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A Radical-Polar Crossover Annulation To Access Terpenoid 
Motifs

William P. Thomas, Devon J. Schatz, David T. George†, Sergey V. Pronin*

Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United 
States

Abstract

A new catalytic radical-polar crossover annulation between two unsaturated carbonyl compounds 

is described. The annulation proceeds under exceptionally mild conditions and provides direct and 

expedient access to complex terpenoid motifs. Application of this chemistry allows for synthesis 

of forskolin, a densely functionalized terpenoid, in 14 steps from commercially available material.

Annulations allow for rapid increase in structural complexity and have found broad 

application in organic synthesis. Of particular note are transformations involving fusion of 

new rings via two new carbon–carbon bonds, which can dramatically simplify construction 

of polycarbocyclic motifs present in terpenoid and polyketide natural products.1 Among 

those, Diels–Alder cycloadditions have demonstrated exceptional flexibility with respect to 

the accessible connectivity patterns and feature prominently in many successful syntheses.2 

A requirement for the acyclic 1,3-diene to adopt the s-cis conformation often imposes 

limitations on the presence of substituents at the terminal positions, and formation of 

quaternary carbons originating from the diene component is challenging in bimolecular 

settings.3,4 Here we demonstrate a new annulation between two unsaturated carbonyl 

components that allows for construction of saturated six-membered carbocycles and is 

particularly well-suited for installation of fully substituted carbons (Figure 1). Development 

of this transformation builds on our previous efforts in the synthesis of paxilline 

indoloterpenoids, where a hydrogen atom transfer (HAT)-initiated radical-polar crossover 

polycyclization allowed for rapid assembly of the shared tricyclic scaffold and selective 

installation of vicinal quaternary centers.5 The new HAT-initiated radical-polar crossover 

annulation proceeds under exceptionally mild conditions and provides direct and expedient 

access to complex terpenoid motifs, including those related to labdane and scalarane 

families of natural products.6–8 We also show that application of this chemistry allows for a 
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14-step synthesis of forskolin (1), a densely functionalized labdane diterpenoid, from 

commercially available material.

We began our studies with the annulation of γ,δ-unsaturated aldehyde 2 and methacrolein 

(3, Table 1). After considerable optimization the desired cyclohexanol 4 could be obtained in 

a highly diastereoselective manner and moderate levels of efficiency. This transformation 

likely involves HAT to the electron-rich 1,1-disubstituted alkene followed by the conjugate 

addition of the resulting tert-alkyl radical to the enal, reduction to the corresponding enolate, 

and subsequent aldol reaction with the pendant aliphatic aldehyde functionality.6,9–11 Our 

investigations revealed that slow addition of a mixture of 3 and silane to an excess of 2 was 

beneficial to allow for selective engagement of the γ,δ-unsaturated carbonyl component in 

the HAT event and attenuation of the competing reductive aldol pathway.8 Notably, presence 

of the α-substituent in 3 was required for complete propagation of the HAT-initiated cascade 

and only traces of the expected cyclized product were observed in the case of acrolein. Other 

α-substituted acroleins performed similarly to methacrolein (3) and cyclohexanols 5 and 6 
were obtained in a highly diastereoselective manner.12 2-Methyl-2-cyclopentenone also 

participated in the annulation with good levels of disaster-eocontrol, and hexahydroindanone 

derivative 7 could be isolated in a synthetically useful yield.13 At the same time, application 

of isopropenyl methyl ketone resulted in a nearly stoichiometric mixture of diastereomeric 

aldol products 8 and 9, presumably due to unselective formation of E and Z isomers of the 

intermediate iron enolate. Remarkably, γ,δ-unsaturated ketones were also found to be 

suitable annulation partners, and products 10 and 11 were formed with high 

diastereoselectivity after derivatization of the intermediate hydroxyaldehydes, which proved 

necessary to prevent retro-aldol reactions during the chromatographic purification. Other 

modifications of the γ,δ-unsaturated component were tolerated and allowed for 

diastereoselective formation of decalin 12 and perhydrophe-nanthrene 13, which contains 

the functionalized tricyclic motif found in several scalarane terpenoids.14

We next set out to test the applicability of our annulation in the synthesis of terpenoids and 

chose forskolin (1, see Figure 1) as our primary target.15 This densely functionalized 

diterpene exhibits allosteric stimulation of adenylyl cyclases and a derivative is currently 

approved for acute heart failure treatment in Japan.16,17 Since its discovery, forskolin has 

been a subject of frequent inquiry by organic chemists, which culminated in several 

successful syntheses that expanded our understanding of the chemistry of highly oxidized 

labdane motifs.18 We envisioned that the radical-polar crossover annulation would allow for 

construction of the C4–C5 and C1–C10 bonds of the decalin fragment. Thus, subjection of 

enone 14 and aldehyde 2 to our optimized conditions resulted in efficient formation of the 

desired polycyclic motif, albeit with low diastereoselectivity at C1 and only slight preference 

for desired product 16 (Scheme 1). Nevertheless, the annulation was readily scalable and 

allowed for production of multigram quantities of alcohol 16. Furthermore, diastereomer 15 
could be converted to alcohol 16 via consecutive oxidation and reduction events in 87% 

yield over two steps.19 Facile epimerization at C1 to the undesired configuration necessitated 

protection, which was followed by a retro-Diels–Alder reaction to reveal the enedione motif. 

This sequence secured access to intermediate 17 in four steps from 2,6-

dimethylbenzoquinone and was rendered asymmetric by taking advantage of 
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oxazaborolidine catalysis in the preparation of Diels–Alder adduct 14 in 96% ee.19,20 

Notably, previous investigations employed a circuitous cycloaddition-based route that 

necessitated multiple functional group manipulations to obtain racemic silyl ether 17 in eight 

steps from commercially available material.21

Regio- and stereoselective addition of the lithio derivative of alkyne 18 to racemic enedione 

17 followed by epimerization at C5 afforded trans-octalin 19 (Scheme 2).22 Subsequent 

reduction of the remaining keto group and epoxidation of the alkene allowed for a highly 

diastereoselective production of diol 20. We discovered that the epoxidation pathway was 

competing with oxidation of the secondary allylic alcohol to enone 19, and application of 

tetrahydrofuran-based solvent mixtures was necessary for attenuation of this undesired 

pathway.23 Intramolecular displacement of the epoxide with in situ generated 

monoalkylcarbonate required deprotection of the hydroxy group at C1, which proceeded 

under the reaction conditions and could be accelerated in the presence of cesium fluoride.
24,25 Addition of carbonyldiimidazole to the reaction solution led to formation of a mixture 

of cyclic carbonates 21 and 22. Acid-catalyzed cyclization of a mixture of protected ynones 

21 and 22 resulted in efficient formation of the desired dihydropyranone motif, and 

treatment with base resulted in hydrolysis of the carbonate moieties. Selective protection of 

the resulting tetraol delivered acetonide 23, and the structure was confirmed by X-ray 

crystallographic studies. We found this switch of protecting groups to be necessary for 

achieving the desired facial selectivity during the installation of stereocenter at C13. Thus, 

conjugate addition to acetonide 23 delivered desired tetrahydropyranone 24 with good 

diastereoselectivity, while application of the corresponding dicarbonate led exclusively to 

the undesired configuration at C13. Acetonide 24 was readily deprotected and the 

penultimate tetraol could be isolated as a single diastereomer.25 Acetylation of 7-

deacetylforskolin under previously described conditions delivered the target natural product, 

completing the synthesis in 14 steps from commercially available starting material.25,26

In summary, we disclose a new radical-polar crossover annulation that allows for direct and 

diastereoselective construction of cyclic aldol motifs. In contrast to the venerable Diels–

Alder reaction, this transformation is well suited for bimolecular assembly of multiple 

quaternary centers, offering a complementary approach to the synthesis of six-membered 

carbocycles. We also demonstrate application of this chemistry to the synthesis of forskolin 

that allows for rapid assembly of this highly oxidized labdane diterpenoid and is readily 

amenable to efficient asymmetric induction. We anticipate that the radical-polar crossover 

annulation will be valuable in the synthesis of other functionalized terpenoids and will 

simplify production of natural and unnatural congeners for biological studies.
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Figure 1. 
Radical-polar crossover annulation allows for rapid assembly of complex terpenoid motifs.
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Scheme 1. 
Annulation en Route to Forskolin (1)
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Scheme 2. 
Synthesis of (±)-Forskolin (1)
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Table 1.

Radical-Polar Crossover Annulation of α,β- and γ,δ-Unsaturated Carbonyl Compounds
a,b

a
Typical reaction conditions: 2–3 equiv. γ,δ-unsaturated carbonyl compound, 5–50 mol % Fe(acac)3, 1.5–3 equiv. PhSiH2(Oi-Pr), 1–3 equiv. 

(CH2OH)2, 0.2 M in CH2Cl2; see SI for details.

b
Diastereomeric ratios were determined by 1H nuclear magnetic resonance analysis of crude product mixtures.

c
Yields are reported for the depicted analytically pure isomers.

d
Structure was confirmed by X-ray crystallographic analysis; see SI for details.

e
After reduction and recrystallization; see SI for details.

J Am Chem Soc. Author manuscript; available in PMC 2020 October 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thomas et al. Page 11

f
Isolated and characterized as a mixture of isomers.

g
After silylation; see SI for details.

h
After reduction; see SI for details.
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