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The e↵ect of lensing magnification on the apparent distribution of black hole mergers

Liang Dai,1, ⇤ Tejaswi Venumadhav,1 and Kris Sigurdson1, 2

1School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada

(Dated: July 20, 2016)

The recent detection of gravitational waves indicates that stellar-mass black hole binaries are likely
to be a key population of sources for forthcoming observations. With future upgrades, ground-based
detectors could detect merging black hole binaries out to cosmological distances. Gravitational
wave bursts from high redshifts (z & 1) can be strongly magnified by gravitational lensing due to
intervening galaxies along the line of sight. In the absence of electromagnetic counterparts, the
mergers’ intrinsic mass scale and redshift are degenerate with the unknown magnification factor
µ. Hence, strongly magnified low-mass mergers from high redshifts appear as higher-mass mergers
from lower redshifts. We assess the impact of this degeneracy on the mass-redshift distribution of
observable events for generic models of binary black hole formation from normal stellar evolution,
Pop III star remnants, or a primordial black hole population. We find that strong magnification
(µ & 3) generally creates a heavy tail of apparently massive mergers in the event distribution from
a given detector. For LIGO and its future upgrades, this tail may dominate the population of
intrinsically massive, but unlensed mergers in binary black hole formation models involving normal
stellar evolution or primordial black holes. Modeling the statistics of lensing magnification can
help account for this magnification bias when testing astrophysical scenarios of black hole binary
formation and evolution.

I. INTRODUCTION

The characteristic gravitational waves emitted during
the inspiral, merger, and ringdown of a pair of black
holes, long ago predicted by General Relativity, were re-
cently detected at LIGO [1, 2]. This discovery conclu-
sively demonstrates that stellar-mass black hole (BH) bi-
naries exist, and hints towards a substantial population
of binaries with masses as large as ' 30M� or beyond
[3]. In the near future a new generation of ground-based
detectors sensitive to lower strains (and possibly lower
frequencies) will come online [4–7] and extend our grav-
itational wave (GW) reach to redshifts z & 1 and un-
precidently vast volumes of the Cosmos. These prospects
make such BH mergers one of the most exciting and im-
portant classes of events in all of astrophysics.

Binary mergers are standard sirens that reveal their lu-
minosity distance on an event-by-event basis [8, 9]. The
standard mass-redshift degeneracy of GW astronomy is
the statement that the frequency structure of gravita-
tional waveforms cannot separate intrinsic mass-scales
and redshifts. However, it is commonly assumed that a
standard cosmological model can break this degeneracy
and reveal both these quantities.1

In this work, we emphasize that magnification due to
gravitational lensing restores the mass-redshift degener-
acy for BH merger events. The lensing magnification to-
ward a given direction on the sky changes the luminosity
distance as compared to the average cosmological value to

⇤ NASA Einstein Fellow
1 We can alternatively accomplish this via electromagnetic coun-
terparts, but they are typically not expected to accompany
stellar-mass black hole mergers.

the same redshift [10]. Moreover, for high-redshift merg-
ers, there is a non-negligible chance of strong lensing by
intervening galaxies along the line of sight.

A magnified BH merger produces a physically identi-
cal response in a gravitational wave detector to an un-
lensed merger with a lower intrinsic redshift and larger
intrinsic mass scale, but otherwise identical dimension-
less parameters (e.g., mass ratio and spin). Thus, lensing
biases the source redshifts and mass scales inferred us-
ing an assumed cosmology, even though it does not alter
the waves’ physical frequencies. We can trace this e↵ect
back to the geometric scale-free nature of General Rela-
tivity, which implies that the gravitational wave emission
from black hole systems with di↵erent total masses but
identical dimensionless parameters can be rescaled to a
common form due to the absence of a mass scale in the
spectrum.

We a priori do not know whether an individual event
has been strongly lensed or not. Even when multiple im-
ages are produced, due to the long time delays associated
with galaxy lenses (of the order of weeks to months), they
will trigger in the detector as separate events. The situ-
ation is di↵erent for mergers with identifiable EM coun-
terparts, and hence redshifts, where only the inferred lu-
minosity distance is confused.

Several previous works have considered the astrophys-
ical impact of GW lensing in other contexts. Lensing in-
duces scatter in the Hubble diagram for standard candles
or standard sirens [11–15], while strong lensing in partic-
ular can leave a tell-tale high redshift tail in the neutron-
star merger population as would be seen by LIGO [16]
and the proposed Einstein Telescope (ET) [17]. Ref. [18]
estimated the chances of obtaining a catalog of strongly
lensed double-compact mergers using the ET, for several
choices of binary masses. Lensing can potentially enable
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a statistical constraint of the Hubble parameter H0, and
facilitate the identification of host galaxies and extraction
of source redshifts [19]. In the frequency band of space-
based detectors the gravitational length scale of the lens
can become comparable to the wavelength, and the re-
sulting di↵ractive distortions of waveforms might enable
better measurements of the lens parameters [20]. To our
knowledge, however, ours is the first study to expressly
articulate the degeneracy caused by the combination of
lensing magnification and the scale-free nature of gravity
for BH mergers at cosmological distances.

We explore the statistical signatures of strongly mag-
nified BH mergers with biased mass and redshift mea-
surements. The relatively small optical depth to strong
lensing suggests that such events are in general an in-
significant population. In particular, the chances that
GW150914, the first event detected, actually comes from
a system of component mass significantly lower than
30M� and from a redshift significantly higher than z =
0.9 are tiny given plausible population models. However,
strongly lensed events can generally not be neglected if
a large number of chirping bursts are detected. We show
that lensed events can alter the shape of the distribu-
tion of detected events if the intrinsic merger rate varies
steeply with mass and redshift, an e↵ect analogous to the
strong-magnification induced tail in galaxy or quasar lu-
minosity functions [21–23]. Both the increase in available
comoving volume, and astrophysical e↵ects like the evolu-
tion of the star-formation rate and metallicity, can generi-
cally skew the merger rates for BH binaries at the median
mass of a source population at high redshifts. In particu-
lar, if the intrinsic merger rate has a strong physical cuto↵
in mass and/or redshift, lensed high-redshift events may
in fact dominate over genuinely massive mergers at lower
redshifts. We demonstrate the importance of this e↵ect
when testing astrophysical models of BH binary produc-
tion and evolution against forthcoming observations.

We structure this paper as follows: In Sec. II, we
demonstrate the mass-redshift-magnification degeneracy
and quantify its size. In Sec. III, we present a model
for the probability distribution of the magnification due
to galaxies embedded in the large-scale structure of our
standard cosmology. In Sec. IV, we derive lensing’s ef-
fect on the distribution of observable events, and then in
Sec. V we study this e↵ect in the context of a number of
plausible astrophysical models of the BH binary popula-
tion and its evolution. For each scenario, we discuss the
extent to which lensing magnification complicates the in-
terpretation of population statistics. We conclude with
a discussion of future directions in Sec. VI, wherein we
highlight the potential of multiple imaging to disentan-
gle the e↵ects of lensing from intrinsic variation of source
populations, and thus explore the intrinsic merger history
of BH binaries.

Throughout this paper we assume a fiducial flat ⇤CDM
cosmology with ⌦m = 0.27 and h = 0.7. In all sensitiv-
ity calculations, we use GW waveforms that were com-
puted according to the IMRPhenomC approximant [24].

We use the definitions of the dimensionless characteristic
strains and noise amplitudes outlined in Ref. [25], and
we also employ ‘RMS characteristic strains’ which are
directly related to the root mean square (RMS) signal-
to-noise averaged over all orbital inclinations and sky-
locations [26].

II. LENSING AND PARAMETER
DEGENERACY

We adopt the geometrical optics approximation for
lensing, i.e., we assume that the propagating gravita-
tional waves have wavelengths that are much shorter than
the spatial length-scales associated with the intervening
lens.2 In this limit, lensing has two e↵ects: deflection of
null geodesics by the lens’ gravitational field, and change
of the cross-sectional area of infinitesimal ray bundles
(the latter e↵ect rescales the energy flux by a magnifi-
cation factor µ > 0, as in the case of electromagnetic
waves). In Appendix A, we demonstrate the validity of
this approximation for the lensing of GWs from stellar-
mass mergers by foreground galaxies or clusters.
Let us assume that the background cosmology has a

distance-redshift relation dL(z), where dL is the lumi-
nosity distance. Now consider a binary merger with in-
trinsic mass-scale M that occurs at redshift z.3 Suppose
the intervening mass distribution lenses the GWs with
a magnification factor µ > 0. The strain amplitude is
amplified by a factor of

p
µ.

If we are ignorant of the lensing magnification, we can
still fit the observed waveform to an inferred mass scale
M̃ 6= M and an inferred source redshift z̃ 6= z (with
all dimensionless parameters, e.g., the mass ratio and
the spin parameter, unchanged). Since lensing does not
a↵ect frequencies, and thus the redshifted mass-scales of
the waveforms, we have the mass-redshift degeneracy

M̃ (1 + z̃) = M (1 + z) . (1)

The observed quantity is the characteristic strain hc(fo)
at every observed frequency fo. It is given by [27]

hc(fo) =
p
µ

r
2G

c3
1 + z

⇡ dL(z)


dE

dfs

�1/2

f
s

=f
o

(1+z),M

, (2)

where (dE/dfs)f
s

,M is the radiation energy spectrum for
a source with an intrinsic mass scale M , expressed in

2 The relevant length scale for a lensing potential is the
Schwarzschild length corresponding to the lens mass, not the
lens’ physical extent or Einstein radius [20].

3 The mass scale M may be any chosen combination of the compo-
nent masses M1 and M2 (e.g., the chirp mass (M1M2)3/5/(M1+
M2)1/5).
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FIG. 1: Illustration of the lensing-induced degeneracy:
Upper: The solid and dashed thick black curves show the
RMS characteristic strains for high- and low-mass mergers,
respectively. These are perfectly degenerate if the latter is
magnified by a factor µ = 10. Also shown are the noise
amplitudes for three stages of the LIGO detectors: current
(red), design (blue), and ultimate (green), and for the
proposed Einstein Telescope einstein (orange). Lower:
Waveforms corresponding to the two chosen mergers. If the
lower-mass merger (dashed) were magnified by a factor of
µ = 10, the two waveforms would overlap.

terms of the intrinsic frequency fs = fo(1 + z). We then
have the relation

1 + z̃

dL(z̃)


dE

dfs

�1/2

f
o

(1+z̃),M̃

=
p
µ
1 + z

dL(z)


dE

dfs

�1/2

f
o

(1+z),M

.(3)

Since General Relativity is a geometrical theory, the
vacuum Einstein equations are invariant under a rescal-
ing of all masses, along with an accompanying rescaling
of the spatial and temporal scales. This invariance guar-
antees that

1 + z̃

M̃


dE

dfs

�

f
o

(1+z̃),M̃

=
1 + z

M


dE

dfs

�

f
o

(1+z),M

. (4)

By substituting Eqs. (1) and (4) into Eq. (3), we observe
that a magnification µ is equivalent to a rescaling of the
luminosity distance, i.e.,

dL(z̃) = dL(z)/
p
µ. (5)

Equations (1) and (5) together characterize the obser-
vational degeneracy between lensed and unlensed merg-
ers. Note that even though lensing does not physically
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FIG. 2: Upper: Mapping between the intrinsic redshift z and
inferred redshift z̃ for our fiducial cosmology. We show
contours of constant magnification µ (red solid lines) and
constant ratio of inferred and intrinsic masses M̃/M (blue
dashed lines). Lower: The same plot with scales chosen to
emphasize low redshifts.

alter the wave frequency, it a↵ects our estimation of both
the mass and redshift. This happens because we use the
background cosmology for parameter estimation, while
the presence of a lensing potential along the line-of-sight
e↵ectively alters the cosmology in that direction.

This degeneracy is irresolvable for BH mergers without
any independent redshift estimates. We can break this
degeneracy for compact stellar mergers, such as those in-
volving neutron stars, by applying theoretical priors on
the masses or extracting redshifts from their EM coun-
terparts.

Figure 1 shows the waveforms from an equal-mass BH
binary merger with component masses M1 = M2 =
60 M� at redshift z = 0.5, and another merger with
masses M1 = M2 = 76 M� at redshift z = 0.18.
The characteristic strain waveforms are perfectly degen-
erate if the high-redshift merger has a magnification of
µ = 10. The figure also shows noise amplitudes for four
di↵erent detectors as benchmarks : (1) current LIGO
(current) (2) LIGO at its design sensitivity (design)
(3) an optimal upgrade of LIGO using accessible tech-
nologies (ultimate) [28], and (4) the proposed Einstein
Telescope (ET) (einstein) at its design capability [29].

Figure 2 illustrates the mapping between intrinsic
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and inferred parameters as a function of the magnifi-
cation. As one example, the gravitational wave event
GW150914 [1] could (in principle) be due to a BH pair
with masses ' 15M� instead of ' 30M�, if the merger
occurred at redshift z ' 1.2 (instead of z ' 0.1) and
was magnified by µ ' 300. For low-redshift mergers,
the error in the estimated intrinsic masses is insignifi-
cant except for inconceivably large magnifications. The
situation changes at high redshifts, where large but plau-
sible magnification factors (µ ⇠ O(10)) can result in
order-unity error in the estimated intrinsic masses. For
instance, an equal-mass merger with component masses
' 15M� that occurs at z ' 4 can appear as a massive
merger (masses ' 30M�) from z ' 1.3, if it is magnified
by a factor of µ ' 10.

For a given detector D, a GW event magnified by a
factor of µ has a matched-filtering signal-to-noise (SNR)
ratio

SD (M, z, µ) ⌘ SD(M̃, z̃) =
p
µSD (M, z) , (6)

where SD (M, z) is the SNR without lensing. We as-
sume that events with SNR lower than some threshold
value are not detected. Throughout, we use the con-
ventional threshold value for a single detector S0 = 8
[25, 30]. Hence, another e↵ect of large magnifications is
to push undetectable or marginally detectable mergers
above the (fixed) detection threshold. Equation (6) im-
plies that lensing magnification extends a given detector’s
redshift reach. Figure 3 demonstrates this e↵ect for sev-
eral detectors. To simplify our discussion, we only con-
sider equal-mass mergers, and always compute signal-to-
noise ratios averaged over all orbital orientations. Note
also that if a massive merger occurs at a su�ciently high
redshift, the signal tends to redshift out of the detectors’
frequency band. This adversely impacts detectability, as
illustrated by the turnover of the threshold curves toward
high masses.

III. MAGNIFICATION PROBABILITY

We can model compact binary mergers as point sources
to an excellent degree of accuracy. If we assume a uniform
distribution of binary mergers on the source plane at a
source redshift z, a random merger has a probability

dP =
dP (µ; z)

d lnµ
d lnµ. (7)

of being magnified by a factor close to µ, where the factor
multiplying d lnµ on the RHS is a probability density
function (PDF). This satisfies the usual normalization
condition when integrated over all possible values of µ.
To a very good approximation, the mean magnification
is unity, i.e., the total solid angle is conserved [31, 32].
Mathematically,

hµi ⌘
Z +1

0

d lnµ
dP (µ; z)

d lnµ
µ = 1. (8)

GW 150914

20 40 60 80 100 120 140
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0.5
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5

10

FIG. 3: E↵ect of magnification on the detection limit
(SNR= 8) for equal-mass BH mergers as a function of the
intrinsic component mass M and intrinsic source redshift z.
For LIGO, we study three sensitivities: current (red),
design (blue), and ultimate (green). We also show the
possible detection limit for the proposed Einstein Telescope:
einstein (orange). For each detector, we show results for
three values of the magnification: µ = 1 (solid), µ = 3
(dashed), and µ = 10 (dotted). The cyan dot shows the
parameters for GW150914.

In the weak lensing regime, we can approximate the
magnification PDF by a log-normal distribution peaked
around µ ⇠ 1 [33]. This does not include strong lens-
ing by isolated virialized clumps, which is responsible for
significantly biasing the mass and distance estimates.
Previous studies used ray-tracing through simulated

large-scale structure to study the full magnification PDF
covering both the weak and strong lensing regimes. The
results exhibit an asymptotic power-law tail at large mag-
nifications, i.e., dP/dµ ⇠ µ�3. Moreover, the tail’s
amplitude grows rapidly with source redshift [34, 35].
The stellar component located in galactic cores can
also greatly enhance the strong magnification probabil-
ity when compared to the case of dark-matter-only ha-
los [36]. The resolution of these studies does not permit
the inclusion of microlensing by stars. However, we antic-
ipate that microlensing is unimportant for GW magnifi-
cation since the relevant wavelengths are larger than typ-
ical stellar Schwarzschild radii [20]. In any case, galaxy
lenses’ contribution to the strong lensing optical depth
dominates that of stellar microlenses for sources at cos-
mological distances.
Instead of performing ray-tracing simulations, we pro-

vide a recipe to fit the source magnification PDF (plotted
in Fig. 4), which allows for e�cient computation. Ap-
pendix B details our fitting formula, which fits the weak
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FIG. 4: Magnification probability distribution dP/d lnµ
adopted in this work. Point source is assumed. From
bottom to top, the corresponding source redshifts are
z = 0.7, 1, 2, 3, 5, 10, 20, respectively.

lensing part around µ = 1 to Figure 7 of Ref. [35] for
each source redshift z, and matches the high magnifica-
tion tail onto the optical depth for µ > 10 from Figure 2
of Ref. [36] (the latter includes the contribution of stellar
mass.).

It should not be taken for granted that our fit gives
the true lensing rate with high accuracy for all magnifi-
cations. While our fit tracks the power law tail and pre-
cisely reproduces the µ > 10 optical depth of Ref. [36],
it di↵ers from the numerical results of Ref. [35] at the
40% level in the weak lensing regime, i.e., 0.9 < µ < 1.1
for z > 2, and has even larger uncertainties at lower
source redshifts. Besides, our fit can overestimate the
probability in the highly demagnified part of the dis-
tribution. Nevertheless, since appreciable biases in the
mass and redshift estimates arise only due to large mag-
nifications, i.e., µ & 3 (see Fig. 2), uncertainties in the
weak-lensing magnification do not impact our main con-
clusions. We note that our formula is properly normal-
ized, and self-consistently satisfies Eq. (8). As a check,
we tried fitting the large-magnification tails to the results
of Ref. [35], which are systematically lower than those of
Ref. [36] due to their neglect of the stellar contribution.
We found that our major results were indistinguishable
from those obtained by directly applying the numerical
PDFs of Ref. [35].

Extremely large magnification factors arise when the
source approaches a caustic of the lens mapping, where
it produces a close pair of images (the magnification is
formally divergent at the caustic). At such locations,
the e↵ects of di↵raction smear out the lens mapping [37]
and terminate the power-law tail in the magnification
PDF. Appendix A shows that this truncation occurs at
µ & 103. Given the minuscule probability for such high
values, we can safely ignore this e↵ect in the rest of our
calculations.

IV. STATISTICAL EFFECTS OF LENSING

Astrophysical models of stellar binary evolution pre-
dict the di↵erential rate density d2n(M, z)/(dM dts),
namely the BH-BH merger rate per unit comoving vol-
ume and unit proper time ts at redshift z and at an in-
trinsic mass scale M .4 We briefly outline the procedure
to convert this rate density into an observed one, and
study the impact of lensing and detector sensitivity.
First, let us ignore the e↵ects of lensing. A GW de-

tector detects mergers from any redshift z along its past
light cone, measured with respect to its local proper time
t. Proper time intervals at the detector and source red-
shifts are related by dt = (1 + z) dts. We use the expres-
sion for the comoving volume in a flat ⇤CDM cosmology
to obtain an observed di↵erential rate

d3N(M, z)

dM dz dt
=

d2n(M, z)

dM dts

4⇡ c�2(z)

(1 + z)H0 E(z)
, (9)

where c is the speed of light, �(z) is the comoving dis-
tance out to redshift z, and E(z) is the Hubble expansion
rate at redshift z in units of the current value, H0. For
a flat ⇤CDM cosmology

E(z) =
p
⌦m(1 + z)3 + 1� ⌦m, and (10)

�(z) =
c

H0

Z z

0

dz0

E(z0)
. (11)

In a homogenous cosmology, the comoving distance �(z)
is related to the luminosity distance dL(z) by �(z) =
dL(z)/(1+ z). The factor of 4⇡ c�2(z)/((1+ z)H0 E(z))
in Eq. (9) is an e↵ective comoving volume per unit red-
shift interval, which connects the intrinsic and observed
rate densities.5 With increasing source redshift z, a larger
comoving distance permits access to a greater volume;
on the other hand, redshifting of the source-frame rate
/ (1+z)�1 decreases the e↵ective volume per unit proper
time at the observer. As Fig. 5 shows, the net result is
that a major fraction of the observed events within the
horizon would occur around z ⇠ 1 � 2 in the absence
of any intrinsic redshift evolution, with a total available
e↵ective comoving volume of a few hundred cubic giga-
parsec.
Let us now add a finite probability for large lensing

magnification. As we discussed in Sec. II, we cannot ac-
cess the mergers’ intrinsic parameters, and therefore the
direct observable is the di↵erential rate with respect to
the inferred quantities M̃ and z̃,

d3N(M̃, z̃)

dM̃ dz̃ dt
=

Z
d lnµ

dP (µ; z)

d lnµ

4 We primarily discuss BH-BH binary mergers within the band of
ground-based detectors. For simplicity, we only consider equal-
mass mergers with M being the mass of either binary component.
Note that extreme values of mass ratio degrade the signal-to-
noise ratio.

5 This is related to the comoving colume element of Ref. [38], with
an extra factor accounting for the change in proper time.
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FIG. 5: The redshift distribution of e↵ective comoving
volume dVe↵(z)/dz = 4⇡ c�2(z)/((1 + z)H0 E(z)) for the
fiducial ⇤CDM cosmology.

⇥d3N(M, z)

dM dz dt

����
@(M, z)

@(M̃, z̃)

����
µ

. (12)

The conversion between the intrinsic and extrinsic pa-
rameters leads to a factor of the Jacobian of the map
defined by Eqs. (1) and (5), which evaluates to

����
@(M, z)

@(M̃, z̃)

����
µ

=
(1 + z̃) d0L(z̃)

(1 + z) d0L(z)

dL(z)

dL(z̃)
, (13)

where the primes indicate di↵erentiation with respect to
the arguments.

We can compute a cumulative event rate by integrat-
ing Eq. (12) further over redshift z̃ and mass M̃ . For
a detector/detector-network D, the observed cumulative
rate for BHs that appear heavier than Mmin is

dND
dt

⇣
M̃ > Mmin

⌘
=

Z +1

Mmin

dM̃

Z
dz̃⇥

⇣
SD(M̃, z̃)� S0

⌘

⇥
Z

d lnµ
dP (µ; z)

d lnµ

d3N(M, z)

dM dz dt

����
@(M, z)

@(M̃, z̃)

����
µ

. (14)

Note that the above equation includes a detectability
cut through its requirement that the signal-to-noise ratio
SD(M̃, z̃) exceeds a threshold S0. This form has the ad-
vantage that the detector-specific SNR SD(M̃, z̃) is dis-
entangled from the intrinsic merger rate and the magnifi-
cation PDF, since it only depends on the inferred param-
eters M̃ and z̃. A practical consequence is that while dif-
ferent detectors probe di↵erent areas in the (M̃, z̃)-plane,
the lensed fraction of any given (M̃, z̃) bin is independent
of the detector.

The above formalism is applicable to any gen-
eral di↵erential rate density of BH-BH mergers,
d2n(M, z)/(dM dts). Given our sparse knowledge of this
quantity, we do not attempt to suggest a precise rate that
corresponds to reality. Rather, our strategy is to survey
a variety of possibilities with qualitatively di↵erent be-
haviors, and to identify in each case the possible e↵ects
of lensing magnification on the observed di↵erential rate.
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FIG. 6: (Physical) redshift distribution (normalized) of all
BH-BH mergers on the observer’s past light cone (upper
panel), and the redshift evolution of the source-frame merger
rate density (lower panel), for the illustrative model of
high-z mergers we consider in Sec. IV.

Before we consider specific models of the rate density
in the literature, we will demonstrate some features of the
cumulative rate in Eq. (14), both generally and within a
toy model for the evolution of the merger rate that we
tune to emphasize the e↵ects of lensing.
Consider a case where the intrinsic rate

d2n(M, z)/dM dts varies mildly with redshift, but
is sharply cut o↵ beyond a certain mass Mmax. Mergers
with higher masses, M̃ > Mmax, can still show up due to
strong lensing. Suppose we can approximate the lumi-
nosity distance by a power law dL(z) / (1 + z)� (valid
at cosmological redshifts). The observed di↵erential
rate for heavy mergers, i.e., those with M̃ > Mmax, is
roughly

d2N

dM̃ dts
⇠
Z

d lnµ
dP (µ; z)

d lnµ

d3N

dM dz dt

����
@(M, z)

@(M̃, z̃)

����
µ

. (15)

Suppose further that the relevant magnifications are
large enough that dP/d lnµ / µ�2. The Jacobian factor
may be simply approximated as M/M̃ at fixed µ,

⇣
M/M̃

⌘

µ
⇠ 1 + z̃

1 + z
⇠
✓
dL(z̃)

dL(z)

◆1/�

⇠ µ�1/(2�). (16)

Therefore, the observed di↵erential rate scales as

d2N

dM̃ dts
/ µ�2�1/(2�) /

⇣
M/M̃

⌘4�+1

. (17)
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FIG. 7: Distribution of true mass M and true redshift z for detectable BH-BH mergers d3N/(dt d lnM d ln z) [yr�1] for the
illustrative model of high-z mergers discussed in Sec. IV. From left to right, unlensed detection thresholds for four di↵erent
sensitivities are over-plotted with the same color coding of Fig. 3.

FIG. 8: Distribution of inferred mass M̃ and inferred redshift z̃ for BH-BH mergers d3N/(dt d ln M̃ d ln z̃) [yr�1] for the
illustrative model of high-z mergers we consider in Sec. IV. The case with lensing (Middle) is compared to the case without
lensing (Left). The rate enhancement by lensing is also shown (Right). Each of the four detectors considered in Fig. 3 cuts o↵
the region according to the threshold curves over-plotted, with the same color coding adopted as before.

In the above estimate, we substitute for M the maxi-
mum mass where the intrinsic rate cuts o↵. This crude
estimate suggests a power-law tail of apparently mas-
sive events with an index 4� + 1. For redshifts in the
range 3 < z < 8, the power law exponent of the luminos-
ity distance is � ⇡ 1.5, and hence the cumulative count
dN(> M̃)/dt decays as M̃�6. In any practical scenario,
the intrinsic merger rate is redshift dependent and the
detectors have a threshold sensitivity. Therefore the ob-
served di↵erential rate departs from the simple power-law
that we derived above.

We now consider a toy model within which we relax
the above simplifying assumptions. In this model, a copi-
ous number of stellar-mass BH binaries merge e�ciently
enough at high redshifts so that the majority of their
mass is in single BHs by z ' 2. At lower redshifts, the
merger rates are low enough that current ground-based
detectors do not see a significant number of unlensed
events.

We express the intrinsic di↵erential merger rate density

as

d2n(M, z)

dM dts
=

dn(z)

dts

dP (M ; z)

dM
, (18)

where dn(z)/dts is the normalization, and dP (M ; z)/dM
is the probability distribution for the merger mass M at
redshift z. We assume that the normalization starts out
at a large value at z = 20, and remains constant up to
z ⇡ zend = 2.3, when merger activity dies o↵ gradually
over a half-width of �z ⇠ 0.4. We use the form

dn(z)

dts
=

✓
dn

dts

◆

0

1

2


1 + tanh

✓
z � zend

�z

◆�
. (19)

We choose an initial normalization (dn/dts)0 =
100Gpc�3 yr�1.
The probability distribution function dP (M ; z)/dM is

more complicated. We initialize it to a log-normal distri-
bution with a peak at M = 12M�, and a width ⇠ 6M�
at z = 20 (this translates into a small mass fraction
⌦BH ' 3 ⇥ 10�8 residing in initial BHs). We use a
merger tree to model the distribution’s evolution through
a series of hierarchical mergers, i.e., we randomly and
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repeatedly replace two existing BHs with one new BH
(with the appropriate mass).6 In general, the merging
BHs have unequal masses, but the mass-ratio distribu-
tion does not have significant weight at extremely small
values (say, M</M> . 0.1). We simplify our analysis by
assuming equal-mass mergers with either component con-
taining half the total mass. We do not model the inspiral
timescale per merger, but rather assume that the overall
merger rate is statistically given by Eq. (19). Note that
such a hierarchical merger history is typical of scenarios
of Pop III remnants [39, 40], where BHs concentrate in
the cores of galaxies due to assembly or dynamical fric-
tion.

We find that the resulting PDF for merger masses can
be well fit by a log-normal distribution that shifts toward
larger masses with decreasing redshift, i.e.,

dP (M ; z)

dM
=

1p
2⇡ �(z)M

exp

"
�
⇥
ln(M/M̄(z))

⇤2

2�2(z)

#
, (20)

with �(z) and M̄(z) measured from the simulated hierar-
chical merger tree. The upper and lower panels in Fig. 6
show the redshift distribution of all BH mergers on the
observer’s past light cone (i.e. all mergers detectable by
a perfectly noiseless detector) and the normalization of
the rate density, respectively.

We next incorporate a detector sensitivity and the
lensing magnification of Sec. III. As we discussed after
Eq. (14), these inputs pick out the range of observable
intrinsic merger parameters. Figure 7 shows the results
for the detectors that we considered in Sec. II. The re-
sults show that when the detector has a poor redshift
reach (such as current LIGO), only highly magnified
early mergers are detectable. The number of observed
events rises quickly with any improvement to the detector
sensitivity (Fig. 7). As a consequence of the parameter
degeneracy that we highlighted in Sec. II, these mergers
would be misinterpreted as heavy systems from the re-
cent Universe (Fig. 8). Even though this model is purely
illustrative, it suggests that if LIGO or its upgrades ob-
serve a profusion of high-mass mergers (M & 40M�)
and a dearth of low-mass ones (M . 20M�), it could be
explained by hierarchical merger activity starting from
low-mass seeds (M ' 10M�) at very high redshift and
ending around z ⇠ 1� 2.

V. ASTROPHYSICAL MODELS OF THE
BLACK HOLE BINARY POPULATION

In this section, we use the methods of Sec. IV to study
the population of lensed BH mergers in several channels
of binary BH production that have been proposed in the

6 Note that late-time mergers involve very massive BHs, and hence
are out of the frequency band of ground-based observatories.
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FIG. 9: (Physical) redshift distribution (normalized) of all
BH-BH mergers on the observer’s past light cone (upper
panel), and the redshift evolution of the source-frame merger
rate density (lower panel), for di↵erent progenitor scenarios
we discuss in Sec. V: (1) Pop I & II population synthesis
from Ref. [41] (blue solid), and (2) population synthesis
from Ref. [42, 43] (red dashed); (3) Hierarchical coalescence
of Pop III remnants (magenta dotted); (4) binary mergers
from a primordial BH population (brown dash-dotted).

literature. The exact form of the populations in various
channels di↵er, but when compared to our toy model,
all the channels tend to produce a substantial number
of mergers in LIGO’s band without the help of lensing.
Hence, our expectation is that strongly lensed events will
contribute to (and in some cases, even dominate) the tail
of the observed merger mass distribution, rather than
comprise its entirety as in our toy model. This heavy-
mass tail would be analogous to the observed excess of
very luminous quasars compared to theoretical expecta-
tions [44].
We consider models with binary black holes that origi-

nate from, respectively, the standard populations of Pop-
ulation I and II stars (metal-rich and metal-poor stars,
henceforth Pop I and II stars), hypothesized Popula-
tion III stars (primordial stars that are extremely metal-
deficient, henceforth Pop III stars), and a relic primordial
population.

A. Mergers from Pop I and II binaries

Binaries of Pop I and II massive stars evolving in iso-
lation in low stellar-density environments have been pro-
posed as progenitors for the majority of stellar BH-BH
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FIG. 10: Distribution of true mass M and true redshift z for detectable BH-BH mergers d3N/(dt d lnM d ln z) [yr�1]. From
top to bottom we plot results for models (1)-(4) in the order they are introduced in Fig. 9. From left to right, unlensed
detection thresholds for four di↵erent sensitivities are over-plotted with the same color coding of Fig. 3.

mergers in general, and GW150914 in particular (see e.g.
Refs. [41, 42]; note however that no BH heavier than
20M� has been seen in X-ray binaries with reliable mass
measurements [45, 46]). In such scenarios, the binary BH
merger rate at z = 2�5 is larger than the local value due
to a) the higher star-formation rate, and b) the increased
abundance of massive stars due to the lower metallicity
in star-forming environments.

Typical models predict a rapid decay in the merger
mass function at the high mass end [41, 42]. Below we

compare two di↵erent models. One is parametrized by
intrinsic di↵erential merger rate densities in the form of
a Schechter distribution

d2n(M, z)

dM dts
=

dn(z)

dts

⇥(M �Mcut)

M?(z)�(1 + �(z))

✓
M �Mcut

M?(z)

◆�(z)

⇥ exp


�M �Mcut

M?(z)

�
, (21)

where Mcut and M?(z) are cuto↵ and characteristic
masses, respectively. We let the characteristic mass scale



10

M?(z) evolve with redshift as

M?(z) = 3M� ((1 + z)/(1 + 1.5))0.5 , (22)

which gives M?/M� = 1.9, 2.7, and 3.6 at z = 0, 1, and
3 respectively. We apply a low-mass cuto↵ at Mcut =
5M�, and set the power index to �(z) = 6. With these
values, the distribution peaks at M/M� = 18, 24, and
32, with RMS values �M/M� = 5, 7, and 10, at z =
0, 1, and 3 respectively. These parameters are reasonably
compatible with the numerical results of Ref. [41], and
are consistent with our intuition that more massive BHs
form from massive stars at high redshifts due to the lower
environmental metallicities.

At each redshift, we normalize the rate density
dn/dts(z) to match an earlier study Ref. [41], or the
dashed curve of Fig. S5 of Ref. [42], which predicts a local
merger rate density of ⇠ 36Gpc�3 yr�1 (compare to the
current LIGO-Virgo constraint 2 � 53Gpc�3 yr�1 [47])
and a peak of merger activity at z ⇠ 4� 6.

For a second model, we directly use the numerical out-
put for mass distribution and redshift evolution from the
latest population synthesis simulation [42, 43] performed
with the StarTrack code [48, 49].7 The new simulation
has improved upon earlier ones by calibrating to recent
observational constraints on the physics of massive bi-
nary evolution (see Ref. [43] for details). In particular,
the new simulation assumes that the masses of remnant
BHs are limited to ⇠ 50M� according to improved mod-
eling of the physics involved in pair-instability pulsation
supernovae (PPSN) [50, 51] and pair-instability super-
novae (PSN) [52–54], and that these e↵ects are important
in low-metallicity environments Z < 10%Z�.

In reality, an abrupt cuto↵ in BH mass in such a com-
plex stochastic process may seem contrived. Scatter in
the remnant BH mass is expected when a progenitor star
of given mass goes supernova. To mimic such scatter
we thus introduce to the simulation data a log-normal
random fluctuation with variance 0.04 dex to all binary
masses, which smoothes the sharp PPSN/PSN cuto↵ to a
plausible width of ⇠ 10M� [55]. By manually mitigating
the hard cuto↵ we are conservative about the relative im-
portance of the magnification tail at the high-mass end
close to the cuto↵ threshold. In practice we find this
smoothing does not significantly alter the absolute rate
or shape of the high-mass tail induced by lensing.

The lower panel of Fig. 9 compares the normalization
dn(z)/dts as a function of redshift between the earlier
model of Refs. [41] and the latest results of Ref. [42, 43].
For the latter, a higher local merger rate density ⇠
200Gpc�3 yr�1 is predicted and the peak of merger ac-
tivities shifts to z ' 2.

The top two rows of Fig. 10 show the distribution of in-
trinsic masses and redshifts of all detectable mergers for

7 For simplicity, we compute the signal-to-noise ratio assuming
equal-mass mergers and taking the component mass to be half
of the binary mass.

the two models. As in Fig. 7, all the detected mergers
that lie beyond the threshold are strongly lensed. Figure
11 plots the distribution in the plane of observed param-
eters, along with the ratio between the rates in the cases
with and without lensing for each bin (when interpreting
Fig. 11, note that each detector cuts o↵ the plot at its
individual threshold). We observe from the right-most
plot of Fig. 11 that the lensed-fraction can be dominant
for high BH masses M & 60M�. In our first model
without PPSN/PSN, very massive systems exist at high
redshifts, and magnification bias is only relevant at in-
termediate redshifts 0.1 < z < 1. In our second model,
ultra-massive systems are forbidden by PPSN/PSN, and
magnification bias is present for a wide range of redshifts.
With the aid of lensing, LIGO is sensitive to a number of
early mergers at z ⇠ 2� 5, and can thus o↵er an insight
into binary evolution in the early Universe. Since lensed
and unlensed events are not distinguishable on an event-
by-event basis without electromagnetic counterparts, one
may only study the merger distribution with respect to
the inferred parameters Eq. (12), as shown in Fig. 11.
Figure 12 plots the projection of the distribution along

the observed-mass axis. We see that lensing induces
an “ankle” in the mass distribution at masses M '
60 � 80M�, which would be nontrivial to explain with
a simple merger mass function without lensing. The ef-
fect is most pronounced for LIGO, which is luminosity
limited, but may or may not be important for the ET.
The lensing-induced tail’s number count is too low to
be detectable in a reasonable time-frame with current
LIGO’s sensitivity, but are measurable after a few years
of operation at design or ultimate sensitivities.

B. Mergers from Pop III stars

Pop III stars are a hypothesized generation of massive
and short-lived stars that could have thrived in metal-free
environments around z ⇠ 10 [56]. Moreover, it has been
proposed that Pop III stars of masses 25 < M/M� < 140
or M/M� > 260 end their lives in massive BHs [57]. The
distribution of these massive BHs is open to speculation,
but it is reasonable to expect that a significant fraction
reside in binaries, either due to their parent stars’ distri-
bution [58], or due to their evolution towards the center
of their galactic potential under dynamical friction and
subsequent capture [39]. In this section, we consider the
GW signature due to the hierarchical merger of these
ancient binaries (a process that is reminiscent of our toy
model in Sec. IV). Note that merger scenarios involving
Pop III remnants have also been studied in Refs. [59, 60].
The analysis in Ref. [61] fixes the normalization

dn(z)/dts using a merger tree simulation that is tuned
to produce the right mass in supermassive BHs, assum-
ing that Pop III remnant BHs account for some fraction
fMBH of this mass (with the rest contributed by gas ac-
cretion). In the following, we assume fMBH = 0.01, and
infer the intrinsic merger rate density (see lower panel of
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FIG. 11: Distribution of inferred mass M̃ and inferred redshift z̃ for BH-BH mergers d3N/(dt d ln M̃ d ln z̃) [yr�1]. From top to
bottom we plot for models (1)-(4) in the order they are introduced in Fig. 9. The case with lensing (Middle) is compared to
the case without lensing (Left). Rate enhancement by lensing is also shown (Right). Each of the four detectors considered in
Fig. 3 cuts o↵ the region according to the threshold curves over-plotted, with the same color coding adopted as before.

Fig. 9) from Ref. [61] for stellar mass seeds (left panel
of Figure 2 therein). We start with a log-normal distri-
bution for initial seed masses centered at 15M�, with a
width of 6M� (as earlier, this corresponds to a BH mass
budget ⌦BH ' 3 ⇥ 10�8). We fit the evolved mass dis-

tribution dP (z)/dM to a log-normal distribution at each
redshift.
Figure 10 shows that lensing magnification brings a

significant number of mergers from z > 2 (especially
early-stage mergers between low-mass seeds) above the
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FIG. 12: Cumulative rate of detectable BH-BH mergers dN/dt with mass scale larger than M per decade of observation, for
model (1)-(4) as introduced in Fig. 9, respectively. The same color coding of Fig. 3 is adopted for di↵erent detector
sensitivities. We compare between the lensed distribution (solid), the unlensed distribution (dashed), and strongly lensed
events with µ > 3 (dotted).

detection threshold for LIGO and its upgrades. How-
ever, these lensed mergers are buried under a population
of detectable late-stage high-mass mergers from around
z ⇠ 1� 2 (as shown in Fig. 11). The lensed events dom-
inate only at high masses M̃ > 40M� at z̃ > 5, or at
low masses M̃ < 40M� at z̃ < 0.2; the event rate is
undetectably low in both ranges. We can also see this
in the cumulative mass distribution in Fig. 12, which
decays smoothly toward high masses M & 100M� and
shows no sign of magnification bias. This is due to a
combination of the log-normal tail of high-mass merg-
ers at given z and an increase of individual BH mass on
average as hierarchical merging progresses, which is to
be contrasted with the Schechter cuto↵ and a suppres-

sion of recent high-mass mergers in Sec. VA. In general,
an extended heavy tail in the intrinsic mass distribution
can wash out the strongly lensed contribution. Note also
that the merger activity as predicted in Ref. [61] finishes
late (z ⇠ 1). Were this to end earlier, magnification bias
would become more important.

C. Mergers of primordial BHs

A relic population of black holes from the primordial
Universe is a third possibility that has been considered
for the origin of massive BH mergers [62–64]. We evalu-
ate the GW signal from mergers within this model, but
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do not speculate about the origin of the relics. Proposals
in the literature include direct collapse from horizon-scale
peaks in the cosmological density field during radiation
domination [65], or collapse due to the reduction in pres-
sure support during cosmological phase transitions [66].

The model in Ref. [62] invokes the following assump-
tions: a) primordial BHs with masses M ' O(10)⇥M�
account for a substantial fraction of dark matter in the
present Universe, and b) the BHs form close binaries in
dense, low-velocity mini halo environments via dynami-
cal capture, and quickly merge within one Hubble time.

Since this process is most e�cient in sub-galactic mass
dark matter halos whose comoving abundance does not
significantly evolve after z ⇠ 10 in the ⇤CDM cosmol-
ogy, we can assume a stationary merger rate density
dn(z)/dts. Its exact value depends on the mass fraction
of primordial BHs and the e�ciency of dynamical cap-
ture. To facilitate comparison with other scenarios, we
choose a value of 20 Gpc�3 yr�1. This is the merger rate
visible to a detector that is limited to a local volume.

Since only a small fraction of primordial BHs form
binaries and merge, the merger mass distribution
dP (M)/dM may be assumed to be be stationary. Its
specific form is open to speculation; if primordial BHs
formed in a narrow redshift-range, we expect this to be
a peaked distribution. In order to explain GW150914,
we consider a log-normal distribution centered at M0 =
25M�,

PPBH(M) =
1p

2⇡ �lnM M
exp

 
� [ln(M/M0)]

2

2�2
lnM

!
, (23)

with a width parameter �lnM = 0.18, corresponding to
a small width of �M ⇠ 10M�. If the width were much
larger, we would expect LIGO to have preferentially de-
tected mergers more massive than 30M�.

Due to the relatively narrow BH mass-distribution, the
lensing magnification significantly extends the redshift
reach of LIGO and its upgrades (as can be seen in the
lower row of Fig. 10). Figure 11 shows that lensed events
dominate the high-mass end of the inferred mass distri-
bution over a wide range of inferred redshifts. If the
mass distribution were much wider, the high magnifica-
tion tail would be washed out. Note however that the
total detectable number of high-mass events is low for
even design or ultimate LIGO sensitivities, as can be
seen in Fig. 12. This is due to the assumption of a con-
stant normalization for the rate with redshift (as noted
earlier, the normalization is fixed to match the inferred
rate from GW150914). In such a scenario, the ET can
measure the lensing-induced tail and probe the intrinsic
BH mass distribution.

VI. DISCUSSION

In this paper we pointed out an intrinsic observational
degeneracy between the masses and redshifts of binary

BH mergers and their lensing magnifications in case that
no electromagnetic counterparts, and hence redshifts, are
available. Even though BH mergers are standard sirens,
this prevents gravitational wave observers from deter-
mining lensing magnifications on an event-by-event basis.
Traditional astrophysical sources from the high-redshift
universe, such as galaxies, quasars and supernovae, do
not su↵er from this ambiguity because their electromag-
netic spectra contain absolute scales that are set by non-
gravitational physics.

If we use a standard cosmology for parameter estima-
tion, the distribution of observed BH mergers in mass
and redshift will di↵er from the intrinsic distribution. In
particular, apparently high-mass mergers from low red-
shifts may be artifacts of lensing magnification. This
e↵ect is particularly important if BH mergers originate
from standard stellar evolution, or from a low-mass pri-
mordial population.

Due to incompleteness originating from detector
thresholds, it is not possible in general to deconvolve the
e↵ects of a given magnification PDF and recover the in-
trinsic event distribution. However, given a theoretical
model of the merger mass distribution and its evolution,
one can forward-model the e↵ect of cosmic magnification
by convolving with the appropriate PDF, and compare
the resulting distribution to that of observed events.

In this paper we have focused solely on the observed
distribution, but in general we might be able to identify
strongly lensed events through their multiplicity. Quite
generically, multiple images exist in the regime of strong
magnifications. The typically good angular resolution of
astronomical surveys enables separation of the angular
positions of multiple images on the sky. This is unlikely
to be an option for GW observations, whose angular lo-
calization is too coarse to achieve the arcsecond precision
needed for resolving the multiple images due to galaxy
lenses. Due to the burst nature of the sources and the
excellent temporal resolution of the observations, it is
more likely that we can identify multiple images of merg-
ers through their mutual time delay. Since multiple im-
ages produced by galaxy lenses are typically separated
by time delays of weeks to months, those that are su�-
ciently bright will be detected as separate GW chirps. We
expect that we can identify (with high statistical signifi-
cance) events whose arrival directions and reconstructed
dimensionless parameters are consistent, but whose ap-
parent mass scales and redshifts are related by a consis-
tent magnification ratio. Even in this case, we cannot
uniquely pin down the absolute source redshift and mass
scale due to the unknown absolute magnification scale.
Nevertheless, a sample of multiply-imaged mergers iden-
tified in this way could constrain the properties of strong
gravitational lenses, and conceivably o↵er a path toward
estimating and correcting for the population of lensed
black hole mergers. We will present a detailed study of
some of these prospects in a forthcoming publication.
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Appendix A: Wave e↵ects at high magnification

In this appendix, we consider the question of whether
geometric optics describes gravitational lensing of GWs
by galaxy lenses. The approximation breaks down when
distinct rays intersect, which naturally occurs when
sources approach caustics on the source-plane [37]. Large
magnifications occur in this region, and hence we need to
verify the validity of the magnifications in the body of the
paper.

We will follow the derivation in Ref. [10]. Under the
thin-lens approximation, the observed amplitude obeys a
Fraunhofer di↵raction equation controlled by the dimen-
sionless numerical factor

f =
2⇡⌫

c

�(zs)�(zd)

[�(zs)� �(zd)]

✓
⇠0
Dd

◆2

, (A1)

where ⌫ is the observed frequency, ⇠0 is a physical
length-scale on the lens plane, zs and zd are the source
and lens redshifts, respectively, and �(z) is the comov-
ing distance to redshift z. For numerical estimates,
we choose ⇠0 to be the Einstein radius for a singular
isothermal lens with velocity dispersion �2

v , which equals
4⇡(�2

v/c
2)(�(zs)��(zd))/�(zs) (this is only for obtaining

a numerical estimate; the lenses responsible for the re-
sults in Sec. III are not singular isothermal lenses). Sub-
stitution into the above equation yields

f =
32⇡3⌫

c

⇣�v

c

⌘4 �(zd)

�(zs)


1� �(zd)

�(zs)

�
�(zs)

= 1.11⇥ 109 ⇥
✓
�(zd)/�(zs) [1� �(zd)/�(zs)]

0.25

◆
⇥

⇣ ⌫

100 Hz

⌘⇣ �v

161 km s�1

⌘4✓ �(zs)

�(zs = 2) = 5.27 Gpc

◆
.

(A2)

The factor f is numerically large; typically, we can ex-
pand the time-delay as a quadratic function around nor-
mal image locations and evaluate a Gaussian integral to
get the observed amplitudes. When the source is at a
caustic, the quadratic term vanishes and the magnifi-
cation is formally infinite. If the caustic is a fold, the
time-delay behaves as a cubic function of image location,
and the e↵ective magnification is corrected to an Airy
function along the lensing map’s trivial direction. The
maximum magnification is

µmax = 4⇡f1/3

����
(1� )

T ·ATA · T
����
1/3

Q2, Q ⇡ 0.5357, (A3)

where , A, and T are the dimensionless surface-mass
density, Jacobian of the lens map, and tangent to the
critical curve, respectively. Substituting in the value of
f from Eq. (A2), we obtain

µmax

= 3.74⇥ 103⇥
����

(1� )

T ·ATA · T
����
1/3

⇥
✓
�(zd)/�(zs) [1� �(zd)/�(zs)]

0.25

◆1/3 ⇣ ⌫

100 Hz

⌘1/3
⇥

⇣ �v

161 km s�1

⌘4/3✓ �(zs)

5.27 Gpc

◆1/3

. (A4)

The dimensionless factors are order unity, except near
cusps, which generically form a small (i.e., measure-zero)
subset of the caustics. The magnifications quoted in the
body of the paper are well below this limit, and hence
valid. Note that point-source magnifications are regu-
lated by an integration over the brightness profile for
extended sources (we treat binary black holes as point
sources of GWs).

Appendix B: Fit for magnification PDF

We propose a fit for the source magnfication PDF in
the form of a log-normal distribution convolved with a
heavy-tailed kernel

dP (µ)

d lnµ
= F (µ; t0,�, �) = A(t0)

Z +1

0

dt exp


�

t+ t0
� 2t

�

⇥ 1p
2⇡ �

exp

"
� (lnµ� � � t)2

2�2

#
. (B1)

We shall focus on the special choice � = 5, which we
observe provides a good fit of the realistic magnification
PDF. Apart from the parameter �, the function has a
couple of free parameters: � characterizes the width of
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the log-normal distribution, � is a shift parameter, and t0
controls the relative size of the heavy tail. We demand
that dP/d lnµ ⌘ F (µ; t0,�, �) is a properly normalized
probability distribution for the magnification factor µ,
i.e.

R
d lnµF (µ; t0,�, �) = 1. This fixes the normaliza-

tion factor A(t0) to

A(t0) =

Z +1

0

dt exp


�

t+ t0
� 2t

���1

. (B2)

The further requirement of unit mean magnification
hµi = R d lnµµF (µ; t0,�, �) = 1 uniquely fixes the shift
parameter � in terms of t0 and �.

e�� = A(t0)

Z +1

0

dt exp


�

t+ t0
� 2t

�
et+

�

2

2 . (B3)

We now show that the semi-analytical form Eq. (B1) re-
produces the correct high-magnification tail dP/d lnµ /
µ�2. In the limit of large µ, the log-normal function can
be replaced by a narrow Dirac-delta function

1p
2⇡ �

e�(lnµ���t)2/(2�2) ! �D (t� lnµ� �) , (B4)

so that the t-integral becomes

F (µ; t0,�, �) ! A(t0)µ
�2 exp


�

lnµ+ � + t0
� 2�

�

⇡ A(t0)µ
�2 e�/ lnµ. (B5)

Numerically, |�| ⌧ 1 and t0 ⇠ O(1). For su�ciently large
µ, the lnµ-dependence is unimportant, and the distribu-
tion asymptotes to a power law ⇠ µ�2. Since � and

t0 drop out of the asymptotic form as long as they are
small, t0 can be uniquely matched to a strong lensing
optical depth ⌧(µ > µ0) through

A(t0) = c0/⌧(µ > µ0), (B6)

where we define the constant c0, which depends on µ0 as,

c0 =

Z +1

µ0

dµ

µ
exp


�

lnµ
� 2 lnµ

�
. (B7)

We choose the threshold magnification to be µ0 = 10 in
order to match the numerical optical depth of Ref. [36].
This determines t0 as a function of the source redshift z.
We also obtain a smooth fit for � and � as a function of
z by matching the weak lensing portion to the result of
Ref. [35]. In Tab. I, we list the numerical values for these
parameters that we use to generate the curves in Fig. 4.

� e�� t0

z = 0.7 0.008 1.0380 0.365
z = 1 0.010 1.0465 0.399
z = 2 0.028 1.0700 0.471
z = 3 0.050 1.0859 0.511
z = 5 0.078 1.1065 0.557
z = 10 0.110 1.1327 0.609
z = 20 0.150 1.1649 0.666

TABLE I: Parameters that we adopt to produce Fig. 4 using
Eq. (B1). The value for t0 is obtained by matching with the
strong lensing optical depth ⌧(µ > 10) found in Ref. [36].
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