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A B S T R A C T

Decision-makers today have relatively easy web-based access to climate projections from several different
models and downscaled datasets. Yet, there is minimal guidance on the credibility and appropriate use of such
models and projections for specific adaptation contexts. The few studies that provide recommendations on model
choice are often based on evaluations of broad physical climate metrics (such as temperature averages or ex-
tremes) at regional scales, without additional examination of local-scale decision-relevant climatic metrics (such
as growing degree days or chill hours) that underpin the adaptation action. While such broad regional skill may
be considered necessary for the overall credibility of models, it is not clear whether it is sufficient to ensure good
skill for decision applications. This paper evaluates the skill of different Global Circulation Models (GCMs) in
predicting the decision-relevant metric of chill hours in Fresno, California, and examines how model selection
impacts future projections. We find that good skill in predicting broader physical climate metrics in California
does not guarantee skill in prediction of chill hours in Fresno. In fact, the models with good regional climatic skill
were mutually exclusive of the ones with good skill for chill hours, which leads to some counterintuitive results
for this unique metric. Since many decision-relevant metrics are non-linear derivations of primary physical
quantities (like the chill hour metric), more such decision-relevant model evaluations are needed to provide
better insights on model credibility and choice for adaptation decisions.

Practical implications

There are currently about 60 different Global Circulation Models
(GCMs) that can provide projections of future climate. For a de-
cision-maker looking to utilize climate data, synthesizing these
vast range of possibilities can be a formidable task as there is
limited guidance on which set of models and projections are ap-
propriate for their specific adaptation context (Barsugli et al.,
2013; Jones et al., 2016; Maurer et al., 2014; Moss et al., 2019;
Snover et al., 2013). Literature suggests that for a realistic re-
presentation of the future, a sample of at least several models
should be used. However, there is no consensus on how this
sample should be chosen for decision-relevant applications
(Overland et al., 2011). The few studies that provide guidance on
model choice are based on evaluations of models’ historical per-
formance for broad physical climate metrics (such as temperature
averages or extremes) at regional scales, without an additional
evaluation of decision-relevant climatic metrics (such as growing

degree days or chill hours) at local scales that a user may find
more relevant. This raises a question as to whether these models
that perform well for broad regional climate, i.e. have ‘broad
regional-skill’ will also perform well for specific decision-relevant
metrics, i.e. have ‘specific local-skill’. And relatedly, how future
projections may differ based on whether models are picked for
broad regional or specific local-skill. This study assesses this
question by evaluating the skill of different climate models in
predicting the decision-relevant metric of chill hours in Fresno -
California, and examining the extent to which the choice of GCMs
alters chill hour projections for the future. We also highlight the
similarities and differences in projections based on whether
models are chosen for skill in broad-scale physical climatic me-
trics for California or for skill in predicting chill hours in Fresno.

Chill hours (defined as cumulative hours below 45°F or 7.2 °C
from November 1 to February 28 or 29) is one of the most im-
portant decision-relevant climate metrics for temperate fruit and
nut tree crops. Observed data shows that from 1971 to 2012, chill
hours in Fresno have been decreasing at the rate of −8.4 chill
hours per year (ch/yr). This negative chill hours slope/trend, can
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be a cause for concern to farmers and adaptation practitioners, as
reduced winter chill strongly impacts crop yield and quality (Kerr
et al., 2018; Lobell and Field, 2011). Estimates of future chill
could help growers better anticipate for additional management
costs, as well as assist in choosing the right crop species, varieties,
or rootstocks that are more adapted to future climate change
(Luedeling et al., 2009a; Pathak et al., 2018).

In our skill evaluation, we analyzed the performance of both
raw GCMs as well as the popular downscaled dataset used by the
State of California (i.e. the LOCA dataset which is based on the
Localized Climate Analogues downscaling method). We found
that models that perform well for broad physical climatic metrics
of temperature, precipitation and El-Nino patterns, do not ne-
cessarily perform well for chill hours. Hence, computing future
projections of chill hours using a broad regional-skill based
sampling approach, provides some counterintuitive results. This
may be due to the fact that the relationship between the tem-
perature and chill hour metric is non-linear, as chill hours only
accumulate below a certain threshold temperature. Although it is
difficult to know what types of sampling are more realistic or
appropriate, the results strongly indicate that different skill-based
sampling approaches can have important repercussions for the
analysis of future chill hours, and perhaps also other such deci-
sion-relevant metrics.

Overall, we find that the peculiarities of specific decision-re-
levant metrics – such as this non-linear threshold-based chill hour
metric – can lead to counterintuitive findings that question the
validity of some generally accepted recommendations on climate
model selection for impact and adaptation studies. We find that
broad regional climate skill of models is not always sufficient to
ensure skill for some decision-relevant metrics, and an additional
layer of decision-relevant model evaluation may be needed to
better understand how models perform on the eventual metric of
relevance to the user. Since many crucial adaptation decisions in
agriculture, energy, water management, and other fields are
made based on similar threshold-based metrics (such as growing
degree days, heating or cooling degree days, and days over
100°F), more such model evaluations can help to better under-
stand model credibility in specific decision-contexts. Further,
there is a critical need for more nuanced research on model se-
lection strategies for decision applications, to ensure that adap-
tation action is based on the best available climate projections of
the future.

1. Introduction

The past couple of decades have seen a large proliferation of dif-
ferent climate projections. The Coupled Model Intercomparison Project
(CMIP5) involves over 25 modeling centers across the world, and cur-
rently there are about 60 General Circulation Models (GCMs) that can
provide projections of future climate (WCRP, 2017). For decision-ma-
kers looking to use climate information for future planning (such as
adaptation practitioners, farm managers, crop advisors, and water
managers), this gives rise to what Barsugli et al. (2013) term the
‘practitioner’s dilemma’: how to synthesize the large number of pro-
jections, assess their credibility, characterize their uncertainties, and
use them wisely for a particular decision context (Maurer et al., 2014;
Moss et al., 2019; Mote et al., 2011; Snover et al., 2013). Since GCMs
were not originally developed with decision-makers’ needs in mind
(Jones et al., 2016), the reliability of these numerous model projections
for local and regional scales, and the limits to their utility for specific
impact and adaptation questions, is an ongoing and challenging field of
inquiry (Barsugli et al., 2013; Mendlik and Gobiet, 2016; Mote et al.,
2011; Overland et al., 2011).

In the past, a simple arithmetic average of all available model
projections was often used to represent the “best” estimate of future
projections (Flato et al., 2013; Herger et al., 2018). However, recent
research has shown this approach to have several limitations, as it

implicitly assumes that each individual model is independent from
others and has equal abilities. Neither of these are completely valid
assumptions, especially for regional and local scale assessments
(Hayhoe et al., 2017; Knutti et al., 2010; Mendlik and Gobiet, 2016;
Overland et al., 2011; Sanderson et al., 2017). Researchers have since
developed more systematic approaches for model selection, weighting,
and averaging that account for model interdependence as well as the
relative abilities of climate models in simulating the regional clima-
tology of relevance (Hayhoe et al., 2017; Herger et al., 2018; Mendlik
and Gobiet, 2016; Sanderson et al., 2017, 2015). Newer studies such as
the Fourth National Climate Assessment (NCA4), and the California’s
Fourth Climate Change Assessment (CCCA4), have preferred to use
these skill-based approaches as an attempt to provide more refined
projections for their specific geographic areas of interest.

While there have been several advancements in developing skill-
based model selection and weighting approaches for regional studies,
there are still unanswered questions when it comes to model selection
for sector-specific climate adaptation problems that often need projec-
tions of a particular decision-relevant climatic metric at a specific lo-
cation (Barsugli et al., 2013; Mote et al., 2011; Overland et al., 2011).
In such cases, it remains unclear whether model selection and
weighting needs to account for the skill of the models for this specific
local-scale climatic metric, in addition to their skill for average clima-
tological variables over larger regions (Overland et al., 2011). Further,
most model skill evaluation studies tend to focus solely on metrics of
broad physical climate phenomena (e.g. large-scale atmospheric pat-
terns and averages/extremes/anomalies in temperature and precipita-
tion), and there are very few studies that evaluate model skill for spe-
cific decision-relevant metrics associated with particular adaptation
decisions (e.g. growing degree days1 and chill hours2 in the agriculture
sector, or heating or cooling degree days in the energy sector) (Moss
et al., 2019). Since climate models predict different metrics with
varying skill (Girvetz et al., 2013; Snover et al., 2013), GCM skills for
several of these decision-relevant metrics3 remain largely unknown.
The question remains whether model selections based on broad re-
gional climatological evaluations can sufficiently ensure robust and
reliable projections of decision-relevant climatic metrics that also ac-
count for the full range of scientific uncertainties associated with the
specific metric.

The goal of this paper is to examine how model selection impacts
projections for a particular decision-relevant metric, and to highlight
the similarities and differences in results based on whether models are
chosen for skill in broad-scale physical climatic metrics or for skill in
the decision-relevant metric. We focus on chill hours at a specific lo-
cation (Fresno, CA) as a case study. Chill hours are defined as the cu-
mulative hours below 7.2 °C from November 1 to February 28 or 29,
and is one is one of the most important decision-relevant climate me-
trics for several high-value temperature fruit and nut tree crops. The
non-linear relationship between temperature and chill hours makes it
an interesting threshold-based metric for analyzing model skill. We first
evaluate the skill of different GCM-derived datasets (both downscaled
and raw data) in predicting historical chill hours. We then explore
whether models with good skill for broad physical climatic metrics in
California are also skilled in predicting chill hours in Fresno, and we
investigate whether and to what extent the spread of chill hour

1 Refers to the number of degrees by which daily average temperature falls
above a threshold temperature.

2 Calculated as the cumulative sum of hours below a stated base temperature
3 Decision-relevant metrics are often computed using specialized algorithms

for which physical climate metrics serve as inputs. While we make a distinction
between ‘physical climate metrics’ and ‘decision-relevant metrics’ in this paper,
we also acknowledge that there may be some overlap between the two. For
example, some basic physical climate metrics such as monthly average tem-
perature or seasonal precipitation patterns can also be decision-relevant me-
trics.
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projections in the future differ based on model selection. Our objective
is not to make a case for model sub-selection that is based on specific
decision-relevant metrics nor to suggest a new selection or weighting
method. Rather, this paper highlights the repercussions of using model
selection or weighting approaches that are based on broader regional
skill without additionally assessing model skill for the local decision-
relevant climatic metric of interest. In doing so, we provide an im-
proved understanding of broad versus specific skill of the current
generation of climate models.

2. Model weighting, selection and averaging approaches

In order for projections of climate change to be robust and reliable,
they need to provide a balanced and unbiased estimate of the entire
distribution of potential future changes (Mendlik and Gobiet, 2016).
The goal is to maximize model diversity and capture the true un-
certainty in regional change, while also assuring good model perfor-
mance (Hayhoe et al., 2017; Mendlik and Gobiet, 2016). The equally
weighted multi-model mean (MMM) has often been regarded as the
gold standard for synthesizing projected changes from large model
ensembles, as the averaging can lead to cancellation of offsetting errors
in individual global models (Hayhoe et al., 2017; Herger et al., 2018;
Knutti et al., 2010; Mendlik and Gobiet, 2016). This method is pre-
dominantly used in global climate change studies, such as the Inter-
governmental Panel on Climate Change (IPCC)’s Fifth Assessment Re-
port (AR5). However, this “one model, one vote” approach has
increasingly been called into question, including in AR5, due to co-
dependencies between individual models (Flato et al., 2013; Sanderson
et al., 2017). Several GCMs are known to share structural components,
sections of code, and representations of certain features; hence, they
may have similar errors (Flato et al., 2013; Hayhoe et al., 2017; Knutti
et al., 2010; Mendlik and Gobiet, 2016; Overland et al., 2011;
Sanderson et al., 2015). Therefore, each model run cannot be deemed to
represent an independent projection estimate, and a simple multi-
model mean can lead to biases and double counting (Herger et al.,
2018; Mendlik and Gobiet, 2016). Further, the MMM may not always
present offsetting errors for specific variables or at regional scales
(Knutti et al., 2010). In order to avoid these potential biases, newer
studies are using more systematic approaches to arrive at regional
projections of climate change (Hayhoe et al., 2017; Pierce et al., 2016).

In lieu of the MMM, other approaches for synthesizing projected
changes from multi-model ensembles include sophisticated model
weighting or model sub-selections, that are based on three main cri-
teria: ensuring good model performance in the past, maintaining the
spread of the climate change signal to accurately represent un-
certainties, and accounting for model interdependence (Hayhoe et al.,
2017; Sanderson et al., 2017, 2015). These approaches select or assign
weights to models based on model dependence studies and performance
evaluations that compare 20th-century hindcast simulations to ob-
servations of certain key variables and regions of interest. Model sub-
selection is essential for many user applications to limit computational
demand and make data handling more manageable (Barsugli et al.,
2013; Herger et al., 2018; Mendlik and Gobiet, 2016; Pierce et al.,
2016). A critical consideration in model selection is that the eventual
sub-set of models maintains the key properties of the full ensemble,
such as the extent of the spread in future projections (which provides a
measure of uncertainty) and the statistical properties of the climate
change signal (Herger et al., 2018; Mendlik and Gobiet, 2016; Pierce
et al., 2016). Therefore, it is recommended that a sample size of at least
several models is maintained, and that performance evaluations be used
to detect and account for severely unrealistic models that cannot be
trusted for clearly argued reasons, rather than to select a handful of
‘best’ performing models (McSweeney et al., 2014; Mendlik and Gobiet,
2016; Overland et al., 2011).

Despite the growing focus on weighting and model selection, there
are still some criticisms of these approaches. Depending on how they

are used, some model selection approaches could lead to under-
estimations or inflations of uncertainties in regional projections
(Hayhoe et al., 2017; Madsen et al., 2017). If performance measures for
model sampling are narrowly defined, it can lead to subjective rankings
and over-determination of GCM accuracy, where models may be getting
the right answers but not for the right reasons (Mendlik and Gobiet,
2016). Some studies have also suggested that there may not be a strong
correlation between a model’s past performance and its ability to pre-
dict the future, thereby questioning the very premise of skill-based
model selection (Hayhoe et al., 2017; Knutti et al., 2010). Others
maintain that depending on the scientific question, a MMM of all
available model simulations (unselected and unweighted) might still be
appropriate (Madsen et al., 2017; Pierce et al., 2009).

Nevertheless, most of the recent literature suggests that evaluating
models’ past skill for the region and the climatic metric of interest is an
essential prerequisite, even if it does not guarantee accurate model
projections under new climate states (Flato et al., 2013; Hayhoe et al.,
2017; Knutti et al., 2010; Overland et al., 2011). While a good re-
presentation of the overall climatology of a region (i.e. mean, varia-
bility and trends in broad climatic metrics), is often regarded as a
‘necessary’ condition, there are still questions on whether such broad
skill is ‘sufficient’ to ensure skill in specific local-scale decision-relevant
climatic variables, or if an additional layer of decision-relevant model
evaluation is required to ensure that projections are adequately re-
presenting the problem at hand.

Notwithstanding these challenges and complexities, many new as-
sessment studies including the NCA4 and the CCCA4 have preferred to
move away from the MMM, and use model weighting and selection
strategies for providing regional projections (Hayhoe et al., 2017;
Pierce et al., 2016). For example, the state of California used a three-
tiered model performance evaluation (which included assessment of
model skill for global climatology, western U.S. climate and hydrology,
and the California state hydrology and climate extremes) to identify 10
models that provide reasonably realistic simulations of the state’s his-
torical and current climate (Cal-Adapt, 2017; CATRWG, 2017; CCTAG,
2015). These models were evaluated for several broad physical climatic
metrics that are of importance to the region, such as seasonal minimum
and monthly mean temperatures, monthly and seasonal maximum
precipitation, correlation with El Niño teleconnections, etc. (Brekke
et al., 2008; CCTAG, 2015; Pierce et al., 2009; Rupp et al., 2013). In
cases where using output from 10 models is still unwieldy for the user,
the state has identified a further-reduced set of 4 models which have
been shown to substantially cover the range of projections represented
by the larger 10-model ensemble for broad physical climatic metrics
(CCTAG, 2015; Pierce et al., 2016). Although these climate models have
not specifically been evaluated for various decision-relevant climatic
metrics at local scales, the state’s Climate Action Team has re-
commended that impact and adaptation studies in California use this
subset of 10 or 4 models (CATRWG, 2017). The question remains
whether this set of 10 (or 4) models that have been evaluated to meet
the criteria of good past skill and representation of spread in projections
for multiple physical climatic metrics across broader regions, will also
meet the same criteria for decision-relevant metrics such as winter chill
hours.

With this background and context, this study aims to assess whether
models that are skilled in predicting California’s overall climate are also
skilled in predicting the decision-relevant metric of chill hours in
Fresno. Further, we also examine whether and to what extent different
samplings of GCMs (MMM versus other skill-based samplings) alters the
results of chill hour projections. Our aim is not to propose a new model
selection approach based on such evaluations; rather, we hope to ad-
dress the question of how broad skill compares to specific skill of cli-
mate models and provide insights on the implications of different model
selections for decision-relevant metrics. Our focus on the metric of chill
hours can also provide useful insights for agricultural adaptation in
California. Many fruit and nut trees must meet a certain winter chilling
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requirement for the flowers and fruits to develop properly and for the
trees to attain optimum yields (Luedeling et al., 2011). Reduced winter
chill can have a significant negative impact on crop yield and quality,
and sustained decline of chill hours may impact the viability of some
perennial crops in areas where they were once widespread (Baldocchi
and Wong, 2007; Kerr et al., 2018; Lobell et al., 2006; Luedeling et al.,
2009a; Medellín-Azuara et al., 2011; Pathak et al., 2018). Estimates of
future chill could help growers better anticipate for additional man-
agement costs, as well as assist in choosing the right crop species,
varieties, or rootstocks that are more adapted to future climate change
(Luedeling et al., 2009a; Pathak et al., 2018).

3. Methods

3.1. Calculation of observed chill hours

In order to evaluate the implications of model choice for chill hours,
we first analyzed long-term historical trends in observed annual chill
hours for the Fresno station of the National Weather Service
Cooperative Network (lat/lon: 36.78, −119.72). Fresno was chosen as
the location of interest because the county is one of California’s major
production centers for fruit and nut crops, such as almonds, grapes,
pistachios, cherries and peaches (CDFA, 2016; County of Fresno, 2015).
In addition, the Fresno weather station had a long record (1971–2012)
of daily time-series temperature data, which is required for chill hour
computation. Since results of the evaluation can be sensitive to the time
period chosen, we chose the entire time period for which daily time-
series temperature record available.

For this paper, we computed chill hours as the cumulative number
of hours between 0 and 7.22 °C (32 and 45°F) in the winter months of
November, December, January and February (Baldocchi and Wong,
2007). This is known as the Chilling Hours model. Though there are
several different methods of computing chilling requirements for fruit
and nut trees, some of which may be regarded as more precisely re-
presenting tree physiology (Luedeling and Brown, 2011), the Chilling
Hours model is the simplest and most transparent model which is most
widely used by practitioners. Different chill calculation methods (such
as the Dynamic model, the Utah model, and the Positive Utah model)
may yield different predictions for how chill hours will change in future
climate (Darbyshire et al., 2011; Luedeling et al., 2009b; Luedeling and
Brown, 2011). However, since the results of our paper rely mainly on a
comparison between the observed and modeled chill hours, we limited
the scope of this project to using one consistent chill hour calculation
method while evaluating multiple GCMs. Although some specific results
may differ, we anticipate that our broad findings and discussion points
will be relevant to other chill hour models, which we hope will be
tested by other researchers.

Since hourly data is not available for most GCMs, we used daily
minimum and average temperature to estimate daily chill hours, fol-
lowing the trigonometric approximation method using an idealized
mean diurnal temperature course (developed by Baldocchi & Wong,
2007). These authors found that their daily-to-hourly interpolation
produced fairly accurate and unbiased chill hour estimates for this re-
gion (e.g., for Zamora, CA, another Central Valley location, the corre-
lation between chill hours computed from actual hourly data versus
interpolated daily data was R2 = 0.887). Further, a comparison of chill
hours from actual hourly data from the Fresno weather station versus
the trigonometrically interpolated daily data show that the two
methods provide very similar results (R2 = 0.98) for both mean and
slope of historical chill hours. Details of the trigonometric approach and
the equations used are provided in Fig. A.1 and Eq. A.1 of Appendix A.

To understand our chosen location within the larger regional con-
text, we also computed chill hours for all other weather stations that are
located within 75 km of the Fresno station and that have a comparable
long-term temperature record. Five other NWS COOP weather stations
matched these criteria: Madera, Friant, Hanford, Lemoore and Visalia.

3.2. Model skill evaluation for chill hours

In order to assess the difference between models’ relative skill for
broad regional climatology versus that of chill hours at a local scale, we
first assess the skill of various GCMs for chill hours, and then compare
our results with other regional climatology evaluation studies con-
ducted for California and the Western US. For the model skill evalua-
tion, we compared both downscaled and raw GCM data with observed
historical chill hours for Fresno. Here we note that while the analysis of
downscaled data can tell us how well this dataset is able to capture chill
hours in Fresno, the results would not provide a true measure of quality
of the GCM. This is because downscaled data from all GCMs are bias-
corrected to the same observed dataset, thereby making several aspects
of the GCMs statistically indistinguishable (Maurer et al., 2014). Hence,
in addition to downscaled data, we also assessed raw GCM data to
evaluate the skill of different GCMs in predicting chill hours.

We used raw climate model data from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archives. For the downscaled
dataset, we used the high-resolution data (1/16° or about 6 km spatial
resolution and daily time-scale) derived using the Localized Climate
Analogues or LOCA method, since the LOCA data is regarded as one of
the better datasets for representing California’s climate (Pierce et al.,
2016). Temperature data for the grid cell containing the Fresno weather
station was collected from raw and downscaled CMIP5 models (and
corresponding ensemble members) for which daily average and
minimum near-surface air temperature (Tav and Tmin) outputs were
available for both the historical run and the Representative Con-
centration Pathway (RCP) 8.5 future projections4. The historical runs
begin in 1850 and end in 2005 and are driven by standardized green-
house gas concentrations, aerosols, and land-use change forcing data-
sets. We chose RCP 8.5 in order to use projections with the largest
potential signal compared to internal variability (McSweeney et al.,
2014). We also note that choice of RCP is not expected to greatly in-
fluence model results for relatively near-term projections such as 2050
(CATRWG, 2017; Hawkins and Sutton, 2009).

We assessed downscaled data from a total of 32 GCMs and raw data
from 29 GCMs. Wherever available, data from different initial-condi-
tion ensemble runs (model runs beginning with different initial condi-
tions in 1850) of the GCMs were also included. For the downscaled
dataset, only one ensemble run was available for each GCM. For the raw
data, eight GCMs had daily time-series data for more than one ensemble
run, while the remaining 21 only had daily data for a single run of the
model. We identified a total of 57 model runs from the raw GCM dataset
for further analysis (henceforth termed ‘raw GCMs’ dataset), and 32
model runs from the downscaled dataset (or ‘LOCA’ dataset) (Table A.1
and A.2, Appendix A). Out of these model runs, 26 runs were common
to both datasets. That is, for 26 models, raw data and LOCA downscaled
data, were available for the same ensemble run, allowing for one-to-one
comparison.

Two evaluation criteria were used to assess model skill for com-
puting chill hours: (a) comparison between modeled and observed
multi-year mean annual chill hours for the historical period of
1971–2012; and (b) comparison between modeled and observed slope/
trend in chill hours (1971–2012). We chose these two criteria because,
if models are to be used to project the future effect of climate change, it
is crucial to test not only their ability to capture the mean state but also
the historical trend (i.e. slope of chill hours), the latter of which in-
dicates the models’ historical response to climate forcing. Also, de-
pending on the choice of method, both mean and slope of chill hours
can be relevant for computing future chill hours from climate model
data. For example, future chill hours can be obtained directly by taking

4 RCP 8.5 represents a high pathway for future greenhouse gas emissions for
which radiative forcing reaches greater than 8.5 Wm−2 by 2100 and continues
to rise (IPCC, 2013).
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the mean annual value from the climate models for the period under
consideration. Alternately, future chill hours for the period can also be
computed by taking a future slope estimate from the climate models
and using it to extrapolate the current observed baseline mean (Daniels
et al., 2012; Hawkins et al., 2013). We note that mean annual chill
hours and slope of chill hours over time are related metrics, and they
are not fully independent of each other.

The comparison between modeled and observed data was con-
ducted by using p-values from a Student’s t-test comparing the observed
results to the modeled outcomes obtained for the different model runs.
The p-value provides a means of identifying which model runs differ
from observations in a statistically significant manner. In this case, a
model with a low p-value can be said to be definitely unskillful; i.e., the
modeled and observed results differ significantly. However, a high p-
value does not guarantee skillful performance of the model. A high p-
value can also reflect a noisy observational signal or a high degree of
variability in the model, either of which may make it difficult to reject
the null hypothesis that the modeled and observational data in fact
reflect the same distribution. We also acknowledge that since a large
number of pairwise t-test comparisons are being performed here si-
multaneously, there is a potential of Type I error, or the “false positive”
error of rejecting a null hypothesis when it is actually true (Weisstein,
n.d.). However, because our criterion for a model's 'success' is failing to
reject the null hypothesis, we believe that using an uncorrected p-value
of 0.05 makes our approach more conservative and stringent. In any
case, we also performed a sensitivity by applying the Bonferroni cor-
rection that rectifies the Type I error, and found that the correction did
not change our overall results significantly.

4. Results

4.1. Observed historical chill hours show a negative trend over time

Fig. 1 shows annual chill hours from 1971 to 2012 from the 6
weather stations. The multi-year mean annual chill for the historical
period ranged from 900 to 1040 chill hours (ch) for the different sta-
tions. For this 41-year time period, a statistically significant negative
trend in chill hours (at 95% confidence) was observed in all locations.
The trend ranged from −6 to −8 chill hours per year (ch/yr). There
was significant variability at annual to decadal scales, and hence
shorter time intervals did not always demonstrate a statistically sig-
nificant decline in chill.

To put these results in a decision-making context, the fruit and nut
crops of California require anywhere between 200 and 2000 ch an-
nually for optimal yields. Most almond and pecan cultivars have a re-
latively low annual chilling requirement of 200 to 500 ch, whereas
walnuts, plums, peaches, and nectarines require medium chill of at least
650 ch. Many cultivars of cherries, pistachios, apples, and pears have a
higher chill requirement of over 1000 ch (Baldocchi and Wong, 2007;
UCANR, 2018). The observed data shows that in the last two decades,
the Fresno region has seen an increase in the number of years with chill
lower than 700 ch.

To rule out the possibility that data from the Fresno weather station
(near Fresno Airport) were influenced by the urban heat island (UHI)
effect, we cross-checked data at this weather station with gridded ob-
served data from a grid area of 2000 km2 around the Fresno region to
examine potential biases (if any). We found that the chill hour estimates
from the grid cell were very similar to our point location estimates (Fig.
A.2 and Table A. 3, Appendix A). In addition, the mean and slope of
historical chill hours from the 5 other nearby weather stations (Fig. 1
and Table A. 4, Appendix A) were also comparable to that of Fresno.
This suggests that the UHI effect did not significantly bias our chosen
dataset.

4.2. Model skill for chill hours

Table 1 provides a summary of results from the historical skill
evaluation conducted for the two climate model datasets: LOCA and
Raw GCMs.

4.2.1. LOCA data accurately predicts historical mean but underestimates
trend

The historical mean chill hour predictions from the LOCA down-
scaled dataset were largely accurate, with a majority of GCMs having p-
values greater than 0.05, meaning that they were statistically indis-
tinguishable from the observations. Since the inter-model variability in
chill hours mean was not very high, higher p-values can be inferred to

Fig. 1. Observed annual chill hours for the historical
period 1971–2012, computed from 6 weather station
records in the vicinity of Fresno, CA. For reference,
three annual chill hour thresholds are shown as
straight lines. These are broad indications of thresh-
olds, lower than which many varieties of the listed
crops will be negatively impacted.

Table 1
Summary of results from the comparison of model performance against his-
torically observed chill hours from 1971 to 2012. Rows are the different types
of datasets that were evaluated, and columns present multi-model average
predictions for annual mean and slope of historical chill hours for two different
model samplings. “All models” refers to the average prediction from all the
model runs in the dataset (also referred to sometimes as “multi-model mean”).
“Sample based on chill hours skill” refers to the mean prediction from only
those model runs that have a p-value of greater than 0.05 when modeled results
were compares to historical observations. The observed mean and slope are also
provided for comparison.

Annual Mean Chill Hours (ch) Chill Hours Slope (ch/yr)

Dataset type
(below)

All models Sample based on
chill hours skill

All models Sample based
chill hours skill

Observed 910 910 −8.4 −8.4
LOCA 850 860 −1.9 −3.5
Raw GCMs 1290 950 −3.6 −5.3
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represent models that predict historical mean chill hours close to the
observed data from the Fresno station. The overall annual mean pre-
diction from all the 32 LOCA model runs (i.e. the multi-model mean)
was 850 ch, which aligns fairly closely with the observed annual mean
of 910 ch between 1971 and 2012. The spread in the multi-model mean
predictions was low, with the highest annual estimate being 900 ch and
the lowest 800 ch (Refer Fig. A.3, Appendix A). If models were to be
sampled based on skill in predicting mean chill hours, then the sample
size becomes 25 model runs (representing models with p-value greater
than 0.05). However, the average results from these runs was very si-
milar to the overall multi-model mean, suggesting that model choice
does not strongly influence prediction of historical mean chill hours
from LOCA data. This result is unsurprising, as the downscaled data is
designed to closely correspond to the observed data that provided the
basis for LOCA bias correction.

On the other hand, the prediction of chill hour slope is more sen-
sitive to the type of model selection. The multi-model mean prediction
of chill slope from all 32 LOCA models was −1.9 ch/yr, which is sig-
nificantly less than the observed slope of −8 ch/yr. If models were
sampled for skill in chill hour slope predictions, then the sample size
becomes 15 model runs that had a p-value greater than 0.05. This skill
based sampling resulted in a slope prediction of −3.5 ch/yr, which is
slightly closer to the observed slope as compared to the multi-model
slope prediction, but still on the lower side. Surprisingly, none of the
LOCA model runs predicted a mean slope that was equal to or higher in
magnitude than the observed mean slope of −8 ch/yr, showing that the
multi-model spread in slope was also not very high. In fact most LOCA
model runs (23 of 32) predicted the mean historical slope to be less
steep than even the lower confidence interval of the observed slope
(lower than −3.2 ch/yr). Overall, the LOCA dataset systematically
underestimated the significant negative slope of chill hours that was
observed in the historical period across a variety of locations in and
around Fresno (Refer Fig. A.4, Appendix A).

The average results from chill hours skill-based model sampling are
presented in this and subsequent sub-sections for comparison purposes
only, and not to suggest that this sampling be used for decision appli-
cations. The implications of these results are not straightforward, and
hence are further detailed in the discussion section.

4.2.2. Raw GCMs tend to overestimate mean and show highly variable
historical trend predictions

Because the LOCA data predicted chill hours trends that are sys-
tematically different from observations, this raises a question as to
whether this bias originated in the GCMs themselves or in the down-
scaling process. Our skill evaluation of the raw GCMs provided insights
into how the LOCA process transformed the raw model data.

In contrast with the accurate historical mean predictions of the
LOCA dataset, the multi-model mean annual chill hour predictions from
all the 57 model runs of the raw GCMs was 1290 ch, which is sig-
nificantly higher than observed values. These raw GCMs seemed to
have biases in the same direction (colder than observed) as compared to
the historical observed mean chill hours, and the multi-model mean
was even colder than the coolest decades of our historical dataset. If the
models were sampled for skill in raw GCMs for prediction of mean chill
hours, then the sample size became quite small with only 4 of the 29
raw GCMs (or 12 of 57 model runs) having model runs with a p-value
greater than 0.05 (Fig. 2). The historical mean annual chill as predicted
by this skill based sampling of model runs was 950 ch. While this
prediction is more in line with the observed value of 910 ch, it is limited
by the small sample size. Only one model underestimated the mean,
while 27 of 57 model runs predicted the mean as greater than the upper
confidence interval of the observed annual chill hours (greater than
1350 ch), again showcasing that the raw GCM biases seemed to be in
the same direction rather than offsetting each other (as would usually
be expected in multi-model ensembles). The intra-model variability in
prediction of mean chill was not very high; different runs of a GCM gave

similar results.
Here, we note that the statistical correspondence between models

and observations is not expected to be perfect even in the case of a
hypothetical perfect model, because we are comparing larger GCM grid
cells (of varying sizes and locations) to point observations. In particular,
inclusion of the nearby Sierra Nevada mountain range in the grid cell
could explain the overestimation of chill hours in some cases. However,
when we examined the grid cell locations of the models closely, we
realized that even the models that did not include the Sierra Nevada
range exhibited this overestimation. The grid cell locations of the 4
high-ranked models were also notably different, indicating that other
model characteristics are predominantly driving the chill hour predic-
tions, rather than the size and location of the grid cells.

Fig. 3 compares the observed historical slope in chill hours with
simulated results. The results show that the raw GCMs predicted the
slope of historically observed chill hours more accurately than the
LOCA data, although both approaches tended to underestimate the
magnitude of the slope. The multi model mean prediction of slope from
all 57 model runs was only −3.6 ch/yr, which was more accurate than
the LOCA prediction of −1.9 ch/yr, but which was still less than half
the magnitude of the observed chill slope (-8.4 ch/yr). However, the
raw GCM slopes seemed to have a wider spread in results than the
LOCA slopes, with individual model runs having slopes ranging from
−12.4 to + 4.5 ch/yr. Eleven out of 57 model runs actually predicted
an increasing trend in chill slope, while 6 runs predicted a decreasing
slope steeper than −6 ch/yr.

The raw GCM results also exhibited high variability even within
ensemble members of the same model, indicating that inter-annual to
decadal scale internal variability plays a large role in slope predictions.
For example, the slopes for the 10 runs of CSIRO-Mk3-6-0 ranged from
−10.4 to +4.3 ch/yr, with one run ranked as the second best predictor
of historical slope and another ranked as the second worst. Other
models such as EC-EARTH and MIROC5 also showed high intra-model
variability in prediction of slope. These results suggest that the pre-
valent inability of the p-value score to reject the null hypothesis could
be due to the fact that the declining trend in chill hours may be strongly
influenced by internal variability in the climate system in addition to
forcing, making it difficult to discern true model skill for chill slope.
Hence, even though 42 out of 57 model runs had p-values greater than
0.05 (i.e., they could not be statistically distinguished from observa-
tions), it is difficult to say whether or not they are truly skilled in
capturing chill slope.

Because raw GCM slopes were overall more accurate than LOCA
slopes and showed a better distribution around the observed slope of
−8.4 ch/yr, GCM performance did not explain the systematic under-
estimation of historical chill hours slope in the LOCA data. We further
clarified this by comparing the GCMs to the LOCA data in a pairwise
fashion, examining pre- and post- downscaling slopes for the same
model runs (Fig. 4). When we aggregated LOCA data for the same
spatial area as the GCM grid cells, we found that these flat slopes were
observed over the entire grid cell. This indicates that the systematic bias
in the LOCA slopes most likely developed during the downscaling
process and was not due to the scale difference between the GCMs and
LOCA datasets. On the other hand, the LOCA downscaling was able to
eliminate the cold bias in the model predictions of historical mean chill
hours.

4.2.3. Comparing broad regional skill versus specific local skill of GCMs
In order to explore our main objective of understanding the differ-

ence between broad regional and specific local skill of climate models,
Fig. 5 compares historical mean and slope predictions of chill hours
from different model samplings: all models, models with good skill for
California’s regional climate, and models with good skill for chill hours
in Fresno. As detailed in Section 2, for models with good regional skill
in predicting California’s climate, the state has conducted a series of
detailed model evaluation studies (CCTAG, 2015; Pierce et al., 2016)

K. Jagannathan, et al. Climate Services 18 (2020) 100154

6



Fig. 2. Statistical analysis comparing model performance to the historically observed mean annual chill hours from 1971 to 2012: On the X-axis, models are ranked
by accuracy in predicting historical mean annual chill hours, with the best models on the left and worst on the right. The red box represents the range of the observed
mean chill for the Fresno weather station (95% confidence interval). The blue dots represent the predicted historical mean annual chill hours from each GCM
simulation, and the blue error bars are the standard error of the mean (95% confidence interval). The orange markers are the p-values (for mean chill hours) derived
from Student’s t-test comparing each GCM simulation to the observed data. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 3. Statistical analysis comparing model performance to the historically observed chill hours slope from 1971 to 2012: On the X axis, models are ranked based on
accuracy in predicting historical slope in chill hours, with the best models on the left and worst on the right. The red box represents the 95% confidence interval of the
observed chill slope for the Fresno weather station. The red dashed line indicates 0 slope, i.e., no change in annual mean historical chill hours over time. The blue dots
represent the mean chill hours slope from each GCM simulation, and the error bars represent the 95% confidence interval of the slope. The orange markers are the p-
values for the slope derived from Student’s t-test comparing each GCM simulation to the observed data. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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and identified a subset of 10 and 4 models (henceforth termed ‘CAL10′
or ‘sample based on regional skill’ and ‘CAL4′ or ‘reduced sample based
on regional skill’) as good predictors of multiple broad physical climatic
metrics for California (such as seasonal temperature, precipitation, and
El Niño teleconnections). We use the CAL 10 and CAL 4 models to re-
present models with good regional skill. For the models with good skill
for chill hours in Fresno or ‘sample based on chill hours skill’ we use
those models that have a p > 0.05 in our historical skill evaluation.

For historical mean chill hours, we see that none of the raw CAL10
GCMs had a p-value > 0.05, and Fig. 5 (a) shows that this sampling
based on regional skill of raw GCMs has in fact eliminated those models
that have a good local skill for mean chill hours. Therefore, while the
tail end of the lower range of the multi-model sampling for raw GCMs
(black error bar) still represents those raw GCMs with good local skill in
predicting mean chill hours (red error bar), the regional samplings
(blue error bars) completely eliminates this range that is more in line
with the observed mean chill hours. On the other hand, mean chill
hours from LOCA seem to be less sensitive to model choice, with most
model samplings presenting similar historical predictions.

For chill hours slope Fig. 5 (b), the regional sampling of raw GCMs
(dark blue error bar) seems to have slightly underestimated the average
negative trend as compared to both the multi-model sampling (black
error bar) and the local skill-based sampling (red error bar). The re-
gional skill-based samplings exhibit a more pronounced under-
estimation of slope for the LOCA data (comparing blue error bars of
LOCA data with the red). However, since the LOCA data was shown to
systematically underestimate historical slope, almost all samplings have
a smaller average slope, with only the local skill-based sampling giving
results which are reasonably closer to the historical slope.

In general, we did not find the models with good regional skill to be
better skilled at predicting Fresno chill hours than the other GCM
samplings. Fig. 5 shows that the CAL10 and CAL4 models (the blue bar
plots) do not systematically perform better at predicting historical mean
or slope, as compared to the overall multi-model mean or the high-
ranked models.

4.3. Future projections of chill hours: Implications of skill-based model
samplings

The range of skills that we observed across models and the two
datasets raised questions about the extent to which skill in predicting
historical chill affects predictions of future chill. For a climate data user,
there are several ways of getting to a projection of the future. These
include a variety of choices in selecting a dataset (raw or downscaled),
choosing different types of samples of GCMs, and identifying a calcu-
lation method for obtaining future projections. Using the specific ex-
ample of mid-century (2050) projections of chill hours, we highlight the
similarities and differences in results based on these different choices.
We illustrate our results using the raw and downscaled climate model
datasets, four model samplings (also used in Section 4.2.3), and two
calculation methods for future projections. Table 2 describes each of
these choices, and Fig. 6 shows results for 2050 chill hours from the
different sets of choices. In addition, we also computed chill hour
projections for three time periods: Short-term (2010–30), Medium-term
(2010–50), and Long-term (2010–80) which are presented as Fig. A.3
and A.4 in Appendix A.

Although it is unlikely that climate data users would choose to use
raw GCM datasets directly, we explore projections from this dataset as
it provides a means to assess the impact of model skill on future pro-
jections (see Section 3.2). Our results suggest that using the raw direct
mean from all models and the regional skill-based samples (CAL10 and
CAL4) provide the most unrealistic prediction method (Cluster a,
Fig. 6), as it implausibly claims that chill in 2050 will be higher than the
historically observed chill of 910 ch. We see that the cold-bias in the
raw GCMs (described in 4.2.2) continues into the future, and most
models continue to have biases in a single direction. And since the re-
gional skill-based sample does not contain any models that had a good
local skill for chill hours (also described in 4.2.2), the range of pro-
jections from the regional skill-based sample completely eliminates the
range of projections from the models with good mean chill hours skill
(that is, in Cluster a, Fig. 6, the blue error bars do not have any ranges
that are in common with the red error bars). The projections from the

Fig. 4. Pair-wise comparison between chill hours slope predictions from raw GCMs (X-axis), and from LOCA (Y-axis) illustrating pre- and post- downscaling slopes for
the same model runs. Each of the blue diamond markers represents slope predictions from a single GCM run pre- and post- LOCA downscaling. The orange dotted line
is presented as a reference linear line. The figure shows that the magnitude of the negative slope of the raw GCMs is systematically higher than the LOCA (i.e. more
points are further to the top of the linear line than the bottom). The spread of the slopes is also much larger for the raw GCMs than the LOCA slopes, indicating that
the bias may have originated during the downscaling process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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raw GCM sample based on chill hours skill (red error bar Cluster a,
Fig. 6), fall within a more plausible range; they are lower than his-
torically observed mean chill hours and are also more in line with es-
timates derived from the LOCA dataset. On the other hand, future
projections using chill slopes from raw GCMs (Cluster b, Fig. 6) are not
very sensitive to model samplings, as there is not a lot of difference in
results represented by the different colored error bars.

The LOCA dataset warranted close examination, as it a preferred
dataset for use in impact and adaptation studies in California
(CATRWG, 2017). We note from clusters c and d of Fig. 6 that the LOCA
dataset (irrespective of model choice) leads to higher projections of
chill hours in 2050, which could perhaps indicate that the historical
underestimation of the negative slope by the LOCA dataset is con-
tinuing into the future. Our preliminary evaluation indicates that these
lower slope predictions could be related to a fundamental issue of the
LOCA data underestimating the warming trend of winter season (No-
vember-December-January-February) Tminand Tav, as compared to the

trend observed in the raw GCMs (Refer Fig. A.6, Appendix A).
With regards to the implications of model selection, we observe that

the regional skill based samples of CAL10 and CAL 4 models for LOCA
(dark blue box plots in clusters c and d of Fig. 6) fail to capture the
range of projections represented by either the multi-model ensemble or
the sample based on chill hours skill (black and red box plots in clusters
c and d). Both the black and red box plots extend further in the di-
rection of lower future chill hours, a direction of greater potential
concern to growers. The reduced regional skill based sample of CAL 4
models shows an even narrower range of future chill projections com-
pared to the CAL 10 models when direct LOCA means are used (dif-
ference between light and dark blue error bars in cluster c of Fig. 6).
Further, the CATRWG classifies the CAL4 models as HadGEM2-ES being
the “warm & dry” model, CNRM-CM5 is “cool & wet”, CanESM2 has
projections in the “middle”, and MIROC5 provides “complementary”
projections or “covers a range of outputs” for certain broad physical
climate metrics (CATRWG, 2017). However, we found that these clas-
sifications are not valid for the chill hours metric; for example,
HadGEM2-ES was not the warmest model, and CanESM2 did not pro-
vide average projections of chill hours (Appendix B: Sheet titled ‘Data
for Figs. 4, 6 & 7’). Overall, clusters c and d of Fig. 6 indicate that the
chill hour skill-based sampling for the LOCA data, in fact, covers a
larger spread in future projections while the regional skill-based sam-
ples show a much smaller range. These results strongly indicate that
different skill based sampling approaches can have important re-
percussions for the analysis of future chill hours.

5. Discussion

This paper explores the implications of model choice for chill hours,
focusing on two key criteria for model selection: (1) past performance
of models for the metric of interest, and (2) whether the models are able
to capture a full range or legitimate spread of potential future projec-
tions. In terms of past performance, we were surprised to find that none
of the raw GCMs that performed well for key physical climatic metrics
in California, showed good skill for chill hours in Fresno. In terms of
spread, since the regional and local skill-based model samplings were
mutually exclusive, there was no overlap in the range of projections
predicted by the two samples of raw GCMs. For the downscaled LOCA
dataset, the regional skill-based sample of 10 and 4 models, showed a
much smaller range/spread in future projections than the multi-model
ensemble or the sample based on chill hours skill. This result is inter-
esting because these 10 GCMs have been proven to “represent the
magnitude and spread of temperature and precipitation change over the
21st century similar to those of the full set of 31 CMIP5 GCMs” (CCTAG,
2015) (pp 52), and the reduced set of 4 models are shown to “sub-
stantially cover the results from the set of 10” (Pierce et al., 2016) (pp
1). However we find that, they do not behave the same way to capture
the range of projections for the chill hour metric. While it is difficult to
say whether or not this narrower range of projections is appropriate,
nevertheless, it illustrates the complex relationship between broad re-
gional versus specific local skill, and questions the appropriateness of
such regional skill-based samplings for specific decision applications at
a local scale.

To provide an additional and slightly more focused comparison of
broad regional versus specific local skill, we used Rupp et al.'s (2013)
model evaluation for the US Pacific Northwest – to identify a sample of
models that ranked well (based on the authors’ ranking criteria) for
several broad temperature metrics that were most related to chill hours
(e.g. diurnal temperature range (DTR) in December-January-February
(DJF) and spatial correlation of the observed to modeled climatological
mean DJF temperature). Again, we found no relationship between this
sample of 7 GCMs with good regional temperature skill and the models
that ranked well for the chill hour metrics in our analysis, further il-
lustrating that regional skill does not always ensure specific local skill.

If regional skill-based sampling is complicated and does not provide

Fig. 5. Historical mean chill hours and chill hours slope predictions from dif-
ferent model samplings. The error bars show the historical predictions from
different sampling and the magenta box represents the observed range (95%
confidence interval). The figure shows that model samples based on good broad
regional skill for predicting California’s climate (dark and light blue plots) do
not perform better than the overall mean or the sample based on skill for chill
hours, i.e., the predictions from the light and dark blue plots are no closer to the
observed mean or slope (magenta dashed line) than the other model samplings
(red and black plots). To avoid an uneven comparison, these box plots represent
only those 26 model runs for which both raw GCM and LOCA data was avail-
able. Therefore, these results may be slightly different than the results in
Sections 4.2.1 and 4.2.2, which included all of the model runs evaluated in each
dataset. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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a clear advantage, is it appropriate to simply use the multi-model
mean? Many studies have shown that the MMM is often the best pre-
dictor for several temperature metrics, including seasonal temperature
metrics such as JFM (January-February-March) Tmin T, av and variability
in California (Pierce et al., 2009), and monthly Tav in the Western US
(Rupp et al., 2013). This is because the multi-model mean often leads to
cancellation of offsetting errors in the individual global models. By
contrast, our research finds that most raw GCMs have errors/biases in

the same direction for our metric of interest, leading to a systematic
overestimation of mean chill hours (Section 4.2.2). This is in line with
other studies that suggest that the MMM might not provide a better
estimate when assessing single variables (Knutti et al., 2010). There-
fore, the multi-model raw GCM mean may not increase the accuracy of
predictions of mean chill hours, and hence cannot be used uncritically.

Overall, this paper suggests that the peculiarities of specific deci-
sion-relevant metrics – such as this non-linear threshold-based chill

Table 2
Description of different climate datasets, model samplings and projection calculation methods that were used to illustrate the differences in future projections in chill
hours due to model choice.

Choices Description

Climate Model Dataset “Raw GCMs” Dataset with the uncorrected GCMs.
“LOCA” Dataset with GCMs that were downscaled based on the Localized Climate Analogues method.

Model Sampling “Sample of All Models” Refers to all of the GCMs (and model runs) within a particular dataset.
“Sample Based on Chill Hours
Skill”

Refers to only those GCM runs that had a p-value greater than 0.05 from the historical skill evaluation (where
mean is used to compute chill, the p-value score for mean was used, and where slope is used the p-value for
slope was used).

“Sample Based on Regional
Skill”

Refers to the CAL 10 models identified by the State of California as having good predictions of California’s
climate.

“Reduced Sample Based on
Regional Skill”

Refers to the smaller subset of CAL 4 models that encompass the range of projections that the CAL10 models
produce.

Projection Calculation Method “Direct mean” method Refers to directly using the mean chill from the sample GCMs for the required time period. To avoid random
errors due to use of a single year, we used the average annual chill from 2040 to 2050 as projections of 2050.

“Slope” method Refers to indirectly calculating future chill using a historical observed baseline of mean chill, and applying the
chill slope (from sample GCMs) for the future period (i.e.) 2050 mean annual chill hours = Fresno observed
mean annual chill hours 2001–2010 – (40 * chill slope 2010–50)

Fig. 6. 2050 chill hours computed using different climate datasets, model samplings, and computation methods. Each cluster of box plots represents 2050 chill hours
computed through one method (direct mean or slope method), and for one dataset (raw GCM or LOCA). The asterisks show the mean values, and the red plus signs
represent the outliers. To make the details legible, we chose a Y-axis limit of 1300 ch that excludes some of the more extreme results; the un-cropped version of the
graph is in Appendix A, Figure A.5. To avoid an uneven comparison, these box plots represent only those 26 model runs for which both raw GCM and LOCA data was
available. Therefore these results may be slightly different than the results in Sections 4.2.1 and 4.2.2, which included all of the model runs evaluated in each dataset.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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hour metric – can lead to counterintuitive findings that question the
validity of some generally accepted recommendations on climate model
selection for impact and adaptation studies. Chill hours only accumu-
late when temperature is below 7.2 °C, which means there is a non-
linear threshold relationship between temperature and chill hours (Fig.
A.7, Appendix A). This means that the relationship between model skill
for temperature versus that of chill hours is not straightforward: some
physical errors may be amplified and others may be dampened often in
non-intuitive ways.

Our intent is not to suggest that model sampling be solely based on a
single decision-relevant metric as such a narrow focus may lead to over-
determination the accuracy of the current generation of GCMs. Rather
we highlight that broad regional skill alone may also not be sufficient to
guarantee specific localized skill, which implies that there are addi-
tional physical processes that are important for decision-relevant me-
trics, and that are not well represented in regional skill evaluations.
Moreover, we also highlight that there may be cases where broad re-
gional skill and specific local skill are at odds with one another. Further
research is needed to critically understand why models are not per-
forming well for crucial decision-relevant processes, and additionally
on how models must be selected when broad and specific skill do not
align.

6. Conclusion

Adaptation studies often tend to use model sampling that is either
based on convenience, or based on model skill for predicting broad
regional climatic metrics, without fully understanding the implications
of such model choices for decision-relevant metrics at local scales. This
paper highlights the implications of model choice for decision-relevant
metrics, which can be useful to both climate researchers and climate
information users who are interested in, or using different model se-
lection approaches. Using the case of the decision-relevant metric of
chill hours, we find that broad regional climate skill of models alone is
insufficient, and does not always ensure that models are skilled for
decision-relevant metrics. Hence, an additional layer of decision-re-
levant model evaluation may be necessary, particularly if the metric has
a non-linear relationship with primary physical quantities. Since many
crucial adaptation decisions in agriculture, energy, water management,
and other fields are made using threshold-based metrics (such as
growing degree days, heating or cooling degree days, and days over
100°F), further such evaluations are needed to better understand how
models perform on the eventual metric of relevance to decisions. Such
assessments can also help identify the relevant physical climatic pro-
cesses that most robustly represent decision-relevant metrics, and en-
sure that future research focuses on refining model representation of
the processes that are most relevant to stakeholder applications.

Further, even after such evaluations are conducted, there remain
many unanswered questions on how to choose models based on broad
regional and decision-relevant local evaluations. Do models need to
perform well on both evaluations? What if there are no models with
both broad regional and specific local skill? Decision-makers around the
world face an urgent need to implement science-based adaptation
measures. Hence, there is a critical need for more nuanced research on
model selection strategies for decision applications, to ensure that
adaptation actions are based on the best available climate projections
for the specific context.
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