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Abstract

Visualization of particle traces provides intuitive and effi-
cient means for the exploration and analysis of complex vec-
tor fields. This paper presents a method suitable for the
real-time visualization of arbitrarily large time-varying vec-
tor fields in virtual environments. We describe an out-of-
core scheme in which two distinct pre-processing and ren-
dering components enable real-time data streaming and vi-
sualization. The presented approach yields low-latency ap-
plication start-up times and small memory footprints. The
described system was used to implement a “volumetric fog
lance,” which can emit up to 60000 particles into a flow field
while maintaining an interactive frame rate of 60 frames per
second. All algorithms were specifically designed to sup-
port commodity hardware. The proof-of-concept system is
running on a low-cost Linux workstation equipped with a
120GB E-IDE RAID (Redundant Array of Inexpensive Disk)
system.

Keywords: Particle Tracing, Scientific Visualization,
Computational Fluid Dynamics, Out-of-Core Visualization,
Virtual Reality.

1 Introduction

Numerical simulations are becoming more and more power-
ful, simulating physical phenomena at ever increasing res-
olution. No longer is it possible to visualize the resulting
massive data sets using an exclusive in-core approach. The
goal is to provide a scientist with intuitive and interactive
tools for the exploration and analysis of large time-varying
data sets. The challenge is to visualize the data generated
by high-precision simulation runs without loss of accuracy.
Unfortunately, available computational resources on the vi-
sualization side frequently vary drastically from those on the
simulation side. This implies that the amount of data has to
be reduced to allow for reasonable visualization times. Using
standard approaches, an increase in rendering speed gener-
ally comes at the cost of a loss in data precision. In particu-
lar when techniques such a sub-sampling are used, undesired
artifacts can be introduced or potentially important features
removed. The visualization problems associated with very
large time-varying data sets in computational fluid dynamics
(CFD) are frequently addressed by creating image sequences
or movies in batch processes. These approaches usually re-
quire basic knowledge of the result, frequently derived from
interaction with lower resolution datasets. Some improve-
ments were made with 3D interactive movies, but interactive
visualization in full resolution is still expensive.
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Figure 1: Real-time particle visualization.

The goal of the presented work is to enable visualization
of complex scientific data sets while using minimal CPU and
memory footprints, enabling the system to run on low-cost
commodity hardware as well as massively parallel systems.
The discussed out-of-core approach is specialized for real-
time visualization of large scale time-varying data sets at
the available highest level of resolution and suitable for vir-
tual wind tunnel scenarios. The described system was used
to implement a volumetric particle injector, which can emit
up to 60000 particles into the flow field while maintaining
an interactive frame rate of 60 frames per second. This per-
formance is achieved by pre-calculating a dense uniform rec-
tiliniar grid of particle injectors® (N3 trajectory seeds) and
storing the particles on all resulting trajectories out-of-core
in a scheme optimized for selection of sub-grids.

For the initial test phase, data sets were generated for
a classical problem: simulating the flow of a fluid around
a spherical object. In our case, a Reynolds number? of
about 2000 was selected to simulate the flow field around
a sphere pushed slowly through water. A rectilinear grid of
128*128*1024 was used for the computation of about 250
time steps. (The used finite-difference Navier-Stokes solver
is courtesy of Wolfgang Borchers, University of Erlangen,
Germany.)

2 Related Work

Visualization of time-varying fluid flows using large amounts
of particles was done, for example, by Lane [1]. Based

L A particle injector releases a constant stream of particles into
a flow. For a numeric simulation, this is discretized by adding a
particle for each time step of the simulation.

2The Reynolds number is proportional to the ratio of inertial
force and viscous force. It is used in momentum, heat, and mass
transfer computations to account for dynamic similarity.



on 3D movies, the possibility of rendering large amounts
of particles in real time was demonstrated by Meiselbach
[2]. Out-of-core particle tracing algorithms have been de-
veloped by Ueng et al. [3] for the most common forms of
meshes found in CFD. A more detailed description of the
problem definition and related issues can be found in [4].
A server-based approach supporting interactive frame rates
was demonstrated by Cox and Ellsworth [5] for relatively
small particle systems. The interactive visualization of flow
data sets in virtual reality (VR) environments was studied
by Jern and Earnshaw [6], and for time-dependent data sets
by Kenwright and Lane [7] using in-core algorithms.

3 Visualization Concepts

The classical visualization approach for interactive particle
tracing is to read the data needed to calculate the particle
traces from a storage system and to calculate particle trajec-
tories procedurally and in-core. The velocity of the particles
is then interpolated and their new positions are calculated.
Using this method, visualization with artificial fog is im-
practical, as very large massive parallel systems are needed.
This is due to the amounts of data needed for the integra-
tion. The main limiting factor is data throughput from the
storage system to the server.

In a time-dependent CFD simulation on an unstructured
tetrahedral grid, the minimal data required to compute a
particle path are two tetrahedra with velocity vectors de-
fined at their corners. This means that for every particle
two sets of four coordinates with four velocity vectors are
needed. When using single-precision floating-point variables,
256 bytes will have to be transferred per particle. Assum-
ing a static mesh, this amount can be cut in half when the
mesh is cached in main memory. The other limiting factor
is the amount of searches required on the storage system.
As “seeks” generally require more time than the actual read
operations, usually even bigger data blocks need to be pro-
cessed for each particle.

As all these methods strive to achieve complete freedom
of interaction for user specifiable input, they are optimized
for random access of data on the storage system. For actu-
ally rendered particles, the amount of data needed is much
smaller. Every particle can be described by its coordinates.
Using single-precision floating-point variables, twelve bytes
are needed. By transforming the coordinates to 16-bit inte-
ger values, this amount can be reduced to six bytes. Some-
times, particles are color-coded by an underlying scalar field
value such as pressure, or absolute speed. For this purpose,
an additional 16-bit value can be added to align the data
to 64 bits (8 bytes). Thus, particles need only = of data
throughput compared to the data needed to actually gener-
ate them.

As complete freedom of interaction is rarely needed, the
method described here limits interaction by pre-calculating
particle traces in a raster. Instead of calculating particle
traces on the fly procedurally, and traversing the complete
visualization pipeline in real time, our approach calculates
particle traces in bulk large enough to allow interaction by
selection. It is possible to store the particles in a scheme so
that they can be interactively selected in real time during
later data exploration. The drawback is that a new raster
needs to be selected and the particles re-calculated to explore
different parts of the flow. This turn-around time highly de-
pends on the size of the data, its data’s structure, and the
used computational hardware. As particle tracing can be
parallelized efficiently, either a simulation mainframe or a

render farm could be used. The simulation we have used
for testing is a sequential finite-difference method applied
to a rectangular grid including a particle tracer. After each
time step, new particles are injected from a raster of en-
try points. All particles in the integration area are traced
and their coordinates, time of entry, and number of entry
points are stored. The integration scheme is a second-order
von Heun method using the two time steps that are stored
in main memory during the simulation. The second-order
scheme is sufficient, as the simulation itself is only of first
order. The time stepping of the particle integration is the
same as the stepping of the simulation. This keeps the par-
ticles synchronized with the simulation speed.
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Figure 2: System Architecture

4 Algorithms

The particle visualization system is split into two main com-
ponents: the particle tracer & encoder and the renderer. We
were able to instrument the existing particle tracer allowing
us to convert the particle data into the proposed scheme.

4.1 Particle Tracer & Encoder

Particle injectors are located in a uniform rectilinear mesh
that discretizes a volume in a user-specified region. The
volume can be intersected with the model located in the
flow field. When this is done, the particle injector will be
disabled for the impacted region. For every injector, the
particles are stored in a list, sorted by time of entry. Every
time step, a particle is added to the list with the coordinates
of the injector, and new particle positions are calculated.
All particles that leave the integration space will be deleted.
‘When the maximum particle threshold is reached, particles
are deleted based on their age, i.e., in FIFO order. This
approach simulates nicely the dissolving of paint molecules
in a liquid.

During the encoding step, the maximum amount of par-
ticles per injector is calculated, and all active injectors are
sorted by their Morton code®. According to the resulting
order, the particle lists for each injector are then traversed.

3The Morton order defines a linear numbering of the leaves of
a complete quadtree (2D case) or octtree (3D case) [9]. A Morton
order optimizes the amount of searches needed to select a rect-
angular subset of a uniform rectilinear grid. In the 3D case, the
worst case requires eight searches to access a rectangular subset,
see Figure 3. The maximum size of the data to be read is eight
times the size of a rectangular subset.



The coordinates are down-sampled to 16-bit integer values
and stored in consecutive files. To achieve a constant block
size, every particle list is padded with zeros up to the maxi-
mum amount per entry point. After storing the particles, a
header file is generated with this information:

e number of particle injectors,

e file pointer for the first time step of each particle injec-
tor (used to calculate the seek location),

e block size (maximum amount of particles per entry
point),

e size of integration area (to transform from 16-bit to
floating-point representation),

e size of particle injector grid (to calculate cursor posi-
tion),

e number of time steps, and

o file size per time step.
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Figure 3: Morton scheme. The shaded area indicates the
data blocks actually associated with the given 4x4 cursor
for the 2D case.

4.2 Renderer

Initially, the renderer only reads the global header file and
proceeds to create file handles to all available particle files.
As a consequence, the visualization system has nearly no
pre-load delay before rendering. Once initialized, the user
has interactive control over a box-shaped cursor of customiz-
able size. The maximum cursor size is limited by the data
transfer rate of the used data storage system. A cursor en-
capsulating 8% particle injectors has proven very efficient for

most visualization tasks. Once the cursor is positioned in
the flow field, the matching particle injectors in it are calcu-
lated. Next, the corresponding file pointers are sorted and
traversed. If the difference between two pointers is larger
than the cursor size times the block size, the data up to the
last pointer is read and a seek operation to the next pointer
is performed. The underlying Morton order of the file point-
ers minimizes the amount of required seeks.

For each point in the cursor, a pointer into the loaded data
blocks is stored to enable rendering of the particles. During
actual rendering, the list of pointers into the loaded blocks
is traversed. Every particle is then transformed back into its
original coordinate system and rendered. To achieve a mini-
mal fog effect, every particle is rendered as a gray pixel onto
a dark blue background, adding up the RGB values of over-
lying particles without Z-buffering. Finally, the background
geometry, the cursor, and navigation tools are rendered from
a user-definable scene graph.

5 Implementation Issues

The complete system consists of four main components: a
CFD simulator with particle tracer, an encoder, and a ren-
derer integrated into a VR framework.

5.1 Simulation

The legacy simulation code was originally written in Fortran
and implements a finite-difference method for a rectangular
grid and a particle tracer. The particle tracer was modified
for the continuous injection of particles based on a uniform
rectilinear grid of entry points. Particles without mass are
calculated in a second-order von Heun scheme using trilinear
interpolation in rectilinear hexahedral grid elements. The
existing Fortran code was converted to C using f2c. Fur-
ther improvements were added to the C code to enable the
use of dynamically allocated memory. During the simula-
tion run, at each time step, the coordinates of all particles
together with the number of the injector and the time step
of injection are written to a file and compressed with gzip
to reduce the amount of memory needed for storage. Since
the code for the simulation and particle tracer is not yet
optimized for the available commodity hardware in respect
to its required memory footprint, the complete simulation
run is performed as a pre-processing step on an Origin2000
server. The computational results are directly stored on the
Linux RAID system that is mounted through the local area
network using NFS. After encoding, the resulting data files
are directly available for visualization and newer data sets
can be incrementally added as they become available. The
sphere test data set consists of 250 time steps for a simula-
tion on a rectilinear grid of 128*%128*1024 resolution. The
uniform rectilinear injector grid has a size of 76° yielding
approximately 400000 particle injectors. The grid’s dimen-
sions are currently determined by the size of the integration
area in y and z directions, forming a cube. Since many par-
ticles are leaving the integration area after about 100 time
steps, the maximum amount of particles per injector dur-
ing the simulation is about 130. The compressed data files
have a maximum size of 275MB each. Due to the structure
of the simulated flow, the amount of particles is oscillat-
ing around a constant value of about 110 after time step
131. The fog-ring vortex shown in Figure 4 breaks down
and is replaced by a rotating double helix structure, shown
in Figure 6. Effectively, the maximum amount of visualized



particles is reached at time step 130, when the broken-down
vortex is carried out of the integration area.

Figure 4: Vortex structure.

Figure 5: Vortex break down.

Figure 6: Double helix structure.

5.2 Encoder

The encoder was implemented in C and utilizes the local
RAID on the Linux system. Every time step is read into
main memory, sorted, re-sampled, padded, and written into
consecutive files. After every time step, the header file is also
generated and stored. The file names are directly correlated
with the current time step. Since the converter parses ASCII
data piped to it from a de-compression process, each time
step currently requires about five minutes to complete. The
padding penalty for missing particles is up to five megabytes
per time step, resulting in a maximum file size of 28MB
for the described problem. This overhead, however, enables
significantly faster look-up operations on block-aligned data.
The alternative would be to store block sizes per time step
and injector in main memory. Using the 76% grid with 250
time steps, this would result in an overhead of approximately
1.4 gigabytes to be stored in main memory, which conflicts
with the original goal to work with the smallest possible

CPU and main memory foot prints. The resulting data set
for the described test case is 60GB.

5.3 Renderer

The renderer is implemented as a plug-in component for Vir-
tualExplorer, a VR toolkit developed at CIPIC [8]. Virtual-
Explorer (VE) is a customizable plug-in-based VR frame-
work for immersive scientific visualization, data exploration
and geometric modeling. The framework is layered on top
of a run-time plug-in system and re-configurable virtual user
interface and provides a variety of plug-in components. The
system enables access to scene-graph-based APIs, includ-
ing OpenGL Performer and Openlnventor, direct OpenGL
support for visualization of time-critical data as well as col-
lision and generic device managers. Plugins can be loaded,
disabled, enabled, or unloaded at any time, triggered either
through pre-defined events or through an external Python-
based interface. The framework is currently being extended
with a variety of application areas in mind, but its main em-
phasis is on user-guided data exploration and high-precision
engineering design.

The CFD visualization toolkit provides two distinct plug-
ins to enable out-of-core particle visualization. An optimized
data loader and data streaming component and a designated
OpenGL-based real-time rendering engine.

The required user interface and interaction metaphors are
provided through the VE framework. For example, the
virtual fog lance can be either controlled through a spa-
tially tracked input device or its appropriate keyboard- or
software-based simulator.

At start-up time, the plugins are launched as independent
processes. The data acquisition process then acquires the
data from the RAID system and stores it in shared memory,
together with the needed pointers. The specific data sets are
determined by the current spatial coordinates of the cursor
that is provided through the VE framework and constantly
dispatched to the plugins.

In the rendering phase, the current particle coordinates
are retrieved from shared memory and processed. Currently,
particles are rendered as simple points with user adjustable
color. The blend function of the 3D hardware is set to add
up the RGB values per rendered pixel, thus achieving the
desired fog effect. Particles that are in alignment with the
viewing direction are brighter. After all particles are ren-
dered, a scene graph is traversed to visualize the cursor po-
sition, the model and the integration area.

5.4 Hardware Setup

All algorithms were developed with a wide range of sys-
tem configurations in mind. However, the emphasis was
on providing real-time visualization and interaction capabil-
ities for low-cost commodity hardware. The current proof-
of-concept system runs under RedHat Linux 6.2 on a Pen-
tiumIII (866Mhz) system with 512MB of main memory and
a GeForce2 GTS graphics board (64MB). The data sets are
stored on a 120GB E-IDE RAID system using four low-cost
IBM DeskStar ATA 100 disks and an AMI Hyperdisk soft-
raid controller. At this point, the available Linux drivers
limit the RAID to ATA 66. Considering the total price of
less than US$ 2500 for this setup, the system delivers an
astonishing price-performance ratio.



6 Results

A uniform rectilinear particle injector grid of 76 has shown
to be sufficient to visualize the key features of the turbu-
lent low. However, further tests with different data sets are
required to determine if an “optimal” injector size can be
defined for arbitrary data.

Initial runs indicate that the visualization algorithms are
bound by the transfer rate from the side of the RAID. The
data transfer rate currently translates into a stable update
rate of 10 frames per second, with each frame representing
a unique time step. The average CPU load on the described
system is roughly 20% while utilizing 128MB of RAM.

The available data update rate of 10Hz is sufficiently high
to support smooth visualization. While the update rate is
bound by the speed of the RAID system, the threaded ren-
dering process runs at a frame rate of more than 75 frames
per second. This performance makes the system suitable for
real-time interactive stereoscopic rendering in virtual envi-
ronments.

The under-utilized CPU and memory resources allow for
a variety of additional improvements in rendering techniques
and interaction. However, the turn-around time of the sim-
ulator using the current sequential implementation needs to
be improved by a factor of at least 10.

6.1 Performance

At the moment, the performance of the pre-processor seems
to be poor in comparison with the performance of the ren-
derer. As particle tracing can be efficiently parallelized, this
is less concern.

6.1.1 Pre-processing

Even though particle tracing for rectangular meshes leads to
very fast algorithms, the old sequential technique integrated
in the finite-difference simulation program requires about a
day to calculate all particles for the 250 time steps of the
simulation. An improved parallel, out-of-core particle tracer
is needed and should exploit bulk particle rendering.

6.1.2 Rendering

The theoretical minimal refresh rate of this system is given
by
1

)
8tseek + tmazread

where tscer, is the average seek time of the RAID system and
tmazread 1S the time needed to read in the largest block of
particles in seconds. The value of ¢,,4zreqaqd Can be estimated
from the raw throughput of the RAID system.

In our case, the assumed value of tseer Would be 10ms.
With a cursor size of 8 injectors and an average of 130
active particles per injector, the largest data block size is
520KB assuming that eight bytes are used to represent each
particle. With a data transfer rate of 60MB per second, the
RAID system can deliver 118 blocks per second, resulting in
a value of t,,qzreaq Of 8.47ms.

Thus, a theoretical minimal update rate of 11 frames per
second is possible. The achieved frame rate is currently on
the lower theoretical limit. An open question is whether
the 60MB per second peak transfer rate can be achieved
continuously or whether the used RAID system is suffering
from fragmentation.

7 Conclusions

We have presented a method for the interactive visualiza-
tion of particle traces for large time-dependent CFD data
sets and demonstrated that this method can be performed
on commodity hardware. Our out-of-core visualization tech-
nique provides interactive frame rates and scales for growing
data set sizes.

8 Future Work

A client-server based implementation is being currently in-
vestigated, which will enable access to a wide range of avail-
able VR visualization hardware, such as the Immersive Work-
bench. The achieved data rates suggest that a coupling of
the current system using the common 100Mbit Ethernet is
feasible.

System tests on a wide variety of already existing data
sets are in progress. These tests will determine how efficient
the data conversion tools are and how the system performs
with tera-byte data sets streamed over a high-speed network.

Experiments on how this method scales on larger and
faster RAID systems need to be conducted and a wide range
of possible optimization strategies such as data set parti-
tioning and hard disk de-fragmentation explored. Different
algorithms for the creation of photo-realistic particle clouds
will be added in the future. We will be testing our system
on a multi-processor machine with a fiber channel RAID as
well.
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Color Plate 1: The vortex structure at the beginning of Color Plate 2: The vortex breaks down after about 50
the simulation. As the sphere is suddenly moved through timesteps.
the liquid, a fog ring forms.

Color Plate 3: The vortex is replaced by a helix like structure.
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