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Abstract

Computational chemistry is a mainstay of modern drug discovery techniques.

Based largely on the use of 3-dimensional databases, in-silico screening and optimization

exist alongside traditional medicinal and organic chemistry methods. This thesis

describes the development and application of de-novo computational methods for use in

computational chemistry.

It begins in chapter I by addressing a number of common limitations in database

mediated screening methods by describing the development and validation of a de-novo

structure based design algorithm known as ADAPT. ADAPT attempts to circumvent

problems of chemical diversity and library size by using rigid chemical fragments to

build populations of whole molecules that evolve towards high binding compounds. We

showed that ADAPT was capable of regenerating known chemical scaffolds and

generating novel scaffolds which could be further explored. In chapter II, I further

develop the idea of de-novo design through the structure-based design, optimization, and

in-vitro evaluation of the first small molecule mimetic of a 6-peptide inhibitor of PDZ

domains. The scope of the project, spanning early design and conception to in-vitro

evaluation, served to validate the computational chemistry techniques and methods

developed and used in our laboratory. Lastly, chapter III details early work focused on

improving the current paradigms for protein-protein docking. The algorithm and results

described therein illustrate how a reduction in the dimensionality of the search problem

by docking in two dimensions instead of three enables us to achieve results attained by

traditional 3-dimensional approaches in significantly shorter amounts of time.

2–
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Introduction

In the two decades that structure-based drug design has existed, it has evolved

from arcane academic theory into a mainstay of pharmaceutical drug development.

Researchers rely on computational chemistry to routinely answer questions relevant to a

number of fields including chemistry, biology, bioengineering, and nanotechnology.

Nevertheless there remains a need for the continued research and development of new

algorithms and tools that enhance our understanding and deepen our analysis of both

simple and complex molecular systems. Constant innovation and discovery in the field

enables us to apply conventional approaches beyond the confines of their original design

objectives. The body of this work builds on the existing work in by Kuntz and co-workers

by extending and hypothesizing upon the functionality of the DOCK algorithm beyond

the common paradigm of database screening.

Molecular docking, as first implemented by Kuntz and co-workers in the early

1980’s, led to our ability screen 3-dimensional databases for putative small molecule

inhibitors of a given target". The approach was fundamentally based on measuring the

geometric and energetic components of a two-body interaction. That simple approach has

since been extended to enable compound optimization, computational toxicology, and a

number of other applications. Chapter I describes another extension of the DOCK

paradigm into a scoring function that drives de-novo molecular design in a program

known as ADAPT. Our goal was to develop a method capable of developing new ligands

using information from the three dimensional (3D) structure of a protein target without

the prior knowledge of other ligands. Current computational de-novo methods use the 3D

structural information of the target to narrow the search for interesting ligands. One



strategy is to join compound fragments, which fit favorably into the active site” either by

constructing linking atoms or by searching a database of possible linking structures.”

This strategy often leads to many novel and potentially useful compounds that are very

dependent on the placement and selection of the fragments." Another strategy is to

construct a molecule within a binding site by “growing’ it from a seed atom or fragment,

using the site's steric and/or energetic properties to guide the growth of the compound."

* Molecules built in this manner are often sensitive to the position and choice of the

seed atom used and are difficult to synthesize.” Scott C-H Pegg and I designed the

ADAPT program to circumvent the limitations of conventional 3D database searching by

allowing the program to build populations of small molecules from rigid chemical

fragments and using a genetic algorithm to evolve these populations towards high-scoring

compounds. DOCK forms the basis of a genetic fitness function that weeds out low

scoring members of the population. The ADAPT approach does not rely on pre-existing

knowledge of known compounds against a target. Instead, it uses a well-validated method

(molecular docking) to guide the design process. The program proved itself capable of

generating strong, though not optimal, chemical scaffolds against three known targets.

Once an initial scaffold is identified, molecular docking can continue to play a

central role in optimization of that scaffold. Structure based design played an important

role in the design of inhibitors against glyceraldehyde-3-phosphate dehydrogenase”,

°. This design-optimizationHIV-1 protease, kinesin”, and HIV-1 fusion protein’

paradigm is illustrated in the second chapter, which describes the de-novo structure based

design, optimization, and in-vitro validation of the only known small molecule 6-strand

mimetic inhibitor of PDZ domains. PDZ domains were originally described as conserved



structural elements in the 95 kDa post-synaptic density protein, PSD-95; the Drosophila

tumor suppressor, Discs-large Dlg; and the tight junction protein, zonula occludens-l

ZO-1. The domains are small, usually of 80 amino acids, and often present multiply in

adaptor proteins and with other protein interaction domains. They have emerged as

important modular protein interaction domains in a wide variety of eukaryotic organisms.

In general, PDZ domains mediate subcellular organizing of protein complexes bringing

proteins with various functions to one locus. They have been found to be associated with

ion channels, transmembrane receptors, structural proteins, and regulatory enzymes.”

The central role of PDZ domains in mediating cell signaling and cell-cell interaction is

emerging in diverse fields from neuroscience to protein trafficking to cancer. Because of

the structural similarity between several reported structures of PDZ domains, both with

and without bound ligand, we considered it feasible to design novel ligands to MAGI-3

PDZ2 domain by working with the structure of PSD-95 PDZ3 domain bound to

KQTSV.” An ideal small molecule mimetic of the peptide ligand must be able adopt a

conformation similar to that of the native ligand and present critical side chains to the

domain in similar orientations. Molecules designed using structure as a starting point for

the rational design process have an advantage in that they are inherently directed at the

biologically relevant forms of their target, and are capable of successfully binding to the

desired targets. Bolin and co-workers used a similar approach in the rational design of

inhibitors of inhibitors of antigen presentation by HLA-DR class II MHC molecules.”

Furet et al. used extensive crystallographic data to design a high-affinity antagonist of the

Grb2-SH2 domain.” A collaborative project between the Kuntz and Guy laboratories,

this project spans the range of activities from early scaffold design to the in-vitro



measurement of the compound's activity against the desired target, and confirms the

utility of structure-based design protocols.

Scientists have also extended the same principles used in docking small molecules

to target receptors to docking proteins against other proteins. This problem poses both a

theoretically and computationally more difficult problem because the scale of the objects

involved, the increase in the degrees of freedom in the computation, and the dynamic

complexity of the protein-protein binding phenomenon. Some protein-protein docking

methods evaluate the complementarity of molecular surfaces to determine how well two

proteins fit together. Other approaches focus on matching surfaces”, and some enhance

the search for geometric fit by matching the positions of surface normals and spheres’842.

Some shape algorithms model the hydrophobic effect during association from the change

in the solvent-accessible surface area of the molecules”, while others employ a

simplified scheme to estimate electrostatic, hydrophobic, or desolvation contributions to

dimer formation". Most of these methods have focused on rigid body docking, and in

general achieve respectable success (typically 1-3 A RMS). Several groups have

additionally focused on finding the correct orientation among a large number of false

positives". Recently, the use of soft-body docking and side-chain enumeration has

yielded greater sensitivity to the protein-docking results". It should be noted however,

that the use of non-complexed models instead of co-crystallized complexes to dock

partners to each other does not necessarily generate similar results in terms of time and

accuracy. One last class of approaches transforms the problem from three dimensions

into two. Sternberg and coworkers extended their Fourier transform-based approach from

small molecule docking to protein-protein docking”. Several groups have extended this



method to show that a reduction in dimension yields high sensitivity (< 2 A RMS in some

cases) while increasing the speed of the analysis “. In chapter III this thesis expands upon

this area by investigating the use of a 2-dimensional method for protein-protein docking.

The method requires the use of a projection algorithm that transfers 3D data such as the

solvent accessible molecular surface, the surface electrostatic and van der waals

potentials, and any other relevant chemical information into a 2-dimensional map. The

process is reminiscent of projection algorithms that result in topographical maps. The

central hypothesis underlying this particular project is that the reduction in the

computational degrees of freedom enables a much faster analyses of putative protein

protein interactions, without a reduction in sensitivity or specificity set by the most

current 3-dimensional docking methods. The approach is evaluated in one well studied

system as a proof-of-concept pilot study.

Science advances as function of the amount and complexity of our knowledge of

the world around us. I have always believed, however, that the practical application of

our knowledge leads to additional advances for humanity at large. To the layman, our

ability to design better therapeutics, treat diseases, and ease pain are more tangible

manifestations of our advancements. This thesis is built upon that belief by focusing on

the extension and application of molecular docking.
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Gloss to Chapter I

Chapter I is based entirely on the development and validation of ADAPT, a

genetic algorithm for searching chemical space. The interest in this approach stemmed

from a desire to sidestep the limitations of a 3-dimensional chemical database. Most

structure based design methods require the use of such in-silico 3-dimensional databases

to generate promising lead compounds. The commonly cited drawbacks of the

dependence on 3-dimensional databases are the lack of chemical diversity, the inability to

simultaneously screen for multiple properties, and the inability to incorporate chemical

optimization into a rapid screen.

The approach described in this chapter overcomes many of these traditional

limitations by implementing de-novo chemical design, a methodology that will be further

illustrated in chapter II. The principles behind de-novo design dictate an independence

from whole molecule databases, and instead focus on the use of atomic or chemical

fragment databases to access combinatorially larger numbers of chemical entities.

However, our ability intelligently search through this combinatorial space is dependent

on our screening function (in this case, DOCK), and our ability to optimize this function

in the context of chemical space.

The approach uses a genetic algorithm to traverse the chemical space defined by

the accessed by a library of chemical fragments that are combined to build whole

molecules. Genetic algorithms are optimization schemes that model Darwinian evolution.

They have the advantage of being able to optimize across many different functions

simultaneously, producing a user-defined number of results. Genetic algorithms are not

known to be the greatest optimizing functions because of their inability to converge to a
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single consistent solution. Rather, they often return larger numbers of good, though not

optimal, solutions. Genetic algorithms are a consistently used in computational biology

for a variety of applications including protein folding, de novo drug design, and

bioinformatics.

In the context of drug-design, genetic algorithms enable us to screen large

numbers of compounds using multiple criteria and identify a user-defined number

compounds that have strongly meet those criteria. We began the development of the

ADAPT program with high hopes for a finely-tuned de-novo design program. However,

it instead proved itself to be more useful for generating general solutions to a design

problem, rather than something that could “pick a needle out of a haystack.” This lesson

turned out to be quite useful in a later project (discussed in chapter 2) that relied on a

generalized approach to the design of a small molecule peptide mimetic. ADAPT

returned very strong results, but never identified the optimum solution. In some ways,

this typical GA behavior validated our implementation of the algorithm. Many of the

previous adaptations of a genetic algorithm in computational biology resulted in similar

results.

This chapter is presented in the form of a journal article published in the Journal

of Computer-Aided Molecular Design. The project actually grew out of my rotation

project with Tack during my first year in graduate school – a ‘toy ‘genetic algorithm that

showed the evolution between a cube and a sphere. While inherently impractical, it was a

good means of developing a foundation for understanding the practical implementation of

genetic algorithms. This project was also my first lengthy programming project outside of

the classroom. Working with Scott Pegg was beneficial because the interaction created

:
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numerous opportunities to share theoretical insights, as well as learn programming

methods from an experienced programmer. In the beginning, Scott and I shared full

responsibility for developing the code and the various algorithms that would eventually

become the program. Midway, we decided that the code would seem more consistent if

one person rewrote the code into a more efficient implementation of our ideas.

Subsequent to the completion of the code, Scott and I split up the validation experiments.

I focused primarily on showing proof-of-concept on the lengthier HIV-1 RT exercise.

Incidentally, the first book Tom Ferrin had me read before entering graduate school was

“An Introduction to Genetic Algorithms’ by Goldberg.

>

f {

2.
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Abstract

Genetic algorithms have properties that make them attractive in de novo drug

design. Like other de novo design programs, genetic algorithms require a method to

reduce the enormous search space of possible compounds. Most often this is done using

information from known ligands. We have the developed the ADAPT program, a genetic

algorithm which uses molecular interactions evaluated with docking calculations as a

fitness function to reduce the search space. ADAPT does not require information about

known ligands. The program takes an initial set of compounds and iteratively builds new

compounds based on the fitness scores of the previous set of compounds. We describe the

particulars of the ADAPT algorithm and its application to three well-studied target

systems. We also show that the strategies of enhanced local sampling and re-introducing

diversity to the compound population during the design cycle provide better results than

conventional genetic algorithm protocols.
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Introduction

The ultimate goal of structure-based de novo drug design is the ability to develop

new ligands using information from the three dimensional (3D) structure of a protein

target without the prior knowledge of other ligands. The search space of all possible

chemical compounds is far too large to be enumerated", while the locations of bioactive

drugs within this space tend to be spare, non-contiguous, and very difficult to predict a

priori. Current computational methods use the 3D structural information of the target to

narrow this search space. One strategy is to join compound fragments, which fit

* either by constructing linking atoms or by searching afavorably into the active site

database of possible linking structures. “” While this strategy leads to many novel and

potentially useful structures, the resulting compounds are very dependent on the

placement and selection of the fragments." Another strategy is to construct a molecule

within a binding site by “growing’ it from a seed atom or fragment, using the site's steric

and/or energetic properties to guide the growth of the compound."” This strategy can

also result in useful structures, but the molecules built are sensitive to the position and

choice of the seed atom used and often leads to molecules that are difficult to synthesize.

[10,16]

Genetic algorithms have recently been applied to the problem of de novo drug

design. Based on the concepts of natural selection, genetic algorithms operate by creating

a set of proposed solutions to a problem of interest (a population'), evaluating them

(‘fitness pressure’), and then using the best solutions to develop a new set of proposed

solutions (‘breeding’). Genetic algorithms have several properties which make them

attractive in de novo ligand design, the most important being the ability to perform well
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when the search space is large and incompletely understood, the fitness functions are not

exact, and a global minimum is not required. Unlike incremental growing schemes,

genetic algorithms can use properties of whole compounds to guide the generation of new

compounds. Properties such as absorption, distribution, metabolism, and excretion

(ADME) cannot easily be calculated from molecular fragments or partially constructed

compounds, and they are of increasing importance in today’s drug development

climate." Another potentially attractive feature of genetic algorithms is the production

of an ensemble of solutions. A diverse set of proposed compounds can help to avoid

patent issues and provide ‘back up’ compounds of different chemical classes, which can

be used if the initial compounds fail during drug development.

As with other computational de novo design strategies, genetic algorithms require

a method of reducing the allowable search space. Most of the currently published genetic

algorithm strategies use fitness functions that rely upon knowledge of a template ligand

or pharmacophore to restrict the space of allowable compounds. Such fitness functions

include similarity to a specific known ligand *', fitness to a pharmacophore template
[19-21]derived from putative or known ligands , and the presence of properties previously

* These strategies use implicitdetermined by structure-activity relationships.

information about the target, and are not solely structure-based strategies. Exceptions

include the method of Glen and Payne in which a set of pharmacophoric constraints is

*" and a genetic algorithm implementation whichbuilt directly from a protein active site

used experimentally measured binding affinities as a fitness function.” It has been

suggested that current molecular docking methods, in which the steric and energetic fit of

a ligand to a target site is estimated, could be used as a fitness function.” Such a

º
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function would restrict the search space using information from the 3D structure of the

target without using knowledge of existing ligands. Recently, Sheridan et. al. published a

further development of their genetic algorithm for designing combinatorial chemistry

compound libraries, which incorporates docking calculations into the fitness

function.” While similar to our approach, their algorithm has been demonstrated on

compounds built only via linear combinations of fragments, and uses a docking

calculation in which only a small number of rigid conformations of each compound are

scored.

We present here the ADAPT program, a genetic algorithm for structure-based de

novo drug design which builds compounds as acyclic graphs of fragments and

incorporates the use of flexible docking calculations into the fitness function. We first

give the details of the genetic algorithm implementation, and then show its application to

ligand design problems in which we demonstrate the searching ability of the genetic

algorithm, the effects of forcing local sampling, and the performance enhancement of

adding extra diversity to the compound population while the genetic algorithm is running.

We also demonstrate application of the program to three protein target systems in which

we can recover fundamental properties of ligands known to bind to these targets.

- 17



Methods

Genetic Algorithms

Genetic algorithms are a type of stochastic search algorithm originally developed

by Holland * based on the concepts of Darwinian evolution.” All genetic algorithms

start with a population of proposed solutions to a given problem. In the de novo drug

design case, the population is a set of small molecules and the problem at hand is that of

building bioactive compounds with desirable properties. The population is subjected to a

fitness pressure in which the individuals are evaluated in terms of how well they solve the

given problem. The individuals are then bred to create a new population, with the more

‘fit’ individuals being chosen to breed more often. This breeding is usually done using an

adaptation of the crossover and mutation events observed in DNA replication. The

genetic algorithm cycle continues though generations of evaluation and breeding until

sufficiently good solutions have been found. Figure 1 shows a genetic algorithm cycle

and its application to the de novo design problem. The following are the specifics of our

particular adaptation of genetic algorithms to structure-based de novo ligand design.

Compound representation

In the ADAPT program, compounds are represented by an acyclic graph of at

most 16 fragments, with the user defining an upper and lower bound on the number of

fragments per molecule. The fragments themselves are defined by the user via an adapted

subset of the SMILES line notation ", and each fragment can have, at most, 8 user

defined points to which other fragments may be attached. The fragments reside in a linear

order in a file such that chemically similar fragments are located next to each other in the

- 18



fragment file (this order can also be hand-edited). This order is determined using a

combination of binning and “gray-scaling” based on Daylight fingerprints". Fragments

are first binned by the number of 1’s in their fingerprint and the bins are sorted according

to the number of l’s per fingerprint. The fragments are then sorted using a walk, which

starts with a randomly chosen fragment from the bin holding fragments with the fewest

number of 1’s. The next fragment in the walk is chosen from the same bin as the

fragment with the largest number of 1's in common with current fragment. When the

current bin is empty, the next fragment is chosen from the next bin. The user may

designate one fragment to be a “scaffold', in which case each compound must have one

(and only one) occurrence of that particular fragment.

Starting generation

The starting generation can either be a diverse set of compounds, or it can be

based on a user-defined compound. A diverse population of compounds is generated by

choosing fragments at random and assembling them at random attachment points one at a

time. Iteratively adding a node to the graph via a single new edge creates a connected

graph with N nodes and N-1 edges, which must be acyclic. When the starting generation

is seeded with a user-defined compound, the initial generation is built by randomly

adding, subtracting, or swapping at most two fragments from the original structure. The

user must define the original compound as an acyclic graph in terms of fragments (from

the fragment file) and their connectivities. A copy of the original compound is included

unchanged in the first generation.
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Initial Generation
Random or directed set of compounds

Fitness Pressure _1

Scoring of compounds according to desired
prperties

Survivors
The best scoring compounds of the generation

Breeding
Construction of new compounds via operations

on the survivors

New Generation
Survivors plus new compounds

Termination Check
Fitness not increasing offitness goal reached

Figure 1. The genetic algorithm cycle and its application to drug design. An initial set of
compounds is scored according to a set of desired properties, such as estimated binding
affinity. The best scoring compounds of the generation are considered “survivors’ and are
used in the construction of new compounds. The next generation, consisting of survivors
of these new compounds, is then subjected to the fitness pressure. The cycle typically
continues either for a set number of generations, or until the fitness scores no longer
improve - 20



Fitness evaluation

The major fitness evaluation of the ADAPT program is performed by the

DOCK4.0 program” which gives an estimate of the steric and energetic fit of a ligand to

a receptor site, taking into account ligand flexibility. Compounds are first converted to

SMILES strings by our genetic algorithm, and then to a single three dimensional

conformer using the CONCORD" module of the SYBYL program.” The DOCK score

is computed as a pairwise potential between atoms of the ligand and atoms of the active

site. The scoring function contains two terms, a standard 6-12 Van derWalls term and a

1/r electrostatic term.”

Also implemented are functions to measure simple physical properties of the

assembled molecules such as CLogP (using Daylight’s “clogp” program), molecular

weight, number of rotatable bonds, and number of hydrogen bond donors/acceptors.

These functions are scored according to a plateaued normal distribution (see figure 2) in

which values between the user-defined plateau range return 1.0 and otherwise return

values between 0 and 1 according to a user-defined normal distribution that makes up the

edges of the plateau. Each fitness measure has a user-defined coefficient, and the overall
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I if A * x < B
N(u, o] if x < A or x > B

Figure 2. The plateau fitness function. Values of properties within the defined
limits A and B return a score of 1. For values outside this range, the scoring
function returns the value of the normal distribution (with mean and standard
deviation defined by the user) that has been split in half and moved to the
edges of the plateau.
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fitness of a compound is simply the linear sum of each measure multiplied by its

coefficient,

fitness = C. Seat C.S.* C.S.* Cº-Se…" Caº See

where C. is the coefficient for score S., which (with the exception of Sec.) is defined by

1 if An s x < Bn
S(x) =

N(Au, or) if An > x or B, * x

where N(u, o] is a normal distribution with mean Au and standard deviation o defined by

the user, and An and Bn are boundaries determined by the user for each of the fitness

functions (see figure 2). Once each compound has an overall fitness score, the top scoring

fraction (as defined by the user) of compounds is used as the parents for the next

generation. The user may also choose whether the parents are kept unchanged in the next

generation, or whether only their children continue.

Breeding

Breeding of a set of compounds to produce the next generation is done via

adaptations of crossover and mutation to the graph representation of the compounds.

Crossover occurs by swapping a subset of nodes between two graphs. The number of

nodes is chosen at random according to a decaying exponential distribution (biasing the

exchange towards a smaller number of nodes), and the nodes themselves are chosen by

choosing a random node and then performing a random walk through the graph to build a

connected set of nodes. The sets of nodes swapped are either of equal size, where the

crossover process is isomorphic to a recoloring of nodes according to type, or are of
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unequal sizes, in which case the crossover process is equivalent to a recoloring of nodes

followed by the addition or removal of nodes with one edge per node being added or

removed. Because the sets of nodes swapped are themselves acyclic graphs, the cases of

-
equal and unequal set sizes both lead to acyclic graphs. The parents for crossover are

chosen via an “elitist’ scheme, in which the probability of being chosen is proportional to

a compound's relative fitness within a generation, the more fit being chosen more often.

Mutation can occur to either the identity of the nodes or the connectivity of the

graph. The connectivity is mutated by choosing an edge at random and reconnecting it to

a node with an open attachment point at random as long as it doesn’t induce a cycle in the

graph. Because there are N-1 edges for N nodes in the graph, checking for a cycle is

equivalent to looking for a disconnected node, an algorithm that has complexity O(N).

Node identity is mutated by moving up or down in the fragment definition file. The

probability of a mutation is determined by the user, while the distance moved is

determined by a decaying exponential also defined by the user, such that short distance

moves are more likely. When the fragments are ordered in terms of chemical similarity,

this scheme causes the genetic algorithm to preferentially sample local chemical space.

Stopping

The ADAPT cycle will stop when the fitness of the generations ceases to

improve, the program has found a generation with fitness better than a defined goal, or

the program has gone a set number of generations. The user can set a threshold for the

required improvement of the fitness, as well as a window over which these values can be

averaged. When using a fitness goal, the algorithm may get stuck in a local minimum

~~

==

- 24



where the fitness of the generations is no longer improving, but the fitness value is not

near the goal. In this case, the ADAPT program adds “diversity’ to the current generation

by randomly adding, subtracting, or swapping at most two fragments from each

compound. This allows the program to jump' to another random (but not too distant)

point in chemical space from which it may have a better chance of reaching the fitness

goal. The user defines the number of generations the ADAPT program may progress

before this diversity is added.

à
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Results

We chose three well studied protein targets to test the ADAPT program on:

cathepsin D, dihydrofolate reductase, and HIV-1 reverse transcriptase. The cathepsin D

target was chosen because we have experimental binding data from a previous

combinatorial chemistry project” to which we could compare the results of ADAPT

applied to the same combinatorial scheme. Dihydrofolate reductase was chosen because it

would provide a larger search space than a simple combinatorial chemistry scheme, but

one in which there exists a well-studied ligand (methotrexate) that would allow us to test

the effects of seeding the initial population with a known ligand. HIV-1 reverse

transcriptase was chosen because the non-nucleoside binding site accepts a wide variety

of known ligands, representing a large search space, but with a specific structural theme

that we could attempt to rediscover with the ADAPT program.

~
-
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Cathepsin D

In a structure-based design collaboration, a peptidomimetic scaffold with three

substituent positions was combined with a 10 x 10 x 10 set of side chain groups in an

effort to develop non-peptide inhibitors to Cathepsin D.” All 1,000 resulting

compounds were synthesized and tested experimentally for inhibition. Figure 3 shows the

set of fragments and the scaffold. Our interest here was to see if we could determine,

using the ADAPT program, which of the side chain groups, and at which positions,

would produce the best inhibitors.

With current computational molecular docking methods, 1,000 compounds is a

small number to evaluate, and represents a small chemical search space. In order to create

a larger, yet still practical search space, we let any of the 25 fragments be at any of the 3

scaffold attachment sites, giving us 15,625 unique compounds in our search space. We

performed ten runs of the ADAPT program, each going through 50 generations, using

DOCK as the only measure of compound fitness. The values of other ADAPT parameters

are given in table 1. By the 50" generation, the average fitness of the compounds within a

generation was no longer improving rapidly (see figure 4). Also, by the 50" generation,

the number of unique compounds was much lower, indicating that we were converging

on specific structures in our chemical search space (see figure 5).

Figure 6 shows a histogram of the fragments occurring at each position in the

final generations of the ten runs of ADAPT. At positions R1, R2, and R3, there were 8, 7,

and 7 fragments, respectively, which occurred more than once in the final generations. A

combinatorial library constructed by using the fragments and positions identified by

ADAPT would result in a 8 x 7 x 7 = 392 compound library. This library would contain
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four of the seven inhibitors identified experimentally at 100nM in the synthesized 1,000

compound library, including the single compound with the lowest inhibition constant.

There could, in fact, be more inhibitors in the ADAPT based library, but experimental

data exists for only 24 of the 392 compounds. Evaluated on the basis of just DOCK

scores, the ADAPT based library has a better score distribution than the synthesized

library (see figure 7).

None of the 23 inhibitors identified in the synthesized library at 330nM were

found as individuals in the final generations of the ADAPT runs, however. This is not

surprising, since the fitness space defined by the DOCK score does not mirror precisely

the binding landscape of the cathepsin D active site, and the chemical space searched by

ADAPT was roughly 15 times larger than the synthesized library. In fact, the known

inhibitors, while still mostly in the top 15% of the landscape have an overall worse

DOCK score distribution than the ADAPT produced compounds, which are all within the

top 1% (see figure 8). Nevertheless, the DOCK score provided enough information to

allow ADAPT to identify the fragments present in the majority of the best inhibitors.

To investigate how well our genetic algorithm is sampling the space of possible

compounds, we scored the fitness of all 15, 625 possible compounds using DOCK. This

allowed us to see the overall ranking of any compound generated by the genetic

algorithm. Figure 9 compares the genetic algorithm with a random search in terms of the

fractional ranking expected at random divided by the fractional ranking of the worst

scoring survivor of a given population. This gives us a measure of ‘enrichment’ over a

random search. We also ran our genetic algorithm ten times under the same conditions,

but with a fragment set that was randomly ordered instead of grayscale. While both the

2
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grayscaled and randomized fragment sets result in a positive enrichment over a random

search, the grayscaling of the fragment set to force local sampling produced much better

enrichment.

Overall, the ADAPT program was able to select the fragments (and their

positions) that were consistently present in the best inhibitors determined experimentally.

The program’s inability to directly produce the known inhibitors in the final generations

was likely due to their ranking in the binding landscape being slightly different than their

ranking in the landscape defined by DOCK scores. Our experiments with the cathepsin D

system also show that forcing local sampling by allowing fragments to mutate only to

other fragments that are chemically similar produces a more efficient search for high

scoring compounds.

à
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Parameter Value

Population size 12

Fragments per compound max 3

Fragments per compound min 3

Use scaffold TRUE

Dock_fitness TRUE

Num_dock runs 3

Dock fitness_coefficient 1.0

Clogp_fitness FALSE

Weight_fitness FALSE

Rotatable bond fitness FALSE

H_bond fitness FALSE

Breeding_fraction 0.5

Keep parents TRUE

Breeding_types Crossover, mutation

Mutation_types Identity

Mutation probability 0.5

Mutation_lambda 0,5

Table 1. ADAPT parameter settings used in the cathepsin D experiments.

*

==

- 30



O■ a * O.-

f 2
CI ** -CJ N | \3.jºrn = Sir

… N. S. \ph O
Cl H \, -_-_-_-_-_-_- ----------- 1

Cl * * * .* i

| -

F º ºe
Cl | * *; O^ S “. . . |

-O Öº (ºr
!

Cl | Br Cl
O i

_N
-

\º
* |

ºr, C■ . C.C.i
Br i

Cl *- :C s ° 9
f º | lºº,DCI | | ST Y2">~~

O |
\–d |

Cl Cl | O
F-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º-º----

-------------------------------

- O ar --

cº-
--"

C.
y w

O2N * * Cl

Figure 3. The fragments used in the cathepsin D experiments. At upper right
is the scaffold with three R groups labeled. The fragments bounded by the
solid lines were tested experimentally at R1, those bounded by the dashed lines
were tested experimentally at R2, and those bounded b by the dashed and
dotted line were tested experimentally at R3. Fragments in multiple regions
were tested at two(or three) positions. In the ADAPT experiments, all 25
fragments were allowed to be at any of the three scaffold positions

- 31 -



-45

–60 H

-5 5

-65 1– i

O 10 20 30 40 50

Generation

Figure 4. Improvement of the fitness score in the cathepsin D experiments. The
values are the fitness scores of the surviving compounds, averaged over all ten runs
of the ADAPT program

2
gº º

º

==

º
==

- 32



20
l l

0 10 20 30 40 50

Generation

Figure 5. The number of unique compounds per generation in the cathepsin D
experiments. The values represent the number of unique survivors across all ten runs
of the ADAPT program.
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Dihydrofolate Reductase

The enzyme dihydrofolate reductase (DHFR) with the small molecule inhibitor

methotrexate represents a well-studied system in structure based drug design.” We

applied the ADAPT program to this system to investigate three topics: how well DOCK

would guide the construction of compounds in a larger search space, the effects of

seeding the initial population with a known ligand, and the effects of adding diversity to

the population during longer runs of the program. The fragment set consisted of 13

fragments that make up methotrexate, logical modifications to those fragments (e.g.

replacement of a nitrogen in the pteridine ring with a carbon atom), and some basic

“building blocks”, fragments such as single carbon and nitrogen atoms. Figure 10 shows

methotrexate and some of the fragments from the fragment set. Included in the set are

building blocks general enough to allow virtually any acyclic hydrocarbon to be

constructed. With 32 fragments to choose from and compounds allowed to have between

3 and 13 fragments, a lower bound for the size of the chemical space is approximately

3.5x10°unique compounds.

We performed three sets of ten runs each with ADAPT, each set consisting of

identical parameters except for the random number seed, with DOCK as the only fitness

function. For the first set, the initial generation was based on methotrexate and the

ADAPT program was forced to run a minimum of 30 generations before stopping based

on a lack of improvement in the fitness score. For the second and third sets, the initial

generation was built randomly but the second set was forced to run a minimum of 30

generations while the third set was forced to run exactly 100 generations. Each run used a

2
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population size of 20, of which half were kept as survivors in each generation, and used

both crossover and mutation in breeding.

Figure 11 shows the distributions of the DOCK scores for the compounds in the

final generations of each of the three sets of runs, plus a distribution of the DOCK scores

of (unoptimized) randomly assembled fragments. All three ADAPT runs create

compounds that score much better than random, with the runs seeded with methotrexate

having both the narrowest and best scoring distribution. None compounds in the final

generations of the unseeded runs to 30 generations had DOCK scores better than

methotrexate while 94% of the compounds in the final generations of the seeded runs had

scores better than methotrexate. However, 28% of the compounds in the final generations

of the unseeded runs that were run to 100 generations had DOCK scores better than

methotrexate.

Despite generating a wide variety of structures, our genetic algorithm identified a

general motif present in known DHFR inhibitors. There were 98 unique structures among

the survivors in the final generations of the seeded runs, a selection of which is shown in

figure 12a, along with their DOCK scores. All of the structures had an essentially chain

like structure with a fused ring fragment at one end. Of the 98 compounds, all but two

retained the pteridine ring fragment at one end, while the chain extending from it varied

widely. In the second set of runs, in which the initial generations were not based on

methotrexate, there was still a large bias towards a fused ring structure at one end and a

flexible chain coming off of it, but the pteridine ring fragment was not seen in a high

fraction of the compounds in the final generations (21/100) Figure 12b shows a selection

of good scoring structures generated by the second set of runs. The DOCK scores of these

C
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Parameter Value

Population size 20

Fragments per compound max 13

Fragments per compound min 3

Use scaffold FALSE

Dock_fitness TRUE

Num_dock runs 3

Dock fitness_coefficient 1.0

Clogp_fitness FALSE

Weight_fitness TRUE

Weight range 410 to 450

Weight_standard_deviation 60

Weight_fitness_coefficient -10.0

Rotatable bond fitness FALSE

H_bond fitness FALSE

Breeding_fraction 0.5

Keep parents TRUE

Breeding_types

Mutation_types

Mutation probability

Mutation_lambda

Table 2. ADAPT parameter settings used in the dihydrofolate reductase experiments

Crossover, mutation

Connectivity, Identity
0.5

1.0

º
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compounds were all poorer than that of methotrexate and the compounds generated by

the first run. These results are in accordance with work by Verkhivker et al.” who

demonstrated that the DHFR/methotrexate binding landscape would accept mutations to

the end of the chain away from the pteridine fragment, and would accept virtually no

changes in the pteridine structure. In the set of longer unseeded runs, compounds were

generated with DOCK scores better than methotrexate, along with a higher occurrence of

the pteridine fragment (56/100). Figure 12c shows a selection of compounds generated

from the third set of runs.

To investigate the effects of adding diversity to the population during a long run

of the program, we ran the ADAPT program for 1,000 generations, adding diversity back

to the population every 200 generations. We compared this to doing 5 separate runs of

200 generations each. Figure 13 shows the fitness score distribution of the 5 final

generations of the individual runs and the fitness score distribution of the 5 generations

just before diversity was added to the population. The distribution of compounds at the

generations just before diversity was added has a better average fitness score and best

SCOTC.

The results of our experiments using on the DHFR/methotrexate system show that

the ADAPT program can evolve compounds with the basic motif of known ligands.

However, in a search for compounds with better fitness than a known ligand, using the

ligand to seed the initial population results in the faster production of better scoring, yet

still diverse compounds. Compounds with fitness scores better than the known ligand can

still be produced by ADAPT, but it requires runs with significantly more generations.

z.
**:
º

º
A
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~
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Our results also show that when performing long runs in search of good scoring

compounds, it can

- 42 -



Methotrexate
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-

2”

O ©-Cl |

Figure 10. The known DHFR inhibitor methorexate and fragments from ADAPT
runs. Fragments shown represent enough fragments to reconstruct methotrexate, as
well as a diverse selection of general fragments that were added to the set. The gray
circles represent attachment points.

- 43 -



:

C -

2- -

c
r -:

co - :

: -—

MTX — —
3 -— —- -

sº- -

C
*

Random Sceded Unseeded to Unseeded to
30 Generations 100 Generations

Figure 11. The distributions of DOCK scores for the compounds in the final
generation of the ADAPT runs and of randomly assembled compounds. The distance
between the top and bottom of the shaded box represents the inter-quartile range, the
dark line represents the median, and the brackets represent the extreme values of the
distribution. The random distribution represents 1,000 randomly assembled
compounds, while the other three represent the approximately 100 compounds (10
from each of 10 runs). The horizontal line shows the DOCK score of methotrexate
(-39.61).
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Figure 12A. Representative structures and their DOCK scores from the final
generation of ADAPT runs seeded with methotrexate.
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Figure 12B. Representative structures and their DOCK scores from the final
generation of ADAPT runs which were unseeded and run to 30 generations.
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Figure 12C. Representative structures and their DOCK scores from the final
generation of ADAPT runs which were unseeded and run to 10 generations.
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Figure 13. The distributions of DOCK scores for the compounds from the
final generations of 5 runs to 200 generations and the compounds from the
generations just before diversity was re-introduced in a run to 1,000
generations, adding diversity every 200 generations. Both distributions
represent 100 compounds. The distance between the top and bottom of the
shaded box represents the inter-quartile range, the dark line represents the
median, and the brackets represent the extreme values of the distribution.
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HIV-1 Reverse Transcriptase

The non-nucleoside inhibitors (NNI) of HIV Reverse Transcriptase (HIV RT) are

a chemically diverse class of compounds that non-competitively inhibit enzymatic

activity by binding to a specific site on the enzyme. Previous work indicates that a vast

majority of these inhibitors adopt a “butterfly-like’ geometry when bound in the NNI

pocket.” The axis of the butterfly's body is aligned almost parallel to the 69- 610

hairpin. Wing I is defined as the portion of the NNI binding site that lies closest to the

polymerase active site, while the section that lies distant from the active site is wing II.[41]

We applied the ADAPT program to the HIV-RT system in order to evaluate its ability to

reproduce scaffolds with “butterfly-like' shapes in their docked geometries, as well as its

ability to rediscover known scaffolds.

We chose a model of HIV-1 RT complexed with 1-[(2-hyrdoxyethoxy)methyl]-6-

(phyenylthio)thymine (HEPT) (pdb identifier 1RTI) as the target for our application. In

this model HEPT adopts butterfly geometry in its bound state. The NNI binding site was

characterized using sphgen and GRID as previously described.” Twenty-six chemically

diverse non-nucleoside inhibitors were fragmented into rigid segments in order to form a

library of 65 chemical fragments which ADAPT used to build compounds. With 65

fragments and 4 to 12 fragments per compound, a lower bound for the number of

compounds that can be constructed using this library is approximately 5 X 10°. Table 3

lists all the NNI’s used to create the fragment library. Figure 14 shows how

Thiocarboxyanilide UC781 was fragmented into its rigid fragments. We ran the ADAPT

program ten times, using a population size of 30 and using a combination of DOCK score

and a molecular weight score as the fitness function Other key parameters included the

-

P. 2.
º

3. | T.l
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use of crossover, mutation probability of 0.5, weight plateau boundaries of 214 to 415

(determined as the range of weights of known NNIs), and a weight plateau distribution

with standard deviation 100. After ten runs a total of 5,250 compounds were generated.

In order to characterize the “butterfly’ geometry criterion, five other HIV-RT

models complexed with different non-nucleoside inhibitors that adopt the butterfly shape

were superimposed onto the 1RTINNI binding site containing HEPT. The MidasPlus”

program was used to superimpose 1BQM (HIV-1 RT complexed with Quinoxaline),

1DTT (HIV-1 RT complexed with a phenylethylthioureathiazole (PETT) derivative),

1HNI (HIV-1 RT complexed with an o–APA derivative), 1REV (HIV-1 RT complexed

with 8-Choloro TIBO), and 1 VRT (HIV-1 RT complexed with Nevirapine) into 1RTI's

reference frame. Thirty-one residues (G93a-P97a, L100a-L101a, L103a, S105a-T107a,

V179a-Y183a, Y188a-S191a, P225a-W229a, G131a-D237a, Y318b) immediately

surrounding the NNI binding site served as the primary reference for orienting all the

models into the correct reference frame. The root-mean-squared-deviations for the 31

residues in 1BQM, 1DTT, 1HNI, 1REV, and 1 VRT to 1RTI are 2.86, 1.85, 2.33, 1.56,

and 1.78 angstroms, respectively.

Once superimposed, each atom in all six inhibitors was classified as belonging to

either wing I or wing II of the butterfly shape. We performed the classification by

dividing the butterfly along a plane containing N11 of Nevirapine, S' of HEPT, and the

Cö of L100a, and partitioning the heavy atoms of the ligands into each wing. Figure 15 is

a 2D projection of the atoms onto a plane perpendicular to that used to partition the heavy

atoms. The origin represents an end-on view of a vector connecting the N11 of

Nevirapine and the S atom of HEPT. The angle between best fit lines through all the
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TNK-651

O. APA

8-Chloro TIBO (Trivirapine)

BHAPU90152 (Delavirdine)

Pyridinone L-697,661

Thiocarboxyanilide UC781
Indole carboxamide L 737,126

Benzathiodiazine-1-oxide NSA287.474

Quinaxolinone 13a

Benzoxazinone DMP 266 (Sustiva)

Pyrrolobenzoxazepinone 4

Imidazopyridazine 33

Thiadozyl Dialkylcarbamate RD4-2024
Arylpyridothiodiazepine MEN 10979
DABO 12e

Hept Pyridinone Hybrid 18a
Benzyloxymethylpyridinone
Alkyl(aryltho)uracil

Diarylsulfone NPPS

Pyrryl Arylsulfone

Highly Substituted Pyrrole
MKC-442

Imidazodipyridodiazepine UK129,485
Phenylthiazolylthiourea (PETT)

Table 3. The 26 non-nucleoside inhibitors used to create the HIV-RT fragment library.
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Parameter Value

Population size 30

Fragments per compound max 12

Fragments per compound min 3

Use scaffold FALSE

Dock fitness TRUE

Num_dock runs 1

Dock fitness_coefficient 1.0

Clogp_fitness FALSE

Weight_fitness TRUE

Weight range 214 to 415

Weight_standard deviation 100

Weight_fitness_coefficient -10.0

Rotatable bond fitness FALSE

H_bond fitness FALSE

Breeding_fraction 0.5

Keep parents TRUE

Breeding_types

Mutation_types

Mutation probability

Mutation_lambda

Crossover, mutation

Connectivity,Identity

0.5

1.0

Table 3. ADAPT parameter settings used in the HIV-1 Reverse Transcriptase
experiments
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Figure 14. Decomposition of UC-871 into rigid fragments. A gray circle
indicates an attachment point.
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wings in each atom is 138°. In order to calculate the angle between the wings of each

ligand, the positions of all atoms in each wing are averaged to yield a ‘wing-point'

description of the wing's size position. The angle between the wings is represented by the

angle between the line connecting the wing-point in wing I to the origin, and the line

connecting the origin to the wing-point in wing II. The angles for the six known non

nucleoside inhibitors range from 105°-167° (HEPT: 141°, Quinoxaline: 106°, PETT:

149°, o APA: 157°, 8-Chloro TIBO: 167°, Nevirapine: 133°). In addition to facilitating

angle calculations, the distance of each wing-point from the origin can be considered a

measure of the relative size of each wing.

We analyzed the compounds generated by the ADAPT program in order to

determine how well the compounds fulfill the butterfly geometry. To count as a butterfly

compound, 50% of a ligand’s atoms must fill both wings; this was done to eliminate

those compounds that fill only one of the wings of the NNI binding site. 3,363 of the

5,250 (64.1%) compounds fulfilled this criteria. The atoms in the six known NNI's

examined are all found within 3.5 angstroms of the plane used to divide the NNI binding

site. Further, these same atoms can all be found within 2 angstroms of a best-fit plane

through the atoms in each wing. We used these distance criteria to assign the atoms in

each of the 3,363 compounds as belonging to either wing I or wing II of the NNI binding

site. These atoms were used to calculate the wing-point representing the atoms of each

wing in each compound. These points were projected onto the 2D plane perpendicular to

the partition between the wings. The angle between the lines connecting each wing-point

to the origin represents the ensemble average angle between the atoms in each wing of

the compound.
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-6 -5 3 4

Angstroms

–5 J Angstroms

Figure 15. 2D projection of heavy atoms fro HEPT, Quinoxaline, PETT, o
APA, Nevirapine, and 8-Chloro TIBO bound into the NNI binding site. Filled in
circles are atoms that occupy the wing I section, and empty circles occupy wing
II. The origin represents a vector between N11 of Nevirapine and S1 of 8-Chloro
TIBO. The angle between the linear best-fit lines through all the atoms in each
wing is 138”.
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Figure 16 is a 2D projection of all the wing-points; as before, the origin represents an

end-on view of the vector connecting the N11 of Nevirapine and the S' of HEPT. Each

point represents the average coordinate of a ligand’s wing. Lines drawn through each

wing intersect at an angle of 120°. This value agrees with the angle measured previously

by Ding et al." Figure 17 is a distribution of the angles in figure 16. The distribution has

a mean of 142° and a standard deviation of 21°. Figure 18 is a plot of the angles between

the wings as viewed against the distances of the wing points from the origin. The

distance of a wing-point from the origin is a rough measure of a wing's size. The wings

of a non-nucleoside inhibitor can adopt a range of angles, however the data shows that

the angle between the wings decreases as the average wing size increase. This is to be

expected since the geometric constraints of the binding site on the non-nucleoside

inhibitors are more pronounced when the compounds occupy more space within the site.

The ADAPT program was able to reproduce four known NNI scaffolds.

Effavirenz (Sustiva "), Pyrrolobenzodiazepinone, PETT, Dyarryl Sulfone —like

scaffolds were found among the butterfly like compounds (figure 19). Of particular note

is the PETT-like compound generated by the algorithm. Its real-world counterpart, MSC

127, was the result of an extensive synthetic chemistry program that explored over 750

variations of the lead PETT scaffold.” Overall, the ADAPT program was able to

reproduce a geometric constraint, the “butterfly' motif of known NNI's from the use of a

molecular docking fitness function. We also had some modest success in reproducing

known NNI scaffolds.
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-10 - Angstroms

Figure 16. 2D projection of the wings of all ligands that fulfill the criteria of having a
butterfly geometry. Filled circles are wing-points that occupy the wing I section, and
empty circles occupy wing II. The angle between the best-fit lines through each wing is
120°.
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Figure 17. The distribution of angles between the wings of 3,363 compounds
generated by the genetic algorithm that fulfill the butterfly geometry. The
distribution has a mean of 142° and a standard deviation of 21”.
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Figure 18. Angle between wing I and wing II as viewed against the distance of each
wing-point from the origin. Distancvesd from the origin provide a rough measure of a
wing's size. As the size of the wings increase, they are forced to adopt smaller angles.
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Algorithm Generated Compounds Actual Non-nucleoside Inhibitors

Or
NH Diarryl Sulfone

NH2
-

CI

HN \ / l, HN
R N Nººch, ! HTSO

H !
Optimized PETT (MSC- 127)

H Efavirenz (Benzoxazinone, DMP 266)
Sustiva

Figure 19. The algorithm recovered three of the known NNI inhibitors. Of particular
interest was the generation of a compound similar to MSC-127 (second row). This
compound was the result of an extensive synthetic optimization process that screened
Over 750 variations of the basic PETT scaffold.
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Discussion

We have developed the ADAPT program, a genetic algorithm for structure-based

de novo design which uses molecular docking as a fitness function. We discuss here the

utility of design algorithms that use a binding estimate as a fitness function compared to

the prior practice of a fitness function based on analysis of known ligands. We then

consider the benefits and hazards of forced local sampling with the ADAPT program, and

the difficulty in measuring the success of de novo design algorithms.

The ADAPT program shares the advantages of other genetic algorithms for de

novo design in that it can optimize under many constraints simultaneously and provide a

rich set of diverse solutions, however the use of molecular docking as a fitness function

introduces both particular advantages and disadvantages. The major advantage is that

information about known ligands to a particular active site is not required. This is an

increasingly important advantage as genomic sequencing projects and post-genomic

analysis produce a growing number of new protein targets for which no binding

information is known. Another feature of avoiding the use of known ligands is an

increased ability to discover more diverse compounds, a clear advantage in situations

where there may be competing patent issues, or where it is desirable to explore backup

candidates of different chemical classes. Information about known ligands can, of course,

be useful. The flexibility of ADAPT allows us to explore the value of this additional

information, as in our experiments with DHFR, where compounds based on methotrexate

were readily generated.

The major disadvantages to using molecular docking fitness functions are that the

calculations can be fairly slow, especially when they include ligand flexibility, and that
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any errors in the scoring function are propagated into the compound generation process.

The computational overhead forces the population sizes of the ADAPT program to be

relatively small and thus may cause us to loose some sampling ability. The genetic

algorithm of Sheridan et. al. opts for a larger population and fewer generations. The

optimal settings of parameters such as population size remains an area of open research in

genetic algorithm theory, with some arguing for high population sizes" and others for

small populations, especially when the cost of fitness evaluation is high.” As with

most genetic algorithms, ADAPT spends the vast majority of its time evaluating the

fitness function. Even when docking with relatively low orientational sampling, it took

approximately 5 hours to complete 100 generations with a population of size 20 on an

Silicon Graphics R10000 processor (the housekeeping of the genetic algorithm, including

crossover and mutation, took less than 10 seconds per generation.) Scoring errors from

the docking calculations may neglect certain important molecular interactions (e.g.

hydrogen bonding, desolvation”) and produce compounds that “score” well, but do

not necessarily have good experimental binding affinities. Genetic algorithms based on

pharmacophore and template models suffer from essentially the same problem, however.

Fortunately, the easy of programming genetic algorithms means that as new scoring

functions become available, they can be readily implemented and tested.

Fitness functions using molecular docking calculations can be designed to take

advantage of information not readily available in fitness functions based on

pharmacophore or molecular templates. One can, for example, build a fitness function

that advocates specificity by rewarding compounds that dock well into the active site of

one target while penalizing compounds that dock well into the active site of another
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target. One could also search for compounds that dock well to entire families of targets

by favoring only compounds that bind to multiple active sites.

Another advantage of the ADAPT program is the ability to let the user to specify

not only the specific fragment set used to build the compounds, but also the fragment

attachment points. This feature allows the user a fair amount of control over the possible

chemistry and can help to avoid the generation of synthetically difficult compounds.

Combinatorial chemistry schemes, such as that used in our experiments with cathepsin D,

are a clear example of this utility.

Our experiments with the cathepsin D system also show the advantage of forcing

a genetic algorithm to sample locally in chemical space. This makes sense, because it

leads to focused sampling near optimal solutions. We enforced local sampling by only

allowing mutations of fragment types to fragments similar in chemistry. Our

implementation of this is somewhat crude, however, and consideration of alternate

strategies such as binning fragments such that fragments can only be mutated or swapped

with fragments within the same bin is part of future work. Sheridan and Kearsley

demonstrated a performance improvement in their genetic algorithm through the use of a

type of binning scheme.” It may also prove fruitful to combine the genetic algorithm

search strategy with a more localized branch-and-bound style search.

Forcing mutations to be local in nature not unexpectedly increases the chance of

the optimization process being trapped in local minima. We have found that adding

diversity back to the population during a run of the ADAPT program can help alleviate

this by moving the algorithm to a random, but not too distant place in the search space.

Repeatedly optimizing from these semi-diverse points can lead to generating good
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scoring compounds faster than starting repeatedly from a completely diverse population.

Clearly there may be an optimal amount of diversity that should be added to provide a

good restarting point—too little diversity puts the algorithm back where it started and too

much diversity forces the algorithm to weed through many poor scoring structures. This

optimal amount of diversity may be system invariant and finding it is a consideration in

future work.

Measuring the success of any de novo design program is difficult, primarily

because the number of unique compounds that can be generated is much larger than the

number of compounds for which we have experimental binding data. One possible

measure of success is to see how easily an algorithm can reproduce a known ligand that

has been shown to bind experimentally. In this case the ADAPT program poorly in the

cathepsin D system, and has only limited success with HIV-1 RT and DHFR where the

chemical search space was deliberately much less restricted. In the DHFR experiments,

however, ADAPT produced compounds with fitness better than the known inhibitor,

indicating that our failure to reproduce the known inhibitor was at least partly the result

of the fitness function not having the known inhibitor as a minimum. Another possible

measure of success for a de novo design program is whether it can reproduce the trends

seen in known ligands. In this case the ADAPT program does fairly well in identifying

the ‘fused-ring plus chain' motif seen in DHFR ligands and the “butterfly' motif seen

non-nucleoside HIV-1 RT inhibitors, and does very well in identifying the side chain

fragments most likely to produce good inhibitors in the cathepsin D combinatorial

chemistry system. The difference in ability between finding known ligands and finding
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trends appears to be mostly the result of the DOCK score being an inexact measure of

true binding affinity.

Ideally we would like to be able to measure the success of a de novo design

algorithm by being able to accurately (and rapidly) compute the binding affinities of

compounds produced by the algorithm and simply analyzing their distribution. Binding

affinity is often not the only quality criterion of the user, however, and success is likely to

be measured differently under different conditions—there is no definitive magic formula

of properties for good drug candidates. Nevertheless, genetic algorithms are quite

attractive in their abilities to construct diverse solutions to problems with large search

spaces and many constraints. As ligand affinity scoring methods (and those which

consider other important properties in the drug development process) improve, genetic

algorithms (or hybrid variants) for structure based de novo design will become more

valuable and subject to greater scrutiny as strictly optimization methods in comparison to

other de novo design algorithms.
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Gloss to Chapter II

This chapter describes the design, optimization, and validation of a small

molecule mimetic of a beta sheet peptide. This project was collaboration between myself

and Naoaki Fuji and Kathleen Pendol from R. Kip Guy's laboratory. The object was to

discover a scaffold capable of mimicking the binding properties of a four amino acid long

beta peptide that bound to PDZ domains.

In general, PDZ domains mediate subcellular organizing of protein complexes

bringing proteins with various functions to one locus. PDZ domains were originally

described as conserved structural elements in the 95 kDa post-synaptic density protein,

PSD-95; the Drosophila tumor suppressor, Discs-large Dlg; and the tight junction protein,

Zonula occludens-1 ZO-1. The domains are small, and often occur multiply in adaptor

proteins and with other protein interaction domains. They are important modular protein

interaction domains in a wide variety of eukaryotic organisms. The central role of PDZ

domains in mediating cell signaling and cell-cell interaction is emerging in diverse fields

from neuroscience to protein trafficking to cancer.

The intended use of this chemical scaffold was a chemical genetics approach to

deciphering the functions of specific PDZ domains. Chemical genetics is an approach

that uses small molecules to regulate the expression of certain gene products, instead of

attempting to regulate the genes themselves through mutagenesis methods.

Chemicals have some advantages over genetic technologies: they are versatile research

tools that can be rapidly adopted by many labs and used for precise control of protein

function in cells where genetic manipulation is difficult.
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This project grew out of a desire to apply some of the principles and algorithms

we focus on here in the lab towards a practical problem. It was originally meant to be a

side-project, but soon took on a life of its own. While the traditional approaches (database

screening) were implemented in the outset, it was de-novo approach that led to the design

of the scaffold. I used of tried and true modeling tools and basic observation to design a

pteridine-based scaffold that Naoaki Fuji was extremely confident in. Working with a

truly talented and insightful medicinal chemist was very fulfilling, and brought a much

needed sense of reality to the work I was doing in our laboratory. I optimized the scaffold

in-silico based on chemical feasibility, as well as the scaffolds structural similarities to

known inhibitors. Similarly, the scaffold progression from simple drawings to an assay

validated compound with measurable activities and good SAR helped me attain a singular

goal most computational graduate students have: to start a project and see our approaches

and techniques validated with traditional wet-lab methods, and thus tell a “complete'

design story. It was by far one of the most fulfilling projects I have been involved in. Of

course, the fact that this is really the first small molecule compound to target these

domains adds a certain level of pride in this work.

The content in this chapter was written originally for submission to the Journal of

the American Chemical Society. This version the manuscript is the result of a first-draft

synthesis of everyone’s methods built on an introduction, structure-based design

discussion, and conclusion that I wrote. It has undergone numerous revisions since then

by a number of people working on the project, and remains a work-in-progress. The

breadth of techniques and general relevance prompted Kip to strive for a publication in a

journal with wider readership. At the time of writing this thesis, additional cell-based
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assay data was not available yet. A favorable cellular activity profile will add another º

layer of richness to this project, and enable us to pursue another series of publications that

reach a wider audience. In late-2002, this manuscript was redacted for submission to the º

journal Nature.
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De-novo Structure-Based Design, Synthesis, and

Evaluation of a Novel Non-peptide Indole Scaffold as a

fl strand Mimetic Ligands to PDZ Domains

Naoaki Fuji, Jose J Haresco, Kathleen Pendol, Irwin D. Kuntz, R. Kip Guy

Originally written for the Journal of the American Chemical Society.
Later rewritten for submission to Nature
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Abstract

PDZ domains have been found to mediate critical protein interactions that enforce

localization and organization of proteins in a variety of submembranous protein

complexes. The ability to modulate the functions of PDZ domains would greatly enhance

our knowledge of mechanisms of cellular signaling that depend on these actions. To

date, there have been no reports of non-peptide small molecules that bind specifically to

PDZ domains. We describe herein the structure-based design, synthesis, and in-vitro

evaluation of novel, non-peptide small molecules specifically targeted to the ligand

binding pocket of PDZ domains. Molecular scaffolds were designed from the co-crystal

structure of the PSD-95 PDZ3 domain complexed with its native peptide ligand, CRIPT

(KQTSV). Iterative molecular docking and modeling resulted in an optimized scaffold

that formed the basis for the organic synthesis of several scaffold with consideration for

the previously reported binding specificity of the MAGI-3 PDZ2 domain. Following

synthesis, these compounds were evaluated for affinity by an in vitro fluorescence

polarization competition assay. One of these molecules was found to bind with an IC50 in

the low puM range. This application effectively demonstrates the utility and efficiency of

structure-based design methods for use in the development of small molecule inhibitors

of protein interaction. In addition, this work suggests the possibility of developing

specific small molecule inhibitors for class I PDZ domains.
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Introduction

PDZ domains were originally described as conserved structural elements in the 95

kDa post-synaptic density protein, PSD-95; the Drosophila tumor suppressor, Discs-large

Dlg; and the tight junction protein, zonula occludens-1 ZO-1. The domains are small,

usually of 80 amino acids, and often present multiply in adaptor proteins and with other

protein interaction domains. They have emerged as important modular protein

interaction domains in a wide variety of eukaryotic organisms. In general, PDZ domains

mediate subcellular organizing of protein complexes bringing proteins with various

functions to one locus. They have been found to be associated with ion channels,

transmembrane receptors, structural proteins, and regulatory enzymes." The central role

of PDZ domains in mediating cell signaling and cell-cell interaction is emerging in

diverse fields from neuroscience to protein trafficking to cancer.

For example, the membrane bound guanylate kinase PSD-95 localizes and

clusters the N-methyl d-aspartate (NMDA) receptor and the Shaker potassium channel in

the post-synaptic density of neurons.” In some cases, multiple PDZ domains mediate

local interactions. For example, multiple proteins with PDZ domains localize LET-23, a

receptor tyrosine kinase of Caenorhabditis elegans' crucial for the development of the

vulva. Mutations of these PDZ domains result in a lack of vulval differentiation.

Recently, NHERF (Na+/H+ exchanger regulatory factor), which contains two PDZ

domains, has been shown to be involved localization and/or turnover of G-protein

coupled receptors, platelet-derived growth factor receptor, and ion transporters.”

The MAGI’s (membrane associated guanylate kinase of inverted orientation) are a

small subfamily of the MAGUK family of adaptors that are widely expressed in various
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human tissues and have six PDZ domains.” Some PDZ domain interactions of the MAGI

have been identified and their roles are currently under investigation. An interesting

interaction of the MAGI-2/3 adaptors is between PDZ2 and PTEN, a tumor

suppressor." PTEN encodes a lipid and protein phosphatase with a carboxy terminal

PDZ domain recognition sequence that antagonizes the activity of the

phosphotidylinositol 3-kinase/Akt signaling pathway. Mutations of PTEN causes down

regulation of this pathway and has been associated with various human cancers.” The

interaction of MAGI-2/3 and PTEN has been shown to greatly enhance regulation of

Akt/PKB kinase activity by allowing the formation of a PTEN associated complex.

Disruption of this interaction would be a unique way to investigate the role of the

interaction in Akt signaling.

In general, PDZ domains recognize carboxy terminal peptide ligands through a

conserved peptide-binding groove.” Upon binding, the ligand forms a new antiparallel

3 strand, with the peptide ligand making backbone contacts with 3 strand B in the PDZ

domain.” Structural data show that the ligand adopts a specific conformation within

the binding pocket implicit by the degree of order of the first five amino acids of the

ligand. PDZ domain primary structure and ligand consensus sequences have been used to

segregate PDZ domains into classes: class I domains recognize the sequence T/S-X-V/I-

COOH, class II domains recognize F/Y-X-F/V-COOH, and class III PDZ domains

recognize E/D-X-V-COOH. It is thought that these conserved ligand residues make

contacts that are required for binding with the class of PDZ domain.

Analysis of structural data from co-crystals has revealed much of the atomic detail

of the interaction between ligand and PDZ domain. The free carboxylate of the terminal
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residue forms an important basis for ligand recognition. The Gly-Leu-Gly-Phe (GLGF)

sequence common to class I PDZ domains forms the carboxylate binding loop and lies

between the ■ strands A and B, shrouding a conserved arginine or lysine.” In addition,

the carboxylate makes water mediated contacts with the conserved basic residue. The

binding of the free carboxylate of the ligand in the carboxylate-binding loop of the PDZ

domain directs the side chain of residue (0) to dip into a cavity formed by conserved

amino acid residues in the PDZ domain.” For most PDZ domains, this pocket is lined

with hydrophobic residues thus explaining why residue (0) in most PDZ ligands is

hydrophobic. The size of the pocket may account for differences in the nature of the

hydrophobic side chain with individual PDZ domains showing specificity for valine,

isoleucine, phenylalanine, leucine, or alanine.”

PDZ domains generally display a greater selectivity for amino acids upstream of

residue (0). Residue (-2) has been shown by crystallographic and mutational analysis to

be particularly important in PDZ binding and helps determine the PDZ domain class.”

Class I PDZ domains include a highly conserved histidine (H372) in the first position of

o helix 2 which has been shown to hydrogen bond with residue (-2), usually dictating

that this residue be a serine or threonine.

Mutational analysis has indicated that the identity of residue (-1) helps determine

ligand specificity for individual PDZ domains within a class. Crystallographic studies

have failed to explain these observations with available crystal structures not showing

consistent contacts between the side chain of this residue and the PDZ domain. However,

hydrophobic contacts have been seen in the structures of NHERF and syntrophin with

peptide ligands. Therefore, it is predicted that residues on the PDZ domain ■ strand C
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might impart specificity and add affinity through contacts with residue (-1) of the ligand.

Also, modeling studies have indicated that interactions between this side chain and

residues in 3 strands B and C might be responsible for imparting tight affinity when

optimized.” Similarly, residue (-3) shows contacts to the PDZ domain in some structures,

but the nature of the interaction has not been defined across PDZ classes. This may

indicate that this residue confers added specificity for discrimination between PDZ

domains. While it has been shown that minimally four residues will bind specifically to

PDZ domains, residues further amino terminal have an indistinct role in binding and

lending specificity.

Because of the structural similarity between several reported structures of PDZ

domains, both with and without bound ligand, we considered it feasible to design novel

ligands to MAGI-3 PDZ2 domain by working with the structure of PSD-95 PDZ3

domain bound to KQTSV.” An ideal small molecule mimetic of the peptide ligand must

be able adopt a conformation similar to that of the native ligand and present critical side

chains to the domain in similar orientations. Molecules designed using structure as a

starting point for the rational design process have an advantage in that they are inherently

directed at the biologically relevant forms of their target, and are capable of successfully

binding to the desired targets. Bolin and co-workers used a similar approach in the

rational design of inhibitors of inhibitors of antigen presentation by HLA-DR class II

MHC molecules.” Furet et al. used extensive crystallographic data to design a high

affinity antagonist of the Grb2-SH2 domain.” We report here the structure-based design,

organic synthesis, and in-vitro evaluation of a family of compounds based on a

substituted 1,2,6,7–indole scaffold designed to bind MAGI-3 PDZ2 domain.
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Methods

Structure Based Design of Ligands to PSD-95 PDZ3

Molecular docking as implemented in DOCK explores the degrees of freedom in

orientation and conformation of a small molecule in the context of a target receptor.”

The process of molecular docking begins with a characterization of the solvent accessible

surface of the receptor, followed by the generation of a negative image of the active site.

Subsequently electrostatic, Van der Waals, and atomic contact information about the

target site is generated and stored for future reference. DOCK then explores numerous

orientations of the molecule and calculates the receptor-molecule binding energy for each

placement. Recently, Zou and coworkers developed a version of DOCK (sDOCK) that

uses the generalized Born (GB/SA) model of solvation to calculate receptor-ligand

binding energies." The GB/SA approach allows for the estimation of electrostatic, Van

der Waals, and, additionally, hydrophobic contributions to the free energy of binding.

All DOCK experiments were carried out using an SGI R10000.

The crystal structure of the third PDZ domain of PSD-95 in complex with CRIPT

(protein data bank file 1BE9)" was used for the design of a chemical scaffold based on a

1,2,6,7 — substituted indole. To prepare the PDZ domain for docking, most

crystallographic waters were removed from the crystal structure. The water molecule

coordinated with R318 and the ligand carboxylate was retained in the crystal structure.”

The solvent accessible molecular surface of the ligand binding groove, as defined by

3Connolly,” was characterized using the dms” program included with MidasPlus

(Midas Plus molecular modeling software, UCSF Computer Graphics Laboratory). The
44program sphgen” was used to generate a negative image of the binding grooveg g 8
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consisting of spheres of various size. The heavy atoms of the 3 strand were then added to

the sphere set, and the total sphere set was reduced by removing any spheres with a

distance greater than 2.5 angstroms from the center of mass of the native structure. This

resulted in a final set of 127 spheres. Gasteiger charges” and hydrogens were added to

the receptor using the Amber 95 force field, as implemented in SYBYL 6.5,” and

electrostatic, Van der Waals, and contact grids were generated using the grid program.

During the scaffold optimization phase, large numbers of scaffold derivatives needed to

be built. An in-house Python script was used to generate SMILES" strings. CONCORD

(as implemented in Sybyl6.5) was subsequently used to convert the 2D descriptors to 3D

molecules and add hydrogens and Gasteiger charges.

Medicinal Chemical Analysis and Optimization of Ligands to PSD-95 PDZ3 and

MAGI-3 PDZ2

The scaffold was optimized by evaluating other ring systems and making

substitutions at selected sections of the indole ring (Figure 1). Figure 2 shows the various

substitutions that were evaluated. Decisions regarding the types of substitutions were

based on synthetic feasibility and previously reported binding interactions of the MAGI-3

PDZ2 domain. Each position on the indole was optimized independently to ensure the

synthetic feasibility of the molecules, and combinations of fragments were evaluated for

synthetic feasibility. Lastly, sDOCK was used to correct for solvation effects.
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Biochemical Evaluations

This section summarizes Kathleen Pendol’s biochemistry work on the project. A

fluorescence polarization competition assay was used to detect binding of the compounds

to MAGI-3 PDZ2. The PDZ domain was expressed as a GST construct using the

Pharmacia Biotech pGEX4.1 vector. Plasmid containing BL21 DE3 cells were grown in

1x LB media and induced with 1M IPTG at O.D.600 = 1 and harvested after growing for 4

hours at 37C shaking at 250rpm. The protein was purified through a glutathione

Sepharose bead slurry, eluted with 50mM glutathione, and concentrated and dialyzed

through 10000 MW Waters centricon filter. Protein was then quantified by Bradford

assay (Coomassie Plus-200 Protein Assay Reagent by Pierce) and BCA assay

(bicinchoninic acid reagents by Pierce). Protein identity and purity were checked by SDS

PAGE and western blot against anti GST antibody.

A flourescein labeled carboxy terminal sequence of PTEN, OregonCreen"-

PFDEDQHTQITKV-COOH, was used as a probe. For a positive control, we chose

PFDEDQHTQITWV-COOH, the highest affinity peptide sequence for MAGI-3 PDZ2

known.” To synthesize the labeled peptide we used standard Fmoc conditions on Wang

resin to build a 13 residue peptide. A typical coupling cycle includes deprotecting the

terminal amino acid with 20% piperidine in dry DMF, washing the resin 2-3 times with

DMF then methylene chloride and both again, and determining the existence of free

amine by ninhydrin kaiser test. A slurry containing coupling reagent 2.4 equivalents of

HBTU, the next N terminal amino acid to be added to the growing peptide 2.5

equivalents of Fmoc protected amino acid, 5 equivalents of DIEA in dry DMF. The

amino acid was coupled over 2-3 hours and the kaiser test was used to determine
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completeness. Coupling steps were repeated if a positive kaiser test resulted. This

method was used for each residue of the peptide. The finished peptide was cleaved from

the resin with 95% TFA with a cocktail of scavengers including thioanisole and phenol.

The peptide was precipitated with ether and lyophilyzed. Peptides were purified using

HPLC and identified with MALDI mass spectrometry.

To detect binding of our compounds to the PDZ2 domain of the MAGI-3 protein,

a competition polarization assay was employed. The buffer included 35mm HEPES at

pH 7.4, triton X-100 0.01%, KCl 10mM, NaCl 10mM, MgCl2 50p.M. The protein was

added to a final concentration of 100nM and the probe, 10nM. The competitor was then

added to final concentration range of 10pm to 300puM. To dissolve these hydrophobic

indole scaffold compounds 0.12% DMSO was needed. This amount was also added to

the control peptides for the assay. Triplicates of the samples in a total volume of 201D

were transferred to 384 well Corning opaque plate for analysis. Fluorescence

polarization was measured at equilibrium by LJL Biosystems plate reader. Competition

data was fit to a one-site competition expression and the IC50 values of the nonpeptide

compounds were compared.
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Gln(-3) (-1) OH
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*SN N 9 o GLGF motif
H = H fO --> HN ‘.
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HN .*. Thr(-2) Val(0)º

1 Q hydrophobic
pocket

B C-terminus

Thr(2) 9

C Ser(-1)
C-terminus

N

N

Rs
Gln(-3), Thr(-2)

4a: Ri= CO2H, R2= CH3, R3= (CH2)2Ph, R4= CHOH(CH2)3CH3. Rs= H
4b: R1= CO2H, R2= CH3, R3={ CH2)2OH, R4= CHOH(CH2)3CH3. Rs= H
4c: R1= CO2H, R2= CH3, R3= (CH2)2Ph, R4= (CH2)4CH3. Rs= H
4d: Ri-CO2Me, R2= CH3, R3=(CH2)2Ph, Ra-CHOH(CH2)3CH3, Rs= H
Figure 1. Design of novel scaffolds to mimic the side chain
presentation of the four carboxy terminal residues of the PDZ domain
ligand. Panel A shows the four terminal residues of a class I PDZ
domain ligand, indicating important contacts with the receptor. The
specific side chain to side chain hydrogen bond is highlighted. Panel
B shows two early designed scaffolds indicating the enforced tending
toward lower molecular weight and decreased conformational
flexibility in the ligand. Panel C shows the final designed scaffold and
targeted variations.
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Results

Structure Based Evaluation of Designed Molecules

Analysis of the co-crystal structure of PSD-95 PDZ3 with the CRIPT ligand gave

the geometry of the bound ligand in its 3 strand conformation. Inspection of the 3 strand

revealed that its conformation was uncharacteristic of other ■ strands. The phi/psi angles

of an antiparallel 3 strand have been shown to be around 113°/180°. These angles for the

0, -1, and -2 residues are 117.7°/110.4°, -106.6°/149.3°, and -101.9°/178.4°, respectively.

Presumably, this uncharacteristic conformation allows the Val(0) to dip towards the

hydrophobic cavity in the PDZ domain binding groove. In order to preserve the

orientations of the carboxylate and the Val(0) side chain, we measured the distances and

angles using Weblab" between the a carbons of residues 0 and -1 and manually matched

them to those of simple rigid cores. Several rigid cores, including various forms of

indoles, naphthalenes, and indenes were evaluated. Only an indole shape adequately

preserved these distance and angle restraints. The distance between the o carbons of

residue 0 and -1 is 3.81A, with the angle between the corresponding side chains being

180°. The distance between the indole N1 and C7 is 3.85A. Derivatives at these

positions of an indole scaffold would have the same relative orientation in the binding

groove as their native side chain counterparts. Figure 1 shows the native peptide ligand in

its 3 strand conformation, 1, and the structures observed to mimic the orientation and

position of the ligand carboxylate and the Val(0) side chain in the PDZ ligand binding

pocket, including an indole scaffold, 4.

Scaffold design and optimization ensued from efforts to maintain functional

groups that account for required contacts to the PDZ domain and include positions to

3
* - º º

J

-84 -



extend the structure to impart additional affinity and possibly specificity. Our

structurally most promising computational hit, 2 (Figure 1), did not contain synthetically

convenient places to affix groups intended to mimic the -1 and -3 side chains of the

ligand. Reengineering 2 to a more useful nucleus, 3, facilitated the addition of groups

mimicking the -1 position yet lacked a substitution to mimic the -3 side chain, and this

compound was viewed as synthetically difficult due to the presence of two stereocenters.

We developed scaffold 4 to accommodate all positions for functionalities deemed

necessary for a specific inhibitor of PDZ domain interactions. Scaffold 4 included

positions R1-R5 which were explored in projecting various functionalities (Figure 2) to

optimize the ligand’s mimicry of peptide ligand side chains into the PDZ domain binding

pocket.

The initial DOCK experiments with the indole scaffold indicated that it could

indeed place critical functional groups in proximity to the orientation of the ■ strand

conformation of bound ligand in the crystal structure. Figure 3 shows molecules 4a and

4b in their docked orientation compared to the native 3 strand, 1. A critical requirement

for PDZ domains is a carboxylate to anchor the ligand into the binding pocket making

crucial contacts with a highly conserved region of the PDZ domain. In structure 4a the

carboxylic acid positioned at R1 has the same orientation as its native counterpart. The

favorable geometry is supported by DOCK's energy scoring: -26.31 for 4 while -20.00

for the native 3 strand 1. Although a terminal amide has been experimentally shown to

** we determineddestroy affinity between the ligand and the PDZ domain,

computationally that a carboxylic acid or amide group was the most appropriate

substituent to use at this position. Both docked close enough to the conserved GLGF
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residues common to class I PDZ domains. The tetrazole made similar contacts, but did

not score as well. Two other substituents shown in Figure 2 were too large, and often

resulted in the molecule docking with an incorrect orientation.

A group at the R2 position would be analogous to the Val (0) sidechain which

fills the hydrophobic pocket on the surface of the PDZ domain. We evaluated a methyl,

ethyl, and isopropyl group at this position (Figure 4). The methyl and ethyl groups

performed similarly in their contribution to binding energy, solvation, and contact scores

as determined by molecular docking (Figure 4A and 4B). Despite having a similar score,

the isopropyl group proved to be too large for the hydrophobic pocket, causing inversion

of the scaffold (Figure 4C). Because DOCK scores were comparable and the methyl

substituted scaffold starting material was commercially available we chose a methyl

group for R2.

The R3 position of the indole scaffold has an optimal orientation for presenting the

hydroxyl groups to mimic the -l side chain or other functional groups may be added to

achieve specificity for PDZ domains. PSD-95 PDZ3 whose structure was used for these

docking experiments shows a preference for hydroxyl groups at the -1 position in the

peptide ligands although the structure indicates that this side chain is solvent exposed and

does not make contacts with the PDZ domain. Basing our analysis on this structure

resulted similarly in the hydroxyalkyl groups evaluated at R3 position not making

contacts with the PDZ domain, and these R3 groups did not seem to contribute greatly to

the overall scores of the various compounds. Nor did they vary greatly in their relative

contributions to overall scores. Designing a ligand for the MAGI-3 PDZ2 domain
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Figure 2 Composition of library used for in silico screen used to
evaluate potential novel library scaffolds to mimic the PDZ ligand
geometry. The chemset used to generate the library by showing all
substituents at each position. Initially this library was screened to
evaluate the scaffold. Compounds were picked from amoung those
scoring best with DOCK.
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Figure 3. FJ-1 (3a, in color) and FJ-2 (3b, in color) overlayed against the PTEN
peptide ligand (TKV) (in white). The carboxyl, methyl, and phenyl groups
reproduce the same orientations as the c-terminus carboxylic acid, the Val side
chain, and the trajectory of the Lys side chain, respectively.
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Figure 4.4a shows the native CRIPT peptide (DOCK
score: –20). Evaluation of methyl (4b), ethyl (4c), and
isopropyl (4d) groups at the R2 position. The three
variants have similar dock scores (4a: -30.54, b -31.1,
4c: -30.45), but the isopropyl group causes inversion
of the scaffold, with the carboxylic acid groups
oriented towards the surface. This renders the
isopropyl inappropriate as a choice for substitution at
this position. 4e (-34.22) shows a methylated variant
of the indole scaffold. While there is sufficient room to
accommodate the methyl group, it causes slight
displacement of the entire molecule. 4f and 4g show
synthesized molecules 4a (-26.31) and 4b(-27.74),
respectively.

;
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included the idea of having a Trp functionality at the (-1) position because this residue

had previously been seen to increase affinity for this specific domain.” The crucial part

of the Trp residue for the hydrophobic interaction seems to be its benzene ring. From this

viewpoint, a 2-phenyl ethyl group was chosen as a simplified Trp (-1) mimic. We did not

choose a shorter benzyl group for this purpose because HTQITFV is not reported as a

strong binding peptide. However, the phenyl group in 4b was not evaluated as part of the

R3 optimization process.

The R4 position, the tail of the compound, is analogous to residues -2 and -3. In

the case of the ligand complexed PSD-95 PDZ3 domain, a class I PDZ domain, the

hydroxyl group Thr (-2) side chain forms a strong hydrogen bond with the N3 nitrogen of

H372 of the PDZ domain. In optimizing the tail, we therefore, sought to preserve a

hydroxy mediated interaction with H372. DOCK results indicate that not all groups

evaluated in this position could adequately present the hydroxyl group to H372 despite

having similar DOCK and sDOCK scores. In our DOCK simulations, peptide like tails

makes close contacts with the PDZ receptor, enabling their respective compounds to

score between -32 and -35. Extensions lacking peptide character directly result in the loss

of certain electrostatic interactions and yield lower DOCK scores. Residues that have

been proposed to make contacts with the residue (-3) are distinct in character between

PSD-95 PDZ3 (N326, I328, S338, F339) and MAGI-3 PDZ2 (A617, A619, K628,

M629). Therefore, the (-3) position might be ideal for providing specificity between

these domains. Although PSD-95 PDZ3 prefers hydrophilic side chains for the (-3)

position, which has been seen from the crystal structure to hydrogen bond with N326 and

S338, for the design of an inhibitor targeting MAGI-3 PDZ2, which shows a preference
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for hydrophobic side chains at this position (I, V, W, C),” the n-butyl extension seemed

to be an appropriate fit. The n-butyl is considered also as a suitable alternative for

QITWV hydrophobic isoleucine sidechain and may stabilize the complex with favorable

Van der Waals contacts and hydrophobic interactions with the side chains that are

proposed to be in the vicinity of the binding of this side chain.

Analysis of the indole scaffold in the context of the PDZ domain revealed a

hydrophobic gap between the molecular surfaces of the indole scaffold and the domain

that might accommodate a methyl group. The R5 position is the only position that does

not have a corollary in the native ■ strand. Figure 4d shows a scaffold variant with a

methyl group at the R5 position which is the size that can be accommodated in this region

of the PDZ domain. Introduction of a methyl group at this position generally decreases

the DOCK score or inverts the binding mode to flip. In these cases the methyl group

binds into the hydrophobic cavity for R2 group in correct ways (data not shown). Thus, a

simple hydrogen was chosen as R5 in initial experiments.

Figure 3 shows one scaffold variant, 4b, that successfully makes all the necessary

contacts to mimic the ■ strand: 1) a carboxylic acid at the R1 position mimics the peptide

ligand C-terminus, 2) a methyl group at the R2 position fills the hydrophobic pocket that

the Val(0) side chain normally occupies, and 3) a nonpeptide extension at the R4 position

places a hydroxy group within hydrogen bonding distance to H372. Variations of 4 on its

R1 and R4 extension correspond to that of the Val(0) terminal carboxylate and the Thr(-

2) hydroxyl group respectively in TWV peptide. If 4b binds to PDZ domains as a ITWV

mimic, such mutations would destroy its binding activity. From this viewpoint, 4c and 4d

were designed as mimetics of negative mutant peptides for evaluation of the hypothesis
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of 4b binding as a ITWV mimic. This chemset was targeted for synthesis and evaluation

as inhibitors of PDZ domain function.

Synthetic Chemistry

This section summarizes Naoaki Fujii’s medicinal chemistry work on the project.

A target was the generation of an intermediate presenting essential functionality for PDZ

domain binding, attachment points for generation of a diverse library, and tolerating

various chemical conditions to allow for library production. Because it is essential for

affinity, introduction of a protected carboxylate was planned early in the synthesis. The

precursor carboxylate substituted indole scaffold would be the common intermediate to

all variations of ligands. Aromatic halides are robust precursors for esters by palladium

catalyzed carbonylation,” but they were unsuitable for our envisioned high-throughput

synthesis. We chose an oxazolin-2-yl group for the carboxylate precursor. Therefore, we

designed the intermediate 5-methyl-6-(oxazolin-2-yl)indole-2-carboxaldehyde, 5, as the

foundation for our library development. The retro-synthetic analysis is shown in Figure

5. Three basic strategies for indole synthesis were studied preliminarily. For Fischer

indole synthesis and its variants it is necessary to work with acidic reaction conditions

with high temperature, therefore this strategy is not compatible with an acid labile

oxazolin-2-yl group.” Reductive cyclization of 2-nitrobenzylketone' 1,32 gave low yields

and multiple products. The palladium-catalyzed coupling of an alkyne and 2

iodoaniline” has not been reported for the synthesis of R3 unsubstituted indoles having

carboxylic acid derivatives on the 2 position. Therefore, we chose palladium-catalyzed

coupling of ethylpyruvate and 2-iodoaniline” for synthesis of the indole-2-carboxylic

acid derivatives, as shown in figure 6. Note that aldehyde 5 is useful for the syntheses of
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indoles having diverse substituents on its 1 (R3)- and 2 (R4)- positions by sequential

electrophilic and nucleophilic alkylation.

Compounds synthesized were assayed by fluorescence polarization competition.

The positive control peptide of the native PTEN sequence competed with the labeled

same sequence for the PDZ binding pocket with an IC50 of 4.5puM. The highest detectable

IC50 by this assay is approximately 50puM. This is because of protein aggregation

complications evident by increasing polarization values when high control peptide

concentrations were added to the assay solution. Also the polarization values of the probe

were affected by the high concentrations of the indole scaffold competitors. Many of the

compounds produced had poor affinity for the PDZ domain and therefore

characterization of their binding ability by IC50 is undermining the scaffold’s ability to

represent a ligand in the PDZ binding pocket. Compound 4b demonstrated affinity for the

MAGI-3 PDZ2 domain by displacing the peptide probe in a concentration dependent

manner (Figure 7). Meanwhile, 4a bound with less affinity and negative controls, 4c and

4d, in which moieties required for the PDZ ligand interaction were disrupted did not

show any competition toward the PTEN sequence peptide.
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Figure 5. Retrosynthetic analysis of the key intermediate 5
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Competition for Binding to MAGI3 PDZ2

110 TTTI I T-I-T-T-TTI n T-T-T-TTTI T n r-rrr'■ T n T-TTTTTi.
-

ºat 100
E

*-*

E 90
Ç

º§ 60
hm

Jº
S 70

Cl

60

0.01 0.1 1 10 100

ICompetitor■ (pM)

Figure 7. FJ-1 and FJ-2 assayed against the
native peptide. Competition curves show that
FJ-1 effectively competes with the nativeT., &c.” peptide ligand, but at 1/10" the affinityHO Me

FJ-1:TWV mimic

º
. &c."

FJ-2:TSV minic

:

- 96 -



Discussion

DOCK has been successfully used to screen large 3-dimensional databases for

small molecule inhibitors of protein and enzyme systems” and design or optimize

specific chemical scaffolds. Side chains of the bound ligand in PDZ domains project

along similar vectors when compared between structures. For this reason we felt a

modeling approach to design ligands would be ideal. The structure based optimization

assured that the PDZ domain showed a high preference for compounds that looked most

similar to the native peptide while there were alternatives to the critical functional groups.

The indole structure provided a useful scaffold to mimic characteristic interactions that

allow for ligand binding in a PDZ domain and allow for diverse reactions to provide

functional moieties capable of lending to selectivity in binding between PDZ domains.

A tentative structure activity relationship can be assigned to scaffold 4 from the

results of the competition experiments. We assumed the carboxylate functionality

mimicked the carboxy terminus of the peptide ligand anchoring within the pocket

interacting with the conserved basic residue, a water molecule, and the backbone amide

protons of the GLGF sequence of the PDZ domain. The importance of this functionality

is emphasized by the competition of the negative control, 4d in which modification of

this group to a methyl ester abolishes any competition. This also suggests that the

compound is binding in the orientation depicted by the DOCK evaluations. R1 position is

critical for binding and gives the generic ■ strand sensitivity to recognize the domains,

but not the specificity to distinguish between the various classes. Our structure-based

evaluation suggests that R2 position is similarly important.

:
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The contribution from residue (-1) to the stabilization of ligand binding to PSD-95

PDZ3 is unclear. Although PSD-95 PDZ3 shows a preference for hydrophilic residues in

the (-1) position of proposed native ligands, (D, S, R), there have not been structural

observations supporting this tendency. Groups at the R3 position do not contribute to

binding with PSD-95 PDZ3 domain during the structure based optimization process

3which is consistent with the structure of PSD-95 PDZ3. The optimized peptide ligand

for MAGI-3 PDZ2, HTQITWV, unambiguously shows this (-3) side chain to be useful in

adding affinity.” Therefore, this may be a position that would allow discrimination

between MAGI-3 PDZ2 and PSD-95 PDZ3. The Trp residue in HTQITWV is predicted

to bind in a hydrophobic cavity between 3 strands B and C of MAGI-3 PDZ2 provided

by residues (Met/Leu). Thus, it can be anticipated to acheive tighter affinity to MAGI-3

PDZ2 by replacement of the hydroxyethyl group of 4b with a hydrophobic moiety at R3

as in 4a. As predicted, 4a binds to the MAGI-3 PDZ2 domain although it shows a lower

DOCK score than 4b. This result is consistent with the reported relative affinities of an

optimized peptide, HTQITWV, and the native PTEN sequence, HTQITKV.” We had

previously observed that modification of the Trp(-1) in HTQITWV peptide drastically

reduced binding. These results indicate a large contribution to affinity by the (-1) position

substituent which can be replicated by the R3 substituent. These results may develop into

a discriminating effect by the R3 substituent of the compound for individual PDZ

domains.

The R4 side arm positions the hydroxyl moiety that mimics the side chain

hydroxyl of residue (-2). This functionality was suspected to be involved in ligand

recognition by class I PDZ domains. Correspondingly, the negative mutation, 4c,

:
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abolishes binding to the pocket as seen with a similar mutation in native peptides.

Because PDZ domains bind ligands fulfilling an interaction specific to their class at

residue (-2) and this scaffold is able to reproduce this interaction, the scaffold may be

appropriate to present moieties needed to bind to other classes of PDZ domains.

The hydrophobic carbon chain on R4 position seems to impart binding to the

pocket. This is appropriate because while CRIPT, a native sequence binding PSD-95,

includes a glutamine in the (-3) position the PTEN sequence has an isoleucine in the

corresponding position. Because of this, it is understandable that the MAGI-3 PDZ2

domain might select for a hydrophobic side chain mimic on R4 position. The residues in

MAGI-3 PDZ2 in this region might contribute through hydrophobic interactions. We

studied several modifications of the HTQITWV peptide to understand the key

interactions between the peptide and the MAGI-3 PDZ2 domain, and found that QITWV

binds tighter than ITWV. According to this result, it is expected to get tighter molecules

by further modification of extensions at the R4 position. It is important to note that this

site has been recognized to aid the PDZ domain in the discrimination of its ligands. It can

be concluded that the R4 position contributes to the binding affinity of the and therefore

might be exploited to give selectivity between PDZ domains.
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Conclusions

The widespread occurrence of PDZ domains as facilitators of subcellular

organization makes them an important target for biological studies. Our ability to study

the nature of PDZ mediated interactions, the functions of PDZ containing proteins, and

the varied functions of PDZ domains themselves would be greatly enhanced by the

discovery of inhibitors that bind specifically to certain PDZ domains. The scaffold

described herein offers several opportunities for optimization towards specific PDZ

domains. A small molecule mimetic must be able to make similar contacts with critical

residues if it is to have the same specificity for PDZ domain subtypes. The similarity of

binding mode between our indole scaffold and class I consensus sequence peptide (ITWV

for MAGI-3 PDZ2) is clearly shown by the meaningful difference in affinity between 4a,

4b, 4c and 4d. Further variation of 4 will provide optimized binding molecules of MAGI

3 PDZ2 and tight binding molecules for other PDZ domains. PDZ domains are very

widely expressed protein module and frequently exists as multiple domains of one

protein, thus it is almost impossible to design selective binding molecules to every PDZ

domains by structure based analysis. Our study demonstrates an efficient ligand

discovery process through collaboration of structure based and medicinal chemical

design. Another efficient way is construction and evaluation of structure focused

chemical library. An important feature of the intermediate 5 is that it is feasible to make

diverse library highly variant in the R3 and R4 position in order to discover class

selective and domain selective inhibitors.
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Gloss to Chapter III
As the number of proteins with unknown functions increase, it will be useful to

screen the protein databank for binding partners in order to gain insight into protein

function. Many protein-protein docking methods to date involve extensions to the

original docking paradigm developed by Kuntz and co-workers. However, the number of

calculations involved makes these methods fall short of being useful for database

screening. In the most ideal of circumstances, a first pass screen of the protein databank

would be verified using more thorough protein-protein docking methods. To be truly

useful, a first pass screen should be very rapid, perhaps on the same timescales as rigid

docking of a ligand database against a single receptor.

This chapter describes the proof-of-concept experiment behind a two-dimensional

protein-protein docking method. The goal of this experiment was to show proof-of

concept of the approach, and achieve some understanding of its strengths, weaknesses,

and needed improvements relative to existing methods. This project grew out of my

interest to expand the role of molecular docking from its more academic and project

driven applications to something as ulem and ubiquitous as BLAST. The proof of

concept data contained herein provides some insight into how this method might be a

way to achieve that lofty goal. My only regret is not having enough time to fully explore

its potential.
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CHAPTER III

Protein-protein Docking using 2D Topographical

Representations of Molecular Surfaces

.

.
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Abstract

A next step in our understanding of entire genomes requires insight into the three

dimensional (3D) structure of proteins in the near term. Most of these protein structures

will be determined by high-throughput modeling procedures. Thus, a structure-based

analysis of the network of protein-protein interactions in genomes is likely to move

forward with docking methodologies that are capable of dealing with the high-throughput

requirements of such large-scale analyses. While numerous protein-protein docking

algorithms exist, most achieve RMSD less than 2.5 Å only by spending a great deal of

time establishing protein complementarity using traditional docking methods, or some

variations thereof. I present here the results of a pilot project for a docking method that

uses 2D topographical representations of molecular surface. The method is shown to find

the correct geometry for a complex consisting of o-chymotrypsin and pancreatic human

trypsin inhibitor variant 3. The results indicate that the 2D method is sensitive to gross

topological features (large “dents’ or “bulges’ caused by a helix, for example), but is

relatively insensitive to the effects caused by smaller structures, such as amino acid side

chains. The work presented here indicates that the method has some promise vis-à-vis

existing protein-protein docking methods. That utility, however, is mitigated by a need

for further development before a conclusive comparison can be made.

:ºº
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Introduction.

Almost all intracellular activities, including transcription and signaling cascades,

are dependent on the specific interaction of macromolecules. The interaction is often a

complex process involving the physical contact of two macromolecules, and the van der

waals and electrostatic interactions that mediate the formation of a stable interface. From

available crystal structures, we know that the units involved in macromolecular

complexes are complementary in both their shape and their chemical makeup.

The desire to understand further macromolecular interaction drives the

development of simulation methods aimed at modeling biophysical interactions at the

atomic and subatomic levels. Protein-protein docking is one such approach. It is an

extension of the same molecular docking principles that allow us to explore the

interactions of small molecule inhibitors with their protein targets. Traditional docking

explores the energetic components of binding by traversing the rotational and

translational degrees of freedom of a small molecule in the context of a particular binding

site. There are now numerous examples of how small molecule docking has successfully

led to the discovery of effective inhibitors of protein and enzyme systems. Protein

protein docking methods attempt to similarly dock large proteins to their targets or

partners. Some rely on traditional 3-dimensional docking methods. The simplest protein

protein docking methods evaluate the complementarity of molecular surfaces to

determine how well two proteins fit together. Some approaches focus on matching

surfaces”, and others enhance the search for geometric fit by matching the positions of

surface normals and spheres". Some shape algorithms model the hydrophobic effect

during association from the change in the solvent-accessible surface area of the

}
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molecules", while others employ a simplified scheme to estimate electrostatic,

hydrophobic, or desolvation contributions to dimer formation”. Most of these methods

have focused on rigid body docking, and in general achieve respectable success (typically

1-3 Å RMS). Several groups have additionally focused on finding the correct orientation

among a large number of false positives”. Recently, the use of soft-body docking and

side-chain enumeration has yielded greater sensitivity to the protein-docking results". It

should be noted however, that the use of non-complexed models instead of complexes to

dock partners to each other does not necessarily generate similar results in terms of time

and accuracy. One last class of approaches transforms the problem from three dimensions

into two. Sternberg and coworkers extended their Fourier transform-based approach from

small molecule docking to protein-protein docking” . Several groups have extended this

method to show that a reduction in dimension yields high sensitivity (< 2 Á RMS in some

cases) while increasing the speed of the analysis.

The current approaches can generate a reasonable degree of accuracy. However,

the lack of speed of protein-protein docking relative to small molecule docking makes the

current implementations impractical for high-throughput in-silico screening of a

macromolecule against a database of known protein structures such as the PDB. Such an

analysis would greatly increase our ability understand the function of unknown proteins

for which 3D models have been obtained through structural biology or structural

genomics methods. While increases in computational power will certainly increase our

analytical ability, fundamental advances in protein-protein docking methodologies will

ultimately determine the utility of this class of approaches.

:º
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Herein I prototype a method of docking two macromolecular objects that relies on

the conversion of relevant three-dimensional information about an object into two

dimensions. First the details of the implementation are presented, followed by the

description of several experiments conducted over the course of the development of the

algorithm to establish proof-of-concept. The goals of these experiments were to show

proof-of-concept of the approach, and achieve some understanding of its strengths,

weaknesses, and needed improvements relative to existing methods.
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Methods

3D to 2D conversion

This method was evaluated on the o-chymotrypsin / pancreatic human trypsin

inhibitor variant 3 complex. Figure 1 shows the details of the method. The process begins

with the construction of the solvent accessible molecular surface using the dms program

as implemented in MidasPlus”. Then the van der waals and electrostatic potentials on the

molecular surface are calculated by first using grid program to generate the electrostatic,

attractive van der waals, and repulsive van der waals grids around the protein. The

protein is prepared for grid production by using Sybyl 6.5° to add Amber 6 charges to

the heavy atoms of the protein. No hydrogens are added. The electrostatic, attractive and

repulsive potentials at each surface point are calculated by interpolating the values off of

the relevant grids.

A sphere with a radius equivalent to the shortest distance between the protein’s

center and the molecular surface is created. The molecular surface will eventually be

projected onto this sphere. The sphere’s circumference and meridians are divided into 0.5

A bins, effectively gridding the surface of the sphere. For o-chymotrypsin, this process

resulted in 27,730 bins. The average perpendicular distance between a point on the

molecular surface and the sphere, electrostatic potential, and van der waals potential of

all the points centered on each bin is calculated. Each grid section is represented as an

object that stores the average distance of the molecular surface above the grid from the

sphere, the electrostatic and van der waals potential of the molecular surface at that point,

and any other user-defined information (such as the curvature of the surface at that point,

}
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Project 3D solvent accessible
surfaces onto a sphere

!

Arbitrarily select poles, equatorial
planes, and meridians

!
Project the points on the sphere

surfaces onto flat planes

!
Translate and rotate the smaller

map over the larger map

!
Score each orientation

!
Convert high scoring 2D
orientations back into 3D

Figure 1. Algorithm for converting 3D molecular surfaces into 2D topological maps
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or the direction of the surface normals, etc). Because each grid has a defined coordinate

on the sphere in relation to the meridian and equator, a two-dimensional map of the

sphere can be built by plotting the longitude and latitude of a grid point. This process is

performed for both members of a complex, resulting in two distinct 2D maps that will be

used to determine the correct orientation of the two objects. Figures 2 and 3 respectively

show the 2D and 3D topographical maps of o –chymotrypsin. Figure 4 shows the 3D

energy map (van der Waals + electrostatic) of o –chymotrypsin. Figures 5 and 6

respectively show the 2D and 3D topographical maps of trypsin inhibitor. Figure 7 shows

the 3D energy map (van der Waals + electrostatic) of trypsin inhibitor.

Matching

The larger (receptor) of the two maps is held immobile, while the smaller is translated

and rotated over the surface as part of the search for topographical complementarity.

Simple translation of the smaller map (ligand) along the longitude and latitude of the

larger map corresponds to moving the ligand over the surface of the receptor, with the

orientation of the ligand fixed with respect to the center of receptor; i.e. the same ‘face’

of the ligand is presented towards the receptor surface as it moves across the surface. Of

course, knowledge regarding the correct ‘face’ is not generally available, thus for each

particular coordinate along the receptor's longitudinal and latitudinal axes, the ligand is

rotated about its center in order to present all possible faces to the receptor. In two

dimensions this is accomplished by building variations of the ligands map that differ in

the equatorial and meridian planes used to generate them. The result is a large series of

maps of the smaller ligand that collectively represent all possible orientations of the
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Figure 2. The result of performing the 3D to 2D projection on o-chymotrypsin's º
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Latitude

Figure 3. Projected elevations of the molecular surface of o-chymotrypsin.
Distances of each from the surface of the projection sphere are plotted on the z
axis. Surfaces closer to the sphere surface are shown in blue, while surfaces farther
away are shown in red. The method generally produces surfaces that preserve the
local curvature of the molecular surface. The degree of precision is limited by the
size of the bins used to store information of the molecular surface. This particular
map generated using bins of 0.5 A on a side; a map generated using bins of 0.1 As
would generate 25 times the number of points.
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Energy Potential
(vander Waals - Electrostatic)

Longtitude Latitude

Figure 4. Projected energy surface of o-chymotrypsin. The energy potential of the
sphere surface plotted on the z-axis. The color scale ranges from red (negative values)
to blue (positive values). The values for the potential are derived by summing the van
der waals and electrostatic potentials at a particular coordinate on the map.
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Figure 5. Similar to figure 2, this figure is the result of performing the 3D to 2D
projection on trypsin inhibitor’s solvent accessible molecular surface. The figure
shows the density of the points along the longitudinal and latitudinal axes. Variations
in color (from blue to red) reflect distances of the molecular surface at a particular
coordinate from the sphere surface. Light blue areas are areas closer to the surface,
while red areas are farther away from the surface. The single cluster of red dots in the
center corresponds to the C-teriminus of the protein, which protrudes far above the
surface of the sphere (figure 6). As expected, features are best preserved along the
equatorial regions of the map, while the extremities of the map suffer from a certain
amount of distortion.
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Figure 6. Projected elevations of the molecular surface of the trypsin inhibitor.
Distances of each from the surface of the projection sphere are plotted on the z-axis.
Surfaces closer to the sphere surface are shown in blue, while surfaces farther away
are shown in red.
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Energy Potential
(van der Waals • Electrostatic)
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Figure 7. A 3D projection of the energy potential surface of trypsin inhibitor, with the
energy potential of the sphere surface plotted on the z-axis. The color scale ranges
from red (negative values) to blue (positive values). The values for the potential are
derived by summing the van der waals and electrostatic potentials at a particular
coordinate on the map.
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ligand when its position is fixed above a particular coordinate on the receptor surface.

Figure 8 shows how each 2-dimensional movement corresponds to a movement in three

dimensions.

Scoring

Each orientation is scored according to the following:

XIG/Li-R) (11)
i,j=1

Au =
W1

n/8

X.1/(Lij-Rij) (12)
S E i,j=l

n/8

** s
Score = XX* (1.3)

x=l All

First, a measure of the average complementarity of the ligand map (u) and its

counterpart on the receptor is calculated (eqn 1.1). Each value element Lü (i,j are

longitude and latitude coordinates, respectively) of the ligand map is subtracted from the

corresponding value on the receptor map, Rj. Complementarity exists when Lij and R■

are approximately equivalent in value. The inverse of the difference between Lij and R■ is

higher for complementary values (difference equals 0), than for non-complementary

values of Lü and R■ that result non-zero differences. The absolute value of all inverses of

the differences are summed and divided by the number of points, n, to yield an average

value for the entire map, pl. Subtracting all corresponding values R■ . from Lij produces a

matrix that is then divided into several sections. This accounts for the fact that only a

small percentage of the molecular surface is ever involved in the protein-protein
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interaction. In this case, the matrix is divided into eight sections, each encompassing

12.5% of the map. In the future, this value will be dynamic depending on the size of the

protein. In the case of not having any a priori knowledge of the protein interface, several

values may need to be evaluated as part of the experiment. In each section, each value

element Lü of the ligand map is subtracted from the corresponding value on the receptor

map Rj. Each section is then given its own score, s (eqn 1.2), that results from summing

the inverse of the differences of all values in that section, and dividing by the number of

points in that section, n/8. s therefore, is a measure of the local complementarity. Sections

with better complementarity will have higher scores than those with lower

complementarity. The final score of the orientation (eqn. 1.3), is the sum over all 8

sections of s (the local complementarity) divided by the average complementarity of the

whole map, pl. Orientations that have a high degree of complementarity will have a higher

SCOTC.

This scoring scheme is limited to the evaluation of protein interactions based on

topological and electrostatic features. However, it will be insufficient to measure

complementarities based on van der waals interactions. The Lennard-Jones function

predicts that simply taking the differences of two values in the receptor and ligand maps

will lead to false positives and false negatives because equivalent values can exist at both

ends of the potential function. The most straightforward way to account for van der

waals interactions is to score the interaction in three dimensions, while continuing to

optimize the orientations in two dimensions. The conversion of a two dimensional

orientation of a single point to three dimensions is very rapid, yet will undoubtedly slow

the optimization process. Nevertheless it is the most reliable method of accurately
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scoring the van der waals interaction between the two proteins. A two dimensional

method of calculating van der waals interactions, while desirable from the point of view

of computational speed and overall algorithm efficiency, would require assumptions

about point to point distances in two dimensions that are either weakly relevant or

completely invalid in three dimensional terms. It is noteworthy that none of the two

dimensional docking methods attempt to use van der waals or electrostatic potentials to

establish complementarity of two proteins, relying instead on physical (potential of mean

force, for example”) characteristics to derive additional information about the complex

as a preprocessing step.

- 123 -



|



Figure 8. Correlation between movements in two dimensions with movements in three
dimensions. A and B Translation of the ligand map (dark blue and green composite) over
the receptor map (grey) corresponds to movement of ligand along the surface of the
receptor. C. At a particular coordinate of the receptor surface, the ligand is rotated about its
own center in order to evaluate complementarity. The corresponding movement in 2D is to
generate and score multiple ligand maps at a single coordinate that vary in the meridians
and equatorial planes used to generate the 2D representation. The lower three maps show
this process. The dividing line between the blue and green sections indicate the original
meridan and equatorial plane used to generate the map. Generating 2D maps using other
meridians and equators along the ligand’s axis result in multiple maps that vary in which
face is presented to the receptor.
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Results

Translating the Ligand Across the Receptor Surface

The ligand is first translated to the north ‘pole' of the receptor. The poles,

equators, and meridians are arbitrarily chosen in the first iteration. The north pole serves

as the starting point for a series of translations along the longitudinal and latitudinal axes.

At a later point in the project, we may attempt more informative definitions of the protein

poles. The orientation of the ligand relative to the surface is kept constant; i.e. the ligand

always presents the same ‘face’ to the receptor. Furthermore, the receptor to ligand

distance is kept at constant, reducing the degrees of freedom that have to be explored as

part of the proof-of-concept. The native orientation lies 100° ‘south’ of the ‘north’ pole

along the meridian of the receptor's molecular surface (100° South, 0° East). Figures 9a,

9b, and 9c show the score as the ligand is translated in increments of ~3.2°. As the ligand

approaches 100° south, the scores start to increase. Similarly, as the ligand approaches

360°, the scores start to increase. Figure 10 illustrates the translations, and figure 11

shows the highest scoring orientation encountered. A 3.2° resolution scan of the surface

takes approximately 1 hour using unoptimized python code.

Rotating the Ligand at a Single Coordinate

The ligand is positioned in its native orientation relative to the receptor, and

rotated around its geometric center in order to evaluate the scoring function’s ability to

further evaluate the complementarity of two surfaces. The results are shown in figure 12.

At first glance, the data indicates that as you rotate the ligand around its center, the scores

drop from a high of ~85,000 down to scores in the low teens. This is to be expected.

'A'I'
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What are anomalous are the presence of other high scoring rotations and the lack of

correlation between score and rotations in the latitudinal direction. A scoring function

should be sensitive to both types of movements because neither one is completely

reliable. The data indicates, however counter intuitively, that longitudinal rotations alone

will eventually lead you to the correct orientation. This illustrates a lack of sensitivity on

the part of the scoring function to find optima in cases where surface similarities may

exist; given the spherical shape of the trypsin inhibitor used in this experiment, the

scoring function seems to have found a number of false positives.
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Figure 9a. The results of translating the ligand map over the receptor map,
starting at the “North’ pole of the receptor, and moving in increments of ~3°
along the longitude and latitude lines. The relative orientation of the ligand is
kept constant as it is translated across the receptor map. The native orientation of
the ligand lies at 0° longitude and 100° latitude. The scores increase as the
ligand map moves closer to its native orientation.
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Figure 9b. The results of translating the ligand map over the receptor map, starting at the
“North’ pole of the receptor, and moving in increments of ~3° along the longitude and
latitude lines. Scores are plotted on a log scale. The relative orientation of the ligand is
kept constant as it is translated across the receptor map. The native orientation of the
ligand lies at 0° longitude and 100° latitude. The scores increase as the ligand map moves
closer to its native orientation.
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Figure 9c. The results of translating the ligand map over the receptor map, starting at
the “North’ pole of the receptor, and moving in increments of ~3° along the longitude
and latitude lines. Only scores above 50 are shown. The relative orientation of the
ligand is kept constant as it is translated across the receptor map. The native
orientation of the ligand lies at 0° longitude and 100° latitude. The scores increase as
the ligand map moves closer to its native orientation.
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Figure 10. A depiction of the translations performed. The blue structure is the
molecular surface of o-chymotrypsin. The green structure is the ligand in its
native orientation. The red structure is the ligand translated to the “North’ pole of
the receptor, the starting point of the translations.
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Figure 11. The highest scoring orientation obtained by translating the ligand
along the longitudinal and latitudinal axes of the receptor, while keeping the
relative orientation of the ligand constant. This orientation scores 85,707 and has
an RMSD of 1.58 Å.
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Figure 12. The results obtained from rotating the ligand about its geometric
center in its native orientation relative to the receptor surface.
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Discussion

Macromolecular docking has two components: a systematic search through the

orientational degrees of freedom of the two objects relative to each other, and the

development of a scoring function that distinguishes optimal solutions from sub or non

optimal ones. The method outlined here proposes both. The projection of the molecular

surface onto two dimensions enables us to store a great deal of information about surface

topologies and electrostatic information, while reducing the degrees of freedom that have

to be explored as part of a macromolecular docking process. In two dimensions, both

topographical and energetic complementarity can be evaluated using a number of simple

scoring functions.

The goal of this pilot project was to show that a protein docking method that uses

a reduction in the dimensionality of the protein-protein docking problem could yield

results similar to methods that rely purely on performing calculations in three

dimensions. The representation of a molecular surface as a two-dimensional object

simplifies the amount of information that can be extracted from the surface. A finer two

dimensional grid will store a much more complete representation of the molecular

surface. The number of points on the grid is directly proportional to the radius of the

sphere used to map the molecular surface, and inversely proportional to the size of the

bins used to store surface data. Because points lying above a given grid section are

averaged into a single point, at any given radius a smaller bin size will result in a more

complete representation of the surface; the grid spacing will be smaller. Similarly,

increasing the radius of the sphere will also increase the number of grid points. The

amount of information stored in the representation, therefore, is also proportional to the
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ratio of sphere radius to bin size. The dependency on ratio and grid increments would be

reflected in a 3D-> 2D-> 3D conversion of the molecular surface. The completeness of the

Subsequent 3D surface would increase as the grid increments decrease.

The results indicate that the method is capable of identifying large indentations or

protrusions, but only partially successful in noticing smaller ‘bumps’ on the surface

caused by a single amino acid side chain. The scores reflect gross topographical

complementarities or incongruities (as one might expect when one passes a ligand over a

whole receptor surface), but are not very sensitive to local variations in structure.

Specifically the method finds a large number of false positives when the ligand is held at

its native position relative to the receptor and rotated about its center of mass, effectively

presenting different faces to the correct docking site on the receptor. These results are

consistent with the idea that a loss of information due to the transformation process

would decrease the method’s sensitivity to local variations in topology. Nevertheless, it is

still fair to say that the project met its goal of demonstrating that a two dimensional

method of molecular topologies holds some promise as an alternative to traditional

protein-protein docking methods.

The results, however hopeful, are limited in their applicability for a number of

reasons. Firstly, the method has only been shown to work on a single complex. In order

to be truly useful as a screening tool, a method must be able to discern a protein’s partner

among many other proteins. Given the method’s current performance, it would most

likely be unable to distinguish between several structurally related proteins. Successfully

differentiating between trypsin and chymotrypsin, for example, would require that the

method be able to distinguish between specific amino acid residues on the molecular
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surface. The method lacks the sensitivity to do so at this point in time; it should be noted

that the exact nature of its insensitivity has not been fully explored, and warrants serious

investigation in the future. For obvious reasons, the method, even in its current state of

development, needs to be evaluated on many other complexes in order to fully

characterize its strengths and limitations. A more robust test-set would include Ab/Ag,

DNA/enzyme, and other complexes that vary in shape and size. Secondly, the method

assumes that proteins are globular in shape. This is only true for a very small set of

proteins and enzymes. The majority of proteins, and the pharmaceutically interesting

proteins in particular (GPCRs, for example) are not spherical at all, or even oblate

spheroids. The method would benefit greatly if it utilized a number of different shapes

upon which to project the molecular surface. Some proteins would benefit from the use of

a spheroid, others proteins or nucleic acid structures might be best represented by a

cylindrical or conic projection. It is interesting to note that cartographers have used

similar methods to achieve specific gains or losses in distortion and representation in

particular projections. An idealized version of the approach outlined here might first

determine the appropriate object upon which to project the molecular surface by

evaluating the overall characteristics of the protein. Lastly, the method still lacks a robust

search routine that finds the global optima. The results presented here are the result of

brute-force evaluations of a specific subset of the search problem. I evaluated either

translations of the ligand over the receptor, or rotations of the ligand in a single location,

never both at once The method’s speed (and therefore, its utility) is most sensitive to the

degree of sampling (the number of bins) used to generate the 2D map, on the order of

O(n^2) where n is the number of bins used. The current implementation would be
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impractical to use a brute-force search methodology for day-to-day database screening

because it is simply too slow. Nevertheless, it is unclear whether the method would

benefit most from a monte-carlo, a simplex, or a genetic algorithm-based optimizer. whº
is clear is that having one of them is most likely better than having nothing at all. It is not

unrealistic to conceive of achieving performance ratios similar to those achieved by the

implementation of the simplex optimizer in traditional docking versus the theoretical time

for a brute-force docking.

Two successful methods for protein-protein docking have been developed by

Shoichet and Sternberg. In a recent article, Lorber and Shoichet further explore the

applicability of ensemble docking (a 3-dimensional docking method) to the protein

protein docking problem”. In their investigation, they find that docking proteins with

flexible side-chains leads to better distinction between native and non-native orientations.

Their methods achieve 1.22 Å RMSD in the best case, and 23.44 Á RMSD in the worst

case, but at the cost of time. Their evaluation of bound o-chymotrypsin/inhibitor complex

took 4.69 hours and resulted in an RMSD of 1.91 Å. The method outlined here took

significantly less time and achieved similar results (1.58 angstrom RMSD) in 1.2 hours; it

is highly probable that this method can take less time when matched with a robust

optimizer. Sternberg et al. use a variation of ftDock, a Fourier transform based docking

algorithm to dock proteins as well as small molecule ligands to receptors. Their method

has been shown to work on numerous systems, including the o-chymotrypsin/inhibitor

complex used here”. Recent results using a combination of ftDOCK and pairwise surface

potentials yielded a 6.03 Á RMSD for the complex; there was no discussion regarding the

speed of the algorithm. As indicated above, this method achieved a better result simply

■ *
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on the basis of RMSD alone. The significant caveat to these results is that the method has

only been evaluated on one complex. Nevertheless there is some hope that the method,

when fully optimized and evaluated, will be competitive with the field’s leading

approaches.

As the dependence on genome derived structure-based design increases, there will

be a stronger need to quickly hypothesize about the function of an unknown ORF.

Threading and other structural genomics methods may be able to discern a 3-dimensional

structure, but may not answer all the questions about the function of the protein. Protein

protein docking methods add a great deal of complementary information to the analysis.

By designing an algorithm, and evaluating its strengths and weaknesses at some level, I

hoped to lay the foundation for further exploring the value of a 2-dimensional projection

based docking method. However, there remains a great deal of work to be done on this

project in order to bridge the gap between proof-of-concept and practical application.

Much of that work is mentioned in the preceding paragraphs. The method’s perceived

strengths and weaknesses are a partly a result of performance, and partly a result of not

extensively characterizing its behavior under many conditions. The next set of activities

would ideally focus on completely understanding its strengths and weaknesses under

computational duress. Evaluating its efficacy on different proteins, different complexes,

and on non-complexed proteins or nucleic acid structures would determine the next phase

of development, and set performance standards by which to gauge the success of further

enhancements. With more rigorous evaluation and development, it will eventually

withstand the scrutiny that a public user-base would place on it, and add to our ability to

understand proteins of unknown function.
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Conclusions

Three decades of development in structure-based design have made this science,

its applications, and its practitioners vital elements of pharmaceutical and biotechnology

research and development. Nevertheless there remains a great deal of further research to

be done before the methods developed to date become purely predictive, instead of

seeming periodic in its successes.

The preceding work in de novo design grew out of an interest in overcoming

known limitations in computation, as well as a desire to provide further proof of the

validity of structure-based design. The development of an algorithm capable of

generating small molecule scaffolds without the use of a small molecule library treads

upon a path a number of researchers had gone before. The fundamental desire to

overcome the dependence on virtual libraries drove many scientists to the limits of their

creativity and intellect only to conclude that the gap between the most computationally

correct scaffold, and that which is truly effective and synthesizable, is enormous. These

results are echoed in our own research. While the ADAPT algorithm demonstrated a

strong ability to identify good scaffolds, it almost never identified the optimal solution.

These results are partially a function of our use of a genetic algorithm to optimize the

scaffolds, but they can also be attributed to the oversimplification of the biological and

chemical methods used to optimize a chemical scaffold.

In chapter II I chose to pursue a more manual route to the de-novo design of a

scaffold that targets PDZ domains. Here the algorithm was one that combined our most

reliable structural-design approaches with significant medicinal chemistry insight

provided by Naoaki Fujii and Kip Guy. In retrospect, the process, however contrarian it

C
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may have been to my predilection for purely computational approaches, was successful

only because we made a distinct effort to rely on consistent two-way communication of

the insights gained from the computational and medicinal chemistry approaches. It

validated several key ideas: (1) That computational chemistry can be used successfully to

generate promising compounds, (2) given its state of development, it cannot exist in a

vacuum, and (3) that a multi-faceted approach to structure-based design has a high

probability of success.

Chapter III details early proof-of-concept work on an approach to increase the

efficiency of protein-protein docking. Although it does not quite fit into the de-novo

design paradigm, it stems from an inherent desire to make protein-protein docking a more

accessible and useful approach to understanding protein-function. The results indicated

that the approach did indeed meet its objective of proving that a 2D docking method

could yield meaningful results. However, in order to extend the utility of the method,

many more test cases will have to be performed in the near future.

There is a great deal of fundamental research that needs to be done in the future.

Several key future directions that research should venture into are the further

development of better energy scoring functions, as well as the design and implementation

of new optimization algorithms that leverage the advances in computer hardware to make

these functions computationally tractable. There should be a continued focus on trying

bridge the gap between a medicinal chemist’s intuition, and an algorithm’s ability to

deliver synthetically feasible compounds. Until the latter is solved, de-novo design

algorithms will ironically be dependent on other, arguably smaller, databases of atoms,

chemical fragments, or training sets that introduce some bias into the design process. We
-

Nº| *
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should continue push protein-protein docking towards its potential as a screening tool for

proteins and enzymes of unknown functions. This, coupled with better threading

algorithms, could significantly enlighten those seeking to understand unclassified

proteins.

The work contained herein, as in other publications, validates the approximations,

algorithms, applications, and conclusions developed over the years. Nevertheless the field

still holds an unlimited amount of potential as a platform with which one might

understand and simulate processes relevant to drug discovery, agricultural biotechnology,

and even allied biological fields such as nanotechnology and biological warfare. The key

will be our continuing efforts to leverage developments in computer science, physics,

chemistry, and mathematics with fundamental insights into biological processes. We

must continue to emphasize the critical relationships that exist between various scientific

disciplines; the field will only progress by successfully leveraging developments that

occur in parallel in various disciplines.
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