information can be used to obtain more parallelism, eliminate 

some dependencies, and reduce efficiency losses. PTOOL does program transforma­

tions, too. For example, it transforms control dependences into data dependences. 

However, PTOOL only tests loops for independence and does not provide partitioning 

and synchronization mechanisms for non-parallel loops. CAMP [PeGa86] partitions 

both parallel and non-parallel loops, and reduces dependences by using process align­

ment and minimum-distance algorithms. Since it extracts more parallelism and el~I?­

inates many dependencies, efficiency loss from processor suspension is reduced. CAMP 

also inserts synchronization primitives, and estimates performance for each partitioning 

strategy. Brandes and Sommer [BrSo87] have introduced a knowledge-based paralleliza­

tion tool. This tool performs dependency and anomaly analysis, as well as some execu­

tion order changing to obtain more parallelism and less efficiency loss. 

The program development tool described in this paper, Hypertool, is based on the 

partitioning & merging approach to obtain proper granularity. Hypertool aims at 

increasing programming productivity and taking advantage of tedious tasks that com­

puters do better than humans. It performs automatic scheduling and communication 

insertion, and generates parallel codes for target machines. An optimizing scheduler is 
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used to minimize communication overhead and processor suspension, so that efficiency 

losses are reduced. Hypertool also provides performance estimates and an explanation 

facility to help programmers improve their programs. 

3.3. The partitioning & rmrging approach 

In the partitioning and mergmg (P&M) approach, a problem is first partitioned 

into processes of small sizes. The partitioning strategy may be decided by a program­

mer or an automatic partitioner. A dataflow ( or macro dataflow ) graph is generated 

automatically by the dependency analysis of these processes. A scheduler is then used 

to merge processes into tasks. Since the scheduler takes care of dependencies and over­

head, a high-quality solution can be obtained for problems with regular or irregular 

structures. Many scheduling algorithms may be used for this purpose. Most are based 

on the critical path algorithm [Hu61]. If scheduling is done before running the pro­

gram, it is called static scheduling. Otherwise, it is called dynamic scheduling. The 

static P&M approach is also called grain packing [KrLe88]. 

After merging, communication primitives are inserted according to the remaining 

dependencies. Proper communication primitives are inserted automatically to avoid 

incorrect results and deadlock. 

An simple atomic model is used for program development in the P&M approach. 

In this model, a computation may be considered as a set of processes among which 

there are dependencies. If each process is an indivisible unit of execution, a process can 

be expressed as an atomic node [BeRa81), [HuGo85], [Babb85]. An atomic node has one 

or more inputs and outputs. When all inputs are available, the node is triggered to exe­

cute and generates its outputs. An atomic node can be a procedure, an iteration, a 

statement, or an operation. We use a directed graph to represent the atomic model, in 
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which a set of nodes {n 1, n 2, ... , nn} are connected by a set of directed edges {e 1, e2, ... , 

ee}, as shown in Fig. 3.1. The weight of a node is equal to the process execution time. 

Since each edge corresponds to a message transfer from one process to another, the 

weight of the edge is equal to the message transmission time. If the nodes are opera­

tions, the graph is a data/low graph, otherwise, it is a macro data/low graph. 

Dependencies may cause communication overhead and processor suspens10n. 

However, dependencies are not harmful as long as they are contained in the same task. 

Therefore, we may merge several processes into a task to reduce communication while 

maintaining as much parallelism as possible. In Fig. 3.2( a), when nodes 2 and 5, and 3 

and 4, are merged, the number of dependences is reduced from 5 to 3, with reduction of 

parallelism. On the other hand, if nodes 1 and 3, and 5 and 6, are merged as shown in 

Fig. 3.2(b ), the graph contains 3 dependences without reduction of parallelism. 

In the P&M approach, the sizes of processes determine program performance. 

Usually, small-size processes lead to better performance. In the extreme case, a process 

might contain only a single operation. However, small-size processes can cause large 

amounts of scheduling work, which may exceed the capability of a static scheduler. 

When a dynamic scheduler is used, the scheduling itself becomes major overhead for a 

large number of processes. Therefore, from practical point of view, a process should 

consist of moderate size of operations. Thus, a careful choice of process sizes and use of 

a good scheduler will reduce the efficiency losses from coding and processor suspension. 
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4. Hypertex>l 

4.1. System diagram 

In this sectioil, we present a vers10n of Hypertool, which takes C programs as 

input, performs static scheduling, and generates parallel codes for the SIMON simula­

tor. The performance estimation and quality measures also will be described. 

The system diagram of our Hypertool is shown in Fig. 4.1. First, a user develops 

a proper algorithm, performs partitioning, and writes a program as a set of procedures. 

The program looks like a sequential program and can be run on a sequential machine 

for debugging purposes. This program is automatically converted into the parallel pro­

gram for a hypercube target machine by parallel code synthesis and optimization. 

Hypertool then generates performance estimates, including execution time, communica­

tion time, and suspension time for each PE, and network delay for each communication 

channel. The explanation facility displays data dependencies between PEs, as well as 

parallelism and load distribution in any time interval [WuGa87]. If the performance"is 

not satisfactory, the programmer can change the partitioning strategy and the size of 

the partitions using the information provided by the performance estimator and the 

explanation facility. 

Figure 4.2 shows the organization of the program synthesis and optimization 

module. The lexer and the parser recognize data dependencies and user defined parti­

tions. The graph generation submodule generates a macro dataflow graph, in which 

each node represents a process. The scheduling submodule assigns processes to tasks 

by minimizing the execution time for the graph. The mapping submodule maps each 

task to a physical PE in a given topology by minimizing network traffic. After schedul­

ing and mapping are complete, the synchronization module inserts the communication 
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primitives. Finally, the code generator generates target machine code for each PE. 

4.2. Code develop1nmt 

To facilitate automation of program development, we use a programming style in 

which a C program is composed of a set of procedures called from a main program. A 

procedure is an indivisible unit of computation to be scheduled on one processor. For 

example, a parallel Gaussian Elimination algorithm, which partitions a given matrix by 

columns, is shown in Fig. 4.3. The procedures FindMax and UpdateMtx are called 

several times. Procedure calls can be executed in any order, that is, the control depen­

dencies can be ignored. Data dependencies are defined by the single assignment of 

parameters in procedure calls. Communications are invoked only at the beginning and 

the end of procedures. In other words, a procedure receives messages before it begins 

execution, and it sends messages after it has finished the computation. Data depen­

dences among the procedural parameters define a macro datafiow graph. 

This programmmg style has good modularity, which is necessary for developing 

general application programs. Also, it is system independent since communication 

primitives are not specified within the program. 

4.3. Scheduling 

A macro datafiow graph, which is generated directly from the main program, is a 

directed graph with a start and an end point. For example, Fig. 4.4 shows the macro 

datafiow graph of the program in Fig. 4.3. Note that only the parallel parts of Fig. 4.3 

and the messages transferred among these procedures are shown in Fig. 4.4. Each node 

corresponds to a procedure, and the node weight is represented by the procedure 
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execution time. For example, nodes n 1 , n 7, n 12, n 16 in Fig. 4.4 correspond to the pro­

cedure FindMax, while the other nodes represent the procedure UpdateMtx. Each 

edge corresponds to a message transferred from one procedure to another, and the 

weight of the edge is equal to the transmission time of the message. In Fig. 4.4, for 

example, the edges connecting ni, n 2, n 3, n 4, n 5, n 6, and n 7 correspond to a message 

called "vector" in the first iteration, and the edge connecting n 4 and n 9 to a message 

called "matrix". When two nodes are scheduled to a single PE, the weight of the edge 

connecting them becomes zero. The execution time of a node is obtained by running 

the corresponding procedure, while the transmission time is estimated by using system 

parameters. We assume that the given message transmission time is for neighbor com­

munication. Non-neighbor communication takes a little more time. We also assume 

network traffic is not too heavy. Therefore, network contention is ignored in our 

model. The time for initiating a data transfer is assumed short enough to be ignored. 

Next, we discuss static nonpreemptive scheduling of a macro dataflow graph for 

homogeneous multiprocessors. Critical-path scheduling has been addressed by Hu 

[Hu61]. The critical-path algorithm has been proved to be near optimal [AdCD74] 

[Kohl75]. This algorithm assigns a label to each node according to the longest path 

from this node to the end point. It performs well for a limited number of PEs. 

Ramamoorthy, et al. developed algorithms to determine the minimum number of PEs 

required to process a program in the shortest possible time [RaCG72] [KaNa84]. They 

used exhaustive search, which is not acceptable for large programs. Bussell, et al. pro­

posed an alternative method to reduce the number of PEs [BuFL74], but the efficiency 

of the algorithm is still dependent on a bound estimate of the number of processors. 

More importantly, these algorithms did not model transmission time, that is, they 

assumed that the data transmission between PEs did not take any time. This is not 

true, however, for most message-passing systems. The data transmission time is a 
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significant factor that affects the overall performance of a system, which must be con­

sidered in modeling. Kruatrachue and Lewis have presented a model that assigned 

data communication time as weights of edges [KrLe88]. 

Wu and Gajski have introduced two scheduling algorithms, called the modified 

critical-path (MCP) algorithm and the mobility-directed (MD) algorithm, to minimize 

the execution time on a limited number of PEs and to minimize the number of PEs 

required to process a graph in the shortest possible time, respectively [WuGa88]. The 

MCP and MD algorithms first indicate the critical path, and calculate mobilities. The 

mobility is the time interval in which a node can be executed without delaying the exe­

cution of the critical path. Then, nodes are scheduled according to mobilities. These 

algorithms reduce dependencies between tasks, balance load for each PE, and minimize 

the efficiency losses from coding and processor suspension. 

4.4. Mapping 

A mappmg algorithm should generate the mm1mum amount of communication 

traffic, reducing network contention and the efficiency loss from processor suspension. 

For best results, a traffic scheduling algorithm that balances network traffic should be 

used [BiSh87]. However, traffic scheduling requires flexible-path routing, which gen­

erates large overhead. If network traffic is not too heavy, simpler algorithms that 

minimize total network traffic may be used. 

The mapping problem may be described as follows. Given a task graph, consist­

ing of nt nodes and et, edges, which is generated by the scheduler. Each node in this 

graph corresponds to a task, and each edge corresponds to the message transferred 

between two tasks. The weight of the edge, w ( ei), is the sum of transmission time of 

all messages between the two tasks. This task graph is to be mapped to a system 
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graph defined by a given topology. A system graph consists of n 8 nodes and e8 edges, 

where n 8 '2:nt. Each node corresponds to a physical PE, and each edge to a connection 

between two PEs with weight 1. Each edge in a task graph or a system graph is 

bidirectional. These graphs can be simplified into an undirected graph since we are not 

performing traffic scheduling. 

If the task graph can be mapped to the system graph and all communications are 

nearest-neighbor communications, no routing is necessary and the mapping is optimal. 

Otherwise, certain pairs of tasks connected by an edge will be mapped to two non-

neighboring PEs. The corresponding message will be routed through the shortest path 

between the two PEs. The distance d of two PEs is defined as the number of hops on 

the shortest path from one PE to another. Our objective function is 

et 

F = :Ew(ei)di 
i ==l 

where, di is the distance of the two PEs to which the two tasks connected by ei are 

mapped. Therefore, F stands for the total communication traffic. 

As an example, Fig. 4.5( a) and (b) show a task graph and a system graph, respec­

tively. When the task graph is mapped to the system graph as shown in Fig. 4.5( c), 

F = 20. A better mapping is shown in Fig. 4.5( d) with F = 16. 

We may use the algorithms for the quadratic assignment problem to obtain a near 

optimal mapping. A heuristic algorithm presented by Hanan and Kurtzberg may be 

applied to minimize the total communication traffic [HaKu72]. It generates an initial 

assignment by a constructive method, which is then improved iteratively to obtain a 

better solution. Lee and Aggarwal described some experimental results for hypercube 

topologies and showed that the algorithm works well, even though it did not always 

guarantee an optimum solution [LeAg87]. 
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4.5. C.Omnill1ication insertion 

The communication primitives are used to exchange messages between processors. 

They must be used properly to ensure the correct sequence of computation. Since our 
I 

programming model partitions programs into procedures and message exchanges only 

take place before and after the procedures, primitive insertion is easily performed 

automatically, reducing the programmer's load and eliminating insertion errors. 

The communication primitive insertion is performed as follows. After scheduling 

and mapping, each node in a macro dataflow graph is allocated to a PE. If an edge 

exits from this node to another node that belongs to a different PE, the send primitive 

is inserted after the node. Similarly, if the edge comes from another node in a different 

PE, the receive primitive is inserted before the node. However, if a message has already 

been sent to a particular PE, the same message does not need to be sent to the same 

PE again. 

The insertion method described above does not ensure that the computatfon 

sequence is correct. For example, two possible cases are shown in Fig. 4.6( a) and Fig. 

4. 7( a). In Fig. 4.6( a), the order of the sends is incorrect, and must be reordered as 

shown in Fig. 4.6(b). In Fig. 4.7(a), on the other hand, either the order of sends or the 

order of receives needs to be exchanged as shown in Fig. 4.7(b) or ( c), respectively. 

Figure 4.8 shows the generated parallel code of Fig. 4.3 for two PEs. Note that only 

the main program for each PE is shown. 
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5. Experhrental Results 

Our Hypertool is currently running on a Sun workstation under UNIX. It takes 

37 seconds to schedule a program with 162 processes to 8 PEs. Several examples have 

been tested on Hypertool. 

By our experience, program development with Hypertool takes much less time 

than manual program development. Debugging is much easier, and we never have any 

deadlock in the programs developed on Hypertool. The results also show that Hyper­

tool generates codes that execute faster than manually generated codes. For some 

problems, such as the Laplace Equation, Gaussian Elimination, and Dynamic Program­

ming, up to 300% improvement in speed can be obtained by Hypertool (see Tables 5.1, 

5.2, and 5.3). The Gauss-Seidel algorithm is used for the Laplace Equation since it has 

less efficiency loss. For the Gaussian Elimination algorithm, the matrix is partitioned 

by columns. The Dynamic Programming problem is partitioned by both rows and 

columns. These problems have less regular structures so that good load balance is 

difficult to obtain manually. For more regular problems, such as the Matrix Multiplica­

tion and Bitonic Sort, automatic scheduling gives performance similar to that of 

manual scheduling, as shown in Tables 5.4 and 5.5. However, even for these kinds of 

problems Hypertool still shows better performance when the size of matrix cannot be 

evenly divided by the number of PEs. For example, when the matrix sizes are 9*9 and 

17*17, Hypertool-generated codes show better performance. In such case, manual 

scheduling usually leads to an unbalanced load distribution among PEs, while 

automatic scheduling moves some nodes from overloaded PEs to underloaded PEs and 

achieves a better load balance. 

Since the execution time of nodes and the message transmission time are obtained 

by estimation, the performance affected by the difference between the estimated value 
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and the real value has been studied. Tables 5.6 and 5. 7 show the results for Laplace 

Equation and Bitonic Sort, respectively. For the Laplace Equation, the node weight is 

estimated with matrix size of 4 *4, and for the Bi tonic Sort, the node weight is 

estimated with array length of 64. The results show that the difference between the 

estimated value and the real value has little effect on performance. 

6. Omclusion 

As both the number of PEs and the complexity of problems to be solved increase, 

programming multiprocessing systems becomes more difficult and error-prone. The 

optimal parallelization may be too complicated for all but simple problems. Actually, 

early experiments on programming hypercube systems has revealed that conceptualiza­

tion of program execution is very difficult, and any further optimization of complex 

problems was discouraged. A program development tool that helps programmers to 

develop parallel programs by automating part of parallelization tasks and back­

annotating some quality measures to programmers becomes a necessity. 

The experimental results obtained by Hypertool show that the CAP methodology 

1s better than the manual methodology in many respects. First, it increases the pro­

gramming productivity by an order of magnitude. Programmers only define partitions 

without indicating the task allocation or communication primitives. Second, sir:i.,ce com­

munication primitive insertion is performed by Hypertool, many errors, such as 

incorrect computation sequence and deadlock, are eliminated. Moreover, most pro­

gramming errors may be debugged by sequentially running the program. Finally, the 

program development tool generates better parallel codes since it uses good scheduling 

algorithms. This resulted in substantial performance increases as demonstrated in the 
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previous section. 

Since the program development tool generates target machine codes automati-

cally, the programs developed on the tool are portable. The programs may run on 

different message-passing systems, and even on shared memory systems. The tool can 

also be developed for a variety of languages to fit different applications. 
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· Fig.2.5 Duplication operations: 
(a) PE 0 executes a = b * c and broadcasts a; 

(b) all PEs execute a = b * c. 
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Fig. 3.1 A macro dataflow graph. 
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Program Gaussia.nElimination 

/* 
matrix[N+ l][N][N+ 1] 
vector{N+ 1].index[N] 
vector(N+ 1).m[N) 
*/ 

stores single-assigned N*(N+l) matrix A and column of the equation Ax=y; 
stores single-assigned row permutation; 

stores single-assigned coefficients; 

/****************************************Main Program****************************************/ 

/*initialize matrix[O][N][N +1]; initialize vector[O].index[N); (a. serial pa.rt of computation) * / 
call Initiation; 

/* perform N iterations in parallel * / 
for i = 0 to N-1 do 

call FindMa.x(ma.trix[i)[i], vector[i], vector[i+l], i); 
/* FindMa.x ca.n be executed if ma.trix(i)[i] a.nd vector(i] a.re a.va.ila.ble * / 
/* vector(i+l] becomes a.va.ila.ble a.t the end of this procedure execution * / 
/*perform parallel operations on N-i+l columns*/ 

for j = i to N do 
call Upda.teMtx(ma.trix[i][i), ma.trix(i+l][i), vector[i+l], i); 
/* U pda.teM tx ca.n be executed if ma.trix(i](i) and vector[i+l] a.re a.va.ila.ble * / 
/* ma.trix[i+l][i) becomes a.va.ila.ble a.t the end of this procedure execution*/ 

/* do back substitution (a. serial pa.rt of computation) * / 
call Ba.ckSubstitution; 

End 

Fig. 4.3( a) A parallel Gaussian Elimination algorithm. 



/***************************************Procedure Find.Max**********************************/ 

Procedure Find.Ma.x(inColumn, inVec, outVec, k) 
/* 
Input: inColumn 

in Vee 
k 

Out put: out V ec 

*/ 

column k where max pivot will be found; 
permutation index and coefficients; 
iteration number; 
vector of output values; 

/* find ma.ximum * / 
max = inColumn(in Vec.index[k)]; 
n = k; 
for i = k+l to N-1 do 

if max< inColumn[in Vec.index[i]] 
ma.x=in Col umn(in V ec .index[i)]; 
n=i; 

/* copy in Vee.index to out Vee.index * / 
for i = 0 to N-1 do 

out V ec .index[i] = in V ec .index(i); 

/* permute row index * / 
if (n < > k) 

tmp=outVec.index(k); outVec.index(k)=outVec.index[n); outVec.index(n)=tmp; 

/* calculate multiplying factors * / 
for i = k+l to N-1 do 

j = outVec.index[i); 
out Vec.m(j) = inColumnLlJ / ma.x; 

End 

/**************************************Procedure Update.M:tx **********************************/ 

Procedure UpdateMtx(inColumn, outColumn, inVec, k) 

/* 
Input: inColumn 

in Vee 
k 

Output: outColumn 
*/ 

column to be updated; 
permutation index and coefficients; 
iteration number; 

column of output values; 

/* copy in Column to outColumn * / 
for i = 0 to k do 

j = in Vec.index(i]; 
outColumnUJ = inColumnU]; 

/* update the column * / 
pivot = inColumn[in V ec.index[k)]; 
for i = k+l to N-1 do 

j = inVec.index[i); 
outColumn(j) = inColumn(j) - in Vec.m(j) * pivot; 

End 

Fig. 4.3(b) A parallel Gaussian Elimination algorithm (continued). 
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F = 3 + 2 + 3 + 6*2 = 20 F = 3 + 6 + 3 + 2*2 = 16 
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Fig.4.5 Mapping: 
(a) task graph; (b) system graph; 

( c) a mapping; ( d) the optimal mapping. 
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/* forPEO */ 
call FindMa.x(matrix[O)[OJ, vector[O], vector[!], O); 
send{PEl, vector[!]); 
call UpdateMtx(matrix[O)[l], matrix[l)[l], vector[!], 
send(PEl, matrix[l)[l]); 

O); 

call FindMa.x(matrix[l](l], vector[!], vector[2], I); 
send(PEI, vector[2]); 
call U pdateM tx( matrix[OJ[2], matrix(! ][2], vector[!], O); 
call UpdateMtx(matrix[1][2], matrix[2][2], vector[2], 1); 
call FindMax(matrix[2)[2], vector[2], vector[3], 2); 
call U pdateMtx(matrix[2][2], matrix[3][2], vector[3], 2); 
receive( PEI, matrix[2)[3]); 
call UpdateMtx(matrix[2)[3], matrix[3)[3], vector[3], 2); 
call FindMax(matrix[3)[3], vector[3], vector[4], 3); 
call UpdateMtx(matrix[3][3], matrix[4)[3], vector[4], 3); 
receive( PEI, matrix[2)[4]); 
call U pdateM tx( matrix[2)[4), matrix[3)[4], vector[3), 2); 
call UpdateMtx{matrix[3)[4), matrix[4)[4], vector[4], 3); 

/* for PE 1 */ 
receive(PEO, vector[!]); 
call UpdateMtx(matrix[0)[3], matrix[1][3], vector[ I], O); 
call UpdateMtx(matrix[0)[4], matrix[1](4), vector[!), O); 
receive(PEO, matrix[l][l]); 
receive(PEO, vector[2]); 
call U pdateM tx( matrix[ I ](3], matrix[2)[3], vector(2], I); 
send{PEO, matrix[2][3]); 
call UpdateMtx(matrix[1](4], matrix[2][4), vector[2], I); 
send(PEO, matrix[2][4]); 
call UpdateMtx(matrix[O][O], matrix[ I ][OJ, vector[!], O); 
call U pdateM tx( matrix[ I ][I], matrix[2][1], vector[2], I); 

Fig. 4.8 The target machine code for each PE. 



Table 5.1 Performance Comparison for Laplace Equation 

Matrix size #of PEs Execution time (mS) Improvement 
J 

Manual Hypertool in speed 

8 * 8 4 5.6 4.1 37% 

16 * 16 4 19.3 12.7 52% 

32 * 32 4 72.5 44.8 62% 

16 45.2 18.3 147% 

64 * 64 4 281.3 168.7 67% 

16 169.3 53.7 215% 

128 * 128 4 1109.0 655.9 69% 

16 656.5 185.8 253% 

256 * 256 4 4404.9 2587.1 70% 

16 2587.9 692.7 274% 



Table 5.2 Performance Comparison for Gaussian Elimination 

Matrix si~e #of PEs Execution time (mS) Improvement 

Manual* Hypertool in speed 

4*4 2 3.0 1.9 58% 

8 * 8 2 14.5 9.4 54% 

4 10.1 6.2 63% 

16 * 16 2 86.5 56.0 54% 

4 53.3 30.7 74% 

8 36.8 24.3 51% 

32 * 32 2 594.2 374.1 59% 

4 334.3 193.5 73% 

8 205.3 106.0 94% 

16 142.6 94.6 51% 

* UIU C code source 



Table 5.3 Performance Comparison for Dynamic Programming 

Problem size #of PEs Execution time (mS) Improvement 
J 

Manual Hypertool in speed 

4 2 1.25 0.33 2793 

6 2 3.43 0.89 2853 

8 2 7.11 2.13 2343 

4 5.41 1.35 3013 

12 2 20.91 6.97 2003 

4 15.29 4.42 2463 



Table 5.4 Performance Comparison for Matrix Multiplication 

Matrix size #of PEs Execution time (mS) Improvement 
I 

Manual* Automatic in speed 

8 * 8 4 9.7 7.9 23% 

9 * 9 4 17.9 12.6 42% 

16 * 16 4 68.0 61.0 11% 

16 19.4 15.3 27% 

17 * 17 4 95.6 77.3 24% 

16 35.8 20.4 76% 

32 * 32 4 515.7 481.3 7% 

16 136.1 128.4 6% 

64 39.5 30.2 31% 

64 * 64 4 4027.0 3825.1 5% 

16 1033.7 956.4 8% 

64 273.1 239.2 14% 

128 * 128 64 2067.3 1906.7 8% 

* JPL code source 



Table 5.5 Performance Comparison for Bitonic Sort 

Problem size #of PEs Execution time (mS) Improvement 
I 

Manual Automatic in speed 

64 4 10.7 10.2 5% 

8 10.1 9.1 11% 

16 10.9 9.9 10% 

128 4 21.1 20.4 3% 

8 18.2 17.1 6% 
16 17.5 16.3 7% 

32 18.9 18.4 3% 

256 4 44.0 43.1 2% 

8 35.2 33.3 6% 
16 31.3 29.5 6% 
32 30.6 29.9 2% 

512 4 89.2 87.5 2% 

8 71.2 68.4 4% 

16 54.3 53.4 2% 

32 157.9 138.4 2% 

1024 8 143.1 137.7 4% 

16 118.2 114.3 3% 

32 102.3 101.1 1% 

2048 16 236.0 228.7 3% 

32 202.1 200.5 1% 

* JPL code source 



Table 5.6 The Effect of Estimation on Performance (Laplace Equation) 

Problem size Execution time (mS) Difference 

Real Estimated in speed 
J 

4*4 1.86 1.86 0% 

8*8 4.23 4.26 -0.7% 

16*16 12.78 12.82 -0.3% 

32*32 44.84 44.88 -0.1% 

64*64 168.8 168.8 0% 

128*128 655.9 655.9 0% 

Table 5. 7 The Effect of Estimation on Performance (Bitonic Sort) 

Problem size Execution time (mS) Difference 

Real Estimated in speed 

64 9.20 9.20 0% 

128 17.08 17.10 -0.1% 

256 33.17 33.30 -0.4% 

512 68.03 68.31 -0.4% 






