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Abstract

In this paper, we develop a Bayesian evidence maximization framework to solve the sparse non-

negative least squares problem (S-NNLS). We introduce a family of probability densities referred 

to as the Rectified Gaussian Scale Mixture (R-GSM), to model the sparsity enforcing prior 

distribution for the signal of interest. The R-GSM prior encompasses a variety of heavy-tailed 

distributions such as the rectified Laplacian and rectified Student-t distributions with a proper 

choice of the mixing density. We utilize the hierarchical representation induced by the R-GSM 

prior and develop an evidence maximization framework based on the Expectation-Maximization 

(EM) algorithm. Using the EM-based method, we estimate the hyper-parameters and obtain a 

point estimate for the solution of interest. We refer to this proposed method as rectified Sparse 

Bayesian Learning (R-SBL). We provide four EM-based R-SBL variants that offer a range of 

options to trade-off computational complexity to the quality of the E-step computation. These 

methods include the Markov Chain Monte Carlo EM, linear minimum mean square estimation, 

approximate message passing and a diagonal approximation. Using numerical experiments, we 
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show that the proposed R-SBL method outperforms existing S-NNLS solvers in terms of both 

signal and support recovery, and is very robust against the structure of the design matrix.

Index Terms

Non-negative Least Squares; Sparse Bayesian learning; Sparse Signal Recovery; Rectified 
Gaussian Scale Mixtures

I. Introduction

This work considers the following signal model

y = Φx + υ, (1)

where the solution vector x ∈ ℝ+
M is assumed to be non-negative, the matrix Φ ∈ ℝN×M is 

fixed and obtained from the physics of the underlying problem, y ∈ ℝN is the measurement, 

and υ is the additive noise, modeled as a zero mean Gaussian with uncorrelated entries e.g. 

υ ~ (0, σ2I).

Recovering x using the signal model in Eq. (1) is known as solving the non-negative least 

squares (NNLS) problem. NNLS has a rich history in the context of methods for solving 

systems of linear equations [1], density estimation [2] and non-negative matrix factorization 

(NMF) [3], [4], [5], [6]. NNLS is also widely used in applications such as text mining [7], 

image hashing [8], speech enhancement [9], spectral decomposition [10], magnetic 

resonance chemical shift imaging [11] and impulse response estimation [12]. The 

maximum-likelihood solution for the model in Eq. (1) is given by

minimize
x ≥ 0

‖y − Φx‖2 . (2)

In many applications, N < M and Eq. (1) is under-determined, meaning that there are more 

unknowns than equations and a unique solution to Eq. (2) may not exist. Recovering a 

unique solution is possible, if more information is known a-priori about the solution vector. 

For example, a useful assumption is that the solution vector is sparse and contains only a few 

non-zero elements [13], [14], [15]. In this case, the sparsest solution (e.g. assuming a 

noiseless scenario) can be recovered by modifying Eq. (2) to

minimize
x ≥ 0, y = Φx

‖x‖0, (3)

where ‖․‖0 is the ℓ0 pseudo-norm, which counts the non-zero elements in x. The number of 

non-zero elements in x is also referred to as the cardinality of the solution. Then, the design 

objective in Eq. (3) is to minimize the number of non-zero elements in x, while satisfying 

the optimization constraints. We refer to Eq. (3) as the sparse NNLS (S-NNLS) problem.

The S-NNLS problem is becoming increasingly popular in certain applications, where the 

non-negative solution has to be recovered from a limited number of measurements. For 
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example, in [16] an S-NNLS recovery method was applied to magnetic resonance imaging 

(MRI) data to reconstruct narrow fiber-crossings from a limited number of acquisitions. In 

[17], another method was used to uncover regulatory networks from micro-array mRNA 

expression profiles from breast cancer data. In [18], [19], an S-NNLS method was applied to 

functional MRI data to estimate sparsely repeating spatio-temporal activation patterns in the 

human brain. S-NNLS solvers are also used in applied mathematics for creating dictionaries 

for sparse representations, such as sparse NMF and non-negative K-SVD [3], [20].

Directly solving Eq. (3) is not tractable, since the ℓ0 penalty is not convex and the problem is 

NP-hard [21], [22]. Therefore, ‘greedy’ algorithms have been proposed to approximate the 

solution [23], [24], [25], [26], [27]. An example is the class of algorithms known as 

Orthogonal Matching Pursuit (OMP) [23], [28], which greedily select snon-zero elements of 

x. In order to adapt OMP to the S-NNLS problem, the criterion by which a new non-zero 

element of x is selected is modified to select the one having the largest positive value [27]. 

Another approach in this class of algorithms finds an x, such that ‖y − Φ x‖2 ≤ ε and x ≥ 0 

using the active-set Lawson-Hanson algorithm [1] and then prunes x until ‖x‖0 ≤ K, where K 
is a pre-specified desired cardinality [3].

Greedy algorithms are computationally attractive, however they may lead to sub-optimal 

solutions. Therefore, convex relaxations of the ℓ0 penalty have been proposed [22], [29], 

[30], [31], [32]. One simple alternative replaces the ℓ0 with an ℓ1 norm and reformulate the 

problem in Eq. (3) as

minimize
x ≥ 0

‖y − Φx‖2 + λ‖x‖1, (4)

where λ > 0 is a suitably chosen regularization parameter to account for the measurement 

noise. The advantage of the formulation in Eq. (4) is that, it is a convex optimization 

problem and can be solved by a number of methods [32], [33], [34], [35]. One such 

approach is to estimate x through projected gradient descent [36].

In fact, the ℓ1 norm penalty in Eq. (4) can be replaced by any arbitrary sparsity inducing 

surrogate function g(x), thus leading to alternative methods based on solving the following 

optimization problem

minimize
x ≥ 0

‖y − Φx‖2 + λg(x) . (5)

For example, a surrogate function g(x) = ∑i = 1
M  log (xi2 + β) has been considered [37], [38], 

which leads to an iterative reweighted optimization approach.

An alternative view on the S-NNLS problem is to cast the entire problem in a Bayesian 

framework and consider the maximum a-posteriori (MAP) estimate of x given y

xMAP = arg max
x

p(x |y) . (6)
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There is a strong connection between the MAP framework and deterministic formulations 

like the one in Eq. (5). Recently, it has been shown that formulations of the form in Eq. (5) 

can be represented by the formulation in Eq. (6) with a proper choice of p(x) [39]. For 

example, considering a separable p(x) of the form

p(x) = ∏
i = 1

M
p(xi), (7)

the ℓ1 regularization approach in Eq. (4) (e.g. choice of g(x) = ‖x‖1 in Eq. (5)) is equivalent to 

the Bayesian formulation in Eq. (6) with an exponential prior for xi. In this paper, our 

emphasis will be on Bayesian approaches for solving Eq. (1).

A. Contributions of the paper

• We introduce a family of non-negative probability densities, referred to as the 

rectified Gaussian scale mixture (R-GSM) to model non-negative and sparse 

solutions.

• We discuss how the R-GSM prior encompasses other sparsity promoting non-

negative priors, such as the rectified Laplacian and rectified Student-t 

distributions, through a proper choice of mixing density.

• We detail how the R-GSM prior can be utilized to solve the sparse NNLS 

problem, using an evidence maximization based estimation procedure that 

utilizes the expectation-maximization (EM) framework. We refer to this 

technique as rectified Sparse Bayesian Learning (R-SBL).

• We provide four alternative EM-based approaches, that offer a range of options 

to trade-off computational complexity to the quality of the E-step computation, 

including the Markov Chain Monte Carlo EM, linear minimum mean square 

estimation, approximate message passing and a diagonal approximation.

• We use extensive empirical results to show the robustness and superiority of the 

R-GSM priors and R-SBL algorithm for the S-NNLS problem. Especially, under 

various i.i.d. and non-i.i.d. settings for the design matrix Φ.

B. Organization of the paper

In Section II, we discuss the advantages of scale mixture priors for p(x) and introduce the 

Rectified Gaussian Scale Mixture (R-GSM) prior. In Section III, we define the Type I and 

Type II Bayesian approaches to solve the S-NNLS problem and introduce the R-SBL 

framework with the R-GSM prior. We provide details of an evidence maximization based 

estimation procedure in Section III-B. We present empirical results comparing the proposed 

R-SBL algorithm to existing baseline methods in Section V.

II. Rectified Gaussian Scale Mixtures

We assume separable priors of the form in Eq. (7) and focus on the choice of p(xi). The 

choice of prior plays a central role in the Bayesian inference [40], [41], [42]. For the S-
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NNLS problem, our prior must be sparsity inducing and satisfy the non-negativity 

constraints. Consequently, we consider the hierarchical scale mixture prior

p(xi) = ∫
0

∞
p(xi | γi)p(γi)dγi . (8)

Scale mixture priors were first considered in the form of Gaussian Scale Mixtures (GSM) 

where p(xi|γi) = (xi; 0, γi) [43]. Super-gaussian densities are suitable priors for promoting 

sparsity [40], [44] and most of those priors can be represented in the form shown in Eq. (8) 

with a proper choice of p(γi) [45], [46], [47], [48], [49]. This has made scale mixture based 

priors valuable for the general sparse signal recovery problem. Another advantage of the 

scale mixture prior is that, it establishes a Markovian structure of the form

γ x y, (9)

where inference can be performed in the x domain (referred to as Type I) and in the γ 
domain (Type II). Experiment results in the standard sparse signal recovery problem show 

that performing inference in the γ domain consistently achieves superior performance [39], 

[40], [50], [51].

The Type II procedure involves finding a maximum-likelihood (ML) estimate of γ using 

evidence maximization and approximating the posterior p(x | y) by p(x | y, γML). The 

performance gains can be understood by noting that γ is deeper in the Markovian chain than 

x, so the influence of errors in performing inference in the γ domain may be diminished 

[39], [50]. Also, γ is close enough to y in the Markovian chain such that meaningful 

inference about γ can still be performed, mitigating the problem of local minima that is 

more prevalent when seeking a Type I estimate of x [50].

Although priors of the form shown in Eq. (8) have been used in the compressed sensing 

literature (where the signal model is identical to Eq. (1) without the non-negativity 

constraint) [39], [52], [53], such priors have not been extended to solve the S-NNLS 

problem. Considering the findings that the scale mixture prior has been useful for the 

development of sparse signal recovery algorithms [39], [50], [54], we propose a R-GSM 

prior for the S-NNLS problem, where p(xi|γi) in Eq. (8) is the rectified Gaussian (RG) 

distribution. We refer to the proposed Type II inference framework as R-SBL.

The RG distribution is defined as

NR(x; μ, γ) = 2
πγ

e− (x − μ)2
2γ u(x)

erfc  − μ
2γ

, (10)

where μ is the location parameter (e.g. is not the mean), γ is the scale parameter, u(x) is the 

unit step function, and erfc(x) is the complementary error function.1

1 erfc(x) = 2
π ∫x

∞e−t2 dt
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As noted in previous works [55], [56], closed form inference computations using a 

multivariate RG distribution are tractable only if the location parameter is zero (e.g. by 

effectively getting rid of the erfc(․) term). Although a non-zero μ could provide a richer class 

of priors, possibly to model approximately sparse or non-sparse solutions, considering the 

tractability issues and the potential overfitting problems (twice as many parameters), we 

focus on the R-GSM priors with μ = 0 to promote sparse non-negative solutions. It is a 

pragmatic choice and adequate for the problem at hand.

When μ = 0, the RG density simplifies to

NR(x; 0, γ) = 2
πγ e− x2

2γ u(x) . (11)

Thus, the R-GSM prior introduced in this work have the form

p(x) =
0

∞
NR(x; 0, γ)p(γ)dγ . (12)

Different choices of p(γ) lead to different choices of priors and some examples are presented 

below.

A. R-GSM representation of sparse priors

We can utilize the proposed R-GSM framework to obtain other sparse non-negative priors. 

For instance, consider the rectified Laplace prior p(x) = λe−λxu(x). By using an exponential 

prior for p(γ) = λ2
2 e− λ2γ

2 u(γ), we can express p(x) in the R-GSM framework [57] as

p(x) = 2u(x)
0

∞
N(x|0, γ)λ2

2 e− λ2γ
2 u(γ)dγ (13)

= λe−λxu(x) . (14)

Similarly, by considering the R-GSM with p(γ) given by the Gamma(a, b) distribution, we 

obtain a rectified Student-t distribution for p(x), and Eq. (8) simplifies as in [40] to

p(x) = 2u(x)
0

∞
N(x|0, γ)γa − 1e

−γ
b

abΓ(a)
dγ (15)

=
2baΓ(a + 1

2 )

(2π)
1
2Γ(a)

b + x2

2
−(a + 1

2)
u(x), (16)

where Γ is defined as Γ(a) = ∫0
∞ta − 1e−t dt. More generally, all of the distributions 

represented by the GSM have a corresponding rectified version represented by a R-GSM, 
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e.g. contaminated Normal and slash, symmetric stable and logistic, hyperbolic, etc. [43], 

[45], [46], [47], [48], [49].

B. Relation to other Bayesian works

In [55], a modified Gaussian prior was considered for the NNLS problem. The authors used 

a Gaussian prior of arbitrary mean and variance and performed a non-negative rectification 

using a ‘cut’ function. Their goal was to better represent non-sparse signals by avoiding the 

selection of μ = 0, as we consider in our work. Our R-GSM prior substantially differs from 

this work as we consider a mixture of zero-location RG distributions for the prior, as 

opposed to a single Gaussian density with the ‘cut’ rectification. Our design objective is to 

induce sparsity by using a hierarchical hyper-parameter γ.

In [58], a non-negative generalized approximate message passing (GAMP) approximation 

was proposed, using a Bernoulli non-negative Gaussian mixture prior of arbitrary location 

and scale parameters. This extended the prior given in [55] but used a fixed number of 

mixture components e.g. L = 3. The sparsity was enforced by using a Dirac delta function 

and an additional sparsity rate λ that would ‘favor’ the Dirac function and attenuate other 

mixture components, simultaneously. The authors had to infer a bulk of parameters 

including the scale, location, and mixture weights as well as the sparsity rate simultaneously. 

Our R-SBL approach differs from [58] as we only consider a sparsity inducing hyper-

parameter γ, and our mixture components are strictly located at zero. Our approach 

simplifies the overall inference procedure and the problem formulation. We also consider an 

infinite number of mixture components, as opposed to considering a fixed number of 

components.

Finally, we consider a more general class of priors than the existing methods since the R-

GSM prior is based on an arbitrary mixing density p(γ). As indicated in Section II-A, 

different selections of p(γ) lead to more flexible and a more generalized priors for the spase 

solution.

III. Bayesian Inference with Scale Mixture Prior

We detail the Type I and Type II methods for solving the S-NNLS problem with an R-GSM 

prior. Though this paper is dedicated to Type II estimation because of its superior 

performance in sparse signal recovery problems [39], [50], we briefly introduce Type I in the 

following section for the sake of completeness.

A. Type I estimation

Using Type I to solve the S-NNLS problem translates into calculating the MAP estimate of x 
given y

arg min
x

‖y − Φx‖2
2 − λ ∑

i = 1

M
ln p(xi) . (17)

Some of the ℓ0 relaxation methods described in Section I can be derived from a Type I 

perspective. For instance, by choosing an exponential prior for p(xi), Eq. (17) reduces to the 
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ℓ1 regularization approach in Eq. (4) with the interpretation of λ as being determined by the 

parameters of the prior and the noise variance. Similarly, by choosing a Gamma prior for 

p(xi), Eq. (17) reduces to

arg min
x

‖y − Φx‖2
2 + λ ∑

i = 1

M
ln  b + xi2

2 , (18)

which leads to the reweighted ℓ2 approach to the S-NNLS problem described in [37], [38]. A 

unified Type I approach for the R-GSM prior can be readily derived using the approaches as 

discussed in [39], [45].

B. Type II estimation

The Type II framework involves finding a ML estimate of γ using evidence maximization 

and approximating the posterior p(x | y) by p(x | y, γML). Then, appropriate point estimates 

and the solution x can be estimated. We refer to this approach as the Rectified Sparse 

Bayesian Learning (R-SBL).

Several strategies exist for estimating γ. The first strategy considers the problem of forming 

a ML estimate of γ given y [39], [40], [59], [60]. In our case, p(γ | y) does not admit a 

closed form expression, making this approach difficult. The second strategy, which is 

investigated in this paper, aims to estimate γ by utilizing an EM algrotihm [39], [52], [60]. 

In the EM approach, we treat (x, y, γ) as the complete data and x as the hidden variable. 

Utilizing the current estimate γt, where t refers to the iteration index, the expectation step 

(E-step) involves determining the expectation of the log-likelihood, Q(γ, γt) given by

Q(γ, γt) = Ex|y; γt[ln p(y |x) + ln p(x |γ) + ln p(γ)] (19)

≐ ∑
i = 1

M
Ex|y; γt − 1

2 ln γi − xi2

2γi
+ ln p(γi) , (20)

where ≐ indicates that constant terms, and terms that do not depend on γ have been dropped 

since they do not affect the M-step. For simplicity, we assume a non-informative prior on γ 
[40]. In the M-step, we maximize Q(γ, γt) with respect to γ by taking the derivative and 

setting it equal to zero, which yields the update rule

γi
t + 1 = Ex|y, γt, σ2[xi2] ≔ xi2 . (21)

To compute 〈xi2〉, we first consider the multivariate posterior density p(x|y, γ, σ2) which has 

the form (e.g. see Appendix VII-B for details)

p(x |y, γ) = c(y)e− (x − μ)T ∑−1(x − μ)
2 u(x), (22)

where μ and Σ are given by [40], [52], [61]
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μ = ΓΦT(σ2I + ΦΓΦT)−1y (23)

∑ = Γ − ΓΦT(σ2I + ΦΓΦT)−1ΦΓ, (24)

and Γ = diag(γ). The posterior in Eq. (III-B) is known as a multivariate RG (or a 

multivariate truncated normal [62]). The normalizing constant c(y) in the multivariate RG 

does not have a closed form expression. Note that the M-step in Eq. (21) only requires the 

marginal density. However, the marginals of a multivariate RG are not univariate-RG’s, and 

also do not admit a closed form expression [62], which unfortunately means no immediate 

closed form expression for the marginal moments.

However, we can approximate the first and the second moments 〈xi〉 and 〈xi2〉 of the 

multivariate RG posterior. In the following, we propose four different approaches for this 

purpose that offer a trade-off between computational complexity and theoretical accuracy.

1) Markov Chain Monte Carlo EM (MCMC-EM)—Advances in numerical methods 

made it possible to sample from complex multivariate distributions [63], [64], [65]. 

Numerical methods are particularly useful when the first and second order statistics of a 

posterior density do not have a closed form expression. In this case, the E-step can be 

performed by drawing samples using numerical Markov Chain Monte Carlo (MCMC) and 

then calculating the sample statistics. This is usually referred as MCMC-EM [66], [67]. 

First, we consider the Gibbs sampling approach in [68], [69]. We use hat notation to refer to 

the empirical estimates of various parameters (e.g. Σ̂).

We use the multivariate truncated normal (TN) definition in [69] and write

TN(x; μ, ∑ , R, αL, αU) = (25)

ctne− (x − μ)T ∑ −1
(x − μ)

2 1αL ≤ Rw ≤ αU, (26)

where 1(·) is the indicator function and ctn is the normalizing constant for the density. In the 

case of a multivariate rectified Gaussian, the truncation bounds are αL = 0 and αU = ∞, and 

R = I. By introducing the transformation, w = L̂−1(x − μ̂) where L̂ is the lower triangular 

Cholesky decomposition of Σ̂, it can be shown that w is TN(w; 0, I, L̂, αL∗ , αU∗ ), with new 

truncation bounds αL∗ = αL − μ = − μ and αU∗ = αU − μ = ∞.

The Gibbs sampler then proceeds by iteratively drawing samples from the conditional 

distribution p(wi| y, γ̂, σ2, w−i), where w−i refers to the vector containing all but the i’th 

element of w. Given a set of samples drawn from w, we can generate samples from the 

original distribution of interest by inverting the transformation: {xn}n = 1
N = {Lwn + μ}n = 1

N
. 
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Then, the first and second empirical moments can be calculated from the drawn samples 

using

xi ≈ 1
N ∑

n = 1

N
(xin), (27)

xi2 ≈ 1
N ∑

n = 1

N
(xin)2, (28)

and the EM step can be iterated by updating γ i
t + 1 = xi2 .

After convergence, a point estimate for x is needed. The optimal estimator of x in the 

minimum mean-square-error (MMSE) sense is simply x̂mean = 〈x̂i〉. An alternative point 

estimate is to use x̂mode, given by

xmode = arg max
x

p(x |y, γ, σ2) (29)

= arg min
x ≥ 0

‖y − Φx‖2
2 + λ ∑

i = 1

M xi2

γ i
, (30)

where Eq. (30) can be solved by any NNLS solver. The estimate x̂mode could be a favorable 

point estimate because it chooses the peak of p(x| y, γ̂, σ2), which could be multi-modal and 

not well-characterized by its mean.

For the sparse recovery problem, we experienced very slow convergence with Gibbs 

sampling. Convergence was particularly slow for higher problem dimensions and at larger 

cardinalities. The latter was expected as a sparse solution is harder to recover in those cases. 

Thus, we resorted to Hamiltonian Monte Carlo (HMC), which is designed specifically for 

target spaces constrained by linear or quadratic constraints [65]. HMC improves the MCMC 

mixing performance by using the gradient information of the target distribution [66].

Despite use of the state of the art MCMC techniques, MCMC-EM might still converge to 

poor local minima solutions and result in sub-optimal performance [70], [71], [72]. 

Particularly, performance may be even poorer for underdetermined problems. Though 

MCMC-EM is not thoroughly investigated for sparse recovery problems, here we list four 

major issues for consideration:

I. Convergence: MCMC-EM based algorithms can get stuck in a local minima 

depending on the problem dimensions and complexity of the search space. This 

is true even for well-posed problems [67], [73]. In under-determined problems, 

the solution set for Eq. (2) may contain many local minima and thus, a good 

MCMC-EM implementation should try to avoid local minima.

II. Computational Limits: Current MCMC sampling techniques are not optimal for 

drawing large sample sizes N from high dimensional multivariate posterior 
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densities. Therefore, the number of available samples is often limited by 

computational constraints [63], [64], [65].

III. Quality of Parameter Estimates: Since the MCMC samples are determined by 

random sampling at each iteration, the estimates of γ̂, μ̂, and Σ̂ depend highly on 

the quality of the MCMC estimates x̂, which in turn affects the quality of next 

cycle of MCMC samples. This may lead EM algorithm to converge to a sub-

optimal solution.

IV. Structure of Empirical Σ̂: When M is large and the dimensions of the empirical 

scale matrix are also large, Σ̂ may be no longer a good numerical estimate [71], 

[74], [75]. This could happen when the problem is inherently under-determined 

with N < M, and reveals itself as Σ̂ being close to singular. Therefore, 

regularization methods for Σ̂ are often used to alleviate this problem [71], [72].

The scale matrix Σ̂ has direct control over the search space for MCMC and spurious off-

diagonal values tend to increase the number of local-minima. Therefore, to address the 

issues listed above, we incorporated ideas from prior work to regularize the estimates of Σ̂:

• As in [71], [72], we assume that Σ̂ is sparse and we prune its off-diagonal 

elements, when they drop below a certain threshold Tp. This prevents the 

spurious off-diagonal values in Σ̂ from affecting the next cycle of MCMC 

samples and improves future estimates of γ̂.

• We incorporate the shrinkage estimation idea presented in [72], [74] and 

regularize Σ̂ as a convex sum of the empirical Σ̂ and a target matrix T such that, Σ̂ 

= λ Σ̂ + (1 − λ)T. A simple selection is the matrix Σ̂β which is Σ̂ with diagonal 

elements scaled by a factor β. Though this approach does not guarantee 

convergence to a global minimum and the solution could still be a local minima 

or a saddle point solution, we empirically observed better recovery performance.

2) Linear minimum mean square estimation (LMMSE)—The LMMSE approach is 

motivated by the complexity of the MCMC-EM approach. Examining the parameters being 

computed, one can interpret them as finding the MMSE estimate of x and the associated 

MSE. This motivates replacing the MMSE estimate by the simple LMMSE estimate of x. 

The affine LMMSE estimate for x is

x = μx + RxΦT(ΦRxΦT + σ2I)−1(y − Φμx), (31)

where Rx is the covariance matrix of x and is diagonal. The estimation error covariance 

matrix is given by [76]

Re = Rx − RxΦT(ΦRxΦT + σ2I)−1ΦRx . (32)

To elaborate, in the E-step where γ is fixed at γt, the entries of x are independent, and the 

prior mean and the prior covariance will be equal to the mean and variance of the 

independent univariate RG distributions with p(xi|γi) = R (0, γi). The mean of a univariate 

rectified Gaussian density with zero location parameter is given by [77]

Nalci et al. Page 11

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



μx, i = 2γi
π , (33)

and the variances, which are the diagonal entries of the diagonal matrix Rx, are given by

Rx, ii = γi(1 − 2/π) . (34)

Using the values of μx and Rx from Eq. (33) and Eq. (34) in Eq. (31) we obtain the LMMSE 

point estimate for the solution vector. Similarly, the update for γ (M-step) is given by

γi = xi
2 + Re, ii . (35)

This is sufficient to implement the EM algorithm. Upon convergence, the mean point 

estimate is simply x̂mean = x̂, and the mode point estimate can be obtained by utilizing the 

converged values γi in Eq. (30).

3) Generalized approximate message passing (GAMP)—In this section, we present 

an EM implementation using the generalized approximate message passing algorithm 

(GAMP) [78]. A different GAMP based non-negative Gaussian mixture approach was used 

in [58], which uses an i.i.d. Bernoulli non-negative Gaussian mixture prior with a fixed and 

known mixture order that is independent of M. To overcome the known convergence issues 

with the type of GAMP algorithm in [58] when a non-i.i.d. design matrix Φ is used [79], 

[80], [81], we incorporate the damping technique used in [81] into the proposed R-SBL 

GAMP algorithm.

GAMP is a low complexity iterative inference algorithm. The low complexity is achieved by 

applying quadratic and Taylor series approximations to loopy belief propagation. Under the 

prior p(x) and the likelihood p(y|x), GAMP can approximate the MMSE estimate when used 

in the sum-product mode, or it can approximate the MAP estimate when used in its max-

sum mode.

The sum-product version of the algorithm computes the mean and variance of approximate 

marginal posteriors on xi, where the approximate posteriors are given by

p(xi | ri; τri) ∝ p(xi)N(xi; ri, τri), (36)

where ri approximates a corrupted version (AWGN) of the true xi as

ri ≈ xi + ri (37)

ri N(0, τri) . (38)

In the large system limit and when the design matrix Φ is i.i.d sub-Gaussian, the 

approximation in Eq. (37) was shown to be exact [78], [82]. Therefore, in sum-product 

mode, the MMSE estimate x̂i produced by GAMP corresponds to the MMSE estimate of xi 
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given ri, and is given by the conditional mean in Eq. (39) below. Where τxi in sum-product 

GAMP, corresponds to the MMSE associated with the estimate x̂i and is given in Eq. (40) as 

the conditional variance of xi given ri

xi = E{xi | ri; τri} (39)

τxi = Var{xi | ri; τri} . (40)

Similarly, in the max-sum version of GAMP, the MAP estimate x̂i is given using the 

proximal operator in Eq. (41) as the MAP estimate of xi given ri, while τxi in the max-sum 

GAMP corresponds to the sensitivity of the proximal thresholding and is given by Eq. (42)

xi = prox−ln p(xi)(ri; τri) (41)

τxi = τrprox′−ln p(xi)(ri; τri) (42)

proxf(a, τa) ≜ arg min
x ∈ R

f(x) + 1
2τa |x − a|2 . (43)

When implementing the EM algorithm, the approximate posterior computed by the sum-

product GAMP can be used to efficiently approximate the E-step [83]. Moreover, in the case 

of max-sum GAMP, even though the algorithm does not provide marginal distributions, in 

the large system limit and under i.i.d sub-Gaussian Φ the assumption of ri being an AWGN 

corrupted version of the true xi still holds [82]. Thus, similar to the approach in [58], an 

extra step can be added to compute marginal distributions using Eq. (36). The computed 

marginals can be used to approximate the E-step. For the assumed rectified Gaussian scale 

mixture prior p(x|γ) the details of finding x̂i and τxi estimates in both the sum-product and 

max-sum cases are shown in Appendix VII-A.

Upon the convergence of the GAMP algorithm, the approximate E-step of the EM algorithm 

is complete, and we can proceed to evaluate the M-step in Eq. (21) as

xi2 = xi
xi2p(x |ri; τri) = τxi + xi

2 . (44)

The R-SBL GAMP algorithm based on the E and M-steps described above is summarized 

Table I. We note that for the AWGN case, the output function of the GAMP algorithm used 

to evaluate s and τs in Table I, is the same for both sum-product and max-sum GAMP [78].

In Table I, all squares, divisions and multiplications are taken element wise. Kmax is the 

maximum allowed number of GAMP iterations, εgamp is the GAMP normalized tolerance 

parameter, Imax is the maximum allowed number of EM iterations and εem is the EM 

normalized tolerance parameter.
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4) Diagonal approximation (DA)—We know a-priori that the posterior in Eq. (III-B) 

does not admit a closed form expression. However, to implement the EM algorithm, we only 

need the marginals of the posterior. We first note that, if the scale matrix Σ is diagonal then 

we could evaluate the normalizing constant c(y) in closed form, since the multivariate RG 

posterior can be written as a product of univariate marginals (e.g. see Appendix VII-B for 

details).

In the diagonal approximation (DA) approach, we resort to approximating the posterior in 

Eq. (III-B) with a suitable posterior density e.g. p(x|y, γ) ≈ p̃(x|y, γ), which could be written 

as a product of independent marginal densities i.e. p̃(xi|y, γ). This approximate posterior 

density is derived in Appendix VII-B as

p∼(x |y, γ) = ∏
i = 1

M
p∼(xi | y, γ) (45)

= ∏
i = 1

M 2
π∑ii

e−
(xi − μi)2

2∑ii u(xi)

erfc  − μi
2∑ii

, (46)

where μi is the i’th element of μ and Σii is the i’th diagonal element of Σ obtained using Eqs. 

(23) and (24). The marginal p̃(xi|y, γ) in Eq. (46) is the univariate RG density defined in Eq. 

(10). In other words we have p̃(xi|y, γ) = R(xi; μi, Σii). Then, the univariate RG marginals 

are well-characterized by their first and second moments given in [77], with the first moment 

given as

〈xi〉 = μi +
2∑ii

π
e−

μi2

2∑ii

erfc  − μi
2∑ii

, (47)

and the second moment is given as

〈xi2〉 = μi2 + ∑ii + μi
∑ii
π

e−
μi2

2∑ii

erfc  − μi
2∑ii

. (48)

Note that the moments of p̃(xi|y, γ) are approximations to the moments of the exact 

marginals which do not admit closed form. However, we can perform EM using the 

approximate moments to approximate the true solution. EM can be carried out by setting 

γi
t + 1 = xi2  and iterating over t. After convergence of γi’s, the mean point estimate is 

obtained as x̂mean = 〈xi〉. The mode point estimate x̂mode can be calculated by using 

converged values of γi’s in Eq. (30).

If the diagonal elements of Σ are large valued or become large over EM iterations as 

compared to off-diagonals, then DA is expected to work well. Note that assuming a diagonal 
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Σ was also motivated by previous work [71], [74], [75], [84], [85] for various applications. 

In this work, we empirically report that DA has very good sparse recovery performance and 

has low complexity.

To further support the DA approximation, we present empirical findings regarding the 

structure of Σ. We performed sparse recovery simulations using Eq. (1) with the MCMC-EM 

approach as the ground truth (i.e. without regularizing the MCMC estimates of Σ̂). We 

assumed that x was of size 200 with 10 non-zero elements drawn from R(0, 1). The 

dictionary Φ ∈ ℝ50×200 columns were normally distributed Φ ~  (0, I). We solved this 

problem for 1,000 simulations and overlay plots of the average absolute value of the off-

diagonals of Σ̂ as a function of MCMC-EM iteration in the first row of Fig. 1.

We see that the average of off-diagonal elements decreased exponentially as a function of 

MCMC-EM iteration, and the average of this behavior over 1,000 simulations (e.g. red line) 

has a final value of 10−4 after 10 iterations. This indicates the off-diagonals of Σ̂ of the true 

posterior (with MCMC sampling) indeed become close to zero. Moreover, in the second row 

of Fig. 1, we overlay plots of the Frobenius norm of the difference between Σ̂ and Σ̂D, where 

Σ̂D is the diagonal matrix consisting of diagonal elements from Σ̂. This shows that as 

MCMC-EM converges, the true Σ becomes close to a diagonal matrix. These results suggest 

that, if there is flexibility in choosing the dictionary Φ as in compressed sensing, then proper 

choice of Φ can lead to the DA approach producing high quality approximate marginals p̃(xi|

y, γ) that are close to the true marginals.

C. Computational complexity of proposed methods

For computational comparisons, we assume that N ≤ M. Under this assumption, the time 

complexity of the DA algorithm is (N2 M) per EM iteration. This complexity is similar to 

the original SBL algorithm in [44], [52] and is largely due to the computationally intensive 

matrix inversion step e.g. (σ2 I + ΦΓΦT)−1 given in Eq. (23). Time complexity of the 

LMMSE algorithm is also (N2 M) per EM iteration. This complexity is determined from a 

similar matrix inversion step (ΦRxΦT + σ2 I)−1 in Eq. (32) (e.g. note that Rx is diagonal). 

The GAMP algorithm bypasses the computationally intensive matrix inversion and the 

resulting complexity is (N M) time [51]. This is linear in both problem dimensions and 

significantly faster than the both the DA and LMMSE methods. For the MCMC-EM 

algorithm, the actual computational cost is determined by the random Hamiltonian MCMC 

sampling, which is explained in more detail in [65].

IV. Experiment Design

In this section, we provide the layout of our numerical experiments. In the following, we 

provide extensive comparisons between the proposed R-SBL variants LMMSE, GAMP, 

MCMC and DA to the baseline S-NNLS solvers, including NNGM-AMP [58], SLEP-ℓ1 

[86], and NN-OMP [87]. In all of the experiments below, we generate sparse vectors 

xgen ∈ ℝ+
400, such that ‖xgen‖0 = K and random dictionaries Φ ∈ ℝ100×400. We normalize the 

columns of Φ by 1/ N as in [88]. For a fixed Φ and xgen, we compute the measurements y = 
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Φ xgen and use the baseline algorithms and the proposed R-SBL variants to approximate 

xgen.

In the first set of experiments, we simulate a ‘noiseless’ recovery scenario, where the noise 

variance is set as σ2 = 10−6, the non-zero entries of the solution vector are drawn from a 

rectified Gaussian density R (0, 1) and the dictionary columns are i.i.d. Normal distributed 

as Φ ~  (0, I). We experiment with cardinalities K = {10, 20, 30, 35, 40, 45, 50}.

In the second set of experiments, we construct various dictionary types to analyze the 

robustness of our R-SBL method and the baseline solvers for the general S-NNLS problem. 

The dictionary structures considered here are similar to the ones used in [51], [89] are not 

necessarily i.i.d. Gaussian, and can be low-rank, coherent, ill-posed, and non-negative as 

described below:

A. Coherent dictionaries: We introduce coherence among the columns of an original 

dictionary Φ =  (0, I) and report recovery performances for a fixed K = 50. 

This is done by multiplying Φ with a coherence matrix C, to obtain a dictionary 

Φc with coherent columns. C is the Cholesky factor of the Toeplitz(ρ) matrix 

with a coherence parameter ρ. We experimented with different coherence values 

by selecting ρ = {0.1, 0.2, …, 0.80, 0.85, 0.90, 0.95}.

B. Low-rank dictionaries: We construct rank-deficient dictionaries such that, Φ = 

AB, where A ∈ ℝN×R, B ∈ ℝR×M and R < N. The elements of A and B are i.i.d. 

Normal. The rank ratio R/N is considered as a measure of rank deficiency, where 

smaller values indicate more deviation from an i.i.d. dictionary. We experiment 

with R/N = {1, 0.95, …, 0.4} and report recovery performances for a fixed K = 

50.

C. Ill-conditioned dictionaries: We experiment with ill-conditioned dictionaries with 

a condition number κ > 1. For a fixed κ, the dictionary is constructed as Φ = 

USVT. Here, U and V contain the left and right singular vectors of an i.i.d. 

Gaussian matrix, and S is a diagonal matrix containing the eigenvalues. We 

decay the elements of S with Si+1,i+1 = κ−1/N− 1 Si,i for i = 1, 2, …, N − 1. The 

value of κ measures the deviation from an i.i.d. Gaussian dictionary. We 

experimented for the condition numbers κ = {8, 10, …, 28}. Larger κ values 

indicate more deviation from an i.i.d. dictionary.

D. Non-negative dictionaries: Non-negative dictionaries are used in sparse recovery 

applications such as sparse NMF [3] and NN K-SVD [20] where a positive 

mapping is required on the solution vector. We construct non-negative 

dictionaries Φ, with columns that are drawn according to Φ ~ RG(0, I). We 

experiment with cardinalities K = {10, 20, 30, 35, 40, 45, 50}.

In the third set of experiments, we set the noise variance σ2 for υ such that the signal to 

noise ratio (SNR) is 20 dB and repeat the first set of experiments. This experiment was 

meant to assess the robustness of R-SBL variants under noisy conditions.
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In the fourth set of experiments, we investigate recovery performance for a variety of 

different distributions for non-zero elements of x and different Φ. We draw the nonzero 

elements of xgen randomly, according to the following probability distributions:

I. NN-Cauchy (Location: 0, Scale: 1)

II. NN-Laplace (Location: 0, Scale: 1)

III. Gamma (Location: 1, Scale: 2)

IV. Chi-square with ν = 2

V. Bernoulli with p(0.25) = 1/2 and p(1.25) = 1/2

where the prefix ‘NN’ stands for non-negative. These distributions are obtained by taking 

the absolute value of the respective probability densities. We generate random dictionaries 

according to the following densities:

I. Normal (Location: 0, Scale: 1)

II. ±1 with p(1) = 1/2 and p(−1) = 1/2

III. {0, 1} with p(0) = 1/2 and p(1) = 1/2

In all of the experiments detailed here, the results we present were averaged over 1,000 

simulations. Moreover, the R-SBL MCMC approach was only used in the first set of 

experiments to demonstrate the high quality of the parameter estimates obtained with the 

low complexity approaches such as DA, LMMSE and GAMP. We omit the MCMC in other 

experiments due to computational constraints.

A. Performance metrics

To evaluate the performance of various S-NNLS algorithms, we used the normalized mean 

square recovery error (NMSE) and the probability of error in the recovered support set (PE) 

[22]. We computed the NMSE between the recovered signal x̂ and the ground truth xgen 

using:

NMSE = ‖x − xgen‖2/‖xgen‖2 . (49)

The PE metric was computed using:

PE = max{ |S | , |S |} − |S ∩ S|
max{ |S | , |S |}

, (50)

where the support of the true solution was S and the support of x̂ was Ŝ. A value of PE = 0 

indicates that the ground truth and recovered supports are the same, whereas PE = 1 

indicates no overlap between supports. Averaging the PE over multiple trials gives the 

empirical probability of making errors in the recovered support. The averaged values of 

NMSE and PE over 1,000 simulations for each experiment are reported in the experiment 

results.
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B. MCMC implementation

We used the MCMC implementation presented in [65]. The Matlab and R codes are 

available at https://github.com/aripakman/hmc-tmg. MCMC parameters explained in Section 

III-B1 were selected as follows. The off-diagonal pruning of the empirical scale parameter Σ̂ 

was performed with a threshold of Tp = 5 × 10−2. Diagonal scaling was performed with a 

factor of β = 1.7, and a shrinkage parameter of λ = 0.5. These values were empirically 

determined to minimize the NMSE for the first set of experiments.

V. Experiment Results

Here, we show that in all of the sparse recovery experiments detailed above, the proposed R-

SBL variants perform better than the baseline solvers in terms of NMSE and PE. The R-SBL 

variants outperform the baseline solvers when the dictionary is non i.i.d., coherent, low-rank, 

ill-posed or even non-negative, illustrating the robustness of R-SBL to different 

characteristics of the dictionary Φ.

In Fig. 2 (a), we show the sparse recovery performance of the R-SBL variants and the 

baseline solvers as a function of the cardinality for the first set of experiments. As the 

cardinality of the ground truth solution increases (e.g. after K = 30) the performances of NN-

OMP and SLEP-ℓ1 deteriorate both in terms of MSE and PE. On the other hand, R-SBL 

variants and NNGM-AMP are quite robust with very small recovery error. At the largest 

cardinality of K = 50, we see that R-SBL DA and MCMC outperform other methods. The 

DA variant is nearly identical to MCMC in terms of MSE and PE. This is expected since 

MCMC prunes off-diagonal elements of the scale matrix Σ iteratively, when they drop below 

a certain threshold.

A. Coherent Dictionaries

In Figure 2 (b), we show the recovery performance of the proposed R-SBL variants and the 

baseline solvers when the dictionary is coherent. The degree of dictionary coherence is 

shown on the horizontal axis with ρ, which ranges from 0.1 to 0.95. The proposed R-SBL 

variants are extremely robust to increasing coherence and outperform the baseline solvers in 

terms of both NMSE and PE. SLEP-ℓ1 is robust to increasing coherence, but performs worse 

as compared to R-SBL variants. NNGM-AMP breaks down after ρ = 0.3 and performs 

worse than SLEP-ℓ1 after ρ = 0.5 and than NN-OMP after ρ = 0.8. The LMMSE and DA 

variants are not affected by the coherence level and achieve better recovery even for ρ = 

0.95. The performance of R-SBL GAMP slightly deteriorates after an extreme coherence of 

ρ = 0.90, but is still better than the baseline solvers.

These results demonstrate that the proposed R-SBL variants are robust to dictionary 

coherence and are superior to the baseline solvers. The robustness our R-SBL framework 

seems to be inherited from the robustness of the original SBL algorithm to the structure of Φ 
[51], [90], which uses a GSM prior on x. Our R-GSM prior on x seems to provide a similar 

robustness to the R-SBL algorithm.
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B. Low-rank Dictionaries

In Figure 2 (c), we show the recovery performance of the proposed R-SBL variants and the 

baseline solvers for rank-deficient dictionaries. The degree of rank deficiency is shown on 

the horizontal axis with the rank ratio R/N. The R-SBL variants outperform the baseline 

solvers both in terms of NMSE and PE for all values of R/N. The recovery performances of 

the R-SBL variants are extremely robust against the changes in R/N. Among the R-SBL 

variants, DA performs slightly better than LMMSE and GAMP. The GAMP performs 

similar to LMMSE. The recovery performance of NNGM-AMP is better than NN-OMP and 

SLEP-ℓ1, however its performance degrades as R/N gets smaller.

C. Ill-conditioned Dictionaries

In Figure 3 (a), we demonstrate the recovery performance for ill-conditioned dictionaries. 

The condition number on the horizontal axis varies from κ = 8 to κ = 28. The proposed R-

SBL variants perform significantly better than the baseline solvers across different κ values 

in terms of NMSE and PE. The recovery performance of the R-SBL variants is also 

extremely robust to different selections of κ. The SLEP-ℓ1 is better than NN-OMP and 

NNGM-AMP in terms of recovery performance, and is also robust to the selection of κ. The 

NN-OMP and NNGM-AMP approaches rapidly deteriorate in recovery performance with 

increasing κ values.

D. Non-negative Dictionaries

In certain sparse recovery applications, such as sparse NMF and non-negative K-SVD, a 

positive mapping is desired on the solution vector and the dictionary may contain non-

negative elements. In Figure 3 (b), we demonstrate the recovery performance of the S-NNLS 

solvers when the dictionary is non-negative with elements drawn from i.i.d. RG(0, 1). The 

cardinality K on the horizontal axis of Figure 3 (b) varies from K = 10 to K = 50. The 

NNGM-AMP approach was not able to recover a solution for non-negative dictionaries and 

point estimates for x diverged for different K. Therefore, the NMSE values for NNGM-AMP 

were not shown in Figure 3 (b). Unlike in Figure 2 (a), where the dictionary can be both 

positive and negative, NN-OMP performs better than the SLEP-ℓ1 solver. The proposed R-

SBL variants outperform the baseline approaches. Among the R-SBL variants, DA performs 

slightly better than the GAMP, and GAMP is slightly better than LMMSE.

E. Noisy Conditions

We compared the recovery performance of the proposed R-SBL variants and the baseline 

solvers in a noisy setting, where the dictionary is i.i.d. Normal distributed. In this case, the 

observations were contaminated with additive white Gaussian noise to have a signal to noise 

ratio (SNR) of 20 dB. Figure 3 (c) shows the NMSE and PE versus the cardinality. 

Compared with the noiseless case in Figure 2 (a), the performances of all of the methods 

noticeably reduced. However, the proposed R-SBL variants performed better as compared to 

the NN-OMP and SLEP-ℓ1 solvers, and performed similar to the NNGM-AMP approach.
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F. Other types of xgen and Φ

In this fourth set of experiments, the dictionary Φ was drawn according to i.i.d. Normal, ±1 

Bernoulli, and {0, 1} Bernoulli distributions. We experimented with different distributions 

for the non-zero elements of xgen, as shown in Tables II, III and IV.

For i.i.d. Normal Φ in Table II, the R-SBL DA generally outperforms the baseline solvers 

and other R-SBL variants when xgen is RG, NN-Cauchy, NN-Laplace, Gamma and Chi-

square distributed. The LMMSE variant achieves slightly better performance in terms of PE 

for the NN-Cauchy distribution. The NNGM-AMP is better than LMMSE and GAMP 

variants, when xgen is RG, however it fails in terms of PE when xgen is NN-Cauchy. The 

NNGM-AMP approach shows better performance when xgen is Bernoulli. This is expected 

since the prior density for NNGM-AMP is a Bernoulli non-negative Gaussian mixture. The 

R-GSM prior, on the other hand, is not well matched to the Bernoulli distribution, as it is a 

mixture of continuous distributions. Overall, we see that R-SBL DA approach results in the 

best recovery performance. In Table III, we present the results for when Φ is ±1 Bernoulli. 

The recovery performances observed in Table III are very similar to Table II and overall, R-

SBL DA approach enjoys better recovery performance.

In Table IV, we show recovery results for {0, 1} Bernoulli distributed Φ. The R-SBL DA and 

LMMSE variants achieve superior recovery when compared to the baseline solvers. The 

NNGM-AMP approach diverges for different xgen, because the dictionary was non-negative, 

which is consistent with our previous observation when the dictionary elements were drawn 

from i.i.d. RG(0, 1) in Figure 3 (b).

G. Recovery time analysis

In Section III-C, we presented the worst case computational complexity of the DA, LMMSE 

and GAMP variants per EM iteration. As the execution time also depends on how fast an 

EM approach converges to the final solution, we provide an analysis of average execution 

times for different cardinality values. First, we provide a simple way to speed up the 

proposed R-SBL algorithms. We prune the problem size, when the elements of γ become 

smaller than a given threshold. For example, when an index of the vector γ becomes smaller 

than i.e. γi ≤ εγ, we ignore the computations regarding that index in the next iterations. This 

effectively reduces the problem dimensions and improves execution time.

In Fig. 4, we included the average execution times of the proposed algorithms, in units of 

seconds. The pruning threshold was selected as εγ = 10−5 for all methods. For the EM based 

methods, we monitored the convergence of the γ’s in EM iterations. We stopped the EM 

updates, when ‖γt − γt−1‖2 ≤ 10−3, where t is the current EM iteration index. For other 

approaches, we monitored the linear equality constraints and stopped the algorithms when ‖y 
− Φx̂t‖2 ≤ 10−3, where x̂t is the solution estimate at iteration t.

As expected due to computationally intensive random sampling, R-SBL MCMC is the 

slowest method. For display purposes, we scaled down the average MCMC execution time 

values by 30. The LMMSE approach takes about 3 seconds for K = 50 to recover the 

optimal solution and is the second slowest method. Even though the complexity of DA and 
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LMMSE is similar, DA achieves much faster convergence and takes about 0.5 to 1 seconds 

as K increases.

For this particular experiment, GAMP is the fastest R-SBL variant regardless of the 

cardinality and is similar to SLEP-ℓ1. However, since complexity of GAMP is (NM), for 

very large problem sizes (e.g. large N and M) GAMP may become slower despite the 

superior recovery performance. In this case, a convex solver may be preferable depending on 

the desired recovery performance. R-SBL GAMP is faster than NNGM-AMP at larger 

cardinalities. Finally, NN-OMP is similar to SLEP-ℓ1 but it’s execution time increases for 

larger cardinalities. Considering the fast recovery speed and good recovery performance of 

R-SBL GAMP under various Φ types, GAMP is a very good candidate for time sensitive 

sparse recovery applications.

H. Application on real data: Face Recognition

Here, we present a face recognition (FR) application, based on the non-negative sparse 

representations considered in [91], [92], [93]. Our goal is to show that the R-SBL approach 

works in real-world applications involving real-data. A sparse representation classifier 

(SRC) for FR was initially proposed in [94] using the ℓ1 penalty without the non-negativity 

constraints. The SRC approach was found to be robust against occlusion, disguise, pixel 

corruptions, and achieved superior results as compared to well-known FR algorithms [94], 

[92], [95], [96].

In the SRC framework, the dictionary Φ represents the training samples, and each column of 

Φ contains training features from a single face image. A single person might have more than 

one training image, and hence multiple columns of Φ might correspond to the same person. 

For a given test face y in vectorized form, a vector x is obtained by solving Eq. (1), using ℓ1 

sparsity, with the assumption that only a few non-zero entries will exist in the solution x. 

Ideally, the index of maximal non-negative entry in x is used to select the corresponding 

column in Φ. This should correspond to one of the training samples for the correct person. In 

[92], the SRC performance was further improved, by adding the non-negativity constraint on 

x in addition to the ℓ1 sparsity. The authors have showed their algorithm to be more robust 

against noise, and to be computationally more effective as compared to the original SRC 

approach.

In our experiment, we consider the R-SBL framework for the FR problem and compare it 

with the baseline solvers. Note that, SLEP-ℓ1 was considered as the non-negative ℓ1 

minimization counterpart of R-SBL in place of [92]. We used the public AR dataset [97], 

and selected the first 30 males and 30 females for the FR problem. Each person in the 

dataset has 26 face images with different facial expression, illumination and disguise (e.g. 

sunglasses and scarves). The first 13 images of each person (M = 13 × 60 = 780) were 

selected as the training set, and the remaining 780 face images were used for testing. For 

feature selection, we used the down-sampling method used in [91], [92], [94], where the 

pixel dimensions of each face image were down-sampled to have a total of N pixels. In 

separate experiments, each 165×120 pixel image was down-sampled by a factor of {1/28, 

1/26, …, 1/6}, yielding feature dimensions of minimum of N = 30 to a maximum of N = 

650.
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The overall process is shown in Figure 5 (a), where a query face is shown in the top right-

hand side. This image was down-sampled and the original feature dimension was reduced 

from 19, 800 to 512. After sparse recovery with R-SBL, the original faces belonging to 

several largest non-zero elements of x are shown. As desired, the maximal positive index of 

x belongs to the same person in the query face.

In Figure 5 (b), we performed FR using all 780 samples in the test set and measured the 

recognition rate for different feature sizes. The recognition rate was computed by counting 

the number of test samples for which R-SBL recovered the correct individual from x. This 

count was normalized by 780. Overall, the R-SBL variants with the exception of R-SBL 

GAMP performed similar to the baseline solvers for large feature sizes. This is expected 

since the recovery problem was highly sparse, and the cardinality was very small K = 13 as 

compared to the length of x e.g. largest length of x is 780. R-SBL GAMP was superior to all 

algorithms for large feature sizes and performed significantly better in identifying the correct 

individual. NNGM-AMP diverged for this application and did not yield reportable results.

VI. Conclusion

In this work, we introduced a hierarchical Bayesian method to solve the S-NNLS problem. 

We proposed the rectified Gaussian scale mixture model as a general and versatile prior to 

promote sparsity in the solution of interest. Since the marginals of the posterior were not 

tractable, we constructed our R-SBL algorithm using the EM framework using four different 

approaches. We demonstrated that our R-SBL approaches outperformed the available S-

NNLS solvers, in most cases by a large margin. The proposed R-SBL framework is very 

robust to the structure of Φ and performed well regardless of Φ being i.i.d. and non-i.i.d. The 

performance gains achieved by R-SBL variants are consistent across different non-negative 

data distributions for x, different structures for the design matrix Φ, in coherent, low-rank, 

ill-posed and non-negative settings. The DA variant was found to be a fairly easy to 

implement S-NNLS solver with simple closed-form moment expressions.
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Appendix

A. Full derivation of GAMP

We use the R-GSM prior p(x|γ) and evaluate Eq. (39) and Eq. (40) to find the first two 

moments of the approximate marginal posterior under the sum-product GAMP mode

xi = E{xi | ri; τri} = xi
xip(xi | ri; τri) (51)
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=
+

xiNR(xi | 0, γi)N(xi, ri, τri), (52)

then using Gaussian multiplication rule2, we obtain

xi =
+

xiϒNR(xi | ηi, νi), (53)

where ηi and νi are given in Eq. (55) and Eq. (56).

We find the mean of the resulting rectified Gaussian

xi = ηi + νiℎ(ηi
νi

) (54)

ηi = riγi
τri + γi

(55)

νi =
τriγi

τri + γi
(56)

ℎ(a) = φ(a)
Φc(a) , (57)

where φ refers to the pdf and Φc refers to the complementary cdf of a zero-mean and unit-

variance Gaussian distribution. The conditional variance of xi given ri is simply

τxi = var{xi | ri; τri} = xi
xi2p(xi | ri; τri) − xi

2
(58)

=
+

xi2NR(xi | 0, γi)N(xi, ri, τri) − xi
2, (59)

using Gaussian pdf multiplication rule

τxi =
+

xi2ϒNR(xi | ηi, νi), (60)

we find the variance of the resulting rectified Gaussian

2 N(x; μa, τa)N(x; μb, τb) = ϒN(x;

μa
τa

+
μb
τb

1
τa

+ 1
τb

, 1
1
τa

+ 1
τb

), where ϒ is a scaling factor.
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τxi = νig(ηi
νi

) (61)

g(a) = 1 − ℎ(a)(ℎ(a) − a) . (62)

In the case of max-sum GAMP implementation, we evaluate Eq. (41) and Eq. (42)

xi = arg min
xi ≥ 0

xi2

2γi
+ 1

2τri
|xi − ri|2 (63)

xi =
riγi

τri + γi
= ηi if xi ≥ 0

0 if xi < 0
(64)

Using Eq. (42)

τxi =

τriγi
τri + γi

= νi if xi ≥ 0

0 if xi < 03
(65)

Upon convergence of the max-sum, the approximate marginals are obtained using Eq. (54) 

and Eq. (61).

B. Approximate marginals and moments using DA

We derive the approximate moments used in the R-SBL DA approximation. We start with 

the posterior p(x | y, γ) and use chain rule to write

p(x |y, γ) = p(y |x, γ)p(x |γ)
∫xp(y |x, γ)p(x |γ)dx . (66)

Here p(y | x, γ) is a Gaussian density due to the Gaussian noise assumption. Since p(x | γ) is 

a rectified Gaussian density the numerator of Eq. (66) is a Gaussian multiplied by a rectified 

Gaussian, which results in a rectified Gaussian density. Then, we can simply write

p(x |y, γ) = c(y)e− (x − μ)T ∑−1(x − μ)
2 u(x), (67)

where c(y) is the normalizing constant for the posterior density and μ and Σ are given by 

Eqs. (23) and (24), respectively. Let Σ = LLT and r = x − μ, so that d x = dr and Σ−1 = L−T L
−1. Therefore, we have
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1 = c(y)
−μ

∞
e

−rTL−TL−1r
2 dr . (68)

Now, let z = L−1r, which implies that dr = |L|dz and

c(y) = 1
|L|∫−β

∞ e−zTz/2dz
, (69)

where β = L−1μ is the lower limit of the new integral in vector form. The lower limit β 
depends on a linear combination of elements of μ since L is not diagonal. Thus, the integral 

in the denominator of Eq. (69) is not tractable as the integration limits are not separable and 

the multidimensional integral over z in Eq. (69) is not separable as a product of one 

dimensional integrals.

Assume that, we are interested in an approximate density p̃(x | y, γ), instead of the exact 

posterior. We calculate an approximate c̃(y) by approximating Σ with its diagonal i.e. Σd = 

diag(Σ) ≈ Σ. In this case, the new L is diagonal with entries ∑ii. Thus, the integral in Eq. 

(69) is separable and the approximate normalizing constant c̃(y) has closed form

c∼(y) = 1
|∑d |1/2∏i = 1

M π
2  erfc  − μi

2∑ii

.
(70)

Approximating the actual normalizing constant with c̃(y), we write the approximate 

posterior as

p∼(x |y, γ) = e−
(x − μ)T ∑d

−1(x − μ)
2 u(x)

∏i = 1
M π∑ii

2  erfc  − μi
2∑ii

(71)

= ∏
i = 1

M 2
π∑ii

e−
(xi − μi)2

2∑ii u(xi)

erfc  − μi
2∑ii

(72)

= ∏
i = 1

M
p∼(xi | y, γ) (73)

Eq. (73) shows that multivariate p̃(x | y, γ) is separable into product of univariate densities. 

The univariate density p̃(xi|y, γ) is the univariate RG density defined in Eq. (10) e.g. p̃(xi|y, 
γ) = R(xi; μi, Σii). The first and second moments of a univariate RG density are well-

known in closed form (i.e. Eqs. (47) and (48)) and are used in the R-SBL DA algorithm.

Nalci et al. Page 25

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Lawson, CL, Hanson, RJ. Solving least squares problems. Vol. 161. SIAM; 1974. 

2. Jedynak BM, Khudanpur S. Maximum likelihood set for estimating a probability mass function. 
Neural Computation. 17(7):1508–1530.2005; [PubMed: 15901406] 

3. Peharz R, Pernkopf F. Sparse nonnegative matrix factorization with ℓ0-constraints. Neurocomputing. 
80:38–46.2012; [PubMed: 22505792] 

4. Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained 
least squares for microarray data analysis. Bioinformatics. 23(12):1495–1502.2007; [PubMed: 
17483501] 

5. Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained 
least squares and active set method. SIAM Journal on Matrix Analysis and Applications. 30(2):713–
730.2008; 

6. Fedorov I, Nalci A, Giri R, Rao BD, Nguyen TQ, Garudadri H. A unified framework for sparse non-
negative least squares using multiplicative updates and the non-negative matrix factorization 
problem. Signal Processing. 2018

7. Pauca VP, Shahnaz F, Berry MW, Plemmons RJ. Text mining rsing non-negative matrix 
factorizations. Proceedings of the 2004 SIAM International Conference on Data Mining. 
42004; :452–456.

8. Monga V, Mihçak MK. Robust and secure image hashing via non-negative matrix factorizations. 
IEEE Transactions on Information Forensics and Security. 2(3):376–390.2007; 

9. Loizou PC. Speech enhancement based on perceptually motivated Bayesian estimators of the 
magnitude spectrum. IEEE Transactions on Speech and Audio Processing. 13(5):857–869.2005; 

10. Févotte C, Bertin N, Durrieu J-L. Nonnegative matrix factorization with the Itakura-Saito 
divergence: With application to music analysis. Neural Computation. 21(3):793–830.2009; 
[PubMed: 18785855] 

11. Sajda P, Du S, Brown TR, Stoyanova R, Shungu DC, Mao X, Parra LC. Nonnegative matrix 
factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift 
imaging of the brain. IEEE Transactions on Medical Imaging. 23(12):1453–1465.2004; [PubMed: 
15575404] 

12. Lin Y, Lee DD. Bayesian regularization and nonnegative deconvolution for room impulse response 
estimation. IEEE Transactions on Signal Processing. 54(3):839–847.2006; 

13. Potter LC, Ertin E, Parker JT, Cetin M. Sparsity and compressed sensing in radar imaging. 
Proceedings of the IEEE. 98(6):1006–1020.2010; 

14. Hurmalainen A, Saeidi R, Virtanen T. Group sparsity for speaker identity discrimination in 
factorisation-based speech recognition. Interspeech. 2012

15. Lustig M, Santos JM, Donoho DL, Pauly JM. kt SPARSE: High frame rate dynamic MRI 
exploiting spatio-temporal sparsity. Proceedings of the 13th Annual Meeting of ISMRM. 
24202006; 

16. Ghosh, A, Megherbi, T, Boumghar, FO, Deriche, R. 10th International Symposium on Biomedical 
Imaging (ISBI). IEEE; 2013. Fiber orientation distribution from non-negative sparse recovery; 
254–257. 

17. Meng J, Zhang JM, Chen Y, Huang Y. Bayesian non-negative factor analysis for reconstructing 
transcription factor mediated regulatory networks. Proteome Science. 9(1):S9.2011; [PubMed: 
22166063] 

18. Nalci A, Rao B, Liu TT. Sparse Estimation of Quasi-periodic Spatiotemporal Components in 
Resting-State fMRI. Proceedings of the 24th Annual Meeting of the ISMRM. 2016:824.

19. Liu TT, Nalci A, Falahpour M. The global signal in fmri: Nuisance or information? NeuroImage. 
150:213–229.2017; [PubMed: 28213118] 

20. Aharon, M, Elad, M, Bruckstein, AM. Optics & Photonics 2005. International Society for Optics 
and Photonics; 2005. K-SVD and its nonnegative variant for dictionary design; 591 411–591 411. 

21. Jiang X, Ye Y. A note on complexity of lp minimization. Preprint. 2009

22. Elad, M. Sparse and Redundant Representations. Springer; New York: 2010. 

Nalci et al. Page 26

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching 
pursuit. IEEE Transactions on information theory. 53(12):4655–4666.2007; 

24. Needell D, Tropp JA. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. 
Applied and Computational Harmonic Analysis. 26(3):301–321.2009; 

25. Mallat SG, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on 
signal processing. 41(12):3397–3415.1993; 

26. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized 
orthogonal matching pursuit. Foundations of computational mathematics. 9(3):317–334.2009; 

27. Bruckstein AM, Donoho DL, Elad M. From sparse solutions of systems of equations to sparse 
modeling of signals and images. SIAM Review. 51(1):34–81.2009; 

28. Pati, YC, Rezaiifar, R, Krishnaprasad, P. Asilomar Conference on Signals, Systems and 
Computers. IEEE; 1993. Orthogonal matching pursuit: Recursive function approximation with 
applications to wavelet decomposition; 40–44. 

29. Efron B, Hastie T, Johnstone I, Tibshirani R, et al. Least angle regression. The Annals of statistics. 
32(2):407–499.2004; 

30. Figueiredo MA, Nowak RD, Wright SJ. Gradient projection for sparse reconstruction: Application 
to compressed sensing and other inverse problems. IEEE Journal of selected topics in signal 
processing. 1(4):586–597.2007; 

31. Wright SJ, Nowak RD, Figueiredo MA. Sparse reconstruction by separable approximation. IEEE 
Transactions on Signal Processing. 57(7):2479–2493.2009; 

32. Donoho DL, Tanner J. Sparse nonnegative solution of underdetermined linear equations by linear 
programming. Proceedings of the National Academy of Sciences of the United States of America. 
102(27):9446–9451.2005; [PubMed: 15976026] 

33. Nocedal, J, Wright, S. Numerical Optimization. Springer Science & Business Media; 2006. 

34. Boyd, S, Vandenberghe, L. Convex Optimization. Cambridge University Press; 2004. 

35. Khajehnejad MA, Dimakis AG, Xu W, Hassibi B. Sparse recovery of nonnegative signals with 
minimal expansion. IEEE Transactions on Signal Processing. 59(1):196–208.2011; 

36. Lin, C-b. Projected gradient methods for nonnegative matrix factorization. Neural Computation. 
19(10):2756–2779.2007; [PubMed: 17716011] 

37. Grady, PD, Rickard, ST. IEEE Workshop on Machine Learning for Signal Processing. IEEE; 2008. 
Compressive sampling of non-negative signals; 133–138. 

38. Chartrand, R, Yin, W. IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP). IEEE; 2008. Iteratively reweighted algorithms for compressive sensing; 3869–3872. 

39. Giri R, Rao BD. Type I and Type II Bayesian Methods for Sparse Signal Recovery using Scale 
Mixtures. IEEE Transactions on Signal Processing. 642016; 

40. Tipping ME. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine 
Learning Research. 1:211–244.2001; 

41. Babacan SD, Molina R, Katsaggelos AK. Bayesian compressive sensing using Laplace priors. 
IEEE Transactions on Image Processing. 19(1):53–63.2010; [PubMed: 19775966] 

42. Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing. 
56(6):2346–2356.2008; 

43. Andrews DF, Mallows CL. Scale mixtures of normal distributions. Journal of the Royal Statistical 
Society. Series B (Methodological). :99–102.1974

44. Wipf DP, Rao BD. An empirical Bayesian strategy for solving the simultaneous sparse 
approximation problem. IEEE Transactions on Signal Processing. 55(7):3704–3716.2007; 

45. Palmer, JA. Ph.D. dissertation. University of California; San Diego: 2006. Variational and scale 
mixture representations of non- Gaussian densities for estimation in the Bayesian linear model: 
Sparse coding, independent component analysis, and minimum entropy segmentation. 

46. Palmer J, Kreutz-Delgado K, Rao BD, Wipf DP. Variational EM algorithms for non-Gaussian 
latent variable models. Advances in Neural Information Processing Systems. 2005:1059–1066.

47. Lange K, Sinsheimer JS. Normal/independent distributions and their applications in robust 
regression. Journal of Computational and Graphical Statistics. 2(2):175–198.1993; 

Nalci et al. Page 27

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Dempster AP, Laird NM, Rubin DB. Iteratively reweighted least squares for linear regression when 
errors are normal/independent distributed. Multivariate Analysis V. :35–57.1980

49. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM 
algorithm. Journal of the Royal Statistical Society. Series B. :1–38.1977

50. Wipf DP, Rao BD, Nagarajan S. Latent variable Bayesian models for promoting sparsity. IEEE 
Transactions on Information Theory. 57(9):6236–6255.2011; 

51. Al-Shoukairi M, Schniter P, Rao BD. A GAMP-based low complexity sparse Bayesian learning 
algorithm. IEEE Transactions on Signal Processing. 66(2):294–308.2018; 

52. Wipf DP, Rao BD. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal 
Processing. 52(8):2153–2164.2004; 

53. Zhang, L, Yang, M, Feng, X. IEEE International Conference on Computer Vision (ICCV). IEEE; 
2011. Sparse representation or collaborative representation: Which helps face recognition?; 471–
478. 

54. Fedorov, I, Rao, BD, Nguyen, TQ. IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE; 2017. Multimodal sparse Bayesian dictionary learning applied to 
multimodal data classification; 2237–2241. 

55. Harva M, Kabán A. Variational learning for rectified factor analysis. Signal Processing. 87(3):509–
527.2007; 

56. Miskin, JW. Advances in Independent Component Analysis. Citeseer; 2000. Ensemble learning for 
independent component analysis. 

57. Figueiredo MA. Adaptive sparseness for supervised learning. IEEE Transactions on Pattern 
Analysis and Machine Intelligence. 25(9):1150–1159.2003; 

58. Vila JP, Schniter P. An empirical-Bayes approach to recovering linearly constrained non-negative 
sparse signals. IEEE Transactions on Signal Processing. 62(18):4689–4703.2014; 

59. Gauvain J-L, Lee C-H. Maximum a posteriori estimation for multivariate gaussian mixture 
observations of markov chains. IEEE Transactions on Speech and Audio Processing. 2(2):291–
298.1994; 

60. Bishop CM. Pattern Recognition. Machine Learning. 2006

61. Zhang Z, Jung T-P, Makeig S, Pi Z, Rao B. Spatiotemporal sparse Bayesian learning with 
applications to compressed sensing of multichannel physiological signals. IEEE Transactions on 
Neural Systems and Rehabilitation Engineering. 22(6):1186–1197.2014; [PubMed: 24801887] 

62. Horrace WC. Some results on the multivariate truncated normal distribution. Journal of 
Multivariate Analysis. 94(1):209–221.2005; 

63. Robert, C, Casella, G. Monte Carlo statistical methods. Springer Science & Business Media; 2013. 

64. Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Physics Letters B. 
195(2):216–222.1987; 

65. Pakman A, Paninski L. Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. 
Journal of Computational and Graphical Statistics. 23(2):518–542.2014; 

66. Andrieu C, De Freitas N, Doucet A, Jordan MI. An introduction to MCMC for machine learning. 
Machine Learning. 50(1–2):5–43.2003; 

67. Sherman RP, Ho Y-YK, Dalal SR. Conditions for convergence of Monte Carlo EM sequences with 
an application to product diffusion modeling. The Econometrics Journal. 2(2):248–267.1999; 

68. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of 
images. IEEE Transactions on Pattern Analysis and Machine Intelligence. (6):721–741.1984; 
[PubMed: 22499653] 

69. Li Y, Ghosh SK. Efficient sampling methods for truncated multivariate normal and Student-t 
distributions subject to linear inequality constraints. Journal of Statistical Theory and Practice. 
9(4):712–732.2015; 

70. Neath, RC, , et al. Advances in Modern Statistical Theory and Applications. Institute of 
Mathematical Statistics; 2013. On convergence properties of the Monte Carlo EM algorithm; 43–
62. 

71. Bickel PJ, Levina E. Covariance regularization by thresholding. The Annals of Statistics. :2577–
2604.2008

Nalci et al. Page 28

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



72. Tong T, Wang C, Wang Y. Estimation of variances and covariances for high-dimensional data: a 
selective review. Wiley Interdisciplinary Reviews: Computational Statistics. 6(4):255–264.2014; 

73. Celeux G, Diebolt J. A stochastic approximation type EM algorithm for the mixture problem. 
Stochastics: An International Journal of Probability and Stochastic Processes. 41(1–2):119–
134.1992; 

74. Fisher TJ, Sun X. Improved Stein-type shrinkage estimators for the high-dimensional multivariate 
normal covariance matrix. Computational Statistics & Data Analysis. 55(5):1909–1918.2011; 

75. Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices. 
Journal of Multivariate Analysis. 88(2):365–411.2004; 

76. Kailath, T, Sayed, AH, Hassibi, B. Linear Estimation. Vol. 1. Prentice Hall Upper Saddle; River, 
NJ: 2000. 

77. Miskin, JW. Advances in Independent Component Analysis. Citeseer; 2000. Ensemble learning for 
independent component analysis. 

78. Rangan, S. International Symposium on Information Theory Proceedings (ISIT). IEEE; 2011. 
Generalized approximate message passing for estimation with random linear mixing; 2168–2172. 

79. Rangan, S, Schniter, P, Fletcher, A. IEEE International Symposium on Information Theory (ISIT). 
IEEE; 2014. On the convergence of approximate message passing with arbitrary matrices; 236–
240. 

80. Caltagirone, F, Zdeborová, L, Krzakala, F. IEEE International Symposium on Information Theory 
(ISIT). IEEE; 2014. On convergence of approximate message passing; 1812–1816. 

81. Rangan S, Schniter P, Fletcher A. On the convergence of approximate message passing with 
arbitrary matrices. IEEE International Symposium on Information Theory (ISIT). Jun.2014 :236–
240.

82. Javanmard A, Montanari A. State evolution for general approximate message passing algorithms 
with applications to spatial coupling. Information and Inference. :iat004.2013

83. Vila JP, Schniter P. Expectation-maximization Gaussian-mixture approximate message passing. 
IEEE Transactions on Signal Processing. 61(19):4658–4672.2013; 

84. Horrace WC. On ranking and selection from independent truncated normal distributions. Journal of 
Econometrics. 126(2):335–354.2005; 

85. Magdon-Ismail, M, Purnell, JT. Intelligent Data Engineering and Automated Learning. Springer; 
2010. Approximating the covariance matrix of GMMs with low-rank perturbations; 300–307. 

86. Liu J, Ji S, Ye J, et al. SLEP: Sparse learning with efficient projections. Arizona State University. 
6:491.2009; 

87. Bruckstein AM, Elad M, Zibulevsky M. On the uniqueness of nonnegative sparse solutions to 
underdetermined systems of equations. IEEE Transactions on Information Theory. 54(11):4813–
4820.2008; 

88. Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate 
measurements. Communications on Pure and Applied Mathematics. 59(8):1207–1223.2006; 

89. Vila, J, Schniter, P, Rangan, S, Krzakala, F, Zdeborová, L. Acoustics, Speech and Signal Processing 
(ICASSP), 2015 IEEE International Conference on. IEEE; 2015. Adaptive damping and mean 
removal for the generalized approximate message passing algorithm; 2021–2025. 

90. Li T, Zhang Z. Robust face recognition via block sparse bayesian learning. Mathematical Problems 
in Engineering. 20132013; 

91. He R, Zheng W-S, Hu B-G, Kong X-W. Two-stage nonnegative sparse representation for large-
scale face recognition. IEEE Transactions on Neural Networks and Learning Systems. 24(1):35–
46.2013; [PubMed: 24808205] 

92. He R, Zheng W-S, Hu B-G. Maximum correntropy criterion for robust face recognition. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 33(8):1561–1576.2011; [PubMed: 
21135440] 

93. Vo N, Moran B, Challa S. Nonnegative-least-square classifier for face recognition. Advances in 
Neural Networks–ISNN 2009. :449–456.2009

Nalci et al. Page 29

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



94. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. 31(2):210–227.2009; [PubMed: 
19110489] 

95. Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience. 3(1):71–
86.1991; [PubMed: 23964806] 

96. He X, Yan S, Hu Y, Niyogi P, Zhang H-J. Face recognition using laplacianfaces. IEEE Transactions 
on Pattern Analysis and Machine Intelligence. 27(3):328–340.2005; [PubMed: 15747789] 

97. Martinez AM. The AR face database. CVC technical report. 1998

Biographies

Alican Nalci (S’15) received the B.Sc. degree in Electrical and Electronics Engineering 

from Bilkent University, Ankara, Turkey, in 2013. He received the M.Sc. degree in Electrical 

and Computer Engineering from the University of California San Diego, La Jolla, CA, USA, 

in 2015, where he is currently pursuing a Ph.D. degree. His research interests include sparse 

signal recovery, machine learning, signal processing and functional magnetic resonance 

imaging (fMRI).

Igor Fedorov (S’15) receieved the B.Sc. and M.Sc. degrees in Electrical Engineering from 

the University of Illinois at Urbana-Champaign in 2012 and 2014, respectively. He is 

currently pursuing a Ph.D. degree in Electrical Engineering at the University of California 

San Diego, La Jolla, CA, USA. His research interests include sparse signal recovery, 

machine learning, and signal processing.

Nalci et al. Page 30

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maher Al-Shoukairi (S’17) received his B.Sc. degree in Electrical Engineering from the 

University of Jordan in 2005. He received his M.Sc. degree in Electrical Engineering from 

Texas A&M University in 2008, after which he joined Qualcomm Inc. on the same year to 

date. He is currently pursuing his Ph.D. degree in Electrical Engineering at the University of 

California, San Diego.

Thomas T. Liu received the B.S degree in Electrical Engineering from the Massachusetts 

Institute of Technology, Cambridge, MA, USA, and the M.S. and Ph.D. degrees from 

Stanford University, Stanford CA, USA, in 1988, 1993, and 1999, respectively. Since 1999 

he has been with the University of California San Diego, La Jolla, CA, USA, where he is 

currently a Professor in the Departments of Radiology, Psychiatry, and Bioengineering and 

Director of the UCSD Center for Functional MRI.

Bhaskar D. Rao (S’80-M’83-SM’91-F’00) received the B.Tech. degree in electronics and 

electrical communication engineering from the Indian Institute of Technology of Kharagpur, 

Kharagpur, India, in 1979, and the M.S. and Ph.D. degrees from the University of Southern 

California, Los Angeles, CA, USA, in 1981 and 1983, respectively. Since 1983, he has been 

at the University of California at San Diego, San Diego, CA, USA, where he is currently a 

Distinguished Professor in the Department of Electrical and Computer Engineering.

Nalci et al. Page 31

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Top: Empirical observations for the structure of Σ. We performed S-NNLS recovery using 

MCMC-EM (without regularizing the estimates of Σ) and monitored the average value of 

off-diagonals for |Σ|. We simulated for 1,000 runs and overplotted the results (blue lines). 

The average of average off-diagonals for |Σ| over 1,000 results is shown with the red line. 

The exponentially decreasing behavior suggests that the off-diagonal magnitudes of Σ 
decrease over MCMC iterations, suggesting that true Σ is close to a diagonal form. Bottom: 

Distance between true Σ and a diagonal matrix formed by it’s diagonal entries ΣD for the 

Nalci et al. Page 32

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



same experiment. This suggests that true Σ approaches to a diagonal matrix over MCMC 

iterations.
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Fig. 2. 
Sparse recovery performances (NMSE and PE) of the R-SBL variants and the baseline S-

NNLS solvers for various Φ. In (a), the dictionary elements were drawn from i.i.d Normal Φ 
and sparse recovery results are shown for cardinalities K = 30 to K = 50. R-SBL DA 

achieves the best recovery performance. R-SBL LMMSE and GAMP are similar to NNGM-

AMP and are much better than SLEP-ℓ1 and NN-OMP. In (b), the dictionary columns are 

coherent with the coherence degree ρ indicated in the x-axis. R-SBL variants are extremely 

robust to increasing coherence and result in very small NMSE and PE across all ρ values. 

NNGM-AMP breaks down after ρ = 0.2 and its performance deteriorates with increasing ρ. 

SLEP-ℓ1 is better than NNGM-AMP after ρ = 0.5. In (c), the dictionary is rank-deficient with 

rank-ratio R/N indicated in the x-axis. R-SBL variants are superior to baseline sparse 

recovery methods across all R/N values.
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Fig. 3. 
Sparse recovery performances of the S-NNLS solvers for various Φ. In (a), the dictionary is 

ill-conditioned with condition number κ given in the x-axis. R-SBL variants outperform the 

baseline solvers for various κ and are very robust to the value of κ. R-SBL DA achieves the 

lowest NMSE and PE. SLEP-ℓ1 is superior to NNGM-AMP. In (b), the dictionary is non-

negative with elements drawn from i.i.d. RG(0, 1). The recovery performances are given for 

various cardinality K in the x-axis. R-SBL variants achieve superior recovery across all 

values of K. NNGM-AMP diverges regardless of the value of K and is unable to recover a 

feasible solution. In (c), the dictionary is i.i.d. Normal and SNR is 20 dB. In the noisy 

setting, when the dictionary is i.i.d. and signed, R-SBL variants perform similar to NNGM-

AMP under noisy conditions, but are superior to SLEP-ℓ1 and NN-OMP at larger 

cardinalities.
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Fig. 4. 
Execution times of the S-NNLS solvers as a function of cardinality for the noiseless 

scenario.
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Fig. 5. 
(a) Illustration of the sparse FR process. A query face is down-sample to obtain an 

observation y. Using the training dictionary Φ, a sparse solution is obtained using R-SBL 

variants and baseline solvers to satisfy y = Φx. The index that corresponds to the maximum 

value in x is used to select a corresponding column from Φ. This corresponds to the correct 

individual. (b) FR accuracy for different feature sizes using all test samples. R-SBL GAMP 

enjoys better FR performance for different feature sizes.
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TABLE I

R-SBL GAMP Algorithm

Initialization

S ← |Φ|2 (component wise magnitude squared)

Initialize τ̇x0 > 0

s0, ẋ0 ← 0

for n = 1, 2, …․, Nmax

  Initialize τx1 τ̇xn − 1, x1 ẋn − 1

  E-Step approximation

  for k = 1, 2, …․, Kmax

     1/τpk Sτxk

     pk sk − 1 + τpkΦxk

     τsk
σ−2τpk

σ−2 + τpk

     sk (1 − θs)sk − 1 + θs(pk/τpk − y)/(σ2 + 1/τpk)

     1/τrk S⊤τsk

     rk xk − τrkΦ⊤sk

    if MaxSum then

       τxk + 1 νk

      x̂k+1 ← ηku(rk)

    else

       τxk + 1 νkg(ηk
νk)

       xk + 1 ηk + νkℎ(ηk
νk)

    end if

    if ‖x̂k+1 − x̂k‖2/x̂k+1‖2 < εgamp, break

  end for %end of k loop

  if MaxSum

     ẋi ηk + 1 + νk + 1ℎ(ηk + 1
νk + 1), τ̇xi νk + 1g(ηk + 1

νk + 1)

  else
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     ẋn xk + 1, τ̇xn τxk + 1

  end if

  M-Step

   γn + 1 |ẋn|2 + τ̇xn

  if ‖ẋn − ẋn−1‖2/‖ẋn‖2 < εem, break

end for %end of i loop
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