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ABSTRACT 

 

Systems Genetic Analysis of Atherosclerosis and Gut Microbiota  

 

Atherosclerosis is a precipitating event in the development of cardiovascular disease (CVD). The 

progression of the disease is prevalent in developed countries and there are currently limited 

options for prevention and treatment interventions. Recent studies report that liver transcriptome 

and gut microbiota contributes to the pathogenesis of CVD, including metabolic syndrome. 

While host genetic variants are known factors that affect atherosclerosis development, liver 

transcriptome, and gut microbiota composition, the mechanisms underlying genetic variations 

are not yet clear. Here, we interrogated atherosclerosis regulatory networks in hyperlipidemic 

Diversity Outbred (DO) mice to reveal key insights into control of atherosclerosis using system 

genetic approaches of cardiometabolic traits, liver transcriptome, and microbiome. Global 

hepatic gene expression analysis showed that both atherogenic diet and host genetics have 

profound effects on the liver transcriptome in eight DO founder strains. These also include 

identifying sex-specific cardiometabolic traits, liver genetic pathways and networks, and 

abundance of fecal microbial taxa associated with atherosclerotic traits, defining the functionality 

of genes associated with the atherosclerotic traits and gut microbiota, and finding signatures of 

functional gene variants predicted to modulate those traits in the hyperlipidemic DO mice. 

Collectively, this study provides a rich resource for investigating the pathogenesis of 

atherosclerosis and suggests an opportunity to discover therapeutics and biomarkers in the setting 

of hyperlipidemia. 
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CHAPTER 1. 

 

Introduction 

 

1.1. Pathogenesis of Atherosclerosis 

Cardiovascular disease (CVD) is a disease that affects the heart and blood vessels, and 

CVD is the leading cause of death annually than any other disease in the United States 

(Pagidipati and Gaziano, 2013). In the United States and EU, CVD accounts for 33-40% of 

mortality rates across all ages, with total economic losses in 2008 of $277.7 billion and €195 

billion, respectively (Virani et al., 2020). In addition, CVD has been estimated to be the leading 

cause of morbidity worldwide although the standards for recording the cause of death vary from 

country to country (Turk-Adawi and Grace, 2015; Virani et al., 2020). Atherosclerosis is the 

dominant cause of CVD including myocardial infarction, heart failure, and stroke, and accounts 

for 25-30% of cardiovascular deaths (Frostegard, 2013; Gimbrone et al., 2000). Atherosclerosis 

can also occur asymptomatic in young individuals (Berenson et al., 1998; Tracy et al., 1995). 

Therefore, it is necessary to identify non-invasive diagnostic biomarkers to prevent the 

progression of atherosclerosis. 

Mechanistically, atherosclerosis is triggered by dysfunction in the endothelial cells 

surrounding the blood vessel wall by stimulation of oxidized low-density lipoprotein (OxLDL) 

(Camejo et al., 1980). In the early stages of atherosclerosis, LDL penetrates the lining, binds to 

the proteoglycan matrix, and is oxidized. Ultimately, OxLDL deposited inside the vessel wall 

leads to macrophage recruitment and aggregation (Frostegård et al., 1990). When macrophages 
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swallow accumulated OxLDL, they increase in size and become foam cells filled with lipids. 

Accordingly, the inflammatory pathways of macrophages are further activated, increasing 

oxidative stress and cytokine/chemokine secretion, leading to more LDL, activation of 

endothelial cells, monocyte recruitment, and foam cell formation. This type of atherosclerotic 

plaque is called fatty streaks and macrophage chemoattractants stimulate the penetration and 

proliferation of smooth muscle cells. As the concentration of OxLDL continues to increase in the 

intima and more foam cells are produced in advanced lesions, migration of smooth muscle cells 

to the intima and the production of collagen are promoted, and fibrous caps that can block the 

lumen of blood vessels and limit blood flow cover the growing plaque (Lusis, 2000). The stress 

sheered by the bloodstream can rupture these stable fibrous plaques and completely limit blood 

flow by thrombus formation, resulting in heart failure or stroke (Virmani et al., 2002). 

In addition to OxLDL, lysophosphatidylcholine, a major phospholipid in atherosclerotic 

lesions, have immune-stimulatory effects like OxLDL and contribute to the development of 

atherosclerosis (Huang et al., 1999). Other mechanisms that induce atherosclerosis include 

malondialdehyde produced during the oxidation of LDL, oxidized apolipoprotein B and 

cholesterol, and interaction with scavenger receptors and toll-like receptors (Greig et al., 2012; 

Miller et al., 2011).  

1.2. Complexity of Atherosclerosis Risk Factors 

1.2.1. Atherosclerosis and Genetic Factors 

Atherosclerosis is a complex disease caused by the interaction of environmental and 

genetic factors. Early studies in humans using a forward genetics approach in families have 

reported hereditary dominant genotype for hyperlipidemia, the most common of which is 

hypercholesterolemia, which causes high cholesterol levels in serum and induce atherosclerosis 
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development. (Buja et al., 1979; Jensen and Blankenhorn, 1972). A follow-up large family-based 

study was conducted to investigate the genetic factors of hyperlipidemia associated with CVD, 

which helped successfully identify several genes that regulate plasma cholesterol and 

triglycerides, including CETP (cholesteryl ester transfer protein), LPL (lipoprotein lipase), and 

LDLR (low-density lipoprotein receptor) (Goldstein et al., 1973; Yang et al., 1995). Subsequent 

experimental analysis revealed that these genes are associated with impaired regulation of lipid 

levels, which have a major impact on the progression of atherosclerosis (Masucci-Magoulas et 

al., 1997). Collectively, hyperlipidemia has been found to contribute to the pathogenesis of 

atherosclerosis along with elevated total cholesterol and LDL, and these results have suggested 

specific guidelines for reducing the risk of CVD in individuals based on lipid level control. 

(Gotto and Moon, 2012; Grundy et al., 2004). 

  The Human Genome Project has uncovered millions of common single nucleotide 

polymorphisms (SNPs) where single SNP varies from individual to individual and occurs with 

>5% minor allele frequency (Collins et al., 2003). Since then, many human genome-wide 

association studies (GWAS) have been conducted to identify genes and genetic variants 

associated with disease susceptibility, including atherosclerosis (Lusis, 2012). The primary 

purpose of GWAS is to pinpoint genomic locations associated with increased risk of disease by 

associating common SNPs with disease states. In addition, GWAS is well suited for identifying 

novel genes associated with atherosclerosis, which can lead to new experimental hypotheses. 

However, SNPs located at the loci identified by human GWAS show a high correlation with each 

other, it is difficult to secure evidence that the discovered SNPs and genes are the causative 

ofdisease (Flint and Mott, 2001). For this reason, examples of therapeutic agents developed from 

GWAS are very limited, except for some treatments for type 2 diabetes (ZnT-8 antagonists), 
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autoimmune disease (targeting components of the IL-23 pathway), and schizophrenia (targeting 

dopamine and glutamate) (Visscher et al., 2017). 

In order to overcome these limitations, integrative multi-omics approaches have been 

proposed that comprehensively analyzes data such as transcriptome, epigenome, metabolome, 

metagenome, as well as genomic information, which has been applied to the discovery of a 

number of disease-related biomarkers (Rau et al., 2020; Seldin et al., 2019). Many countries have 

recognized precision medicine centering on multi-omics information and medical information as 

a strategic field for the future of the 4th industrial revolution. 

1.2.2. Atherosclerosis and Diets 

Diet affects the development of atherosclerosis in humans and rodent models, and dietary 

components that increase or decrease the risk of atherosclerosis have been studied and 

documented for decades. After the institutionalization of the use of laboratory mice in the early 

1900s, diet-induced atherosclerotic mouse models were developed. The first diet associations of 

diet with disease was reported for high-fat diet with cholic acid leading to aortic lesions in mice 

(Ishida et al., 1991). Mice fed normal diets seldom develop atherosclerotic lesions likely because 

they do not express the cholesteryl ester transfer protein (CETP) gene, a potential target for the 

prevention of atherosclerosis in humans. In addition, they always maintain a high level of high-

density lipoprotein (HDL) in plasma, which may contribute to relative atheroresistance even in 

atherosusceptible mouse strains (Morrisett et al., 1982; Westerterp et al., 2006). The mouse 

atherosclerosis model therefore depend upon inducing non-HDL-based hypercholesterolemia, 

which is most readily achieved by genetic ablation of apoE or LDL receptors (LDLRs) (Getz and 

Reardon, 2012). 
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Similar to the inter-individual variation of atherosclerosis observed in humans, these 

initial studies confirmed differences in atherosclerosis development across inbred mouse strains 

(LeBoeuf et al., 1983; Lusis et al., 1983; Morrisett et al., 1982). These early studies of 

atherosclerosis in mice led to side effects that often-increased mortality and morbidity, including 

the development of fatty liver. A study by Paigen in 1985 developed an atherogenic diet with 

lower fat and cholesterol levels than the atherogenic diet from Roberts and Thompson (Roberts 

and Thompson, 1976), which induced aortic lesions in mice without increasing mortality (Paigen 

et al., 1985a). In addition, strain-specific differences for plasma total cholesterol and 

atherosclerosis in this diet were identified in more than 10 inbred strains, and some strains, 

including A/J, BALB/cJ, and C3H/J, did not show diet-induced aortic lesion development 

(Paigen et al., 1985b). Taken together, these results indicate that atherosclerosis susceptibility 

may vary depending on the genetic backgrounds of the inbred strain. 

Dietary composition studies for the atherosclerosis mouse model have made a major 

contribution to optimizing the diet for the study of atherosclerosis. In 1990, composition of a low 

and high-fat refined synthetic diet was proposed by the Paigen group (Nishina et al., 1990). This 

synthetic diet ("Paigen diet”) reduces the potential influence of variable components in the 

standard diet on lesion development. This diet was also found to induce aortic lesion 

development while simultaneously reducing pathological burdens of increased gall stones, liver 

damage, and fatty liver (Nishina et al., 1990). 

In addition to the synthetic diet that induces atherosclerosis, dietary components that 

reduce CVD including atherosclerosis have been reported in many studies. Epidemiological, 

clinical, and experimental studies have demonstrated that diet and nutrition play a central role in 

the prevention of CVD (Torres et al., 2015). Based on these data the American Heart Association 
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has made formal dietary recommendations (https://www.heart.org/en/healthy-living/healthy-

eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations). One of the most 

studied diets in atherosclerosis research is the Mediterranean diet. Epidemiological studies found 

that the Mediterranean diet has a cardio-protective effect compared to western diets (De Lorgeril 

et al., 1994; Estruch et al., 2013). In addition, large population-based observational studies 

(Bazzano et al., 2003) found that a diet containing high dietary fiber was associated with a 

reduced CVD risk, which was largely mediated via the reduction of LDL-cholesterol. Clinical 

trials found that ingestion of soluble fiber (2-10 g/day) was associated with a significant 7% 

LDL-cholesterol reduction (Brown et al., 1999) in a dose-dependent manner (Anderson et al., 

2000). Growing evidence shows that prebiotics supplementation reduces CVD, specifically 

blood pressure and atherosclerosis, by manipulating the gut microbiota, which supports prebiotic 

interventions to prevent or treat CVD. Prebiotics are the non-digestible food ingredients that 

beneficially affect the host by selectively stimulating the growth and/or the activity of one or a 

limited number of bacterial species already resident in the colon (Gibson and Roberfroid, 1995). 

Inulin, a linear β-2,1 fructosyl-fructose polydisperse carbohydrate material, feeding decreased 

atherosclerosis in the aortic root of mice and normalized the altered microbial abundance of 

Bifidobacterium, Lactobacillus, Akkermansia, Allobaculum, and Coprococcus (Hoffman et al., 

2020). β-glucan is a glucose polysaccharide that can sequester cholesterol, scavenges reactive 

oxygen species, and produces short-chain fatty acids when digested by gut microbiota 

(Nakashima et al., 2018). In addition to serving as an energy source for gut bacteria, β-glucans 

are immunostimulatory through activation of β-glucan receptors, such as dectin-1 or CR3 on the 

intestinal macrophages (Brown and Gordon, 2001; Chan et al., 2009). Oat β-glucan 

https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
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supplementation increased HDL-cholesterol and decreased plasma triglyceride (TG) and 

atherosclerosis alone with enrichment of the genus Akkermansia in the gut (Ryan et al., 2017).  

1.2.3. Atherosclerosis and Sex 

Despite decades of advances in medical and cardiovascular care, CVD has been reported 

as the leading cause of death in men and women in most ethnic groups. A large number of 

studies have demonstrated sex differences in risk of atherosclerotic CVD. Sexual dimorphism in 

atherosclerosis susceptibility has been reported in humans and animals (Bennett et al., 2015; 

Bubb et al., 2012; Isensee et al., 2008; Karp et al., 2017; Mittelstrass et al., 2011; Yang et al., 

2006). Men have a higher prevalence of stroke than women by age 70, but women have the 

highest prevalence of stroke in the elderly population (Virani et al., 2020). Women under the age 

of 55 have a significantly lower risk of hypertension than men in their age group, while women 

over 75 have a higher risk of hypertension than men in their age group (Fryar et al., 2017). In 

animal models, sexual dimorphism of atherosclerosis has been observed in ApoE-/- and Ldlr-/- 

mice, pigs, and rabbits (Fisher et al., 1967; Freeman et al., 2007; Matthan et al., 2018; Van 

Craeyveld et al., 2010). Previous studies have also found sexual dimorphism of cardiometabolic 

traits in F2 genetic crosses or >100 different inbred mouse strains (Bennett et al., 2015; 

Kayashima et al., 2014; Norheim et al., 2019; Su et al., 2006). These results suggest fundamental 

biological differences between sexes and underscore the need to include sex as an important 

component of the investigation in animal models and clinical trials. 

Mechanistically, sex hormones play an important role in regulating gene expression 

related to metabolic disorders including CVD risk (AlSiraj et al., 2019; Kukurba et al., 2016; 

Mozhui et al., 2012; Yang et al., 2006). Besides sex hormones, sexual dimorphism also arises 

due to effects of sex chromosomes (epigenetic effects, genetic dosage, and different dosage 
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compensation) (Arnold and Lusis, 2012; Charlesworth, 1996; Disteche, 2012; Hager et al., 2008; 

McCarthy et al., 2009; Winham et al., 2015). For instance, several studies suggest that the X and 

Y chromosome play a crucial role in atherosclerosis (AlSiraj et al., 2019; Eales et al., 2019). 

Interestingly, this sexual dimorphism was also observed in the genetic mapping of the mouse 

model of atherosclerosis. In the quantitative trait loci (QTL) mapping performed in the F2 cross 

between the hyperlipidemic C57BL/6J strain and C3H/HeJ or FVB/N strain, most of the loci 

identified showed significant sex dependence (Teupser et al., 2006; Wang et al., 2007). Thus, 

these results imply that therapeutic effects to atherosclerosis may not work equally well in both 

sexes, and a personalized approach is needed that takes into account sex. 

1.2.4. Atherosclerosis and Gut Microbiota 

For over 50 years, the potential role of infectious microorganisms, including bacteria and 

viruses, as potential risk factors for atherosclerosis has been appreciated through a number of 

epidemiological studies (Cluff et al., 1968; Pankey, 1965; Saikku et al., 1988). Infection and the 

subsequent inflammatory processes are thought to induce the onset, progression, and rupture of 

atherosclerotic plaques (Libby et al., 2009). Mechanisms by which infection aggravates 

atherosclerosis include direct cell invasion that accelerates plaque growth through local effects, 

or indirect systemic production of inflammatory cytokines that promote the development of 

atherosclerosis (Pant et al., 2014). Representative infectious agents associated with 

atherosclerosis include Chlamydia pneumonia, Helicobacter pylori, P. gingivalis, and Influenza 

A virus (Pothineni et al., 2017).  

Recent studies have revealed that the gut microbiota is an emerging contributor to human 

physiology and also affects the cardiovascular system (Brown and Hazen, 2018). Studies of 

human cohorts and animal models suggest that alteration of gut microbial diversity influences 
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the CVD development associated with risk factors such as atherosclerosis (Emoto et al., 2016), 

blood lipids (Fu et al., 2015), hypertension (Li et al., 2017), and heart failure (Luedde et al., 

2017). In a number of case-control studies, distinct shifts of microbial composition have been 

identified in fecal samples from patients with atherosclerosis. It is not clear whether these 

microbial communities are causal to atherosclerosis or if they are simply affected by other 

environmental factors contributing to the development of atherosclerosis. Frequently, studies 

utilize a case-control design to identify the microbial differences among subjects with 

atherosclerosis compared to controls. Foremost, there have been several consistent results 

reported from a number of cohorts (Dinakaran et al., 2014; Emoto et al., 2016; Kelly et al., 

2016). For example, Strepcococcus spp., exhibiting pathogenic expansion in intestinal dysbiosis 

(Taur and Pamer, 2013), showed increased abundance in stool samples from atherosclerosis 

patients (Feng et al., 2016; Jie et al., 2017; Sanchez-Alcoholado et al., 2017; Yan et al., 2017). In 

addition, the abundance of Faecalibacterium spp. and Roseburia spp., which are known to have 

anti-inflammatory effects and reduce atherosclerotic events in mice and humans (Kasahara et al., 

2018; Sokol et al., 2008), were relatively depleted in atherosclerosis patients (Jie et al., 2017; 

Sanchez-Alcoholado et al., 2017). Finally, metagenome studies have shown depletion of 

butyrate-producing bacteria including Faecalibacterium prausnitzii and Roseburia intestinalis, 

and a high abundance of Enterobacteriaceae and Streptococcus in atherosclerotic patients (Jie et 

al., 2017). Studies have also demonstrated enrichment of genes encoding peptidoglycan 

biosynthesis in patients with atherosclerosis, while healthy cohorts are enriched in phytoene 

dehydrogenase genes (Karlsson et al., 2012). Thus, not only is the composition of the microbiota 

altered in atherosclerosis but the underlying functional capacity of the microbiota may be 

impacted as well. 
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Although the microbiota is complex, there are a number of approaches to establishing 

causality and infer mechanism(s) of microbiota and specific bacteria for atherosclerosis. In 

particular, studies utilizing microbial transplantation in a model organism can demonstrate the 

direct role of the gut microbial taxa in the risk of atherosclerosis. Studies utilizing germ-free 

animals have been critical to further our understanding of the functional role of the microbiota in 

disease susceptibility (Kennedy et al., 2018). Germ-free mice can also receive fecal microbiota 

transfers from samples collected in case/control studies. For example, studies have been 

performed using two strains of mice that differ in atherosclerosis susceptibility and that at least a 

portion of atherosclerosis can be attributed to the microbiota (Gregory et al., 2015). In addition to 

studies examining the transplantation of fecal samples, there have been attempts at understanding 

the role of specific bacteria in atherosclerosis. For example, colonization of germ-free ApoE-

deficient (ApoE−/−) mice with Roseburia intestinalis isolated from humans reduced the levels of 

inflammatory markers and atherosclerosis providing evidence of the causative role of Roseburia 

intestinalis in atherosclerosis (Kasahara et al., 2018). These results suggest that the role of the 

gut microbiota in mediating atherosclerosis should be considered in addition to the traditional 

host-focused approach in the development of therapeutic agents for atherosclerosis. 

1.3. Advancement of Mouse Models for Genetic Mapping of Atherosclerosis 

A forward genetics approach utilizing genetic mapping is to pinpoint genomic loci by 

associating SNPs with the trait of interest. This approach can identify the causative gene and 

genetic variants associated with the target trait by thoroughly examining the identified loci (Rao, 

2001). It also has been particularly successful to identify genes that regulate rare Mendelian 

disorders. Based on these results, researchers have conducted GWAS to find loci associated with 

a variety of disease-related traits such as atherosclerosis, obesity, diabetes, and metabolic 
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syndrome using the genotyping data available for SNPs. However, these complex traits are 

inherently multi-genic and the contribution of environmental factors is also large (Belmont and 

Leal, 2005; Lander and Schork, 1994). In order to identify the significant QTL for complex trait 

such as atherosclerosis, researchers minimized environmental factors by using a mouse model 

with naturally occurring alleles and performed genetic mapping of quantitative phenotypes in a 

large number of mice with a high-density genotyping array (Smith, 2003). 

Genetic mapping studies in mice have so far been successful in identifying at least 30 

atherosclerotic loci (Chen et al., 2007; Lusis et al., 2016; Smallwood et al., 2014; Wang et al., 

2007). For example, in early QTL mapping studies, a number of atherosclerotic QTLs were 

found in the F2 cross between atherosclerosis susceptible C57BL/6J strain and atherosclerosis 

resistant C3H/HeJ strain or CAST/EiJ strain (Mehrabian et al., 2001; Wang et al., 2007). These 

include seven F2 crosses of different inbred strains using ApoE-/- or Ldlr-/- mice to induce severe 

atherosclerosis. However, since most of these loci are large and contain hundreds of genes, it has 

been difficult to identify the gene that causes atherosclerosis.  

To narrow in at high resolution locus mapping associated traits of interest in mouse 

models, studies have begun using strategies to generate more genetically heterogeneous mouse 

populations. A population of heterologous stock (HS) mice consisting of eight different inbred 

founder strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J) was 

developed for fine genetic mapping of phenotypes (Solberg et al., 2006). These mice were used 

to identify hundreds of loci associated with disease-related traits including asthma, type 2 

diabetes, obesity, and anxiety (Valdar et al., 2006). 

In addition, the Hybrid Mouse Diversity Panel (HDMP), consisting of ~100 inbred 

strains, improves the resolution of genetic mapping of complex traits including atherosclerosis, 
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heart failure, obesity, diabetes, fatty liver, osteoporosis (Bennett et al., 2010; Ghazalpour et al., 

2012; Lusis et al., 2016). The genetic mapping study of atherosclerosis using HMDP mice was 

performed by crossing HDMP mice with C57BL/6J mice carrying transgenes of human CETP 

and apolipoprotein E-Leiden, and 6 fine QTLs for aortic lesion area were identified on 

chromosomes 2, 5, and 9 (Bennett et al., 2015). 

In 2004, an innovative plan to develop a population of recombinant inbred strains 

consisting of five laboratory inbred strains and three wild-derived strains was initiated to 

improve the resolution of genetic mapping in mice (Churchill et al., 2004). The Collaborative 

Cross (CC) mouse population is the construction of recombinant inbred lines using a funnel 

crossover strategy through backcross of mice with eight founder strains including A/J, 

C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HiLtJ with inclusion of wild-derived strains 

CAST/EiJ, PWK/PhJ, and WSB/EiJ. CC mice have increased genetic diversity due to the 

uniform distribution of genetic variation and a beneficial population for genome-wide 

association study (Aylor et al., 2011; Bogue et al., 2015).  

1.4. Integrative Systems Genetic Analysis using the Diversity Outbred Mouse Model 

Diversity outbred (DO) mice are a population derived by intercrossing CC mice that were 

intentionally outbred to maximize the number of recombination events per mouse that allow 

fine-resolution mapping with narrower chromosomal spacing (Churchill et al., 2012). Alleles 

present in DO mice are from five laboratory-derived inbred strains and three wild-derived inbred 

strains, representing ~90% of the known variations present in laboratory mice, and these genetic 

variations are distributed throughout the genome of DO mice (Churchill et al., 2012). The allelic 

contribution from each of the eight founder strains is about 12.5%, and these mice have a level of 

heterozygosity that is closer to that found in humans. DO mice breed randomly for 3-4 
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generations each year and are maintained genetically unique (Churchill et al., 2012). DO mice 

are superior to other mapping populations in that they have more than 40 million SNPs with a 

high average minor allele frequency and a fine recombination block structure (Churchill et al., 

2012; Gatti et al., 2014). Therefore, since disease or trait-related genetic variants can be detected 

at a much higher resolution than human GWAS, which can only detect SNPs with > 5% a minor 

allele frequency, DO mice can be a valuable resource for the discovery of disease-related targets. 

Furthermore, researchers can generate disease-related traits from metabolic organs (liver, 

muscle, kidney, etc.) that are difficult to obtain from human samples, and increase the heritability 

of disease-related traits by carefully controlling environmental factors that act as confounding 

factors. 

To date, genetic mapping using DO mice has been performed in various diseases such as 

atherosclerosis (Smallwood et al., 2014), diabetes (Keller et al., 2019), prostate cancer (Winter et 

al., 2017), pancreatic cancer (Yang et al., 2019), melanoma cancer (Ferguson et al., 2019), 

tuberculosis (Tavolara et al., 2020), respiratory depression (Bubier et al., 2020), kidney disease 

(Huda et al., 2020), and liver toxicity (Kurtz et al., 2020). In addition to diseases, DO mice have 

been used to investigate genetic factors for toxic chemicals (French et al., 2015; Recla et al., 

2019), skeletal development (Katz et al., 2020), sleep-related phenotypes (Keenan et al., 2020), 

and gut microbiota (Carmody et al., 2015; Kemis et al., 2019). Furthermore, recent studies using 

DO mice have uncovered and validated disease-related biomarkers via genetic mapping using 

integrative multi-omics data such as transcriptome, proteome, metabolome, and microbiome with 

disease-related phenotypes (Chick et al., 2016; Kemis et al., 2019; Linke et al., 2020). This 

approach enables the development of an advanced system genetics analysis platform by 
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investigating whether SNPs, which are associated with the disease phenotype, are co-localized at 

the same loci with the SNPs associated with the multi-omics data. 

1.5. Significance of Findings in Dissertation 

In Chapter 2, we examine the associations between gut microbiota and metabolic diseases 

such as CVD and type 2 diabetes. We discuss three potential mechanisms including gut 

permeability and endotoxemia, increased immune system activation, and microbial-derived 

metabolites. In addition to discussing these potential mechanisms, we highlight current studies 

manipulating the gut microbiota or microbial metabolites to move beyond sequenced based 

association studies. Finally, we discuss approaches to demonstrate causalities such as specific 

diet changes, inhibition of microbial pathways, and fecal microbiota transplantation.   

In Chapter 3, we investigated the diet- and strain-dependent effects on metabolic traits in 

the eight Collaborative Cross founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, 

NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomic analysis showed that 

both an atherogenic diet and host genetics have profound effects on the liver transcriptome, 

which may be related to differences in metabolic traits observed between strains. We found 

strain differences in circulating trimethylamine N-Oxide (TMAO) concentration and liver TG 

content, both of which are traits associated with metabolic diseases. Using a network approach, 

we identified a module of transcripts associated with TMAO and liver TG content which was 

enriched in functional pathways. Interrogation of the module related to metabolic traits identified 

NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, 

which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 

was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest 

expressed in the CAST/EiJ strain. 
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In Chapter 4, we studied sexual dimorphism in 20 cardiometabolic traits, liver gene 

expression, and genetic effect using eight hyperlipidemic inbred founder strains and Diversity 

Outbred-F1 mice to examine the role of sex and gene-by-sex interactions in atherosclerosis. Our 

results demonstrate tremendous effects of sex on cardiometabolic traits and hepatic gene 

expression regardless. We identified sex-specific liver genetic pathways and networks involved 

in cardiometabolic traits, suggesting that certain liver gene clusters may contribute to sex-

specific atherosclerosis susceptibility. In support of this, genetic loci associated with the traits 

and transcripts frequently showed sex specificity. Genes highly correlated with the aortic lesion 

area were enriched in pathways relevant to atherosclerosis such as cholesterol homeostasis and 

cytokine-mediated signaling pathways in a sex-specific manner. Furthermore, the Ptprk gene in 

females and the Pten gene in males were shown to underlie a sex-specific locus for 

atherosclerosis.  

In Chapter 5, we interrogated atherosclerosis regulatory networks in hyperlipidemic 

Diversity Outbred mice to reveal key insights into control of atherosclerosis using system genetic 

approaches of cardio-metabolic traits and microbiome. These include identifying abundance of 

fecal microbial taxa and functional predicted pathways associated with atherosclerotic traits and 

signatures of functional gene variants predicted to modulate those traits. Trans-omic analyses 

facilitated identification of Lactococcus as a previously unknown regulatory taxon for 

atherosclerotic traits. 
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2.2. Abstract 

The discovery that gut-microbiota plays a profound role in human health has opened a new 

avenues of basic and clinical research. Application of ecological approaches where the Bacterial 

16S rRNA gene is queried has provided a number of candidate Bacteria associated with coronary 

artery disease and hypertension. We examine the associations between gut microbiota and a 

variety of CVD including atherosclerosis, coronary artery disease and blood pressure. These 

approaches are associative in nature and there is now increasing interest in identifying the 

mechanisms underlying these associations. We discuss three potential mechanisms including: gut 

permeability and endotoxemia, increased immune system activation, and microbial derived 

metabolites.  In addition to discussing these potential mechanisms, we highlight current studies 

manipulating the gut microbiota or microbial metabolites to move beyond sequenced based 

association studies. The goal of these mechanistic studies is to determine the mode of action by 

which the gut microbiota may affect disease susceptibility and severity. Importantly, the gut 

microbiota appears to have a significant effect on host metabolism and CVD by producing 

metabolites entering the host circulatory system such as short chain fatty acids (SCFAs) and 

trimethylamine N-Oxide (TMAO). Therefore, the intersection of metabolomics and microbiota 

research may yield novel targets to reduce disease susceptibility.  Finally, we discuss approaches 

to demonstrate causality such as specific diet changes, inhibition of microbial pathways and fecal 

microbiota transplant.   

2.3. Introduction 

We are beginning to appreciate the role of commensal microbiota in CVD risk (Qin et al., 

2010; Velmurugan et al., 2017) and these microbiota are located in a variety of niches within the 

body including the skin, oral, and gut, and are composed of bacteria, viruses, and fungi. There 
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has been a particular focus on the gut as it is heavily colonized with microbes. It is estimated that 

more than 70% of all the microbes in the human body are present in the colon alone (Ley et al., 

2006a) and trillions of commensal microbes including bacteria, bacteriophage, fungi, archaea, 

and unicellular eukaryotes live in the large intestine that forms a highly diverse dynamic 

interdependent complex ecological community known as the intestinal microbiota (Lozupone et 

al., 2012). The healthy gut microbiota depends on the host for their energy need and provides a 

range of health benefits by providing nutrients, improved barrier function, shaping host immune 

system, and preventing diseases including CVD (Sekirov et al., 2010). 

The gut microbiota is not the only commensal communities studied in relation to CVD 

risk. There is also evidence that the oral microbiota, which contains more than 10,000 bacterial 

species from 22 phyla (Keijser et al., 2008) is also associated with CVD.  Data from large 

epidemiological studies associated poor oral hygiene with increased risk of CVD (de Oliveira et 

al., 2010), and several oral bacteria including Porphyromonas gingivalis have been detected in 

atherosclerotic plaques (Hayashi et al., 2011; Zhang et al., 2010b). What isn’t clear is if the 

association between oral microbiota and CVD indicates a specific mechanism or metabolic 

profile leading to increased disease or is a marker of other important factors to consider such as 

access to healthcare. Additional work remains to determine the mechanism(s) underlying the oral 

microbe-CVD associations and thus the majority of the review focuses on the gut microbiota and 

CVD.   

The combined complexity of the microbiota is only beginning to be appreciated. 

Maternal transmission (Van Daele et al., 2019), diet (Wu et al., 2011), host genetics (Goodrich et 

al., 2014), aging (Takagi et al., 2019), and sex (Sinha et al., 2019) all impact the composition of  

the microbiota. Recent large-scale sequencing efforts have identified tremendous interindividual 
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variation in the microbiota which totals in excess of 45 million genes in the oral and gut niches. 

Moreover, nearly 50% of all genes were “unique to a single metagenomic sample (Tierney et al., 

2019) and only ~550,000, less than 2%, overlapped between the oral and gut niches. This 

heterogeneity combined with the possibility of copy number variants within individual bacterial 

species highlights just how much of the microbiota remains to be characterized.  

In this review, we focus on the association between microbiota and CVD, specifically 

coronary artery disease and hypertension. We examine the steps to establishing causality and 

then discuss the underline mechanisms by which gut microbiota may affect CVD. Finally, we 

examine potential therapeutics for CVD using gut microbiota and microbial metabolites.  

2.4. Microorganisms and CVD Risk 

For over 50 years, the potential role of infectious microorganisms, including bacteria and 

viruses, as potential risk factors for CVD has been appreciated through a number of 

epidemiological studies (Cluff et al., 1968; Pankey, 1965; Saikku et al., 1988). Infection and the 

subsequent inflammatory processes are thought to induce the onset, progression, and rupture of 

atherosclerotic plaques (Libby et al., 2009). The mechanisms by which infection aggravates 

atherosclerosis is direct cell invasion that accelerates plaque growth through local effects, or 

indirect systemic production of inflammatory cytokines that promote the development of 

atherosclerosis (Pant et al., 2014). Representative infectious agents associated with 

atherosclerosis include Chlamydia pneumonia, Helicobacter pylori, P. gingivalis, and Influenza 

A virus (Pothineni et al., 2017).  

Although there are a number of pathogenic bacteria associated with CVD, C. pneumonia, 

a Gram-negative and intracellular bacteria, is an exemplar. C. pneumonia was the first proposed 

bacteria of CVD etiology responsible for the induction of inflammation in the vascular wall of 
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CVD patients (Kuo et al., 1995). In addition, antibiotics targeting C. pneumonia are thought to 

have anti-inflammatory effects, and may contribute to atherosclerotic plaque stability (Pothineni 

et al., 2017). For example, C. pneumoniae infection in rabbits accelerated the thickness of the 

tunica intimal wall and atherosclerosis, and treatment with antibiotics reduced the extent of 

atherosclerosis (Muhlestein et al., 1998). This effect is not universal as studies in mice have not 

shown a similar reduction in lesion size by antibiotics after infection with C. pneumoniae 

(Blessing et al., 2005). Nevertheless, there are examples of pathogenic bacteria potentially 

having direct effects on CVD. We now discuss how commensal bacteria of the microbiota may 

also affect CVD risk. 

2.5. Microbiota and Cardiovascular Disease (CVD) Associations 

CVD includes a number of pathologies and diseases such as heart failure, stroke, 

peripheral artery disease, aortic valve disease, atherosclerosis, and hypertension but we limit our 

discussion to coronary artery disease (CAD) and hypertension. In a number of case-control 

studies, distinct shifts of microbial composition have been identified in fecal samples from 

patients with CVD (Table 2.1). It is not entirely clear whether these microbial communities are 

causal to CVD or if they are simply affected by other environmental factors contributing to the 

development of CVD. In the following section, we provide a summary of a number of recently 

reported associations between gut microbiota and coronary artery disease or hypertension. 

2.5.1. Gut Microbiota and Coronary Artery Disease 

Dysbiosis refers to an imbalance in the microbial community in the human body. 

Alterations in the composition of the gut microbiota associated with the risk of CVD have been 

the focus of the majority of microbiota studies. Indeed, identifying patterns of specific 

composition of microbiota associated with CVD susceptibility contribute greatly to 
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understanding the pathogenesis of diseases. The composition of the microbiota associated with 

aortic lesion size is distinct from the oral and gut microbiota (Koren et al., 2011). Frequently, 

studies utilize a case-control design to identify the microbial differences among subjects with 

CVD compared to controls. Foremost, there have been several consistent results reported from a 

number of cohorts (Table 2.1) (Dinakaran et al., 2014; Emoto et al., 2016; Kelly et al., 2016).  

For example, Strepcococcus spp., exhibiting pathogenic expansion in intestinal dysbiosis (Taur 

and Pamer, 2013), showed increased abundance in stool samples from various CVD patients 

(Feng et al., 2016; Jie et al., 2017; Sanchez-Alcoholado et al., 2017; Yan et al., 2017). In 

addition, the abundance of Faecalibacterium spp. and Roseburia spp., which are known to have 

anti-inflammatory effects and reduce atherosclerotic events in mice and humans (Kasahara et al., 

2018; Sokol et al., 2008), were relatively depleted in CAD patients (Jie et al., 2017; Sanchez-

Alcoholado et al., 2017). Finally, metagenome studies have shown depletion of butyrate-

producing bacteria including Faecalibacterium prausnitzii and Roseburia intestinalis, and a high 

abundance of Enterobacteriaceae and Streptococcus in atherosclerotic patients (Jie et al., 2017). 

Studies has also identified alterations in the metagenomic profile of the microbiome in CVD 

patients. These data demonstrate enrichment of genes encoding peptidoglycan biosynthesis, 

while healthy cohorts are enriched in phytoene dehydrogenase genes (Karlsson et al., 2012). 

Thus, not only are the composition of the microbiota altered in CVD but the underlying 

functional capacity of the microbiota may be altered. 
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Table 2.1. Reported alterations in the gut microbiota in various CVD cohorts. 

Condition Ethnicity Technique Associated microbiota changes References 

Myocardial 

infarction 

European 

(Swedish) 

Metagenomic 

sequencing 

Increased: Collinsella (Karlsson 

et al., 

2012) 
Decreased: Eubacterium, Roseburia 

CAD / T2D 
European 

(Spanish) 

16S rRNA 

V2-V3 

region 

Increased: Enterobacteriaceae, Streptococcus, 

and Desulfovibrio 
(Sanchez-

Alcoholado 

et al., 

2017) 

Decreased: Faecalibacterium prausnitzii and 

Bacteroides fragilis 

CVD 
European 

(American) 

16S rRNA  

V4 region 

Increased: Prevotella and Tyzzerella (Kelly et 

al., 2016) Decreased: Alloprevotella, Catenibacterium 

CVD 
Asian 

(Indian) 

16S rRNA &  

Metagenomic 

sequencing 

Increased: Proteobacteria, Actinobacteria, 

Propionibacterium phages, Pseudomonas phages, 

Rhizobium phages, Lymphocystis virus, and 

Torque Teno viruses 

(Dinakaran 

et al., 

2014) 

CAD 
Asian 

(Japanese) 

16S rRNA 

V3-V4 

region 

Increased: Firmicutes/bateriodetes ratio and 

Lactobacillales (Emoto et 

al., 2016) 
Decreased: Bacteroides and Prevotella 

CAD 
Asian 

(Chinese) 

Metagenomic 

sequencing 
Increased: Streptococcus sp. M334 and M143, and 

Clostridium sp. HGF2 

(Feng et 

al., 2016) 

CVD 
Asian 

(Chinese) 

Metagenomic 

sequencing 

Increased: Escherichia coli, Klebsiella spp, 

Enterobacter aerogenes, Streptococcus sp, 

Lactobacillus salivarius, Solobacterium moorei, 

Atropobium parvulum, Ruminococcus gnavus, and 

Eggerthella lenta 

(Jie et al., 

2017) 
Decreased: Roseburia intestinalis, 

Faecalibacterium cf. prausnitzii, Bacteriodes spp, 

Prevotella copri, and Alistipes shahii 

Hypertension 
Asian 

(Chinese) 

Metagenomic 

sequencing 

Increased: Prevotella, Klebsiella, Porphyromonas, 

and Actinomyces 
(Li et al., 

2017) 
Decreased: Faecalibacterium, Oscillibacter, 

Roseburia, Bifidobacterium, Coprococcus, and 

Butyrivibrio 

Hypertension 
Asian 

(Chinese) 

Metagenomic 

sequencing 

Increased: Klebsiella, Clostridium, Streptococcus, 

Parabacteroides, Eggerthella, and Salmonella  (Yan et al., 

2017) Decreased: Faecalibacterium, Roseburia, and 

Synergistetes 

Hypertension 
European 

(Finns) 

Metagenomic 

sequencing 

Increased: Blautia, Cellulomonas, Collinsella, and 

Desulfovibrio, Dielma, Eisenbergiella, 

Holdemania, Megasphaera, 

Phascolarctobacterium, Ruthenibacterium, 

Sutterella, and Turicibacter 

(Palmu et 

al., 2020) 

Decreased: Lactobacillusa, and Citrobacter, 

Coprobacillus 

Hypertension 

European/ 

African 

(American) 

16S rRNA 

V3-V4 

region 

Increased: Anaerovorax, Clostridium IV, 

Oscillibacter, and Sporobacter (Sun et al., 

2019) Decreased: Akkermansia, Ruminococcus, 

Anaerovorax, Sporobacter, and Asaccharobacter 
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2.5.2. Gut Microbiota and Hypertension 

Similar to CAD there is increasing interest in how gut microbiota may affect blood 

pressure and the development of hypertension. Studies of angiotensin II infused mice, 

spontaneous hypertensive rats, and hypertensive patients have identified a distinct microbial 

composition of gut microbiota compared to controls including decreased microbial abundance, 

diversity, and low intestinal epithelial integrity (Adnan et al., 2017; Sata et al., 2020; Yang et al., 

2015). Broad-based antibiotic treatment in mice reduced intestinal dysbiosis and attenuated 

hypertension in angiotensin II-infused mice (Pevsner-Fischer et al., 2017). Furthermore, 

angiotensin II-induced hypertension is alleviated in germ-free mice compared to conventionally 

raised mice, suggesting that the gut microbiota is important for the development of hypertension 

(Karbach et al., 2016). Studies in humans have clearly demonstrated that there is an inverse 

association between measures of α-diversity and hypertension (Sata et al., 2020). In addition to 

reduced diversity, there is an increased abundance of opportunistic pathogenic taxa such as 

Klebsiella, and Streptococcus in subjects with hypertension (Li et al., 2017; Sun et al., 2019; Yan 

et al., 2017), while several taxa are associated with high blood pressure (see Table 2.1), and may 

affect intestinal cell inflammation (Kim et al., 2018a). In a longitudinal cohort, CARDIA, 

containing both Caucasians and African American subjects, identified a slightly different profile 

of bacteria positively associated with hypertension: Anaerovorax, Clostridium IV, Oscillibacter, 

and Sporobacter (Sun et al., 2019). Conversely, a number of studies have identified Bacteroides 

thetaiotaomicron as associated with reduced blood pressure in both hypertensive and healthy 

subjects (Kim et al., 2018a; Palmu et al., 2020; Sun et al., 2019; Verhaar et al., 2020). Although 

these differences between hypertensive subjects and healthy cohorts do not indicate causality, 

they do suggest that the composition and diversity of the gut microbiota are associated with 
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clinical features of hypertension. Importantly, having the microbiota assessed in longitudinal 

cohorts such as CARDIA allows for epidemiologists to assess the risk of developing 

hypertension (or CAD) based on the current microbiota composition and thereby allowing for the 

assessment of the clinical utility of these data for predicting disease. 

2.6. Limitations of Association-Based Microbiota Studies and CVD Risk  

A majority of microbiome-based studies utilize analysis of the bacterial 16S rRNA gene.  

For details on the methods and analytical techniques needed for 16S analysis, we direct the 

reader to several excellent reviews (Boers et al., 2019; Golebiewski and Tretyn, 2020; Kim et al., 

2017; Mandal et al., 2015). 16S rRNA studies have provided tremendous insight into the specific 

bacteria associated with CVD and undeniability have transformed our understanding of disease 

risk but there are limitations. Commonly used 16S rRNA gene sequencing techniques often do 

not reach species or sub-species level resolution, and the analysis often excludes less abundant 

microbial taxa. Thus, studies focused primarily on abundance neglect the functional pathways of 

microbes that contribute to disease risk, although the disease can be driven by microbes that can 

represent a small fraction of the microbial community. Additionally, many well-described 

cohorts designed to longitudinally assess CVD risk have not routinely collected fecal samples. 

Thus, many of the current reports are cross-sectional in nature and therefore precludes 

assessment of the relative risk of developing CVD on the current composition of the microbiota, 

which is critical to developing therapeutic strategies. 

We now appreciate some of the biases and intrinsic issues associated with 16S analysis.  

These include a number of items and several have recently been discussed in the context of 

hypertension (Marques et al., 2019). First, the quality of DNA obtained from samples can be 

varied by differences in sample collection method (sample type, collection time, or processing 
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method), storage and processing techniques (DNA extraction, library construction, sequencing 

depth, or quality filters). Second, from a technical point of view, amplification bias, improper or 

no internal sequencing control, contamination, or non-standard databases for mapping can lead to 

alteration in microbial composition independent of actual microbial changes. Finally, the results 

of these analyzes are usually expressed as a proportion rather than an absolute number of the 

microbes per gram of sample, and the proportion of specific microbial taxa in a sample may not 

be related to the risk of disease. Numerous large-scale efforts are underway to standardize 

microbiome methods and protocols in larger cohorts in an attempt to address some of these 

issues (Amos et al., 2020; Brumfield et al., 2020; Shkoporov et al., 2018). More recently, there is 

interest in utilizing whole-genome sequencing of microbiota samples termed “metagenomics”, to 

provide much better taxonomic resolution down to species or strain level. As metagenomics 

results in sequences of genes contained in the sample, it provides an opportunity for functional 

profiling of the metabolic pathways present in community (Thomas et al., 2012) while also 

providing the taxonomic details available in 16S studies. While metagenomics provides a 

complete view of the microbial communities, it is expensive and the analytical approaches are 

computationally complex and time-consuming.  

2.7. Towards Function and Mechanistic Understanding of the Microbiota in CVD 

Although the microbiota is complex, there are a number of approaches to establishing 

causality and infer mechanism(s) of microbiota and specific bacteria for CVD (Figure 2.1).  In 

particular, studies utilizing microbial transplantation in model organism can demonstrate the 

direct role of the gut microbial taxa in the risk of CVD. Specifically, the microbiota can be 

ablated from model organisms such as mice using antibiotic cocktails or germ-free animals. This 
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provides a naïve state by which individual or complex communities can be added and then 

examined for hypertension or CVD.  

Studies utilizing germ-free animals have been critical to further our understanding of the 

functional role of the microbiota in disease susceptibility (Kennedy et al., 2018). Germ-free mice 

can also receive fecal microbiota transfers from samples collected in case/control studies. For 

example, blood pressure of germ-free mice increased when they received a transplant of stool 

from hypertensive patients as compared to mice receiving samples from healthy donors. Blood 

pressure elevations after FMT have also been observed in conventional mouse model (Kim et al., 

2018b). Germ-free mice administered stool samples from hypertensive patients or hypertensive 

rats have an elevation of blood pressure (Li et al., 2017; Toral et al., 2019). These studies provide 

evidence that gut microbiota can affect the development of hypertension. Studies have been 

performed using 2 strains of mice that differ in atherosclerosis susceptibility and that at least a 

portion of atherosclerosis can be attributed to the microbiota (Gregory et al., 2015). It is 

important to note that the complexity of the microbiota can produce unexpected results such as 

increased blood pressure in Dahl salt-sensitive rats receiving fecal transplants from salt-resistant 

normotensive rats (Mell et al., 2015). The latter indicates that the relationship between 

microbiota and host biology is more complex than simply classifying microbiota as “good” or 

“bad”. 
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Figure 2.1. Towards function and mechanistic understanding of the microbiota in CVD.  

Examples of ways to move from association to causation. (A) Examples of microbiome 

approaches include where conventional mice are provided an agent to perturb the microbiota 

(either expand specific taxa or inhibit a pathway).  (B) Examples of forward microbiome 

approaches include a comparison of the gut microbiome between controls and CVD subjects 

from human cohorts.  These fecal microbiota samples are then transplanted into germ-free or 

antibiotic-treated animals to determine the gut microbiota community effect on BP. (C) Diet, 

specific bacterial enzyme inhibitor, or engineered microbiota can be introduced to animal model 

to establish a causal relation.  
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In addition to studies examining the transplantation of fecal samples, there have been 

attempts at understanding the role of specific bacteria in CVD. For example, colonization of 

germ-free ApoE-deficient (ApoE−/−) mice with Roseburia intestinalis isolated from humans 

reduced the levels of inflammatory markers and atherosclerosis providing evidence of the 

causative role of Roseburia intestinalis in CVD (Kasahara et al., 2018). As the literature expands 

with similar studies, novel pathways and therapeutic targets may be identified.  In the following 

section, we provide an overview of studies utilizing these functional approaches to provide 

potential mechanisms for how the microbiota affects CVD risk.  In particular, we focus on 

host:microbe effects on the immune system, gut permeability and microbial derived metabolites.  

It is important to note that by its nature the gut microbiota is a diverse community and thus it is 

likely that there are multiple mechanisms for its effects on CVD. 

2.7.1. Effect of Gut Microbiota on Cardiovascular Health via Modulation of Immune 

Function  

Gut microbiota is a strong modulator of host immunity and host immune response plays a 

key role in a wide range of pathology including CVD. For example, atherosclerosis which 

underlies many forms of CAD is considered a chronic inflammatory disease with the 

involvement of both innate and adaptive immunity (Ross, 1999). Several gut bacteria have been 

reported to influence distinct immune cells and there is an indication that T-cells are important in 

these processes (Atarashi et al., 2011; Furusawa et al., 2013; Gil-Cruz et al., 2019; Round and 

Mazmanian, 2010). How these systemic alterations in adaptive immunity impact due to specific 

microbiota CAD or hypertension remain to be fully elucidated.  
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In mice, there is growing evidence suggesting that the gut microbiota can affect 

atherosclerosis and inflammatory pathways. For example, microbiota transfer from mice prone to 

inflammatory dysregulation (Caspase 1-/-) into atherosclerosis prone low-density lipoprotein 

receptor deficient (LDLR-/-) mice does in fact increase atherosclerotic plaque formation 

compared to those who received microbiota from LDLR-/- mice (Brandsma et al., 2019). One 

possible mechanism of this effect is that gut microbiota elevated systemic inflammatory 

cytokines interleukin (IL)-1β, IL-2, and interferon (IFN)-γ. On the other hand, transplants with 

Bacteroides vulgatus and Bacteroides dorei attenuated atherosclerotic lesions and decreased 

plasma tumor necrosis factor-α (TNFα) level (Yoshida et al., 2018). Similarly, Lactobacillus 

plantarum ATCC 14917 supplementation inhibited atherosclerotic lesion formation by 

decreasing serum oxidized LDL (OxLDL), TNFα, and IL-1β production in the aorta (Hassan et 

al., 2020). Higher abundance of the Roseburia and Blautia among others was associated with a 

decreased atherosclerotic lesion in mice and reduced plasma total cholesterol, TNFα, and IL-1β 

concentration (Wu et al., 2020b).  

Similarly, hypertension is associated with inflammation and a number of alterations in 

immune system [reviewed in (Norlander et al., 2018)] In hypertensive humans, decreased 

relative abundances of butyrate-producing Roseburia and Faecalibacterium was observed along 

with increased TNFα:IFN-γ ratio, TNFα and IL-6 production in the isolated peripheral blood 

mononuclear cells compared to normotensive people. Additionally, high-salt diet-induced 

hypertension is associated with depleted gut Lactobacillus abundance, increased IFN-γ+ CD4 T 

cells and serum IFN-γ level, and decreased TGF-β1+ CD4 T-cells and serum TGF-β1 

concentration (Liu et al., 2019a). These findings do suggest that therapies that modulate the gut 

microbiota may simultaneously affect inflammatory processes and subsequently CVD.  
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2.7.2. Gut Permeability and Intestinal Barrier Dysfunction 

The cells of the intestine serve as a critical barrier to the bacteria in the gut. This function is 

maintained by tight junctions between epithelial cells, mucus production, and mucosal immunity. 

When the intestinal barrier is compromised, lipopolysaccharides (LPS) derived from Gram-

negative bacteria can enter the host circulation resulting in endotoxemia. Endotoxemia 

constitutes a strong risk factor of early atherogenesis (Wiedermann et al., 1999) and circulating 

LPS can bind to the host's Toll-like receptor (TLR) resulting in an inflammatory response in the 

host (Hug et al., 2018). Patients with CVD have higher levels of endotoxin in the blood 

compared to normal individuals (Hsu et al., 2017; Ibrahim et al., 2018). Translocation of LPS 

from the intestine is supported by a higher concentration of endotoxin in the hepatic vein 

compared to blood drawn directly from the ventricle (Peschel et al., 2003). There is evidence that 

specific Bacteria may alter the gut permeability and endotoxemia. Administration of live A. 

muciniphila reduced intestinal permeability, circulating endotoxin and aortic atherosclerosis in 

ApoE-/- mice (Li et al., 2016a). A recent proof-of-concept study in humans found that 

administration of pasteurized A. muciniphila for 3 months reduced circulating LPS in obese 

patients (Depommier et al., 2019). 

2.7.3. Microbial Metabolites and CVD 

Seminal studies by Hazen and colleagues (Zhu et al., 2016) have demonstrated that gut 

microbiota may in fact generate metabolites that affect overall health or CVD pathogenesis. We 

are beginning to appreciate that many gut-derived metabolites can act on organs such as the liver 

via portal circulation and be metabolized by host enzymes. Microbial metabolites also help us 

understand the underlying mechanism by which gut bacterial taxa may influence host biology 

and thus health and disease (Table 2.2; Figure 2.2). We will briefly discuss the association 
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between trimethylamine N-Oxide (TMAO) and CVD, and focus on other microbial metabolites 

such as short-chain fatty acids (SCFAs), tryptophan metabolites, and bile acid metabolites in this 

review.  

2.7.3.1. Trimethylamine-oxide (TMAO) 

Many studies have been conducted to investigate metabolites associated with the 

pathogenesis of CVD, and one of the most studied and reviewed metabolites to date is TMAO. 

We briefly report the association between TMAO and CVD since there are several well written 

published reviews which provide detailed reviews of TMAO (Witkowski et al., 2020). Dietary 

choline, and L-carnitine are known to be converted to trimethylamine (TMA) by microbial 

enzymes (TMA lyase) contained in the genomes of specific gut microbiota. TMA is then 

absorbed in the intestine, delivered to the liver via portal vein, and then converted to TMAO by 

hepatic flavin monooxygenase 3 (FMO3) (Bennett et al., 2013b). In subsequent studies 

combining data from more than 4,000 subjects who underwent coronary angiography, TMAO 

elevation is associated with death, MI, and stroke over a 3-year period (Tang et al., 2013; Wang 

et al., 2014b). These prognostic effects also have been evaluated in patients with a history of 

diabetes (Tang et al., 2017), chronic kidney disease, heart failure, MI, and peripheral arterial 

disease (Witkowski et al., 2020). 
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Table 2.2. Mechanism of microbiota-related metabolites on CVD 

Metabolites 
Foods rich in 

metabolites 

Bacteria producing 

metabolites 
Mechanism Study group References 

TMAO 

Red meat, 

eggs, fish, 

poultry 

Anaerococcus, 

Clostridium, 

Desulfovibrio, 

Edwardsiella, 

Proteus, 

Providencia, and 

others(Qi et al., 

2018) 

Cholesterol accumulation ApoE-/- mice 
(Koeth et al., 

2013b) 

Foam cell formation ApoE-/- mice 
(Koeth et al., 

2013b) 

Platelet hyper-reactivity 
Human and germ-free 

mice 

(Zhu et al., 

2016) 

Vascular endothelial 

dysfunction 

Human and germ-free 

mice 

(Zhu et al., 

2016) 

Fibrosis and remodeling 
Human and germ-free 

mice 

(Zhu et al., 

2016) 

Activation of PERK-

FoxO1 signaling 

ob/ob mice, 

In vitro studies 

(primary rat 

hepatocytes and 

HEK239T cells) 

(Chen et al., 

2019) 

SCFAs 

Fermented 

foods  

(cheese, 

butter, 

yoghurt) 

Anaerostipes, 

Blautia, 

Coprococcus, 

Eubacterium, 

Faecalibacterium, 

Marvinbryantia, 

Megasphaera, 

Roseburia, 

Ruminococcus, and 

others(Morrison and 

Preston, 2016; Tan 

et al., 2014) 

Lowering blood pressure 

by binding SCFA binding 

G protein-coupled 

receptor (GPR41, GPR43, 

GPR109A) 

GPR41-/- mice, 

GPR43/GPR109A-/- 

mice, and germ-free 

mice 

(Kaye et al., 

2020; 

Natarajan et al., 

2016) 

Tryptophan metabolites      

Indole, ILA, 

IPA, IAA 

Red meat, 

eggs, fish, 

poultry 

Bacteroides, 

Bifidobacterium, 

Clostridium, 

Lactobacillus, 

Peptostreptococcus, 

Ruminococcus, 

Ruminiclostridium, 

and others(Dodd et 

al., 2017; Russell et 

al., 2013) 

Act on AHR found in 

intestinal immune cells 

and thereby alter innate 

and adaptive immune 

responses  

GF and conventional 

mouse 

(Krishnan et 

al., 2018) 

Indoxyl 

sulfate 

Induces expression of 

proinflamatory cytokine 

IL-6  

Hypertensive rats 
(Adelibieke et 

al., 2014) 

Induces expression of 

monocyte chemo-

attractant protein-1  

Cell culture 
(Watanabe et 

al., 2013) 

Caused endothelial cell 

senescence,  
Cell culture 

(Koizumi et al., 

2014) 

Proliferation and 

migration of vascular 

smooth muscle cells  

Cell culture 
(Shimizu et al., 

2009) 

    

TMAO = Trimethylamine N-oxide, SCFA = short chain fatty acid, IPA = indolepropionic acid, ILA = 

indolelactic acid, IAA = indoleacetic acid,  
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Figure 2.2. Overview of potential mechanisms of microbiota-host interactions and CVD.   

1-Pathogenic bacteria or bacterial components can enter the host circulation resulting in 

endotoxemia and inflammatory response. 2-local and systemic inflammatory processes can affect 

CVD development 3- Metabolites such as SCFAs and TMA can either bind host receptors or be 

further metabolized to pro- or anti- CVD molecules. SCFAs, short-chain fatty acids; GPR, G 

protein-coupled receptor; TLR, toll-like receptor; TMA, trimethylamine; TMAO, trimethylamine 

N-oxide; FMOs, flavin-containing monooxygenases; IL, interleukin; IFN, interferon; TGF-B, 

transforming growth factor beta. 
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Although the association between TMAO levels and various CAD events has been 

reproduced in many studies, there are studies where TMAO is not associated with CAD. For 

example, a recent study showed that TMAO levels were not associated with atherosclerosis in 

the Framingham Heart Study Offspring cohort (1215 individuals) or supporting animal studies 

(Koay et al., 2020), or CARDIA (Meyer et al., 2016). One small clinical trial examined FMT of 

low TMAO producing vegan donors into subjects at risk of CVD but failed to observe a 

significant reduction in TMAO levels (Smits et al., 2018). Understanding what role, if any 

differences in the microbiota or diet, play in these disparate results remains to be determined. 

Evidence supporting the role of TMAO in the development of hypertension is not yet 

clear. Preclinical studies have shown that experimental hypertensive rats have higher intestinal 

permeability and portal blood TMA level in the colon tissue (Jaworska et al., 2017), and TMAO 

treatment increased plasma aquaporin-2 concentration which elicits greater water reabsorption, 

and eventually leads to hypertension (Liu et al., 2019b). Apart from these animal studies, 

evidence has been established in humans through a systematic review that high TMAO plasma 

levels are associated with high blood pressure risk in 8 studies with 11,750 individuals and 6176 

hypertensive cases (Ge et al., 2020). However, the studies included in this systematic review 

recruited most of the participants were from the United States. Further large-scale prospective 

cohorts are expected to characterize the association, especially the causality in the general 

population. 

2.7.3.2. Short-Chain Fatty Acids  

The main products of microbial enzyme reaction of dietary fiber are SCFAs, such as 

acetate, butyrate, and propionate. The main butyrate producers in the human colon are 

Firmicutes (phylum), with Lachnospiraceae (family), and the Ruminococcaceae (family) the two 
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most abundant groups (Louis and Flint, 2009, 2017). An additional pathway in lactic acid-

utilizing bacteria exists where lactate and acetate are converted to butyrate (Louis and Flint, 

2009). A number of other phyla produce butyrate and the efficiency of this production may 

reflect the expression of specific genes such as butyryl-CoA transferase, butyryl-CoA 

dehydrogenase, and butyrate kinase (Vital et al., 2014). Two species are well characterized with 

regard to SCFA production: Bifidobacterium species produce acetate and lactate (Riviere et al., 

2016) and Akkermansia muciniphila produces acetate and propionate (Derrien et al., 2004; Louis 

and Flint, 2017). 

It is known that the most direct route through which SFCA modulates the risk of CVD is 

the regulation of blood pressure. Initial clinical intervention study showed that fiber intake 

reduced blood pressure and that SCFAs are involved in blood pressure control (Streppel et al., 

2005). SCFA metabolites lower blood pressure by modulating the SCFA binding G protein-

coupled receptor (GPR) 41 or olfactory receptor 78 in vitro and in vivo (Kim et al., 2018a; 

Natarajan et al., 2016; Pluznick et al., 2013). Supplementing the diet with SCFAs protects 

against the development of hypertension and involves the SCFA receptor GPR43/GPR109A, 

which also regulates the abundance of Treg cells in mice (Bartolomaeus et al., 2019; Kaye et al., 

2020; Marques et al., 2017). Thus, SCFAs may regulate cardiovascular homeostasis by 

activating receptors in the cells of the cardiovascular system. Supporting these mechanistic 

studies are data from a controlled trial showed that butyrate (600 mg/day) significantly reduced 

diastolic blood pressure that measured after a 10-min rest period in 15 patients with type 2 

diabetes (Roshanravan et al., 2017). Although SCFAs are among the most frequently published 

intestinal microbial-derived metabolites, more clinical trials and mechanistic studies are needed 

to validate the effects of SCFAs on CVD and its risk factors. 
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2.7.3.3. Other Microbial Metabolites  

Identification of microbial derived metabolites that affect host physiology is an active 

area of investigation. There is particular interest in small molecules derived from dietary 

tryptophan (Hayashi et al., 2018; Yu et al., 2017). In the gut, tryptophan is catabolized by a 

variety of pathways associated with several classes of gut bacteria including Lactobacillus, 

Bacteroides, Bifidobacterium, and Clostridium to produce a number of metabolites such as 

tryptamine, indole, indolelactic acid (ILA), indolepropionic acid (IPA), indoleacetic acid (IAA), 

indolealdehyde (IAld), and metabolite 3-methylindole (skatole) (Cervantes-Barragan et al., 2017; 

Dodd et al., 2017; Russell et al., 2013; Zelante et al., 2013). These tryptophan metabolites have 

diverse biological effects including enhancing the intestinal epithelial barrier, stimulate 

gastrointestinal motility, help the secretion of gut hormones, exert anti-inflammatory and anti-

oxidative effects in the systemic circulation, modulate gut microbial composition (Roager and 

Licht, 2018). Some of these effects may be through the aryl hydrocarbon receptor (AHR) and 

thereby alter innate and adaptive immune responses in a ligand-specific fashion (Krishnan et al., 

2018) which could modulate CVD risk. Not all tryptophan metabolites are associated with 

beneficial effects on gut health or CVD risk. In particular, indoxyl sulfate is associated with 

aortic calcification (Barreto et al., 2009), increased carotid intima-media thickness (Sato et al., 

2012), increases expression of cytokines in vascular cells (Adelibieke et al., 2014). 

Understanding how compositional differences in the microbiota or if specific bacteria module 

metabolism of tryptophan metabolites may further shed light on the underlying mechanisms by 

which taxa affect CVD risk.   
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2.8. Therapeutic Potential for Modulating Microbiota on CVD Risk 

The association between altered composition of intestinal microbiota in CVD patients, 

production of microbial metabolites, and CVD risk mentioned above suggest that gut microbiota 

may be a significant modulator of CVD, and their relationship has become a potential target for 

new therapeutics (Figure 2.3). We review a number of potential strategies to module the 

microbiota and CVD risk including diet, inhibition of microbial pathways, and fecal microbiota 

transplants. 
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Figure 2.3. Therapeutic interventions for improving CVD. Current strategies for improving 

cardiovascular disease by manipulating intestinal microbiota, including bacterial TMA lyase 

enzyme inhibitors, fecal microbial transplantation, prebiotics, probiotics, and dietary 

interventions. 
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2.8.1. Diet and Prebiotics in the CVD-Microbiota Axis 

 Diet has been considered to be the most direct driving factor for gut microbiota 

composition (David et al., 2014; Duncan et al., 2007; Louis et al., 2007; Zhang et al., 2010a). In 

many cases, diet is a factor modulating both CAD and hypertension (Jama et al., 2019) and gut 

microbiota. Epidemiological, clinical, and experimental studies have demonstrated that diet and 

nutrition play a central role in the prevention of CVD (Torres et al., 2015). Based on these data 

the American Heart Association has made formal dietary recommendations 

(https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-

lifestyle-recommendations). Some of these specific recommendations are now known to affect 

the microbiota. 

An example of these are recommendations to reduce salt intake as certain humans and 

model organisms are sensitive to a high-salt diet (Ha, 2014; Mell et al., 2015). We now 

appreciate that high salt intake influences gut microbial diversity in rodents and humans (Bier et 

al., 2018; Wang et al., 2017; Wilck et al., 2017). High salt intake altered microbiota diversity and 

increased the abundance of Erwinia genus and Corynebacteriaceae family in mice (Bier et al., 

2018) and depleted the abundance of Lactobacillus murinus in human. Mechanistically, a high 

salt diet promotes local and systemic tissue inflammation via increases of pro-inflammatory 

cytokines and increased gut permeability in both human and animal studies (Kleinewietfeld et 

al., 2013; Wilck et al., 2017; Yi et al., 2015). Some of the effects of dietary salt may be attributed 

to specific bacteria such as Bacteroides fragilis, which through a variety of intermediate 

metabolic effects ultimately activates the mineralocorticoid receptor and increases blood pressure 

(Yan et al., 2020).  

https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
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 In addition to specific dietary components that affect CVD risk and the microbiota, there 

is evidence that dietary patterns also play a role. For example, one of the most studied diets in 

CVD research is the Mediterranean diet (MeD). Epidemiological studies found that MeD has a 

cardio-protective effect compared to western diets (De Lorgeril et al., 1994; Estruch et al., 2013). 

Several studies (De Filippis et al., 2016; Garcia-Mantrana et al., 2018) have demonstrated that 

MeD elicits beneficial microbiota profiles and microbial metabolite production. For example, 

one study (De Filippis et al., 2016) found that higher consumption of MeD is associated with 

increased levels of Prevotella, fiber degrading Firmicutes, fecal SCFAs, and lower urinary 

TMAO compared to a western diet. Similarly, another study (Garcia-Mantrana et al., 2018) 

reported that closer adherence to the Mediterranean dietary pattern and greater consumption of 

plant-based nutrients such as vegetable proteins and polysaccharides were associated with a 

lower ratio of Firmicutes: Bacteroidetes and Streptococcus; higher Catenibacterium, 

Bifidobacterium, and fecal SCFAs. One recent study (Pellegrini et al., 2020) found that MeD 

with probiotics containing Bifidobacterium longum and Lactobacillus rhamnosus increased gut 

microbial diversity and decreased Bacteroidetes-to-Firmicutes ratio along with some other health 

benefits including improved BMI, fasting glucose, and homeostasis, which was not fully 

observed in MeD alone indicating that at least a part of the health benefit of MeD depends on the 

gut microbial composition.  

 Dietary fiber is an important macronutrient in the context of gut microbiota and CVD. 

Large population-based observational studies (Bazzano et al., 2003) found that a diet containing 

high dietary fiber was associated with a reduced CVD risk, which was largely mediated via the 

reduction of LDL-cholesterol. Clinical trials found that ingestion of soluble fiber (2-10 g/day) 

was associated with a significant 7% LDL-cholesterol reduction (Brown et al., 1999) in a dose-
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dependent manner (Anderson et al., 2000). Several gut bacteria utilize dietary fiber and produce 

SCFAs which prevent CVD as discussed earlier in this manuscript. In addition to SCFAs 

production, dietary soluble fibers bind to the bile acids in the gut and blocked reabsorption of the 

bile acids, which leads to increased bile acid synthesis in the liver, and ultimately increased LDL 

clearance from blood (Andersson et al., 2002; Kritchevsky and Story, 1974). 

Growing evidence showing that prebiotics supplementation reduces CVD, specifically 

blood pressure and atherosclerosis, by manipulating the gut microbiota, which supports prebiotic 

interventions to prevent or treat CVD. Prebiotics are the non-digestible food ingredients that 

beneficially affect the host by selectively stimulating the growth and/or the activity of one or a 

limited number of bacterial species already resident in the colon (Gibson and Roberfroid, 1995). 

Inulin, a linear β-2,1 fructosyl-fructose polydisperse carbohydrate material, feeding decreased 

atherosclerosis in the aortic root of mice and normalized the altered microbial abundance of 

Bifidobacterium, Lactobacillus, Akkermansia, Allobaculum, and Coprococcus (Hoffman et al., 

2020). These results are supported by another study where inulin supplementation increased 

Akkermansia and Bifidobacterium abundance, decreased bacterial taxa involved in secondary 

bile acid metabolism, and reversed endothelial dysfunction (Catry et al., 2018). β-glucan is a 

glucose polysaccharide that can sequester cholesterol, scavenges reactive oxygen species, and 

produces SCFAs when digested by gut microbiota (Nakashima et al., 2018). In addition to 

serving as an energy source for gut bacteria, β-glucans are immunostimulatory through activation 

of β-glucan receptors, such as dectin-1 or CR3 on the intestinal macrophages (Brown and 

Gordon, 2001; Chan et al., 2009). Oat β-glucan supplementation increased high-density 

lipoprotein (HDL)-cholesterol and decreased plasma triglyceride (TG) and atherosclerosis alone 

with enrichment of the genus Akkermansia in the gut (Ryan et al., 2017).  
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2.8.2. Targeting the Microbiota to Affect CVD using Small Molecules  

The approach of manipulating intestinal microbial communities and their metabolic 

pathways has not yet reached clinical practice, but some studies show promising results. 

Targeting microbial enzymes (TMA lyases) that convert nutrients such as choline or carnitine 

into TMA regulates TMAO levels and experimental studies have found several chemical 

compounds that can trigger the modulatory effects on CVD. One example is 3,3-dimethyl-1-

butanol (DMB), which is a TMA lyase inhibitor found in natural products such as olive oil, 

which can decrease plasma TMAO levels without perturbing microbial cell viability in in-vivo 

mouse models (Chen et al., 2016b; Wang et al., 2015). Mice receiving DMB have been shown to 

have reduced atherosclerotic lesion, attenuated foam cell formation, and alleviated progression of 

CVD (Wang et al., 2015). Chemically synthesized compounds have been used to inhibit TMA 

lyase in mice and these molecules also showed the selectively targeting and accumulating in the 

gut microbiota, allowing for sustained inhibition of TMA lyase in the host (Roberts et al., 2018). 

In addition to TMAO there are a number of other microbial pathways whose modulation 

or inhibition may affect CVD risk. One possible pathway to target is the microbial cholesterol 

dehydrogenase enzyme (ismA gene), which converts cholesterol to the sterol coprostanol (Kriaa 

et al., 2019). Coprostanol is not absorbed as efficiently as cholesterol in the gastrointestinal tract 

and thus this pathway contributes to lowering blood cholesterol levels (Kenny et al., 2020). 

Individuals carrying coprostanol-forming microorganisms have significantly lower cholesterol 

levels in stools and lower plasma total cholesterol, with effects comparable to those attributed to 

variations in human genes involved in lipid homeostasis. Therefore, altering the abundance of 

the bacteria-containing ismA or increasing its expression could reduce CVD risk by lowering 

intestinal and serum cholesterol levels. 



52 

 

An alternative approach is to use small molecules, such as cyclic d,l-α-peptides, which 

modulate the growth of specific bacteria. Initial experiments have been promising as these 

compounds remodel the microbiota of high-fat diet-fed Ldlr-/- mice to resemble a low-fat diet 

gut microbiota and inhibited atherosclerosis development (Chen et al., 2020). The effects of this 

modulation are broad and include decreased plasma cholesterol, suppressed the pro-

inflammatory cytokines such as IL-6, TNFα, and IL-1B, and altered levels of SCFAs and bile 

acids in the feces and plasma. Identification of similar compounds that affect host phenotype by 

targeting microbial processes is an exciting and active area of research. 

2.8.3. Fecal Microbiota Transplantation  

While most often used for mechanistic studies, fecal microbiota transplantation (FMT) 

has also been used as a therapy for patients with Clostridium difficile infection (Bakken et al., 

2011) and ulcerative colitis (Moayyedi et al., 2015). This process includes the collection of 

stools collected from healthy donors or the recipients themselves (self FMT) prior to 

administration into the intestine of patients suffering from disease or related dysbiosis. These 

studies are complex and to date have not been extensively studied with regards to CVD 

endpoints. While the clinical utility of such approach is under debate for CVD (Woodworth et 

al., 2017), the therapeutic effect of FMT has been reported effective against insulin resistance 

and small intestinal permeability (Craven et al., 2020; de Groot et al., 2020). 

2.9. Concluding Remarks and Future Perspectives 

Many studies have confirmed the link between gut microbiota and CVD and we are 

beginning to understand the underlying mechanisms of these associations. One exciting aspect of 

this work is related to metabolomics. In some sense, the gut microbiota is an intermediate trait 

between diet (environmental factor) and CVD risk (clinical trait) that produces metabolites, some 
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of which play an important role in the pathogenesis of CVD. Recent studies have confirmed that 

specific microbial taxa are associated with CVD, and that various gut-derived metabolites, 

including TMAO or SCFAs, can promote or attenuate CVD. However, much still remains to be 

investigated. For example, only bacterial communities are being studied extensively and other 

members in gut microbiota such as virus, fungal, or archaea are not widely studied and thus their 

roles in human disease remain underappreciated. Therefore, combining these members in the 

analysis of the microbiota-CVD association might open us a new door for potential therapeutics.    

Perhaps the most important questions remain -- how will these exciting results be applied 

clinically (if at all)? Studies utilizing the LifeLines-DEEP population cohort have identified that 

candidate SNPs explain 3-7% of the variation in HDL and triglycerides while adding 16S 

microbial diversity explains another 4-6% of the variation in HDL and triglycerides (Fu et al., 

2015). Interestingly, when genetic and microbiome data are combined they explain significantly 

more variation in HDL and triglycerides. Thus, there is an indication that obtaining microbiota 

data may further characterize patients as we move towards a model of precision medicine. For 

example, the application of machine learning to datasets containing gut microbiota, genetics, and 

diet together (Berry et al., 2020) predicted better postprandial plasma TG, glucose, and insulin 

responses. In addition to direct causal pathways, it is likely that specific bacteria or microbiota 

components will be casually implicated or simply act as moderating variables for both genetic 

studies (Hughes et al., 2020b; Yang et al., 2018) and drug therapies (Tuteja and Ferguson, 2019; 

Vieira-Silva et al., 2020). Thus, the microbiota remains a critical part of the movement towards 

personalized medicine. Ultimately utilizing microbiota data that has been vetted to be clinically 

relevant may in fact refine our risk predictions and therapeutic interventions.  
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CHAPTER 3. 

Hepatic transcriptional profile reveals the role of diet and genetic 

backgrounds on metabolic traits in female progenitor strains of the 

Collaborative Cross  
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3.2. Abstract 

Mice have provided critical mechanistic understandings of clinical traits underlying Metabolic 

Syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains.  

We investigated the diet- and strain-dependent effects on metabolic traits in the eight 

Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, 

NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that 

both atherogenic diet and host genetics have profound effects on the liver transcriptome, which 

may be related to differences in metabolic traits observed between strains. We found strain 

differences in circulating trimethylamine N-Oxide (TMAO) concentration and liver triglyceride 

content, both of which are traits associated with metabolic diseases. Using a network approach, 

we identified a module of transcripts associated with TMAO and liver triglyceride content which 

was enriched in functional pathways. Interrogation of the module related to metabolic traits 

identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive 

oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. 

Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ 

strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that 

there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO 

and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified 

diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder 

strains. 

 

 

 



69 

 

3.3. Introduction 

Metabolic Syndrome (MetSyn) is a cluster of clinical traits (including elevated blood 

lipids and glucose concentrations, increased blood pressure, and central obesity (Huang, 2009)) 

that is highly associated with risk of diabetes and cardiovascular disease. In particular, the liver 

plays a central role in regulating these clinical traits and thus metabolic imbalance in the liver 

can affect susceptibility to MetSyn.  For example, alterations in hepatic metabolism can induce 

dyslipidemia (Hamaguchi et al., 2005; Marchesini et al., 2003) and production of novel 

metabolites associated with increased risk of MetSyn such as trimethylamine N-oxide (TMAO) 

(Barrea et al., 2018; Chen et al., 2016; Koeth et al., 2013; Lent-Schochet et al., 2018; Schugar et 

al., 2017; Stubbs et al., 2016). Specifically, TMAO is converted from trimethylamine (TMA) 

produced in the intestine by the activity of liver flavin monooxygenase 3 (FMO3) (Wang et al., 

2011). Plasma levels of TMAO are primarily determined by genetic variation (Hartiala et al., 

2014; Lambert et al., 2001) and diet (Cho et al., 2017), and FMO3 may promote dyslipidemia by 

regulating several genes involved in hepatic gluconeogenesis and lipogenesis (Shih et al., 2015; 

Warrier et al., 2015). There are a number of factors that affect susceptibility to MetSyn including 

genetics and environmental queues such as diet.  In particular, genetics has been shown to be an 

important factor significantly affecting the susceptibility of MetSyn in humans (Altshuler et al., 

2000; Grant et al., 2006; Hani et al., 1998). Identifying the genetic architecture and biological 

pathways that modulate the risk of MetSyn is essential to discovering more effective therapeutics 

approaches.  

  The mouse has been indispensable for the study of MetSyn (Attie et al., 2017; Getz and 

Reardon, 2006) as both genetic and environmental factors can be well controlled in mouse 

models. The phenotype spectrum present in various mouse strains provides an opportunity to 
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discover genetic functions related to metabolic traits. However, most studies have been 

conducted with a small number of mouse strains with limited genetic variation. Almost 

exclusively mouse gene knockout studies are conducted in C57BL/6J mice, with a smaller 

number performed in FVB and 129/Sv. Studies of mice with targeted overexpression or 

inactivation of a gene often report specific phenotypic changes, but these effects are highly 

influenced by the background strain of the mice harboring the genetic mutation(s) (Meng et al., 

2007).  Thus, understanding the underlying genetic architecture remains important to further our 

understanding of MetSyn. 

  An alternative approach is to use forward genetic studies utilizing a wide variety of mice 

to investigate how natural variants affect MetSyn. Classically these have been done in F2 crosses 

but more recently multiparent advanced generation intercross populations have been developed, 

such as the Collaborative Cross (CC). The CC mouse population is derived from five classic 

inbred mouse strains A/J, C57BL/6J (B6), 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ 

(NZO), and three wild-derived strains CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ 

(WSB) (Churchill et al., 2012). These eight CC founder strains are highly diverse genetically as 

they contain ∼40 million SNPs and numerous insertions and deletions. The genetic diversity 

across the CC founder strains provides an opportunity to assess the effect of host genetics on 

metabolic traits. The genetic and phenotypic diversity of the combined eight founder strains is 

similar to the inter-individual diversity of the human population. The utilization of the genomic 

sequence of the eight CC founder strains provides an unprecedented unique resource for genetic 

mapping and correlation studies (Chick et al., 2016; Coffey et al., 2019; Coffey et al., 2017; 

Huda et al., 2020; Keller et al., 2018; Keller et al., 2019; Kemis et al., 2019; O’Connor et al., 

2014; Que et al., 2020; Smallwood et al., 2014; Tyler et al., 2017; Winter et al., 2017) 
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Here, we evaluate the variability of metabolic traits and perform global liver 

transcriptomics from the eight CC founder strains fed a standard purified diet or an atherogenic 

diet. Our studies focus on female mice as a number of studies have reported that female mice are 

generally more susceptible to atherosclerosis than male mice (AlSiraj et al., 2019; Bennett et al., 

2015; Daugherty, 2002; Hsu and Smith, 2013; O’Connor et al., 2014; Smallwood et al., 2014). 

Our study shows that both diet and genetic background have a profound influence on metabolic 

traits and the associated transcriptional network. For example, analyses of differentially 

expressed genes (DEGs) and gene networks suggest that diet- or strain-specific DEGs and gene 

clusters are enriched for biological pathways known to affect metabolic traits. We identify a 

novel co-expression module associated with plasma TMAO and describe a candidate gene, 

NADPH oxidase 4 (Nox4), which is a hydrogen peroxide NADPH oxidase isoform. We found 

that the Nox4 gene showed a strong association with plasma TMAO and liver triacylglycerol 

(TG) in the liver transcriptome. Our results demonstrate the utility of leveraging the CC to 

understand dietary influences on the liver transcriptome and disease-associated traits. 

3.4. Methods 

3.4.1. Ethics Statement 

We followed all NIH animal welfare guidelines and animal care. The study protocols were 

approved by the North Carolina Research Campus (NCRC) Animal Care and Use Committee. 

3.4.2. Study Design 

Eight female mice from each of the eight different CC founder strains (A/J, C57BL/6J, 

129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were purchased 

from Jackson Laboratories (Bar Harbor, ME, USA) at 4 weeks of age. The study design was 

reported previously (O’Connor et al., 2014). Briefly, mice were housed under standard 
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conditions (12 h light: dark, temperature- and humidity-controlled conditions) with free access to 

water and a nutritionally purified AIN-93M diet (#D10012M; Research Diets Inc, New 

Brunswick, NJ, USA). Four weeks after AIN-93M administration, mice were assigned to either 

the AIN-93M diet or high-fat cholic acid (HFCA) diet (#D12109C; Research Diets Inc) for an 

additional 16 weeks (n = 4 per diet per strain) (Table 3.1). After feeding this diet for 16 weeks, 

mice were euthanized for tissue collection. Euthanasia of all mice was performed by cervical 

dislocation after anesthesia with isoflurane. For eight CC founder strains of mice, liver, gonadal 

fat, spleen, and heart were collected and weighed upon euthanasia. 

3.4.3. Body Composition  

Body composition (fat mass and lean mass) was assessed using EchoMRI™-100H (Echo MRI 

LLC, Houston, TX, USA) at 8 weeks and 24 weeks, respectively. Body fat and lean mass 

percentages were calculated by dividing fat mass by body weight and lean mass by body weight, 

respectively. 
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Table 3.1. Nutrient constituents in AIN-93M, high-fat cholic acid (HFCA), and high-fat and 

high-cholesterol (HFHC) diet. 

Class description Ingredient AIN-93M (Grams) HFCA (Grams) 

Protein Casein, Lactic, 30 Mesh 200.00 g 200.00 g 

Protein Cystine, L 3.00 g 3.00 g 

Carbohydrate Starch, Corn 150.00 g 212.00 g 

Carbohydrate Sucrose, Fine Granulated 500.00 g 113.00 g 

Carbohydrate Lodex 10 (Maltodextrin) 0.00 g 71.00 g 

Fiber Solka Floc (Cellulose) 50.00 g 50.00 g 

Fat Cocoa Butter, Deodorized 0.00 g 155.00 g 

Fat Soybean Oil 50.00 g 25.00 g 

Mineral Potassium Citrate, Monohydrate 

37.00 g 

16.50 g 

Mineral Calcium Phosphate, Dibasic 13.00 g 

Mineral Calcium Carbonate, Light 5.50 g 

Mineral Mineral mixture 
10.00 g 

Mineral Sodium Chloride 

Vitamin Choline Bitartrate 2.00 g 2.00 g 

Vitamin Vitamin mixture 10.00 g 10.00 g 

Special Cholesterol 0.0 g 11.25 g 

Special Sodium Cholate 0.0 g 4.5 g 

  Total: 1002.0 g 901.75 g 

The two diets used in this study were manufactured by Research Diets. AIN-93M was fed to the 

Diversity Outbred (DO) founder strains from 6 weeks of age in order to ensure that there were no 

spurious effects due to the potential variable composition of standard laboratory chow. CC 

founder strains were then fed either AIN-93M or high-fat cholic acid (HFCA) diet for 16 weeks 

from 8-24 weeks of age. HFCA diets are considered atherogenic and were intended to induce the 

formation of atherosclerosis in the CC founder strains mice. 
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3.4.4. Plasma Clinical Metabolic Markers  

Mice at 8 weeks or 24 weeks of age fasted for 4 h before blood collection via retro-orbital 

bleeding. Blood was collected into EDTA-containing tubes and plasma was separated by 

centrifugation at 10,000×g for 10 min. Plasma alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), TG, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-

C), glucose, and urea were measured by the Biolis 24i Analyzer (Carolina Liquid Chemistries, 

Winston-Salem, NC). Very low-density lipoprotein cholesterol/low-density lipoprotein 

cholesterol (VLDL-C/LDL-C) levels were determined by subtracting high-density lipoprotein 

cholesterol (HDL-C) from total cholesterol. Insulin was assessed using the Alpco Mouse 

Ultrasensitive Insulin ELISA assay (Alpco, Salem, NH) and measured at 450 nm using a 

microplate reader (Bio-Tek, Winooski, VT, USA).  

3.4.5. Plasma Metabolite Analysis using LC/MS/MS 

TMAO analytes were measured by the Metabolomics Core Facility in the NCRC (Coffey et al., 

2019; O’Connor et al., 2014). Briefly, plasma was extracted with internal standards TMAO-d9 

(Cambridge Isotope Laboratories, Tewksbury, MA), creatinine-d3 (CDN Isotopes Inc., Quebec, 

Canada), choline-d9 (Cambridge Isotope Laboratories) and betaine-d9 (Sigma-Aldrich, St. 

Louis, MO), incubated on ice for 10 min, and centrifuged at 15,000 g for 2 minutes. The 

concentrations of TMAO, creatinine, choline, and betaine were quantified by using liquid 

chromatography-stable isotope dilution-multiple reaction monitoring mass spectrometry (LC-

SID-MRM/MS). Chromatographic separations were conducted on an Atlantis Silica HILIC 3μm 

4.6×150mm column (Waters Corp, Milford, MA) using a Waters ACQUITY UPLC system. The 

metabolites and their corresponding isotopes were monitored on a Waters TQ detector using 

characteristic precursor-product ion transitions: 76→58 for TMAO, 85→66 for TMAO-d9, 

https://labtestsonline.org/tests/alanine-aminotransferase-alt
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114→86 for creatinine, 117→89 for creatinine-d9, 104→45 for choline, 113→45 for choline-d9, 

118→59 for betaine, and 127→68 for betaine-d9. Concentrations of each metabolite in samples 

were determined by calculating the peak area ratio of the metabolite versus its isotope.  

3.4.6. Hepatic Triacylglycerol 

Hepatic TG levels were quantified via Folch extraction. Mouse liver was collected, frozen, and 

stored at −80°C prior to analysis. Frozen mouse liver tissue was thoroughly homogenized for 

5 min in 500 μL of a 2:1 v/v chloroform/methanol mix and then equilibrated for 15 min at room 

temperature. After adding 100 μL of 0.9% w/v NaCl to each sample, the samples were vortexed 

for 1 min and centrifuged at 2000 × g for 15 min at 4°C. The lower organic phase was separated 

and evaporated in Eppendorf tubes under a stream of nitrogen for 1 h. After evaporation, each 

tube was resuspended with 500 μL of a 0.5% Triton X-100/PBS solution, sonicated for 5 minutes 

using Bioruptor, and placed in a drying bath at 55°C for 5 min. Hepatic TG was measured using 

a colorimetric assay, (Infinity™, Thermo Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions as follows: 2 μL of the standards, samples, and blanks were pipetted 

into a 96-well plate in duplicate and 200 μL of the Infinity reagent was added to the 96-well 

plate. Absorbance (500/660 nm) was measured on a 96-well plate reader. 

3.4.7. Metabolic Rate and Activity 

Mice were placed into individual indirect calorimetry cages (Phenomaster, TSE SYSTEMS, 

Chesterfield, MO) at the week after 16 weeks of the experimental diet challenge to obtain O2 

consumption (VO2), respiratory exchange ratio (RER), and feed consumption measurements. 

After a 24-hr acclimation period, data were collected during the following 24-hour period. Basal 

activity was measured in three dimensions (x, y, and z) as breaks in the two infrared light beam 

frames that surrounded each cage. Rearing was detected by beam breaks in the z-axis and total 
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physical activity was defined as the sum of beam breaks in all three axes in counts. Feed was 

available ad libitum and consumption was measured by weighing sensors that held containers for 

feed and water respectively and recorded the amount of feed or water consumed.  

3.4.8. RNA-Seq Library Preparation and Sequencing   

Total RNA was extracted from frozen liver samples with the Maxwell 16 LEV simplyRNA 

Tissue Kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. The quality 

and amount of liver RNA were evaluated using the Qubit RNA HS assay kit (Thermo Fisher 

Scientific, Waltham, MA, USA) and the Biorad Bioanalyzer Chip (Hercules, CA, USA). RNA 

samples from 24 mice fed the AIN-93M diet and 24 mice fed the HFCA diet were submitted to 

the David H. Murdock Research Institute (Kannapolis, NC, USA). The RNA-seq libraries were 

constructed from total RNA following the Illumina TruSeq RNA library construction protocol. 

The size of the adapted fragments in the libraries was determined by running an Agilent DNA 

1000 Chip. In parallel, the DNA concentration in the libraries was quantified using Real-Time 

PCR (Kapa Biosystems, Wilmington, MA, USA). The pooled libraries were sequenced on the 

Illumina HiSeq 2500 sequencing to achieve 100 bp paired-end reads in a total of 11 lanes 

(Illumina Inc., San Diego, CA, USA). Seven pools were created from 44 samples, with 6-7 

samples per pool in equimolar concentrations. Two B6 and two CAST samples from the control 

diet were deep sequenced with one sample per lane because B6 strain is the most commonly used 

laboratory mice and CAST strain is a wild-derived mouse strain that is genetically distinct from 

the B6 strain. Raw data were deposited at National Center for Biotechnology Information’s Gene 

Expression Omnibus (GEO accession GSE159992). 

3.4.9. RNA-Seq Mapping and Quantification 
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Raw read data was filtered using HTStream (version 1.1.0, https://github.com/ibest/HTStream), 

which included screening for contaminants (such as PhiX and rRNA), PCR deduplication 

readout, quality-based trimming, adapter trimming, and overlapping paired-end reads. We 

randomly took 50% of the reads from the two B6 and two CAST deep sequenced samples. 

STAR (version 2.7.0f) (Dobin et al., 2013) was used to align the processed data to custom 

reference mouse genomes constructed by incorporating genetic variants of eight founder strains 

into reference mouse genome GRCm38 using g2gtools (https://github.com/churchill-

lab/g2gtools). Custom R code was then used for sequence read and alignment quality assessment 

as well as collating counts into a single table for downstream analysis. We obtained median 32 

million pass-filter reads, 20 million uniquely mapped reads, and 17 million reads mapped to 

genes per library (Table 3.2). We filtered in 12,502 transcripts with median counts per million 

(CPM) greater than 1 in 48 liver samples. 
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Table 3.2. RNA-seq Alignment Statistics. 

Sample Strain Diet Input Reads 

Uniquely 

Mapped 

Reads 

Uniquely 

Mapped 

Reads 

(%) 

Reads 

Mapped to 

Genes 

Reads 

Mapped 

to Genes 

(%) 

1 A/J HFCA     32,471,605     22,292,704  94.11%    18,729,116  57.68% 

2 A/J HFCA     34,804,995     24,291,853  94.21%    20,691,464  59.45% 

3 A/J HFCA     30,038,112     20,498,332  94.41%    16,936,644  56.38% 

4 B6 HFCA     27,871,941     18,980,300  94.67%    16,098,026  57.76% 

5 B6 HFCA     27,070,672     19,058,483  94.91%    15,950,314  58.92% 

6 B6 HFCA     28,447,003     19,903,514  94.81%    16,896,889  59.40% 

7 129 HFCA     30,804,898     19,668,288  93.81%    16,657,068  54.07% 

8 129 HFCA     30,556,344     19,608,251  93.86%    16,343,494  53.49% 

9 129 HFCA     33,207,972     21,769,521  93.86%    18,215,319  54.85% 

10 NOD HFCA     34,001,471     22,451,767  94.03%    18,917,822  55.64% 

11 NOD HFCA     32,488,275     22,166,097  94.29%    18,753,671  57.72% 

12 NOD HFCA     33,237,490     21,784,033  94.06%    18,335,202  55.16% 

13 NZO HFCA     44,287,463     28,332,120  93.84%    23,932,477  54.04% 

14 NZO HFCA     33,097,584     21,907,527  93.71%    18,676,327  56.43% 

15 NZO HFCA     34,765,193     22,263,323  93.75%    18,947,908  54.50% 

16 CAST HFCA     28,786,382     19,377,149  92.37%    16,409,642  57.00% 

17 CAST HFCA     25,631,990     17,024,883  92.16%    14,389,298  56.14% 

18 CAST HFCA     25,222,984     16,032,164  91.41%    13,480,814  53.45% 

19 PWK HFCA     37,541,176     25,145,942  93.23%    21,291,964  56.72% 

20 PWK HFCA     39,559,915     25,289,336  93.24%    21,432,494  54.18% 

21 PWK HFCA     29,808,966     20,661,198  92.86%    17,379,898  58.30% 

22 WSB HFCA     33,261,931     20,600,820  93.31%    17,343,786  52.14% 

23 WSB HFCA     32,515,770     21,424,801  93.39%    17,972,497  55.27% 

24 WSB HFCA     33,107,521     21,923,117  93.70%    18,672,909  56.40% 

25 A/J AIN93     30,227,183     18,666,507  93.64%    14,853,750  49.14% 

26 A/J AIN93     25,308,842     16,036,190  93.90%    13,040,075  51.52% 

27 A/J AIN93     32,469,136     20,185,467  93.65%    16,678,866  51.37% 

28 B6 AIN93   128,126,695     63,742,372  95.12%    52,360,328  40.87% 

29 B6 AIN93   138,117,965     66,367,245  94.99%    56,283,808  40.75% 

30 B6 AIN93     28,799,118     18,315,994  94.18%    15,589,871  54.13% 

31 129 AIN93     57,832,217     32,468,045  93.85%    27,276,730  47.17% 

32 129 AIN93     30,050,195     18,326,391  93.42%    15,358,000  51.11% 

33 129 AIN93     24,992,183     15,852,934  93.04%    12,819,341  51.29% 

34 NOD AIN93     30,360,789     19,281,162  93.87%    16,244,911  53.51% 

35 NOD AIN93     33,175,443     20,082,373  93.78%    16,916,497  50.99% 

36 NOD AIN93     31,313,942     19,677,173  93.60%    16,504,550  52.71% 

37 NZO AIN93     30,850,017     18,954,308  93.22%    16,143,752  52.33% 
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38 NZO AIN93     31,391,882     19,436,609  92.57%    16,311,377  51.96% 

39 NZO AIN93     37,786,619     22,457,729  93.05%    18,929,694  50.10% 

40 CAST AIN93   130,363,721     60,730,820  92.35%    49,065,718  37.64% 

41 CAST AIN93   114,004,639     54,944,651  91.42%    39,856,181  34.96% 

42 CAST AIN93     26,720,731     16,276,939  91.04%    13,553,433  50.72% 

43 PWK AIN93     31,163,059     18,763,199  92.42%    15,454,495  49.59% 

44 PWK AIN93     35,128,092     21,216,708  92.13%    17,885,477  50.92% 

45 PWK AIN93     41,215,170     23,183,967  92.27%    19,252,736  46.71% 

46 WSB AIN93     31,788,919     18,844,353  92.77%    16,030,981  50.43% 

47 WSB AIN93     31,136,857     18,175,130  93.17%    15,470,437  49.69% 

48 WSB AIN93     35,471,949     20,252,433  92.51%    16,642,834  46.92% 

Median     32,470,371     20,375,383  93.65%    16,926,571  53.47% 
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3.4.10. Differential Gene Expression and Enrichment Analysis 

Diet or Strain-specific differential expression genes (DEGs) analysis was performed using the R 

package ‘limma’ version 3.11 (Ritchie et al., 2015) from TMM (trimmed mean of M values) 

normalized log2 transformed count per million (CPM) values.  

Enrichment analyses for DEGs or modules were performed using enrichR (Chen et al., 

2013) to generate enrichment terms and pathways from the Gene Ontology (GO) Biological 

Process 2018, Kyoto Encyclopedia of Genes and Genomes (KEGG) 2019 Mouse, and Jenson 

Diseases (Pletscher-Frankild et al., 2015). This analysis identifies differential enrichment terms 

and pathways for the functional categories of DEGs or transcripts in the module. The GO 

Biological process 2018 contains 5,103 terms and 14,433 genes. While it is clear that individual 

GO terms can be found in related classes of ontology, GO terms do not occupy strictly fixed 

levels in a hierarchy. Each of the GO terms identified is associated with a unique GO annotation 

number that relates to a specific function. Both the Gene Ontology website 

(http://geneontology.org/docs/faq/) and specific tool (enrichR) do not utilize a specific hierarchy 

thus all available terms are used in the analysis.   

3.4.11. Weighted Gene Co-expression Network Analyses (WGCNA) 

Co-expression gene modules were calculated using Weighted Gene Co-expression Network 

Analysis (WGCNA) version 1.13 (Zhang and Horvath, 2005), which performs network 

construction by module detection. For the WGCNA analysis, log2 transformed 12,502 CPM 

measured in 48 liver samples from CC founder strains were included. We used a soft 

thresholding power of 9 by the scale-free topology criterion in the WGCNA package. We chose 

the "unsigned" network type to maintain the relationship of the negatively correlated gene and 

the "signed" topological overlap matrix (TOM) to exclude the connections influenced by noise 
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(Langfelder and Horvath, 2008; Zhang and Horvath, 2005). We set 20 as the minimum number 

of genes to form a module. The network connectivity of each gene was calculated as the sum of 

the intensity of connectivity with all genes in the other network.  

For each module, the first principal component (PC1) and the module eigengene (ME) 

were calculated and used for the correlation with metabolic traits. The average number of 

transcripts per module was 595, ranging from 44 (royalblue module) to 4,020 (turquoise 

module).  

3.4.12. Assessing Genetic Variation at FMO3 and NOX4 Loci 

To better understand the SNPs of the Fmo3 and Nox4 genes discovered as candidate genes, we 

compared 658 SNPs (Chromosome 1: 162,954,207-162,984,416) in Fmo3 and 2,641 SNPs 

(Chromosome 7: 87,246,136-87,398,699) in Nox4 in eight CC founder mouse genomes available 

from the Sanger Institute's mouse database (www.sanger.ac.uk) and calculated SNP similarity 

between the reference genome, B6 strain and the other 7 strains. For example, in 2,641 Nox4 

SNPs, the number of SNPs difference between A/J and B6 strain is 663. Therefore, dissimilarity 

between A/J and B6 for Nox4 SNPs is 663 divided by 2,641, which is 0.251 and the similarity 

(%) is 74.9% (100%-25.1%). The effects of SNP mutations on the protein function for the 

discovered candidate genes Fmo3 and Nox4 were determined by a web-based tool, Protein 

Variation Effect Analyzer-PROVEAN (Choi and Chan, 2015) and Sorting Intolerant From 

Tolerant-SIFT (Vaser et al., 2016). 

3.4.13. Other statistical analysis 

All statistical analyses were performed in R (v.3.5.3) (R Core Team) (R Core Team, 2016). Diet 

or strain effects were assessed using two-group Mann-Whitney U (Wilcoxon rank) or Kruskal-

Wallis statistical test, respectively. Diet by strain interaction effect was assessed using a two-way 
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ANOVA test. Tukey's multiple comparison test was performed to compare groups with different 

diets and strains for plasma TMAO and liver TG traits. Spearman's correlation was used to 

correlate the clinical traits and liver transcripts. The p-values were adjusted using the Benjamini-

Hochberg (BH) false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995), and 

correlation coefficients and adjusted p-value were visualized using the ‘pheatmap’ package 

(Kolde et al., 2018). Significance was determined with a p-value < 0.05.  

3.5. Results 

3.5.1. Hepatic Transcriptomics Reveals Diet-Specific Differences in the CC Progenitors 

A number of studies have reported that thousands of genes are differentially expressed by a  

high-fat diet as compared to a control diet (Cheng et al., 2018; Lan et al., 2015; Yoon et al., 

2019; Zhou et al., 2020). We profiled global gene expression by RNA-Seq in three female mice 

fed the AIN-93M diet and three female mice fed a HFCA diet from each CC founder strains 

(n=48 in total). We found that 12,502 transcripts were expressed in the liver and performed in 

differential gene expression analysis to identify transcriptional responses to diet perturbation 

regardless of strain by combining all eight founder strains. Principal component analysis 

revealed distinct differences in global gene expression between diets (Figure 3.1A). A total of 

6,411 genes showed significant differential expression (FDR adjusted P <0.05; Figure 3.1B) 

between mice fed the HFCA diet (3,157 genes were upregulated) compared to those fed the AIN-

93M diet (3,254 genes were upregulated). These 6,411 genes we define as our “Core Diet 

DEGs”. A volcano plot showed that genes such as Gpnmb, Mmp12, Lpl, and Col1a1 previously 

reported as fatty liver-related genes (Cazanave et al., 2017; McGettigan et al., 2019; Remmerie et 

al., 2020) were also identified as HFCA diet-specific differentially expressed genes (DEGs) in 

this study (Figure 3.1C).  
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Figure 3.1. Effect of diet on liver gene expression in female eight Collaborative Cross (CC) 

founder strains mice. 

We identified the effect of an atherogenic diet on global liver gene expression in eight CC 

founder strains (n = 48). PCA analysis (A), the number of differential expression genes (DEGs, 

adj.P < 0.05) (B), and Volcano plot (C) between high-fat and cholic acid (HFCA) diet and AIN-

93M diet in liver gene expression in eight CC founder strains. (B) 3254 transcripts in lightblue 

circle were upregulated in AIN-93M diet fed mice and 3157 transcripts in purple circle were 

upregulated in HFCA diet fed mice. (C) Horizontal dotted lines indicate adj.P < 0.05, vertical 

dotted gray lines indicate a 2-fold difference.  
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We also determined which potential biological aspects of liver metabolism were reflected 

by the DEGs between the diets. Enrichment analysis revealed upregulated genes in a specific diet 

enriched in a number of GO Biological Processes and KEGG pathways (Figure 3.2A). In genes 

that were not identified as DEGs between the two diets (non-diet responsive genes: gray color 

denoted), a relatively small number of GO terms and KEGG pathways were identified compared 

to DEGs upregulated in a specific diet (Figure 3.2A). In particular, there was an upregulation of 

genes involved in immune response in the HFCA diet-fed mice while genes involved in 

mitochondrial function were upregulated in the AIN-93M diet-fed mice. GO Biological 

Processes and KEGG pathways that were highly enriched in HFCA diet-fed mice included 

‘‘Extracellular matrix organization (GO: 00030196)” and “Neutrophil mediated immunity (GO: 

0002446)’’ (-logP > 21) and “Osteoclast differentiation” (KEGG pathway) (-logP > 18). GO 

Biological Processes and KEGG pathways that were enriched in AIN-93M diet-fed mice 

included ‘‘Mitochondrial translation (GO: 0032543)” and “Respiratory electron transport chain 

(GO: 0022904)’’ (-logP > 34) and ‘‘Thermogenesis, Oxidative phosphorylation, and Non-

alcoholic fatty liver disease’’ (KEGG pathway) (-logP > 19) (Figures 3.2B and 3.2C, Table 3.3 

and 3.4).  
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Figure 3.2. Effect of diet on functional enrichment for liver transcriptome in female eight 

Collaborative Cross (CC) founder strains mice.  
(A) Venn diagram to identify overlapping gene ontology (GO) Biological Process 2018 terms 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 2019 Mouse pathways between 

upregulated genes in HFCA diet, upregulated genes in AIN-93M diet, or non-diet responsive 

genes in enrichment analysis. Top 10 GO terms and KEGG pathways of upregulated genes in 

HFCA diet (B) and AIN-93M diet (C) identified in enrichment analysis. Pathways were ordered 

from top to bottom by significance (highest to lowest) and colored by gene richness. 

 

 



86 

 

Table 3.3. Top 30 Gene Ontology results for diet-specific DEGs in liver in eight CC founder 

strains. n = 48 (24 mice for AIN-93M diet and 24 mice for HFCA diet) 

Diet Term 

Overlap 

(gene 

count) 

Adjusted 

P-value 

Odds 

Ratio 

Combined 

Scorea 
Rank 

HFCA extracellular matrix organization (GO:0030198) 104/229 8.37E-23 2.88 171.04 1 

HFCA neutrophil mediated immunity (GO:0002446) 170/487 1.74E-22 2.21 128.31 2 

HFCA neutrophil degranulation (GO:0043312) 167/479 2.8E-22 2.21 125.57 3 

HFCA 
neutrophil activation involved in immune response 

(GO:0002283) 
168/483 3.59E-22 2.21 125.36 4 

HFCA 
regulation of small GTPase mediated signal 

transduction (GO:0051056) 
67/140 4.61E-16 3.04 128.23 5 

HFCA 
transmembrane receptor protein tyrosine kinase 

signaling pathway (GO:0007169) 
132/396 1.77E-15 2.11 86.09 6 

HFCA response to cytokine (GO:0034097) 64/138 1.5E-14 2.94 113.03 7 

HFCA cellular response to cytokine stimulus (GO:0071345) 141/456 1.34E-13 1.96 70.81 8 

HFCA Ras protein signal transduction (GO:0007265) 85/223 2.15E-13 2.42 85.85 9 

HFCA cytokine-mediated signaling pathway (GO:0019221) 177/633 9.0E-13 1.77 60.25 10 

HFCA 
regulation of intracellular signal transduction 

(GO:1902531) 
129/422 5.0E-12 1.94 62.38 11 

HFCA regulation of cell migration (GO:0030334) 104/316 9.51E-12 2.09 65.62 12 

HFCA protein phosphorylation (GO:0006468) 137/470 3.53E-11 1.85 55.40 13 

HFCA 
positive regulation of intracellular signal transduction 

(GO:1902533) 
139/479 3.67E-11 1.84 55.23 14 

HFCA 
vascular endothelial growth factor receptor signaling 

pathway (GO:0048010) 
38/70 4.1E-11 3.44 102.43 15 

HFCA Rho protein signal transduction (GO:0007266) 37/72 7.46E-10 3.26 87.30 16 

HFCA platelet degranulation (GO:0002576) 52/124 8.27E-10 2.66 70.80 17 

HFCA regulated exocytosis (GO:0045055) 58/148 1.33E-09 2.49 64.84 18 

HFCA cell-matrix adhesion (GO:0007160) 42/90 1.33E-09 2.96 77.05 19 

HFCA endocytosis (GO:0006897) 86/263 1.48E-09 2.07 53.66 20 

HFCA phosphorylation (GO:0016310) 113/386 2.59E-09 1.86 46.91 21 

HFCA 
plasma membrane bounded cell projection assembly 

(GO:0120031) 
80/241 3.13E-09 2.11 52.70 22 

HFCA actin filament organization (GO:0007015) 49/120 8.19E-09 2.59 62.22 23 

HFCA regulation of apoptotic process (GO:0042981) 198/815 1.64E-08 1.54 35.88 24 

HFCA regulation of GTPase activity (GO:0043087) 65/188 3.21E-08 2.19 49.51 25 

HFCA 
regulation of cytoskeleton organization 

(GO:0051493) 
41/95 3.67E-08 2.74 61.32 26 

HFCA ephrin receptor signaling pathway (GO:0048013) 37/82 5.75E-08 2.86 62.72 27 

HFCA positive regulation of cell migration (GO:0030335) 72/221 6.61E-08 2.07 44.92 28 

HFCA 
positive regulation of I-kappaB kinase/NF-kappaB 

signaling (GO:0043123) 
58/163 7.47E-08 2.26 48.71 29 

HFCA 
pattern recognition receptor signaling pathway 

(GO:0002221) 
26/48 1.63E-07 3.44 71.34 30 

AIN-

93M  
mitochondrial translation (GO:0032543) 81/107 6.67E-39 4.71 454.44 1 

AIN-

93M  
translational termination (GO:0006415) 73/96 1.2E-35 4.73 414.46 2 
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AIN-

93M  
respiratory electron transport chain (GO:0022904) 72/94 1.32E-35 4.77 415.94 3 

AIN-

93M  
mitochondrial translational elongation (GO:0070125) 69/87 1.35E-35 4.94 433.12 4 

AIN-

93M  
translation (GO:0006412) 123/232 2.0E-35 3.30 289.61 5 

AIN-

93M  

mitochondrial translational termination 

(GO:0070126) 
69/89 9.9E-35 4.83 410.41 6 

AIN-

93M  

mitochondrial respiratory chain complex I assembly 

(GO:0032981) 
55/64 4.85E-32 5.35 419.63 7 

AIN-

93M  

mitochondrial respiratory chain complex assembly 

(GO:0033108) 
70/97 5.34E-32 4.49 351.47 8 

AIN-

93M  

mitochondrial respiratory chain complex I biogenesis 

(GO:0097031) 
55/64 5.45E-32 5.35 419.63 9 

AIN-

93M  

NADH dehydrogenase complex assembly 

(GO:0010257) 
55/64 6.23E-32 5.35 419.63 10 

AIN-

93M  

mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
64/85 5.1E-31 4.69 355.69 11 

AIN-

93M  
translational elongation (GO:0006414) 71/105 1.26E-29 4.21 305.58 12 

AIN-

93M  
peptide biosynthetic process (GO:0043043) 93/174 2.0E-27 3.33 224.44 13 

AIN-

93M  

cotranslational protein targeting to membrane 

(GO:0006613) 
60/93 3.11E-23 4.02 231.81 14 

AIN-

93M  
protein targeting to ER (GO:0045047) 61/97 8.26E-23 3.91 221.61 15 

AIN-

93M  

SRP-dependent cotranslational protein targeting to 

membrane (GO:0006614) 
58/89 8.69E-23 4.06 229.71 16 

AIN-

93M  
cellular protein metabolic process (GO:0044267) 166/484 5.68E-21 2.13 111.70 17 

AIN-

93M  

mitochondrial electron transport, NADH to 

ubiquinone (GO:0006120) 
38/46 1.06E-20 5.14 265.52 18 

AIN-

93M  
gene expression (GO:0010467) 143/411 1.38E-18 2.17 101.18 19 

AIN-

93M  

cellular macromolecule biosynthetic process 

(GO:0034645) 
129/367 4.23E-17 2.19 94.61 20 

AIN-

93M  

nuclear-transcribed mRNA catabolic process, 

nonsense-mediated decay (GO:0000184) 
57/112 3.06E-15 3.17 123.27 21 

AIN-

93M  
viral transcription (GO:0019083) 57/113 5.0E-15 3.14 120.51 22 

AIN-

93M  
viral gene expression (GO:0019080) 55/110 2.87E-14 3.11 113.86 23 

AIN-

93M  
fatty acid catabolic process (GO:0009062) 40/65 2.88E-14 3.83 139.96 24 

AIN-

93M  

nuclear-transcribed mRNA catabolic process 

(GO:0000956) 
73/174 6.41E-14 2.61 93.22 25 

AIN-

93M  
mitochondrion organization (GO:0007005) 71/167 6.75E-14 2.65 94.23 26 

AIN-

93M  
cellular respiration (GO:0045333) 36/57 2.58E-13 3.93 134.56 27 

AIN-

93M  
mitochondrial transport (GO:0006839) 59/135 4.44E-12 2.72 85.27 28 

AIN-

93M  
fatty acid oxidation (GO:0019395) 32/50 5.29E-12 3.98 124.04 29 

AIN-

93M  
mitochondrial gene expression (GO:0140053) 30/45 6.38E-12 4.15 128.29 30 

aCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact 

test p-value, and z = z-score for deviation from expected rank. 
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Table 3.4. Top 30 KEGG pathway results for diet-specific DEGs in liver in eight CC 

founder strains. n = 48 (24 mice for AIN-93M diet and 24 mice for HFCA diet 

Diet Term 

Overlap 

(gene 

count) 

Adjusted 

P-value 

Odds 

Ratio 

Combined 

Scorea 
Rank 

HFCA Osteoclast differentiation 67/128 2.5E-19 3.32 161.16 1 

HFCA Focal adhesion 86/199 2.1E-18 2.74 124.22 2 

HFCA Pathways in cancer 169/535 2.7E-18 2.00 91.13 3 

HFCA Regulation of actin cytoskeleton 90/217 5.9E-18 2.63 115.76 4 

HFCA Leishmaniasis 42/67 2.6E-16 3.98 159.00 5 

HFCA Endocytosis 98/269 3.7E-15 2.31 85.83 6 

HFCA MAPK signaling pathway 102/294 3.4E-14 2.20 76.52 7 

HFCA Fc gamma R-mediated phagocytosis 46/87 4.7E-14 3.35 115.14 8 

HFCA Tuberculosis 72/178 6.2E-14 2.57 87.07 9 

HFCA Proteoglycans in cancer 78/203 1.1E-13 2.44 80.99 10 

HFCA 
AGE-RAGE signaling pathway in diabetic 

complications 
49/101 3.5E-13 3.08 98.49 11 

HFCA Bacterial invasion of epithelial cells 40/74 8.4E-13 3.43 106.42 12 

HFCA PI3K-Akt signaling pathway 112/357 2.1E-12 1.99 59.78 13 

HFCA Phagosome 69/180 3.5E-12 2.43 71.61 14 

HFCA Salmonella infection 40/78 6.7E-12 3.25 93.47 15 

HFCA Lysosome 53/124 1.3E-11 2.71 75.94 16 

HFCA Toxoplasmosis 48/108 2.6E-11 2.82 76.85 17 

HFCA C-type lectin receptor signaling pathway 49/112 2.9E-11 2.78 75.13 18 

HFCA Epstein-Barr virus infection 79/229 3.0E-11 2.19 58.98 19 

HFCA Ras signaling pathway 80/233 3.0E-11 2.18 58.79 20 

HFCA Chronic myeloid leukemia 38/76 5.1E-11 3.17 83.61 21 

HFCA Kaposi sarcoma-associated herpesvirus infection 75/216 6.8E-11 2.20 57.34 22 

HFCA Apoptosis 56/141 7.6E-11 2.52 65.19 23 

HFCA Small cell lung cancer 42/92 1.5E-10 2.90 72.77 24 

HFCA Hepatitis B 61/163 1.6E-10 2.37 59.42 25 

HFCA B cell receptor signaling pathway 36/72 1.6E-10 3.17 79.47 26 

HFCA ECM-receptor interaction 39/83 2.4E-10 2.98 73.17 27 

HFCA Leukocyte transendothelial migration 48/115 2.5E-10 2.65 64.85 28 

HFCA Fluid shear stress and atherosclerosis 55/143 4.1E-10 2.44 58.46 29 

HFCA Human cytomegalovirus infection 82/255 4.7E-10 2.04 48.52 30 

AIN-

93M 
Ribosome 90/170 3.3E-26 3.30 212.16 1 

AIN-

93M 
Parkinson disease 80/144 2.4E-25 3.46 213.41 2 

AIN-

93M 
Oxidative phosphorylation 76/134 5.3E-25 3.53 213.66 3 

AIN-

93M 
Huntington disease 89/192 3.5E-21 2.89 148.43 4 

AIN-

93M 
Non-alcoholic fatty liver disease (NAFLD) 76/151 7.3E-21 3.13 158.12 5 

AIN-

93M 
Alzheimer disease 82/175 4.9E-20 2.92 141.11 6 
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AIN-

93M 
Thermogenesis 96/231 6.5E-19 2.59 118.08 7 

AIN-

93M 
Peroxisome 51/84 8.0E-19 3.78 171.22 8 

AIN-

93M 
Glyoxylate and dicarboxylate metabolism 22/31 4.9E-10 4.42 110.26 9 

AIN-

93M 
Citrate cycle (TCA cycle) 21/32 1.3E-08 4.08 88.22 10 

AIN-

93M 
Valine, leucine and isoleucine degradation 29/56 1.9E-08 3.22 68.03 11 

AIN-

93M 
Propanoate metabolism 20/31 4.4E-08 4.02 81.04 12 

AIN-

93M 
Protein processing in endoplasmic reticulum 57/163 6.1E-08 2.18 43.03 13 

AIN-

93M 
Pyruvate metabolism 22/38 1.1E-07 3.60 68.86 14 

AIN-

93M 
Steroid biosynthesis 14/19 7.8E-07 4.59 78.29 15 

AIN-

93M 
Proteasome 23/46 1.8E-06 3.11 50.39 16 

AIN-

93M 
Butanoate metabolism 16/27 7.4E-06 3.69 54.20 17 

AIN-

93M 
Glycine, serine and threonine metabolism 20/40 1.1E-05 3.11 44.38 18 

AIN-

93M 
Complement and coagulation cascades 33/88 1.5E-05 2.33 32.43 19 

AIN-

93M 
Porphyrin and chlorophyll metabolism 20/41 1.6E-05 3.04 41.76 20 

AIN-

93M 
Drug metabolism 39/114 2.2E-05 2.13 28.54 21 

AIN-

93M 
Protein export 15/28 7.2E-05 3.33 40.42 22 

AIN-

93M 
Tryptophan metabolism 21/48 7.2E-05 2.72 33.12 23 

AIN-

93M 
Retrograde endocannabinoid signaling 46/150 7.2E-05 1.91 23.04 24 

AIN-

93M 
Fatty acid elongation 15/29 1.2E-04 3.22 37.20 25 

AIN-

93M 
Fatty acid degradation 21/50 1.3E-04 2.61 29.76 26 

AIN-

93M 
Ascorbate and aldarate metabolism 14/27 2.1E-04 3.23 35.19 27 

AIN-

93M 
Folate biosynthesis 13/26 6.5E-04 3.11 30.23 28 

AIN-

93M 
Selenocompound metabolism 10/17 7.7E-04 3.66 34.85 29 

AIN-

93M 
Cholesterol metabolism 19/49 1.1E-03 2.41 22.02 30 

aCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact 

test p-value, and z = z-score for deviation from expected rank. 
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3.5.2. DEGs between Two Diets by Eight Found Strains Vary in Biological Pathways. 

To investigate the effect of genetic background on the global hepatic gene expression, we next 

performed transcriptomic analysis of strain differences among progenitor strains of the CC.  

Hierarchical clustering and principal component analysis of the liver transcriptome demonstrate 

that transcript abundance was highly variable across the eight founder strains. This analysis reveals 

several interesting findings. First, the wild-derived founder strains, CAST and PWK, are distinct 

in their response to the other CC progenitor strains. Moreover, this difference is apparent for both 

diets (Figures 3.3A and 3.3B). Second, the B6, 129, NOD, and WSB strains showed distinct liver 

transcriptome patterns by diet and the NZO, CAST, and PWK strains were less affected by diet 

than other strains based on the hierarchical clustering (Figure 3.3B). Finally, the AJ strain showed 

the most extreme diet response (Figure 3.3B). Based on these results, we performed a DEG 

analysis between the HFCA diet-fed mice and the AIN-93M diet-fed mice for each strain to 

identify which strain was most or less responsive to the diet. As shown in Table 3.5, among the 

eight strains, the A/J strain showed the most significant difference in hepatic gene expression 

between the two diets (2,862 genes in the HFCA diet and 3,186 genes in the AIN-93M diet), and 

CAST was found to have a subdued diet response (64 genes in HFCA diet and 49 genes in AIN-

93M diet), although we acknowledge a variable response to the HFCA in the CAST replicates. 

Furthermore, among diet-specific upregulated genes for each strain, the ratio of uniquely 

upregulated genes only in that strain was the highest in A/J strain (18.6% in HFCA diet and 27.7% 

in AIN-93M diet).  
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Figure 3.3. Effect of genetic background on hepatic gene expression in the eight CC 

founder strains in female mice.  

(A) Principal component analysis from AIN-93M diet or HFCA diet and (B) hierarchical clustering 

determined that the major source of variation in gene expression was due to genetic variation 

among the eight strains. 
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Based on the result of strain-specific DEGs between HFCA diet and AIN-93M diet, we 

also compared the differences in GO Biological Process 2018 terms and KEGG 2019 Mouse 

pathways between the two diets for each strain. We detected the highest number of 616 GO terms 

and 154 KEGG pathways in A/J while the number of GO (9 terms) and KEGG (9 pathways) in 

CAST was the least (Table 3.6). Therefore, we targeted the A/J and CAST strains, which showed 

the most extreme differences in DEG analysis. The top upregulated genes in each diet differed 

significantly between the two strains. For example, only 4 genes were overlapped in the top 100 

upregulated genes between the two strains in both diets (Figures 3.4A and 3.4B). In the 

comparison of the A/J strain (most diet responsive) and the B6 strain (most utilized resource), we 

also found that 66.3% of the upregulated genes (1,899 out of 2,862 genes) in the HFCA diet-fed 

A/J strain and 76.5% of the upregulated genes (2,437 out of 3,186 genes) in the AIN-93M diet-fed 

A/J strain were uniquely identified only in the A/J strain (Figure 3.4C). Likewise, 60.9% of 

upregulated genes (39 out of 64 genes) in HFCA diet-fed CAST strain and 61.2% of upregulated 

genes (30 out of 49 genes) in AIN-93M diet-fed CAST strain were uniquely identified only in the 

least diet responsive CAST strain (Figure 3.4D).  

 

 

 

 

 

 

 

 



93 

 

Table 3.5. The number of DEGs between high-fat cholic acid (HFCA) diet and AIN-93M 

diet for each strain in liver gene expression in eight CC founder strains. n = 48 (6 mice per 

eight strains and 24 mice per two diets) 

Strain 
HFCA diet-

upregulated genes  

HFCA diet-

upregulated genes 

that are unique to 

the strain 

AIN-93M diet-

upregulated genes  

AIN-93M diet-

upregulated genes 

that are unique to 

the strain 

A/J   2,862 532 (18.6%) 3,186 881 (27.7%) 

B6  1,209 86 (7.1%) 962 72 (7.5%) 

129  1,352 77 (5.7%) 772 85 (11.0%) 

NOD  1,141 103 (9.0%) 750 103 (13.7%) 

NZO  2,438 452 (18.5%) 2,225 362 (16.3%) 

CAST  64 6 (9.4%) 49 9 (18.4%) 

PWK  414 63 (15.2%) 490 88 (18.0%) 

WSB  2,482 322 (13.0%) 2,006 380 (18.9%) 

At least one strain 4,503 4,725  

Overlap between 

all-strain and 

individual strain 

2,958 2,885 

 

Table 3.6. The number of GO Biological Process 2018 terms and KEGG 2019 Mouse 

pathways between upregulated genes in HFCA diet, upregulated genes in AIN-93M diet, or 

non-diet responsive genes in enrichment analysis for each strain. n = 48 (6 mice per eight 

strains and 24 mice per two diets) 

Strain 
HFCA diet-upregulated genes AIN-93M diet-upregulated genes 

#GO  #KEGG #GO  #KEGG 

A/J   616 154 230 64 

B6  155 86 69 28 

129  309 108 48 28 

NOD  216 89 21 13 

NZO  479 119 191 53 

CAST  9 9 1 4 

PWK  82 35 59 20 

WSB  477 124 163 55 
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Figure 3.4. Comparison of hepatic gene expression between A/J and CAST strains in 

female mice.  

(A,B) Venn diagrams to identify overlapping upregulated genes between A/J strain and B6 strain 

(A) and between CAST strain and B6 strain (B) in each diet. (C,D) Volcano plots between high-

fat and cholic acid (HFCA) diet and AIN-93M diet in liver gene expression in A/J strain (C) and 

CAST strain (D). Horizontal dotted lines indicate adj.P < 0.05, vertical dotted gray lines indicate 

a 2-fold difference. 
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In terms of the GO Biological Process between the two strains, we found the immune 

response-related GO terms in both strains (Table 3.7) and the A/J strain had a high richness in 

each GO term and the neutrophil related immune response GO terms were mainly enriched (Figure 

3.5A) as shown in Figure 3.2B. On the other hand, the CAST strain had a low richness in GO term 

and mainly enriched in GO terms such as calcium signaling, hydrogen peroxide, and acute 

inflammatory response (Figure 3.5B). These results show that the hepatic gene expression pattern 

responding to the diet is contains both Core Diet DEGs and DEGs unique to each strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

Table 3.7. Top 10 Gene Ontology results for diet-specific DEGs in each strain in eight CC 

founder strains. n = 48 (3 mice in HFCA diet and 3 mice in AIN-93M diet per strain) 

Strain Diet Term 

Overlap 

(gene 

count) 

Adjusted 

P-value 

Odds 

Ratio 

Combined 

Scorea 
Rank 

AJ HFCA neutrophil mediated immunity (GO:0002446) 185/487 9.31E-36 3.86 344.20 1 

AJ HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
182/483 4.94E-35 3.81 328.97 2 

AJ HFCA neutrophil degranulation (GO:0043312) 181/479 4.94E-35 3.83 330.26 3 

AJ HFCA 
extracellular matrix organization 

(GO:0030198) 
97/229 2.82E-22 4.53 256.77 4 

AJ HFCA 
transmembrane receptor protein tyrosine 

kinase signaling pathway (GO:0007169) 
119/396 2.78E-13 2.65 94.59 5 

AJ HFCA regulation of cell migration (GO:0030334) 98/316 1.11E-11 2.76 87.87 6 

AJ HFCA 
positive regulation of intracellular signal 

transduction (GO:1902533) 
128/479 2.62E-10 2.25 64.07 7 

AJ HFCA protein phosphorylation (GO:0006468) 126/470 2.73E-10 2.25 63.93 8 

AJ HFCA Ras protein signal transduction (GO:0007265) 74/223 2.79E-10 3.04 85.39 9 

AJ HFCA 
Rho protein signal transduction 

(GO:0007266) 
36/72 2.79E-10 6.07 170.20 10 

AJ AIN-93M  
respiratory electron transport chain 

(GO:0022904) 
69/94 4.3E-32 15.17 1221.84 1 

AJ AIN-93M  mitochondrial translation (GO:0032543) 71/107 7.89E-29 10.84 784.15 2 

AJ AIN-93M  
mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
61/85 1.17E-27 13.93 964.80 3 

AJ AIN-93M  
mitochondrial respiratory chain complex 

assembly (GO:0033108) 
65/97 5.85E-27 11.14 749.25 4 

AJ AIN-93M  
NADH dehydrogenase complex assembly 

(GO:0010257) 
51/64 5.85E-27 21.45 1432.58 5 

AJ AIN-93M  
mitochondrial respiratory chain complex I 

biogenesis (GO:0097031) 
51/64 5.85E-27 21.45 1432.58 6 

AJ AIN-93M  
mitochondrial respiratory chain complex I 

assembly (GO:0032981) 
51/64 5.85E-27 21.45 1432.58 7 

AJ AIN-93M  
mitochondrial translational termination 

(GO:0070126) 
58/89 3.61E-23 10.24 593.31 8 

AJ AIN-93M  
mitochondrial translational elongation 

(GO:0070125) 
56/87 5.69E-22 9.88 544.06 9 

AJ AIN-93M  translational termination (GO:0006415) 59/96 1.01E-21 8.73 474.63 10 

B6 HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
84/483 2.88E-15 3.45 143.94 1 

B6 HFCA neutrophil degranulation (GO:0043312) 83/479 2.96E-15 3.44 140.73 2 

B6 HFCA neutrophil mediated immunity (GO:0002446) 83/487 5.59E-15 3.37 134.38 3 

B6 HFCA 
extracellular matrix organization 

(GO:0030198) 
53/229 8.82E-15 4.87 190.59 4 

B6 HFCA 
cytokine-mediated signaling pathway 

(GO:0019221) 
77/633 2.09E-06 2.24 44.01 5 

B6 HFCA 
cellular response to cytokine stimulus 

(GO:0071345) 
60/456 5.78E-06 2.43 44.93 6 

B6 HFCA collagen fibril organization (GO:0030199) 12/29 2.21E-05 11.11 188.43 7 

B6 HFCA 
extracellular matrix disassembly 

(GO:0022617) 
19/78 5.72E-05 5.09 80.76 8 

B6 HFCA 
protein complex subunit organization 

(GO:0071822) 
14/45 8.31E-05 7.12 109.06 9 
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B6 HFCA platelet aggregation (GO:0070527) 12/33 8.31E-05 8.99 137.24 10 

B6 AIN-93M  
regulation of steroid biosynthetic process 

(GO:0050810) 
22/44 1.23E-14 20.57 822.15 1 

B6 AIN-93M  
regulation of alcohol biosynthetic process 

(GO:1902930) 
19/34 7.49E-14 25.99 973.49 2 

B6 AIN-93M  
cholesterol biosynthetic process 

(GO:0006695) 
19/35 8.24E-14 24.36 894.63 3 

B6 AIN-93M  sterol biosynthetic process (GO:0016126) 20/40 8.24E-14 20.53 748.40 4 

B6 AIN-93M  
regulation of cholesterol biosynthetic process 

(GO:0045540) 
20/40 8.24E-14 20.53 748.40 5 

B6 AIN-93M  
secondary alcohol biosynthetic process 

(GO:1902653) 
19/36 1.06E-13 22.93 825.79 6 

B6 AIN-93M  
regulation of cholesterol metabolic process 

(GO:0090181) 
20/41 1.1E-13 19.55 700.53 7 

B6 AIN-93M  
respiratory electron transport chain 

(GO:0022904) 
27/94 5.46E-12 8.32 264.36 8 

B6 AIN-93M  cholesterol metabolic process (GO:0008203) 23/68 8.53E-12 10.51 328.30 9 

B6 AIN-93M  
mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
24/85 1.91E-10 8.10 226.73 10 

129 HFCA neutrophil mediated immunity (GO:0002446) 113/487 1.11E-28 4.47 324.58 1 

129 HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
112/483 1.12E-28 4.47 320.95 2 

129 HFCA neutrophil degranulation (GO:0043312) 111/479 1.52E-28 4.46 317.31 3 

129 HFCA 
cytokine-mediated signaling pathway 

(GO:0019221) 
107/633 4.65E-16 2.97 125.20 4 

129 HFCA 
cellular response to cytokine stimulus 

(GO:0071345) 
83/456 4.66E-14 3.22 119.95 5 

129 HFCA 
extracellular matrix organization 

(GO:0030198) 
46/229 1.12E-08 3.57 88.20 6 

129 HFCA inflammatory response (GO:0006954) 48/252 2.5E-08 3.34 79.39 7 

129 HFCA 
toll-like receptor signaling pathway 

(GO:0002224) 
25/86 1.1E-07 5.76 127.65 8 

129 HFCA response to cytokine (GO:0034097) 32/138 2.02E-07 4.25 91.19 9 

129 HFCA 
regulation of small GTPase mediated signal 

transduction (GO:0051056) 
32/140 2.6E-07 4.18 87.87 10 

129 AIN-93M  
cholesterol biosynthetic process 

(GO:0006695) 
19/35 4.72E-15 30.89 1262.05 1 

129 AIN-93M  
regulation of alcohol biosynthetic process 

(GO:1902930) 
18/34 3.46E-14 29.23 1115.50 2 

129 AIN-93M  sterol biosynthetic process (GO:0016126) 19/40 4.25E-14 23.53 883.71 3 

129 AIN-93M  
secondary alcohol biosynthetic process 

(GO:1902653) 
18/36 6.64E-14 25.98 956.54 4 

129 AIN-93M  
regulation of cholesterol biosynthetic process 

(GO:0045540) 
18/40 5.75E-13 21.25 731.83 5 

129 AIN-93M  
regulation of cholesterol metabolic process 

(GO:0090181) 
18/41 8.24E-13 20.33 688.95 6 

129 AIN-93M  
regulation of steroid biosynthetic process 

(GO:0050810) 
18/44 3.23E-12 17.98 582.01 7 

129 AIN-93M  cholesterol metabolic process (GO:0008203) 19/68 1.5E-09 10.07 262.87 8 

129 AIN-93M  
dicarboxylic acid metabolic process 

(GO:0043648) 
14/59 8.83E-06 8.03 138.91 9 

129 AIN-93M  
monocarboxylic acid metabolic process 

(GO:0032787) 
18/108 3.14E-05 5.18 82.45 10 

NOD HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
92/483 1.32E-21 4.15 233.14 1 

NOD HFCA neutrophil degranulation (GO:0043312) 91/479 1.48E-21 4.13 228.88 2 

NOD HFCA neutrophil mediated immunity (GO:0002446) 91/487 3.39E-21 4.05 219.17 3 
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NOD HFCA 
cytokine-mediated signaling pathway 

(GO:0019221) 
93/633 2E-14 3.02 115.38 4 

NOD HFCA 
cellular response to cytokine stimulus 

(GO:0071345) 
66/456 1.62E-09 2.91 77.86 5 

NOD HFCA 
pattern recognition receptor signaling 

pathway (GO:0002221) 
19/48 2.53E-09 11.02 287.48 6 

NOD HFCA 
regulation of small GTPase mediated signal 

transduction (GO:0051056) 
31/140 2.31E-08 4.81 114.24 7 

NOD HFCA inflammatory response (GO:0006954) 42/252 1.35E-07 3.40 74.25 8 

NOD HFCA 
toll-like receptor signaling pathway 

(GO:0002224) 
22/86 6.37E-07 5.78 116.64 9 

NOD HFCA 
positive regulation of cytokine production 

(GO:0001819) 
37/220 9.38E-07 3.43 67.41 10 

NOD AIN-93M  sterol biosynthetic process (GO:0016126) 13/40 2.55E-06 12.77 264.54 1 

NOD AIN-93M  
secondary alcohol biosynthetic process 

(GO:1902653) 
12/36 3.2E-06 13.25 259.03 2 

NOD AIN-93M  
regulation of steroid biosynthetic process 

(GO:0050810) 
13/44 3.2E-06 11.12 215.62 3 

NOD AIN-93M  
regulation of cholesterol metabolic process 

(GO:0090181) 
12/41 1.06E-05 10.96 195.98 4 

NOD AIN-93M  
regulation of alcohol biosynthetic process 

(GO:1902930) 
11/34 1.06E-05 12.66 223.68 5 

NOD AIN-93M  
cholesterol biosynthetic process 

(GO:0006695) 
11/35 1.25E-05 12.13 210.19 6 

NOD AIN-93M  
regulation of cholesterol biosynthetic process 

(GO:0045540) 
11/40 5.01E-05 10.03 158.41 7 

NOD AIN-93M  steroid biosynthetic process (GO:0006694) 13/79 0.001857 5.22 62.79 8 

NOD AIN-93M  
monocarboxylic acid metabolic process 

(GO:0032787) 
15/108 0.002804 4.28 49.22 9 

NOD AIN-93M  
purine nucleobase metabolic process 

(GO:0006144) 
5/11 0.006518 21.89 231.20 10 

NZO HFCA neutrophil mediated immunity (GO:0002446) 130/487 2.28E-15 2.72 113.06 1 

NZO HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
129/483 2.28E-15 2.72 112.39 2 

NZO HFCA neutrophil degranulation (GO:0043312) 128/479 2.28E-15 2.72 111.72 3 

NZO HFCA regulation of cell migration (GO:0030334) 95/316 1.3E-14 3.19 124.35 4 

NZO HFCA 
regulation of small GTPase mediated signal 

transduction (GO:0051056) 
56/140 4.85E-14 4.90 183.63 5 

NZO HFCA 
extracellular matrix organization 

(GO:0030198) 
75/229 1.37E-13 3.60 130.29 6 

NZO HFCA 
regulation of intracellular signal transduction 

(GO:1902531) 
110/422 1.75E-12 2.62 87.81 7 

NZO HFCA response to cytokine (GO:0034097) 50/138 1.38E-10 4.17 120.98 8 

NZO HFCA 
positive regulation of intracellular signal 

transduction (GO:1902533) 
115/479 1.5E-10 2.34 67.59 9 

NZO HFCA 
cytokine-mediated signaling pathway 

(GO:0019221) 
139/633 6.67E-10 2.09 57.02 10 

NZO AIN-93M  
respiratory electron transport chain 

(GO:0022904) 
64/94 6.14E-36 17.85 1594.28 1 

NZO AIN-93M  
mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
54/85 6.5E-28 14.51 1017.52 2 

NZO AIN-93M  
mitochondrial respiratory chain complex 

assembly (GO:0033108) 
56/97 4.46E-26 11.38 745.41 3 

NZO AIN-93M  
NADH dehydrogenase complex assembly 

(GO:0010257) 
44/64 4.81E-25 18.25 1139.27 4 

NZO AIN-93M  
mitochondrial respiratory chain complex I 

biogenesis (GO:0097031) 
44/64 4.81E-25 18.25 1139.27 5 
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NZO AIN-93M  
mitochondrial respiratory chain complex I 

assembly (GO:0032981) 
44/64 4.81E-25 18.25 1139.27 6 

NZO AIN-93M  
mitochondrial electron transport, NADH to 

ubiquinone (GO:0006120) 
33/46 2.06E-19 20.96 1033.42 7 

NZO AIN-93M  mitochondrial transport (GO:0006839) 51/135 1.3E-13 5.03 180.36 8 

NZO AIN-93M  
cholesterol biosynthetic process 

(GO:0006695) 
23/35 6.24E-12 15.75 500.21 9 

NZO AIN-93M  
mitochondrial translational termination 

(GO:0070126) 
38/89 6.24E-12 6.15 195.21 10 

CAST HFCA 
calcium-mediated signaling using intracellular 

calcium source (GO:0035584) 
3/18 0.013 65.31 693.06 1 

CAST HFCA calcium-mediated signaling (GO:0019722) 4/70 0.020 20.07 190.74 2 

CAST HFCA response to hydrogen peroxide (GO:0042542) 3/43 0.038 24.46 194.52 3 

CAST HFCA 
regulation of protein activation cascade 

(GO:2000257) 
4/108 0.038 12.71 99.52 4 

CAST HFCA 
regulation of complement activation 

(GO:0030449) 
4/109 0.038 12.59 98.13 5 

CAST HFCA 
regulation of humoral immune response 

(GO:0002920) 
4/113 0.038 12.13 92.85 6 

CAST HFCA 
regulation of immune effector process 

(GO:0002697) 
4/114 0.038 12.02 91.60 7 

CAST HFCA 
regulation of acute inflammatory response 

(GO:0002673) 
4/121 0.042 11.29 83.55 8 

CAST HFCA 
regulation of protein processing 

(GO:0070613) 
4/128 0.046 10.65 76.56 9 

CAST AIN-93M  sterol biosynthetic process (GO:0016126) 3/40 0.028 35.10 314.60 1 

PWK HFCA 
actin cytoskeleton reorganization 

(GO:0031532) 
10/61 0.001 9.48 138.44 1 

PWK HFCA 
cortical actin cytoskeleton organization 

(GO:0030866) 
6/21 

3.22.E-

03 
19.19 242.99 2 

PWK HFCA 
cellular response to organic cyclic compound 

(GO:0071407) 
13/135 

3.22.E-

03 
5.17 63.42 3 

PWK HFCA leukocyte aggregation (GO:0070486) 4/7 
3.22.E-

03 
63.68 765.43 4 

PWK HFCA 
negative regulation of intracellular signal 

transduction (GO:1902532) 
14/161 

3.22.E-

03 
4.63 55.08 5 

PWK HFCA 
negative regulation of small GTPase mediated 

signal transduction (GO:0051058) 
6/27 

6.14.E-

03 
13.70 151.71 6 

PWK HFCA myelin assembly (GO:0032288) 4/9 
6.44.E-

03 
38.21 411.53 7 

PWK HFCA 
cortical cytoskeleton organization 

(GO:0030865) 
6/29 

6.44.E-

03 
12.51 133.02 8 

PWK HFCA neutrophil degranulation (GO:0043312) 25/479 
6.44.E-

03 
2.71 28.76 9 

PWK HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
25/483 

6.65.E-

03 
2.68 28.13 10 

PWK AIN-93M  
regulation of alcohol biosynthetic process 

(GO:1902930) 
19/34 2.14E-19 53.47 2682.75 1 

PWK AIN-93M  sterol biosynthetic process (GO:0016126) 20/40 2.14E-19 42.30 2103.84 2 

PWK AIN-93M  
cholesterol biosynthetic process 

(GO:0006695) 
19/35 2.14E-19 50.13 2476.82 3 

PWK AIN-93M  
secondary alcohol biosynthetic process 

(GO:1902653) 
19/36 3.32E-19 47.18 2296.65 4 

PWK AIN-93M  
regulation of steroid biosynthetic process 

(GO:0050810) 
20/44 1.08E-18 35.24 1666.19 5 

PWK AIN-93M  
regulation of cholesterol biosynthetic process 

(GO:0045540) 
19/40 3.09E-18 38.18 1758.12 6 

PWK AIN-93M  
regulation of cholesterol metabolic process 

(GO:0090181) 
19/41 4.83E-18 36.45 1656.24 7 
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PWK AIN-93M  cholesterol metabolic process (GO:0008203) 18/68 5.11E-12 15.14 475.91 8 

PWK AIN-93M  
IRE1-mediated unfolded protein response 

(GO:0036498) 
13/57 1.46E-07 12.29 258.91 9 

PWK AIN-93M  acetyl-CoA metabolic process (GO:0006084) 7/14 2.43E-06 41.16 746.81 10 

WSB HFCA neutrophil mediated immunity (GO:0002446) 160/487 2.06E-29 3.63 270.38 1 

WSB HFCA 
neutrophil activation involved in immune 

response (GO:0002283) 
158/483 3.78E-29 3.61 263.04 2 

WSB HFCA neutrophil degranulation (GO:0043312) 157/479 3.78E-29 3.62 263.00 3 

WSB HFCA 
cytokine-mediated signaling pathway 

(GO:0019221) 
167/633 2.23E-19 2.65 132.19 4 

WSB HFCA 
regulation of small GTPase mediated signal 

transduction (GO:0051056) 
54/140 2.3E-12 4.52 151.71 5 

WSB HFCA regulation of cell migration (GO:0030334) 89/316 2E-11 2.84 88.68 6 

WSB HFCA response to cytokine (GO:0034097) 51/138 7.11E-11 4.22 125.57 7 

WSB HFCA 
cellular response to cytokine stimulus 

(GO:0071345) 
113/456 8.94E-11 2.40 70.49 8 

WSB HFCA 
extracellular matrix organization 

(GO:0030198) 
68/229 1.03E-09 3.05 81.83 9 

WSB HFCA platelet degranulation (GO:0002576) 45/124 2.84E-09 4.09 105.24 10 

WSB AIN-93M  
respiratory electron transport chain 

(GO:0022904) 
68/94 4.17E-44 24.70 2668.91 1 

WSB AIN-93M  
mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
59/85 1.41E-36 21.33 1920.24 2 

WSB AIN-93M  
mitochondrial respiratory chain complex 

assembly (GO:0033108) 
52/97 3.69E-24 10.81 659.75 3 

WSB AIN-93M  
mitochondrial electron transport, NADH to 

ubiquinone (GO:0006120) 
34/46 4.83E-22 26.31 1467.97 4 

WSB AIN-93M  
NADH dehydrogenase complex assembly 

(GO:0010257) 
40/64 4.83E-22 15.51 858.01 5 

WSB AIN-93M  
mitochondrial respiratory chain complex I 

biogenesis (GO:0097031) 
40/64 4.83E-22 15.51 858.01 6 

WSB AIN-93M  
mitochondrial respiratory chain complex I 

assembly (GO:0032981) 
40/64 4.83E-22 15.51 858.01 7 

WSB AIN-93M  fatty acid beta-oxidation (GO:0006635) 33/50 4.11E-19 18.01 872.20 8 

WSB AIN-93M  fatty acid catabolic process (GO:0009062) 36/65 2.59E-17 11.53 509.13 9 

WSB AIN-93M  fatty acid oxidation (GO:0019395) 31/50 8.83E-17 15.12 647.70 10 

aCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact 

test p-value, and z = z-score for deviation from expected rank. 

 

 

 

 

 

 



101 

 

 

Figure 3.5. Comparison of functional enrichment in liver transcriptome between A/J and 

CAST strains in female mice.  

(A,B) Top 10 GO terms of upregulated genes in HFCA diet and AIN-93M diet identified in 

enrichment analysis in A/J strain (A) and CAST strain (B). Pathways were ordered from top to 

bottom by significance (highest to lowest) and colored by gene richness. N = 6 mice for each 

founder, 3 for AIN-93M diet and 3 for HFCA diet-fed mice. A/J (yellow), B6 (gray), C57BL/6J; 

129 (pink), 129S1/SvlmJ; NOD (blue), NOD/ShiLtJ; NZO (lightblue), NZO/HILtJ; CAST 

(green), CAST/EiJ; PWJ (red), PWK/PhJ; WSB (purple), WSB/EiJ. 
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3.5.3. Hepatic Transcriptional Network of CC Progenitors Enriched in Specific Functional 

Pathways  

In addition to identifying transcripts whose abundance is affected by diet or genetic 

background, we were also interested in understanding the hepatic transcriptional network in the 

CC progenitors and its relationship to disease-related traits.  For this reason, we performed 

weighted gene co-expression network analysis (WGCNA) to identify modules of highly co-

expressed genes. Using WGCNA we identified 20 co-expression gene modules in the liver 

transcriptome data as indicated by color names excluding a grey module containing unclustered 

genes in the network (Figures 3.6A and 3.6B). The modules contain varying numbers of 

transcripts ranging from 44 to 4,020. A cluster dendrogram marks the modules as downward 

branches (Figure 3.6A). We calculated module eigengenes (ME) of each module to assess the 

transcript abundance pattern among the eight CC founder strains and two diets. Using GO and 

KEGG enrichment analysis we identify 10 modules enriched for specific biological pathways 

(Table 3.8, 3.9, and 3.10). The functional annotations of these ten modules include: “Fatty acid 

catabolic process (GO: 0009062)” for the brown module, “Steroid biosynthesis degradation” 

(KEGG pathway) for the green module, "Type 1 interferon signaling pathway (GO: 0060337)” for 

the magenta module, “mRNA processing (GO: 0006397)” for the red module, and “Neutrophil 

activation involved in immune response (GO:0002283)” for the turquoise module. 
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Figure 3.6. Effect of genetic background on hepatic co-expression gene modules in the eight 

CC founder strains in female mice.  

(A) Cluster dendrogram illustrates modules (denoted by color and shown as downward branches) 

of highly correlated transcripts in livers. (B) Unsupervised hierarchical clustering dendrogram of 

19 module eigengenes.  
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Table 3.8. Gene set enrichment determined that each of the clusters was specifically 

enriched for GO biological process, KEGG pathway, and Jensen Disease.  

Module 

(#Genes) 

GO Biological Process 

KEGG pathway 

Jensen Disease 

Counts 
Adjusted 

P-value 

turquoise 

(4020) 

Neutrophil activation involved in immune 

response (GO:0002283) 

Non-alcoholic fatty liver disease (NAFLD) 

Arthritis 

187 

81 

63 

3.1×10-18 

1.8×10-17 

1.3×10-2 

brown 

(1151) 

Fatty acid catabolic process (GO:0009062) 

Valine, leucine and isoleucine degradation 

3-Methylcrotonyl-CoA carboxylase 

deficiency 

21 

21 

6 

2.1×10-7 

4.5×10-10 

1.1×10-2 

green 

(843) 

Regulation of alcohol biosynthetic process 

(GO:1902930) 

Steroid biosynthesis 

20 

19 

1.0×10-15 

1.2×10-8 

red 

(700) 

mRNA processing (GO:0006397) 

FoxO signaling pathway 

29 

14 

1.3×10-3 

2.2×10-2 

pink 

(476) 

Cell communication by electrical coupling 

involved in cardiac conduction 

(GO:0086064) 

Cortisol synthesis and secretion 

Congenital adrenal hyperplasia 

6 

20 

9 

7.6×10-4 

2.7×10-14 

1.9×10-5 

magenta 

(441) 

Type I interferon signaling pathway 

(GO:0060337) 

DNA replication 

Aicardi-Goutieres syndrome 

18 

10 

4 

5.3×10-12 

8.3×10-7 

1.4×10-2 
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purple 

(259) 

Muscle contraction (GO:0006936) 

Dilated cardiomyopathy (DCM) 

Cardiomyopathy 

50 

14 

9 

4.4×10-56 

3.0×10-9 

9.2×10-12 

cyan 

(136) 

Platelet degranulation (GO:0002576) 

Complement and coagulation cascades 

Congenital afibrinogenemia 

13 

13 

8 

1.4×10-8 

8.7×10-12 

1.4×10-6 

midnightblue 

(127) 

Positive regulation of vasculature 

development (GO:1904018) 

Cell adhesion molecules (CAMs) 

Ovarian hyperstimulation syndrome 

10 

7 

4 

3.0×10-6 

1.6×10-2 

3.6×10-3 

lightcyan 

(125) 

SSRP-dependent cotranslational protein 

targeting to membrane (GO:0006614) 

Ribosome 

Diamond-Blackfan anemia 

38 

40 

4 

2.8×10-58 

1.5×10-50 

3.4×10-3 
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Table 3.9. Top 10 Gene Ontology results for 10 hepatic coexpression gene modules in liver 

in eight CC founder strains. n = 48 (6 mice per eight strains and 24 mice per two diets). 

Module Term 

Overlap 

(gene 

count) 

Adjusted 

P-value 

Odds 

Ratio 

Combined 

Scorea 
Rank 

brown fatty acid catabolic process (GO:0009062) 21/65 2.08E-07 5.61 134.30 1 

brown fatty acid oxidation (GO:0019395) 18/50 2.23E-07 6.26 142.36 2 

brown 
branched-chain amino acid catabolic process 

(GO:0009083) 
12/21 2.88E-07 9.93 220.53 3 

brown fatty acid beta-oxidation (GO:0006635) 18/50 3.34E-07 6.26 142.36 4 

brown 
branched-chain amino acid metabolic process 

(GO:0009081) 
12/22 4.81E-07 9.48 203.55 5 

brown 
cellular amino acid catabolic process 

(GO:0009063) 
12/23 7.94E-07 9.07 188.50 6 

brown alpha-amino acid catabolic process (GO:1901606) 15/39 1.14E-06 6.68 135.51 7 

brown 
fatty acid beta-oxidation using acyl-CoA 

dehydrogenase (GO:0033539) 
8/15 3.35E-04 9.27 133.99 8 

brown lysine catabolic process (GO:0006554) 6/12 0.013 8.69 92.23 9 

brown lysine metabolic process (GO:0006553) 6/12 0.014 8.69 92.23 10 

cyan platelet degranulation (GO:0002576) 13/124 1.37E-08 15.42 410.81 1 

cyan regulated exocytosis (GO:0045055) 13/148 6.62E-08 12.92 314.85 2 

cyan 
negative regulation of blood coagulation 

(GO:0030195) 
8/36 1.63E-07 32.68 753.91 3 

cyan fibrinolysis (GO:0042730) 6/16 8.55E-07 55.15 1164.92 4 

cyan 
negative regulation of peptidase activity 

(GO:0010466) 
8/62 9.41E-06 18.98 351.08 5 

cyan 
post-translational protein modification 

(GO:0043687) 
15/357 1.58E-05 6.18 109.02 6 

cyan 
regulation of endopeptidase activity 

(GO:0052548) 
8/68 1.66E-05 17.30 307.16 7 

cyan cellular protein metabolic process (GO:0044267) 16/484 1.25E-04 4.86 75.07 8 

cyan 
negative regulation of endopeptidase activity 

(GO:0010951) 
7/83 7.93E-04 12.40 165.88 9 

cyan regulation of vasoconstriction (GO:0019229) 5/29 7.97E-04 25.35 341.65 10 

green 
regulation of alcohol biosynthetic process 

(GO:1902930) 
20/34 1.02E-15 13.96 600.87 1 

green 
regulation of cholesterol biosynthetic process 

(GO:0045540) 
20/40 3.98E-14 11.86 459.07 2 

green 
regulation of cholesterol metabolic process 

(GO:0090181) 
20/41 4.98E-14 11.57 440.59 3 

green 
regulation of steroid biosynthetic process 

(GO:0050810) 
20/44 2.17E-13 10.78 391.59 4 

green sterol biosynthetic process (GO:0016126) 19/40 2.95E-13 11.27 401.17 5 

green cholesterol biosynthetic process (GO:0006695) 18/35 3.48E-13 12.20 434.55 6 

green 
secondary alcohol biosynthetic process 

(GO:1902653) 
18/36 4.77E-13 11.86 414.73 7 

green cholesterol metabolic process (GO:0008203) 18/68 1.64E-07 6.28 138.67 8 

green 
regulation of primary metabolic process 

(GO:0080090) 
20/139 8.81E-04 3.41 45.66 9 

green acetyl-CoA metabolic process (GO:0006084) 6/14 0.006 10.17 114.90 10 

magenta type I interferon signaling pathway (GO:0060337) 18/65 5.28E-12 12.56 424.64 1 
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magenta 
cellular response to type I interferon 

(GO:0071357) 
18/65 1.06E-11 12.56 424.64 2 

magenta 
regulation of viral genome replication 

(GO:0045069) 
13/63 1.60E-06 9.36 194.52 3 

magenta 
negative regulation of viral genome replication 

(GO:0045071) 
11/15 1.16E-05 9.98 184.72 4 

magenta 
positive regulation of type I interferon production 

(GO:0032481) 
11/62 8.31E-05 8.05 129.87 5 

magenta 
negative regulation of viral life cycle 

(GO:1903901) 
11/61 8.37E-05 8.18 133.44 6 

magenta 
regulation of type I interferon production 

(GO:0032479) 
12/85 2.55E-04 6.40 95.19 7 

magenta 
regulation of interferon-beta production 

(GO:0032648) 
8/34 3.67E-04 10.67 153.32 8 

magenta 
positive regulation of interferon-beta production 

(GO:0032728) 
7/26 6.27E-04 12.21 167.46 9 

magenta 
negative regulation of type I interferon production 

(GO:0032480) 
8/44 0.002 8.25 101.28 10 

red mRNA processing (GO:0006397) 29/283 0.001 2.93 44.51 1 

red mRNA splicing, via spliceosome (GO:0000398) 27/261 0.001 2.96 42.68 2 

red RNA splicing (GO:0008380) 16/106 0.001 4.31 60.33 3 

red RNA processing (GO:0006396) 22/193 0.002 3.26 44.43 4 

red 

RNA splicing, via transesterification reactions 

with bulged adenosine as nucleophile 

(GO:0000377) 

24/236 0.003 2.91 36.88 5 

red 
transcription from RNA polymerase II promoter 

(GO:0006366) 
35/485 0.030 2.06 20.56 6 

red 
regulation of lipid metabolic process 

(GO:0019216) 
13/100 0.033 3.71 37.12 7 

red 
cellular response to DNA damage stimulus 

(GO:0006974) 
27/329 0.034 2.34 23.75 8 

red spliceosomal complex assembly (GO:0000245) 8/41 0.042 5.57 53.01 9 

red 
positive regulation of gene expression 

(GO:0010628) 
48/771 0.044 1.78 16.64 10 

lightcyan 
SRP-dependent cotranslational protein targeting 

to membrane (GO:0006614) 
38/89 2.79E-58 68.31 9636.66 1 

lightcyan 
cotranslational protein targeting to membrane 

(GO:0006613) 
38/93 1.17E-57 65.38 9082.90 2 

lightcyan protein targeting to ER (GO:0045047) 38/97 5.85E-57 62.68 8582.17 3 

lightcyan viral gene expression (GO:0019080) 39/110 1.26E-56 56.73 7707.30 4 

lightcyan 
nuclear-transcribed mRNA catabolic process, 

nonsense-mediated decay (GO:0000184) 
39/112 2.36E-56 55.71 7522.17 5 

lightcyan viral transcription (GO:0019083) 39/113 2.99E-56 55.22 7432.45 6 

lightcyan rRNA metabolic process (GO:0016072) 44/200 2.98E-54 35.20 4570.32 7 

lightcyan rRNA processing (GO:0006364) 44/202 4.24E-54 34.85 4508.17 8 

lightcyan ribosome biogenesis (GO:0042254) 44/226 8.52E-52 31.15 3860.55 9 

lightcyan ncRNA processing (GO:0034470) 44/227 9.47E-52 31.01 3836.98 10 

midnightblue 
positive regulation of vasculature development 

(GO:1904018) 
10/104 3.00E-06 15.14 311.37 1 

midnightblue vasculogenesis (GO:0001570) 7/32 5.30E-06 34.45 712.57 2 

midnightblue positive regulation of angiogenesis (GO:0045766) 9/103 2.44E-05 13.76 244.54 3 

midnightblue regulation of angiogenesis (GO:0045765) 11/177 2.97E-05 9.79 174.82 4 

midnightblue sprouting angiogenesis (GO:0002040) 6/44 3.44E-04 21.47 320.03 5 

midnightblue 
cellular response to vascular endothelial growth 

factor stimulus (GO:0035924) 
5/25 3.89E-04 31.50 459.75 6 
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midnightblue 
cellular response to growth factor stimulus 

(GO:0071363) 
8/139 2.17E-03 9.06 115.34 7 

midnightblue heart trabecula morphogenesis (GO:0061384) 4/18 2.51E-03 35.00 431.41 8 

midnightblue 
positive regulation of epithelial cell proliferation 

(GO:0050679) 
7/107 2.52E-03 10.30 124.90 9 

midnightblue 
regulation of endothelial cell migration 

(GO:0010594) 
6/69 2.57E-03 13.69 167.07 10 

pink 
cell communication by electrical coupling 

involved in cardiac conduction (GO:0086064) 
6/14 7.65E-04 18.01 263.17 1 

pink 
cardiac muscle cell action potential involved in 

contraction (GO:0086002) 
8/28 1.01E-03 12.00 185.26 2 

pink 
cellular response to hormone stimulus 

(GO:0032870) 
12/80 1.02E-03 6.30 92.85 3 

pink 
membrane depolarization during cardiac muscle 

cell action potential (GO:0086012) 
6/17 1.27E-03 14.83 196.63 4 

pink potassium ion homeostasis (GO:0055075) 7/25 1.40E-03 11.76 158.81 5 

pink 
glucocorticoid biosynthetic process 

(GO:0006704) 
5/10 1.45E-03 21.01 279.00 6 

pink 
regulation of heart rate by cardiac conduction 

(GO:0086091) 
8/35 1.66E-03 9.60 130.17 7 

pink 
mineralocorticoid biosynthetic process 

(GO:0006705) 
4/6 2.59E-03 28.01 344.39 8 

pink 
cardiac muscle cell action potential 

(GO:0086001) 
7/29 2.62E-03 10.14 125.80 9 

pink regulation of secretion by cell (GO:1903530) 9/56 3.25E-03 6.75 80.78 10 

purple muscle contraction (GO:0006936) 50/137 4.44E-56 28.18 3832.59 1 

purple muscle filament sliding (GO:0030049) 25/38 1.56E-35 50.80 4449.64 2 

purple actin-myosin filament sliding (GO:0033275) 25/38 2.34E-35 50.80 4449.64 3 

purple striated muscle contraction (GO:0006941) 25/61 1.46E-28 31.65 2254.66 4 

purple myofibril assembly (GO:0030239) 21/47 9.51E-25 34.50 2147.47 5 

purple actomyosin structure organization (GO:0031032) 21/71 2.63E-20 22.84 1183.83 6 

purple heart contraction (GO:0060047) 17/44 1.75E-18 29.84 1416.57 7 

purple sarcomere organization (GO:0045214) 14/31 3.64E-16 34.87 1464.93 8 

purple cardiac muscle contraction (GO:0060048) 14/36 4.38E-15 30.03 1183.27 9 

purple muscle fiber development (GO:0048747) 12/27 1.29E-13 34.32 1232.67 10 

turquoise 
neutrophil activation involved in immune 

response (GO:0002283) 
187/483 3.12E-18 1.93 92.75 1 

turquoise neutrophil degranulation (GO:0043312) 186/479 5.45E-18 1.93 93.29 2 

turquoise neutrophil mediated immunity (GO:0002446) 187/487 6.12E-18 1.91 89.93 3 

turquoise respiratory electron transport chain (GO:0022904) 59/94 2.65E-16 3.12 134.33 4 

turquoise 
mitochondrial ATP synthesis coupled electron 

transport (GO:0042775) 
53/85 2.19E-14 3.10 119.05 5 

turquoise 
mitochondrial electron transport, NADH to 

ubiquinone (GO:0006120) 
34/46 4.54E-12 3.68 120.85 6 

turquoise 
mitochondrial translational elongation 

(GO:0070125) 
49/87 7.28E-11 2.80 83.88 7 

turquoise mitochondrial translation (GO:0032543) 56/107 7.75E-11 2.60 77.43 8 

turquoise 
mitochondrial respiratory chain complex 

assembly (GO:0033108) 
51/97 6.71E-10 2.62 71.83 9 

turquoise 
mitochondrial translational termination 

(GO:0070126) 
48/89 8.05E-10 2.68 72.92 10 

aCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact 

test p-value, and z = z-score for deviation from expected rank. 
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Table 3.10. Top 10 KEGG pathway results for 6 hepatic coexpression gene modules in liver 

in eight CC founder strains. n = 48 (6 mice per eight strains and 24 mice per two diets) 

Modulea Term 

Overlap 

(gene 

count) 

Adjusted 

P-value 

Odds 

Ratio 

Combined 

Scoreb 
Rank 

brown Valine, leucine and isoleucine degradation 21/56 4.51E-10 6.52 177.46 1 

brown Peroxisome 21/84 1.17E-06 4.34 81.16 2 

brown Fatty acid degradation 15/50 7.76E-06 5.21 85.39 3 

brown Drug metabolism 22/114 3.68E-05 3.35 48.75 4 

brown Lysine degradation 15/59 5.06E-05 4.42 61.82 5 

brown Tryptophan metabolism 13/48 1.05E-04 4.71 61.59 6 

brown Glyoxylate and dicarboxylate metabolism 10/31 2.42E-04 5.61 67.79 7 

brown Glycine, serine and threonine metabolism 11/40 4.08E-04 4.78 54.66 8 

brown Butanoate metabolism 9/27 4.12E-04 5.79 65.51 9 

brown Propanoate metabolism 8/31 0.009 4.48 36.65 10 

cyan Complement and coagulation cascades 13/88 8.73E-12 21.72 677.33 1 

green Steroid biosynthesis 11/19 1.18E-08 13.74 329.28 1 

green Terpenoid backbone biosynthesis 9/23 2.92E-05 9.28 143.53 2 

green Peroxisome 13/84 0.005 3.67 36.56 3 

green Glyoxylate and dicarboxylate metabolism 7/31 0.019 5.36 44.44 4 

magenta DNA replication 10/35 8.34E-07 12.96 255.41 1 

magenta Herpes simplex virus 1 infection 27/433 2.11E-04 2.83 38.13 2 

magenta Epstein-Barr virus infection 17/229 0.001 3.37 37.61 3 

magenta Hepatitis C 14/160 0.001 3.97 44.68 4 

magenta Cell cycle 11/123 0.005 4.06 37.83 5 

magenta Cellular senescence 13/185 0.012 3.19 26.49 6 

magenta Cytosolic DNA-sensing pathway 7/61 0.014 5.20 41.02 7 

magenta Influenza A 12/168 0.016 3.24 25.66 8 

magenta RIG-I-like receptor signaling pathway 7/68 0.025 4.67 33.69 9 

magenta Antigen processing and presentation 8/90 0.025 4.03 28.56 10 

red Spliceosome 14/132 0.022 3.03 25.51 1 

red FoxO signaling pathway 14/132 0.033 3.03 25.51 2 

red Non-small cell lung cancer 9/66 0.035 3.90 29.89 3 

red Choline metabolism in cancer 11/99 0.042 3.17 23.12 4 

red Glycerophospholipid metabolism 12/97 0.044 3.53 31.26 5 

lightcyan Ribosome 40/170 1.52E-50 37.65 4533.62 1 

midnightblue Cell adhesion molecules (CAMs) 7/170 0.016 6.48 59.25 1 

midnightblue Leukocyte transendothelial migration 6/115 0.028 8.22 76.26 2 

midnightblue Rap1 signaling pathway 7/209 0.039 5.27 41.52 3 

pink Cortisol synthesis and secretion 20/69 2.73E-14 12.18 449.94 1 

pink Aldosterone synthesis and secretion 21/102 4.33E-12 8.65 269.77 2 

pink Cushing syndrome 21/159 2.12E-08 5.55 123.66 3 
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pink Insulin secretion 13/86 9.05E-06 6.35 101.24 4 

pink cAMP signaling pathway 19/211 4.65E-05 3.78 53.27 5 

pink Adrenergic signaling in cardiomyocytes 15/148 1.31E-04 4.26 54.77 6 

pink Circadian entrainment 12/99 1.77E-04 5.09 63.20 7 

pink Renin secretion 10/76 4.70E-04 5.53 62.45 8 

pink Dopaminergic synapse 13/135 6.33E-04 4.05 43.60 9 

pink Oxytocin signaling pathway 14/154 6.57E-04 3.82 41.42 10 

purple Dilated cardiomyopathy (DCM) 14/90 2.99E-09 12.01 304.39 1 

purple Hypertrophic cardiomyopathy (HCM) 13/86 1.21E-08 11.67 271.37 2 

purple Adrenergic signaling in cardiomyocytes 13/148 6.96E-06 6.78 111.85 3 

purple Cardiac muscle contraction 9/78 5.65E-05 8.91 125.71 4 

purple Calcium signaling pathway 13/189 7.08E-05 5.31 72.56 5 

purple 

Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 8/72 2.10E-04 8.58 106.32 6 

purple Oxytocin signaling pathway 11/154 2.36E-04 5.52 66.84 7 

purple Apelin signaling pathway 10/138 4.89E-04 5.60 63.00 8 

purple Vascular smooth muscle contraction 9/140 2.71E-03 4.96 46.28 9 

purple cGMP-PKG signaling pathway 10/172 2.86E-03 4.49 42.08 10 

turquoise Non-alcoholic fatty liver disease (NAFLD) 81/151 1.75E-17 2.67 118.22 1 

turquoise Huntington disease 90/192 7.69E-15 2.33 87.50 2 

turquoise Oxidative phosphorylation 70/134 1.24E-14 2.60 95.21 3 

turquoise Alzheimer disease 82/175 9.60E-14 2.33 79.96 4 

turquoise Fc gamma R-mediated phagocytosis 48/87 3.08E-11 2.74 77.70 5 

turquoise Parkinson disease 67/144 3.80E-11 2.31 64.62 6 

turquoise Thermogenesis 93/231 6.09E-11 2.00 54.66 7 

turquoise Regulation of actin cytoskeleton 87/217 3.64E-10 1.99 50.60 8 

turquoise Osteoclast differentiation 59/128 9.42E-10 2.29 55.73 9 

turquoise Focal adhesion 80/199 1.67E-09 2.00 47.24 10 
aThere are fewer than 10 KEGG pathways identified in cyan, green and red modules. 
bCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact 

test p-value, and z = z-score for deviation from expected rank. 
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3.5.4. Effect of Diet and Strain on Hepatic Transcriptional Network of CC Progenitors  

We next sought to delineate the effects of diet on these modules of highly connected genes.  

The modules can be characterized by their module eigengenes (MEs) which reflect the first 

principal component of the module. Non-parametric statistical tests of the effect of diet on ME 

levels were performed to identify diet-influenced modules. Among 20 co-expressed gene modules 

detected in WGCNA, 11 modules showed significant differences in MEs between diets (Figures 

3.7A-F and Table 3.11). Next, in order to investigate the connection between diet-specific DEGs 

and gene networks, we explored the proportion of “Core Diet DEGs” in each module (Figure 3.8). 

Of these 6,411 genes, 5,473 (85.3%) were contained in one of 5 modules within the network. Only 

32 out of the 6,411 Core Diet DEGs were not associated with any module. The top 4 modules with 

the highest number of genes upregulated by the HFCA diet were turquoise (52.2%; 2,097 out of 

4,020 genes), brown (20%; 230 out of 1151 genes), green (23.0%; 194 out of 843 genes), and 

magenta (29.7%; 131 out of 441 genes). The top 4 modules with the highest number of genes 

upregulated by the AIN-93M diet were turquoise (40.1%; 1,612 out of 4,020 genes), green (56.5%; 

476 out of 843 genes), brown (41%; 475 out of 1151 genes), and red (22%; 154 out of 700 genes) 

(Figure 3.7G and Tables 3.12 and 3.13).   

We next sought to identify strain-specific responses within the modules by examining both 

strain and strain by diet effects (Table 3.11). Among the 20 modules, 18 were moduled by strain. 

One of the 2 modules without significant effects of strain was the turquoise module which contains 

the most diet-specific DEGs (P=0.48; Figure 3.7A and Table 3.11). As shown in Table 3.5, the 

number of diet-specific DEGs identified in the A/J, NZO, and WSB strains was the highest, and 

the number of diet-specific DEGs identified in the CAST strain was the lowest across all modules 

(Tables 3.12 and 3.13). Specifically, we highlighted 6 modules in which significant diet effects 
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were identified in at least 5 strains which may indicate a critical strain by diet interaction (Figure. 

3.7A-F). We next described the brown and green modules with both strain and strain by diet effects 

as examples. 

The brown module, which contains 1,151 transcripts, is highly enriched for genes involved 

in fatty acid catabolism (Table 3.8-3.10). A previous report identified that hepatic fatty acid 

oxidation-related genes are down-regulated by an atherogenic diet challenge in mice (Matsuzawa 

et al., 2007) and reflective of this, the brown module ME was higher in AIN-93M diet-fed mice 

than in HFCA diet-fed mice independent of strain (P <0.001; Figure 3.7B and Table 3.9), and 

this trend was also observed in five individual strain analyses (P <0.01 in A/J strain, P <0.05 in 

129 strain, P <0.01 in NZO strain, P <0.05 in CAST strain, and P <0.05 in WSB strain). 

Furthermore, the number of genes upregulated by the AIN-93M diet (475 genes) in the brown 

module was 2.1 times higher than the number of genes upregulated by the HFCA diet (230 genes) 

(Figure 3.7G and Tables 3.12 and 3.13). In terms of strain-dependent effects, transcripts in this 

module were up-regulated in NZO mice and down-regulated in CAST mice, which may reflect 

differences in fatty acid catabolic process in the liver from these strains (Figures 3.7B and Table 

3.11). Genes involved in fatty acid oxidation have increased expression in patients with fatty liver, 

which is considered to reduce reactive oxygen species produced by fatty acid oxidation (Kohjima 

et al., 2007). Thus, the NZO strain has the highest expression of fatty acid oxidation-related genes 

and has the highest adiposity and liver TG content, while the CAST strain has the lowest 

expression of the genes and is generally resistant to MetSyn. 
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Figure 3.7. Effect of diet and genetic background on hepatic co-expression gene modules in 

the eight CC founder strains in female mice.  

Differences of PC1 of module eigengenes (ME) including turquoise (A), brown (B), green (C), 

red (D), magenta (E), and tan (F) module ME by diet and genetic background were plotted. (G) 

Number and proportion of diet or non-diet responsive genes in six modules. The x-axis is the 

number of genes and the y-axis is the color of each module. Length of the bar corresponding to 

each module is the number of module genes, and portions corresponding to purple, grey, and 

lightblue colors in each bar are the number of genes upregulated by the HFCA diet (purple), non-

diet responsive genes (grey), and genes upregulated by the AIN-93M diet (lightblue). Proportion 

of each color is written in white letters in the bar. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05. N = 

6 mice for each founder, 3 for AIN-93M diet (lightblue color) and 3 for HFCA diet (purple 

color)-fed mice. A/J (yellow), B6 (gray), C57BL/6J; 129 (pink), 129S1/SvlmJ; NOD (blue), 

NOD/ShiLtJ; NZO (lightblue), NZO/HILtJ; CAST (green), CAST/EiJ; PWJ (red), PWK/PhJ; 

WSB (purple), WSB/EiJ.  
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Figure 3.8. Number and proportion of diet or non-diet responsive genes in 20 modules. 

The x-axis is the number of genes and the y-axis is the color of each module. Length of the bar 

corresponding to each module is the number of module genes, and portions corresponding to 

purple, grey, and lightblue colors in each bar are the number of genes upregulated by the HFCA 

diet (purple), non-diet responsive genes (grey), and genes upregulated by the AIN-93M diet 

(lightblue). Proportion of each color is written in black on the right side of the bar.  
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Table 3.11. Diet-, strain-, and diet-by strain-dependent differences in module eigengenes for hepatic gene networks in eight 

CC founder strains. n = 48 (6 mice per eight strains and 24 mice per two diets) 

Module 

Diet effect Strain effect Diet by Strain effect 

p-value for 

comparison in 

diets (Wilcoxon 

test) 

p-value for 

comparison in 

strains (Kruskal-

Wallis test) 

Strain that 

has the 

highest 

value 

Strain 

that has 

the lowest 

value 

p-value for two-

way ANOVA 

with interaction 

effect (Diet) 

p-value for two-

way ANOVA 

with interaction 

effect (Strain) 

p-value for two-

way ANOVA with 

interaction effect 

(Diet:Strain) 

blue NS 2.20E-05 NOD CAST NS 2.00E-16 NS 

magenta P < 0.01 2.30E-04 NZO CAST 3.77E-10 4.57E-14 7.02E-03 

grey60 NS 7.40E-07 NZO WSB 9.82E-07 2.00E-16 5.02E-05 

yellow NS 1.30E-05 NZO CAST 6.64E-04 2.00E-16 0.01 

salmon P < 0.05 1.90E-04 A/J B6 1.38E-09 2.00E-16 NS 

green P < 0.001 2.50E-07 PWK CAST 2.00E-16 5.46E-14 2.27E-04 

brown P < 0.001 1.40E-03 NZO CAST 7.12E-14 5.06E-13 1.18E-04 

cyan P < 0.001 5.40E-03 WSB PWK 4.86E-09 8.10E-08 NS 

lightgreen NS 2.20E-07 NZO B6 5.00E-03 2.00E-16 NS 

lightcyan P < 0.001 1.50E-03 CAST WSB 5.00E-03 2.00E-16 NS 

red P < 0.01 2.70E-04 CAST A/J 2.69E-06 4.54E-10 0.02 

tan P < 0.001 2.10E-04 CAST A/J 1.91E-11 2.10E-14 0.01 

black NS 1.70E-04 PWK 129 1.87E-02 2.00E-16 8.55E-06 

turquoise P < 0.001 NS A/J CAST 3.45E-15 1.88E-04 0.04 

pink P < 0.05 8.60E-03 PWK NZO 0.03 NS NS 

purple NS 0.033 CAST NOD NS NS NS 

royalblue P < 0.001 NS A/J NZO 7.28E-06 NS NS 

lightyellow NS 5.90E-07 NOD B6 5.73E-09 2.00E-16 1.66E-03 

greenyellow NS 5.00E-03 WSB NZO 1.41E-08 2.00E-16 3.47E-03 

midnightblue NS 1.60E-03 B6 NZO NS 5.32E-08 1.16E-05 

 

 

 

1
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Table 3.12. Number and proportion of HFCA diet-upregulated genes in modules. 

Modulea #Genes 

#HFCA-upregulated genes 

All mice 

(%)b 

At least 

one 

strain  

AJ  B6  129 NOD  NZO  CAST  PWK  WSB  

turquoise 4020 2097 (52.2) 2122 1796 817 974 764 1418 45 267 1512 

blue 1252 35 (2.8) 274 63 31 31 38 109 2 18 79 

brown 1151 230 (20) 319 236 57 59 42 136 3 15 122 

yellow 955 30 (3.1) 246 74 36 31 38 97 2 20 94 

green 843 194 (23) 212 151 42 53 50 99 1 24 67 

red 700 97 (13.9) 220 94 29 28 31 76 1 13 136 

black 606 30 (5) 159 63 19 18 24 62 1 13 55 

pink 476 108 (22.7) 158 96 38 14 6 59 1 2 41 

magenta 441 131 (29.7) 222 77 47 67 68 115 3 9 173 

purple 259 30 (11.6) 65 33 12 5 5 26 0 3 21 

greenyellow 173 10 (5.8) 53 19 9 11 7 17 0 6 14 

tan 169 43 (25.4) 53 36 8 7 11 32 0 6 26 

salmon 144 8 (5.6) 27 4 5 4 6 10 0 2 11 

cyan 136 21 (15.4) 26 18 9 6 3 13 0 2 17 

midnightblue 127 3 (2.4) 53 1 0 0 1 51 0 0 3 

lightcyan 125 23 (18.4) 29 12 9 4 3 21 1 1 8 

grey60 108 4 (3.7) 28 14 4 5 5 10 0 1 8 

lightgreen 107 4 (3.7) 26 9 6 5 5 17 0 0 12 

lightyellow 89 4 (4.5) 36 3 6 6 10 16 1 1 20 

royalblue 44 43 (97.7) 43 40 14 9 1 12 0 2 22 

aEach module was listed in the order of the number of module genes. 
bPercentage is the number of genes upregulated by the HFCA diet in the module divided by the 

number of module genes. 
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Table 3.13. Number and proportion of AIN-93M diet-upregulated genes in modules. 

Modulea #Genes 

#HFCA-upregulated genes 

All mice 

(%)b 

At least 

one 

strain  

AJ  B6  129 NOD  NZO  CAST  PWK  WSB  

turquoise 4020 
1612 

(40.1) 
1559 1211 390 262 248 905 8 156 868 

blue 1252 103 (8.2) 378 170 57 52 65 120 9 34 93 

brown 1151 475 (41.3) 638 539 129 136 128 300 11 37 240 

yellow 955 56 (5.9) 302 164 33 38 47 96 3 24 70 

green 843 476 (56.5) 477 382 148 154 105 246 9 130 166 

red 700 154 (22) 332 183 54 17 16 154 0 18 213 

black 606 36 (5.9) 188 92 18 24 23 76 0 33 54 

pink 476 24 (5) 85 35 9 8 18 27 0 3 32 

magenta 441 60 (13.6) 124 45 18 7 7 49 2 7 77 

purple 259 3 (1.2) 42 15 7 10 5 15 0 1 8 

greenyellow 173 17 (9.8) 52 33 9 5 12 14 0 3 12 

tan 169 48 (28.4) 65 40 7 2 7 39 0 10 31 

salmon 144 39 (27.1) 60 33 12 8 7 44 0 7 18 

cyan 136 62 (45.6) 78 53 12 17 21 44 0 10 40 

midnightblue 127 9 (7.1) 85 78 20 0 2 1 2 2 16 

lightcyan 125 47 (37.6) 37 17 6 3 2 23 0 0 8 

grey60 108 7 (6.5) 40 28 11 6 5 19 0 1 7 

lightgreen 107 1 (0.9) 35 17 4 4 1 19 3 1 10 

lightyellow 89 5 (5.6) 39 23 4 7 9 13 1 4 9 

royalblue 44 0 (0) 0 0 0 0 0 0 0 0 0 

aEach module was listed in the order of the number of module genes. 
bPercentage is the number of genes upregulated by the HFCA diet in the module divided by the 

number of module genes. 
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As an additional example of strain and diet effects, we highlight the green module which 

contains 843 transcripts.  A number of these are important for lipid processing such as low-density 

lipoprotein receptor (Ldlr), proprotein convertase subtilisin/kexin type 9 (Pcsk9), and many other 

steroid synthesis enzymes (Tables 3.8-3.10). The ME in the green module was higher in AIN-

93M diet-fed mice than in HFCA diet-fed mice independent of strains (P <0.001) and in all 

individual strains (Figure 3.7C and Table 3.11). In addition, the number of genes upregulated by 

the AIN-93M diet (476 genes) in the green module was 2.5 times higher than the number of genes 

upregulated by the HFCA diet (194 genes) (Figure 3.7G and Table 3.12 and 3.13). A high-fat or 

an atherogenic diet is known to reduce the rate of synthesis and conversion of primary bile salts in 

humans and B6 mice (Bisschop et al., 2004; Renaud et al., 2014). In our study, HFCA-fed mice 

exhibited down-regulation of the cholesterol/steroid synthesis pathway potentially due to bile acid 

accumulation in the liver. In terms of strain-dependent effects, transcripts in the green module were 

down-regulated in the CAST strain and up-regulated in the PWK strain (Figure 3.7C and Table 

3.11). The CAST mice showed the highest plasma cholesterol concentration among all strains 

which may reflect a decreased expression of genes related to the cholesterol metabolism, including 

Ldlr which removes cholesterol from plasma LDL into the liver. 

In addition to strain and diet effects, we also sought to identify a number of strain by diet 

interactions of the co-expression modules. Significant diet-by-strain interactions, assessed by a 

two-way ANOVA test, were observed in 12 modules. These include the above 6 modules, and the 

grey60, yellow, black, lightyellow, greenyellow, and midnightblue modules (Table 3.11).  

For example, the black and midnightblue modules showed opposite diet effects by genetic 

background. The ME of the midnightblue module, which showed KEGG pathway for cell adhesion 

molecules, was significantly higher in the AIN-93M diet-fed mice than in the HFCA diet-fed mice 
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in the AJ and B6 strains, yet in the NZO and CAST strains the ME of the midnightblue module 

was higher in HFCA fed mice than in AIN-93 M fed mice (Table 3.11). These results show that 

genetic background has a significant influence on hepatic gene networks in response to a control 

diet or an atherogenic diet. 
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3.5.5. Liver Transcriptome Co-expression Modules Correlate with Metabolic Traits  

Before assessing the relationship between gene modules and clinical traits, we determined the 

effect of diet on the 29 metabolic traits measured. Liver weight (P <0.05), liver TG (P <0.05), 

plasma ALT (P <0.01), AST (P <0.01), total cholesterol (P <0.001), betaine (P <0.05), and 

oxygen consumption per weight (P <0.05) showed significant diet-dependent differences, 

assessed by the Wilcoxon test, regardless of genetic backgrounds during the 16-week HFCA diet 

challenge period (Figure 3.9 and Table 3.14). Plasma TMAO concentration also increased 1.35-

fold HFCA diet-fed mice. This difference was not significant, but we noticed broad strain 

differences and speculated that the relationship between plasma TMAO and diet depends on the 

genetic background. We thus tested the clinical traits for strain-by-diet interactions and identified 

significant diet-by-strain interaction effects for food intake, plasma TG, glucose, and TMAO 

concentrations, as well as glucose/insulin ratio and oxygen consumption (Table 3.14). 

Furthermore, food intake (P = 0.026), plasma TMAO level (P = 0.016), and oxygen consumption 

(P = 0.019) were significantly different between the two diets only when considering the diet by 

strain interaction effect by two-way ANOVA (Table 3.14).  

 

 

 

 

 

 

 

 



122 

 

 

Figure 3.9. Diet-dependent differences in key metabolic traits in eight CC founder strains. 

Liver weight and triglyceride (TG) and plasma AST, ALT, total cholesterol, and betaine were 

higher in HFCA diet-fed mice (purple color), while oxygen consumption per body weight was 

higher in AIN-93M diet-fed mice (lightblue color). Plasma TMAO was higher in HFCA diet-fed 

mice, but not significant. A/J (yellow), B6 (gray), C57BL/6J; 129 (pink), 129S1/SvlmJ; NOD 

(blue), NOD/ShiLtJ; NZO (lightblue), NZO/HILtJ; CAST (green), CAST/EiJ; PWJ (red), 

PWK/PhJ; WSB (purple), WSB/EiJ. “****”P < 0.001, “**”P < 0.01, “*”P < 0.05. Data were 

mean ± S.E., n ≥ 4 mice/diet/strain 
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Table 3.14. Diet-, strain-, and diet-by strain-dependent differences in cardio-metabolic traits in eight CC founder strains. n 

= 64 (33 mice for AIN-93M diet and 31 mice for HFCA diet). 

Trait Unit 

Diet effect Strain effect Diet by Strain effect 

p-value for 

comparison 

in diets 

(Wilcoxon 

test) 

p-value for 

comparison 

in strains 

(Kruskal-

Wallis test) 

Strain that 

has the 

highest value 

Strain that 

has the 

lowest value 

p-value for 

two-way 

ANOVA with 

interaction 

effect (Diet) 

p-value for 

two-way 

ANOVA with 

interaction 

effect (Strain) 

p-value for two-

way ANOVA 

with interaction 

effect 

(Diet:Strain) 

Body weight grams NS 9.80E-08 NZO CAST NS 2.00E-16 NS 

Fat mass grams NS 3.40E-08 NZO CAST NS 2.00E-16 NS 

% Fat mass % NS 7.90E-09 NZO CAST NS 2.00E-16 NS 

Lean mass grams NS 5.40E-08 NZO CAST NS 2.00E-16 NS 

% Lean mass % NS 7.50E-09 CAST NZO NS 2.00E-16 NS 

Liver weight grams P < 0.05 2.50E-07 NZO CAST 3.90E-06 2.00E-16 NS 

Spleen weight grams NS 1.40E-07 NZO CAST 0.03 7.33E-12 NS 

Gonadal fat weight grams NS 6.90E-08 NZO CAST NS 2.00E-16 NS 

Heart weight grams NS 1.50E-04 NZO CAST 4.10E-03 2.00E-16 NS 

Food intake (g) grams NS 7.00E-08 NZO A/J 0.03 2.00E-16 9.97E-03 

Food intake (kcal) kcal NS 7.70E-08 NZO A/J 0.02 2.00E-16 7.71E-04 

Plasma ALT U/L P < 0.01 NS PWK 129 1.07E-02 NS NS 

Plasma AST U/L P < 0.01 1.70E-03 PWK B6 1.28E-03 1.04E-04 NS 

Plasma  total cholesterol mg/dL P < 0.001 5.80E-05 CAST B6 9.52E-15 1.12E-15 5.39E-08 

Plasma triglyceride mg/dL NS NS CAST B6 NS 7.74E-03 7.26E-06 

Liver triglyceride mg/ml/g tissue P < 0.05 1.90E-04 NZO CAST 4.50E-03 5.55E-08 NS 

Plasma glucose mg/dL NS 3.50E-06 CAST 129 NS 1.84E-09 2.73E-05 

Plasma insulin µlU/mL NS 1.90E-04 NZO NOD NS 1.05E-05 NS 

HOMA-IR NA NS 1.10E-04 NZO A/J NS 1.23E-05 NS 

Glucose/Ins ratio NA NS 5.90E-05 CAST NZO NS 5.60E-10 8.84E-08 

Plasma urea/BUN mg/dL NS 9.90E-05 B6 A/J NS 3.04E-04 NS 

Plasma creatinine µM NS 5.00E-06 B6 PWK NS 1.53E-09 NS 

Plasma TMAO µM NS 1.00E-04 B6 CAST 0.02 9.58E-09 0.01 

1
2
3
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Plasma choline µM NS NS NOD NZO NS NS NS 

Plasma betaine µM P < 0.05 1.60E-06 CAST NZO 2.72E-03 1.36E-05 NS 

VO2 ml/hr NS 1.00E-05 CAST 129 0.02 5.25E-07 0.02 

VO2/body weight ml/hr/kg P < 0.05 5.60E-04 PWK 129 0.04 NS NS 

VO2/lean mass ml/hr/kg P < 0.05 1.10E-03 CAST 129 1.44E-02 0.04 NS 

RER NA NS 0.046 NZO WSB NS 0.01 NS 
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These data reveal that genetic background has a profound effect on metabolic traits in 

response to a control diet or an atherogenic diet. To assess the physiological significance of the 

gene networks in liver tissue, we investigated whether the modules were correlated with metabolic 

traits (Figure 3.10). For example, transcripts in the red module were enriched for the GO terms 

"mRNA processing (GO: 0006397) (GO term: -logP > 3) and “FoxO signaling pathway” (KEGG 

pathway: -logP > 2) and included many NADH:ubiquinone oxidoreductase and forkhead box O-

related proteins (Tables 3.8-3.10). The ME in the red module was higher in AIN-93M diet-fed 

mice than in HFCA diet-fed mice independent of strain (P <0.01; Figures 3.7D and Table 3.11), 

and this trend was also observed in five individual strain analyses (P <0.01 in A/J strain, P <0.05 

in B6 strain, P <0.01 in NZO strain, P <0.05 in PWK strain, and P <0.05 in WSB strain). The 

number of genes upregulated by the AIN-93M diet (154 genes) in the red module was 1.6 times 

higher than the number of genes upregulated by the HFCA diet (97 genes) (Figure 3.7G and 

Tables 3.12 and 3.13). In terms of strain-dependent effect, the ME in the red module was up-

regulated in the CAST strain and down-regulated in the A/J strain (Figure. 3.7D and Table 3.11). 

With regard to hepatic lipid metabolism, the FoxO signaling pathway has been shown to inhibit 

lipogenesis (Cook et al., 2015) and promote lipolysis (Zhang et al., 2016). Therefore, our results 

suggest that HFCA diet-fed mice with increased hepatic lipogenesis have relatively down-

regulated FoxO signaling pathway, and CAST mice with the lowest liver TG have activated FoxO 

signaling pathway, resulting in decreased hepatic lipogenesis and increased lipolysis.   
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Figure 3.10. Association of hepatic co-expression gene modules with metabolic traits in the 

eight CC founder strains in female mice.  

Spearman correlation between liver gene modules and metabolic traits in all mice. Module names 

were shown along the right axis, and top-enriched GO and KEGG terms in the legend. 

“***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10. 
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The magenta module is associated with a number of physiological traits including plasma 

TMAO concentration, plasma insulin, body composition, tissue weights such as liver, spleen, 

gonadal fat, and heart, and liver TG (Figure 3.10). Notably, the magenta module is enriched for " 

Type 1 interferon signaling pathway (GO: 0060337)” (GO term: -logP > 11) (Tables 3.8-3.10). 

Transcripts in the magenta module included various interferon regulatory factors, interleukin 

receptors, and chemokine (C-C motif) receptors and were up-regulated in the liver of the B6 and 

NZO strains but down-regulated in the liver from CAST (Figures 3.7E and Table 3.11). A recent 

study revealed that activation of type I interferon in CD8+ T cells is associated with insulin 

resistance in fatty liver patients and obese mice (Ghazarian et al., 2017). Increased type I IFN 

signaling stimulates macrophage recruitment to lesions, promoting atherosclerosis in mice 

(Goossens et al., 2010). In our study, various genes related to type I IFN signaling were up-

regulated in HFCA diet-fed mice, especially in B6 and NZO mice which are susceptible to MetSyn 

(Figure 3.7E and Table 3.11). This suggests that the increased hepatic lipid content and TMAO 

concentrations in B6 and NZO may be due to an up-regulation or down-regulation of transcripts 

involved in the type 1 interferon signaling pathway. 

We further investigated the relationship between strain and diet in the magenta module. 

The ME in the magenta module was higher in HFCA diet-fed mice than in AIN-93M diet-fed 

mice independent of strain (P <0.01; Figure 3.7E and Table 3.11), and this trend was also 

observed in five individual strain analyses (P <0.01 in B6 strain, P <0.05 for 129 strain, P <0.05 

for NOD strain, P <0.01 in NZO strain, and P <0.01 in WSB strain). Furthermore, the magenta 

module had a higher proportion of genes upregulated by HFCA-diet (29.7%) than that of genes 

upregulated by AIN-93M diet (13.6%) (Figure 3.7G and Tables 3.12 and 3.13). The ME (PC1) 

of the magenta module was the highest in NZO mice and the lowest in CAST mice (Figure 3.7E 
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and Table 3.11), similar to the metabolic traits pattern by genetic backgrounds (Table 3.14). In 

this regard, we speculated that the genes clustered in the magenta module may increase their 

expression by the HFCA diet challenge and regulate metabolic traits. 

Among the 441 genes included in the magenta module, we first identified 30 genes with 

>2-fold increased expression in HFCA versus control groups by DEG analysis (Table 3.15). 

Most of these 30 genes showed higher transcript abundance in laboratory-inbred strains (A/J, B6, 

129, NOD, NZO, and WSB) than wild-derived strains (CAST and PWK). For example, the 30 

genes that generally have the highest transcript abundance in NZO, A/J, and B6 strains also have 

the lowest transcript abundance in the CAST strain. Following a similar pattern, a number of 

clinically relevant MetSyn traits such as body composition, tissue weights, liver TG, and insulin 

resistance were highest in B6 and NZO mice and lowest in CAST strain (Table 3.14 and 3.15). 

In terms of diet-by-strain interaction for the 30 genes, laboratory-inbred strains (A/J, B6, 129, 

NOD, NZO, and WSB) generally showed diet-sensitive abundance changes, whereas wild-

derived strains (CAST and PWK) showed a diet-resistant response (Table 3.15). 
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Table 3.15. List of 30 magenta module genes that were differentially expressed by diets (log2 fold change > 1) in eight CC 

founder strains. Significant diet effect and strain effect of 30 genes were displayed. n = 48 (6 mice per eight strains and 24 

mice per two diets)  

Gene Name 

Diet effect (HFCA vs AIN-93M) Strain effect (Eight founder strains) 

Log2FC 

(HFCA/AIN93) 

Adj.p-value 

for DEG 

analysis 

p-value for 

comparison 

in strains  

(Kruskal-

Wallis test) 

Strain 

that has 

the 

highest 

value 

Strain 

that has 

the lowest 

value 

Lilrb4a 
leukocyte immunoglobulin-like receptor, subfamily B, 

member 4A 
1.89 5.94E-06 5.30E-03 A/J CAST 

Nox4 NADPH oxidase 4 1.76 4.11E-04 1.40E-03 B6 CAST 

Ccr5 chemokine (C-C motif) receptor 5 1.64 2.43E-06 0.015 NZO CAST 

Mup20 major urinary protein 20 1.60 4.37E-03 1.50E-04 B6 CAST 

Adgre1 adhesion G protein-coupled receptor E1 1.60 8.86E-05 1.80E-03 B6 CAST 

Clec4n C-type lectin domain family 4, member n 1.58 2.57E-05 6.30E-04 A/J CAST 

Cd300ld CD300 molecule like family member d 1.54 4.56E-03 3.90E-05 B6 CAST 

Cxcl10 chemokine (C-X-C motif) ligand 10 1.48 1.73E-04 8.80E-03 NZO CAST 

Siglec1 sialic acid binding Ig-like lectin 1, sialoadhesin 1.41 1.07E-04 0.01 NZO CAST 

Abcg3 ATP binding cassette subfamily G member 3 1.40 3.53E-06 0.025 B6 CAST 

Kcnj10 
potassium inwardly-rectifying channel, subfamily J, member 

10 
1.38 1.80E-04 2.60E-03 A/J CAST 

Cd72 CD72 antigen 1.38 2.47E-05 9.10E-04 B6 CAST 

Apol9a apolipoprotein L 9a 1.34 8.48E-03 9.50E-04 NZO CAST 

Mcm2 minichromosome maintenance complex component 2 1.31 2.06E-08 NS NZO CAST 

Mlkl mixed lineage kinase domain-like 1.28 7.18E-06 3.60E-03 A/J CAST 

Oasl2 2'-5' oligoadenylate synthetase-like 2 1.27 1.36E-04 8.30E-04 PWK CAST 

Slfn9 schlafen 9 1.24 5.67E-06 0.011 B6 CAST 

Fabp7 fatty acid binding protein 7, brain 1.22 1.86E-04 4.10E-03 NZO CAST 

Trim30a tripartite motif-containing 30A 1.21 4.19E-07 0.024 B6 CAST 

Ripor2 RHO family interacting cell polarization regulator 2 1.17 5.80E-05 8.00E-04 NZO CAST 

Slfn8 schlafen 8 1.13 1.82E-03 1.80E-05 B6 CAST 

1
2
9
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Gbp8 guanylate-binding protein 8 1.09 3.39E-03 1.80E-04 A/J CAST 

Lilra5 
leukocyte immunoglobulin-like receptor, subfamily A (with 

TM domain), member 5 
1.09 6.74E-05 6.30E-03 NZO CAST 

Mcm5 minichromosome maintenance complex component 5 1.07 1.51E-04 0.036 NZO CAST 

Ly6e lymphocyte antigen 6 complex, locus E 1.07 9.86E-04 1.50E-03 NZO CAST 

Ifi44 interferon-induced protein 44 1.05 2.07E-02 2.10E-04 NZO CAST 

Ifit2 interferon-induced protein with tetratricopeptide repeats 2 1.02 1.62E-04 3.40E-03 NZO CAST 

Serpina3f serine (or cysteine) peptidase inhibitor, clade A, member 3F 1.02 4.38E-03 1.90E-03 NZO CAST 

Oasl1 2'-5' oligoadenylate synthetase-like 1 1.02 8.69E-03 7.00E-05 NZO CAST 

Oas2 2'-5' oligoadenylate synthetase 2 1.02 2.56E-03 8.60E-04 B6 CAST 
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To investigate the association of the top 30 HFCA-specific DEGs identified in the 

magenta module with metabolic traits, we performed Spearman correlation and hierarchical 

clustering between the genes and traits (Figure 3.11). In general, most of the genes showed 

positive correlations with body composition, liver weight, spleen weight, liver TG, insulin 

resistance, and plasma TMAO. Among them, genes showing significant correlations with body 

weight, plasma TMAO, and liver TG were Apol9a (apolipoprotein L 9a), Mcm2 

(minichromosome maintenance complex component 2), Siglec1 (sialic acid binding Ig-like lectin 

1), Ly6e (lymphocyte antigen 6 complex, locus E), Ripor2 (RHO family interacting cell 

polarization regulator 2), Slfn8 (schlafen 8), and Nox4 (NADPH oxidase 4). Among these genes, 

Apol9a and Slfn8 showed a significant correlation with the clinical indexes of insulin resistance, 

such as plasma insulin, HOMA-IR, and glucose/insulin ratio (Wallace et al., 2004). Finally, 

Nox4 had a number of clinically relevant correlations which we describe below. 
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Figure 3.11. Association of hepatic magenta module genes with metabolic traits in the eight 

CC founder strains in female mice.  

Spearman correlation between the top 30 HFCA-specific DEGs identified in the magenta module 

and metabolic traits in all mice. The p-values were adjusted using the BH FDR procedure. 

“***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10. 
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3.5.6. Association of Hepatic Gene Modules with Metabolic Traits Point to Nox4-associated 

Plasma TMAO and Liver TG Production  

By referring to the literature and assessing the correlation with metabolic traits, we 

searched for putative genes involved in the regulation of MetSyn among the top 30 HFCA-

specific DEGs identified in the magenta module. Interestingly, consistent with the WGCNA, 

DEG analysis, and strain effect analysis for magenta module genes, Nox4 found to be a critical 

member of the magenta module. Among the genes identified in the magenta module (Table 

3.15), Nox4, a hydrogen peroxide NADPH oxidase isoform and the primary source of 

inflammation-induced oxidative stress, was a significant DEG by diet (log2fold change 

(HFCA/AIN93) = 1.76, adjusted p-value = 4×10−4) and strain (log2fold change (6 strains [A/J, 

B6, 129, NOD, NZO, and WSB] / 2 strains [CAST and PWK]) = 1.5, adjusted p-value = 0.02). 

In our study, the Nox4 gene showed the highest associations with plasma TMAO (adjusted p-

value = 6×10−5; Figure 3.11) and with liver TG (adjusted p-value = 0.006; Figure 3.11). Nox4 

transcript levels were highest in B6 mice and lowest in CAST mice. Another key gene regulating 

TMAO levels is flavin-containing monooxygenase 3 (Fmo3) which converts TMA produced 

from dietary precursors such as choline and carnitine into TMAO by NADPH-dependent 

oxygenation in the liver (Lang et al., 1998). Considering that oxidative stress is caused by a 

deficiency in detoxification mechanisms, we observed the effects of genetic backgrounds on 

plasma TMAO production and gene abundance of Fmo3 and Nox4. In terms of strain-dependent 

difference, hepatic Nox4 abundance and plasma TMAO were highest in the B6 strain (Figures 

3.12A, 3.12D, and Table 3.16), and hepatic Fmo3 and Nox4 abundance and plasma TMAO were 

lowest in the CAST strains (Figures 3.12A, 3.12C, 3.12D, and Table 3.16). In addition, plasma 

TMAO and Nox4 abundance showed an increased pattern in HFCA diet-fed mice except for A/J 
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and CAST strains (Figures 3.12A, 3.12D, and Table 3.16), and the only significant diet-

dependent difference was observed in the WSB strain. To investigate the relationship between 

plasma TMAO and Fmo3 or Nox4, we performed the Spearman correlation between these 

transcripts and plasma TMAO concentration. Surprisingly, Fmo3 transcript abundance was not 

significantly correlated with plasma TMAO in either diets (Figure 3.12E, AIN-93M diet: r = 

0.19 and p = 0.39; HFCA diet: r = 0.39 and p = 0.066). Conversely, Nox4 transcript abundance 

was highly correlated with plasma TMAO (r = 0.84 and p = 1.7x10-6) in AIN-93M diet-fed mice 

and was the strongest correlation between TMAO and any of 12,502 expressed transcripts 

(Figure 3.12F). 

We next assessed how the 2 transcripts levels of these two genes were associated with 

hepatic lipid content another MetSyn trait that was highly associated with the magenta module.  

In previous studies, FMO3 overexpression increased hepatic and plasma lipids in atherosclerosis 

susceptible mice (Shih et al., 2015) and NOX4 deficient mouse model was shown to have 

reduced fibrosis due to inhibition of TGF-β-induced apoptosis in epithelial cells (Carnesecchi et 

al., 2011). In our study, the liver TG and MEs for the brown module containing the Fmo3 gene 

and for the magenta module containing Nox4 gene were similarly high in NZO mice and low in 

CAST mice (Tables 3.11, 3.14, and 3.17). Liver TG and Nox4 abundance showed an increased 

pattern in HFCA diet-fed mice except for A/J and CAST strains (Figures 3.12B, 3.12D, and 

Table 3.17). Furthermore, Fmo3 expression was significantly correlated with liver TG in both 

diets (Figure 3.12G, AIN-93M diet: r = 0.54 and p = 0.0066; HFCA diet: r = 0.65 and p = 

0.0011), and Nox4 expression was highly correlated with liver TG in HFCA diet-fed mice (r = 

0.67 and p = 0.00057; Figure 3.12H).  
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Figure 3.12. Association of hepatic gene modules with metabolic traits point to Nox4-

associated plasma TMAO and creatinine production. 
Effect of diet or genetic background on plasma TMAO (A) and liver TG (B), and hepatic 

expression of Fmo3 (C) and Nox4 (D). Spearman correlation between plasma TMAO and Fmo3 

(E) or Nox4 (F) abundance. Spearman correlation between liver TG and Fmo3 (G) or Nox4 (H) 

abundance. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05. N = 6 mice for each founder, 3 for AIN-

93M diet (lightblue color) and 3 for HFCA diet-fed mice (purple color). A/J (yellow), B6 (gray), 

C57BL/6J; 129 (pink), 129S1/SvlmJ; NOD (blue), NOD/ShiLtJ; NZO (lightblue), NZO/HILtJ; 

CAST (green), CAST/EiJ; PWJ (red), PWK/PhJ; WSB (purple), WSB/EiJ.  
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Table 3.16. Diet-, strain-, and diet-by strain-dependent differences of plasma TMAO using 

Tukey’s multiple comparison test in eight CC founder strains. n = 64 (33 mice for AIN-

93M diet and 31 mice for HFCA diet). 

 

Diet Δ means CI_lo CI_hi Adj.p_value   

HFCA AIN93 1.15 0.21 2.08 0.017   

         

Strain Δ means CI_lo CI_hi Adj.p_value   

CAST B6 -7.97 -11.17 -4.77 0.00E+00   

NZO B6 -6.13 -8.94 -3.33 4.00E-07   

PWK B6 -5.75 -8.56 -2.94 1.80E-06   

WSB B6 -5.53 -8.44 -2.63 8.30E-06   

B6 A/J 5.21 2.40 8.01 1.38E-05   

129 B6 -5.17 -7.97 -2.36 1.59E-05   

CAST NOD -4.97 -8.37 -1.57 7.70E-04   

NZO NOD -3.13 -6.16 -0.10 0.039   

        

Diet x strain Δ means CI_lo CI_hi Adj.p_value 

B6 HFCA CAST AIN93 10.12 4.88 15.35 1.40E-06 

B6 HFCA A/J HFCA 8.94 4.04 13.83 5.10E-06 

B6 HFCA NZO AIN93 8.86 3.96 13.75 6.10E-06 

B6 HFCA WSB AIN93 9.39 4.16 14.62 7.30E-06 

CAST HFCA B6 HFCA -10.06 -15.91 -4.21 1.80E-05 

B6 HFCA PWK AIN93 8.30 3.41 13.20 2.36E-05 

B6 HFCA 129 AIN93 7.87 2.98 12.76 6.71E-05 

NZO HFCA B6 HFCA -7.64 -12.54 -2.75 1.16E-04 

PWK HFCA B6 HFCA -7.44 -12.33 -2.54 1.90E-04 

CAST AIN93 B6 AIN93 -6.73 -11.40 -2.05 4.92E-04 

129 HFCA B6 HFCA -6.70 -11.59 -1.81 1.07E-03 

B6 HFCA NOD AIN93 7.59 1.74 13.44 2.38E-03 

WSB HFCA B6 HFCA -6.34 -11.23 -1.45 2.43E-03 

A/J HFCA B6 AIN93 -5.55 -9.85 -1.25 2.56E-03 

WSB AIN93 B6 AIN93 -6.00 -10.68 -1.32 2.79E-03 

NZO AIN93 B6 AIN93 -5.47 -9.77 -1.17 3.14E-03 

NOD HFCA CAST AIN93 6.22 1.33 11.12 3.15E-03 

CAST HFCA B6 AIN93 -6.67 -12.03 -1.31 4.27E-03 

B6 HFCA A/J AIN93 5.71 0.81 10.60 9.72E-03 

PWK AIN93 B6 AIN93 -4.91 -9.21 -0.62 0.012 

NOD HFCA WSB AIN93 5.50 0.61 10.40 0.015 

NOD HFCA A/J HFCA 5.05 0.52 9.58 0.017 

CAST HFCA NOD HFCA -6.17 -11.72 -0.62 0.017 

NOD HFCA NZO AIN93 4.97 0.44 9.50 0.020 

129 AIN93 B6 AIN93 -4.48 -8.78 -0.18 0.034 
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Table 3.17. Diet-, strain-, and diet-by strain-dependent differences of liver TG using 

Tukey’s multiple comparison test in eight CC founder strains. n = 64 (33 mice for AIN-

93M diet and 31 mice for HFCA diet). 

 

Diet Δ means CI_lo CI_hi Adj.p_value   

HFCA AIN93 15.75 5.09 26.40 4.65E-03   

        

Strain Δ means CI_lo CI_hi Adj.p_value   

CAST NZO -59.43 -93.90 -24.97 4.42E-05   

PWK CAST 58.15 23.69 92.62 6.59E-05   

NZO A/J 56.09 22.80 89.39 6.77E-05   

PWK A/J 54.81 21.52 88.11 1.02E-04   

NZO B6 53.64 20.34 86.94 1.49E-04   

PWK B6 52.36 19.06 85.66 2.23E-04   

WSB NZO -51.09 -84.39 -17.80 3.31E-04   

NZO NOD 50.36 17.06 83.65 4.17E-04   

WSB PWK -49.81 -83.11 -16.52 4.94E-04   

PWK NOD 49.08 15.78 82.37 6.20E-04   

        

Diet x strain Δ means CI_lo CI_hi Adj.p_value 

PWK HFCA NOD AIN93 80.15 26.44 133.85 2.23E-04 

NZO HFCA NOD AIN93 79.24 25.54 132.95 2.72E-04 

PWK HFCA B6 AIN93 74.99 24.04 125.93 2.85E-04 

PWK HFCA CAST AIN93 78.18 24.48 131.88 3.46E-04 

NZO HFCA B6 AIN93 74.08 23.14 125.03 3.52E-04 

NZO HFCA CAST AIN93 77.28 23.57 130.98 4.22E-04 

PWK HFCA A/J HFCA 77.22 23.51 130.92 4.28E-04 

NZO HFCA A/J HFCA 76.32 22.61 130.02 5.22E-04 

PWK HFCA WSB AIN93 70.35 16.64 124.05 1.91E-03 

NZO HFCA WSB AIN93 69.45 15.74 123.15 2.32E-03 

PWK HFCA A/J AIN93 67.56 13.86 121.27 3.44E-03 

PWK HFCA CAST HFCA 72.46 14.45 130.46 3.80E-03 

NZO HFCA A/J AIN93 66.66 12.96 120.36 4.15E-03 

CAST HFCA NZO HFCA -71.55 -129.56 -13.55 4.52E-03 

WSB HFCA PWK HFCA -64.43 -118.13 -10.73 6.55E-03 

WSB HFCA NZO HFCA -63.53 -117.23 -9.83 7.86E-03 

PWK HFCA B6 HFCA 61.52 3.52 119.53 0.028 

NZO HFCA B6 HFCA 60.62 2.61 118.63 0.033 

PWK HFCA 129 AIN93 55.87 2.17 109.58 0.034 

NZO HFCA 129 AIN93 54.97 1.27 108.68 0.040 
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Lastly, we investigated genome variation and haplotypes for the two genes to identify if 

there are unique haplotypes in the founder strains that could explain the strain variation in 

plasma TMAO and liver TG. We specifically assessed if the missense variants of the two genes 

could be functional variants that might explain the expression differences. We identified the total 

number of SNPs in the Fmo3 and Nox4 genes, calculated the similarity in the SNPs of these 

genes between the reference genome B6 strain and other strains, and obtained the number of 

missense variants and functional variants that may affect amino acid substitution using 

PROVEAN and SIFT in silico analysis. For example, we compared the similarity of each strain 

to the B6 strain in 658 SNPs in Fmo3 and 2,641 SNPs in Nox4.  As expected, the wild-derived 

strains CAST and PWK contained the most genetic diversity at these loci and have considerable 

genetic variation as compared to the B6 strain (Table 3.18). In particular, Nox4 showed the 

greatest diversity (37.37% similarity) in SNPs between B6 and CAST strains, and both liver 

Nox4 transcript abundance and plasma TMAO concentration had the greatest difference between 

B6 and CAST strains suggesting that the candidate gene Nox4 has shared haplotypes in the 

strains with shared phenotypes (Figure 3.12A, 3.12D, Table 3.16). We also identified 9 SNP 

missense variants from Fmo3 SNPs and 6 missense SNP variants from Nox4 SNPs, of which two 

variants from Fmo3 (rs37325482 at 162,967,784 bp and rs50797400 at 162,968,776 bp) and two 

variants from Nox4 (rs250243260 at 87,246,820 bp and rs217947741 at 87,246,834 bp) were 

predicted to have a known deleterious structural consequence by in silico analysis (Table 3.19). 

Furthermore, we confirmed both Nox4 functional variants were caused by SNPs in the CAST 

strain (Table 3.19). 
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Table 3.18. Similarity of each strain to the B6 strain among eight CC founder strains in 

total 658 SNPs in Fmo3 and 2,641 SNPs in Nox4. 

Strain 

Fmo3 SNPs  Nox4 SNPs  

% of SNP 

similarity  

#SNPs in 

strain 

#Total 

SNPs 

% of SNP 

similarity  

#SNPs in 

strain 

#Total 

SNPs 

A/J 90.73% 61 658 74.90% 663 2641 

129 90.27% 64 658 81.29% 494 2641 

NOD 94.53% 36 658 73.65% 696 2641 

NZO 89.51% 69 658 81.33% 493 2641 

CAST 49.09% 335 658 37.37% 1654 2641 

PWK 24.47% 497 658 51.46% 1282 2641 

WSB 66.11% 223 658 81.18% 497 2641 
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Table 3.19. Missense variants and predicted functional variants by PROVEAN and SIFT analysis of Fmo3 and Nox4 genes. 

Chr Position (bp) Gene dbSNP 

B6 

haplotype 

(Ref) 

A/J 129 NOD NZO CAST PWK WSB 

Ref 

amino 

acid 

Altered 

amino 

acid 

Prediction 

by 

PROVEAN 

Prediction 

by SIFT 

1 162,954,207 Fmo3 rs37584253 G - - - - T T T L I Neutral Tolerated 

1 162,955,216 Fmo3 rs244712117 C - - - - - - T E K Neutral Tolerated 

1 162,958,458 Fmo3 rs36964758 G - - - - T - - A D Neutral Tolerated 

1 162,958,468 Fmo3 rs32758001 T - - - - - C - M V Neutral Tolerated 

1 162,966,899 Fmo3 rs50521266 C - - - - - A - A S Neutral Tolerated 

1 162,967,784 Fmo3 rs37325482 G - - - - - - A P S Deleterious Damaging 

1 162,967,913 Fmo3 rs36935260 T - - - - C C C N D Neutral Tolerated 

1 162,968,776 Fmo3 rs50797400 C - - - - - T - D N Deleterious Damaging 

1 162,968,824 Fmo3 rs246719414 T - - - - C - - T A Neutral Tolerated 

7 87,246,768 Nox4 rs240455081 G - - - - T - - D Y Neutral NA 

7 87,246,786 Nox4 rs32414336 C A - A - - - - L M Neutral Tolerated 

7 87,246,820 Nox4 rs250243260 G - - - - A - - G E Neutral Damaging 

7 87,246,834 Nox4 rs217947741 C - - - - T - - R C Neutral Damaging 

7 87,321,631 Nox4 rs37089859 A - - - - G - - I V Neutral Tolerated 

7 87,395,824 Nox4 rs38453194 A - - - - G - - I V Neutral NA 

 

 

 

 

1
4
0
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3.6. Discussion 

In this study, we utilized the eight genetically diverse CC founder mouse strains fed 

AIN-93M or HFCA diet to assess the effect of diet or genetic backgrounds on MetSyn. We 

found that host genetics had a strong influence on the metabolic traits, including body 

composition, tissue weights, lipid panels, TMAO analytes, markers related to liver and 

kidney function, glucose metabolism, and energy expenditure in response to a range of 

metabolic stimuli. Consistent with previous studies, we found that of the eight strains, CAST 

had the lowest body adiposity, liver TG, and plasma TMAO levels, and the NZO mice were 

the most obese and insulin-resistant (Kreznar et al., 2017; Mitok et al., 2018). These results 

highlight the effects of genetic background on the liver transcriptome and phenotypic 

responses to diet, and also demonstrate the effectiveness of the CC founder strains in 

nutrigenomics studies. 

The CC founder strains have been individually studied in several tissues, and Chick et 

al. (Chick et al., 2016) conducted liver proteome profiling across the eight CC founder 

strains. Our study represents an in-depth analysis of the effects of diet on the hepatic 

transcriptional network. To identify liver transcripts that underlie the diet- and strain-

dependent differences in metabolic traits, we conducted transcriptomic analysis on liver 

collected from each strain-fed two different diets and identified and quantified 12,502 

transcripts. Hierarchical clustering of the liver transcriptome indicated that mouse liver 

transcripts were clustered according to diet and strain. In particular, the wild-derived strains 

PWK and CAST, have altered transcript levels compared to other the other CC progenitor 

strains. This suggests that genetic variation has a profound impact on the liver transcriptome, 

which may be associated with differences in metabolic traits. Gene modules were determined 

using WGCNA which clustered co-expressed transcripts and these modules were enriched for 

specific functional terms and correlated with metabolic traits.  
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In this study, we also sought to find core modules with diet-responsive genes by 

elucidating the link between diet-specific DEGs and gene networks. We first identified 6,411 

genes that were differentially regulated by diet independent of strain, and 9,228 genes 

responded by diet perturbation in at least one strain. Next, we identified 20 modules in gene 

network analysis and found that the top five modules (turquoise, brown, green, red, and 

magenta) contained 85.4% of 6,411 DEGs independent of strain and 67.5% of 9,228 DEGs 

that responded in at least one strain. These modules were enriched for functional annotations, 

associated with traits related to MetSyn, showed significant diet effects in at least 5 strains. 

These results show that diet responsive genes identified by all-strain or individual strain DEG 

analysis are segregated into specific gene networks that are enriched for functions associated 

with MetSyn phenotypes.  

Correlations can be a method to build hypotheses to test causality. For example, the 

magenta module is enriched for type Ⅰ interferon signaling pathway and positively correlated 

with body composition, tissue weights, insulin resistance (plasma insulin and HOMA-IR), 

liver TG, and plasma TMAO. In addition, the ME and the HFCA diet-specific DEG 

abundance in the magenta module were highest in the B6 and NZO strains that are 

susceptible to obesity and metabolic dysregulation associated with MetSyn. Conversely, the 

ME was the lowest in the CAST strain which is resistant to MetSyn (Joost and Schurmann, 

2014; Mitok et al., 2018; O’Connor et al., 2014). The type Ⅰ interferon signaling is involved 

in metabolic regulation, tissue inflammation, and MetSyn which are related to 

atherosclerosis, obesity, fatty liver, and type 1 diabetes (Alsaggar et al., 2017; Chen et al., 

2020; Ghazarian et al., 2017; Marro et al., 2019; Somers et al., 2012; Wieser et al., 2018). 

Therefore, the role of type Ⅰ interferon is critical in adipose tissue, hepatocytes, immune cells, 

and endothelial cells. Transcripts in the magenta module include interferon-induced protein 

44 (Ifi44), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), C-X-C motif 
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chemokine ligand 10 (Cxcl10), NADPH oxidase 4 (Nox4), and 2’-5’-oligoadenylate synthase-

like protein 1 (Oasl1), which are known to be up-regulated in the liver under high-fat diet 

feeding conditions or stimulation of type Ⅰ interferon (Ghazarian et al., 2017; Ivashkiv and 

Donlin, 2014; Paik et al., 2014; Zhai et al., 2008). Recently IRF7, a master regulator of type I 

interferon response, showed increased expression in liver and adipose tissue from obese mice 

compared to controls, indicating increased type I interferon signaling (Wang et al., 2013). 

IRF7 knockout mice were resistant to diet-induced obesity, insulin resistance, and 

inflammation. The IRF7, together with our results, is associated with type I interferon 

signaling and modulates diet-induced obesity, insulin resistance, and their metabolic 

consequences. Other novel transcripts in the magenta module may also be important for type 

Ⅰ interferon signaling and/or MetSyn.  

Driven by our preliminary finding that plasma TMAO production can be modulated 

by FMO3 enzyme activity in the liver (7), we asked whether Fmo3 gene abundance was 

differentially abundant across the eight CC founder strains. Liver transcriptomic analysis 

revealed that hepatic Fmo3 expression is higher in B6, 129, and NZO mice and the lowest in 

CAST mice, consistent with the FMO3 protein abundance previously reported (Chick et al., 

2016). FMO3 is a catalytic enzyme that converts TMA, produced from dietary precursors 

such as choline and carnitine by gut microbiota, into TMAO by host-dependent hepatic N-

oxygenation in the liver (Lang et al., 1998). TMAO is mechanistically linked with MetSyn 

and other diseases, including atherosclerosis, obesity, fatty liver, type 2 diabetes mellitus, and 

chronic kidney disease (Barrea et al., 2018; Chen et al., 2016; Koeth et al., 2013; Lent-

Schochet et al., 2018; Schugar et al., 2017; Stubbs et al., 2016; Wang et al., 2011), suggesting 

that the TMAO pathway may also be linked to the pathogenesis of MetSyn. 

The fact that there is a positive correlation between Fmo3 expression and plasma 

TMAO production among mouse strains susceptible to atherosclerosis highlights the 
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importance of FMO3 in the development of cardiovascular disease (Bennett et al., 2013). 

However, in our study using mice with highly divergent genetic backgrounds, no significant 

correlation was observed between Fmo3 expression and plasma TMAO in either diet. For this 

reason, we searched for genes that are functionally similar to FMO enzymes and have an 

association with TMAO and focused on Nox4, which showed the highest correlation with 

plasma TMAO and was identified in the magenta module.  

NOX4 is a hydrogen peroxide NADPH oxidase isoform and major producers of 

reactive oxidative species by transferring electrons from NADPH to molecular oxygen. 

NOX4 is found in various cardiovascular cells and tissues, which is involved in conditions 

related to MetSyn such as atherosclerosis (Lozhkin et al., 2017; Schurmann et al., 2015), 

hypertension (Bouabout et al., 2018), fatty liver (Leon-Mimila et al., 2020; Rabelo et al., 

2018), insulin resistance (Den Hartigh et al., 2017), obesity (Jiang et al., 2011), and kidney 

injury (Jeong et al., 2018). Similar to NOX4, FMOs catalyze the NADPH-dependent 

oxidative metabolism of a variety of foreign chemicals, including dietary compounds, drugs, 

and environmental pollutants (Krueger and Williams, 2005). Genetic analysis of patients with 

trimethylaminuria shows that the lack of FMO3 enzymatic activity often occurs in mutations 

that affect the binding of necessary cofactors FAD (Zhang et al., 2003) or NADPH (Fujieda 

et al., 2003) highlighting the fundamental importance of these cofactors in the function of 

FMOs.  

Our studies identified Nox4, as a potentially important gene related to TMAO 

concentrations. We note that this relationship is based on a transcriptional network and does 

not necessarily indicate a specific direct (i.e.- enzymatic) action of Nox4 leading to TMAO 

production. Rather our association highlights the complex transcriptional network relating 

TMAO concentrations. For example, toll-like receptor 4 (TLR4), which is activated by the 

type I interferon signaling pathway, regulates the expression of Fmo3 (Zhang et al., 2009), 
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and TLR4 and Nox4 show direct interaction in several cell lines including hepatocytes (Park 

et al., 2004; Patel et al., 2006; Singh et al., 2017), thereby affecting the production of 

inflammatory mediators that are encoded by genes identified in the magenta module. In 

addition, ablation of Nox4 lowers plasma homocysteine and betaine levels in mice, and 

NOX4 protects against acetaminophen-induced hepatotoxicity (Murray et al., 2015). FMO3 

has also been shown to protect the liver from acetaminophen-induced hepatotoxicity 

(Rudraiah et al., 2014), and TMAO precursors choline and betaine affect homocysteine levels 

as methyl donors in one-carbon metabolism (Craciunescu et al., 2010). Our liver 

transcriptomic analysis revealed that Nox4, the only NADPH oxidase identified in the 

magenta module highly associated with MetSyn, has the highest correlation with plasma 

TMAO, as well as the highest expression in B6 and the lowest in CAST strain.  

Our studies utilize 8 strains that are genetically diverse and thus we assessed the 

genetic variation at the Nox4 locus.  The Nox4 allele from the CAST strain was contained a 

number of SNPs divergent from B6, and this difference is consistent with strain effects 

identified in liver Nox4 transcript and TMAO. More interestingly, Nox4 was revealed to be 

one of the genes that showed the highest correlation with liver TG among the genes identified 

in the magenta module, which is consistent with previous studies that demonstrated the 

association between Nox4 and fatty liver in the mouse and humans (Bettaieb et al., 2015; 

Carnesecchi et al., 2011; Leon-Mimila et al., 2020; Rabelo et al., 2018). Both NOX4 and 

TMAO induce PKR/PERK activation (Bettaieb et al., 2015; Chen et al., 2019), leading to 

propagation of ER stress, which may contribute to the pathogenesis of fatty liver and MetSyn. 

These studies are further supported by associations between SNPs in NOX4 and metabolic 

syndrome in humans (He et al., 2018; Siqueira et al., 2015). In our in-silico analysis of the 

mouse variants suggests that functional variants of the Nox4 gene may cause deleterious 

consequence in the protein structure and affect metabolic traits. These observations point to a 
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genetic underpinning of NOX4 in MetSyn which is similar to the findings of the current 

study. 

Here we show that among the eight CC founder strains, B6 mice express a high level 

of Nox4 and have high production of TMAO. Why would B6 liver synthesize the most 

TMAO, which contributes to the development of MetSyn, and CAST liver synthesize the 

least? One possible explanation is that the B6 strain has an impaired mechanism to regulate 

TMAO production or renal excretion. B6 is one of the strains with the highest plasma TMAO 

production among other inbred strains (Gregory et al., 2015), and it was reported to be more 

sensitive to damage caused by renal ischemia-reperfusion injury than the 129/Sv inbred strain 

(Lu et al., 2012). In addition, the CAST strain has the lowest hepatic expression of Fmo3 of 

the CC founder strains which could explain reduced FMO3 enzyme activity and TMAO 

production. Further, studies utilizing the CC or the related Diversity Outbred population may 

shed further light on these strain differences. 

In conclusion, our study provides a strong indication that host genetics affects the 

liver transcriptome under the intake of control or atherogenic diet. We also demonstrate that 

diet-by-strain interaction effects on the liver transcriptome are related to metabolic traits, 

suggesting that liver gene networks may underlie diet- or strain-dependent differences in 

MetSyn. The phenotype differences between mouse strains motivate us to find comparable 

phenotypic variations across the human population. Changes in plasma TMAO and liver TG 

similar to those seen in human MetSyn can be induced in B6 and NZO strains, but it should 

be taken into account that not all mouse strains developed MetSyn in this study. 

Understanding the changes in the liver transcriptome in response to diet and genetic 

background will be important to highlight the potential of precision nutrition and to 

understand interpersonal variability in disease risk. In this study, we saw dramatic strain 

variation in Nox4 expression in the mouse liver that could determine the ability to generate 
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plasma TMAO and liver TG. Our results suggest that human genetic variations and variations 

in plasma TMAO and liver TG may contribute to the regulation of MetSyn. 
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CHAPTER 4. 

Sexual Dimorphism of Atherosclerosis-associated Liver Transcriptome and 

Genetic Determinants in Hyperlipidemic Diversity Outbred-F1 Mice  

 

4.1. Author Contributions 

This manuscript in under review in the Cardiovascular Research journal. B.J.B 

designed all the experiments. M.K., M.N.H., and E.R. performed the experiments. M.K., 

M.N.H., and E.Q. analyzed raw data. M.K. and B.J.B. wrote the manuscript, which was 

reviewed by all authors. 

 

4.2. Abstract 

Sexual dimorphism in the incidence and complications of atherosclerosis is well known in 

human and rodent models; however, the underlying mechanisms by which sex as a biological 

variable affects atherosclerosis remains unclear. In order to examine the role of sex and gene-

by-sex interactions affecting atherosclerosis and atherosclerosis-related traits, we generated a 

high-resolution genetic panel of mice from a cross between Diversity Outbred (DO) mice and 

a hyperlipidemic strain. We generated a high resolution genetic panel of mice susceptible to 

atherosclerosis by crossing atherosclerosis-susceptible male C57BL/6J mice, transgenic for 

both human apolipoprotein E-Leiden and cholesterol ester transfer protein genes, with female 

DO mice. We examined atherosclerosis, cardiometabolic traits and the liver transcriptome 

after 16 weeks of a high-fat/cholesterol diet. Our results demonstrate the tremendous effects 

of sex on cardiometabolic traits and hepatic gene expression with genetic loci associated with 

traits and transcripts frequently showing sex specificity. We revealed sex-specific candidate 

genes that were mapped to the quantitative trait loci for aortic lesion area and whose 

expression was locally regulated via global liver transcriptome. Several sexually dimorphic 
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transcripts including Pten are identified as candidates for sex-specific QTL for 

atherosclerosis. Finally, global analysis of gene expression identified a sex-specific regulation 

of the liver transcription factor LXRα (Nr1h3) which affected expression of target genes and 

gene-trait correlations. 

Collectively, this study provides a rich resource to investigate the sex-differentiated 

pathogenesis of atherosclerosis, and shows that DO mice in conjunction with integrative 

genetics approaches can identify genes and genetic variants that contribute to atherosclerosis. 

 

4.3. Introduction 

Despite advanced innovations in medical and cardiovascular treatment, cardiovascular 

disease (CVD) remains the leading cause of death in men and women in most ethnic groups 

(Man et al., 2020). There is a complicated association between biological sex and CVD risk 

(Rodgers et al., 2019). Men are at increased risk of CVD as compared to women, however 

risk in women dramatically changes with the onset of menopause (Maas and Appelman, 

2010). Ischemic CVD, including myocardial infarction and stroke, are often caused by 

atherosclerosis, a process by which lipid-laden plaques are formed in the vasculature.  

Sex differences in CVD susceptibility and sexual dimorphism in atherosclerosis have 

been reported in humans and animals (Bubb et al., 2012; Isensee et al., 2008; Yang et al., 

2006). Atherosclerosis in women is also closely associated with hypertension and 

autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis 

(Fairweather et al., 2012), suggesting that the immune mechanisms that cause atherosclerosis 

in men may be different from those in women. Sex hormones alter the immune response in 

the key processes of atherosclerosis (Fairweather, 2014) and play an important role in 

regulating gene expression related to metabolic disorders including atherosclerosis (AlSiraj et 

al., 2019; Kukurba et al., 2016). Besides sex hormones, sexual dimorphism also arises due to 
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effects of sex chromosomes (epigenetic effects, genetic dosage, and different dosage 

compensation) (Charlesworth, 1996; Disteche, 2012; Hager et al., 2008; Winham et al., 

2015). In addition, genotype-by-sex interactions can also affect atherosclerosis susceptibility 

(Wang et al., 2007). However, the exact mechanisms responsible for the sexually dimorphic 

regulation of atherosclerosis susceptibility remain incomplete.   

Understanding how sex-biased gene expression contributes to the sexual dimorphism 

of cardiometabolic traits is critical to understanding how biological sex affects susceptibility 

to CVD (Parsch and Ellegren, 2013). Global hepatic gene expression studies in rodent models 

have identified more than 1,000 sex-biased transcripts, which collectively impact liver 

metabolism, inflammatory responses, and disease susceptibility (Roy and Chatterjee, 1983; 

Yang et al., 2006; Zhang et al., 2011). However, to date, less is known about gene-by-sex 

interactions on atherosclerosis. Several studies show the potential to explain sex differences 

associated with CVD risk in human liver pathophysiology, including sex differences in 

circulating lipid profiles (Blum and Blum, 2009; Nedungadi and Clegg, 2009).  

In this study, we investigated the genetic regulation of atherosclerosis and known risk 

factors, in Diversity Outbred F1 (DO-F1) which were generated from a cross of Diversity 

Outbred (DO) females with male inbred C57BL/6J mice harboring transgenes for two 

hyperlipidemia-inducing mutations: human cholesteryl ester transfer protein (CETP) and 

apolipoprotein E-Leiden (APOE-Leiden). The CETP transgene reduces the concentration of 

HDL, and the APOE-Leiden transgene reduces the clearance of triglyceride-rich lipoproteins 

(Westerterp et al., 2006). Thus as compared to wild-type mice, the APOE-Leiden and CETP 

transgenic mice display a lipoprotein cholesterol profile similar to humans (Westerterp et al., 

2006). These DO-F1 mice are highly diverse and contain a random assortment of DNA from 

eight founder strains: A/J (A/J), C57BL6/J (B6), 1291/SvImJ (129), NOD/ShiLtJ (NOD), 

NZO/HiLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB) (Churchill et 
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al., 2012). Thus, the DO-F1 mice have high phenotypic variability due to genetic 

heterogeneity (Vorobyev et al., 2019).  

To the best of our knowledge, this study is reporting the first example of sexual 

dimorphism and quantitative trait loci (QTL) mapping of atherosclerosis in DO-F1 mice. We 

demonstrated sex differences in cardiometabolic traits, gene expression levels, and genetic 

effects of cardiometabolic traits and gene expression (eQTLs). By incorporating aortic lesion 

area QTLs with eQTLs, we report multiple sex-specific genetic effects on atherosclerosis that 

colocalize with cis-acting eQTLs. Finally, with sex-specific gene expression and genetic 

regulation of transcription factors expressed in the liver, this study emphasizes the 

importance of understanding sex as a biological variable at the molecular level.  

 

4.4. Methods 

4.4.1. Ethics Statement 

We followed all NIH animal welfare guidelines and the animal care and study protocols were 

approved by the University of California Davis Animal Care and Use Committee. 

4.4.2. Animals: Hyperlipidemic Eight DO Founder Strains-F1 Mice and DO-F1 Mice 

Animal care and study protocols were approved by the University of California Davis Animal 

Care and Use Committee. 6-week-old CETP/ApoE3 Leiden males, hemizygous to the CETP 

and ApoE3 transgenes (Tg), were kindly provided by Dr. Lusis (Bennett et al., 2015). Three 

females from each of the eight DO founder inbred strains (five classical laboratory inbred 

strains [A/J, B6, 129, NOD and NZO] and three wild-derived inbred strains [CAST, PWK, 

and WSB]) and DO females (JAX stock number 009376, outbreeding generation # 26,28) 

were obtained from The Jackson Laboratory (Bar Harbor, ME) and maintained in the Mouse 

Biology Program vivarium at the University of California Davis. For the strain survey 

experiment, we crossed CETP/ApoE3 Leiden males to one of eight strains to generate eight 
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different F1 strains of mice (AJ-F1, B6-F1, 129-F1, NOD-F1, NZO-F1, CAST-F1, PWK-F1, 

and WSB-F1, respectively) and quantified atherosclerotic traits in F1 female and male mice. 

In addition, a total of 200 F0 J:DO females were crossed with CETP/ApoE3 Leiden males to 

breed 238 (CETP/ApoE3 Leiden × J:DO) F1 females and 234 (CETP/ApoE3 Leiden × J:DO) 

F1 males (Figure 4.1). Female and male progeny were genotyped to confirm the presence of 

CETP and ApoE3-Leiden transgenes and maintained on a synthetic diet, AIN-76A (D10001, 

Research Diets, New Brunswick, NJ) until 8 weeks of age. At the age of about 8 weeks, all 

mice were fed with a synthetic high-fat and high-cholesterol (33 kcal % fat from cocoa butter 

and 1.25% cholesterol) diet (Research Diets D121083) (see Table 4.1) ad libitum. Mice were 

euthanized for tissue collection after fed this diet for 16 weeks. Animals were maintained on 

a 12 h light and dark cycle under temperature- and humidity-controlled conditions. 

Euthanasia of all mice was performed by cervical dislocation after anesthesia with isoflurane. 

For eight different F1 strains of mice and (CETP/ApoE3 Leiden x J:DO) F1 mice, aorta, 

liver, subcutaneous fat, gonadal fat, cecum, and spleen were collected upon euthanasia. 
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Figure 4.1. Study design and timeline for Diversity Outbred (DO)-F1 mice. 

A total of 200 F0 J:DO females (JAX stock number 009376, outbreeding generation # 26,28) were crossed with CETP/ApoE3 Leiden males to 

breed 238 (CETP/ApoE3 Leiden × J:DO) F1 females and 234 (CETP/ApoE3 Leiden × J:DO) F1 males. Female and male progeny were 

genotyped to confirm the presence of CETP and ApoE3-Leiden transgenes and maintained on a synthetic diet, AIN-76A until 8 weeks of age. At 

the age of about 8 weeks, all mice were fed with a synthetic high-fat and high-cholesterol (33 kcal % fat from cocoa butter and 1.25% 

cholesterol) diet ad libitum. Mice were euthanized for tissue collection after fed this diet for 16 weeks.  

1
6
0
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Table 4.1. Nutrient constituents in AIN76 and high-fat and high-cholesterol (HFHC) 

diet. 

Class description Ingredient AIN76 (Grams) HFHC (Grams) 

Protein Casein, Lactic, 30 Mesh 200.00 g 200.00 g 

Protein Cystine, L 3.00 g 3.00 g 

Carbohydrate Starch, Corn 150.00 g 212.00 g 

Carbohydrate Sucrose, Fine Granulated 500.00 g 124.41 g 

Carbohydrate Lodex 10 (Maltodextrin) 0.00 g 71.00 g 

Fiber Solka Floc (Cellulose) 50.00 g 50.00 g 

Fat Cocoa Butter, Deodorized 0.00 g 155.00 g 

Fat Soybean Oil 50.00 g 25.00 g 

Mineral Potassium Citrate, Monohydrate 

37.00 g 

16.50 g 

Mineral Calcium Phosphate, Dibasic 13.00 g 

Mineral Calcium Carbonate, Light 5.50 g 

Mineral Mineral mixture 5.00 g 

Mineral Sodium Chloride 2.59 g 

Vitamin Choline Bitartrate 2.00 g 2.00 g 

Vitamin Vitamin mixture 10.00 g 1.00 g 

Special Cholesterol 0.0 g 11.25 g 

Special Sodium Cholate 0.0 g 0.0 g 

  Total: 1002.0 g 897.35 g 

The two diets used in this study were manufactured by Research Diets. AIN-76 was fed to the 

two studies population (Eight DO founder strains F1 mice, and DO-F1 mice) from 6-8 weeks 

of age in order to ensure that there were no spurious effects due to the potential variable 

composition of standard laboratory chow. DO founder strains F1 mice and DO-F1 mice were 

fed high-fat and high-cholesterol (HFHC) diet for 16 weeks from 8-24 weeks of age. HFHC 

diet is considered atherogenic and were intended to induce the formation of atherosclerosis in 

the DO founder strains or DO-F1 mice. 
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4.4.3. Plasma Collection 

Mice at 24 weeks of age fasted at 4 h and plasma was collected from the retro-orbital plexus 

under isoflurane anesthesia immediately before euthanasia of mice. Blood was collected 

using heparinized glass capillaries into plasma collection tubes with EDTA (Becton 

Dickinson, Franklin Lakes, NJ). Blood was kept on ice and the separated plasmas by 

centrifugation were frozen at -80°C in aliquots prior to analysis. 4 h fasting plasma samples 

were used for measurements of ALB, ALT, TC, HDL-C, TG, glucose, urea nitrogen, TMAO, 

choline, betaine, and carnitine. In the eight different F1 strains of mice, only TC and TG were 

measured in plasma samples. 

4.4.4. Plasma Clinical Cardiometabolic Traits  

Plasma levels of albumin, ALT, TC, HDL-C, TG, glucose, urea nitrogen were quantitated at 

24 weeks of age using a COBAS INTEGRA 400 plus Analyzer (Roche Diagnostics, 

Indianapolis, IN, USA). 50 μl plasma was diluted 3 times with 1 × phosphate-buffered saline 

(PBS) and processed using standard procedures according to the analyzer's instructions. 

HDL-C was subtracted from TC to determine VLDL-C/LDL-C levels.  

4.4.5. Plasma Metabolite Analysis using LC-MS/MS 

At 24 weeks of age, circulating plasma analytes such as TMAO, choline, betaine, creatinine, 

and carnitine were quantified using liquid chromatography–mass spectrometry (LC-MS) 

(Wang et al., 2014) with modifications. Undeuterated analytes ranging from 0-100 μM in 

methanol were analyzed to establish analyte standard curves. All standards were purchased 

from Sigma-Aldrich (St. Louis, MO) and all reagent solvents of mass spectrometry grade 

were purchased from Fisher Scientific (Waltham, MA).  

Samples (20 μl plasma) were aliquoted into Eppendorf tubes and mixed with 80 μl of 

10 μM surrogate standard. The samples were vortexed for 30 seconds and centrifuged at 

18,000 g at 10°C for 10 min. The supernatants and surrogate standards were transferred to 
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150 μl glass inserts in high-performance liquid chromatography (HPLC) vials. The 

supernatants (5 μl) were injected into a silica column (150 by 2 mm, 3 μm silica; Cat. No. 

00F-4162-B0, Phenomenex, Torrance, CA) at a flow rate of 0.8 ml/min using a Waters 

Acquity UPLC (Waters, Milford, MA) interfaced with an API 4000 Q-TRAP mass 

spectrometer (AB SCIEX, Framingham, MA). Analytes and isotope-labeled internal 

standards were monitored in multiple reaction monitoring (MRM) mode using characteristic 

precursor–product ion transitions. Parameters for the ion monitoring were optimized for each 

analyte. Calibration curves for quantification of the analytes were prepared by spiking the 

analytes of various concentrations into control plasma samples. 

4.4.6. Measurement of Blood Pressure in Tail 

CODA mouse tail-cuff system (Kent Scientific Corp, Torrington, CT) was used for 

measurement of mouse blood pressure in tail and this technique was verified 

by telemetry with a 99% correlation (Feng et al., 2008). In short, blood pressure was 

measured by placing a cuff on the tail of the mouse to block blood flow and placing a non-

invasive blood pressure sensor over the occlusive cuff. The mice were first acclimated to 

restraints for 10-20 min/d for at least 3 days, and then 20 cycles of blood pressure 

measurements were performed. Multiple measurements of systolic blood pressure, diastolic 

blood pressure, heart rate (beat per minute), cardiac output (μl/min), and tail blood volume 

(μl) were performed and then averaged. Heating pad warmed the blood pressure measuring 

area and maintained a quiet and dark environment to ensure reliable measurements within the 

parameters of this technology. 

4.4.7. Atherosclerotic Lesion Size 

Hearts containing the proximal aorta were dissected in 24-week old mice, perfused with 

1×PBS, and stored in 10% formalin at 4°C. The upper part of the heart was removed by a 

transverse cut parallel to the atria, which were then embedded in the optimal cutting 
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temperature compound and stored at -80°C. Consecutive sections (10 μm thick) from the 

aortic sinus were mounted on slides by the UNC Histology Research Core Facility. Sections 

were placed on 8-10 pieces of slides. Frozen sections (10 μm) were stained with Oil Red O 

by the UNC Histology Core Facility and lesion area was quantified from every third section 

to the proximal aorta. Stained slides were imaged using Zeiss AxioCam MR3 (Zeiss, Munich, 

Germany), and aortic lesion areas were quantified using Aperio’s ImageScope (Vista, CA). 

Data were presented as the mean lesion area in μm2.  

4.4.8. RNA Library Preparation and Sequencing   

Total RNA was extracted from snap-frozen liver using miRVana total RNA isolation kit 

(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. 

The quality and amount of liver RNA were evaluated using a Bioanalyzer (Agilent, Inc., 

Santa Clara, CA). The average RNA-integrity score for 163 DO-F1 liver samples was 9.01 ± 

0.4. RNA samples from 85 females and 77 males were submitted to the UC Davis DNA 

Technologies Core at the Genome Center. The RNA-seq libraries were constructed from 1 µg 

total RNA after poly-A library preparation. To minimize technical variability, all samples 

were assigned to each lane and the pooled libraries were sequenced on two lanes of the 

Illumina NovaSeq 6000 sequencing (Illumina Inc., San Diego, CA, USA) to achieve paired-

end reads of at least 25 million 150 bp. Raw data were deposited at National Center for 

Biotechnology Information’s Gene Expression Omnibus (GEO accession GSE179091). 

4.4.9. Mouse Genotyping and Haplotype Reconstruction 

Genotyping was performed in tail biopsies using the Mouse Universal Genotyping Array 

(GigaMUGA, 143,259 markers) by Neogen (Lincoln, NE) (Morgan et al., 2015). Identified 

genotypes were converted to founder strain–haplotype reconstructions using R/QTL2 

software (Gatti et al., 2014). GigaMUGA markers were interpolated to an evenly spaced grid 
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at 0.02-cM intervals, and markers were added to fill the areas that physically represent the 

sparse.  

4.4.10. RNA-Seq Mapping and Quantification 

Raw read data was filtered using HTStream (version 1.1.0, 

https://github.com/ibest/HTStream), which included screening for contaminants (such as 

PhiX and rRNA), PCR deduplication readout, quality-based trimming, adapter trimming, and 

overlapping paired-end reads. Genetic variants such as SNPs and insertions/deletions (Sanger 

REL-1410) in eight founder strains were incorporated into the B6 reference strain genome 

(GRcm38/mm10) to generate individualized genomes. After obtaining transcript sequences of 

all annotated genes in each 8 founder strain genome, the allele sequences for each transcript 

were incorporated into one pooled transcriptome for read alignment. The pooled 

transcriptome was aligned to the individualized genomes of each strain, and then the expected 

read counts obtained from each transcript allele were quantified using an expectation 

maximization algorithm (EMASE, https://github.com/churchill-lab/emase) (Raghupathy et 

al., 2018). We filtered in 13,094 genes (381 X-linked, 7 Y-linked, 15 mitochondrial genes, 

and 12,691 autosomal genes) with mean TPM greater than 1 in 162 liver samples. This TPM 

filter was used to remove genes that were only expressed at low levels. We normalized the 

filtered genes by the upper quartile value to account for differences in library size and 

transformed them to rank normal scores using the 'rankZ' function in the DOQTL R package 

(Gatti et al., 2014) for the eQTL analysis.  

4.4.11. Quantitative Trait Loci Mapping for Aortic Lesion Area and Transcripts 

QTL mapping was analyzed using the R (v3.5.3) package R/QTL2 (v0.20). Marker genotypes 

from a GeneSeek final report were filtered for GigaMUGA-containing single nucleotide 

polymorphism (SNPs) and encoded into a hetero/homozygous set (e.g. AA, AB) 

(https://kbroman.org/qtl2/). These genotype codes were processed with GigaMUGA genotype 

https://github.com/ibest/HTStream
https://github.com/churchill-lab/emase
https://kbroman.org/qtl2/
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codes of the DO founder strains using a Hidden Markov model and haplotypes were defined 

as previously reported (Broman, 2012a, b). We estimated the posterior probability to have 

one of the eight possible genotype states at each SNP. We performed association mapping by 

fitting a linear mixed model at each SNP, where we regressed the traits on the diplotype 

probabilities. A kinship matrix was incorporated as a random effects term to adjust for the 

genetic relatedness between mice. Genotype probabilities were reduced to eight founder 

allele probabilities and were used to produce a kinship matrix (genetic relatedness) using the 

“leave-one-chromosome-out” method to minimize bias from same chromosome SNPs (Yang 

et al., 2014).   

Genome scans for cardiometabolic traits were performed using three different models 

using the scan1 function in R/qtl2: 1) sex additive - sex and generation number were included 

as additive covariates, 2) female mice - generation number was included as an additive 

covariate, and 3) male mice - generation number was included as an additive covariate. 

Reported mapping statistics were logarithms of odds ratios (LODs) which describe the 

difference of log-scaled likelihood between full and null models. Confidence intervals for 

QTL were calculated as 95% Bayesian credible intervals (Sen and Churchill, 2001). Using a 

linear mixed model with allele probabilities as random effects, the association between the 

trait and each founder strain genotype in each QTL was determined using Best Linear 

Unbiased Predictor (BLUP). SNPs in the candidate genes found in QTL were identified based 

on the Wellcome Trust Sanger mouse genomes database (www.sanger.ac.uk), release 1303, 

based on genome assembly GRCm38 (Yalcin et al., 2011). 

Permutation analysis was used for subsequent filtering to obtain significant QTL 

results. The significance threshold at P<0.05, the highly suggestive threshold at P<0.1, and 

the suggestive threshold at P<0.63 of all reported QTLs were empirically determined by 

permutation analysis, where rows of the genotyping data were randomized for each trait and a 
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maximum LOD score was generated (Doerge and Churchill, 1996). In this study, cardio-

metabolic trait QTL (cQTL) and eQTL were filtered out at the 95th quantile of the 1,000 

times null distributions. For cQTL mapping, traits with a Shapiro-Wilk W value ≥ 0.95 were 

considered as normalized data. Non-normal phenotypic traits were log2 transformed and the 

aortic lesion area was transformed to rank normal scores using the 'rankZ' function in the 

DOQTL R package. eQTL was defined as cis-eQTL when the SNP with the maximum LOD 

score was within ±4 Mb at the transcription start site, and trans-eQTL was defined when this 

condition was not met. 

4.4.12. Heritability 

To determine the extent to which phenotypic variation is affected by genotypic variation, a 

linear mixed-effect model was used to estimate the narrow-sense heritability scores of the 

cardio-metabolic traits and liver transcriptome. This was performed using the function 

est_herit in R/qtl2 by submitting a kinship matrix and each trait value.    

4.4.13. Differential Expression Analysis  

Sex-specific DEGs analysis was performed using the R package ‘limma’ version 3.6.1 

(Ritchie et al., 2015) from TMM (trimmed mean of M values) normalized log2 transformed 

TPM values. Genes with BH-adjusted p values less than 0.05 were classified as DEGs. 369 

genes (2.8%) from contrasts (|log2 fold change| > 3) were included in Table 4.4 and a 

stringent threshold was used for the filtering to visualize a Volcano plot in Figure 4.6C (|log2 

fold change| > 2 and –log adjusted p-value > 14).  

We also used GTEx v8 data (Consortium, 2020) consisting of liver RNA-seq samples 

from 226 post-mortem donors to compare the extent to which sex-specific DEGs identified in 

this study overlap with sex-specific DEGs in human liver tissue. We filtered 286 human 

genes that were also identified DO-F1 liver transcripts from the top 500 sex-specific DEGs 
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(adjusted p-value <0.01) published using GTEx v8 data (Oliva et al., 2020), and compared 

overlaps between significant DO-F1 sex-specific DEGs and 286 genes. 

4.4.14. Enrichment Analysis 

Enrichment analyses for sex-specific DEGs, modules, and genes that were significantly 

correlated with aortic lesion area in each sex were performed using enrichR (Chen et al., 

2013) to generate enrichment categories from the GO Biological Process 2018, KEGG 2019 

Mouse, and Jenson Diseases (Pletscher-Frankild et al., 2015). This analysis identifies 

differential enrichment in the functional categories of transcripts. The GO Biological process 

2018 contains 5,103 terms and 14,433 genes. While it is clear that individual GO terms can 

be found in related classes of ontology, GO terms do not occupy strictly fixed levels in a 

hierarchy. Each GO term identified is associated with a unique GO annotation number that 

relates to a specific function. Both the Gene Ontology website 

(http://geneontology.org/docs/faq/) and enrichR tool do not utilize a specific hierarchy thus 

all available terms are used in the analysis.   

4.4.15. Other Statistical Analysis 

All statistical analyses were performed in R (v.3.5.3) (R Core Team). Sex differences or 

genotype differences were assessed using Wilcoxon signed-rank test. Spearman's correlation 

was used to correlate the cardiometabolic traits and liver transcripts (log2TPM). The p-values 

were adjusted using the BH false discovery rate (FDR) procedure (Benjamini and Hochberg, 

1995), and correlation coefficients and adjusted p-value were visualized using the ‘pheatmap’ 

package (Kolde et al., 2018). Significance was determined with a p-value < 0.05. Summary 

statistics were calculated to evaluate the magnitude of variability of the cardiometabolic traits 

by sex.  

 

 



169 

 

4.5. Results 

4.5.1. Sexual Dimorphism on Atherosclerosis and Cardiometabolic Traits 

We fed male and female DO-F1 mice a HFHC diet for 16 weeks to determine the genetic 

regulation of atherosclerosis and cardiometabolic risk factors including blood pressure and 

plasma lipids (Figure 4.1). First, we identified a significant effect of sex on atherosclerosis 

formation in the aortic root with female mice having increased atherosclerotic lesion area (P 

≤ 2×10-16) than males. The mean aortic lesion areas were 91,638 ± 83,287 μm2 and 22,211 ± 

30,113 μm2, respectively in females and males (Figure 4.2). These results are consistent with 

eight DO founder strains-F1 mice (Figure 4.3 and Table 4.2; P ≤ 0.001).  

Next, we determined the sexual dimorphism in risk factors associated with 

atherosclerosis development. Males had increased plasma glucose (Figure 4.4) concentration 

compared to females (Table 4.3; P ≤ 0.001) while plasma lipids and TMAO related analytes 

(TMAO, choline, and betaine) (Figure 4.4) were significantly higher in females than males 

(Table 4.3; P ≤ 0.001). We note that not all traits were sexually dimorphic as plasma ALT, 

HDL-C, diastolic blood pressure, and systolic blood pressure were not different between 

sexes (Table 4.3).  
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Figure 4.2. Sex differences in aortic lesion area in Diversity Outbred (DO)-F1 mice. 
A total of 200 F0 J:DO females were crossed with CETP / ApoE3 Leiden males to breed 238 

(CETP/ApoE3 Leiden × J:DO) F1 females and 234 (CETP/ApoE3 Leiden × J:DO) F1 males. 

(A) Oil red O staining of representative females and males at the 24 weeks. (B) Aortic lesion 

areas in females were significantly larger than males (mean ± SD). The black larget points are 

outliers. 
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Figure 4.3. Sex differences in cardiometabolic traits in eight DO founder F1 mice. 
Female eight DO founder strains were crossed with CETP / ApoE3 Leiden males to breed 

102 (CETP/ApoE3 Leiden × eight DO founder strains) F1 mice. At the age of about 8 weeks, 

all mice were fed with a synthetic high-fat and high-cholesterol (HFHC) diet for 16 weeks.  

(A) Schematic illustration showing breed of (CETP/ApoE3 Leiden × eight DO founder 

strains) F1 females and (CETP/ApoE3 Leiden × eight DO founder strains) F1 males. (B) 

Aortic lesion area is higher in females in eight DO founder strains-F1 mice. The p-values 

were Wilcoxon signed-rank test for aortic lesion area. The black larget points are outliers. 
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Figure 4.4. Sex differences in cardiometabolic traits in DO-F1 mice. 

Plasma total cholesterol (TC), very low-density lipoprotein cholesterol/low-density 

lipoprotein cholesterol (VLDL-C/LDL-C), triglyceride (TG), trimethylamine (TMA) N-oxide 

(TMAO), choline, and betaine levels were higher in females and plasma urea nitrogen and 

glucose level were higher in males at 24 weeks. The p-values were Wilcoxon signed-rank test 

between sexes for each cardio-metabolic trait. The black larget points are outliers. 
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Table 4.2. Sex differences in cardiometabolic traits in DO founder strains-F1 mice at 24 weeks. n = 102 (37 females and 65 males). 

Category Trait Unit Weeks 
Male mice Female mice p-value  

(<0.05) Mean ± SD Mean ± SD 

Colorimetric Chemistry Total Cholesterol mg/dL 24 325.72 ± 240.80 354.46 ± 283.58 NS 

Colorimetric Chemistry Glucose mg/dL 24 323.11 ± 83.56 296.73 ± 85.03 NS 

Colorimetric Chemistry Triglyceride mg/dL 24 146.40 ± 115.03 205.15 ± 215.64 NS 

Colorimetric Chemistry Free glycerol mg/dL 24 62.47 ± 48.35 92.93 ± 80.56 NS 

Atherosclerosis Aortic Lesion Area µm2/section 24 24,416 ± 36,308 113,010 ± 97,437 1.40E-03 
 

Table 4.3. Sex differences in cardiometabolic traits in DO-F1 mice at 24 weeks. n = 472 (238 females and 234 males). 

Category Trait Unit Weeks 
Male mice Female mice p-value  

(<0.01) Mean ± SD Mean ± SD 

Colorimetric Chemistry Albumin g/L 24 31.14 ± 3.22 31.25 ± 2.75 NS 

Colorimetric Chemistry ALT U/L 24 123.37 ± 147.72 114.43 ± 97.54 NS 

Colorimetric Chemistry Total Cholesterol mg/dL 24 607.88 ± 325.55 1033.04 ± 413.52 2.00E-16 

Colorimetric Chemistry VLDL/LDL-Cholesterol mg/dL 24 540.82 ± 325.81 966.07 ± 414.16 2.00E-16 

Colorimetric Chemistry HDL-Cholesterol mg/dL 24 67.06 ± 25.41 66.97 ± 27.68 NS 

Colorimetric Chemistry Glucose mg/dL 24 313.01 ± 71.83 278.86 ± 51.49 1.70E-07 

Colorimetric Chemistry Triglyceride mg/dL 24 533.51 ± 392.88 621.13 ± 390.96 2.80E-03 

Colorimetric Chemistry Urea/BUN mmol/L 24 4.54 ± 0.95 4.22 ± 0.92 6.50E-05 

Blood Pressure Diastolic Blood Pressure mmHG 24 84.11 ± 11.16 86.05 ± 12.78 NS 

Blood Pressure Systolic Blood Pressure mmHG 24 111.71 ± 12.34 112.97 ± 13.37 NS 

Blood Pressure Mean Atrial Blood Pressure mmHG 24 92.98 ± 11.19 94.69 ± 12.69 NS 

Blood Pressure Heart Rate BPM 24 722.95 ± 54.06 726.83 ± 57.52 NS 

Blood Pressure Cardiac Output µl/cycle 24 16 ± 5.35 16.55 ± 5.33 NS 

Blood Pressure Tail Blood Volume µl 24 52.2 ± 17.19 53.46 ± 16.41 NS 

LC/MS TMAO µM 24 3.97 ± 1.82 8.08 ± 4.86 2.00E-16 

LC/MS Choline µM 24 11.56 ± 2.55 13.1 ± 3.56 5.40E-08 

LC/MS Betaine µM 24 41.31 ± 12.04 58.37 ± 18.68 2.00E-16 

LC/MS Carnitine µM 24 11.88 ± 3.16 11.87 ± 3.22 NS 

Atherosclerosis Aortic Lesion Area µm2/section 24 22,211 ± 30,113 91,638 ± 83,287 2.00E-16 

Atherosclerosis Total aortic Lesion Area µm2 24 97,978 ± 136,953 421,224 ± 394,929 2.00E-16 

1
7
3
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4.5.2. Sexually-biased Association between Atherosclerosis and Cardiometabolic Traits  

To determine sex differences in the relationship between atherosclerosis and cardiometabolic 

traits, we performed Spearman correlation between aortic lesion area and cardiometabolic 

traits in females and males, respectively (Figure 4.5A). Plasma TC (Male: R=0.49, P ≤ 

1.9×10-15; Female: R=0.38, P ≤ 1.7×10-9), plasma VLDL-C/LDL-C (Male: R=0.5, P ≤ 

5.4×10-16; Female: R=0.38, P ≤ 1.4×10-9), and plasma TG (Male: R=0.32, P ≤ 4.5×10-7; 

Female: R=0.13, P ≤ 0.042) were positively correlated with the aortic lesion area and all three 

traits showed higher correlations with the aortic lesion area in males than in females (Figure 

4.5B-D). Thus, the relationship among classic risk factors for atherosclerosis was stronger in 

male mice indicating that sex-based differences in lesion size may be due to complex genetic 

or transcript interactions. 

 

 

 

 

 

 



175 

 

 

Figure 4.5. Identification of cardiometabolic traits associated with aortic lesion area in 

DO-F1 mice.  

(A) Spearman correlation between aortic lesion area and cardiometabolic traits in females and 

males, respectively. The p-values were adjusted using the Benjamini-Hochberg (BH) FDR 

procedure. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10. (B-E) Spearman 

correlation between aortic lesion area and plasma total cholesterol (TC) (B), plasma very 

low-density lipoprotein cholesterol/low-density lipoprotein cholesterol (VLDL-C/LDL-C) 

(C), and plasma triglyceride (TG) (D) by sex. 

 

 

 



176 

 

4.5.3. Sex Influences Liver Gene Expression Profile 

Previous studies have reported that thousands of genes are differentially expressed by sex 

(Kukurba et al., 2016; Rinn and Snyder, 2005; Wang et al., 2007; Yang et al., 2006). To 

better understand the underlying mechanism of the sexual dimorphism of atherosclerosis, we 

determined the liver gene expression profile using RNA-Seq in 85 females and 77 males of 

the DO-F1 mice. Samples were selected based on the aortic lesion area levels. Half of the 

mice with high aortic lesion size and half of the mice with low aortic lesion size were 

selected from each sex. A total of 13,094 genes including X-linked, Y-linked, mitochondrial 

(MT), and autosomal genes were determined to be robustly expressed. Principal component 

analysis demonstrates a global difference in gene expression between sexes (Figure 4.6A) 

with a total of 8,866 genes differentially expressed with 4,448 upregulated in females and 

4,418 upregulated in males (adjusted p-value <0.05; Table 4.4). These 8,866 genes were 

defined as “sex-specific DEGs” and contain a number of previously reported sex 

chromosome genes (Female: Xist; Male: Eif2s3y, Ddx3y, Uty) and Cyp450 genes (Female: 

Cyp2b9, Cyp2b13, Cyp2c40; Male: Cyp7b1, Cyp2u1, Cyp2f2) (Figure 4.6C and Table 4.4) 

(Rinn and Snyder, 2005). When the number of sex-specific DEGs was counted for each 

chromosome, the proportions were generally similar between sexes except Y-linked and MT 

genes (Figure 4.6B).  

To elucidate the differences in sex-specific biological pathways, we performed GO 

Biological process and KEGG pathway enrichment analysis of genes identified by the sex-

specific DEGs. The enrichment analysis showed that the GO terms and KEGG pathways 

identified in each sex are sex-specific with no overlap at the FDR<0.001 level (Figure 4.6D) 

and upregulation of immune response in the females and upregulation of mitochondrial 

function in the males. Specifically, GO Biological process and KEGG pathways that were 

highly enriched in females included ‘‘Neutrophil mediated immunity (GO: 0002446) and 
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Degranulation (GO: 0043312) (biological process)’’ (-logP > 12) and ‘‘Lysosome and 

Osteoclast differentiation (pathways)’’ (-logP > 11). GO Biological process and KEGG 

pathways that were highly enriched in males included ‘‘Respiratory electron transport chain 

(biological process)’’ (-logP > 23) and ‘‘Thermogenesis, Oxidative phosphorylation, and 

Non-alcoholic fatty liver disease (pathways)’’ (-logP > 18) (Figures 4.6E and 4.6F and 

Table 4.5 and 4.6).  

Next, we sought to understand if sex-specific DEGs have also been identified as 

sexually dimorphic in humans. The GTEx v8 data (Oliva et al., 2020), generated from 226 

post-mortem donors, is among the few datasets available with human liver transcriptome 

analysis. A subset of 465 sex-specific liver DEGs (adjusted p-value<0.01) published using 

GTEx v8 are publicly available (Oliva et al., 2020), and of these 266 genes (224 genes in 

autosome and 42 genes in chromosome X) were among our 13,094 transcripts expressed in 

the DO-F1 livers. Among these 266 genes detected in humans, 187 transcripts (~70 %) were 

sexually dimorphic in DO-F1 livers, suggesting that transcripts in both human and mice liver 

tissue exhibited a high percentage of sex bias which may influence gender differences in 

phenotypes and disease risk. 
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Figure 4.6. Sex differences in regulation of liver gene expression in DO-F1 mice. 

Sex-specific DEGs analysis was performed using the R package ‘limma’ from TMM 

(trimmed mean of M values) normalized log2 transformed TPM values. PCA analysis (A), 

the number of differential expression genes (DEGs) in each chromosome and mitochondria 

(MT) (B), and Volcano plot (C) of sex differences in liver gene expression in DO-F1 mice. 

(C) Horizontal dotted lines indicate adjusted p-value < 1×10–14, vertical dotted gray lines 

indicate a 4-fold difference. (D) Venn diagram to identify sex-specific significant (adjusted p-

value < 0.001) gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) 

pathway between female, male-specific DEGs, or non-DEGs in enrichment analysis. Top10 

GO and KEGG pathway of female (E) and male (F) DEGs identified in enrichment analysis. 

Pathways are ordered from top to bottom by significance (highest to lowest) and colored by 

gene richness. 
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Table 4.4. List of differentially expressed genes (DEGs, |log2 fold change| > 3) between 

sexes in DO-F1 mice (adjusted p-value <0.05). n = 162 (85 females and 77 males) 

Gene Name Chr 
Start 

(Mbp) 

logFC 

(Femal

e vs 

Male) 

Average 

expression 

(log2TPM) 

Adj. 

P-value 

Cyp3a41a 
cytochrome P450, family 3, subfamily a, 

polypeptide 41A 
5 145.69 8.26 5.22 3.05E-77 

Sult2a2 

sulfotransferase family 2A, 

dehydroepiandrosterone (DHEA)-preferring, 

member 2 

7 13.73 7.07 4.02 5.03E-75 

Xist inactive X specific transcripts X 103.46 6.95 4.10 2.52E-118 

Cyp2c69 
cytochrome P450, family 2, subfamily c, 

polypeptide 69 
19 39.84 6.01 3.92 1.08E-57 

Sult2a1 

sulfotransferase family 2A, 

dehydroepiandrosterone (DHEA)-preferring, 

member 1 

7 13.80 5.66 3.45 1.22E-35 

Cyp2c40 
cytochrome P450, family 2, subfamily c, 

polypeptide 40 
19 39.77 5.55 4.78 5.87E-56 

Cyp3a41b 
cytochrome P450, family 3, subfamily a, 

polypeptide 41B 
5 145.56 5.52 3.12 4.29E-38 

Cyp2b13 
cytochrome P450, family 2, subfamily b, 

polypeptide 13 
7 26.06 5.40 3.68 1.46E-59 

A1bg alpha-1-B glycoprotein 15 60.92 5.00 2.92 6.95E-45 

Fmo3 flavin containing monooxygenase 3 1 162.95 4.79 3.06 3.52E-52 

Cyp2a4 
cytochrome P450, family 2, subfamily a, 

polypeptide 4 
7 26.31 4.65 6.42 1.16E-30 

Cyp2b9 
cytochrome P450, family 2, subfamily b, 

polypeptide 9 
7 26.17 4.42 6.00 1.72E-33 

Cyp3a16 
cytochrome P450, family 3, subfamily a, 

polypeptide 16 
5 145.44 4.29 2.34 1.52E-33 

Cyp3a44 
cytochrome P450, family 3, subfamily a, 

polypeptide 44 
5 145.77 4.22 2.68 7.93E-39 

Slc22a26 
solute carrier family 22 (organic cation 

transporter), member 26 
19 7.78 3.91 3.60 4.14E-49 

Sult2a5 

sulfotransferase family 2A, 

dehydroepiandrosterone (DHEA)-preferring, 

member 5 

7 13.62 3.31 1.80 8.59E-43 

Hao2 hydroxyacid oxidase 2 3 98.87 3.13 2.70 2.10E-41 

Sult2a3 

sulfotransferase family 2A, 

dehydroepiandrosterone (DHEA)-preferring, 

member 3 

7 14.07 3.13 1.69 1.23E-22 

Cyp2a22 
cytochrome P450, family 2, subfamily a, 

polypeptide 22 
7 26.93 3.10 5.04 8.26E-35 

Uty 
ubiquitously transcribed tetratricopeptide repeat 

containing, Y-linked 
Y 1.10 -3.16 1.50 5.15E-180 

Mup16 major urinary protein 16 4 61.52 -3.17 5.56 3.22E-16 

Kdm5d lysine (K)-specific demethylase 5D Y 0.90 -3.20 1.52 3.43E-173 

Mup2 major urinary protein 2 4 60.14 -3.24 7.62 1.28E-13 

Scara5 scavenger receptor class A, member 5 14 65.67 -3.24 2.12 2.33E-34 

Mup19 major urinary protein 19 4 61.78 -3.44 9.75 1.93E-15 

Mup-ps19 major urinary protein, pseudogene 19 4 61.96 -3.60 3.01 1.34E-45 

Slco1a1 
solute carrier organic anion transporter family, 

member 1a1 
6 141.91 -3.65 5.41 1.65E-26 

Mup15 major urinary protein 15 4 61.44 -3.73 5.59 2.66E-13 

Slco1a1 
solute carrier organic anion transporter family, 

member 1a1 
6 141.91 -3.81 5.86 9.49E-26 

Serpina1e 
serine (or cysteine) peptidase inhibitor, clade A, 

member 1E 
12 103.95 -3.95 7.01 3.98E-26 

Hsd3b5 
hydroxy-delta-5-steroid dehydrogenase, 3 beta- 

and steroid delta-isomerase 5 
3 98.62 -3.96 2.51 7.85E-29 
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Serpina4-

ps1 

serine (or cysteine) peptidase inhibitor, clade A, 

member 4, pseudogene 1 
12 104.08 -4.05 2.73 1.44E-36 

Mup9 major urinary protein 9 4 60.42 -4.08 7.71 9.06E-18 

Mup17 major urinary protein 17 4 61.59 -4.31 7.67 1.56E-18 

Mup8 major urinary protein 8 4 60.22 -4.34 2.87 4.60E-35 

Mup12 major urinary protein 12 4 60.74 -4.34 3.03 1.39E-30 

Hsd3b5 
hydroxy-delta-5-steroid dehydrogenase, 3 beta- 

and steroid delta-isomerase 5 
3 98.62 -4.48 2.61 4.53E-17 

Mup20 major urinary protein 20 4 62.05 -4.50 10.00 8.56E-44 

Mup21 major urinary protein 21 4 62.15 -4.62 4.98 4.55E-56 

Mup14 major urinary protein 14 4 61.30 -4.68 9.09 2.76E-33 

Ddx3y DEAD box helicase 3, Y-linked Y 1.26 -4.99 2.37 3.23E-162 

Cyp4a12b 
cytochrome P450, family 4, subfamily a, 

polypeptide 12B 
4 115.41 -5.00 3.74 1.61E-40 

Elovl3 
elongation of very long chain fatty acids 

(FEN1/Elo2, SUR4/Elo3, yeast)-like 3 
19 46.13 -5.12 4.51 1.19E-62 

Gm47283 predicted gene, 47283 Y 90.78 -5.22 2.48 1.32E-70 

Cyp2d9 
cytochrome P450, family 2, subfamily d, 

polypeptide 9 
15 82.45 -5.26 7.06 4.26E-69 

Mup7 major urinary protein 7 4 60.07 -5.40 9.88 8.39E-33 

Elovl3 
elongation of very long chain fatty acids 

(FEN1/Elo2, SUR4/Elo3, yeast)-like 3 
19 46.13 -5.43 4.91 1.22E-57 

Eif2s3y 
eukaryotic translation initiation factor 2, subunit 

3, structural gene Y-linked 
Y 1.01 -5.65 2.69 3.22E-231 

Mup1 major urinary protein 1 4 60.50 -6.52 8.36 3.62E-31 

Cyp4a12a 
cytochrome P450, family 4, subfamily a, 

polypeptide 12a 
4 115.30 -7.11 5.17 2.44E-76 
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Table 4.5. Top 30 Gene Ontology results for sex-specific DEGs in liver in DO-F1 mice. n 

= 162 (85 females and 77 males). 

Sex Term 

Overlap 

(gene 

count) 

Adjusted.

P.value 
Rank 

Female neutrophil mediated immunity (GO:0002446) 187/487 1.17E-13 1 

Female cytokine-mediated signaling pathway (GO:0019221) 229/633 1.17E-13 2 

Female neutrophil degranulation (GO:0043312) 183/479 2.39E-13 3 

Female 
neutrophil activation involved in immune response 

(GO:0002283) 184/483 2.39E-13 
4 

Female extracellular matrix organization (GO:0030198) 104/229 1.42E-12 5 

Female 
SRP-dependent cotranslational protein targeting to 

membrane (GO:0006614) 54/89 2.24E-12 
6 

Female protein targeting to ER (GO:0045047) 56/97 1.25E-11 7 

Female 
cotranslational protein targeting to membrane 

(GO:0006613) 54/93 2.30E-11 
8 

Female 
regulation of small GTPase mediated signal transduction 

(GO:0051056) 71/140 2.84E-11 
9 

Female viral gene expression (GO:0019080) 60/110 3.45E-11 10 

Female viral transcription (GO:0019083) 61/113 3.65E-11 11 

Female 
nuclear-transcribed mRNA catabolic process, nonsense-

mediated decay (GO:0000184) 60/112 8.36E-11 
12 

Female 
transmembrane receptor protein tyrosine kinase signaling 

pathway (GO:0007169) 148/396 3.82E-10 
13 

Female 
positive regulation of intracellular signal transduction 

(GO:1902533) 168/479 5.00E-09 
14 

Female cellular response to cytokine stimulus (GO:0071345) 161/456 6.89E-09 15 

Female 
plasma membrane bounded cell projection assembly 

(GO:0120031) 97/241 2.34E-08 
16 

Female regulation of cell migration (GO:0030334) 117/316 1.32E-07 17 

Female positive regulation of apoptotic process (GO:0043065) 114/307 1.70E-07 18 

Female inflammatory response (GO:0006954) 97/252 3.42E-07 19 

Female regulation of apoptotic process (GO:0042981) 248/815 9.09E-07 20 

Female regulated exocytosis (GO:0045055) 64/148 1.04E-06 21 

Female cellular protein metabolic process (GO:0044267) 160/484 1.30E-06 22 

Female platelet degranulation (GO:0002576) 56/124 1.30E-06 23 

Female protein phosphorylation (GO:0006468) 156/470 1.36E-06 24 

Female toll-like receptor signaling pathway (GO:0002224) 43/86 1.61E-06 25 

Female response to lipopolysaccharide (GO:0032496) 65/155 2.77E-06 26 

Female peptidyl-tyrosine phosphorylation (GO:0018108) 40/79 3.11E-06 27 

Female 
positive regulation of programmed cell death 

(GO:0043068) 95/257 3.69E-06 
28 

Female viral process (GO:0016032) 84/220 4.28E-06 29 

Female positive regulation of leukocyte chemotaxis (GO:0002690) 33/61 6.12E-06 30 

Male respiratory electron transport chain (GO:0022904) 70/94 7.03E-24 1 

Male 
proteasome-mediated ubiquitin-dependent protein 

catabolic process (GO:0043161) 144/291 2.50E-22 
2 

Male protein ubiquitination (GO:0016567) 212/506 1.14E-21 3 

Male 
mitochondrial ATP synthesis coupled electron transport 

(GO:0042775) 63/85 1.14E-21 
4 
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Male mitochondrial translation (GO:0032543) 72/107 6.26E-21 5 

Male 
ubiquitin-dependent protein catabolic process 

(GO:0006511) 155/341 8.33E-20 
6 

Male proteasomal protein catabolic process (GO:0010498) 114/237 1.44E-16 7 

Male mitochondrial translational elongation (GO:0070125) 58/87 1.85E-16 8 

Male protein polyubiquitination (GO:0000209) 128/283 4.86E-16 9 

Male translational termination (GO:0006415) 61/96 6.61E-16 10 

Male mitochondrial translational termination (GO:0070126) 58/89 7.03E-16 11 

Male 
mitochondrial respiratory chain complex assembly 

(GO:0033108) 61/97 1.17E-15 
12 

Male regulation of primary metabolic process (GO:0080090) 77/139 1.92E-15 13 

Male fatty acid beta-oxidation (GO:0006635) 39/50 1.25E-14 14 

Male 
protein modification by small protein removal 

(GO:0070646) 117/261 2.07E-14 
15 

Male protein deubiquitination (GO:0016579) 115/257 4.21E-14 16 

Male 
mitochondrial electron transport, NADH to ubiquinone 

(GO:0006120) 36/46 1.40E-13 
17 

Male translational elongation (GO:0006414) 61/105 1.73E-13 18 

Male Golgi vesicle transport (GO:0048193) 118/271 1.73E-13 19 

Male 
regulation of cellular amine metabolic process 

(GO:0033238) 38/51 3.06E-13 
20 

Male 
regulation of cellular amino acid metabolic process 

(GO:0006521) 38/51 3.06E-13 
21 

Male 
protein modification by small protein conjugation 

(GO:0032446) 156/398 3.70E-13 
22 

Male 
SCF-dependent proteasomal ubiquitin-dependent protein 

catabolic process (GO:0031146) 47/72 5.24E-13 
23 

Male ER to Golgi vesicle-mediated transport (GO:0006888) 87/180 5.24E-13 24 

Male 
regulation of cellular ketone metabolic process 

(GO:0010565) 42/61 8.44E-13 
25 

Male 
regulation of transcription from RNA polymerase II 

promoter in response to hypoxia (GO:0061418) 49/78 1.17E-12 
26 

Male mitochondrion organization (GO:0007005) 81/167 3.27E-12 27 

Male fatty acid catabolic process (GO:0009062) 43/65 3.27E-12 28 

Male fatty acid oxidation (GO:0019395) 36/50 7.36E-12 29 

Male NADH dehydrogenase complex assembly (GO:0010257) 42/64 8.76E-12 30 
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Table 4.6. Top 30 KEGG pathway results for sex-specific DEGs in liver in DO-F1 mice. 

n = 162 (85 females and 77 males). 

Sex Term 

Overlap 

(gene 

count) 

Adjusted

.P.value 
Rank 

Female Lysosome 74/124 2.41E-17 1 

Female Chemokine signaling pathway 91/197 3.65E-12 2 

Female Osteoclast differentiation 67/128 3.72E-12 3 

Female Tuberculosis 83/178 1.30E-11 4 

Female Phagosome 83/180 2.24E-11 5 

Female Leishmaniasis 42/67 3.46E-11 6 

Female Epstein-Barr virus infection 98/229 3.66E-11 7 

Female Apoptosis 69/141 4.07E-11 8 

Female Rheumatoid arthritis 48/84 7.41E-11 9 

Female Fc gamma R-mediated phagocytosis 49/87 8.26E-11 10 

Female NF-kappa B signaling pathway 54/102 1.65E-10 11 

Female B cell receptor signaling pathway 42/72 4.93E-10 12 

Female Regulation of actin cytoskeleton 91/217 4.93E-10 13 

Female Focal adhesion 85/199 6.61E-10 14 

Female Pathways in cancer 182/535 7.83E-10 15 

Female Toxoplasmosis 53/108 7.24E-09 16 

Female Human T-cell leukemia virus 1 infection 94/245 5.14E-08 17 

Female C-type lectin receptor signaling pathway 52/112 1.10E-07 18 

Female Measles 62/144 1.50E-07 19 

Female Proteoglycans in cancer 80/203 1.59E-07 20 

Female Hematopoietic cell lineage 45/94 3.00E-07 21 

Female AGE-RAGE signaling pathway in diabetic complications 47/101 4.30E-07 22 

Female Influenza A 68/168 4.98E-07 23 

Female NOD-like receptor signaling pathway 79/205 5.12E-07 24 

Female Human papillomavirus infection 123/360 5.12E-07 25 

Female TNF signaling pathway 49/110 1.05E-06 26 

Female Herpes simplex virus 1 infection 141/433 1.40E-06 27 

Female MAPK signaling pathway 103/294 1.40E-06 28 

Female Chagas disease (American trypanosomiasis) 46/103 2.09E-06 29 

Female Endocytosis 95/269 2.60E-06 30 

Male Thermogenesis 133/231 6.51E-30 1 

Male Parkinson disease 94/144 5.15E-27 2 

Male Oxidative phosphorylation 87/134 7.28E-25 3 
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Male Protein processing in endoplasmic reticulum 97/163 1.27E-23 4 

Male Non-alcoholic fatty liver disease (NAFLD) 87/151 6.67E-20 5 

Male Alzheimer disease 92/175 1.93E-17 6 

Male Huntington disease 97/192 6.70E-17 7 

Male Valine, leucine and isoleucine degradation 41/56 1.15E-14 8 

Male Peroxisome 53/84 1.36E-14 9 

Male Proteasome 35/46 1.91E-13 10 

Male Autophagy 66/130 9.21E-12 11 

Male Fatty acid degradation 35/50 1.04E-11 12 

Male Propanoate metabolism 24/31 1.52E-09 13 

Male Ubiquitin mediated proteolysis 64/138 2.55E-09 14 

Male Citrate cycle (TCA cycle) 24/32 4.16E-09 15 

Male PPAR signaling pathway 42/85 3.38E-07 16 

Male Pyruvate metabolism 24/38 8.36E-07 17 

Male Glyoxylate and dicarboxylate metabolism 21/31 9.09E-07 18 

Male RNA transport 67/167 1.03E-06 19 

Male Aminoacyl-tRNA biosynthesis 32/66 2.24E-05 20 

Male Retrograde endocannabinoid signaling 58/150 2.88E-05 21 

Male Butanoate metabolism 17/27 6.53E-05 22 

Male Terpenoid backbone biosynthesis 15/23 1.21E-04 23 

Male Protein export 17/28 1.21E-04 24 

Male Mitophagy 29/63 1.97E-04 25 

Male Biosynthesis of unsaturated fatty acids 18/32 2.67E-04 26 

Male Lysine degradation 27/59 4.03E-04 27 

Male Tryptophan metabolism 23/48 5.95E-04 28 

Male Fatty acid elongation 16/29 9.38E-04 29 

Male Porphyrin and chlorophyll metabolism 20/41 1.23E-03 30 

 

 

 

 

 

 

 

 



185 

 

4.5.4. Sex Effects on the Genetic Regulation of Liver Gene Expression  

Sex-specific cardiometabolic traits can be partially derived from sex-specific genetic 

effects, which can also affect gene expression. We investigated the sexual dimorphism of the 

genetic regulation of gene expression by performing heritability and eQTL analysis in each 

sex independently. For a better understanding of the interaction between genetic 

polymorphism and sexually dimorphic development of atherosclerosis and cardiometabolic 

traits, we performed the heritability and QTL analysis for cardiometabolic traits in males and 

females using R package qtl2 (Broman et al., 2019). The narrow-sense heritability (h2) was 

calculated using a linear mixed model upon accounting for genetic relatedness between the 

mice (kinship matrix) and DO generation. The heritability of the liver transcriptome was 

lower in females than in males, and this trend was the same for genes with cis-eQTL and 

trans-eQTL (Figure 4.7A).  

To further investigate gene-by-sex interactions, we generated separate cis- and trans-

eQTL for each sex, and assessed their relationship with sex-specific DEGs. We classified 

eQTLs with gene-by-sex interactions into the categories: female-specific eQTL, male-

specific eQTL, overlapping eQTL with same direction, or overlapping eQTL with opposite 

direction (Figure 4.7B) (Yao et al., 2014). We separated eQTLs into these categories by 

fitting an independent linear model for each sex. First, we calculated the number of hepatic 

cis-eQTLs and trans-eQTLs at permutation-based p-value thresholds of 0.05 in both sexes in 

autosome and chromosome X (chrX). Strikingly, eQTLs in each sex on chrX were 4.6 times 

more frequent in males (1,041 eQTLs) than in females (225 eQTLs), all of which were trans-

eQTLs. It is important to note that the genetic architecture of chrX in the DO-F1 mouse 

model is complex where males can only have a DO chrX while females have both a copy of 

the DO chrX and a paternal copy from their C57BL/6J sires. The frequency of eQTLs on 

chrX in the liver tissue of DO mice is highly male-biased (Melia and Waxman, 2020), we 
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focused on the autosomal QTLs consistent with previously reported DO-F1 study (Winter et 

al., 2017). We identified 1,408 cis-eQTLs and 980 trans-eQTL in females and 1,061 cis-

eQTLs and 1,331 trans-eQTL in males (Table 4.7). Of these only 751 cis-eQTLs and 183 

trans-eQTL were significant (P<0.05) in both sexes (Figures 4.7C). The sex-specific 

proportions of eQTL were more pronounced for trans-eQTLs as 91.4% were sex-specific at 

0.05 threshold (Figure 4.7C). We next examined if these sex-specific trans-eQTL form 

eQTL hotspots, where many expression traits colocalize on the same locus, and sex-specific 

hotspots were found on chromosome 16 in females and chromosome 10 in males (Figure 

4.7D and 4.7E). In addition, we assessed the sex-specific DEGs by their eQTL status in each 

sex and found that sex-specific DEGs were less likely to have a significant eQTL (Fisher's 

exact test, P≤2.2×10-16 in females; Fisher's exact test, P≤2.0×10-9 in males) (Table 4.8). 

Among the 2,258 genes that have female-biased eQTLs, the proportion identified as genes 

upregulated in females was 26.4% (632 genes), and among the 2,250 genes that have male-

biased eQTLs, the proportion identified as genes upregulated in males was 28.3% (676 

genes) (Figure 4.7F). For example, Mup gene family, known as sexually dimorphic genes 

(Clodfelter et al., 2006) located at 60.1-61.9 Mbp on chromosome 4 were highly upregulated 

in males and have male-specific cis-eQTLs (Figure 4.8 and 4.9).  
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Figure 4.7. Sex-biased eQTLs and their relationship with sex-specific DEGs and 

narrow-sense heritability (h2) in liver transcriptome in the DO-F1 mice.  

(A) Narrow sense heritability of autosomal transcripts, cis-eQTL genes, and trans-eQTL 

genes between sexes. (B) Gene-by-sex interactions into four categories: female-specific 

eQTL, male-specific eQTL, overlapping eQTL between sexes with same direction or 

opposite direction. (C) Proportion of the sex-specific cis-eQTLs or trans-eQTLs at multiple 

genome-wide P-value thresholds from 0.05 to 0.63 between sexes. The white number in the 

bar graph is the number of sex-specific eQTLs or eQTLs in both sexes. Red bar contains 

female-specific eQTLs, blue bar contains male-specific eQTLs, and yellow bar contains 

eQTLs in both sexes. (D,E) The number of significant (P<0.05) genome-wide trans-eQTLs in 

females (D) and males (E) occurring within a 4 Mbp genomic window. (F) Overlaps between 

sex-specific DEGs and genes that have sex-biased eQTLs (sb-eGenes). Red circle contains 

female-specific DEGs, blue circle contains male-specific DEGs, pink circle contains female-

specific eGenes, and light blue circle contains male-specific eGenes.   
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Figure 4.8. Genome-wide distribution of sex-biased genes with genetic regulations. 
Genomic position enrichment of sex-biased local expression QTL (cis-eQTL) and gene 

expression across autosome. The outer layer shows the chromosome location. The outer track 

represent difference of LOD scores for 1,718 cis-eQTLs (657 female-specific cis-eQTLs, 310 

male-specific cis-eQTLs, and 751 overlapping cis-eQTLs) between females and males. 

Female-biased cis-eQTLs have positive LOD difference range (red) and male-biased cis-

eQTLs have negative LOD difference range (blue). Each dot represents a sex-biased cis-

eQTL on each chromosome of the mouse genome for a given transcript. The inner track 

shows the relative log2fold change between sexes for 13,094 liver gene expressions. Red and 

blue dots are upregulated genes in females and males, respectively. 
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Figure 4.9. Enrichment of sex-biased genes with genetic regulations on chromosome 4. 
(A) Expressions of 10 Mup genes such as Mup1, Mup2, Mup8, Mup9, Mup10, Mup11, Mup13, Mup17, Mup18, and Mup-ps17 (log2TPM) 

between sexes, respectively. 10 Mup genes were significantly upregulated in males (P < 0.001). The p-values were confirmed by 

Wilcoxon signed-rank test. (B) Comparison of cis-QTLs for 10 Mup genes in between females and males on chromosome 4. LOD score in 

female mice is red line and LOD score in female mice is blue line. 

1
8
9
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Table 4.7. The number of cis-eQTLs and trans-eQTLs at multiple genome-wide P value 

thresholds from 0.05 to 0.63 in DO-F1 mice. n = 162 

 Total 13094 transcripts Permutation-based LOD threshold 

cis-eQTL 0.05 0.1 0.63 

Female mice 1408 1587 2001 

Male mice 1061 1197 1566 

trans-eQTL 0.05 0.1 0.63 

Female mice 980 1857 7311 

Male mice 1331 2393 8910 

Total eQTL 0.05 0.1 0.63 

Female mice 2388 3444 9312 

Male mice 2392 3590 10476 

 

Table 4.8. Fisher's exact test to evaluate the overlap between sex-specific DEGs with 

sex-biased eQTLs. 

    # DEGs 

    Yes No Total 

# female-biased 

eQTL 

Yes 1340 918 2258 

No 7526 3310 10836 

Total 8866 4228 13094 

Fisher's exact test in females: odds ratio 0.64, 95% CI 0.58–0.71, p-value = 2.2E-16) 

# male-biased 

eQTL 

Yes 1401 849 2250 

No 7465 3379 10844 

Total 8866 4228 13094 

Fisher's exact test in males: odds ratio 0.75, 95% CI 0.68–0.82, p-value = 2.0E-09) 

 

 

 

 

 

 

 



191 

 

4.5.5. Sex-Specific Quantitative Trait Loci Mapping for Atherosclerosis and Cardio-

metabolic Traits 

We next assessed the heritability for clinical traits to examine the genetic contribution 

of our 20 cardio-metabolic traits.  Similar to our studies of gene expression, the number of 

traits in females with a lower heritability than males was 11 out of 15 traits (73.3%) 

excluding traits with <0.1 h2 differences. In both sexes, traits with h2 less than 0.5 include 

plasma ALT, plasma HDL-C, and blood pressure (diastolic/systolic/mean arterial blood 

pressure, beat per minute, and tail blood volume) (Figure 4.10 and Table 4.9).  

Based on our observation of sex-specific differences in cardiometabolic traits and 

gene expression, we next investigated genetic loci that were associated with traits in each sex. 

We first focused on the identified aortic lesion area QTLs. Specifically in the atherosclerosis 

mouse model, since females are more susceptible than males, and the effects on host genetics 

also perturb sexual dimorphism (AlSiraj et al., 2019; Su et al., 2006), we conducted QTL 

analysis in sex additive model, female mice, and male mice, respectively. A female-specific 

model identified one highly suggestive (P<0.1) QTL on chromosome 10 (Figure 4.11A and 

4.11C and Table 4.10) and one significant (P<0.05) novel QTL was identified on 

chromosome 19 only in a male-specific model (Figure 4.11B and 4.11D and Table 4.10). 

We identified 33 and 58 genes in the confidence intervals for aortic lesion area QTLs on 

chromosomes 10 and 19, and the number of expressed genes in the liver were 28 and 58, 

respectively (Table 4.11). Next, we also performed QTL analysis on 20 cardiometabolic 

traits to explore the sex-specific QTLs for cardiometabolic traits associated with 

atherosclerosis. Figure 4.10 shows 8 out of the 20 cardio-metabolic traits illustrate the 

substantial effect of host genetics on sexual dimorphism (Table 4.10). Specifically, we 

identified QTLs for plasma ALT and TG in females only, and QTLs for plasma glucose, urea 

nitrogen, and betaine only in males. 
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Figure 4.10. Genetic architecture of quantitative trait loci (QTL) for cardiometabolic 

traits.  

Circos plot showing an overview of genetic regulation of cardio-metabolic traits at 24 weeks. 

The outermost track (blue bars for males and red bars for females) show the relative log2fold 

change (FC) (male versus female). The middle track represents narrow-sense heritability (h2) 

estimates for the cardio-metabolic traits in females (red) and males (blue). The innermost 

track represents logarithm of the odds (LOD) scores of significant quantitative trait loci 

(QTL) in females (red) and males (blue), with their respective chromosomes indicated below 

(male) or above (female) dots. 
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Table 4.9. Narrow sense heritability for cardio-metabolic traits in DO-F1 mice. n = 461 

(235 females and 226 males). 

Category Trait Unit Weeks 
Narrow sense heritability 

All mice Female mice Male mice 

Colorimetric 

Chemistry 
Albumin g/L 24 0.64 0.67 1.00 

Colorimetric 

Chemistry 
ALT U/L 24 0.19 0.47 0.40 

Colorimetric 

Chemistry 
Total Cholesterol mg/dL 24 0.37 0.42 0.77 

Colorimetric 

Chemistry 

VLDL/LDL-

Cholesterol 
mg/dL 24 0.35 0.42 0.74 

Colorimetric 

Chemistry 
HDL-Cholesterol mg/dL 24 0.31 0.43 0.45 

Colorimetric 

Chemistry 
Glucose mg/dL 24 0.38 0.46 0.59 

Colorimetric 

Chemistry 
Triglyceride mg/dL 24 0.29 0.59 0.38 

Colorimetric 

Chemistry 
Urea/BUN mmol/L 24 0.22 0.27 0.56 

Blood Pressure 
Diastolic Blood 

Pressure 
mmHG 24 0.10 0.09 0.04 

Blood Pressure Systolic Blood Pressure mmHG 24 0.12 0.23 0.17 

Blood Pressure 
Mean Atrial Blood 

Pressure 
mmHG 24 0.11 0.14 0.07 

Blood Pressure Heart Rate BPM 24 0.22 0.10 0.42 

Blood Pressure Cardiac Output µl/cycle 24 0.32 0.28 0.53 

Blood Pressure Tail Blood Volume µl 24 0.28 0.31 0.48 

LC/MS TMAO µM 24 0.23 0.45 0.67 

LC/MS Choline µM 24 0.53 0.83 0.32 

LC/MS Betaine µM 24 0.41 0.81 0.53 

LC/MS Carnitine µM 24 0.43 0.61 0.41 

Atherosclerosis Aortic Lesion Area 
µm2/sectio

n 
24 0.50 0.64 0.98 

Atherosclerosis 
Total aortic Lesion 

Area 
µm2 24 0.46 0.62 1.00 
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Figure 4.11. Aortic lesion area chromosomal QTL graphs in four models of DO-F1 

mice.  

(A,B) Genome-wide aortic lesion area QTLs on chromosome 10 in female mice (A) and 

chr19 in male mice (B) fed a synthetic high-fat and high-cholesterol (HFHC) diet for 16 

weeks. Dashed lines correspond to P < 0.05 (significant), P < 0.1 (highly suggestive) or P < 

0.63 (suggestive) thresholds. (C,D) Comparison of aortic lesion area QTLs in three models on 

chromosome 10 in female mice (C) and chromosome 19 in male mice (D). Black, males and 

females sex–genotype interaction model; red, sex additive model; green, female mice; blue, 

male mice. Dashed lines correspond to P < 0.05 (significant) and P < 0.1 (highly suggestive) 
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Table 4.10. Significant QTL results for cardiometabolic traits in four models and strain difference in regression coefficient of the 

association between each trait and marker SNP. n = 461 (235 females and 226 males). 

Model Traits Chr 
Position  

(Mbp) 
LOD CI (low)a CI(hi)a 

LOD 

threshold 

(p < 0.05) 

#Genes Marker 

Female mice Plasma triglyceride 1 36.50 8.11 35.81 38.31 8.08 31 UNC454349 

Female mice Plasma carnitine 8 105.06 12.35 104.65 105.93 7.78 56 UNC15429900 

Female mice Plasma ALT 8 113.40 13.55 112.14 113.83 12.33 2 UNCHS024248 

Female mice Aortic lesion area (Average) 4 132.73 6.51 55.60 134.86 7.60 502 UNC8247956 

Female mice Aortic lesion area (Average) 10 28.85 7.30 22.90 30.75 7.60 33 JAX00286290 

Female mice Aortic lesion area (Average) 14 68.04 6.74 37.40 70.35 7.60 237 UNC24171938 

Female mice Aortic lesion area (Total) 10 28.85 6.71 22.78 64.75 7.68 177 JAX00286290 

Male mice Plasma betaine 2 83.51 13.28 83.51 83.53 12.60 1 ICR5037 

Male mice Plasma urea 2 134.38 7.74 133.94 136.06 7.70 6 UNCHS006856 

Male mice Plasma carnitine 5 45.32 11.28 44.71 46.59 10.02 8 UNCHS014223 

Male mice Plasma glucose 11 100.41 8.45 100.11 104.92 7.72 122 UNC20243587 

Male mice Aortic lesion area (Average) 19 38.17 7.92 32.00 40.23 7.56 58 UNCHS047709 

Male mice Aortic lesion area (Total) 19 38.17 8.57 32.10 40.23 7.69 57 UNCHS047709 

Sex additive Plasma carnitine 5 45.42 10.02 45.38 46.55 8.70 7 UNCHS014228 

Sex additive Plasma triglyceride 6 124.86 7.78 122.58 125.54 7.64 70 UNC12014770 

Sex additive Tail blood volume 15 76.31 8.01 76.11 79.72 7.66 108 UNCHS040869 

Sex additive Diastolic BP 17 82.93 8.20 81.63 83.56 7.90 4 UNC28476662 

Sex additive Mean arterial BP 17 82.93 8.14 81.63 83.56 7.86 4 UNC28476662 

Sex additive Aortic lesion area (Average) 19 33.00 6.55 32.09 39.09 7.69 54 UNCHS047622 

Sex additive Aortic lesion area (Total) 19 37.48 6.80 32.09 40.12 7.71 54 UNCHS047690 

Sex interactive Plasma albumin 3 93.19 11.90 92.85 97.99 10.81 96 UNCHS009409 

Sex interactive Plasma glucose 11 100.41 12.79 100.11 100.47 11.54 39 UNC20243587 

Sex interactive Aortic lesion area (Average) 4 131.37 9.94 55.60 132.70 10.68 379 JAX00566629 

Sex interactive Aortic lesion area (Average) 10 63.65 9.27 23.18 66.19 10.68 201 JAX00290960 

Sex interactive Aortic lesion area (Total) 4 131.37 9.83 62.10 132.70 10.68 406 JAX00566629 
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Regression coefficient of the association between trait and Marker SNP Strain that 

have highest 

coefficient 

Strain that 

have lowest 

coefficient 
A/J B6 129 NOD NZO CAST PWK WSB 

-100.40 -117.95 -48.13 17.25 -17.51 -27.11 397.94 -104.10 PWK B6 

-0.99 -0.21 -1.25 -1.18 -1.68 2.38 1.87 1.06 CAST NZO 

-46.79 -53.92 -37.66 -73.50 -115.38 502.82 -110.25 -65.32 CAST NZO 

0.23 0.24 0.07 -0.06 0.20 -0.46 0.16 -0.39 B6 CAST 

-0.06 0.05 0.16 -0.13 0.40 -0.24 -0.38 0.21 NZO PWK 

0.09 0.33 -0.06 0.20 -0.41 -0.03 -0.23 0.11 B6 NZO 

-0.06 0.11 0.19 -0.13 0.36 -0.23 -0.40 0.16 NZO PWK 

-1.15 1.09 1.39 -0.63 -0.72 -0.35 0.36 0.00 129 A/J 

0.17 -0.25 -0.40 -0.53 0.51 0.56 0.11 -0.16 CAST NOD 

-1.94 -1.94 -0.72 11.62 -2.66 -2.61 -0.16 -1.59 NOD NZO 

-18.09 -22.64 -17.97 41.52 15.04 33.43 -4.55 -26.74 NOD WSB 

0.15 0.00 0.27 -0.50 -0.15 0.19 0.34 -0.30 PWK NOD 

0.14 0.00 0.27 -0.47 -0.16 0.15 0.33 -0.27 PWK NOD 

-1.62 -1.17 -0.50 9.61 -1.96 -2.23 -0.28 -1.84 NOD CAST 

-0.16 0.34 0.08 0.00 0.25 -0.22 -0.28 0.00 B6 CAST 

-2.37 -2.75 4.21 -1.99 0.06 9.20 0.33 -6.68 CAST WSB 

0.67 -5.93 -0.03 -0.57 -3.74 -1.04 11.01 -0.37 PWK B6 

0.57 -5.87 -0.05 -0.23 -3.76 -1.16 10.77 -0.26 PWK B6 

0.28 -0.06 -0.12 -0.23 -0.11 0.13 0.17 -0.06 A/J NOD 

0.26 -0.07 0.15 -0.20 -0.21 -0.09 0.26 -0.11 PWK NOD 

1.30 -0.18 0.60 0.02 -0.73 -0.63 -0.59 0.21 A/J NZO 

-7.34 -12.35 -1.40 10.98 6.32 21.85 -8.18 -9.88 CAST B6 

0.18 0.09 -0.08 -0.21 0.16 -0.18 -0.03 0.07 A/J NOD 

0.07 -0.07 0.19 0.01 0.24 -0.15 -0.25 -0.04 NZO PWK 

0.18 0.09 -0.08 -0.21 0.16 -0.18 -0.03 0.07 A/J NOD 
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Table 4.11. 28 genes in female aortic lesion area QTL on chromosome 10 and 58 genes in male aortic lesion area QTL on chromosome 

19 and their DEG status and correlation with aortic lesion area. 

Model Gene Name Chr Start (Mbp) End (Mbp) DEG 

Correlation with aortic lesion area 

r (Female) 

adj. p-

value 

(Female) 

r 

(Male) 

adj. p-

value 

(Male) 

Female mice Tbpl1 TATA box binding protein-like 1 10 22.70 22.73 Female -0.215 0.095 0.064 0.657 

Female mice Rps12 ribosomal protein S12 10 23.79 23.79 No -0.267 0.033 -0.101 0.471 

Female mice Slc18b1 solute carrier family 18, subfamily B, member 1 10 23.80 23.83 Male -0.066 0.640 0.035 0.804 

Female mice Vnn3 vanin 3 10 23.85 23.87 Female -0.036 0.806 -0.096 0.473 

Female mice Vnn1 vanin 1 10 23.89 23.91 Male -0.082 0.555 -0.083 0.538 

Female mice Stx7 syntaxin 7 10 24.15 24.19 Female -0.088 0.522 0.190 0.137 

Female mice Moxd1 monooxygenase, DBH-like 1 10 24.22 24.30 Male -0.253 0.044 0.068 0.636 

Female mice Ccn2 cellular communication network factor 2 10 24.60 24.60 No -0.097 0.479 0.015 0.916 

Female mice Enpp1 ectonucleotide pyrophosphatase/phosphodiesterase 1 10 24.64 24.71 Female -0.188 0.143 -0.382 0.001 

Female mice Enpp3 ectonucleotide pyrophosphatase/phosphodiesterase 3 10 24.77 24.84 Male 0.058 0.682 -0.095 0.480 

Female mice Med23 mediator complex subunit 23 10 24.87 24.91 Female -0.217 0.087 0.072 0.599 

Female mice Arg1 arginase, liver 10 24.92 24.93 No -0.134 0.310 -0.244 0.052 

Female mice Akap7 A kinase (PRKA) anchor protein 7 10 25.17 25.30 Female 0.096 0.480 -0.084 0.534 

Female mice Epb41l2 erythrocyte membrane protein band 4.1 like 2 10 25.36 25.52 Female -0.182 0.158 0.070 0.608 

Female mice Smlr1 small leucine-rich protein 1 10 25.53 25.54 Male -0.041 0.791 0.077 0.589 

Female mice L3mbtl3 L3MBTL3 histone methyl-lysine binding protein 10 26.27 26.38 No -0.118 0.380 0.145 0.267 

Female mice Arhgap18 Rho GTPase activating protein 18 10 26.77 26.92 Female -0.214 0.092 0.023 0.873 

Female mice Lama2 laminin, alpha 2 10 26.98 27.62 Female -0.230 0.068 -0.034 0.809 

Female mice Gm10145 predicted gene 10145 10 27.94 27.94 No 0.152 0.255 -0.018 0.905 

Female mice Ptprk protein tyrosine phosphatase, receptor type, K 10 28.07 28.60 No -0.234 0.037 -0.119 0.367 

Female mice Themis thymocyte selection associated 10 28.67 28.88 Male -0.119 0.390 0.125 0.363 

Female mice Echdc1 enoyl Coenzyme A hydratase domain containing 1 10 29.31 29.35 Male -0.068 0.631 -0.399 0.001 

Female mice Rnf146 ring finger protein 146 10 29.34 29.36 Male -0.019 0.899 -0.143 0.272 

Female mice Rspo3 R-spondin 3 10 29.45 29.54 No -0.105 0.439 -0.101 0.448 
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Female mice Gm10275 predicted pseudogene 10275 10 29.70 29.70 No -0.213 0.097 0.168 0.209 

Female mice Trmt11 tRNA methyltransferase 11 10 30.53 30.60 Male -0.152 0.246 0.009 0.951 

Female mice Hint3 histidine triad nucleotide binding protein 3 10 30.60 30.62 Male -0.138 0.295 -0.077 0.572 

Female mice Ncoa7 nuclear receptor coactivator 7 10 30.65 30.81 Female -0.093 0.497 0.102 0.445 

Male mice A1cf APOBEC1 complementation factor 19 31.87 31.95 Male -0.064 0.653 -0.380 0.002 

Male mice Asah2 N-acylsphingosine amidohydrolase 2 19 31.98 32.10 Male -0.090 0.513 -0.175 0.173 

Male mice Sgms1 sphingomyelin synthase 1 19 32.12 32.39 Female -0.232 0.065 0.237 0.059 

Male mice Rpl9-ps6 ribosomal protein L9, pseudogene 6 19 32.47 32.47 No 0.092 0.518 -0.003 0.987 

Male mice Minpp1 multiple inositol polyphosphate histidine phosphatase 1 19 32.49 32.52 No -0.326 0.007 -0.062 0.654 

Male mice Papss2 3'-phosphoadenosine 5'-phosphosulfate synthase 2 19 32.60 32.67 Female 0.151 0.250 -0.285 0.021 

Male mice Atad1 ATPase family, AAA domain containing 1 19 32.67 32.74 Male -0.269 0.030 -0.197 0.122 

Male mice Pten phosphatase and tensin homolog 19 32.76 32.83 Male -0.141 0.284 -0.321 0.009 

Male mice Rnls renalase, FAD-dependent amine oxidase 19 33.14 33.39 No -0.067 0.646 0.072 0.619 

Male mice Lipo3 lipase, member O3 19 33.56 33.59 Female -0.082 0.553 0.146 0.264 

Male mice Stambpl1 STAM binding protein like 1 19 34.19 34.24 Female 0.128 0.335 0.174 0.177 

Male mice Acta2 actin, alpha 2, smooth muscle, aorta 19 34.24 34.26 No -0.025 0.867 0.056 0.683 

Male mice Fas Fas (TNF receptor superfamily member 6) 19 34.29 34.33 Female 0.146 0.266 -0.035 0.805 

Male mice Lipa lysosomal acid lipase A 19 34.49 34.53 Female 0.058 0.681 -0.025 0.860 

Male mice Ifit2 interferon-induced protein with tetratricopeptide repeats 2 19 34.55 34.58 Female 0.067 0.637 0.192 0.133 

Male mice Ifit3 interferon-induced protein with tetratricopeptide repeats 3 19 34.58 34.59 Female 0.010 0.949 0.120 0.382 

Male mice 
Ifit3b 

interferon-induced protein with tetratricopeptide repeats 

3B 
19 34.61 34.61 Female 

0.123 0.369 0.212 0.104 

Male mice Ifit1 interferon-induced protein with tetratricopeptide repeats 1 19 34.64 34.65 Female 0.097 0.479 0.161 0.214 

Male mice 
Slc16a12 

solute carrier family 16 (monocarboxylic acid 

transporters), member 12 
19 34.67 34.75 

Female -0.003 0.984 -0.141 0.280 

Male mice Pank1 pantothenate kinase 1 19 34.81 34.88 Male 0.100 0.464 -0.269 0.030 

Male mice Rpp30 ribonuclease P/MRP 30 subunit 19 36.08 36.10 No -0.034 0.818 0.170 0.188 

Male mice Ankrd1 ankyrin repeat domain 1 (cardiac muscle) 19 36.11 36.12 Female -0.150 0.263 0.059 0.685 

Male mice Pcgf5 polycomb group ring finger 5 19 36.35 36.46 Male -0.114 0.396 0.036 0.797 

Male mice Hectd2 HECT domain E3 ubiquitin protein ligase 2 19 36.55 36.62 Male -0.259 0.038 -0.041 0.770 

Male mice Hectd2os Hectd2, opposite strand 19 36.62 36.69 Male 0.250 0.047 0.013 0.936 

Male mice Ppp1r3c protein phosphatase 1, regulatory subunit 3C 19 36.73 36.74 No 0.187 0.153 -0.023 0.882 

Male mice 
Tnks2 

tankyrase, TRF1-interacting ankyrin-related ADP-ribose 

polymerase 2 
19 36.83 36.89 No 

-0.207 0.104 0.048 0.730 
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Male mice Btaf1 B-TFIID TATA-box binding protein associated factor 1 19 36.93 37.01 Male -0.308 0.012 0.139 0.290 

Male mice Cpeb3 cytoplasmic polyadenylation element binding protein 3 19 37.02 37.21 Male -0.229 0.069 -0.223 0.077 

Male mice Marchf5 membrane associated ring-CH-type finger 5 19 37.21 37.22 Male -0.354 0.003 -0.106 0.424 

Male mice Ide insulin degrading enzyme 19 37.27 37.33 Male -0.269 0.030 0.041 0.772 

Male mice Rpl10-ps6 ribosomal protein L10, pseudogene 6 19 37.30 37.30 No 0.052 0.729 0.228 0.078 

Male mice Kif11 kinesin family member 11 19 37.38 37.42 Female -0.155 0.246 -0.032 0.832 

Male mice Gm38345 predicted gene, 38345 19 37.43 37.43 No -0.092 0.518 -0.137 0.313 

Male mice Hhex hematopoietically expressed homeobox 19 37.43 37.44 Male -0.005 0.973 0.033 0.814 

Male mice Exoc6 exocyst complex component 6 19 37.54 37.68 No -0.329 0.007 -0.122 0.357 

Male mice Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 1 19 37.70 37.70 No -0.037 0.799 -0.119 0.368 

Male mice Myof myoferlin 19 37.90 38.04 Female -0.059 0.676 0.187 0.144 

Male mice Rbp4 retinol binding protein 4, plasma 19 38.12 38.13 Male -0.060 0.671 -0.417 0.000 

Male mice Fra10ac1 FRA10AC1 homolog (human) 19 38.19 38.22 Male 0.072 0.607 -0.037 0.791 

Male mice Slc35g1 solute carrier family 35, member G1 19 38.40 38.41 Male -0.263 0.034 -0.091 0.498 

Male mice Plce1 phospholipase C, epsilon 1 19 38.48 38.79 No -0.283 0.022 0.171 0.186 

Male mice Noc3l NOC3 like DNA replication regulator 19 38.79 38.82 Male -0.275 0.026 0.147 0.259 

Male mice Tbc1d12 TBC1D12: TBC1 domain family, member 12 19 38.84 38.92 Male -0.160 0.219 -0.016 0.912 

Male mice Hells helicase, lymphoid specific 19 38.93 38.97 No -0.352 0.004 -0.016 0.913 

Male mice Cyp2c55 cytochrome P450, family 2, subfamily c, polypeptide 55 19 39.01 39.04 Female -0.035 0.810 -0.002 0.990 

Male mice Cyp2c29 cytochrome P450, family 2, subfamily c, polypeptide 29 19 39.29 39.33 No 0.311 0.011 0.060 0.664 

Male mice Cyp2c38 cytochrome P450, family 2, subfamily c, polypeptide 38 19 39.39 39.46 Female 0.153 0.243 -0.194 0.130 

Male mice Cyp2c39 cytochrome P450, family 2, subfamily c, polypeptide 39 19 39.51 39.57 Female 0.231 0.066 -0.235 0.062 

Male mice Cyp2c67 cytochrome P450, family 2, subfamily c, polypeptide 67 19 39.61 39.65 Male -0.223 0.082 -0.364 0.003 

Male mice Cyp2c68 cytochrome P450, family 2, subfamily c, polypeptide 68 19 39.69 39.74 Female 0.123 0.372 -0.171 0.200 

Male mice Cyp2c40 cytochrome P450, family 2, subfamily c, polypeptide 40 19 39.77 39.81 Female 0.225 0.075 -0.036 0.799 

Male mice Cyp2c69 cytochrome P450, family 2, subfamily c, polypeptide 69 19 39.84 39.89 Female 0.182 0.164 -0.080 0.573 

Male mice Cyp2c37 cytochrome P450, family 2. subfamily c, polypeptide 37 19 39.99 40.01 Female 0.200 0.117 -0.062 0.652 

Male mice Cyp2c54 cytochrome P450, family 2, subfamily c, polypeptide 54 19 40.04 40.07 No 0.200 0.123 -0.029 0.847 

Male mice Cyp2c50 cytochrome P450, family 2, subfamily c, polypeptide 50 19 40.09 40.11 No 0.229 0.068 0.026 0.854 

Male mice Cyp2c70 cytochrome P450, family 2, subfamily c, polypeptide 70 19 40.15 40.19 No 0.237 0.059 0.053 0.703 

Male mice Pdlim1 PDZ and LIM domain 1 (elfin) 19 40.22 40.27 Female 0.009 0.953 0.096 0.475 
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4.5.6. Colocalization between aortic lesion area QTLs and cis-eQTLs, and correlation 

approach reveal sex-specific candidate genes associated with atherosclerosis  

Next, we sought cis-eQTLs colocalized with female or male aortic lesion area QTLs to 

prioritize the candidate genes associated with lesion development. We found 10 cis-eQTLs 

colocalized with female aortic lesion area QTL on chromosome 10 (LOD: 7.3, BCI: 22.90-

30.75 Mbp), and 16 cis-eQTLs colocalized with male aortic lesion area QTL on chromosome 

19 (LOD: 7.92, BCI: 32.00-40.23 Mbp) (Table 4.12). Of these 26 genes that have cis-eQTLs, 

19 were sex-specific DEGs and Pten (phosphatase and tensin homolog) on chromosome 19 

was the only gene that showed a significant upregulation (P≤2.4×10-6) and correlation (R=-

0.32, P≤0.0047) with the aortic lesion area in males (Figures. 4.12A and 4.12B; Table 4.12). 

We next compared whether shared founder allele effects were observed between aortic lesion 

areas QTL and Pten cis-QTL. The CAST and PWK alleles were associated with increased 

lesion size, and the NOD, NZO, and WSB alleles were associated with decreased lesions on 

chromosome 19 QTL (Figure 4.12C). However, cis-eQTL for Pten showed the opposite 

allele effect pattern as the aortic lesion area QTL. Pten cis-eQTL also showed a dependence 

on the CAST and PWK allele, but in the opposite direction (Figure 4.12C). Only one SNP 

(rs30401869) in the Pten gene was associated with both aortic lesion area (P<0.05) and Pten 

gene expression (P<0.001 in all mice, females, or males) (Figure 4.12D and 4.12E and 

Table 4.13). The direction of these associations suggests that SNPs present in CAST and 

PWK lead to a decrease of Pten expression and an increase of aortic lesion size at the 

colocalized locus.
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Table 4.12. Co-localization between significant aortic lesion area QTLs and liver cis-eQTLs, and a direct correlation between the 

mapped trait and transcript. 

Aortic lesion area QTL cis-eQTLb Trait:Transcript correlation coefficient and p-value 

Model Chr 
Position  

(Mbp) 
LOD 

CI 

(low)a 

CI 

(hi)a 
Gene Chr 

Position  

(Mbp) 
LOD 

CI 

(low)a 

CI 

(hi)a 
DEG 

Whole mice Female mice 
Male 

mice 

r 
adjusted 

p-value 
r 

adjusted 

p-value 
r 

adjusted 

p-value 

Female mice 10 28.85 7.30 22.73 30.80 Rps12 10 24.18 38.93 23.11 24.63 No -0.138 0.109 -0.267 0.033 -0.101 0.471 

Female mice 10 28.85 7.30 22.73 30.80 Ptprk 10 27.86 9.20 26.23 28.90 No -0.156 0.069 -0.234 0.037 -0.119 0.367 

Female mice 10 28.85 7.30 22.73 30.80 Moxd1 10 23.90 16.38 23.43 24.63 Male -0.202 0.017 -0.253 0.044 0.068 0.636 

Female mice 10 28.85 7.30 22.73 30.80 Arhgap18 10 26.43 11.18 26.38 26.88 Female -0.112 0.879 -0.214 0.092 0.023 0.873 

Female mice 10 28.85 7.30 22.73 30.80 Gm10145 10 28.35 28.33 27.92 28.67 No 0.108 0.221 0.152 0.255 -0.018 0.905 

Female mice 10 28.85 7.30 22.73 30.80 Hint3 10 30.41 21.80 29.75 31.01 Male -0.123 0.203 -0.138 0.295 -0.077 0.572 

Female mice 10 28.85 7.30 22.73 30.80 Akap7 10 25.61 14.64 24.17 25.66 Female 0.015 0.853 0.096 0.480 -0.084 0.534 

Female mice 10 28.85 7.30 22.73 30.80 Slc18b1 10 23.56 8.84 23.11 25.06 Male -0.018 0.159 -0.066 0.640 0.035 0.804 

Female mice 10 28.85 7.30 22.73 30.80 Smlr1 10 25.66 9.74 24.58 25.80 Male -0.009 0.923 -0.041 0.791 0.077 0.589 

Female mice 10 28.85 7.30 22.73 30.80 Vnn3 10 23.73 22.33 23.50 24.63 Female -0.061 0.504 -0.036 0.806 -0.096 0.473 

Male mice 19 38.17 7.92 31.89 40.25 Cyp2c67 19 40.25 11.73 38.67 40.51 Male -0.458 4.27E-09 -0.223 0.082 -0.364 0.003 

Male mice 19 38.17 7.92 31.89 40.25 Pten 19 30.90 8.85 29.37 34.07 Male -0.194 0.022 -0.141 0.284 -0.321 0.009 

Male mice 19 38.17 7.92 31.89 40.25 Cyp2c39 19 38.83 42.82 38.67 40.23 Female 0.074 0.408 0.231 0.066 -0.235 0.062 

Male mice 19 38.17 7.92 31.89 40.25 Rpl10-ps6 19 38.67 10.84 37.26 40.25 No 0.170 0.046 0.052 0.729 0.228 0.078 

Male mice 19 38.17 7.92 31.89 40.25 Cyp2c38 19 40.22 20.00 37.57 40.25 Female 0.025 0.787 0.153 0.243 -0.194 0.130 

Male mice 19 38.17 7.92 31.89 40.25 Asah2 19 32.10 11.98 31.82 32.43 Male -0.123 0.158 -0.090 0.513 -0.175 0.173 

Male mice 19 38.17 7.92 31.89 40.25 Cyp2c68 19 37.59 11.56 37.48 40.25 Female 0.308 1.57E-04 0.123 0.372 -0.171 0.200 

Male mice 19 38.17 7.92 31.89 40.25 Lipo3 19 34.02 19.25 32.91 34.28 Female 0.009 0.924 -0.082 0.553 0.146 0.264 

Male mice 19 38.17 7.92 31.89 40.25 Slc16a12 19 34.84 9.45 34.28 36.37 Female -0.051 0.579 -0.003 0.984 -0.141 0.280 

Male mice 19 38.17 7.92 31.89 40.25 Pdlim1 19 40.45 9.51 38.67 40.51 Female 0.047 0.611 0.009 0.953 0.096 0.475 

Male mice 19 38.17 7.92 31.89 40.25 Rnls 19 34.02 12.89 32.85 34.28 No 0.151 0.079 -0.067 0.646 0.072 0.619 

Male mice 19 38.17 7.92 31.89 40.25 Minpp1 19 32.40 15.52 31.73 32.88 No -0.201 0.017 -0.326 0.007 -0.062 0.654 

Male mice 19 38.17 7.92 31.89 40.25 Fra10ac1 19 38.17 10.75 37.57 38.68 Male 0.013 0.894 0.072 0.607 -0.037 0.791 

Male mice 19 38.17 7.92 31.89 40.25 Pcgf5 19 36.19 8.89 35.96 37.29 Male -0.057 0.531 -0.114 0.396 0.036 0.797 

Male mice 19 38.17 7.92 31.89 40.25 Fas 19 34.28 10.86 34.04 35.95 Female 0.076 0.396 0.146 0.266 -0.035 0.805 

Male mice 19 38.17 7.92 31.89 40.25 Rpl9-ps6 19 32.43 15.73 32.40 32.53 No 0.035 0.705 0.092 0.518 -0.003 0.987 
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Table 4.13. List of Pten SNP that showed significant difference of aortic lesion area and gene expression between heterozygous and 

homozygous genotypes. 

Gene Maker Chr Position SNP 

P-value for 

aortic lesion 

area 

Aortic lesion 

area in 

heterozygous 

genotype mice 

P-value for 

gene 

expression 

(All mice) 

P-value for 

gene 

expression 

(Females) 

P-value for 

gene 

expression 

(Males) 

Gene 

expression in 

heterozygous 

genotype mice 

Strains that have 

minor alleles 

Major 

allele 

Minor 

allele 

Pten UNC30214131 19 32.802285 rs30401869 0.042 Lower 2.00E-07 2.00E-07 2.00E-07 Higher B6;129;CAST;PWK T C 
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Figure 4.12. Sex-specific aortic lesion area QTLs co-localized with liver gene expression of 

Pten in males.  

(A) Pten gene (log2TPM) is highly upregulated in males (P<1×10-5) and negatively correlated 

with aortic lesion area in males (R = -0.32, P<0.0047), not females (R = -0.14, P<0.21) by 

Spearman correlation. The p-values were Wilcoxon signed-rank test between sexes for Pten gene 

expressions. (B) LOD profiles on chromosome 19 highlighting a locus significantly associated 

with the liver Pten gene expression and aortic lesion area in male mice. A black line for cis-

eQTL in sex additive model (N=162) and a blue line for aortic lesion area QTL in male mice 

(N=226). (C) Estimated founder allele effect plots for aortic lesion area QTL in males and Pten 

cis-eQTL in sex additive model. Male aortic lesion area was linked to the high allele in PWK 

strain and low allele in NOD strain and Pten gene expression was linked to the high allele in 

NOD strain and low allele in PWK strain at the chromosome 19 QTL. (D) Association between a 

SNP (rs30401869) in Pten gene and aortic lesion area in males (blue color) or liver Pten gene 

expression in all mice (grey color), females (red color), and males (blue color). (E) Estimated 

founder strain levels of aortic lesion area in males and liver Pten gene expression in all mice 

were inferred from the founder strain coefficients observed at the SNP (rs30401869). B6, 

C57BL/6J; 129, 129S1/SvlmJ; NOD, NOD/ShiLtJ; NZO, NZO/HILtJ; CAST, CAST/EiJ; PWJ, 

PWK/PhJ; WSB, WSB/EiJ.   
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4.5.7. Identification of liver transcription factors with sex-specific gene expression, genetic 

regulation, and gene-trait correlation 

We hypothesized that specific differences in the expression of transcription factors be 

critical determinants of sexually dimorphic gene expression which is supported in the literature 

(Naqvi et al., 2019). To evaluate whether sex-specific expression of the liver transcriptome and 

genetic regulations are useful as a means to dissect the molecular basis of liver transcription 

factors (TFs) for atherosclerosis, we examined the sex-specific expression and genetic regulation 

of liver TFs and performed correlation analysis with cardiometabolic traits in each sex. First, we 

prioritized TF binding sites (TFBSs) of 453 mouse TFs identified by large-scale chromatin 

immunoprecipitation sequencing analysis(Kulakovskiy et al., 2018) in promoter regions (i.e., 2 

kb upstream of the transcription start site) and primarily filtered 265 TFs expressed in liver in 

DO-F1 mice. Of these, 172 TFs (64.9 %) were identified as sex-specific DEGs and biological 

pathways that were highly enriched in these sex-specific TFs were associated with inflammatory 

responses such as ‘‘Th17 cell differentiation” (-logP > 13) and “C-type lectin receptor signaling 

pathway’’ (-logP > 8), among others (Figure 4.13A). The 172 TFs include known hormone-

related TFs (i.e. Esr1), nuclear receptors (i.e. Nr1h3, Ppara, and Rara), and non-reported sex-

related TFs. The greatest difference between female and male-biased expressions of TFs was 

observed for TFBS of Cux2, Atf3, Spi1, Irf8, and Esr1 (log2fold change (female vs male) > 0.9) 

and of Onecut1, Bcl6, Foxa1, Ppara, and Xbp1 (log2fold change (female vs male) < -0.5), 

respectively. Interestingly, among these sex-bised TFs, Spi1 and Irf8 localized to a male-specific 

trans-hotspot on chr10. 

Next, we investigated which cardiometabolic traits exhibited sex-specific correlations 

with transcripts including liver TFs. We selected genes that significantly correlated with each of 
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the cardiometabolic traits in each sex at the BH-adjusted p<0.05 level. In general, most 

cardiometabolic traits showed sex-specific correlation with liver transcripts except for plasma 

ALT (Figure 4.14), and this trend was the same for liver TFs (Figure 4.13B).  

We next sought to identify liver TFs that are genetically regulated and contribute to the 

susceptibility of atherosclerosis in a sex-specific manner. We focused on liver TFs that showed 

sex-biased cis-eQTLs and correlated with atherosclerosis (Figure 4.13C). Of the 172 TFs that 

were differently expressed between sexes, only Nr1h3 (encoding Liver X receptor alpha) TF, 

known as a cholesterol sensor (Peet et al., 1998) satisfied the criteria (Figure 4.13C). For 

example, Nr1h3 expression was positively correlated with aortic lesion area only in females 

(Figures 4.13D). However, Nr1h3 expression showed a positive correlation with plasma TC 

regardless of sex, but not with plasma TG (Figures 4.13D). In addition, Nr1h3 had a cis-eQTL in 

both sexes, but with opposite directions of effect (Figures 4.13E). Lastly, we examined direct or 

indirect target genes of Nr1h3 to determine if the sex-biased expression, genetic regulation, and 

correlation with aortic lesion area of Nr1h3 could affect the sex-biased outcome of the genes 

targeted by Nr1h3. Of the 19 Nr1h3-dependent genes reported (Edwards et al., 2002; Wang and 

Tontonoz, 2018), 8 genes upregulated in females showed a strong positive correlation with the 

Nr1h3 expression and plasma TC and TG concentrations in males (Figure 4.13F and Figures 

4.15 and 4.16). These genes are involved in cholesterol efflux (Abcg1), inflammation (Ccl2, 

Ccl7, Il1b, and Ptgs1), lipoprotein remodeling (Lpl and Pltp), and cholesterol synthesis (Rnf145). 

On the other hand, expression of lipogenesis (Acaca, Fasn, and Scd1), phospholipid metabolism 

(Lpcat3), and cholesterol uptake (Ldlr)-related genes were significantly increased in males, and 

there were no significant correlations with Nr1h3 expression in both sexes. Only the direct target 

genes of Nr1h3 TF, Abca1, Abcg1, and Lpl, showed strong positive correlations with Nr1h3 
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expression, aortic lesion area, plasma TC and TG levels in males (Figure 4.13F and Figures 

4.15 and 4.16). Thus, these results suggest that sex-biased regulation of TFs may contribute to 

the pathogenesis of sexually dimorphic atherosclerosis. 
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Figure 4.13. Identification of liver transcription factors with sex-specific gene expression, 

genetic regulation, and gene-trait correlation. 
(A) Top10 KEGG pathway of liver transcription factors (TFs) that have sex-specific gene 

expressions identified in enrichment analysis. Pathways are ordered from top to bottom by 

significance (highest to lowest) and colored by gene richness. (B) Proportion of 265 TFs 

associated (adjusted P < 0.05) with cardiometabolic traits in each sex. Number in the bar is the 

number of TFs associated with the trait in each category. Red bar contains genes that correlate 

with the aortic lesion area in females, blue bar contains genes that correlate with the aortic lesion 

area in males, and yellow bar contains genes that correlate with the aortic lesion area in both 

sexes. The p-values were adjusted using the BH FDR procedure (P<0.05). (C) Identification of 

liver TFs with sex-specific gene expression, genetic regulation, and gene-trait correlation. Purple 

circle contains 172 TFs that have sex-specific gene expressions, orange circle contains 6 TFs that 

have sex-biased cis-eQTLs, and pink circle contains 34 TFs that correlate with the aortic lesion 

area (adjusted P < 0.05) in either sex. (D) Nr1h3 gene (log2TPM) is significantly upregulated in 

females (P<0.001), positively correlated with aortic lesion area in females (R = 0.25, P<0.05), 

not males (R = 0.057, P>0.05), and positively correlated with plasma total cholesterol in both 

sexes (R = 0.32, P<0.001) by Spearman correlation. (E) LOD profiles on chromosome 2 

highlighting a locus significantly associated with the liver Nr1h3 gene expression in both sexes. 

A red line for Nr1h3 cis-eQTL in females (N=85) and a blue line for Nr1h3 cis-eQTL in males 

(N=77). Association between a lead SNP (rs28044553) for Nr1h3 cis-eQTL and liver Nr1h3 

gene expression in females (red color), and males (blue color). (F) Spearman correlation between 

liver Nr1h3 gene expression, aortic lesion area, and plasma total cholesterol and triglyceride with 

target genes of Nr1h3 TF in females (red color) and males (blue color). DEG status (Female: 

upregulated in females; Male: upregulated in males; NS: non-significant between sexes) for 

target genes of Nr1h3 TF were shown along the left axis. The p-values were adjusted using the 

Benjamini–Hochberg (BH) FDR procedure. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05, 

“.”P < 0.10. 
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Figure 4.14. Cardiometabolic traits exhibit sex-specific interdependencies in trait-

transcript correlations in DO-F1 mice. 
Proportion of liver transcripts associated (adjusted P < 0.05) with cardiometabolic traits in each 

sex. Number in the bar is the number of genes associated with the trait in each category. Red bar 

contains genes that correlate with the aortic lesion area in females, blue bar contains genes that 

correlate with the aortic lesion area in males, and yellow bar contains genes that correlate with 

the aortic lesion area in both sexes. The p-values were adjusted using the BH FDR procedure. 
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Figure 4.15. Sex-specific gene expressions for target genes of Lxr alpha transcription factor 

encoded by Nr1h3 
Expressions of 19 target genes (log2TPM) of Lxr alpha transcription factor encoded by Nr1h3 

between sexes. These genes are either direct targets of Lxr alpha or induced by activation of Lxr 

alpha and are involved in the following pathways; bile acid metabolism (Abcg5, Abcg8, and 

Cyp7a1), cholesterol efflux (Abca1 and Abcg1), cholesterol synthesis (Srebf2 and Rnf145), 

lipoprotein remodeling (Lpl and Pltp), lipogenesis (Srebf1, Acaca, Fasn, and Scd1), 

inflammation (Ccl2, Ccl7, Il1b, and Ptgs1), cholesterol uptake (Ldlr), phospholipid metabolism 

(Lpcat3). The p-values were confirmed by Wilcoxon signed-rank test. 
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Figure 4.16. Sex-specific gene-trait correlations for target genes of Lxr alpha transcription 

factor encoded by Nr1h3 
(A) Spearman correlation between aortic lesion area and 19 target genes (log2TPM) of Lxr alpha 

transcription factor in each sex. (B) Spearman correlation between plasma total cholesterol and 

19 target genes (log2TPM) of Lxr alpha transcription factor in each sex. (C) Spearman 

correlation between plasma total triglyceride and 19 target genes (log2TPM) of Lxr alpha 

transcription factor in each sex. 
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4.6. Discussion 

In this study, we observed a significant effect of sex on atherosclerosis and 

cardiometabolic traits and investigated how sex and gene expression interact to affect these traits. 

Several conclusions have been drawn from this study. First, we identified predominant sexual 

dimorphism in the cardiometabolic traits and transcripts and gene-by-sex interaction in the liver. 

Second, we identified sex-biased genetic regulation of liver transcripts, and a number of these 

transcripts are associated with cardiometabolic traits. Third, high-resolution mapping in 

hyperlipidemic DO-F1 mice uncovered sex-specific loci for cardiometabolic traits. Our study 

provides a higher resolution of aortic lesion area QTLs than the previous study that identified 

loci on chromosome 10 (Dansky et al., 2002). Fourth, integration of sex-specific gene 

expression, genetic regulation, and gene-trait correlation discovered multiple sex-biased liver 

TFBSs associated with atherosclerosis in DO-F1 mice. These results suggest a prominent role of 

sex in the modulation of atherosclerotic traits and provide new insights into liver sex differences, 

and may help explain the risk of sex differences in CVD. Each of these points is discussed in 

turn below. 

Sexual dimorphism of atherosclerosis has been observed in various experimental models 

such as ApoE-/- and Ldlr-/- mice, pigs, and rabbits (Fisher et al., 1967; Freeman et al., 2007; 

Matthan et al., 2018). Previous studies have also found sexual dimorphism of atherosclerosis in 

F2 genetic crosses or >100 different inbred mouse strains (Bennett et al., 2015; Su et al., 2006) 

but have not been studied in the DO-F1 mouse model. Our study reveals profound differences in 

lesion size, TC, TG, and plasma glucose, TMAO, choline, and betaine concentrations between 

sexes at 24 weeks, suggesting that females were more susceptible to atherosclerosis than males 

in the DO-F1 study. Thus, these results imply that therapeutic effects to disease may not work 
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equally well in all host genotypes or both sexes, and that a personalized approach that takes into 

account host genotypes, sex, and their interactions may be advantageous. 

Sex differences in pathophysiology and disease risk are characterized by many tissues, 

including the liver (Yang et al., 2006). A large number of sex-biased genes have been identified 

in mouse liver (Yang et al., 2006). However, previous global gene expression studies that 

performed RNA-seq in mice mostly have used inbred mice, and lack sufficient statistical power 

to identify a large number of sex-biased genes. Our study identified more than 8,000 sex-specific 

DEGs in both autosome and X-chromosome, which suggests the effects of sex on genome-wide 

regulatory mechanisms. Such sex differences may be biologically relevant, especially when 

multiple genes within a specific pathway are affected (Subramanian et al., 2005). Using this 

approach, we have identified a number of liver genes that exhibit sex-biased expression involved 

in a wide range of critically important biological processes. Specifically, the abundance of genes 

involved in immune function in the liver of females was higher than in males while genes 

involved in mitochondrial biogenesis were more abundant in livers from males than females. 

Surprisingly, despite markedly higher TC concentrations in plasma, gene pathways involved in 

cholesterol synthesis were not identified in female-specific DEGs. These results are consistent 

with a previous study that sex differences in plasma lipids were not related to changes in liver 

gene abundance for the cholesterol synthesis pathway (Link et al., 2015).  

Few studies have highlighted the sex specificity of gene expression and their genetic 

regulation in humans. Previous studies in human blood samples, lymphoblastoid cell lines, or the 

GTEx found autosome and chromosome X variants (Dimas et al., 2012; Kukurba et al., 2016; 

Yao et al., 2014). eQTL analyses in mouse models either have identified that eQTLs can be sex-

dependent or specific (Norheim et al., 2019; Yang et al., 2006). The current study showed 
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genotype-by-sex interactions in DO-F1 liver tissue. Consistent with the previous finding, these 

associations can be classified as sex-specific eQTLs or overlapping eQTLs between sexes with 

directionalities (Yao et al., 2014). In addition, our study revealed that although thousands of 

genes were identified as sex-specific DEGs in the liver, the proportion of genes identified as sex-

specific eQTL is relatively small.  

Identification of sex-specific QTL demonstrates the complexity of atherosclerosis in 

DO-F1 mice. Sex differences in aortic lesion area and sex-specific QTLs have previously been 

reported in F2 cross studies (Teupser et al., 2006; Wang et al., 2007). The cause of sexual 

dimorphism in atherosclerosis susceptibility is likely that sex hormones may play a role, but it 

has not been fully elucidated. Our results reveal that aortic lesion area QTLs identified in DO-F1 

mice show sex bias. The sex specificity of these QTLs reiterates that the genetic regulation of 

atherosclerosis is complex and that the expression of candidate genes may differ between sexes.  

This has important implications for developing therapies for atherosclerosis in men and women 

as the underlying genetic effects and their genes they affect may differ between sexes. In this 

regard, a recent systematic meta-analysis for observational studies performed on CVD patients 

revealed sex differences in prescribing cardiovascular medications (Zhao et al., 2020). This 

analysis included a total of 43 studies involving 2,264,600 participants (28% women) worldwide 

and reported that women were less likely to be prescribed angiotensin-converting enzyme 

inhibitors, but more likely with diuretics than men. This study, in turn, shows that sex differences 

in cardiovascular drug prescription persist in primary care, suggesting that a mechanism study is 

needed to elucidate the interaction between sex and medications for personalized treatment of 

atherosclerosis. 
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Genetic regulation of liver transcriptome may also contribute to complex traits, and 

colocalization analysis between cis-eQTLs and sexually dimorphic atherosclerosis can reveal 

sex-specific genetic variant-gene-atherosclerosis associations. One of the main goals of our study 

was to discover novel genes that influence atherosclerosis, and we hypothesized that these genes 

would reveal new pathways and mechanisms. To identify robust candidate genes associated with 

atherosclerosis, we considered allele effects, cis-eQTL, and correlation with lesion size. Since 8 

alleles are segregated in DO mice, high-resolution mapping allowed us to investigate whether 

each allele was associated with lesion size. One notable gene was in our candidate gene list, 

identified as having cis-eQTL colocalized with atherosclerosis QTL, and also correlated with 

aortic lesion area. Pten, a candidate with overlapping cis-eQTL and atherosclerosis QTL, is a 

tumor suppressor gene that expressed in endothelial cells, sub-endothelial cells, and vascular 

smooth muscle cells (Lu et al., 2020). Pten has been shown to influence the development of 

atherosclerosis in many studies. In mice, PTEN overexpression reduces plaque area and 

preserves contractile protein expression in smooth muscle cells (SMC) in atherosclerosis (Lu et 

al., 2020). PTEN deletion promotes spontaneous vascular remodeling in SMC and PTEN loss 

correlates with increased atherosclerotic lesion severity in human coronary arteries (Moulton et 

al., 2018). This negative causal relationship between PTEN and atherosclerosis revealed via the 

Pten gene perturbation is consistent with the correlation analysis in the DO-F1 cross. In our 

analysis, Pten gene and lesion size showed a significant correlation only in males, which is also 

consistent with previous reports, considering that most functional validations were performed in 

male mice. Taken together, these findings and reports provide strong evidence that Pten may 

have a pivotal role in atherosclerosis development in mice and humans.  



218 

 

Uncovering the mechanistic basis for sex differences in liver TFs could improve our 

understanding in precision medicine for atherosclerosis (Lopes-Ramos et al., 2020; Oliva et al., 

2020). The integration of liver TFBSs with sex-specific gene expression and genetic regulation 

yielded sex-biased associations between atherosclerosis and specific TFs. Of the 265 TFs 

expressed in DO-F1 liver tissue, 172 TFs were upregulated in one sex, and our results not only 

suggest that hormone-related TFs regulate sex-biased gene expression as expected, but also 

implicate that additional TFs play a role in sex-biased expression. Furthermore, we identified 

only Nr1h3 TF with sex-biased cis-eQTLs that significantly correlated with atherosclerosis. The 

liver X receptor alpha (LXRα), encoded by Nr1h3 gene, is an important regulator of cholesterol, 

fatty acid, and glucose homeostasis (Peet et al., 1998). LXRα expression is highest in the liver 

among all organs, and LXRα target genes, ATP binding cassette (ABC) transporters A1/G1, 

apolipoprotein E/CI, and members of the Cyp7a family are also highly expressed in liver in both 

human and mouse (Edwards et al., 2002; Peet et al., 1998). Numerous studies have shown that 

LXRα is involved in many pathways underlying the development of atherosclerosis and CVD, 

including lipid metabolism, innate immunity and inflammation (Calkin and Tontonoz, 2010; 

Joseph et al., 2003). In addition, data from the Phenotype-Genotype Integrator in NCBI 

(https://www.ncbi.nlm.nih.gov/gap/phegeni) demonstrate that SNPs in the LXRα's target genes 

are associated with various CVD-related traits across approximately 500,000 individuals (Table 

4.14). Furthermore, recent studies have shown that LXRα is responsible for the sex differences in 

lipid metabolism and circadian pattern of plasma corticosterone (Feillet et al., 2016; Jiang et al., 

2016). Our study showed that key lipid processing genes, Abcg1 and Lpl, among the target genes 

of LXRα, were differentially expressed between sexes as well as a strong positive correlation 

with atherosclerosis in one sex. Notably, sex-biased TF targeting of genes is independent of sex-
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specific expression of TFs themselves (Carrel and Willard, 2005). However, if these differences 

occur at the time point of early development and translate into a more constitutive sex-biased TF 

binding profile, then the sex-biased expression of TFs may affect the sex-specificity of TF target 

genes (Leuenberger et al., 2009). Taken together, these sex-based integrated analyzes may help 

elucidate the origin of the gene-atherosclerosis association, as hypothesized for the effects of 

candidate sex-specific TFs on sex differences in atherosclerosis.  

This is the first comprehensive study of sexual dimorphism of the cardiometabolic traits 

and liver transcriptome in DO-F1 mice. More than 8,000 genes were found to show significant 

sex differences in expression and influence sex-specific functional pathways. These results 

increase our understanding of sex-biased liver biology at the molecular level and provide 

important insights into our understanding of sex-specific atherosclerosis susceptibility. By 

understanding how sex differences influence molecular pathways, we can identify novel factors 

that ultimately affect disease susceptibility and suggest diagnostic and clinical strategies as 

translational regulation and post-translational modifications. Further studies of sex-biased liver 

genes at the genetic, regulatory (including translational regulation and post-translational 

modifications), and functional levels will enhance our understanding of liver physiology and its 

role in disease states. Overall, our results provide strong evidence for why males and females 

should be distinguished in biological research, and why females are more susceptible to 

atherosclerosis than males in the hyperlipidemic outbred mice model. 
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Table 4.14. Phenome wide association (PheWAS) for Nr1h3 transcription factor and its 

target genes. 

Phenotypes (Human) 
SNP_rs  

(Human) 
Context Gene  Chr  

Position 

(bp, 

Human) 

P_Value 

(p<1×10-7) 
Population 

Cholesterol 1883025 intron ABCA1 9 104902020 6.00E-53 European 
Cholesterol 2575876 intron ABCA1 9 104903458 1.00E-16 East Asian 

Cholesterol 2740488 intron ABCA1 9 104899461 2.00E-22 European 

Cholesterol, HDL 1883025 intron ABCA1 9 104902020 2.00E-65 European 
Cholesterol, HDL 2472386 intron ABCA1 9 104839260 8.00E-11 Hispanic 

Cholesterol, HDL 2575876 intron ABCA1 9 104903458 4.00E-13 East Asian 

Cholesterol, HDL 2740488 intron ABCA1 9 104899461 2.00E-34 European 
Cholesterol, HDL 3890182 intron ABCA1 9 104885374 3.00E-10 NR 

Cholesterol, HDL 3905000 intron ABCA1 9 104894789 9.00E-13 European 

Cholesterol, HDL 4149268 intron ABCA1 9 104884939 1.00E-10 European 
Cholesterol, HDL 7024300 intron ABCA1 9 104827286 1.00E-08 Arab 

Cholesterol, HDL 9282541 missense ABCA1 9 104858554 6.00E-26 Hispanic 

Cholesterol, HDL 12686004 intron ABCA1 9 104891145 2.00E-18 East Asian 
Lipids 2575876 intron ABCA1 9 104903458 2.00E-11 European 

Lipoproteins 2575876 intron ABCA1 9 104903458 3.00E-15 European 

Metabolic Syndrome X 1883025 intron ABCA1 9 104902020 6.00E-10 European 
Platelet Function Tests 2066717 intron ABCA1 9 104829197 7.20E-08 European 

Vascular Calcification 4149310 intron ABCA1 9 104826853 2.00E-10 European 

Cholesterol 2081687 intergenic CYP7A1 8 58476006 9.00E-13 European 
Cholesterol 4738684 intergenic CYP7A1 8 58480714 3.00E-11 European 

Cholesterol, LDL 2081687 intergenic CYP7A1 8 58476006 4.00E-09 European 

Cholesterol, LDL 9297994 intergenic CYP7A1 8 58479765 2.00E-11 European 

Atrial Fibrillation 765547 intergenic LPL 8 20008763 2.00E-44 European 
Blood Pressure 15285 UTR-3 LPL 8 19967156 1.00E-10 European 

Blood Pressure 765547 intergenic LPL 8 20008763 3.00E-51 European 

Cholesterol 765547 intergenic LPL 8 20008763 3.00E-51 European 
Cholesterol, HDL 325 intron LPL 8 19961817 8.00E-26 European 

Cholesterol, HDL 326 intron LPL 8 19961928 1.00E-08 
African|African 

American|Hispanic 

Cholesterol, HDL 328 
STOP-

GAIN 
LPL 8 19962213 9.00E-23 NR 

Cholesterol, HDL 13702 UTR-3 LPL 8 19966981 1.00E-16 European 

Cholesterol, HDL 765547 intergenic LPL 8 20008763 3.00E-51 European 

Cholesterol, HDL 2083637 intergenic LPL 8 20007664 6.00E-18 European 

Cholesterol, HDL 10096633 intergenic LPL 8 19973410 2.00E-09 
African|African 

American 

Cholesterol, HDL 10503669 intergenic LPL 8 19990179 8.00E-43 East Asian 
Cholesterol, HDL 12678919 intergenic LPL 8 19986711 1.00E-149 European 

Cholesterol, HDL 17091905 intergenic LPL 8 19992246 6.00E-12 European 

Cholesterol, HDL 17482753 intergenic LPL 8 19975135 3.00E-11 European 
Cholesterol, HDL 28526159 intergenic LPL 8 20033716 8.00E-09 Hispanic 

Cholesterol, HDL 115849089 intergenic LPL 8 20054859 2.00E-63 European 

Coronary Disease 765547 intergenic LPL 8 20008763 2.00E-44 European 
Electrocardiography 765547 intergenic LPL 8 20008763 3.00E-51 European 

Heart Failure 765547 intergenic LPL 8 20008763 2.00E-44 European 

Lipids 331 intron LPL 8 19962894 1.00E-17 European 

Lipids 1059611 UTR-3 LPL 8 19967052 1.00E-20 European 

Lipids 115849089 intergenic LPL 8 20054859 4.00E-15 European 

Lipoproteins 75835816 intergenic LPL 8 20028002 4.00E-14 European 
Lipoproteins 115849089 intergenic LPL 8 20054859 2.00E-25 European 

Metabolic Syndrome X 268 missense LPL 8 19956018 2.00E-12 European 

Metabolic Syndrome X 295 intron LPL 8 19958727 2.00E-09 European 
Metabolic Syndrome X 301 intron LPL 8 19959423 3.00E-11 European 

Metabolic Syndrome X 1441756 intergenic LPL 8 20010875 3.00E-08 European 

Metabolic Syndrome X 2083637 intergenic LPL 8 20007664 2.00E-10 South Asian|Asian 
Metabolic Syndrome X 2197089 intergenic LPL 8 19968862 2.00E-09 European 

Metabolic Syndrome X 7841189 intergenic LPL 8 19987865 1.00E-14 European 

Stroke 765547 intergenic LPL 8 20008763 2.00E-44 European 
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Triglycerides 326 intron LPL 8 19961928 5.00E-12 

South 

Asian|Asian|European|

Hispanic 

Triglycerides 328 
STOP-

GAIN 
LPL 8 19962213 2.00E-28 NR 

Triglycerides 13702 UTR-3 LPL 8 19966981 1.00E-16 European 
Triglycerides 15285 UTR-3 LPL 8 19967156 1.00E-10 European 

Triglycerides 765547 intergenic LPL 8 20008763 3.00E-51 European 

Triglycerides 1441759 intergenic LPL 8 20008052 2.00E-09 NR 
Triglycerides 4244457 intergenic LPL 8 20041535 1.00E-10 East Asian 

Triglycerides 9644568 intergenic LPL 8 20071071 4.00E-11 Hispanic 

Triglycerides 10096633 intergenic LPL 8 19973410 2.00E-18 European 
Triglycerides 10105606 intergenic LPL 8 19970337 4.00E-26 European 

Triglycerides 10503669 intergenic LPL 8 19990179 7.00E-39 East Asian 

Triglycerides 12678919 intergenic LPL 8 19986711 2.00E-199 European 
Triglycerides 17091905 intergenic LPL 8 19992246 5.00E-15 European 

Triglycerides 17410962 intergenic LPL 8 19990569 7.00E-09 
African|African 

American|Hispanic 

Triglycerides 17482753 intergenic LPL 8 19975135 6.00E-10 European 

Triglycerides 79236614 intergenic LPL 8 20002949 7.00E-09 Hispanic 

Triglycerides 115849089 intergenic LPL 8 20054859 9.00E-84 European 
Vascular Calcification 12678919 intergenic LPL 8 19986711 9.00E-13 European 

Cholesterol, HDL 2167079 UTR-5 NR1H3 11 47248704 5.13E-08 

Northern Finland Birth 

Cohort 1966 
(NFBC1966) 

Cholesterol, HDL 7120118 intron NR1H3 11 47264739 3.57E-08 

Northern Finland Birth 

Cohort 1966 
(NFBC1966) 

Cholesterol, HDL 7120118 intron NR1H3 11 47264739 4.00E-08 European 

Metabolic Syndrome X 10838681 intron NR1H3 11 47253513 1.00E-09 European 

Cholesterol, HDL 6065906 intergenic PLTP 20 45925376 5.00E-40 European 
Lipids 6065904 intron PLTP 20 45906012 4.00E-40 European 

Lipids 6065906 intergenic PLTP 20 45925376 3.00E-49 European 

Lipoproteins 6073958 intergenic PLTP 20 45923216 3.00E-55 European 
Vascular Calcification 4810479 intergenic PLTP 20 45916409 2.00E-42 European 

Triglycerides 6065906 intergenic PLTP 20 45925376 2.00E-34 European 

Triglycerides 6073958 intergenic PLTP 20 45923216 9.00E-21 European 

Heart Rate 12941356 intron SREBF1 17 17813217 5.00E-08 
Asian|African|Europea

n|Mixed 

Cholesterol 4148191 intron ABCG5 2 43815765 4.00E-09 NR 
Cholesterol 6756629 missense ABCG5 2 43837951 2.00E-11 European 

Cholesterol, LDL 6756629 missense ABCG5 2 43837951 3.00E-10 European 

Cholesterol, LDL 11887534 nearGene-5 ABCG5 2 43839108 9.00E-33 NR 
Lipoproteins 6756629 missense ABCG5 2 43837951 1.00E-14 European 

Cholesterol 4299376 intron ABCG8 2 43845437 3.00E-73 European 

Cholesterol 6756629 nearGene-5 ABCG8 2 43837951 2.00E-11 European 

Cholesterol 76866386 intron ABCG8 2 43848344 6.00E-33 European 
Cholesterol, LDL 4299376 intron ABCG8 2 43845437 4.00E-72 European 

Cholesterol, LDL 6544713 intron ABCG8 2 43846742 2.00E-20 European 

Cholesterol, LDL 6756629 nearGene-5 ABCG8 2 43837951 3.00E-10 European 
Cholesterol, LDL 11887534 missense ABCG8 2 43839108 9.00E-33 NR 

Cholesterol, LDL 72875462 intron ABCG8 2 43852171 2.00E-35 European 

Lipids 4245791 intron ABCG8 2 43847292 1.00E-09 
African|African 
American|Hispanic 

Lipids 4299376 intron ABCG8 2 43845437 2.00E-08 European 

Lipoproteins 6756629 nearGene-5 ABCG8 2 43837951 1.00E-14 European 
Aortic Aneurysm, 

Abdominal 
6511720 intron LDLR 19 11091630 8.00E-14 European 

Atherosclerosis 6511720 intron LDLR 19 11091630 1.00E-07 European 
Cholesterol 2228671 cds-synon LDLR 19 11100236 9.00E-24 European 

Cholesterol 6511720 intron LDLR 19 11091630 5.00E-202 European 

Cholesterol 112374545 intergenic LDLR 19 11078223 2.00E-113 European 
Cholesterol, LDL 2228671 cds-synon LDLR 19 11100236 4.00E-14 European 

Cholesterol, LDL 2738446 intron LDLR 19 11116650 2.00E-12 East Asian 
Cholesterol, LDL 6511720 intron LDLR 19 11091630 4.00E-262 European 

Cholesterol, LDL 112374545 intergenic LDLR 19 11078223 7.00E-142 European 

Coronary Artery Disease 56289821 intergenic LDLR 19 11077571 4.00E-15 
South Asian|East 
Asian|Asian|Arab|Afri
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can|European|African 

American|Hispanic 

Lipids 6511720 intron LDLR 19 11091630 2.00E-31 European 

Lipids 17249141 nearGene-5 LDLR 19 11089332 2.00E-17 
African|African 

American|Hispanic 

Lipids 55791371 intergenic LDLR 19 11077477 8.00E-17 European 
Lipoproteins 142130958 intergenic LDLR 19 11079976 7.00E-47 European 

Myocardial Infarction 55791371 intergenic LDLR 19 11077477 3.00E-08 

South Asian|East 

Asian|Asian|Arab| 
African|European| 

American|Hispanic 

Plaque, Atherosclerotic 6511720 intron LDLR 19 11091630 8.25E-08 European 
Vascular Calcification 6511720 intron LDLR 19 11091630 4.00E-09 European 

Fatty Acids 12580543 intron LPCAT3 12 6992881 3.00E-30 NR 

Mean Platelet Volume 10076782 intron RNF145 5 159177955 4.00E-08 European 
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5.2. Abstract 

Atherosclerosis is a precipitating event in the development of cardiovascular disease (CVD). The 

progression of the disease is prevalent in developed countries and there are currently limited 

options for prevention and treatment interventions. Recent studies report that gut microbiota 

contributes to the pathogenesis of cardiometabolic diseases. While host genetic architecture is a 

known factor that affects atherosclerosis development and gut microbial colonization, the 

underlying mechanisms are not yet clear. Here, we interrogated atherosclerosis regulatory 

networks in hyperlipidemic Diversity Outbred mice to reveal key insights into control of 

atherosclerosis using system genetic approaches of cardiometabolic traits, microbiome, and liver 

transcriptome. These include identifying the effect of genetic backgrounds on gut microbiota and 

fecal microbial taxa associated with atherosclerotic traits, defining the functionality of genes 
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associated with the atherosclerotic traits and gut microbiota, and identifying signatures of 

functional gene variants predicted to modulate those traits. Trans-omic analysis facilitated 

identification of Ptprk as a novel regulatory gene for atherosclerotic traits and Lactococcus 

abundance. Collectively, this study provides a rich resource for investigating the pathogenesis of 

atherosclerosis and suggests an opportunity to discover therapeutics and biomarkers in the setting 

of hyperlipidemia. 

 

5.3. Introduction 

Atherosclerosis, a major cause of coronary artery disease (CAD), is a highly complex disease 

caused by the interaction of a number of genetic and environmental factors. (Hartiala et al., 2017; 

Khera and Kathiresan, 2017; Sasidhar et al., 2014). Early evidence for the genetic cause of 

atherosclerosis was based on the demonstration of familial aggregation and heritability estimates 

(Marenberg et al., 1994; Mayer et al., 2007), which initiated a search to identify risk alleles. The 

advent of genome-wide association studies (GWAS) has yielded an unbiased genome-wide 

approach that has identified novel atherosclerosis candidate genes. To date, GWAS has the 

identification of over 100 different loci for CAD susceptibility (Bis et al., 2011; Franceschini et 

al., 2018; Nelson et al., 2017) but in aggregate, these loci only explain a fraction of the 

heritability of atherosclerosis and even less of the overall risk of disease (Marian, 2012). Thus, 

the causes and determinants of atherosclerosis remain to be elucidated and may include 

environmental factors including diet, the epigenome, and the microbiota (Jonsson and Backhed, 

2017; Khyzha et al., 2017; Wu et al., 2019). 

Recent studies have revealed that gut microbiota is an emerging contributor to human 

physiology and also affects the cardiovascular system (Brown and Hazen, 2018). Many studies 
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of human cohorts and animal models suggest that alteration of gut microbial diversity and 

composition influences the risk factors for cardiovascular disease (CVD) such as CAD (Emoto et 

al., 2016), hyperlipidemia (Fu et al., 2015), hypertension (Li et al., 2017), and heart failure 

(Luedde et al., 2017). In addition, several mouse and human studies have investigated the role of 

host genetics in shaping the composition of the gut microbiota (Kurilshikov et al., 2017). GWAS 

in thousands of individuals has reported genetic variants associated with gut microbiota 

composition (Bonder et al., 2016; Goodrich et al., 2016; Turpin et al., 2016; Wang et al., 2016). 

More recent efforts have successfully demonstrated the mechanisms by which the microbiota are 

involved in disease etiology (Fan and Pedersen, 2021; Lynn et al., 2021; Needham et al., 2020). 

The current main challenge is to identify the definite effect of gut dysbiosis from genetic effects 

and to identify how these 2 scales of biological data interact to affect disease susceptibility.  

A complementary approach to studying the genetic factors of atherosclerosis and gut 

microbiota is to use genetic variations that occur in experimental model organisms. These studies 

benefit from the ability to tightly control the environment applied to the animals and detailed 

monitoring of clinical and molecular phenotypes allows for a precise assessment of the impact of 

genetic factors on each phenotype with minimal confounding factors. Quantitative trait locus 

(QTL) analysis has found hundreds of genetic loci associated with various clinical traits 

including atherosclerosis and gut microbiota. Specifically, with the recent sequencing of the 

Hybrid Mouse Diversity Panel (HMDP) or Diversity Outbred (DO) mice that have natural 

genetic variations, it has become possible to perform high-resolution mapping of complex traits 

(Bennett et al., 2015; Kemis et al., 2019; Lusis et al., 2016; Saul et al., 2019; Tabrett and Horton, 

2020). DO mice, for example, are maintained as an outbred stock by intercrossing eight strains to 

capture most of the genetic diversity of inbred mouse strains: A/J, C57BL/6J, 129S1/SvImJ, 
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NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PJ and WSB/EiJ. These mice are superior to other 

mapping populations in that they have more than 40 million SNPs and have a high average minor 

allele frequency and a fine recombination block structure (Churchill et al., 2012; Gatti et al., 

2014).  

We addressed the use of DO-F1 mice to describe the sexual dimorphism of 

atherosclerosis and liver transcriptome in Chapter 4. We observed strong sex-specific effects and 

heritability on cardiometabolic traits and liver mRNA transcripts, and identified sex-specific co-

mapped locus between traits and transcripts in response to the same genetic variation. In 

addition, we investigated gut microbiota and liver transcriptomes from eight DO founder strains 

used to generate DO mouse panels, and observed differences in cardiometabolic traits, gut 

microbial diversity, and hepatic gene networks between diets and among the strains (Kim et al., 

2021; O’Connor et al., 2014).  

In this study, we characterized the microbial taxa associated with atherosclerosis in the 

DO-F1 mice fed a high-fat and high-cholesterol (HFHC) diet and performed QTL to identify 

host genetic loci associated with atherosclerotic traits, gut microbiota composition (microbiome), 

and molecular traits (transcriptome). We focused on searching for pleiotropic loci, which was 

defined as a genetic locus identified in co-localization of QTLs in trans-omics datasets. For 

instance, our analysis revealed a locus associated with aortic lesion area and Lactococcus 

abundance attributed to the same eight DO founder haplotypes in female mice. Genes identified 

in the locus were prioritized with liver gene expression QTL (eQTL) results, and we found an 

unknown relationship with the Ptprk gene that was associated with aortic lesion area and 

Lactococcus abundance in DO-F1 mice and confirm a significant association human Ptprk SNPs 

with CVD traits and dysbiosis-related diseases in human GWAS. This study demonstrates how 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/minor-allele-frequency
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/minor-allele-frequency
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genetic variation affects complex traits such as atherosclerosis and dysbiosis-related diseases, 

and how to define new targets for improving disease progression in high-risk CAD patients with 

utility of QTL and system genetics. 

 

5.4. Method  

5.4.1. Ethics Statement 

We followed all NIH animal welfare guidelines. The animal care and study protocols were 

approved by IACUC at the University of California Davis. 

5.4.2. Animals: Hyperlipidemic DO-F1 Mice 

We utilized hyperlipemic CETP/ApoE3 Leiden males, hemizygous to the CETP and ApoE3 

transgenes (Tg), which were kindly provided by Dr. Lusis (Bennett et al., 2015) to induce 

atherosclerosis susceptibility in two mouse populations. A total of 200 DO females (JAX stock 

number 009376, outbreeding generation # 26, 28) were obtained from the Jackson Laboratory 

(Bar Harbor, ME) and crossed with CETP/ApoE3 Leiden males. This cross resulted in 238 

(CETP/ApoE3 Leiden × J:DO) F1 females and 234 (CETP/ApoE3 Leiden × J:DO) F1 males 

which were used in this study. All progeny were genotyped to confirm the presence of CETP and 

ApoE3-Leiden transgenes. DO-F1 mice were maintained in the Mouse Biology Protocol 

vivarium at the University of California Davis. Mice were fed a synthetic diet, AIN-76A 

(D10001, Research Diets, New Brunswick, NJ) up to 8 weeks of age. At 8 weeks of age, mice 

were fed with a synthetic HFHC (33 kcal % fat from cocoa butter,1.25% cholesterol) diet 

(Research Diets D121083) (see Table S1) ad libitum. Mice were euthanized for tissue collection 

after being fed this diet for 16 weeks. Animals were maintained on a 12 h light and dark cycle 
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under temperature- and humidity-controlled conditions. Euthanasia of all mice was performed by 

cervical dislocation after anesthesia with isoflurane, and aorta and liver were collected. 

5.4.3. Measurement of triglycerides and total cholesterol in the liver 

TG and TC in the liver were quantified via Folch extraction. Mouse liver was collected, frozen, 

and stored at −80°C prior to analysis. Cut 30 ± 8 mg of frozen mouse liver tissue was thoroughly 

homogenized for 5 min in 500 μl of a 2:1 v/v chloroform/methanol mix and then equilibrated for 

15 min at room temperature. After adding 100 μL of 0.9% w/v NaCl to each sample, the samples 

were vortexed for 1 min and centrifuged at 2000 × g for 15 min at 4°C. The lower organic phase 

was separated and evaporated in Eppendorf tubes overnight in a fume hood. After evaporation, 

each tube was resuspended with 500 μL of a 0.5% Triton X-100/PBS solution, sonicated with 

20% amplitude for 15 seconds using BRANSON Digital Sonifier, and placed in a drying bath at 

55°C for 5 min. Hepatic TG/TC were measured using a colorimetric assay (Infinity™, Thermo 

Scientific), according to the manufacturer’s instructions as follows: 2 μL of the standards, 

samples, and blanks were pipetted into a 96-well plate in duplicate and 200 μL of the Infinity 

reagent was added to the 96-well plate. Absorbance (500/660 nm) was measured on a 96-well 

plate reader. 

5.4.4. Fecal DNA Extraction 

The DO-F1 mice at 24 weeks of age were singly housed for 24 h prior to fecal collection. During 

the last 4 hours of this period, feces were collected from each cage with food removed and used 

for gut microbiota analysis. DNA was isolated from feces using a ZymoBIOMICS 96 MagBead 

DNA Kit (Zymo Research, Irvine, CA, USA) with an epMOTION (Eppendorf, Hamburg, 

Germany) automatic robotic system. In brief, mouse feces (about 100 mg) were resuspended in 

750 μl of lysis solution in silica beads containing tubes. Samples were mechanically 
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homogenized at 6 m/s for 2 min using a FastPrep Automated Homogenizer (MP Biomedicals, 

Solon, OH; maximum setting for 1 min at room temperature). The suspension was centrifuged 

for 1 min at full speed. 200 μl of supernatant was transferred to the 96 deep-well plates (Fisher 

Scientific, Waltham, MA). The isolated DNA was eluted in nuclease-free water. DNA 

concentration and quality were verified using a NanoDrop spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and stored at -20°C until further use. 

5.4.5. 16S rRNA amplicon library preparation sequencing 

To amplify variable region 4 of 16S rRNA gene, PCR was performed using universal primer set 

515F and barcoded 806R in triplicate as described earlier (Nazmul Huda et al., 2020). Each 

reaction consisted of 25 μl GoTaq Green Master Mix® (Madison, WI), 10 ng genomic DNA, 10 

μM each primer, and water were included in the final reaction volume of 25 μl. PCR was 

performed under the following conditions: initial denaturation at 95°C for 3 min, followed by 25 

cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s and elongation at 72°C for 30 

s, and a final elongation step at 72°C for 5 min. PCR products were confirmed using 

denaturation gradient gel electrophoresis. PCR products were gel-purified using a Wizard SV 

Gel and PCR Clean-Up System (Promega, Madison, WI) according to the manufacturer’s 

protocol. Samples were sequenced with the MiSeq (2×250 bp paired-end v2 kit) (Illumina, San 

Diego, CA, USA) by the UC Davis DNA Technologies Core at the Genome Center using custom 

sequencing primers. 

5.4.6. 16S Analysis 

The raw reads were processed, filtered, and analyzed with QIIME2-DADA2 pipeline (Bolyen et 

al., 2019; Callahan et al., 2016) to determine the ASV. This produced a total of 7,355,669 

sequences with 15,852 ± 6,221 sequences for DO-F1 fecal samples. The ASVs were aligned with 
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the mafft aligner (Katoh and Standley, 2013) using the q2-alignment plug-in. The q2-phylogeny 

plugin was used to reconstruct phylogeny via FastTree (Price et al., 2010). Taxonomic 

classification was assigned using classify-sklearn (Bokulich et al., 2018) against the SILVA 

database release 138 (Yilmaz et al., 2014). Alpha- (Shannon diversity index, Faith’s phylogenetic 

diversity, Observed ASVs, and Plelou’s evenness) and Beta-diversity (phylogeny-based 

[Weighted UniFrac and Unweighted UniFrac] and abundance-based [Bray-Curtis]) (Lozupone 

and Knight, 2005) analyses were performed at a rarefaction depth of 6,000 sequences per 

sample. Six samples in DO-F1 mice were removed from subsequent analysis because of the 

lower sequencing depth.  

Subsequent processing and analysis were performed using Phyloseq to import data 

generated from QIIME2 into R (v.3.5.3) (McMurdie and Holmes, 2013). Hierarchical clustering 

(Euclidean distance) was performed using relative abundance data. Box plots were generated for 

each classification level indicating the abundance of taxa within the classification level for the 

samples. Differential abundance of genera and ASV analyses were performed by using ANCOM 

2.1 (Kaul et al., 2017) upon adjusting for the covariates such as sex in DO-F1 mice and 

generation number in DO females (F0 outbreeding generation # 26, 28). Significance was 

defined as ANCOM W>0.7. 

Taxonomic distributions were produced by collapsing ASV counts into higher taxonomic 

levels (genus to phylum) by phylogenetic rank. We excluded unclassified, uncultured, and 

unidentified genus levels from the analysis. A total of 242 ASVs and 69 collapsed microbial 

taxonomies were identified in fecal samples in DO-F1 mice. We defined a core measurable 

microbiota (CMM) as a taxon found in over 20% of the mice for subsequent analysis (Benson et 
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al., 2010). This was done to eliminate the effects of excessive variation in the data due to the low 

abundance and/or sparsely distributed bacterial taxa.  

For functional inferences on the identified ASVs in DO-F1 mice, we used the the 

PICRUSt2 algorithm (v2.2.0-b) (Douglas et al., 2020). Phylogenetic placement in PICRUSt2 is 

based on the results of three analysis tools; 1) HMMER (http://www.hmmer.org) to place ASVs, 

2) EPA-ng (Barbera et al., 2019) to determine the optimal position of these placed ASVs in a 

reference phylogeny, and 3) GAPPA (Czech and Stamatakis, 2019) to create a new tree 

incorporating the ASV placements. This results in a phylogenetic tree containing both the 

reference genome and environmentally sampled organisms used to predict the number of 

individual gene family copy numbers for each ASV. Metabolic Pathway Database (MetaCyc) 

pathway abundance, the main high-level predictions output, was calculated in PICRUSt2 through 

structured mapping of gene families for Enzyme Commission (EC) gene families to pathways 

(Caspi et al., 2016), and ANCOM was used to identify differentially abundant MetaCyc 

pathways or EC gene families with many zero abundances after adjusting sex and generation 

number in DO-F1 mice. For  microbial quantitative trait loci (mbQTL) mapping, the CMM, 

MetaCyc pathways, and EC gene families were transformed to rank normal scores using the 

'rankZ' function in the DOQTL R package (Gatti et al., 2014). 

5.4.7. Statistical testing of gut microbiota diversity and cardiometabolic traits  

We assessed whether variations of the three atherosclerotic traits (aortic lesion area, plasma total 

cholesterol, and hepatic total cholesterol) could be explained by gut microbiota alpha- and beta-

diversity using a linear mixed-effect regression model. First, we confirmed normal distribution of 

traits by using the Shapiro-Wilk test in R. Non-normal traits were log-transformed and aortic 

lesion area was transformed to rank normal scores using the 'rankZ' function in the DOQTL R 
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package. Second, we assessed whether variations in traits could be explained by gut microbial 

diversity in the linear mixed-effects regression model with adjusted sex, generation number, and 

genetic relatedness (kinship) using the relmatLmer function from the R package lme4qtl 

(Ziyatdinov et al., 2018).  

5.4.8. Quantitative trait loci mapping for microbial abundance 

QTL mapping was performed using the R package R/QTL2 (v0.20). Marker genotypes from a 

GeneSeek final report were filtered for GigaMUGA-containing single nucleotide polymorphism 

(SNPs) and encoded into a hetero/homozygous set (e.g. AA, AB) (https://kbroman.org/qtl2/).  

These genotype codes were processed with GigaMUGA genotype codes of the DO founder 

strains using a Hidden Markov model and haplotypes were defined as previously reported 

(Broman, 2012a, b). We estimated the posterior probability to have one of the eight possible 

genotype states at each SNP. We performed association mapping by fitting a linear mixed model 

at each SNP, where we regressed the traits on the diplotype probabilities. A kinship matrix was 

incorporated as a random effects term to adjust for the genetic relatedness between mice. 

Genotype probabilities were reduced to eight founder allele probabilities and were used to 

generate a kinship matrix using the “leave-one-chromosome-out” method to reduce bias from 

same chromosome SNPs (Yang et al., 2014).   

Genome scans were performed using three different models using the scan1 function in 

R/qtl2 as previously reported: sex additive, female mice, and male mice. Reported mapping 

statistics were logarithms of odds ratios (LODs) which describe the log-scaled likelihood 

difference in full and null genome scan models. Confidence intervals for QTL were calculated by 

a 95% Bayesian credible interval (Sen and Churchill, 2001). Using a similar mixed-effect model 

with allele probabilities as random effects, the contribution of each founder strain genotype at 

https://kbroman.org/qtl2/
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each QTL was determined using Best Linear Unbiased Predictor (BLUP). Candidate genes found 

in QTL were identified by position based on the Wellcome Trust Sanger mouse genomes 

database (www.sanger.ac.uk), release 1303, based on genome assembly GRCm38 (Yalcin et al., 

2011). 

Permutation analysis was used for subsequent filtering to reduce the initial output to a 

highly reliable QTLs set. The significance threshold at P <0.05 and the suggestive threshold at 

P <0.1 of all reported QTL was empirically determined by permutation analysis, where rows of 

the genotype data were randomized for each trait and a maximum LOD score was generated 

(Doerge and Churchill, 1996). We described QTL analysis for cardiometabolic traits and 

RNA-seq methods from DO-F1 mice in Chapter 4. In this study, aortic lesion area QTL, 

mbQTL, and eQTL using generation as an additive covariate were filtered out at the 95th 

quantile of the 1,000 times null distributions. For QTL mapping, aortic lesion area was 

transformed to rank normal scores using the 'rankZ' function in the DOQTL R package. eQTL 

was defined as cis-eQTL when the SNP with the maximum LOD score was within ±4 Mb at the 

transcription start site. 

5.4.9. Heritability 

To determine the extent to which phenotypic variation is affected by genotypic variation, a linear 

mixed-effect model was used to estimate the narrow-sense heritability scores of the gut microbial 

taxa. This was performed using the function est_herit in R/qtl2 by submitting a kinship matrix 

and each trait value.    

5.4.10. Weighted Gene Coexpression Network Analysis (WGCNA) 

To best assess the correlation between hepatic gene network, cardiometabolic traits, and gut 

microbiome, the liver transcriptome was analyzed individually for sex. Coexpression gene 
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modules were calculated using WGCNA version 1.13 (Zhang and Horvath, 2005), which 

performs network construction by module detection. For the WGCNA analysis, log2 transformed 

13,094 transcripts greater than 1 TPM measured in 164 DO-F1 liver samples were included and 

seven Y chromosome genes (Ddx3y, Eif2s3y, Gm29650, Gm37158, Gm47283, Kdm5d, and Uty) 

were removed in female-specific analysis due to a higher number of missing values detected 

using the “goodSampleGenes” test implemented in WGCNA. We used a soft thresholding power 

of 12 by the scale-free topology criterion in the WGCNA package using the “pickSoftThreshold” 

function. For network parameters for both female and male networks, we chose the "unsigned" 

network type to maintain the relationship of the negatively correlated gene and the "signed" 

topological overlap matrix (TOM) to exclude the connections influenced by the noise 

(Langfelder and Horvath, 2008; Zhang and Horvath, 2005). We obtained 9 modules in females 

and 7 modules in males through dynamic branch cutting using 0.25 as the merge threshold. The 

network connectivity of each gene was calculated as the sum of the intensity of connectivity with 

all genes in the other network. Spearman’s correlations were performed between module 

eigengenes (MEs) and cardiometabolic traits or gut microbiome (microbial diversity, microbial 

genus levels, MetaCyc pathways, and EC gene families). The average number of transcripts per 

module in females was 1,120, ranging from 45 (darkgrey module in females) to 6,457 (darkred 

module in females) and the average number of transcripts per module in males was 1,447, 

ranging from 130 (black module in males) to 4,351 (turquoise module in males). 

5.4.11. Enrichment analysis 

Enrichment analyses for sex-specific DEGs, modules and genes that were significantly correlated 

with aortic lesion area in each sex were performed using enrichR (Chen et al., 2013) to generate 

enrichment categories from the GO Biological Process 2018, KEGG 2019 Mouse, and Jenson 
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Diseases (Pletscher-Frankild et al., 2015). This analysis identifies differential enrichment in the 

functional categories of transcripts. The GO Biological process 2018 contains 5,103 terms and 

14,433 genes. While it is clear that individual GO terms can be found in related classes of 

ontology, GO terms do not occupy strictly fixed levels in a hierarchy. Each GO term identified is 

associated with a unique GO annotation number that relates to a specific function. Both the Gene 

Ontology website (http://geneontology.org/docs/faq/) and enrichR tool do not utilize a specific 

hierarchy thus all available terms are used in the analysis.   

5.4.12. Other statistical analysis 

All statistical analyses were performed in R (v.3.5.3) (R Core Team). Sex differences of alpha-

microbial diversity were assessed using Wilcoxon signed-rank test in DO-F1 mice. Spearman's 

correlation was used to correlate the cardiometabolic traits, liver transcripts, and abundance of 

microbial taxa. The p-values were adjusted for multiple comparisons using the Benjamini-

Hochberg (BH) procedure (Benjamini and Hochberg, 1995), and correlation coefficients and 

adjusted p-value were visualized using the ‘pheatmap’ package (Kolde et al., 2018). Significance 

was determined with a P<0.05. Summary statistics were calculated to evaluate the magnitude of 

variability of the cardiometabolic traits and microbial abundance by sex. PERMDISP2 function 

of Vegan R Package (Oksanen et al., 2018)was used to determine the homogeneity difference in 

the dispersion of microbial compositions between groups with 999 permutations. A 

nonparametric-based PERMANOVA statistical test (McArdle and Anderson, 2001) was used to 

compare the composition of microbiota between sexes using the Vegan R package (Oksanen et 

al., 2018). 
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5.5. Results 

5.5.1. Effects of genetic variation and sex on microbial diversity, taxonomic ranks, and 

functional profiling 

In Chapter 4, we identified a wide range of cardiometabolic responses and substantial sex 

differences of the traits in DO-F1 mice. In this study, we characterized the gut microbiota by 

sequencing the 16S rRNA gene from DNA extracted from fecal samples to investigate the effects 

of genetic variation and sex on gut microbial diversity and compositions in DO-F1 mice (n=464). 

We defined a core measurable microbiota (CMM) as a taxon found in over 20% of the mice for 

subsequent analysis (Benson et al., 2010). This was done to eliminate the effects of excessive 

variation in the data due to the low abundance and/or sparsely distributed bacterial taxa. For 

instance, females showed higher alpha-diversity (P≤0.001 and range: 1.6-5.7 for Shannon index; 

P≤0.05 and range: 16-142 for Observed ASV; P≤0.001 and range: 0.3-0.9 for Pielou’s evenness) 

than males (Figures 5.1A). Principal Coordinates Analysis (PCoA) of unweighted UniFrac 

distances (phylogeny-based) and Bray-Curtis (abundance-based) showed also significant 

differences between sexes in the gut microbial community (P≤0.001), but the extent to which the 

variance of beta-diversity is explained by sex was less than 3% (Figures 5.1B and Table 5.1). 

Weighted UniFrac distances matrix (phylogeny and abundance-based) showed no significant 

differences between sexes (P≤0.831; Figure 5.1B and Table 5.1).  

We also identified highly inter-individual variability in microbial taxa and observed a 

significant differential abundance of microbial taxa at phylum, class, order, family levels 

between sexes in DO-F1 mice. The abundance of phyla such as Actinobacteria, Bacteroidetes, 

and Firmicutes ranged from 0-19.27%, 0.06–40.57%, and 37.36-98.13% (Table 5.2). In addition, 

analysis of composition of microbiotas (ANCOM) was used to identify differential taxa 
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abundance between sexes at each taxonomic level. Taxa with ANCOM W statistics >0.7 were 

considered differentially abundant. For instance, significant sex differences were found only in 

Bacilli, Clostridia, and Erysipelotrichia at the class level (Table 5.2). A total of 11 genera and 8 

ASVs (Figures 5.2A and 5.2B) were found to have significant differential abundance by sex.  

Lastly, we evaluated differences in functional profiling of microbial communities using 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 

(PICRUSt2). The number of predicted Metabolic Pathway Database (MetaCyc) pathways and 

Enzyme Commission (EC) gene families inferred by PICRUSt2 for ASVs was 297 and 1367, 

respectively (data not shown). Among the identified pathways, we found the 6 MetaCyc 

pathways (Figure 5.2C and Table 5.3) and 241 EC gene families (Table 5.4) that showed 

statistically significant differences between sexes by ANCOM with W cut off 0.9. Consistent 

with the studies that the gut microbiota is affected by sex, sex differences were found in the gut 

microbial diversity, specific taxa, and functional profiling in hyperlipidemic DO-F1 mice. 
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Figure 5.1. Sex differences in microbial diversity in DO-F1 mice.  

(A) Shannon diversity, observed amplicon sequence variants (ASV), Faith’s phylogenetic 

diversity and Plelou’s evenness indices by sex at 24 weeks of age. The p-values were unpaired 

Wilcoxon signed-rank test between groups for alpha-diversity. (B) Weighted UniFrac 

(PERANOVA = 0.831), Unweighted UniFrac (PERANOVA: <0.001), and Bray-Curtis 

(PERANOVA <0.001) beta diversity principal coordinate plot by sex. 
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Figure 5.2. Sex differences in specific taxa and MetaCyc pathways in DO-F1 mice. 
(A-C) Analysis of composition of microbiomes (ANCOM) analysis of microbial genera, ASVs, 

MetaCyc pathways by sex at 24 weeks after adjusting generation number. All identified taxa and 

pathways by ANCOM met W>0.7 significant level. Differentially abundant genera, ASVs, and 

pathways were ordered from top to bottom by log2 fold change of mean between female (red 

color) and male (blue color). All W-statistic cutoffs from ANCOM output (0.7, 0.8, and 0.9) 

were denoted for each taxon. 
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Table 5.1. Multivariate homogeneity of groups dispersions (betadisper) and Permutational 

Multivariate Analysis of Variance (ADONIS) analyses of the microbial beta-diversity 

between sexes in DO-F1 mice. 

  

β-dispersion ADONIS 

F P F.Model R2 P 

24 weeks 

Weighted UniFrac 9.3493 0.002 0.39079 0.00085 0.831 

Unweighted UniFrac 0.8566 0.358 6.8719 0.01466 <0.001 

Bray-Curis 11.646 <0.001 12.623 0.0266 <0.001 
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Table 5.2. Sex differences and narrow sense heritability in taxon (phylum, class, order, family, and genus) and microbial 

amplicon sequence variants (ASVs) except for uncultured, and unidentified taxa detected in at least 20% of DO-F1 mice at 

24 weeks. n = 464 (235 females and 229 males). 

Taxonomy Taxa 

% of 

presence in 

mice 

W  cutoff  

(Females vs males) 

(ANCOM)a 

Male mice Female mice Narrow sense heritability 

Mean ± SD Mean ± SD 
Entire 

mice 

Female 

mice 

Male 

mice 

class c_Actinobacteria 47.63 0.7 49.63 ± 79.41 24.09 ± 53.03 0.52 0.76 0.63 

class c_Bacilli 100.00 0.7 563.3 ± 458.78 781.81 ± 628.66 0.43 0.80 0.49 

class c_Clostridia 100.00 0.7 1991.03 ± 1187.62 2519.23 ± 1169.09 0.42 0.51 0.66 
class c_Erysipelotrichia 99.35 0.7 2213.21 ± 1481.37 1482.09 ± 1411.17 0.41 0.68 0.67 

order o_Bifidobacteriales 47.63 0.7 49.63 ± 79.41 24.09 ± 53.03 0.52 0.76 0.63 

order o_Lactobacillales 100.00 0.7 561.52 ± 457.7 779.15 ± 623.47 0.43 0.79 0.50 
order o_Clostridiales 100.00 0.7 1991.03 ± 1187.62 2519.23 ± 1169.09 0.42 0.51 0.66 

order o_Erysipelotrichales 99.35 0.7 2213.21 ± 1481.37 1482.09 ± 1411.17 0.41 0.68 0.67 

familiy f_Bifidobacteriaceae 49.57 0.8 40.44 ± 75.76 44.18 ± 76.84 0.16 0.10 0.09 
familiy f_Eggerthellaceae 91.81 0.7 33.95 ± 30.91 30.9 ± 31.15 0.03 0.20 0.00 

familiy f_Rikenellaceae 63.15 0.8 46.93 ± 95.23 38.16 ± 86.55 0.28 0.50 0.22 

familiy f_Lachnospiraceae 100.00 0.7 1677.2 ± 1115.33 1420.66 ± 1092.18 0.15 0.16 0.17 
familiy f_Erysipelotrichaceae 99.14 0.7 1781.41 ± 1518.52 2016.67 ± 1504.68 0.15 0.10 0.07 

genus g_Bifidobacterium 47.63 0.8 49.63 ± 79.41 24.09 ± 53.03 0.52 0.76 0.63 

genus g_Enterorhabdus 92.03 0.7 23.95 ± 22.8 43.69 ± 36.52 0.39 0.80 0.35 

genus g_Alistipes 64.44 0.7 28.06 ± 62.1 57.36 ± 104.42 0.42 0.68 0.73 

genus g_Clostridium sensu stricto 13 36.64 0.7 68.09 ± 121.02 40.52 ± 92.08 0.41 0.77 0.68 
genus g_A2 83.41 0.8 306.37 ± 329.02 422.76 ± 331.99 0.34 0.62 0.71 

genus g_Blautia 85.78 0.7 254.92 ± 319.19 368.16 ± 348.77 0.47 0.67 0.59 

genus g_Lachnospiraceae NK4A136 group 88.15 0.7 88.13 ± 112.15 122.59 ± 129.42 0.39 0.40 0.66 
genus g_Roseburia 45.91 0.7 28.77 ± 70.89 73.43 ± 140.98 0.53 0.79 0.55 

genus g_Oscillibacter 89.01 0.7 61.14 ± 64.57 86.75 ± 76.75 0.48 0.75 0.60 

genus g_Ruminiclostridium 79.96 0.8 53.24 ± 70.15 80.76 ± 80.2 0.52 0.66 0.73 

genus g_Faecalibaculum 93.10 0.9 1764.79 ± 1368.18 1116.09 ± 1229.38 0.44 0.64 0.72 

ASV g_A2_ASV7 78.45 0.7 265.79 ± 289.26 358.72 ± 292.59 0.33 0.68 0.72 

ASV g_Alistipes_ASV1 62.28 0.8 25.19 ± 59.29 50.69 ± 97.42 0.43 0.65 0.70 

ASV g_Bifidobacterium_ASV1 47.63 0.9 49.63 ± 79.41 24.09 ± 53.03 0.52 0.76 0.63 

ASV g_Blautia_ASV5 70.91 0.8 123.9 ± 195.71 187.57 ± 241.64 0.39 0.42 0.55 

ASV g_Clostridium sensu stricto 13_ASV5 31.90 0.8 53.19 ± 99.92 31.88 ± 78.07 0.37 0.81 0.58 

ASV g_Faecalibaculum_ASV3 93.10 0.9 1710.66 ± 1327.52 1079.97 ± 1190.21 0.43 0.64 0.69 

ASV g_Lachnoclostridium_ASV6 53.88 0.8 13.65 ± 28.38 20.03 ± 29.9 0.46 0.57 1.00 

ASV g_Terrisporobacter_ASV1 33.19 0.7 59.28 ± 110.33 42.68 ± 108.69 0.45 1.00 0.70 
aANCOM2.1 was performed after adjusting the generation number in the model. All W-statistic cutoffs from ANCOM output (0.7, 

0.8, and 0.9) were denoted for each taxon. 
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Table 5.3. Sex differences in MetaCyc pathways detected in at least 20% of DO-F1 mice at 24 weeks. n = 464 (232 females 

and 232 males). 

Pathway Description 
% of 
presence 

in mice 

W  cutoff 

(ANCOM)a 

Male mice Female mice Narrow sense heritability 

Mean ± SD Mean ± SD Entire mice Female mice Male mice 

PWY_6263 superpathway of menaquinol-8 biosynthesis II 67.24 0.9 66.5 ± 124.08 125.22 ± 185.48 0.54 0.61 0.79 

PWY_7371 1,4-dihydroxy-6-naphthoate biosynthesis II 65.73 0.9 28.99 ± 62.51 58.87 ± 104.62 0.45 0.60 0.59 

PWY_7374 1,4-dihydroxy-6-naphthoate biosynthesis I 64.87 0.9 28.23 ± 61.97 57.25 ± 103.62 0.46 0.76 0.50 

PWY_7431 aromatic biogenic amine degradation (bacteria) 76.29 0.9 97.13 ± 203.45 75.17 ± 162.74 0.40 0.52 0.73 

PWYG_321 mycolate biosynthesis 50.22 0.9 37.49 ± 53.61 29.95 ± 58.48 0.40 0.52 0.73 

TCA TCA cycle I (prokaryotic) 96.55 0.9 468.62 ± 388.92 391.15 ± 452.8 0.45 0.58 0.51 
HEMESYN2_PWY heme biosynthesis II (anaerobic) 100.00 0.8 237.36 ± 189.05 338.23 ± 218.65 0.39 0.61 0.70 

PWY_3781 aerobic respiration I (cytochrome c) 31.47 0.8 39.61 ± 245.99 83.31 ± 293.52 0.27 0.61 0.48 

PWY_5265 peptidoglycan biosynthesis II (staphylococci) 94.83 0.8 693.25 ± 496.75 588.85 ± 509.67 0.54 0.61 0.80 
PWY_5920 superpathway of heme biosynthesis from glycine 33.19 0.8 1.6 ± 5.52 9.42 ± 44.59 0.49 0.96 0.75 

PWY_6969 TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) 96.55 0.8 638.86 ± 424.56 560.18 ± 496.97 0.27 0.10 0.98 

PWY0_1479 tRNA processing 72.63 0.8 67.89 ± 81.2 60.83 ± 101.7 0.36 0.52 0.66 
GLUCOSE1PMETAB 

_PWY glucose and glucose-1-phosphate degradation 77.80 0.7 99.72 ± 168.51 82.51 ± 199.3 0.35 0.48 0.47 

LACTOSECAT_PWY lactose and galactose degradation I 96.55 0.7 241.68 ± 277.81 182.66 ± 249.84 0.20 0.34 0.45 
P341_PWY glycolysis V (Pyrococcus) 84.27 0.7 137.52 ± 168.16 158.18 ± 138.36 0.50 0.66 0.85 

PWY_1861 formaldehyde assimilation II (RuMP Cycle) 100.00 0.7 1364.8 ± 707.77 1073.2 ± 676.62 0.41 0.48 0.73 

PWY_5850 superpathway of menaquinol-6 biosynthesis I 99.57 0.7 152.42 ± 76.68 210.44 ± 120.59 0.40 0.48 0.73 
PWY_5860 superpathway of demethylmenaquinol-6 biosynthesis I 99.57 0.7 110.31 ± 57.33 156.15 ± 102.93 0.36 0.55 0.37 

PWY_5896 superpathway of menaquinol-10 biosynthesis 99.57 0.7 152.42 ± 76.68 210.44 ± 120.59 0.41 0.61 0.89 

PWY_5913 TCA cycle VI (obligate autotrophs) 98.92 0.7 538.36 ± 463.09 464.45 ± 493.37 0.33 0.77 0.37 
PWY_6147 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I 100.00 0.7 1638.58 ± 909.17 2081.43 ± 858.48 0.30 0.57 0.48 

PWY_7210 pyrimidine deoxyribonucleotides biosynthesis from CTP 77.59 0.7 59.05 ± 106.45 71.77 ± 198.79 0.60 0.99 0.64 

PWY_7315 dTDP-N-acetylthomosamine biosynthesis 100.00 0.7 858.98 ± 651.15 1114.81 ± 678.27 0.44 0.64 0.89 

PWY_7328 

superpathway of UDP-glucose-derived O-antigen building blocks 

biosynthesis 100.00 0.7 603.24 ± 439.63 788.34 ± 439.59 0.43 0.61 0.86 

PWY_7539 
6-hydroxymethyl-dihydropterin diphosphate biosynthesis III 
(Chlamydia) 100.00 0.7 1371.27 ± 691.36 1723.39 ± 638.66 0.46 0.57 0.77 

PWY0_1241 ADP-L-glycero-&beta;-D-manno-heptose biosynthesis 77.80 0.7 69.69 ± 116.75 58.15 ± 136.03 0.51 0.56 0.63 

PWY0_1533 methylphosphonate degradation I 84.70 0.7 37.38 ± 80.02 32.76 ± 69.02 0.42 0.69 0.73 
REDCITCYC TCA cycle VIII (helicobacter) 100.00 0.7 524.7 ± 473.8 632.61 ± 447.64 0.39 0.59 0.84 
aANCOM2.1 was performed after adjusting the generation number in the model. All W-statistic cutoffs from ANCOM output (0.7, 

0.8, and 0.9) were denoted for each taxon. 
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Table 5.4. Sex differences and narrow sense heritability in EC gene families detected in at least 20% of DO-F1 mice.  

EC gene families Description 

% of 

presence 

in mice 

W  cutoff 

0.9 

(ANCOM)
a 

Male mice Female mice Narrow sense heritability 

Mean ± SD Mean ± SD 
Entire 

mice 

Female 

mice 
Male mice 

EC.1.2.99.7 Aldehyde dehydrogenase (FAD-independent) 93.62 0.9 30.58 ± 56.45 22.27 ± 58.64 0.34 0.70 0.47 

EC.1.21.98.1 Cyclic dehypoxanthinyl futalosine synthase 96.72 0.9 29.22 ± 62.66 59.2 ± 104.65 0.41 0.58 0.75 

EC.1.3.3.4 Protoporphyrinogen oxidase 95.00 0.9 13.79 ± 123.57 26.2 ± 104.34 0.43 0.37 0.61 

EC.1.4.3.4 Monoamine oxidase 97.63 0.9 76.16 ± 164.71 58.56 ± 129.38 0.46 0.54 0.71 

EC.1.6.1.2 NAD(P)(+) transhydrogenase (Re/Si-specific) 97.91 0.9 172.42 ± 245.46 100.09 ± 179.19 0.34 0.65 0.80 

EC.2.1.1.219 

tRNA (adenine(57)-N(1)/adenine(58)-N(1))-

methyltransferase 94.85 0.9 50.12 ± 79.35 25.21 ± 53.85 0.61 1.00 0.61 

EC.2.1.1.220 tRNA (adenine(58)-N(1))-methyltransferase 94.85 0.9 50.12 ± 79.35 25.21 ± 53.85 0.18 0.36 0.44 

EC.2.1.4.1 Glycine amidinotransferase 99.25 0.9 24.02 ± 22.57 43.87 ± 36.55 0.47 0.63 0.73 

EC.2.4.1.11 Glycogen(starch) synthase 96.44 0.9 28.06 ± 62.1 57.36 ± 104.42 0.18 0.34 0.33 

EC.2.4.1.57 Phosphatidylinositol alpha-mannosyltransferase 94.76 0.9 49.63 ± 79.41 24.09 ± 53.03 0.20 0.34 0.30 

EC.2.4.99.16 Starch synthase (maltosyl-transferring) 94.76 0.9 49.63 ± 79.41 24.09 ± 53.03 0.10 0.49 0.02 

EC.2.5.1.120 Aminodeoxyfutalosine synthase 96.72 0.9 29.22 ± 62.66 59.2 ± 104.65 0.42 1.00 0.60 

EC.2.5.1.26 Alkylglycerone-phosphate synthase 94.68 0.9 101.22 ± 169.8 63.15 ± 143.57 0.40 0.79 0.52 

EC.2.5.1.56 N-acetylneuraminate synthase 97.20 0.9 15.45 ± 26.73 30.55 ± 40.44 0.54 0.61 0.77 

EC.2.5.1.76 Cysteate synthase 96.44 0.9 28.06 ± 62.1 57.36 ± 104.42 0.27 0.89 0.56 

EC.2.6.1.57 Aromatic-amino-acid transaminase 99.83 0.9 546.44 ± 399.51 378.69 ± 371.36 0.51 0.57 0.64 

EC.2.7.1.63 Polyphosphate--glucose phosphotransferase 94.76 0.9 49.63 ± 79.41 24.09 ± 53.03 0.51 0.57 0.64 

EC.2.7.7.42 [Glutamate--ammonia-ligase] adenylyltransferase 97.91 0.9 61.4 ± 83.51 38 ± 66.65 0.11 0.54 0.02 

EC.2.7.7.43 N-acylneuraminate cytidylyltransferase 99.68 0.9 445.06 ± 483.34 632.04 ± 522.39 0.42 0.51 0.76 

EC.2.7.7.49 RNA-directed DNA polymerase 98.32 0.9 89.6 ± 159.11 144.77 ± 219.85 0.36 0.57 0.82 

EC.2.7.7.59 [Protein-PII] uridylyltransferase 97.95 0.9 61.89 ± 83.39 39.13 ± 67.11 0.47 0.96 0.78 

EC.2.7.8.6 Undecaprenyl-phosphate galactose phosphotransferase 99.81 0.9 737.22 ± 436.88 532.68 ± 451.51 0.37 0.63 0.72 

EC.3.1.26.12 Ribonuclease E 97.97 0.9 71.67 ± 94.85 48.29 ± 80.5 0.40 0.67 0.79 

EC.3.1.3.71 2-phosphosulfolactate phosphatase 98.02 0.9 116.23 ± 187.57 84.07 ± 189.24 0.51 0.57 0.64 

EC.3.2.1.85 6-phospho-beta-galactosidase 99.78 0.9 519.31 ± 397.96 361 ± 355.28 0.54 0.60 0.77 

EC.3.2.2.26 Futalosine hydrolase 96.49 0.9 27.78 ± 61.51 56.77 ± 103.62 0.08 0.30 0.26 

EC.3.4.11.19 D-stereospecific aminopeptidase 96.59 0.9 100.03 ± 151.87 65.72 ± 136.05 0.47 0.65 0.86 

EC.3.4.19.1 Acylaminoacyl-peptidase 99.46 0.9 488.79 ± 373.78 313.69 ± 339.01 0.03 0.00 0.00 

EC.3.4.21.26 Prolyl oligopeptidase 96.49 0.9 29.41 ± 65.14 64.22 ± 131.64 0.51 0.57 0.64 

EC.3.4.21.83 Oligopeptidase B 97.91 0.9 61.4 ± 83.51 38 ± 66.65 0.27 0.95 0.72 

EC.3.4.24.28 Bacillolysin 93.28 0.9 61.2 ± 116.17 35.41 ± 86.1 0.26 0.53 0.31 

EC.3.5.1.26 N(4)-(beta-N-acetylglucosaminyl)-L-asparaginase 99.89 0.9 796.47 ± 490.27 586.32 ± 522.09 0.27 0.61 0.47 

EC.4.1.2.43 3-hexulose-6-phosphate synthase 99.63 0.9 506.15 ± 398.87 324.66 ± 353.13 0.45 0.62 0.92 

EC.4.2.1.151 Chorismate dehydratase 96.57 0.9 28.68 ± 62.23 58.49 ± 104.49 0.35 0.65 0.71 

EC.4.2.1.22 Cystathionine beta-synthase 94.83 0.9 49.66 ± 79.4 24.66 ± 53.17 0.45 0.52 0.70 

EC.5.1.3.22 L-ribulose-5-phosphate 3-epimerase 98.94 0.9 48.43 ± 105.46 42.4 ± 106.8 0.42 0.79 0.40 

EC.5.1.3.7 UDP-N-acetylglucosamine 4-epimerase 99.44 0.9 439.44 ± 478.54 613.75 ± 508.28 0.20 0.80 0.41 
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EC.5.4.99.16 Maltose alpha-D-glucosyltransferase 98.94 0.9 59.09 ± 80.69 37.37 ± 94.58 0.55 0.61 0.79 

EC.5.4.99.28 tRNA pseudouridine(32) synthase 98.02 0.9 62.74 ± 83.22 44.86 ± 106.19 0.44 0.51 0.75 

EC.5.4.99.29 23S rRNA pseudouridine(746) synthase 98.02 0.9 62.74 ± 83.22 44.86 ± 106.19 0.43 0.65 0.89 

EC.6.2.1.5 Succinate--CoA ligase (ADP-forming) 99.66 0.9 260.63 ± 355.16 197.54 ± 383.41 0.45 0.56 0.85 

EC.6.4.1.3 Propionyl-CoA carboxylase 96.34 0.9 92.73 ± 115.63 62.37 ± 159.22 0.46 0.67 0.82 
aANCOM2.1 was performed after adjusting the generation number in the model. All W-statistic cutoffs from ANCOM output (0.9) 

were denoted for each taxon. 
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5.5.2. Gut microbiota diversity associated with cardiometabolic traits  

Since we identified significant sex differences on cardiometabolic traits in Chapter 4, we next 

performed Spearman correlation analysis in all mice, and both females and males separately to 

elucidate the relationship between 20 cardiometabolic traits and gut microbial diversity. In the 

DO-F1 mice, traits such as aortic lesion area, plasma TC, plasma VLDL/LDL-C, hepatic TC, and 

BPM among 24 traits positively correlated with the Shannon diversity index, Observed ASV, 

Plelou’s evenness, Weighted UniFrac PC2, and Bray Curtis PC1, and showed a negative 

correlation with Unweighted UniFrac PC1 (Figure 5.3A). These patterns were similar in 

correlation analysis with cardiometabolic traits in females and males, respectively (Figures 5.3B 

and 5.3C). Among the correlations we found, aortic lesion area, plasma TC, and hepatic TC, 

showed the strongest effect on the gut microbial diversities. These traits we define as 

“atherosclerotic traits”.  

Next, we performed a multivariate regression analysis to evaluate how gut microbiota 

diversity contributes to the atherosclerotic traits (aortic lesion area, plasma TC, and hepatic TC). 

In multivariate regression analysis, a significant association with gut microbiota diversity was 

observed for three atherosclerotic traits in a model with adjusted sex, generation number, and 

kinship matrix (Table 5.5). Similar to Spearman correlation, aortic lesion area, plasma TC, and 

hepatic TC were associated with increased alpha-diversity, Weighted UniFrac PC1, and Bray 

Curtis PC1, and associated with decreased Unweighted UniFrac PC1. Only aortic lesion area 

showed significant association with beta-diversity, not alpha-diversity. In addition, the microbial 

diversity contributing to the proportion of variance in traits was high in the index considering 

abundance or abundance and phylogenetic diversity together. For example, the Shannon index in 

alpha-diversity, which considers phylogenetic diversity and abundance, and abundance-based 
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Bray Curtis index in beta-diversity explained the highest proportion of variance in traits (Table 

5.5). Therefore, these results suggest that proportion of variance in key atherosclerotic traits can 

be explained by gut microbial diversity affected by the HFHC diet. 
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Figure 5.3. Cardiometabolic traits associated with gut microbiota diversity in DO-F1 mice.  

(A-C) Spearman correlation between microbial diversity and cardio-metabolic traits in all mice 

(A), females (B), and males (C). The p-values were adjusted using the Benjamini-Hochberg 

(BH) FDR procedure. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10.  
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Table 5.5. A multivariate linear mixed-effect regression model assessing three 

atherosclerotic traits associated with gut microbiota diversity in DO-F1 mice. 

    Adjusted for sex, generation number, and kinshipa 

Aortic lesion area Estimate CI_Lob CI_Hib R2 explained (%) p-value 

α-diversity 

Shannon 0.691 -0.305 1.687 5.0 0.174 

Observed ASVs 0.395 -0.263 1.053 3.8 0.240 

Faith PD 0.005 -1.250 1.261 0.8 0.993 

β-diversity 

Weighted Unifrac PC1 -0.110 -4.409 4.188 7.6 0.960 

Unweighted Unifrac PC1 -2.003 -3.441 -0.564 0.3 0.006 

Bray curtis PC1 1.106 0.296 1.917 9.1 0.007 

Plasma total cholesterol Estimate CI_Lo CI_Hi R2 explained (%) p-value 

α-diversity 

Shannon 0.347 0.174 0.520 7.2 8.48E-05 

Observed ASVs 0.301 0.188 0.414 7.2 1.93E-07 

Faith PD 0.460 0.244 0.676 4.3 3.00E-05 

β-diversity 

Weighted Unifrac PC1 0.923 0.166 1.680 7.7 0.017 

Unweighted Unifrac PC1 -0.654 -0.907 -0.402 1.0 3.66E-07 

Bray curtis PC1 0.323 0.180 0.466 10.5 9.51E-06 

Hepatic total cholesterol Estimate CI_Lo CI_Hi R2 explained (%) p-value 

α-diversity 

Shannon 0.147 0.035 0.259 5.1 0.010 

Observed ASVs 0.112 0.039 0.186 4.0 0.003 

Faith PD 0.117 -0.021 0.256 1.2 0.097 

β-diversity 

Weighted Unifrac PC1 0.688 0.206 1.169 6.9 0.005 

Unweighted Unifrac PC1 -0.348 -0.512 -0.183 1.0 3.56E-05 

Bray curtis PC1 0.199 0.107 0.292 9.3 2.56E-05 

 
aMultivariate associations were assessed by using linear mixed-effect regression models after 

adjusting sex, generation number, and genetic relatedness (kinship).  

bCI_Lo, Lower confidence interval; CI_Hi: Higher confidence interval 
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5.5.3. Differentially abundant microbial genera and functional profiling by atherosclerotic 

traits  

Next, we investigated which microbial genera or functional pathways were commonly associated 

with the three atherosclerotic traits that showed the most significant association with gut 

microbial diversity. We performed ANCOM based on the median value of each three 

atherosclerotic traits to detect potential genera that most likely explain the difference between the 

two groups. Based on W statistics by ANCOM, we found differentially abundant 23 genera for 

aortic lesion area (Figure 5.4A), 17 genera for plasma TC (Figure 5.4B), and 10 genera for 

hepatic TC (Figure 5.4C), between high and low groups of each trait after adjusting sex and 

generation (Table 5.6). Among them, genera that showed association with at least three 

atherosclerotic traits including aortic lesion area were Lachnospiraceae bacterium A2, Alistipes, 

Blautia, Lachnospiraceae NK4A136 group, Ruminiclostridium, Bifidobacterium, Clostridium 

sensu stricto 13, Escherichia-Shigella, and Faecalibaculum, and Terrisporobacter. In general, 

Lachnospiraceae bacterium A2, Alistipes, Blautia, Lachnospiraceae NK4A136 group, and 

Ruminiclostridium were significantly abundant in the high group for aortic lesion area, plasma 

TC, and hepatic TC while Bifidobacterium, Clostridium sensu stricto 13, Escherichia-Shigella, 

Faecalibaculum, Terrisporobacter were significantly enriched in the low group for these traits 

(Figures 5.4A-C and Table 5.6).  

We similarly investigated the MetaCyc pathways and EC gene families that are 

commonly associated with three atherosclerotic traits. We identified differentially abundant 

MetaCyc pathways (W cutoff >0.7, Table 5.7) and EC gene families (W cutoff >0.9, Table 5.8) 

between high and low groups for aortic lesion area, plasma TC, and hepatic TC, and 64 pathways 

and 448 EC gene families were differentially abundant in all three atherosclerotic traits. The 
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pathways that have the strongest difference with W cutoff 0.9 level and |log2 fold change|> were 

"1,4-dihydroxy-6-naphthoate biosynthesis I" and "1,4-dihydroxy-6-naphthoate biosynthesis II", 

and "superpathway of menaquinol-8 biosynthesis II" (Figure 5.5A-5.5C and Table 5.7). These 

three pathways are associated with the synthesis of menaquinones, which are lipophilic 

components of the cytoplasmic membrane (Hiratsuka et al., 2008). Similarly, EC gene families 

with the greatest difference with the W cutoff level of 0.9 and the |log2 fold change|>1 were 

"Glycogen (starch) synthase", "Cysteate synthase", "Chorismate dehydratase", "Cyclic 

dehypoxanthinyl futalosine synthase", "Aminodeoxyfutalosine synthase", "Prolyl 

oligopeptidase", "Futalosine hydrolase" (Figure 5.5D-5.5F and Table 5.8). Among them, 

“Chorismate dehydratase”, “Cyclic dehypoxanthinyl futalosine synthase”, 

“Aminodeoxyfutalosine synthase” and “Futalosine hydrolase” ECs are involved in three 

pathways associated with the synthesis of menaquinones (Caspi et al., 2016). These results 

suggest that specific microbial genera and their associated functional microbial pathways may 

influence the pathogenesis of atherosclerosis. 
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Figure 5.4. Differentially abundant taxa by three atherosclerotic traits in DO-F1 mice. (A-

C) ANCOM analysis of microbial genera by median value of aortic lesion area (A), plasma total 

cholesterol (B), and hepatic total cholesterol (C) at 24 weeks after adjusting sex and generation 

number. Differentially abundant taxa were ordered from top to bottom by log2 fold change of 

mean between high (red color) and low group (blue color) in three key traits. All W-statistic 

cutoffs from ANCOM output (0.7, 0.8, and 0.9) were denoted for each taxon; for interpretation, 

significance was defined as W>0.7.  
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Figure 5.5. Differentially abundant MetaCyc pathways and EC gene families by three 
atherosclerotic traits in DO-F1 mice. (A-C) ANCOM analysis of MetaCyc pathways by a 

median value of aortic lesion area (A), plasma total cholesterol (B), and hepatic total cholesterol 

(C) after adjusting sex and generation number. (D-F) ANCOM analysis of EC gene families by a 

median value of aortic lesion area (D), plasma total cholesterol (E), and hepatic total cholesterol 

(F) after adjusting sex and generation number. The top 20 differentially abundant MetaCyc 

pathways and EC gene families that have the highest W values were ordered from top to bottom 

by log2 fold change of mean between high (red color) and low group (blue color) in three key 

traits. All W-statistic cutoffs from ANCOM output (0.7, 0.8, and 0.9) were denoted for each 

MetaCyc pathway; for interpretation, significance was defined as W>0.7. 
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Table 5.6. Differentially abundant genera by three atherosclerotic traits in DO-F1 mice at 

24 weeks. n = 464 (232 females and 232 males). 

Genera 

Aortic lesion area 
Plasma total 

cholesterol 

Hepatic total 

cholesterol 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

g_Faecalibaculum 0.9 -0.7 0.9 -0.7 0.9 -0.7 

g_Clostridium sensu stricto 13 0.9 -1.1 0.9 -0.8 0.8 -0.7 

g_Terrisporobacter 0.8 -1.0 0.9 -0.8 0.9 -0.8 

g_Ruminiclostridium 0.8 0.7 0.9 0.7 0.8 0.5 

g_A2 0.8 0.6 0.9 0.4 0.7 0.5 

g_Bifidobacterium 0.8 -0.9 0.8 -0.9 0.9 -1.1 

g_Lachnospiraceae NK4A136 

group 0.8 0.7 0.8 0.5 0.7 0.5 

g_Blautia 0.8 0.6 0.8 0.6 0.7 0.4 

g_Alistipes 0.8 1.1 0.7 1.0 0.8 1.1 
aANCOM2.1 was performed after adjusting sex and generation number in the model. All W-

statistic cutoffs from ANCOM output (0.7, 0.8, and 0.9) were denoted for each genus. 
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Table 5.7. Differentially abundant MetaCyc pathways by three atherosclerotic traits in DO-F1 mice at 24 weeks.  

Pathway 
Aortic lesion area Plasma total cholesterol Hepatic total cholesterol 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff 

(ANCOM)a 

Log2FC 

(High/Low) 

superpathway of menaquinol-8 biosynthesis II 0.9 1.0 0.9 0.9 0.9 1.0 

1,4-dihydroxy-6-naphthoate biosynthesis II 0.9 1.1 0.9 1.0 0.9 1.1 

1,4-dihydroxy-6-naphthoate biosynthesis I 0.9 1.1 0.9 1.1 0.9 1.0 

tRNA processing 0.9 -0.5 0.9 -0.5 0.9 -0.5 

glycolysis V (Pyrococcus) 0.9 0.2 0.9 0.2 0.9 0.3 

superpathway of UDP-glucose-derived O-antigen building blocks 

biosynthesis 0.9 0.4 0.9 0.4 0.9 0.4 

GDP-D-glycero-&alpha;-D-manno-heptose biosynthesis 0.9 0.4 0.9 0.3 0.9 0.4 

dTDP-N-acetylthomosamine biosynthesis 0.9 0.4 0.9 0.4 0.8 0.3 

L-1,2-propanediol degradation 0.9 0.5 0.9 0.3 0.7 0.2 

TCA cycle VIII (helicobacter) 0.9 0.5 0.9 0.4 0.7 0.3 

mycolate biosynthesis 0.9 -0.7 0.8 -0.3 0.9 -0.3 

superpathway of L-tryptophan biosynthesis 0.9 -0.4 0.8 -0.2 0.7 -0.2 

superpathway of pyridoxal 5'-phosphate biosynthesis and salvage 0.9 -0.7 0.7 -0.4 0.8 -0.4 

superpathway of UDP-N-acetylglucosamine-derived O-antigen building 

blocks biosynthesis 0.8 0.3 0.9 0.4 0.9 0.3 

acetyl-CoA fermentation to butanoate II 0.8 0.4 0.9 0.4 0.8 0.2 

heme biosynthesis II (anaerobic) 0.8 0.4 0.8 0.5 0.9 0.6 

superpathway of fatty acid biosynthesis initiation (E. coli) 0.8 -0.3 0.8 -0.3 0.8 -0.3 

palmitate biosynthesis II (bacteria and plants) 0.8 -0.3 0.8 -0.3 0.8 -0.2 

stearate biosynthesis II (bacteria and plants) 0.8 -0.3 0.8 -0.3 0.8 -0.3 

palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 0.8 -0.3 0.8 -0.3 0.8 -0.3 

8-amino-7-oxononanoate biosynthesis I 0.8 -0.4 0.8 -0.3 0.8 -0.2 

oleate biosynthesis IV (anaerobic) 0.8 -0.3 0.8 -0.3 0.8 -0.2 

D-galactarate degradation I 0.8 -0.4 0.8 -0.5 0.8 -0.4 

superpathway of D-glucarate and D-galactarate degradation 0.8 -0.4 0.8 -0.5 0.8 -0.4 

biotin biosynthesis I 0.8 -0.4 0.8 -0.3 0.7 -0.2 

superpathway of lipopolysaccharide biosynthesis 0.8 -0.4 0.8 -0.3 0.7 -0.2 

6-hydroxymethyl-dihydropterin diphosphate biosynthesis I 0.8 0.4 0.8 0.3 0.7 0.3 

superpathway of L-arginine, putrescine, and 4-aminobutanoate 

degradation 0.8 -0.3 0.8 -0.3 0.7 -0.3 

enterobacterial common antigen biosynthesis 0.8 -0.2 0.8 -0.3 0.7 -0.3 

superpathway of glycol metabolism and degradation 0.8 -0.3 0.8 -0.4 0.7 -0.3 

superpathway of methylglyoxal degradation 0.8 -0.2 0.8 -0.4 0.7 -0.3 

superpathway of L-arginine and L-ornithine degradation 0.8 -0.3 0.8 -0.3 0.7 -0.3 
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peptidoglycan biosynthesis V (&beta;-lactam resistance) 0.8 0.5 0.7 0.4 0.9 0.4 

pyridoxal 5'-phosphate biosynthesis I 0.8 -0.6 0.7 -0.3 0.8 -0.3 

glucose and glucose-1-phosphate degradation 0.8 -0.7 0.7 -0.5 0.7 -0.3 

6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) 0.8 0.4 0.7 0.3 0.7 0.3 

L-arginine degradation II (AST pathway) 0.8 -0.2 0.7 -0.4 0.7 -0.3 

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-

oxopent-4-enoate 0.8 -0.2 0.7 -0.4 0.7 -0.3 

3-phenylpropanoate degradation 0.8 -0.2 0.7 -0.3 0.7 -0.3 

2-methylcitrate cycle II 0.8 -0.2 0.7 -0.3 0.7 -0.3 

superpathway of phenylethylamine degradation 0.8 -0.2 0.7 -0.3 0.7 -0.3 

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate 0.8 -0.2 0.7 -0.4 0.7 -0.3 

sulfoglycolysis 0.8 -0.2 0.7 -0.4 0.7 -0.3 

superpathway of heme biosynthesis from uroporphyrinogen-III 0.8 -0.2 0.7 -0.3 0.7 -0.2 

phenylacetate degradation I (aerobic) 0.8 -0.2 0.7 -0.3 0.7 -0.3 

2-methylcitrate cycle I 0.8 -0.2 0.7 -0.3 0.7 -0.3 

polymyxin resistance 0.8 -0.3 0.7 -0.2 0.7 -0.2 

L-lysine biosynthesis II 0.8 -0.2 0.7 -0.1 0.7 -0.1 

superpathway of ubiquinol-8 biosynthesis (prokaryotic) 0.7 -0.3 0.8 -0.3 0.7 -0.2 

fatty acid elongation -- saturated 0.7 0.3 0.7 0.3 0.7 0.3 

ADP-L-glycero-&beta;-D-manno-heptose biosynthesis 0.7 -0.6 0.7 -0.5 0.7 -0.3 

superpathway of ornithine degradation 0.7 -0.2 0.7 -0.3 0.7 -0.3 

ubiquinol-7 biosynthesis (prokaryotic) 0.7 -0.3 0.7 -0.3 0.7 -0.2 

ubiquinol-9 biosynthesis (prokaryotic) 0.7 -0.3 0.7 -0.3 0.7 -0.2 

ubiquinol-10 biosynthesis (prokaryotic) 0.7 -0.3 0.7 -0.3 0.7 -0.2 

ubiquinol-8 biosynthesis (prokaryotic) 0.7 -0.3 0.7 -0.3 0.7 -0.2 

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation 0.7 -0.3 0.7 -0.3 0.7 -0.3 

superpathway of chorismate metabolism 0.7 -0.3 0.7 -0.2 0.7 -0.1 

D-glucarate degradation I 0.7 -0.3 0.7 -0.2 0.7 -0.2 

superpathway of (Kdo)2-lipid A biosynthesis 0.7 -0.4 0.7 -0.2 0.7 -0.2 

catechol degradation I (meta-cleavage pathway) 0.7 -0.2 0.7 -0.3 0.7 -0.2 

methylphosphonate degradation I 0.7 -0.6 0.7 -0.6 0.7 -0.4 

TCA cycle I (prokaryotic) 0.7 -0.4 0.7 -0.2 0.7 -0.3 

ppGpp biosynthesis 0.7 -0.2 0.7 -0.3 0.7 -0.2 
aANCOM2.1 was performed after adjusting sex and generation number in the model. All W-statistic cutoffs from ANCOM output 

(0. 7, 0.8, and 0.9) were denoted for each MetaCyc pathways. 
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Table 5.8. Differentially abundant EC gene families by three atherosclerotic traits in DO-F1 mice.  

EC gene 

families 
Description 

Aortic lesion area 
Plasma total 

cholesterol 

Hepatic total 

cholesterol 

W  cutoff  

0.9 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff  

0.9 

(ANCOM)a 

Log2FC 

(High/Low) 

W  cutoff  

0.9 

(ANCOM)a 

Log2FC 

(High/Low) 

EC.1.1.1.61 4-hydroxybutyrate dehydrogenase 0.9 -0.68 0.9 -0.61 0.9 -0.65 

EC.1.2.99.7 Aldehyde dehydrogenase (FAD-independent) 0.9 -0.96 0.9 -0.78 0.9 -0.81 

EC.1.21.98.1 Cyclic dehypoxanthinyl futalosine synthase 0.9 1.10 0.9 1.00 0.9 1.07 

EC.1.6.1.2 NAD(P)(+) transhydrogenase (Re/Si-specific) 0.9 -0.79 0.9 -0.84 0.9 -0.97 

EC.1.8.98.1 CoB--CoM heterodisulfide reductase 0.9 0.60 0.9 0.61 0.9 0.52 

EC.2.4.1.11 Glycogen(starch) synthase 0.9 1.09 0.9 1.03 0.9 1.10 

EC.2.4.1.144 

Beta-1,4-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase 0.9 0.66 0.9 0.54 0.9 0.39 

EC.2.5.1.120 Aminodeoxyfutalosine synthase 0.9 1.10 0.9 1.00 0.9 1.07 

EC.2.5.1.26 Alkylglycerone-phosphate synthase 0.9 -0.85 0.9 -0.68 0.9 -0.51 

EC.2.5.1.76 Cysteate synthase 0.9 1.09 0.9 1.03 0.9 1.10 

EC.2.5.1.97 Pseudaminic acid synthase 0.9 0.66 0.9 0.54 0.9 0.39 

EC.2.7.7.42 [Glutamate--ammonia-ligase] adenylyltransferase 0.9 -0.72 0.9 -0.79 0.9 -0.89 

EC.2.7.7.43 N-acylneuraminate cytidylyltransferase 0.9 0.68 0.9 0.55 0.9 0.40 

EC.2.7.7.83 UDP-N-acetylgalactosamine diphosphorylase 0.9 0.66 0.9 0.54 0.9 0.38 

EC.3.1.3.71 2-phosphosulfolactate phosphatase 0.9 -0.74 0.9 -0.71 0.9 -0.65 

EC.3.2.2.26 Futalosine hydrolase 0.9 1.13 0.9 1.08 0.9 1.05 

EC.3.4.21.26 Prolyl oligopeptidase 0.9 1.10 0.9 1.19 0.9 1.12 

EC.3.4.21.83 Oligopeptidase B 0.9 -0.72 0.9 -0.79 0.9 -0.89 

EC.3.5.1.59 N-carbamoylsarcosine amidase 0.9 -0.96 0.9 -0.79 0.9 -0.81 

EC.3.6.3.20 Glycerol-3-phosphate-transporting ATPase 0.9 -0.72 0.9 -0.41 0.9 -0.39 

EC.4.2.1.151 Chorismate dehydratase 0.9 1.09 0.9 1.01 0.9 1.08 

EC.4.3.1.2 Methylaspartate ammonia-lyase 0.9 -0.87 0.9 -0.69 0.9 -0.68 

EC.5.1.3.22 L-ribulose-5-phosphate 3-epimerase 0.9 -0.61 0.9 -0.55 0.9 -0.48 

EC.5.1.3.6 UDP-glucuronate 4-epimerase 0.9 0.64 0.9 0.53 0.9 0.38 

EC.5.1.3.7 UDP-N-acetylglucosamine 4-epimerase 0.9 0.66 0.9 0.53 0.9 0.39 

EC.5.4.99.1 Methylaspartate mutase 0.9 -0.87 0.9 -0.70 0.9 -0.68 
aANCOM2.1 was performed after adjusting sex and generation number in the model. All W-statistic cutoffs from ANCOM output 

(0.9) were denoted for each EC gene family 
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5.5.4. Microbial taxa and functional profiling are associated with host genetics 

We next performed quantitative trait loci (QTL) mapping using the R/qtl2 package (Broman et 

al., 2019) to investigate the effect of host genetics on microbial taxa and functional profiling, and 

to identify loci that are genetically regulated concurrently with cardiometabolic traits and gut 

microbiota. Specifically in the atherosclerosis mouse model, since females are more susceptible 

than males, and the effects on host genetics also perturb sexual dimorphism (AlSiraj et al., 2019; 

Bennett et al., 2015), we calculated heritability and conducted QTL analysis in entire mice, 

female mice, or male mice, respectively.  

First, we estimated narrow-sense heritability (h2) using a linear mixed model 

implemented in the R/qtl2 package to predict the effects of the genotype on the microbial taxa, 

which is proportional to the genetic relatedness between the mice. Therefore, h2 was calculated 

by including the traits, kinship matrix, and generation number. In entire mice, we used sex and 

generation as covariates in h2 calculation. Sex-specific estimates of h2 suggest that there is 

considerable sex specificity in host genetics to the observed variance in microbial taxa (Figures 

5.6, and Table 5.2), MetaCyc pathways (Table 5.3), and EC gene families (Table 5.4). In the 40 

microbial genera levels identified, h2 was generally higher in females (60% of genera levels) 

than in males, but the proportion of genera whose h2 difference was less than 0.1 between the 

two sexes was almost half of the total (47.5% of genera levels). In both sexes, genera with h2 less 

than 0.5 include 8 genera (Staphylococcus, Lactobacillus, Lachnospiraceae FCS020 group, 

Lachnospiraceae UCG-004, Lachnospiraceae UCG-006, Anaerotruncus, GCA-900066225, and 

Ruminococcaceae UCG-010) (Table 5.2). On the other hand, h2 was higher in males in 64% of 

MetaCyc pathways and EC gene families (Table 5.3 and 5.4). 
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 Second, we performed the QTL analysis for microbial taxa, MetaCyc pathways, and EC 

gene families, respectively. In entire mice, we used sex and generation number as covariates and 

identified significant QTLs (p<0.05) for 31 microbial taxa (16 ASVs, 9 genera, 3 family, 1 class, 

1 order, and 1 phylum) (Table 5.9), 93 MetaCyc pathways (Table 5.10), and 499 EC gene 

families (data not shown). In addition, we found a substantial effect of host genetics on the sex-

specific mbQTL results (Table 5.9-5.10). For example, most of the QTLs we identified in each 

sex showed significant association in only one sex and different chromosome in even same-sex. 

We applied a highly suggestive threshold (P<0.1) to visualize sex-specific microbial genera QTL 

in the form of circos plots in order to capture a more complete picture of the genetic architecture 

of the microbiota. Figure 5.6 showed sex-biased 18 out of the 40 microbial genus levels.  
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Figure 5.6. Genetic architecture of quantitative trait loci (QTL) for microbial taxa 

abundance in DO-F1 mice.  

Circos plot showing an overview of genetic regulation of microbial genus levels at 24 weeks. 

The outermost track (blue bars for males and red bars for females) show the relative log2fold 

change (FC) (male versus female). The middle track represents narrow-sense heritability (h2) 

estimates for the microbial genus levels in females (pink) and males (green). The innermost track 

represents logarithm of the odds (LOD) scores of highly suggestive (P<0.1) quantitative trait loci 

(QTL) in females (red) and males (blue), with their respective chromosomes indicated below 

(male) or above (female) dots. Abbreviation:.sensu.stricto.1, Clostridium sensu stricto 1; 

C.sensu.stricto.13 , Clostridium sensu stricto 13; L.FCS020, Lachnospiraceae FCS020; 

L.NK4A136, Lachnospiraceae NK4A136; L.UCG.04, Lachnospiraceae UCG004; L.UCG.06, 

Lachnospiraceae UCG006; R.NK4A214, Ruminococcaceae NK4A214; R.UCG.010, 

Ruminococcaceae UCG-010.
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Table 5.9. Significant QTL results for gut microbial taxa at 24 weeks in three models. n = 454 (229 females and 225 males) 

 

Model Taxonomy Taxa 
% of presence 

in entire mice 
Chr 

Position  

(Mbp) 

CI 

(low)a 
CI(hi)a LOD 

LOD 

threshold 

(p < 0.05) 

#Genes Marker 

Female mice ASV a_.Eubacterium..brachy.group_ASV1 20.26 3 73.60 72.77 75.56 7.92 7.82 4 UNCHS009043 

Female mice ASV a_Acetatifactor_ASV3 41.59 4 69.54 68.48 71.28 9.86 7.71 4 JAX00553788 
Female mice ASV a_Coriobacteriaceae.UCG.002_ASV1 32.11 11 102.36 101.63 103.25 9.93 7.96 50 JAX00320303 

Female mice ASV a_Erysipelatoclostridium_ASV1 87.72 1 82.92 78.27 87.80 7.39 7.39 59 UNCHS001435 

Female mice ASV a_Erysipelatoclostridium_ASV1 87.72 7 44.07 40.71 44.63 7.54 7.39 50 JAX00637206 
Female mice ASV a_Erysipelatoclostridium_ASV1 87.72 11 53.80 53.24 56.97 8.77 7.39 44 JAX00311270 

Female mice ASV a_GCA.900066575_ASV14 69.18 17 64.96 63.60 66.15 7.95 7.71 16 JAX00443727 

Female mice ASV a_GCA.900066575_ASV15 44.83 7 29.55 29.40 29.80 8.93 7.62 4 UNC12559214 
Female mice ASV a_Intestinimonas_ASV1 58.62 7 124.48 123.52 124.60 8.46 7.74 0 UNC13780242 

Female mice ASV a_Lachnospiraceae.NK4A136.group_ASV16 20.69 8 111.92 110.70 112.08 8.55 8.10 29 UNC15503960 
Female mice ASV a_Lachnospiraceae.NK4A136.group_ASV5 79.53 8 118.71 118.35 119.17 7.71 7.65 0 UNCHS024341 

Female mice ASV a_Lachnospiraceae.UCG.006_ASV3 54.96 3 50.84 48.29 51.74 7.82 7.82 9 UNC5241793 

Female mice ASV a_Lactococcus_ASV1 100 10 26.71 25.13 27.06 7.45 7.73 8 UNC17630038 
Female mice ASV a_Romboutsia_ASV1 23.92 5 64.73 64.44 66.48 8.68 7.83 21 UNCHS014527 

Female mice ASV a_Romboutsia_ASV2 27.59 2 38.96 32.48 39.33 8.31 7.74 67 UNCHS004706 

Female mice ASV a_Romboutsia_ASV2 27.59 5 65.91 64.49 66.48 9.14 7.74 21 UNCHS014562 
Female mice ASV a_Ruminiclostridium.5_ASV10 35.13 13 95.15 95.08 95.58 8.29 7.87 4 UNC23132968 

Female mice Genus g_Alistipes 64.44 5 137.01 136.75 137.27 7.83 7.67 10 UNC10262562 

Female mice Genus g_Coriobacteriaceae.UCG.002 32.11 11 102.36 101.63 103.25 9.93 7.97 50 JAX00320303 
Female mice Genus g_Erysipelatoclostridium 88.58 11 53.80 53.24 56.97 8.48 7.52 44 JAX00311270 

Female mice Genus g_GCA.900066575 90.73 4 58.16 57.88 59.35 8.27 7.60 13 UNC7328598 

Female mice Genus g_Intestinimonas 58.62 7 124.48 123.52 124.60 8.46 7.74 0 UNC13780242 
Female mice Genus g_Lachnospiraceae.FCS020.group 37.28 2 110.79 108.92 114.09 8.05 7.82 19 UNC3750106 

Female mice Genus g_Lactococcus 100 10 26.71 25.13 27.06 7.45 7.79 8 UNC17630038 

Female mice Genus g_Romboutsia 31.03 2 35.00 32.48 39.33 8.24 8.00 67 UNCHS004572 
Female mice Genus g_Romboutsia 31.03 5 65.91 64.49 66.39 9.43 8.00 21 UNCHS014561 

Male mice ASV a_Coriobacteriaceae.UCG.002_ASV1 32.11 7 134.85 134.81 138.04 7.73 7.62 7 UNC13917049 

Male mice ASV a_Enterorhabdus_ASV2 69.18 5 117.75 117.74 118.46 7.98 7.80 8 UNC10001966 

Male mice ASV a_Enterorhabdus_ASV4 32.54 2 165.96 165.86 166.19 8.52 8.16 2 UNC4425598 
Male mice ASV a_Enterorhabdus_ASV4 32.54 7 122.98 122.61 123.97 8.18 8.16 7 UNC13763557 

Male mice ASV a_GCA.900066575_ASV9 64.87 16 66.88 65.54 68.44 8.55 7.82 0 UNC27018343 

Male mice ASV a_Ruminiclostridium.9_ASV4 74.57 13 45.86 45.61 47.27 8.72 7.87 12 UNCHS035791 

Male mice ASV a_Ruminiclostridium.9_ASV5 53.23 5 133.25 132.36 134.79 9.06 7.90 12 UNCHS016012 

Male mice ASV a_Ruminiclostridium.9_ASV5 53.23 11 61.72 60.70 63.08 8.67 7.90 46 UNCHS030977 
Male mice ASV a_Ruminiclostridium.9_ASV6 32.33 4 107.23 106.60 108.19 8.07 7.89 28 UNCHS012323 

Male mice ASV a_Ruminiclostridium.9_ASV6 32.33 11 84.84 83.58 85.95 8.01 7.89 30 UNC20039526 

Male mice Class c_Coriobacteriia 26.72 2 54.43 52.65 56.56 7.75 7.66 6 UNC3086503 
Male mice Class c_Mollicutes 30.60 6 139.10 138.67 139.21 8.48 8.01 0 UNC12215650 

Male mice Genus g_Clostridium.sensu.stricto.1 20.47 4 62.98 57.67 64.81 7.84 7.79 45 UNCHS011495 

Male mice Genus g_Enterorhabdus 90.73 2 181.82 180.82 181.99 8.08 7.96 34 UNCHS008005 
Male mice Genus g_Lachnospiraceae.FCS020.group 85.56 10 67.51 67.26 67.99 8.63 8.17 4 JAX00019079 
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Male mice Genus g_Lachnospiraceae.FCS020.group 85.56 14 122.69 121.42 122.98 8.30 8.17 12 UNC24928446 
Male mice Genus g_Ruminiclostridium.9 100.00 13 45.86 45.61 47.22 8.05 7.79 12 UNCHS035791 

Male mice Genus g_UBA1819 98.49 2 77.37 74.43 78.27 9.74 7.78 22 UNC3375234 

Male mice Order o_Coriobacteriales 99.14 2 54.43 52.65 56.56 7.75 7.70 6 UNC3086503 
Male mice Order o_Mollicutes.RF39 63.15 6 139.10 138.67 139.21 8.48 7.98 0 UNC12215650 

Male mice Phylum p_Tenericutes 98.06 6 139.10 138.67 139.21 8.48 8.17 0 UNC12215650 

Entire mice ASV a_.Eubacterium..nodatum.group_ASV1 30.39 5 143.64 142.65 144.40 7.97 7.79 26 UNCHS016241 
Entire mice ASV a_A2_ASV3 36.21 15 50.99 48.95 51.60 9.56 7.86 1 UNC25574114 

Entire mice ASV a_Acetatifactor_ASV3 41.59 8 9.11 8.68 9.92 8.22 7.78 0 UNC14126015 

Entire mice ASV a_Acetatifactor_ASV3 41.59 4 71.23 68.63 75.96 8.93 7.78 10 JAX00120272 
Entire mice ASV a_Akkermansia_ASV1 25.43 4 57.54 57.19 57.88 9.34 8.04 1 UNCHS011398 

Entire mice ASV a_Blautia_ASV1 23.49 1 83.74 83.69 86.47 8.76 8.17 19 UNC1063044 

Entire mice ASV a_Blautia_ASV5 70.91 2 116.95 116.21 117.99 8.11 7.84 4 UNC3812685 

Entire mice ASV a_Enterorhabdus_ASV2 69.18 5 117.75 117.39 117.79 8.25 7.73 1 UNC10001966 

Entire mice ASV a_Faecalibaculum_ASV2 25.86 9 14.73 14.69 15.69 8.54 8.22 17 JAX00686181 

Entire mice ASV a_Lachnospiraceae.NK4A136.group_ASV5 79.53 14 121.37 120.32 121.51 9.36 7.80 4 UNCHS039440 
Entire mice ASV a_Lactobacillus_ASV6 55.39 12 56.35 56.08 56.50 8.08 7.73 1 UNCHS033569 

Entire mice ASV a_Romboutsia_ASV1 23.92 5 64.73 64.44 66.48 8.09 7.92 21 UNCHS014527 

Entire mice ASV a_Romboutsia_ASV2 27.59 10 117.97 117.66 119.03 8.83 7.93 7 UNC18812646 
Entire mice ASV a_Ruminiclostridium.9_ASV6 32.33 2 78.17 78.06 80.32 9.64 7.77 8 UNC3385056 

Entire mice ASV a_Ruminococcaceae.NK4A214.group_ASV1 31.25 6 72.73 71.71 73.82 8.38 7.80 23 UNC11350970 

Entire mice ASV a_Terrisporobacter_ASV1 33.19 16 14.44 13.73 17.44 9.01 7.85 38 UNCHS041843 
Entire mice Class c_Verrucomicrobiae 25.43 4 57.54 57.19 57.88 9.34 7.94 1 UNCHS011398 

Entire mice Family f_Akkermansiaceae 25.43 4 57.54 57.19 57.88 9.34 7.98 1 UNCHS011398 

Entire mice Family f_Bifidobacteriaceae 49.57 8 34.64 33.41 34.84 8.43 7.95 14 UNCHS022638 
Entire mice Family f_Streptococcaceae 100.00 4 35.89 35.75 36.48 8.23 7.73 0 UNC7055184 

Entire mice Genus g_.Eubacterium..nodatum.group 30.39 5 143.64 142.65 144.40 7.97 7.74 26 UNCHS016241 

Entire mice Genus g_Akkermansia 25.43 4 57.54 57.19 57.88 9.34 7.87 1 UNCHS011398 
Entire mice Genus g_Clostridium.sensu.stricto.1 43.97 16 14.25 13.02 17.16 8.06 7.85 38 UNCHS041835 

Entire mice Genus g_Lachnospiraceae.FCS020.group 37.28 14 122.96 120.87 123.66 8.46 7.81 16 UNC24930227 

Entire mice Genus g_Lachnospiraceae.NK4A136.group 88.15 14 121.38 121.04 121.51 8.49 7.78 1 UNC24910435 
Entire mice Genus g_Romboutsia 31.03 10 117.97 117.55 119.03 8.19 7.87 8 UNC18812646 

Entire mice Genus g_Ruminococcaceae.NK4A214.group 31.25 6 72.73 71.71 73.82 8.38 7.93 23 UNC11350970 

Entire mice Genus g_Ruminococcaceae.UCG.010 24.35 1 172.48 172.35 173.39 8.64 7.87 17 UNCHS003307 
Entire mice Genus g_Terrisporobacter 33.62 16 14.44 13.73 17.60 9.02 7.77 45 UNCHS041843 

Entire mice Order o_Verrucomicrobiales 25.43 4 57.54 57.19 57.88 9.34 8.01 1 UNCHS011398 

Entire mice Phylum p_Verrucomicrobia 25.43 4 57.54 57.19 57.88 9.34 7.80 1 UNCHS011398 

Significance was considered only when QTL results were P<0.05. 
a95% Bayesian credible interval was calculated as implemented by the bayesint function in R/QTL2. 
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Table 5.10. Significant QTL results for MetaCyc pathways at 24 weeks in three models. n = 454 (229 females and 225 males) 

Model Name Chr 
Position  

(Mbp) 

CI 

(low)a 
CI(hi)a LOD 

LOD 

threshold 

(p < 0.05) 

#Genes Marker 

Female mice superpathway of arginine and polyamine biosynthesis 1 119.29 118.85 121.06 8.05 7.71 13 UNCHS002076 

Female mice superpathway of polyamine biosynthesis I 1 119.29 118.98 120.80 8.40 7.68 13 UNCHS002076 
Female mice peptidoglycan biosynthesis II (staphylococci) 2 6.97 5.70 9.36 7.90 7.60 11 JAX00482647 

Female mice guanosine nucleotides degradation III 8 118.48 117.61 118.74 8.40 7.73 4 UNC15604827 

Female mice adenosine nucleotides degradation II 8 118.48 118.45 118.81 9.20 7.67 0 UNC15604827 

Female mice purine nucleotides degradation II (aerobic) 8 118.51 117.64 118.81 8.09 7.61 4 UNC15605042 

Female mice preQ0 biosynthesis 12 29.10 28.58 29.34 7.88 7.83 6 UNC20800862 

Female mice formaldehyde assimilation II (RuMP Cycle) 12 81.28 73.62 82.14 8.01 7.58 58 UNCHS034114 
Female mice fucose degradation 12 84.38 83.46 86.41 8.40 7.63 50 UNC21522803 

Female mice thiazole biosynthesis II (Bacillus) 12 100.32 99.98 100.51 7.65 7.54 4 UNC21745067 
Female mice superpathway of thiamin diphosphate biosynthesis II 12 100.32 99.98 100.48 8.21 7.67 4 UNC21745067 

Female mice reductive TCA cycle I 14 58.40 58.27 59.74 7.62 7.57 8 UNC24064293 

Female mice superpathway of chorismate metabolism 14 58.58 58.27 59.74 8.54 7.77 8 B6_rs30650651 
Female mice superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 14 58.58 58.35 59.74 9.13 7.62 8 B6_rs30650651 

Female mice L-arginine degradation II (AST pathway) 14 58.58 58.35 59.74 8.72 7.70 8 B6_rs30650651 

Female mice biotin biosynthesis I 14 58.58 58.35 59.74 8.70 7.79 8 B6_rs30650651 
Female mice enterobacterial common antigen biosynthesis 14 58.58 58.35 59.74 8.59 7.74 8 B6_rs30650651 

Female mice superpathway of fatty acid biosynthesis initiation (E. coli) 14 58.58 58.35 59.74 8.78 7.76 8 B6_rs30650651 

Female mice D-galactarate degradation I 14 58.58 58.27 59.74 9.40 7.65 8 B6_rs30650651 

Female mice D-glucarate degradation I 14 58.58 58.27 59.74 9.03 7.76 8 B6_rs30650651 

Female mice superpathway of D-glucarate and D-galactarate degradation 14 58.58 58.27 59.74 9.40 7.74 8 B6_rs30650651 

Female mice superpathway of glycol metabolism and degradation 14 58.58 58.35 59.74 9.51 7.73 8 B6_rs30650651 

Female mice 

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-

oxopent-4-enoate 14 58.58 58.35 59.74 8.72 7.70 8 B6_rs30650651 

Female mice superpathway of (Kdo)2-lipid A biosynthesis 14 58.58 58.35 59.74 8.84 7.65 8 B6_rs30650651 
Female mice superpathway of lipopolysaccharide biosynthesis 14 58.58 58.35 59.74 8.69 7.68 8 B6_rs30650651 

Female mice superpathway of methylglyoxal degradation 14 58.58 58.35 59.74 8.99 7.59 8 B6_rs30650651 

Female mice superpathway of L-arginine and L-ornithine degradation 14 58.58 58.35 59.74 9.13 7.78 8 B6_rs30650651 
Female mice superpathway of ornithine degradation 14 58.58 58.35 59.74 9.09 7.79 8 B6_rs30650651 

Female mice 3-phenylpropanoate degradation 14 58.58 58.27 59.74 8.69 7.56 8 B6_rs30650651 

Female mice ppGpp biosynthesis 14 58.58 58.35 59.57 8.42 7.75 6 B6_rs30650651 
Female mice 2-methylcitrate cycle II 14 58.58 58.35 59.74 8.73 7.70 8 B6_rs30650651 

Female mice ubiquinol-7 biosynthesis (prokaryotic) 14 58.58 58.35 59.74 8.88 7.69 8 B6_rs30650651 

Female mice ubiquinol-9 biosynthesis (prokaryotic) 14 58.58 58.35 59.74 8.88 7.75 8 B6_rs30650651 
Female mice ubiquinol-10 biosynthesis (prokaryotic) 14 58.58 58.35 59.74 8.88 7.86 8 B6_rs30650651 

Female mice palmitate biosynthesis II (bacteria and plants) 14 58.58 58.35 59.74 8.70 7.64 8 B6_rs30650651 

Female mice stearate biosynthesis II (bacteria and plants) 14 58.58 58.35 59.74 8.74 7.84 8 B6_rs30650651 
Female mice superpathway of phenylethylamine degradation 14 58.58 58.27 59.74 8.59 7.75 8 B6_rs30650651 

Female mice palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 14 58.58 58.35 59.74 8.77 7.77 8 B6_rs30650651 

Female mice 8-amino-7-oxononanoate biosynthesis I 14 58.58 58.35 59.74 8.69 7.71 8 B6_rs30650651 
Female mice superpathway of L-tryptophan biosynthesis 14 58.58 58.35 59.74 8.88 7.69 8 B6_rs30650651 

Female mice cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate 14 58.58 58.35 59.74 8.72 7.67 8 B6_rs30650651 

Female mice ubiquinol-8 biosynthesis (prokaryotic) 14 58.58 58.35 59.74 8.88 7.61 8 B6_rs30650651 
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Female mice sulfoglycolysis 14 58.58 58.35 59.74 8.72 7.79 8 B6_rs30650651 
Female mice oleate biosynthesis IV (anaerobic) 14 58.58 58.35 59.74 8.72 7.65 8 B6_rs30650651 

Female mice 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation 14 58.58 58.27 59.74 8.50 7.58 8 B6_rs30650651 

Female mice polymyxin resistance 14 58.58 58.27 60.70 7.81 7.71 11 B6_rs30650651 
Female mice superpathway of heme biosynthesis from uroporphyrinogen-III 14 58.58 58.27 59.74 8.35 7.60 8 B6_rs30650651 

Female mice phenylacetate degradation I (aerobic) 14 58.58 58.35 59.74 8.58 7.69 8 B6_rs30650651 

Female mice 2-methylcitrate cycle I 14 58.58 58.35 59.74 8.67 7.81 8 B6_rs30650651 
Female mice (5Z)-dodec-5-enoate biosynthesis 14 58.58 58.27 59.74 7.99 7.67 8 B6_rs30650651 

Female mice superpathway of ubiquinol-8 biosynthesis (prokaryotic) 14 58.58 58.35 59.74 8.81 7.60 8 B6_rs30650651 

Female mice methylphosphonate degradation I 14 58.62 58.27 59.74 8.05 7.79 8 UNCHS038389 

Female mice 

superpathway of UDP-N-acetylglucosamine-derived O-antigen building 

blocks biosynthesis 14 71.11 68.33 74.96 8.32 7.70 52 UNC24208098 

Female mice superpathway of 2,3-butanediol biosynthesis 14 83.07 81.91 86.17 7.79 7.74 1 UNCHS038947 

Female mice TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) 14 113.13 112.56 117.71 8.47 7.58 3 UNCHS039348 

Female mice TCA cycle I (prokaryotic) 14 113.13 106.23 118.61 8.10 7.59 10 UNCHS039348 

Female mice peptidoglycan biosynthesis IV (Enterococcus faecium) 14 119.22 58.08 121.34 7.87 7.61 219 UNC24876844 

Female mice 

superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate 

bypass 14 121.32 107.61 121.51 7.91 7.64 20 UNC24909376 

Female mice L-arginine biosynthesis I (via L-ornithine) 17 48.58 48.10 49.49 8.09 7.63 14 UNC27962616 
Female mice L-arginine biosynthesis II (acetyl cycle) 17 48.58 48.10 49.49 8.09 7.62 14 UNC27962616 

Female mice L-ornithine biosynthesis 17 48.58 48.10 49.49 7.83 7.55 14 UNC27962616 

Female mice L-arginine biosynthesis IV (archaebacteria) 17 48.58 48.10 49.49 8.07 7.68 14 UNC27962616 

Male mice superpathway of sulfur oxidation (Acidianus ambivalens) 1 24.62 24.36 25.57 7.81 7.70 1 UNCHS000273 

Male mice glycogen degradation I (bacterial) 1 24.85 24.24 25.57 7.92 7.80 2 UNC300940 

Male mice N10-formyl-tetrahydrofolate biosynthesis 1 24.88 24.24 25.57 8.19 7.60 2 UNC301459 
Male mice L-arginine biosynthesis I (via L-ornithine) 1 24.88 24.24 25.57 7.83 7.80 2 UNC301459 

Male mice L-arginine biosynthesis II (acetyl cycle) 1 24.88 24.24 25.57 7.84 7.52 2 UNC301459 

Male mice superpathway of L-aspartate and L-asparagine biosynthesis 1 24.88 23.84 25.57 8.03 7.75 6 UNC301459 

Male mice 

superpathway of N-acetylglucosamine, N-acetylmannosamine and N-

acetylneuraminate degradation 1 24.88 23.52 25.53 7.72 7.65 7 UNC301459 

Male mice L-ornithine biosynthesis 1 24.88 24.24 25.57 7.82 7.69 2 UNC301459 
Male mice glycogen biosynthesis I (from ADP-D-Glucose) 1 24.88 24.17 25.55 8.72 7.53 3 UNC301459 

Male mice methylerythritol phosphate pathway I 1 24.88 24.24 25.57 7.72 7.61 2 UNC301459 

Male mice pentose phosphate pathway (non-oxidative branch) 1 24.88 24.24 25.57 8.00 7.61 2 UNC301459 
Male mice peptidoglycan biosynthesis I (meso-diaminopimelate containing) 1 24.88 24.24 25.57 7.76 7.74 2 UNC301459 

Male mice pyruvate fermentation to acetate and lactate II 1 24.88 23.84 25.54 8.15 7.75 6 UNC301459 

Male mice L-isoleucine biosynthesis III 1 24.88 24.17 25.57 7.68 7.57 3 UNC301459 
Male mice L-glutamate and L-glutamine biosynthesis 1 24.88 23.75 25.57 8.40 7.67 7 UNC301459 

Male mice chorismate biosynthesis from 3-dehydroquinate 1 24.88 24.17 25.57 7.63 7.59 3 UNC301459 

Male mice 
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate 
containing) 1 24.88 24.24 25.57 7.81 7.65 2 UNC301459 

Male mice L-arginine biosynthesis IV (archaebacteria) 1 24.88 24.24 25.57 7.87 7.54 2 UNC301459 

Male mice superpathway of L-serine and glycine biosynthesis I 1 24.88 23.75 25.54 8.31 7.65 7 UNC301459 
Male mice UDP-N-acetyl-D-glucosamine biosynthesis I 1 25.24 24.14 32.87 7.95 7.80 8 UNCHS000280 

Male mice dTDP-L-rhamnose biosynthesis I 1 25.24 24.24 25.64 7.60 7.58 2 UNCHS000280 

Male mice O-antigen building blocks biosynthesis (E. coli) 1 25.24 24.36 25.57 8.69 7.66 1 UNCHS000280 
Male mice acetylene degradation 2 77.36 76.29 77.37 7.79 7.67 9 UNCHS005499 

Male mice adenosine deoxyribonucleotides de novo biosynthesis II 2 77.36 76.29 78.75 8.03 7.76 12 UNCHS005499 

Male mice guanosine deoxyribonucleotides de novo biosynthesis II 2 77.36 76.29 78.75 8.03 7.69 12 UNCHS005499 
Male mice D-galacturonate degradation I 3 107.43 105.19 107.63 8.20 7.61 28 UNCHS009752 
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Male mice superpathway of hexuronide and hexuronate degradation 3 107.43 105.19 107.63 8.20 7.65 28 UNC5918145 
Male mice superpathway of &beta;-D-glucuronide and D-glucuronate degradation 3 107.43 103.69 107.63 8.44 7.72 48 UNC5918145 

Male mice peptidoglycan maturation (meso-diaminopimelate containing) 3 107.51 107.20 107.63 7.79 7.55 7 UNC5919053 

Male mice superpathway of 2,3-butanediol biosynthesis 3 122.49 109.68 123.43 7.72 7.69 52 UNC6116208 
Male mice pyruvate fermentation to acetate and lactate II 6 94.69 50.87 94.88 7.76 7.75 247 UNCHS018216 

Male mice superpathway of L-phenylalanine biosynthesis 7 29.55 28.72 29.56 7.99 7.66 26 UNC12559214 

Male mice superpathway of L-tyrosine biosynthesis 7 29.55 28.72 29.56 8.22 7.61 26 UNC12559214 
Male mice L-methionine biosynthesis III 7 136.29 135.68 137.25 8.83 7.69 3 UNCHS021798 

Male mice superpathway of L-methionine biosynthesis (transsulfuration) 7 136.58 135.68 137.26 8.53 7.81 3 UNC13940878 

Male mice L-methionine biosynthesis I 7 136.58 136.09 137.26 8.64 7.72 2 UNC13940878 
Male mice superpathway of S-adenosyl-L-methionine biosynthesis 7 136.58 136.04 137.26 8.53 7.76 2 UNC13940878 

Male mice NAD biosynthesis I (from aspartate) 11 48.03 46.98 48.14 8.28 7.69 0 UNCHS030503 

Male mice succinate fermentation to butanoate 11 54.81 52.71 79.55 7.87 7.72 434 UNCHS030727 

Male mice superpathway of L-alanine biosynthesis 11 115.20 114.64 116.66 8.07 7.73 72 UNC20458147 

Male mice allantoin degradation to glyoxylate III 12 12.00 10.55 12.60 8.76 7.72 6 UNC20635327 

Male mice superpathway of thiamin diphosphate biosynthesis II 14 104.31 55.60 104.94 7.99 7.76 248 UNC24656741 
Male mice superpathway of 2,3-butanediol biosynthesis 16 15.92 14.25 23.24 7.82 7.69 123 UNCHS041877 

Male mice glycolysis III (from glucose) 17 58.70 57.89 60.59 7.75 7.70 3 JAX00442802 

Male mice superpathway of branched amino acid biosynthesis 17 58.70 57.89 60.59 8.08 7.57 3 JAX00442802 
Male mice Calvin-Benson-Bassham cycle 17 58.70 57.89 60.59 8.02 7.70 3 JAX00442802 

Male mice L-isoleucine biosynthesis I (from threonine) 17 58.70 57.89 64.60 8.29 7.76 8 JAX00442802 

Male mice methylerythritol phosphate pathway I 17 58.70 57.87 60.59 7.84 7.61 3 JAX00442802 
Male mice pentose phosphate pathway (non-oxidative branch) 17 58.70 57.89 60.59 8.47 7.61 3 JAX00442802 

Male mice L-lysine biosynthesis III 17 58.70 57.87 64.60 7.88 7.60 8 JAX00442802 

Male mice superpathway of L-isoleucine biosynthesis I 17 58.70 57.87 60.59 7.86 7.62 3 JAX00442802 
Male mice L-isoleucine biosynthesis II 17 58.70 57.89 64.60 8.13 7.71 8 JAX00442802 

Male mice L-isoleucine biosynthesis III 17 58.70 57.89 60.59 7.90 7.57 3 JAX00442802 

Male mice L-isoleucine biosynthesis IV 17 58.70 57.89 64.66 8.23 7.72 9 JAX00442802 

Male mice 5-aminoimidazole ribonucleotide biosynthesis I 17 58.70 57.89 60.59 7.87 7.68 3 JAX00442802 

Male mice 5-aminoimidazole ribonucleotide biosynthesis II 17 58.70 57.89 60.59 8.11 7.70 3 JAX00442802 
Male mice inosine-5'-phosphate biosynthesis I 17 58.70 57.87 60.59 7.96 7.73 3 JAX00442802 

Male mice superpathway of 5-aminoimidazole ribonucleotide biosynthesis 17 58.70 57.89 60.59 8.11 7.55 3 JAX00442802 

Male mice peptidoglycan biosynthesis III (mycobacteria) 17 58.70 57.87 60.59 7.71 7.68 3 JAX00442802 
Male mice UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing) 17 58.70 57.89 60.59 7.96 7.64 3 JAX00442802 

Male mice pyruvate fermentation to isobutanol (engineered) 17 58.70 57.89 64.35 8.01 7.65 8 JAX00442802 

Male mice purine ribonucleosides degradation 17 58.70 57.89 64.60 8.37 7.65 8 JAX00442802 
Male mice phosphatidylglycerol biosynthesis I (plastidic) 17 58.70 57.87 60.59 7.90 7.62 3 JAX00442802 

Male mice phosphatidylglycerol biosynthesis II (non-plastidic) 17 58.70 57.87 60.59 7.90 7.78 3 JAX00442802 

Male mice superpathway of L-threonine biosynthesis 17 58.70 57.87 64.60 7.81 7.67 8 JAX00442802 
Male mice L-valine biosynthesis 17 58.70 57.89 64.60 8.29 7.75 8 JAX00442802 

Male mice adenine and adenosine salvage III 17 58.90 57.89 60.59 8.13 7.65 3 JAX00442831 

Male mice L-rhamnose degradation I 17 60.59 58.06 64.85 8.96 7.73 10 UNC28131597 
Male mice superpathway of fucose and rhamnose degradation 17 60.59 57.89 64.87 8.63 7.63 10 UNCHS044633 

Entire mice mannan degradation 1 57.68 56.29 59.25 8.77 7.63 23 UNC733960 

Entire mice queuosine biosynthesis 1 112.36 108.21 115.53 7.78 7.53 3 UNC1422808 

Entire mice superpathway of L-phenylalanine biosynthesis 2 117.39 114.36 117.99 7.87 7.56 7 JAX00500783 
Entire mice superpathway of L-tyrosine biosynthesis 2 117.39 114.36 117.99 7.71 7.57 7 JAX00500783 

Entire mice superpathway of purine nucleotides de novo biosynthesis II 4 58.32 57.89 61.86 7.77 7.54 22 UNCHS011408 

Entire mice superpathway of guanosine nucleotides de novo biosynthesis II 4 58.32 57.89 59.85 7.96 7.54 19 UNCHS011408 
Entire mice pyrimidine deoxyribonucleotides de novo biosynthesis I 4 58.32 57.89 61.86 7.94 7.65 22 UNCHS011408 
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Entire mice superpathway of pyrimidine ribonucleosides salvage 4 58.32 57.89 59.85 8.09 7.58 19 UNCHS011408 
Entire mice pyrimidine deoxyribonucleotide phosphorylation 4 58.32 57.89 59.85 7.92 7.47 19 UNCHS011408 

Entire mice superpathway of pyrimidine deoxyribonucleoside salvage 4 58.32 57.89 61.86 8.09 7.61 22 UNCHS011408 

Entire mice superpathway of guanosine nucleotides de novo biosynthesis I 4 58.32 57.89 59.85 7.99 7.50 19 UNCHS011408 
Entire mice superpathway of purine nucleotides de novo biosynthesis I 4 58.32 57.89 61.86 7.94 7.72 22 UNCHS011408 

Entire mice 

superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. 

coli) 4 58.32 57.89 61.86 7.95 7.53 22 UNCHS011408 
Entire mice superpathway of L-methionine biosynthesis (by sulfhydrylation) 4 58.32 57.06 58.80 7.67 7.65 9 UNC7330906 

Entire mice superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis 4 58.32 57.89 58.80 8.47 7.68 7 UNC7330906 

Entire mice sulfate reduction I (assimilatory) 4 58.32 57.19 58.51 8.29 7.54 6 UNCHS011409 
Entire mice superpathway of sulfate assimilation and cysteine biosynthesis 4 58.32 57.19 58.52 8.11 7.63 6 UNCHS011409 

Entire mice L-methionine biosynthesis I 6 88.03 87.79 88.78 7.72 7.46 15 UNC11551488 

Entire mice L-methionine biosynthesis III 6 88.15 87.79 88.78 7.67 7.59 15 UNC11552932 

Entire mice purine ribonucleosides degradation 9 35.35 35.01 36.88 8.13 7.65 15 UNC16152533 

Entire mice adenine and adenosine salvage III 9 35.38 34.97 36.88 7.88 7.64 15 UNC16152834 

Entire mice adenosine deoxyribonucleotides de novo biosynthesis II 9 122.01 121.68 122.02 7.72 7.51 9 UNCHS027368 
Entire mice guanosine deoxyribonucleotides de novo biosynthesis II 9 122.01 121.68 122.02 7.72 7.67 9 UNCHS027368 

Entire mice superpathway of glucose and xylose degradation 10 81.60 79.60 84.05 7.76 7.59 128 UNCHS028871 

Entire mice L-ornithine biosynthesis 11 48.03 46.98 48.14 7.73 7.53 0 UNCHS030503 
Entire mice allantoin degradation to glyoxylate III 12 12.18 10.55 12.60 7.71 7.68 6 UNC20637838 

Entire mice TCA cycle I (prokaryotic) 14 107.66 106.04 110.05 10.76 7.66 10 UNC24909376 

Entire mice TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) 14 107.66 105.96 112.77 10.52 7.65 3 UNCHS039291 
Entire mice pyridoxal 5'-phosphate biosynthesis I 14 108.20 105.75 119.30 7.69 7.61 17 UNCHS039304 

Entire mice L-ornithine biosynthesis 14 118.04 117.69 119.36 7.65 7.53 10 UNC24855486 

Entire mice L-glutamate and L-glutamine biosynthesis 14 118.06 117.75 119.36 7.55 7.50 10 UNCHS039387 
Entire mice L-1,2-propanediol degradation 14 118.62 117.85 119.36 7.68 7.61 10 UNC24866496 

Entire mice 

superpathway of N-acetylglucosamine, N-acetylmannosamine and N-

acetylneuraminate degradation 14 118.63 117.69 119.36 7.69 7.53 10 UNC24866697 

Entire mice heme biosynthesis I (aerobic) 14 119.98 112.76 121.56 8.37 7.56 19 UNCHS039412 

Entire mice superpathay of heme biosynthesis from glutamate 14 119.98 112.76 121.57 8.26 7.73 19 UNCHS039412 
Entire mice enterobactin biosynthesis 14 121.32 112.76 121.51 8.87 7.52 18 UNC24909376 

Entire mice 

superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate 

bypass 14 121.32 117.77 121.51 9.44 7.57 15 UNC24909376 
Entire mice glyoxylate cycle 14 121.32 117.85 121.51 9.38 7.57 15 UNC24909376 

Entire mice superpathway of hexitol degradation (bacteria) 14 121.32 106.05 121.58 8.04 7.53 22 UNC24909376 

Entire mice superpathway of methylglyoxal degradation 14 121.32 37.04 121.58 7.63 7.56 405 UNC24909376 
Entire mice TCA cycle IV (2-oxoglutarate decarboxylase) 14 121.32 112.76 121.51 8.71 7.61 18 UNC24909376 

Entire mice superpathway of glyoxylate bypass and TCA 14 121.32 118.74 121.51 9.37 7.74 1 UNCHS039291 

Entire mice superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation 14 121.32 37.00 121.58 7.55 7.54 2 UNC28185909 
Entire mice L-arginine degradation II (AST pathway) 14 121.46 37.04 121.58 7.64 7.64 405 UNC24911982 

Entire mice enterobacterial common antigen biosynthesis 14 121.46 37.04 121.58 7.68 7.63 405 UNC24911982 

Entire mice 3-phenylpropanoate degradation 14 121.46 37.04 121.58 7.61 7.59 405 UNC24911982 
Entire mice catechol degradation I (meta-cleavage pathway) 14 121.46 36.85 121.58 7.95 7.50 407 UNC24911982 

Entire mice ubiquinol-7 biosynthesis (prokaryotic) 14 121.46 37.04 121.58 7.64 7.49 405 UNC24911982 

Entire mice ubiquinol-9 biosynthesis (prokaryotic) 14 121.46 37.04 121.58 7.64 7.51 405 UNC24911982 
Entire mice palmitate biosynthesis II (bacteria and plants) 14 121.46 37.04 121.58 7.65 7.56 405 UNC24911982 

Entire mice palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 14 121.46 37.04 121.58 7.58 7.56 405 UNC24911982 

Entire mice superpathway of L-tryptophan biosynthesis 14 121.46 37.04 121.58 7.69 7.61 405 UNC24911982 
Entire mice superpathway of heme biosynthesis from uroporphyrinogen-III 14 121.46 37.00 121.58 7.72 7.67 406 UNC24911982 

Entire mice tRNA processing 14 121.46 120.60 121.58 8.51 7.57 4 UNC24911982 
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Entire mice 2-methylcitrate cycle I 14 121.46 37.04 121.58 7.69 7.59 405 UNC24911982 
Entire mice superpathway of ubiquinol-8 biosynthesis (prokaryotic) 14 121.46 37.04 121.58 7.68 7.67 405 UNC24911982 

Entire mice formaldehyde oxidation I 15 13.56 12.20 18.96 8.01 7.65 8 JAX00394051 

Entire mice superpathway of purine nucleotides de novo biosynthesis II 15 28.36 27.41 28.51 7.71 7.54 5 UNCHS039854 
Entire mice superpathway of guanosine nucleotides de novo biosynthesis II 15 28.36 27.41 28.51 7.65 7.54 5 UNCHS039854 

Entire mice pyrimidine deoxyribonucleotide phosphorylation 15 28.36 27.41 28.51 7.72 7.47 5 UNCHS039854 

Entire mice superpathway of pyrimidine deoxyribonucleoside salvage 15 28.36 27.41 28.51 7.70 7.61 5 UNCHS039854 
Entire mice superpathway of guanosine nucleotides de novo biosynthesis I 15 28.36 27.41 28.51 7.68 7.50 5 UNCHS039854 

Entire mice 

superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. 

coli) 15 28.36 27.41 28.51 7.88 7.53 5 UNCHS039854 
Entire mice superpathway of L-alanine biosynthesis 16 14.25 13.50 17.31 7.82 7.57 39 UNCHS041836 

Entire mice biotin biosynthesis II 16 15.92 14.25 17.39 7.70 7.51 29 UNCHS041877 

Entire mice N10-formyl-tetrahydrofolate biosynthesis 17 64.60 64.52 64.91 7.89 7.61 2 UNC28185137 

Entire mice chorismate biosynthesis I 17 64.60 64.48 64.91 7.72 7.63 2 UNC28185137 

Entire mice superpathway of branched amino acid biosynthesis 17 64.60 64.48 64.91 7.84 7.58 2 UNC28185137 

Entire mice superpathway of aromatic amino acid biosynthesis 17 64.60 64.48 64.91 7.77 7.60 2 UNC28185137 
Entire mice glycogen biosynthesis I (from ADP-D-Glucose) 17 64.60 64.56 64.91 8.16 7.56 2 UNC28185137 

Entire mice L-histidine biosynthesis 17 64.60 64.48 64.91 7.66 7.65 2 UNC28185137 

Entire mice L-isoleucine biosynthesis I (from threonine) 17 64.60 64.25 64.91 7.66 7.61 3 UNC28185137 
Entire mice methylerythritol phosphate pathway I 17 64.60 64.52 64.91 8.15 7.59 2 UNC28185137 

Entire mice pentose phosphate pathway (non-oxidative branch) 17 64.60 64.25 64.91 8.25 7.61 3 UNC28185137 

Entire mice L-lysine biosynthesis VI 17 64.60 64.48 64.91 8.07 7.57 2 UNC28185137 
Entire mice L-isoleucine biosynthesis II 17 64.60 64.48 64.91 7.83 7.55 2 UNC28185137 

Entire mice L-isoleucine biosynthesis III 17 64.60 64.52 64.91 7.74 7.61 2 UNC28185137 

Entire mice L-isoleucine biosynthesis IV 17 64.60 64.48 64.87 8.20 7.53 2 UNC28185137 
Entire mice superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP) 17 64.60 64.50 64.91 7.93 7.76 2 UNC28185137 

Entire mice L-glutamate and L-glutamine biosynthesis 17 64.60 64.56 64.84 8.30 7.50 2 UNC28185137 

Entire mice 5-aminoimidazole ribonucleotide biosynthesis I 17 64.60 64.48 64.91 7.67 7.56 2 UNC28185137 

Entire mice 5-aminoimidazole ribonucleotide biosynthesis II 17 64.60 64.48 64.91 7.91 7.66 2 UNC28185137 

Entire mice inosine-5'-phosphate biosynthesis I 17 64.60 64.48 64.91 7.72 7.46 2 UNC28185137 
Entire mice superpathway of 5-aminoimidazole ribonucleotide biosynthesis 17 64.60 64.48 64.91 7.91 7.48 2 UNC28185137 

Entire mice starch degradation V 17 64.60 64.52 64.94 7.95 7.66 2 UNC28185137 

Entire mice methylerythritol phosphate pathway II 17 64.60 64.52 64.91 8.15 7.75 2 UNC28185137 
Entire mice L-valine biosynthesis 17 64.60 64.25 64.91 7.66 7.62 3 UNC28185137 

Entire mice purine ribonucleosides degradation 17 64.60 64.25 64.87 7.76 7.65 3 UNC28185137 

Entire mice chorismate biosynthesis from 3-dehydroquinate 17 64.60 64.48 64.91 7.60 7.53 2 UNCHS044716 
Entire mice L-arginine biosynthesis IV (archaebacteria) 17 64.66 64.56 64.91 7.84 7.51 2 UNC28185909 

Entire mice NAD salvage pathway I 17 64.66 63.60 64.91 8.47 7.67 5 UNC28185909 

Entire mice L-arginine biosynthesis II (acetyl cycle) 17 64.69 64.56 64.91 7.97 7.67 2 UNC28186392 
Entire mice L-ornithine biosynthesis 17 64.72 64.56 64.87 8.18 7.53 2 UNC28186937 

Significance was considered only when QTL results were P<0.05. 
a95% Bayesian credible interval was calculated as implemented by the bayesint function in R/QTL2. 
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5.5.5. Co-mapped QTLs identify a novel interaction between aortic lesion area and 

Lactococcus abundance  

We searched for QTLs that were associated with both cardiometabolic traits and gut microbial 

abundance in all mice, female mice, or male mice, respectively. We identified only one case of 

co-mapped loci for aortic lesion size and Lactococcus abundance on chromosome 10 at 26 Mbp 

(P<0.1, Figure 5.7A and 5.7B). Furthermore, allelic variation (C/C or A/C) at rs36544414 peak 

SNP in the aortic lesion area QTL was associated with the lesion size and Lactococcus 

abundance in female mice (Figure 5.7C). This overlapped QTL suggests that genetic variants 

affecting atherosclerosis influence the abundance of the Lactococcus, or genetic variation in 

Lactococcus abundance affects atherosclerosis. h2 of aortic lesion area (0.64, in Chapter 4) and 

Lactococcus abundance (0.87, 9th out of 40 genera) were also relatively high compared to other 

traits in females. Previous studies have shown the effect of host genetics on atherosclerosis and 

Lactococcus abundance. For example, Lactococcus is highly heritable in both mouse and human 

genetic studies (Davenport et al., 2014; Goodrich et al., 2016; Org et al., 2015), and several 

studies have found differences in atherosclerosis by host genotype (Bennett et al., 2015; Gaeta, 

2007; Smallwood et al., 2014; Watkins and Farrall, 2006). Furthermore, Lactococcus abundance 

was identified as a significantly abundant genus level in the high aortic lesion area group by 

ANCOM (Figure 5.4A) and showed a significant positive correlation with aortic lesion area, 

plasma total cholesterol, and hepatic total cholesterol in both sexes (Figure 5.8A-5.8C). Notably, 

the aortic lesion area and Lactococcus abundance also shared the similar allele effects pattern, 

where the alleles from NZO strain with the highest level of traits related to obesity and type 2 

diabetes (Joost and Schurmann, 2014) showed positive associations, and the alleles from the 

CAST and PWK strains, wild-derived strains resistant to obesity (Mathes et al., 2011; Reed et 
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al., 2007; Svenson et al., 2007), showed a negative association with levels of the aortic lesion 

area and Lactococcus abundance at the peak SNP (rs36544414) (Figure 5.8D and 5.8E).  

In addition, we investigated whether functional profiling associated with Lactococcus co-

localized with this loci, and six EC gene families were identified (p<0.1) (Figure 5.9A and 

Table 5.11). Among them, the QTLs of "Raffinose--raffinose alpha-galactosyltransferase", 

"Endo-1,4-beta-xylanase" and "Glutamyl aminopeptidase" had the same peak SNPs as 

Lactococcus abundance QTL (Table 5.11). All six EC gene families were not only associated 

with allelic variation (C/C or A/C) at rs36544414 peak SNP in the aortic lesion area QTL 

(Figure 5.9B), but also showed strong positive correlations with three atherosclerotic traits 

(Figures 5.10 and Table 5.11). Furthermore, all of these enzymes are known to be produced by 

Lactococcus lactis subsp. lactis (Bolotin et al., 2001; Kelleher et al., 2017; McNulty et al., 2011; 

Passerini et al., 2013; Siezen et al., 2008). Collectively, the QTL overlap between the aortic 

lesion area, Lactococcus abundance, and EC gene families provides profound evidence that these 

traits are related and they are responding to the common genetic driver, with the similar allele 

effects pattern and significant association between traits.  
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Figure 5.7. Identification of microbial genus levels associated with cardiometabolic traits in 

DO-F1 mice.  

(A) Genetic architecture of QTL for cardio-metabolic traits, microbial taxa abundance, and 

microbial amplicon sequence variants (ASVs). The outer layer shows the chromosome location. 

LOD range is shown for each track. Each dot represents a QTL on each chromosome of the 

mouse genome for a given trait. Grey dots denote QTLs with LOD < 7. Co-mapped loci between 

aortic lesion area QTL and Lactococcus QTL is denoted. (B) LOD profiles on Chromosome 10 

highlighting a locus associated with the aortic lesion area and abundance of Lactococcus genus 

level in female mice. Each dashed line (red for aortic lesion area QTL and black for Lactococcus 

abundance QTL) represents suggestive thresholds (P< 0.1). Association between a peak SNP 

(rs36544414) in aortic lesion area QTL and Lactococcus abundance QTL. Heterozygous 

genotype (A/C) is derived from CAST strain. 
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Figure 5.8. Co-mapping of aortic lesion area and Lactococcus QTL on chromosome 10 in 

DO-F1 female mice. 

(A) Lactococcus abundance is significantly associated with aortic lesion area in females (R = 

0.14, p = 0.026) and males (R = 0.22, p = 0.00031). (B) Lactococcus abundance is significantly 

associated with plasma total cholesterol in females (R = 0.17, p = 0.012) and males (R = 0.26, p 

= 7.3×10-5). (C) Lactococcus abundance is significantly associated with hepatic total cholesterol 

in females (R = 0.23, p = 0.000047) and males (R = 0.26, p = 3.7×10-6). Estimated founder strain 

levels of aortic lesion area (A) and Lactococcus abundance (B) inferred in the DO-F1 population 

from the founder strain coefficients observed at the corresponding QTL on chr 10. 
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Figure 5.9. Co-mapping of aortic lesion area and six EC gene families associated with 

Lactococcus QTL on chromosome 10 in DO-F1 female mice.  

(A) LOD profiles on Chromosome 10 highlighting a locus associated with the aortic lesion area 

and abundance of 6 EC gene families in female mice. Each dashed line represents suggestive 

thresholds (P<0.1); red for aortic lesion area QTL, yellow for Raffinose--raffinose alpha-

galactosyltransferase (EC.2.4.1.166) QTL, green for Alpha-glucuronidase (EC.3.2.1.139) QTL, 

purple for Endo-1,4-beta-xylanase (EC.3.2.1.8) QTL, black for Glutamyl aminopeptidase 

(EC.3.4.11.7) QTL, grey for Xenobiotic-transporting ATPase (EC.3.6.3.44), and blue for 

Indolepyruvate decarboxylase (EC.4.1.1.74). (B) Association between a peak SNP (rs36544414) 

in aortic lesion area QTL and 6 EC gene families QTLs. Heterozygous genotype (A/C) is derived 

from CAST strain. 
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Figure 5.10. Spearman correlation of six EC gene families with plasma total cholesterol or 

liver total cholesterol.  

6 EC gene families are significantly associated with total cholesterol in plasma and liver. Yellow 

for Raffinose--raffinose alpha-galactosyltransferase (EC.2.4.1.166) QTL, green for Alpha-

glucuronidase (EC.3.2.1.139) QTL, purple for Endo-1,4-beta-xylanase (EC.3.2.1.8) QTL, black 

for Glutamyl aminopeptidase (EC.3.4.11.7) QTL, grey for Xenobiotic-transporting ATPase 

(EC.3.6.3.44), and blue for Indolepyruvate decarboxylase (EC.4.1.1.74).  
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5.5.6. Hepatic gene networks are highly correlated with atherosclerosis and gut microbiota 

We have identified sexual dimorphisms in liver transcriptome in Chapter 4, suggesting 

that co-expressed gene clusters may function together to elicit sex-specific responses in clinically 

relevant traits and gut microbiota. To identify modules of co-expressed genes, we performed 

weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath, 2008). We 

constructed hepatic co-expression modules in each sex to best estimate associations between 

modules and cardiometabolic traits or gut microbiota, and performed clustering by the merged 

dynamic tree cut approach. We identified 9 modules in females and 7 modules in males each 

assigned an arbitrary color, and the number of hepatic genes contained in each module ranged 

from 45 to 6,457 in females and 130 to 4,351 in males (Table 5.11) (Langfelder and Horvath, 

2008).  

Highly correlated transcripts are often associated with specific biological pathways 

(Bennett et al., 2015; Keller et al., 2018; Langfelder and Horvath, 2008). Next, we performed a 

gene set enrichment analysis on the modules identified in each sex to investigate whether the 

genes in the module were associated with shared functional annotations. We referred modules 

with color key identifiers and the modules in each sex were significantly enriched with one or 

more functional annotations such as GO terms and KEGG pathways (Table 5.11). For example, 

the lightyellow module in females and the black module in males were enriched for sterol and 

cholesterol biosynthetic pathways. The darkgreen module and darkturquoise module in females 

and turquoise module in males were associated with immune responses such as type 1 interferon, 

antigen presentation, and neutrophil-mediated immunity, respectively.  

Next, we determined whether the modules were correlated with the cardiometabolic traits 

or gut microbiota by calculating the module eigengene (ME) to investigate the physiological 
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aspects of these modules. We confirmed that the ME in purple module enriched for protein 

ubiquitination in females (Spearman’s rho = -0.27, adjusted p-value ≤ 0.05) and the ME in black 

module enriched for steroid biosynthesis in males (Spearman’s rho = -0.43, adjusted p-value ≤ 

9.3×10−5) had a negative correlation with aortic lesion area (Figures 5.11A and 5.12A), and we 

further identified that these modules are highly correlated with gut microbiota, such as microbial 

diversity (Figures 5.11B and 5.12B), genera (Figures 5.11C and 5.12C), MetaCyc pathways 

(Table 5.12), and EC gene families (Table 5.12). In addition, both modules showed a generally 

negative correlation with taxa, MetaCyc pathways, and EC gene families, which were commonly 

abundant in the group with high atherosclerotic traits (Figures 5.11C and 5.12C, Table 5.12). 

These analyses demonstrate the ability of co-regulated transcript networks to interrogate sex-

biased gene function and probe the interaction of the networks that correlate with 

cardiometabolic traits and gut microbiota. 
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Table 5.11. Top 10 Gene Ontology and KEGG pathways results for nine hepatic coexpression gene modules in females and 

seven hepatic coexpression gene modules in males and in liver in each sex. n = 162 (85 females and 77 males). 

Sex Module 

(# of  genes) 

Library #Terms Top10 Terms 
Overlap 

(gene count) 

Adjusted. 

P.value  

(<0.05) 

Female 

purple 

(2,905) 

GO_Biological_Process_2018 

150 

protein ubiquitination (GO:0016567) 143/506 5.E-13 

Female GO_Biological_Process_2018 protein modification by small protein conjugation (GO:0032446) 118/398 3.E-12 

Female GO_Biological_Process_2018 ubiquitin-dependent protein catabolic process (GO:0006511) 105/341 4.E-12 

Female GO_Biological_Process_2018 protein modification by small protein removal (GO:0070646) 85/261 4.E-11 

Female GO_Biological_Process_2018 protein deubiquitination (GO:0016579) 84/257 4.E-11 

Female GO_Biological_Process_2018 cellular protein modification process (GO:0006464) 218/1001 2.E-08 

Female GO_Biological_Process_2018 protein polyubiquitination (GO:0000209) 81/283 2.E-07 

Female GO_Biological_Process_2018 proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161) 81/291 6.E-07 

Female GO_Biological_Process_2018 modification-dependent protein catabolic process (GO:0019941) 47/141 4.E-06 

Female GO_Biological_Process_2018 regulation of transcription from RNA polymerase II promoter (GO:0006357) 285/1478 1.E-05 

Female KEGG_2019_Mouse 

23 

Ubiquitin mediated proteolysis 44/138 3.E-05 

Female KEGG_2019_Mouse Protein processing in endoplasmic reticulum 47/163 2.E-04 

Female KEGG_2019_Mouse Thermogenesis 59/231 4.E-04 

Female KEGG_2019_Mouse Autophagy 38/130 6.E-04 

Female KEGG_2019_Mouse Phosphatidylinositol signaling system 30/98 2.E-03 

Female KEGG_2019_Mouse Huntington disease 48/192 2.E-03 

Female KEGG_2019_Mouse Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 12/25 2.E-03 

Female KEGG_2019_Mouse Alzheimer disease 44/175 3.E-03 

Female KEGG_2019_Mouse Oxidative phosphorylation 35/134 7.E-03 

Female KEGG_2019_Mouse mRNA surveillance pathway 27/96 9.E-03 

Female 

darkgreen 

(49) 

GO_Biological_Process_2018 

64 

cellular response to type I interferon (GO:0071357) 14/65 3.E-22 

Female GO_Biological_Process_2018 type I interferon signaling pathway (GO:0060337) 14/65 3.E-22 

Female GO_Biological_Process_2018 negative regulation of viral life cycle (GO:1903901) 8/61 2.E-10 

Female GO_Biological_Process_2018 regulation of viral genome replication (GO:0045069) 8/63 2.E-10 

Female GO_Biological_Process_2018 cytokine-mediated signaling pathway (GO:0019221) 15/633 9.E-10 

Female GO_Biological_Process_2018 regulation of type I interferon production (GO:0032479) 8/85 1.E-09 

Female GO_Biological_Process_2018 negative regulation of viral genome replication (GO:0045071) 7/50 1.E-09 

Female GO_Biological_Process_2018 negative regulation of type I interferon production (GO:0032480) 6/44 4.E-08 

Female GO_Biological_Process_2018 response to cytokine (GO:0034097) 8/138 5.E-08 

Female GO_Biological_Process_2018 response to interferon-alpha (GO:0035455) 4/17 2.E-06 

Female KEGG_2019_Mouse 

13 

Influenza A 11/168 6.E-12 

Female KEGG_2019_Mouse Measles 10/144 2.E-11 

Female KEGG_2019_Mouse Hepatitis C 10/160 4.E-11 

Female KEGG_2019_Mouse Epstein-Barr virus infection 9/229 3.E-08 

Female KEGG_2019_Mouse Herpes simplex virus 1 infection 10/433 4.E-07 

Female KEGG_2019_Mouse RIG-I-like receptor signaling pathway 5/68 3.E-06 

Female KEGG_2019_Mouse NOD-like receptor signaling pathway 6/205 4.E-05 

Female KEGG_2019_Mouse Human papillomavirus infection 6/360 8.E-04 

Female KEGG_2019_Mouse Cytosolic DNA-sensing pathway 3/61 1.E-03 

2
8
1
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Female KEGG_2019_Mouse Hepatitis B 4/163 2.E-03 

Female 

darkgrey 

(45) 

GO_Biological_Process_2018 

50 

negative regulation of signal transduction (GO:0009968) 6/283 7.E-03 

Female GO_Biological_Process_2018 regulation of cell migration involved in sprouting angiogenesis (GO:0090049) 3/30 7.E-03 

Female GO_Biological_Process_2018 vasculogenesis (GO:0001570) 3/32 7.E-03 

Female GO_Biological_Process_2018 glomerulus vasculature development (GO:0072012) 2/6 7.E-03 

Female GO_Biological_Process_2018 regulation of kinase activity (GO:0043549) 4/101 7.E-03 

Female GO_Biological_Process_2018 positive regulation of angiogenesis (GO:0045766) 4/103 7.E-03 

Female GO_Biological_Process_2018 positive regulation of vasculature development (GO:1904018) 4/104 7.E-03 

Female GO_Biological_Process_2018 branching morphogenesis of an epithelial tube (GO:0048754) 3/43 8.E-03 

Female GO_Biological_Process_2018 sprouting angiogenesis (GO:0002040) 3/44 8.E-03 

Female GO_Biological_Process_2018 pericardium development (GO:0060039) 2/9 1.E-02 

Female KEGG_2019_Mouse 
2 

Cell adhesion molecules (CAMs) 5/170 2.E-03 

Female KEGG_2019_Mouse Leukocyte transendothelial migration 4/115 3.E-03 

Female 

darkred 

(6,457) 

GO_Biological_Process_2018 

688 

ncRNA processing (GO:0034470) 153/227 8.E-25 

Female GO_Biological_Process_2018 viral process (GO:0016032) 149/220 9.E-25 

Female GO_Biological_Process_2018 

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 

(GO:0000377) 156/236 2.E-24 

Female GO_Biological_Process_2018 rRNA processing (GO:0006364) 139/202 2.E-24 

Female GO_Biological_Process_2018 mRNA splicing, via spliceosome (GO:0000398) 165/261 7.E-23 

Female GO_Biological_Process_2018 mRNA processing (GO:0006397) 175/283 8.E-23 

Female GO_Biological_Process_2018 neutrophil mediated immunity (GO:0002446) 263/487 5.E-22 

Female GO_Biological_Process_2018 rRNA metabolic process (GO:0016072) 134/200 6.E-22 

Female GO_Biological_Process_2018 neutrophil degranulation (GO:0043312) 259/479 7.E-22 

Female GO_Biological_Process_2018 ribosome biogenesis (GO:0042254) 146/226 1.E-21 

Female KEGG_2019_Mouse 

119 

Spliceosome 97/132 2.E-20 

Female KEGG_2019_Mouse Lysosome 85/124 6.E-15 

Female KEGG_2019_Mouse Fc gamma R-mediated phagocytosis 60/87 1.E-10 

Female KEGG_2019_Mouse RNA transport 95/167 1.E-09 

Female KEGG_2019_Mouse Apoptosis 83/141 2.E-09 

Female KEGG_2019_Mouse Endocytosis 137/269 2.E-09 

Female KEGG_2019_Mouse Pathways in cancer 240/535 3.E-09 

Female KEGG_2019_Mouse Cell cycle 73/123 9.E-09 

Female KEGG_2019_Mouse NF-kappa B signaling pathway 63/102 1.E-08 

Female KEGG_2019_Mouse DNA replication 29/35 2.E-08 

Female 

darkturquoise 

(47) 

GO_Biological_Process_2018 

157 

antigen processing and presentation of exogenous peptide antigen via MHC class I, 
TAP-dependent (GO:0002479) 6/75 2.E-06 

Female GO_Biological_Process_2018 

antigen processing and presentation of exogenous peptide antigen via MHC class I 

(GO:0042590) 6/78 2.E-06 

Female GO_Biological_Process_2018 regulation of cellular amino acid metabolic process (GO:0006521) 5/51 6.E-06 

Female GO_Biological_Process_2018 regulation of cellular amine metabolic process (GO:0033238) 5/51 6.E-06 

Female GO_Biological_Process_2018 regulation of cellular ketone metabolic process (GO:0010565) 5/61 1.E-05 

Female GO_Biological_Process_2018 negative regulation of G2/M transition of mitotic cell cycle (GO:0010972) 5/62 1.E-05 

Female GO_Biological_Process_2018 tumor necrosis factor-mediated signaling pathway (GO:0033209) 6/123 1.E-05 

Female GO_Biological_Process_2018 negative regulation of cell cycle G2/M phase transition (GO:1902750) 5/69 1.E-05 

Female GO_Biological_Process_2018 
negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 
(GO:0051436) 5/71 1.E-05 

Female GO_Biological_Process_2018 

regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 

(GO:0051439) 5/72 1.E-05 

2
8

2
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Female KEGG_2019_Mouse 

12 

Proteasome 5/46 2.E-06 

Female KEGG_2019_Mouse NOD-like receptor signaling pathway 6/205 9.E-05 

Female KEGG_2019_Mouse Antigen processing and presentation 4/90 5.E-04 

Female KEGG_2019_Mouse Toll-like receptor signaling pathway 3/99 1.E-02 

Female KEGG_2019_Mouse Epstein-Barr virus infection 4/229 1.E-02 

Female KEGG_2019_Mouse Toxoplasmosis 3/108 1.E-02 

Female KEGG_2019_Mouse TNF signaling pathway 3/110 1.E-02 

Female KEGG_2019_Mouse Primary immunodeficiency 2/36 1.E-02 

Female KEGG_2019_Mouse ABC transporters 2/48 2.E-02 

Female KEGG_2019_Mouse Cytosolic DNA-sensing pathway 2/61 3.E-02 

Female 

greenyellow 

(224) 

GO_Biological_Process_2018 

9 

positive regulation of glycogen biosynthetic process (GO:0045725) 4/13 7.E-03 

Female GO_Biological_Process_2018 positive regulation of glycogen metabolic process (GO:0070875) 4/14 7.E-03 

Female GO_Biological_Process_2018 regulation of glycogen biosynthetic process (GO:0005979) 4/20 2.E-02 

Female GO_Biological_Process_2018 positive regulation of glucose transport (GO:0010828) 4/25 4.E-02 

Female GO_Biological_Process_2018 positive regulation of glucose import (GO:0046326) 4/26 4.E-02 

Female GO_Biological_Process_2018 positive regulation of fatty acid oxidation (GO:0046321) 3/11 4.E-02 

Female GO_Biological_Process_2018 monocarboxylic acid transport (GO:0015718) 5/53 4.E-02 

Female GO_Biological_Process_2018 regulation of glucose import (GO:0046324) 4/31 5.E-02 

Female GO_Biological_Process_2018 cellular respiration (GO:0045333) 5/57 5.E-02 

Female 

lightyellow 

(83) 

GO_Biological_Process_2018 

77 

regulation of alcohol biosynthetic process (GO:1902930) 17/34 6.E-30 

Female GO_Biological_Process_2018 sterol biosynthetic process (GO:0016126) 17/40 8.E-29 

Female GO_Biological_Process_2018 regulation of cholesterol biosynthetic process (GO:0045540) 17/40 8.E-29 

Female GO_Biological_Process_2018 regulation of cholesterol metabolic process (GO:0090181) 17/41 1.E-28 

Female GO_Biological_Process_2018 regulation of steroid biosynthetic process (GO:0050810) 17/44 4.E-28 

Female GO_Biological_Process_2018 cholesterol biosynthetic process (GO:0006695) 16/35 5.E-28 

Female GO_Biological_Process_2018 secondary alcohol biosynthetic process (GO:1902653) 16/36 8.E-28 

Female GO_Biological_Process_2018 cholesterol metabolic process (GO:0008203) 15/68 1.E-20 

Female GO_Biological_Process_2018 fatty-acyl-CoA biosynthetic process (GO:0046949) 9/30 2.E-13 

Female GO_Biological_Process_2018 acetyl-CoA metabolic process (GO:0006084) 6/14 6.E-10 

Female KEGG_2019_Mouse 

10 

Steroid biosynthesis 10/19 9.E-18 

Female KEGG_2019_Mouse Terpenoid backbone biosynthesis 7/23 2.E-10 

Female KEGG_2019_Mouse Biosynthesis of unsaturated fatty acids 7/32 2.E-09 

Female KEGG_2019_Mouse Pyruvate metabolism 7/38 5.E-09 

Female KEGG_2019_Mouse Fatty acid biosynthesis 4/14 6.E-06 

Female KEGG_2019_Mouse Fatty acid elongation 4/29 1.E-04 

Female KEGG_2019_Mouse Propanoate metabolism 4/31 1.E-04 

Female KEGG_2019_Mouse PPAR signaling pathway 5/85 4.E-04 

Female KEGG_2019_Mouse Glycerolipid metabolism 4/61 2.E-03 

Female KEGG_2019_Mouse Glycolysis / Gluconeogenesis 4/67 2.E-03 

Female 

royalblue 

(68) 

GO_Biological_Process_2018 

23 

entrainment of circadian clock by photoperiod (GO:0043153) 5/20 2.E-06 

Female GO_Biological_Process_2018 photoperiodism (GO:0009648) 5/21 2.E-06 

Female GO_Biological_Process_2018 negative regulation of glucocorticoid receptor signaling pathway (GO:2000323) 3/6 1.E-04 

Female GO_Biological_Process_2018 regulation of glucocorticoid receptor signaling pathway (GO:2000322) 3/7 2.E-04 

Female GO_Biological_Process_2018 negative regulation of circadian rhythm (GO:0042754) 3/9 3.E-04 

Female GO_Biological_Process_2018 regulation of transcription from RNA polymerase II promoter (GO:0006357) 17/1478 5.E-04 

Female GO_Biological_Process_2018 hexose transport (GO:0008645) 3/16 2.E-03 

Female GO_Biological_Process_2018 glycogen biosynthetic process (GO:0005978) 3/18 2.E-03 

Female GO_Biological_Process_2018 glucan biosynthetic process (GO:0009250) 3/18 2.E-03 

2
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Female GO_Biological_Process_2018 negative regulation of transcription, DNA-templated (GO:0045892) 11/813 4.E-03 

Female KEGG_2019_Mouse 1 Circadian rhythm 7/30 6.E-10 

Female 

tan 

(210) 

GO_Biological_Process_2018 

108 

translational termination (GO:0006415) 16/96 3.E-12 

Female GO_Biological_Process_2018 mitochondrial translational elongation (GO:0070125) 15/87 7.E-12 

Female GO_Biological_Process_2018 mitochondrial translational termination (GO:0070126) 15/89 7.E-12 

Female GO_Biological_Process_2018 translational elongation (GO:0006414) 15/105 7.E-11 

Female GO_Biological_Process_2018 mitochondrial translation (GO:0032543) 15/107 7.E-11 

Female GO_Biological_Process_2018 proteasomal ubiquitin-independent protein catabolic process (GO:0010499) 9/24 2.E-10 

Female GO_Biological_Process_2018 

regulation of transcription from RNA polymerase II promoter in response to stress 

(GO:0043618) 13/93 2.E-09 

Female GO_Biological_Process_2018 regulation of hematopoietic stem cell differentiation (GO:1902036) 11/76 4.E-08 

Female GO_Biological_Process_2018 mitochondrial respiratory chain complex assembly (GO:0033108) 12/97 4.E-08 

Female GO_Biological_Process_2018 regulation of hematopoietic progenitor cell differentiation (GO:1901532) 11/77 4.E-08 

Female KEGG_2019_Mouse 

8 

Proteasome 9/46 1.E-07 

Female KEGG_2019_Mouse Oxidative phosphorylation 9/134 5.E-04 

Female KEGG_2019_Mouse Ribosome 10/170 5.E-04 

Female KEGG_2019_Mouse Alzheimer disease 10/175 5.E-04 

Female KEGG_2019_Mouse Thermogenesis 11/231 8.E-04 

Female KEGG_2019_Mouse Parkinson disease 8/144 3.E-03 

Female KEGG_2019_Mouse Non-alcoholic fatty liver disease (NAFLD) 8/151 3.E-03 

Female KEGG_2019_Mouse Huntington disease 9/192 3.E-03 

Male 

black 

(130) 

GO_Biological_Process_2018 

113 

sterol biosynthetic process (GO:0016126) 18/40 5.E-27 

Male GO_Biological_Process_2018 secondary alcohol biosynthetic process (GO:1902653) 17/36 3.E-26 

Male GO_Biological_Process_2018 regulation of alcohol biosynthetic process (GO:1902930) 16/34 1.E-24 

Male GO_Biological_Process_2018 cholesterol biosynthetic process (GO:0006695) 16/35 1.E-24 

Male GO_Biological_Process_2018 regulation of cholesterol biosynthetic process (GO:0045540) 16/40 2.E-23 

Male GO_Biological_Process_2018 regulation of cholesterol metabolic process (GO:0090181) 16/41 2.E-23 

Male GO_Biological_Process_2018 regulation of steroid biosynthetic process (GO:0050810) 16/44 8.E-23 

Male GO_Biological_Process_2018 cholesterol metabolic process (GO:0008203) 15/68 1.E-17 

Male GO_Biological_Process_2018 fatty-acyl-CoA biosynthetic process (GO:0046949) 9/30 1.E-11 

Male GO_Biological_Process_2018 lipid biosynthetic process (GO:0008610) 11/72 6.E-11 

Male KEGG_2019_Mouse 

49 

Steroid biosynthesis 9/19 1.E-13 

Male KEGG_2019_Mouse Pyruvate metabolism 10/38 2.E-12 

Male KEGG_2019_Mouse Terpenoid backbone biosynthesis 8/23 3.E-11 

Male KEGG_2019_Mouse Propanoate metabolism 8/31 4.E-10 

Male KEGG_2019_Mouse Glycolysis / Gluconeogenesis 8/67 2.E-07 

Male KEGG_2019_Mouse Biosynthesis of unsaturated fatty acids 6/32 8.E-07 

Male KEGG_2019_Mouse Fatty acid biosynthesis 4/14 2.E-05 

Male KEGG_2019_Mouse Citrate cycle (TCA cycle) 5/32 2.E-05 

Male KEGG_2019_Mouse Fatty acid degradation 5/50 2.E-04 

Male KEGG_2019_Mouse Oxidative phosphorylation 7/134 2.E-04 

Male 

blue 

(3482) 

GO_Biological_Process_2018 

184 

mitotic cell cycle phase transition (GO:0044772) 88/221 3.E-12 

Male GO_Biological_Process_2018 cellular protein modification process (GO:0006464) 252/1001 4.E-08 

Male GO_Biological_Process_2018 extracellular matrix organization (GO:0030198) 79/229 2.E-07 

Male GO_Biological_Process_2018 proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161) 93/291 3.E-07 

Male GO_Biological_Process_2018 regulation of mitotic cell cycle phase transition (GO:1901990) 66/184 5.E-07 

Male GO_Biological_Process_2018 G2/M transition of mitotic cell cycle (GO:0000086) 50/126 1.E-06 

Male GO_Biological_Process_2018 cell cycle G2/M phase transition (GO:0044839) 50/127 1.E-06 

2
8

4
 

 



285 

 

Male GO_Biological_Process_2018 post-translational protein modification (GO:0043687) 105/357 2.E-06 

Male GO_Biological_Process_2018 mRNA processing (GO:0006397) 86/283 1.E-05 

Male GO_Biological_Process_2018 G1/S transition of mitotic cell cycle (GO:0000082) 42/105 1.E-05 

Male KEGG_2019_Mouse 

37 

Cell cycle 49/123 5.E-07 

Male KEGG_2019_Mouse Focal adhesion 61/199 2.E-04 

Male KEGG_2019_Mouse ECM-receptor interaction 32/83 3.E-04 

Male KEGG_2019_Mouse Protein processing in endoplasmic reticulum 50/163 1.E-03 

Male KEGG_2019_Mouse p53 signaling pathway 27/71 1.E-03 

Male KEGG_2019_Mouse Pathways in cancer 127/535 2.E-03 

Male KEGG_2019_Mouse Hepatocellular carcinoma 50/171 2.E-03 

Male KEGG_2019_Mouse TGF-beta signaling pathway 31/91 2.E-03 

Male KEGG_2019_Mouse Small cell lung cancer 31/92 3.E-03 

Male KEGG_2019_Mouse RNA transport 48/167 3.E-03 

Male 

brown 

(839) 

GO_Biological_Process_2018 

56 

protein modification by small protein conjugation (GO:0032446) 52/398 4.E-10 

Male GO_Biological_Process_2018 protein ubiquitination (GO:0016567) 60/506 4.E-10 

Male GO_Biological_Process_2018 protein modification by small protein removal (GO:0070646) 37/261 6.E-08 

Male GO_Biological_Process_2018 ubiquitin-dependent protein catabolic process (GO:0006511) 43/341 6.E-08 

Male GO_Biological_Process_2018 protein deubiquitination (GO:0016579) 36/257 1.E-07 

Male GO_Biological_Process_2018 
protein ubiquitination involved in ubiquitin-dependent protein catabolic process 
(GO:0042787) 18/70 2.E-07 

Male GO_Biological_Process_2018 protein polyubiquitination (GO:0000209) 34/283 1.E-05 

Male GO_Biological_Process_2018 cellular protein modification process (GO:0006464) 75/1001 2.E-04 

Male GO_Biological_Process_2018 proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161) 31/291 5.E-04 

Male GO_Biological_Process_2018 proteasomal protein catabolic process (GO:0010498) 27/237 6.E-04 

Male KEGG_2019_Mouse 

4 

Ubiquitin mediated proteolysis 24/138 6.E-07 

Male KEGG_2019_Mouse Peroxisome 13/84 4.E-03 

Male KEGG_2019_Mouse Mitophagy 11/63 4.E-03 

Male KEGG_2019_Mouse RNA degradation 11/83 4.E-02 

Male 

green 

(509) 

GO_Biological_Process_2018 

95 

translation (GO:0006412) 64/232 4.E-45 

Male GO_Biological_Process_2018 protein targeting to ER (GO:0045047) 45/97 4.E-43 

Male GO_Biological_Process_2018 SRP-dependent cotranslational protein targeting to membrane (GO:0006614) 43/89 3.E-42 

Male GO_Biological_Process_2018 

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 

(GO:0000184) 46/112 2.E-41 

Male GO_Biological_Process_2018 cotranslational protein targeting to membrane (GO:0006613) 43/93 2.E-41 

Male GO_Biological_Process_2018 peptide biosynthetic process (GO:0043043) 54/174 2.E-41 

Male GO_Biological_Process_2018 viral transcription (GO:0019083) 45/113 5.E-40 

Male GO_Biological_Process_2018 viral gene expression (GO:0019080) 44/110 3.E-39 

Male GO_Biological_Process_2018 nuclear-transcribed mRNA catabolic process (GO:0000956) 49/174 2.E-35 

Male GO_Biological_Process_2018 cellular macromolecule biosynthetic process (GO:0034645) 64/367 4.E-33 

Male KEGG_2019_Mouse 

8 

Ribosome 57/170 3.E-46 

Male KEGG_2019_Mouse Parkinson disease 17/144 1.E-05 

Male KEGG_2019_Mouse Oxidative phosphorylation 16/134 2.E-05 

Male KEGG_2019_Mouse Huntington disease 19/192 2.E-05 

Male KEGG_2019_Mouse Alzheimer disease 18/175 2.E-05 

Male KEGG_2019_Mouse Thermogenesis 18/231 8.E-04 

Male KEGG_2019_Mouse Non-alcoholic fatty liver disease (NAFLD) 13/151 3.E-03 

Male KEGG_2019_Mouse Retrograde endocannabinoid signaling 12/150 1.E-02 

Male GO_Biological_Process_2018 14 ribosome biogenesis (GO:0042254) 18/226 4.E-07 

2
8

5
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Male 

red 

(245) 

GO_Biological_Process_2018 rRNA processing (GO:0006364) 16/202 2.E-06 

Male GO_Biological_Process_2018 ncRNA processing (GO:0034470) 15/227 5.E-05 

Male GO_Biological_Process_2018 rRNA metabolic process (GO:0016072) 14/200 5.E-05 

Male GO_Biological_Process_2018 maturation of LSU-rRNA (GO:0000470) 6/22 5.E-05 

Male GO_Biological_Process_2018 

maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S 

rRNA, LSU-rRNA) (GO:0000463) 4/9 5.E-04 

Male GO_Biological_Process_2018 ribosomal large subunit biogenesis (GO:0042273) 7/63 2.E-03 

Male GO_Biological_Process_2018 maturation of 5.8S rRNA (GO:0000460) 4/17 7.E-03 

Male GO_Biological_Process_2018 adipose tissue development (GO:0060612) 3/9 2.E-02 

Male GO_Biological_Process_2018 regulation of glucose metabolic process (GO:0010906) 4/25 3.E-02 

Male KEGG_2019_Mouse 1 Ribosome biogenesis in eukaryotes 10/115 2.E-04 

Male 

turquoise 

(4351) 

GO_Biological_Process_2018 

352 

neutrophil mediated immunity (GO:0002446) 213/487 1.E-25 

Male GO_Biological_Process_2018 neutrophil degranulation (GO:0043312) 209/479 2.E-25 

Male GO_Biological_Process_2018 neutrophil activation involved in immune response (GO:0002283) 210/483 2.E-25 

Male GO_Biological_Process_2018 cytokine-mediated signaling pathway (GO:0019221) 217/633 2.E-11 

Male GO_Biological_Process_2018 regulation of type I interferon production (GO:0032479) 47/85 7.E-09 

Male GO_Biological_Process_2018 
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 
(GO:0000377) 96/236 8.E-09 

Male GO_Biological_Process_2018 positive regulation of cytokine production (GO:0001819) 89/220 6.E-08 

Male GO_Biological_Process_2018 mRNA splicing, via spliceosome (GO:0000398) 101/261 6.E-08 

Male GO_Biological_Process_2018 vesicle-mediated transport (GO:0016192) 143/410 6.E-08 

Male GO_Biological_Process_2018 protein transport (GO:0015031) 119/326 8.E-08 

Male KEGG_2019_Mouse 

107 

Lysosome 81/124 1.E-23 

Male KEGG_2019_Mouse Osteoclast differentiation 72/128 8.E-16 

Male KEGG_2019_Mouse Fc gamma R-mediated phagocytosis 50/87 2.E-11 

Male KEGG_2019_Mouse NF-kappa B signaling pathway 55/102 4.E-11 

Male KEGG_2019_Mouse Apoptosis 68/141 6.E-11 

Male KEGG_2019_Mouse Chemokine signaling pathway 83/197 2.E-09 

Male KEGG_2019_Mouse NOD-like receptor signaling pathway 85/205 2.E-09 

Male KEGG_2019_Mouse C-type lectin receptor signaling pathway 55/112 2.E-09 

Male KEGG_2019_Mouse Epstein-Barr virus infection 92/229 2.E-09 

Male KEGG_2019_Mouse Toll-like receptor signaling pathway 50/99 4.E-09 

Male Jensen_DISEASES 

6 

inclusion-cell disease 11/14 1.E-02 

Male Jensen_DISEASES Crohn's disease 81/248 1.E-02 

Male Jensen_DISEASES Arthritis 64/186 1.E-02 

Male Jensen_DISEASES Amyloidosis 15/27 3.E-02 

Male Jensen_DISEASES Histoplasmosis 11/17 3.E-02 

Male Jensen_DISEASES Lung disease 43/119 3.E-02 

Male 

yellow 

(576) 

GO_Biological_Process_2018 

46 

Golgi vesicle transport (GO:0048193) 29/271 3.E-06 

Male GO_Biological_Process_2018 retrograde vesicle-mediated transport, Golgi to ER (GO:0006890) 13/80 3.E-04 

Male GO_Biological_Process_2018 ERBB signaling pathway (GO:0038127) 13/80 3.E-04 

Male GO_Biological_Process_2018 RNA metabolic process (GO:0016070) 19/191 2.E-03 

Male GO_Biological_Process_2018 ER to Golgi vesicle-mediated transport (GO:0006888) 18/180 2.E-03 

Male GO_Biological_Process_2018 vascular endothelial growth factor receptor signaling pathway (GO:0048010) 11/70 2.E-03 

Male GO_Biological_Process_2018 negative regulation of sterol transport (GO:0032372) 4/6 3.E-03 

Male GO_Biological_Process_2018 viral life cycle (GO:0019058) 13/107 3.E-03 

Male GO_Biological_Process_2018 regulation of translation (GO:0006417) 19/213 3.E-03 

2
8
6
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Male GO_Biological_Process_2018 
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 
(GO:0000377) 20/236 4.E-03 

Male KEGG_2019_Mouse 

11 

Protein processing in endoplasmic reticulum 19/163 5.E-05 

Male KEGG_2019_Mouse Mitophagy 10/63 1.E-03 

Male KEGG_2019_Mouse Autophagy 14/130 2.E-03 

Male KEGG_2019_Mouse Bacterial invasion of epithelial cells 10/74 3.E-03 

Male KEGG_2019_Mouse Renal cell carcinoma 9/68 6.E-03 

Male KEGG_2019_Mouse Hepatitis C 14/160 8.E-03 

Male KEGG_2019_Mouse Cholesterol metabolism 7/49 2.E-02 

Male KEGG_2019_Mouse ErbB signaling pathway 9/84 2.E-02 

Male KEGG_2019_Mouse Fluid shear stress and atherosclerosis 12/143 2.E-02 

Male KEGG_2019_Mouse Pancreatic cancer 8/75 3.E-02 
aCombined score is described as c = log(p) * z , where c = the combined score, p = Fisher exact test p-value, and z = z-score for 

deviation from expected rank. 
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Figure 5.11. Hepatic coexpression gene modules are associated with cardiometabolic traits 

and gut microbiota in females. 

For the WGCNA analysis, log2 transformed 13,094 transcripts greater than 1 TPM measured in 

164 DO-F1 liver samples were included. (A-C) Spearman correlation between liver gene 

modules and cardiometabolic traits (A), microbial diversity (B), genus levels (C) in females. 

Module names were shown along the right axis and top-enriched GO/KEGG terms in legend. 

The p-values were adjusted using the Benjamini–Hochberg (BH) FDR procedure. 

“***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10. 
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Figure 5.12. Hepatic coexpression gene modules are associated with cardiometabolic traits 

and gut microbiota in males. 

For the WGCNA analysis, log2 transformed 13,094 transcripts greater than 1 TPM measured in 

164 DO-F1 liver samples were included. (A-C) Spearman correlation between liver gene 

modules and cardiometabolic traits (A), microbial diversity (B), genus levels (C) in males. 

Module names were shown along the right axis and top-enriched GO/KEGG terms in legend. 

The p-values were adjusted using the Benjamini–Hochberg (BH) FDR procedure. 

“***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10. 
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Table 5.12. The number of significantly correlated MetaCyc pathways and EC gene 

families with hepatic coexpression gene modules in each sex.  

Sex Module 
# Significantly correlated 

MetaCyc pathways 

# Significantly correlated 

EC gene families 

Male mice 

MEblack 111 538 

MEred 3 13 

MEyellow 1 7 

MEgreen 12 32 

MEbrown 4 18 

MEblue 0 0 

MEturquoise 2 10 

Female 

mice 

MElightyellow 117 638 

MEdarkgrey 0 5 

MEgreenyellow 15 84 

MEtan 2 56 

MEdarkgreen 3 52 

MEdarkturquoise 9 32 

MEroyalblue 34 111 

MEpurple 111 544 

MEdarkred 9 76 
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5.5.7. Genetic regulation of microbial genus levels and hepatic gene expression  

In Chapter 4, we confirmed the effects of host genetics on liver transcriptome in DO-F1 mice, 

and RNA sequencing of liver tissue yielded significant 2722 cis-regulation of the transcriptome 

(cis-eQTLs and ±4 Mb of the gene) in all mice, 1408 cis-eQTL in female mice, and 1061 cis-

eQTL in male mice at a P<0.05. In chapter 5, we integrated mbQTL with liver cis-eQTLs to 

identify genetic variants that influence both microbial taxa and liver transcripts. We identified 5 

loci in female mice and 1 locus in male mice that co-mapped to both mbQTL and cis-eQTL, in 

which the microbial genus level and liver transcript also correlated in each sex (Figure 5.13A 

and 5.13B and Table 5.13). For example, Romboutsia genus and ASV levels on chromosome 5 

in female mice were co-mapped with SNPs in the Klhl5 (kelch-like 5) gene, and a significant 

positive correlation was observed between liver Klhl5 and Romboutsia genus abundance in 

female mice. In addition, the Klhl5 gene was included in the purple module, which correlated 

with the aortic lesion area and the most gut microbial taxa and functional profiling, suggesting 

that Klhl5 may be involved in the regulation of Romboutsia abundance in the intestine (Figure 

5.14A and 5.14B and Table 5.13). Specifically, allelic variation (T/C or C/C) at rs50048053 in 

the Klhl5 locus was associated with the abundance of liver Klhl5 transcript and Romboutsia 

abundance in female mice (Figure 5.14C). Furthermore, Klhl5 cis-eQTL shared the same allele 

effect pattern as the Romboutsia abundance; both were associated with increased CAST allele 

and decreased PWK allele (Figure 5.14D). 
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Figure 5.13. Genetic architecture of quantitative trait loci (QTL) for microbial taxa 

abundance and liver transcriptome in DO-F1 mice.  

(A,B) Genetic architecture of QTL for microbial taxa abundance, microbial amplicon sequence 

variants (ASVs), and cis-acting liver transcripts in females (A) and males (B). The outer layer 

shows the chromosome location. LOD range is shown for each track. Each dot represents a QTL 

on each chromosome of the mouse genome for a given trait. Grey dots denote QTLs with LOD < 

7. 
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Figure 5.14. Systems genetic analysis of gut microbial genus levels and liver transcriptome 

in DO-F1 mice. 
(A) LOD profiles on Chromosome 5 highlighting a locus significantly associated with the liver 

Klhl5 expression and abundance of Romboutsia genus level in female mice. Each dashed line 

(purple for Klhl5 cis-eQTL and black for Romboutsia abundance QTL) represents significant 

thresholds (P< 0.05). (B) Klhl5 gene expression is positively correlated with Romboutsia 

abundance in females (R = 0.3, p = 0.0064), not males (R = 0.05, p = 0.66). Inset on right 

summarizes the proposed genetic interaction. (C) Association between a SNP (rs50048053) in 

Klhl5 gene and Romboutsia abundance or liver Klhl5 gene expression. Heterozygous SNP (T/C) 

is from wild-type inbred strains (CAST or PWK strains) and homozygous SNP (C/C) is from 

laboratory inbred strains (A/J, 129, NOD, NZO, or WSB strains). (D) Estimated founder strain 

levels of Romboutsia abundance and liver Klhl5 gene expression were inferred in the DO-F1 

population from the founder strain coefficients observed at the corresponding QTL on 

chromosome 5. B6, C57BL/6J; 129, 129S1/SvlmJ; NOD, NOD/ShiLtJ; NZO, NZO/HILtJ; 

CAST, CAST/EiJ; PWJ, PWK/PhJ; WSB, WSB/EiJ.   
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Table 5.13. Microbial genus QTL, liver cis-eQTL, and a direct correlation between the 

mapped trait and transcript in three models. 

Model 

Microbial genus QTL cis-eQTL 
Trait:Transcript correlation 

(r and p-value) 

Trait 
Ch

r 

Position  

(Mbp) 
LOD Gene 

Ch

r 

Position  

(Mbp) 
LOD 

Module 

color 

(Female

s) 

Module 

color 

(Males) 

r 

adjuste

d p-

value 

Female g_Romboutsia 2 35.00 8.24 Cntrl 2 35.11 7.80 NA NA -0.25 0.05 

Female g_Romboutsia 2 35.00 8.24 Fam129b 2 32.64 13.74 darkred turquoise 0.16 0.26 

Female g_Romboutsia 2 35.00 8.24 Gsn 2 35.26 19.34 darkred blue 0.10 0.50 

Female g_Romboutsia 2 35.00 8.24 Hc 2 34.98 18.45 NA NA 0.05 0.75 

Female g_Romboutsia 2 35.00 8.24 Lrsam1 2 32.93 14.77 darkred turquoise 0.23 0.07 

Female g_Romboutsia 2 35.00 8.24 Mrrf 2 36.14 9.45 NA turquoise -0.04 0.77 

Female g_Romboutsia 2 35.00 8.24 Phf19 2 32.90 11.27 darkred NA -0.02 0.89 

Female g_Romboutsia 2 35.00 8.24 Rc3h2 2 36.00 8.69 purple brown 0.10 0.52 

Female g_Romboutsia 2 35.00 8.24 Rpl12 2 32.96 25.92 NA NA 0.08 0.58 

Female g_Romboutsia 2 35.00 8.24 Stom 2 35.31 15.42 darkred yellow 0.18 0.16 

Female g_Romboutsia 2 35.00 8.24 Stxbp1 2 32.79 8.25 darkred turquoise 0.04 0.81 

Female g_Lachnospiraceae.FCS020 2 110.79 8.05 Aven 2 112.49 8.03 NA green -0.09 0.52 

Female g_Lachnospiraceae.FCS020 2 110.79 8.05 Fmn1 2 113.33 9.65 darkred turquoise 0.14 0.28 

Female g_Lachnospiraceae.FCS020 2 110.79 8.05 Mettl15 2 109.09 10.68 purple blue 0.06 0.65 

Female g_Lachnospiraceae.FCS020 2 110.79 8.05 Nop10 2 112.26 9.06 darkred blue -0.09 0.52 

Female g_GCA.900066575 4 58.16 8.27 Ptgr1 4 58.97 19.50 darkred turquoise -0.21 0.10 

Female g_GCA.900066575 4 58.16 8.27 Susd1 4 59.31 10.53 NA NA 0.35 4.E-03 

Female g_Romboutsia 5 65.91 9.43 Klhl5 5 65.11 8.54 purple blue 0.30 0.01 

Female g_Romboutsia 5 65.91 9.43 Tlr6 5 64.95 13.45 darkred turquoise 0.21 0.10 

Female g_Lactococcus 10 26.71 7.45 Akap7 10 25.17 14.64 NA blue -0.01 0.95 

Female g_Lactococcus 10 26.71 7.45 Arhgap18 10 26.77 11.18 darkred blue -0.25 0.05 

Female g_Lactococcus 10 26.71 7.45 Gm10145 10 28.35 28.33 NA NA 0.24 0.06 

Female g_Lactococcus 10 26.71 7.45 Ptprk 10 28.07 9.20 purple blue -0.45 1.E-04 

Female g_Lactococcus 10 26.71 7.45 Smlr1 10 25.66 9.74 NA NA -0.03 0.85 

Female g_Erysipelatoclostridium 11 53.80 8.48 Atox1 11 55.45 17.88 darkred blue -0.17 0.21 

Female g_Erysipelatoclostridium 11 53.80 8.48 Gm10447 11 53.05 18.11 NA NA -0.13 0.34 

Female g_Erysipelatoclostridium 11 53.80 8.48 Lyrm7 11 54.83 32.22 NA NA 0.22 0.09 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Acbd4 11 103.10 23.56 NA NA 0.03 0.83 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Dcakd 11 102.99 14.52 darkred blue 0.08 0.59 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Dusp3 11 101.97 8.73 darkred turquoise 0.01 0.96 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Grn 11 102.43 10.99 darkred turquoise 0.00 0.98 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Lsm12 11 102.16 9.93 darkred blue -0.01 0.93 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Tmem101 11 102.15 9.11 darkred turquoise 0.10 0.49 

Female g_Coriobacteriaceae.UCG.002 11 102.36 9.93 Tmub2 11 102.28 12.50 darkred turquoise -0.10 0.47 

Male 
g_UBA1819 2 77.37 9.74 Ccdc141 2 77.05 18.82 greenyel

low 

NA 0.11 0.43 

Male 
g_UBA1819 2 77.37 9.74 E030042O

20Rik 

2 76.02 26.31 NA NA 0.02 0.90 

Male g_UBA1819 2 77.37 9.74 Gm13657 2 74.31 11.02 darkred blue 0.01 0.93 

Male g_UBA1819 2 77.37 9.74 Prkra 2 76.71 11.76 NA green 0.14 0.28 

Male g_Enterorhabdus 2 181.82 8.08 Col20a1 2 180.90 21.91 purple NA -0.13 0.33 

Male g_Enterorhabdus 2 181.82 8.08 Polr3k 2 181.87 9.75 purple blue -0.06 0.68 

Male 
g_Enterorhabdus 2 181.82 8.08 Slc2a4rg-

ps 

2 181.35 8.48 NA NA 0.09 0.55 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Alad 4 62.56 31.64 NA NA 0.06 0.69 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Atp6v1g1 4 63.93 11.96 darkred turquoise -0.01 0.94 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Gm12909 4 59.37 16.52 NA NA 0.07 0.61 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Hdhd3 4 62.12 24.33 NA NA 0.04 0.79 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Hsdl2 4 62.61 8.43 NA brown -0.03 0.82 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup1 4 58.80 18.64 darkred blue 0.02 0.88 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup13 4 62.62 18.41 NA NA 0.09 0.50 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup17 4 62.65 10.94 darkred blue -0.11 0.42 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup2 4 61.86 11.10 darkred blue -0.06 0.70 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup21 4 64.27 10.04 NA blue 0.02 0.90 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup9 4 62.61 10.24 darkred blue -0.10 0.49 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup-ps13 4 62.10 14.14 darkred turquoise -0.05 0.74 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Mup-ps17 4 62.10 17.18 NA NA -0.10 0.48 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Orm1 4 63.11 10.50 darkred turquoise -0.15 0.24 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Orm3 4 63.07 15.57 NA turquoise -0.25 0.05 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Ptgr1 4 59.01 19.50 darkred turquoise -0.24 0.06 

Male g_Clostridium.sensu.stricto.1 4 62.98 7.84 Susd1 4 59.36 10.53 NA NA -0.16 0.21 

Male g_Ruminiclostridium.9 13 45.86 8.05 Fam8a1 13 46.63 9.04 purple blue 0.00 0.99 

Male g_Ruminiclostridium.9 13 45.86 8.05 Nhlrc1 13 46.22 10.10 NA turquoise 0.20 0.13 

Male g_Ruminiclostridium.9 13 45.86 8.05 Tpmt 13 47.02 45.90 NA NA 0.04 0.77 
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Additive g_Ruminococcaceae.UCG.010 1 172.48 8.64 Ackr1 1 172.91 8.13 darkred turquoise 0.12 0.15 

Additive g_Ruminococcaceae.UCG.010 1 172.48 8.64 Apcs 1 172.85 16.03 NA NA 0.01 0.95 

Additive g_Ruminococcaceae.UCG.010 1 172.48 8.64 Dusp23 1 172.91 14.11 purple NA -0.09 0.31 

Additive g_Ruminococcaceae.UCG.010 1 172.48 8.64 Kcnj10 1 172.10 13.76 darkred turquoise 0.06 0.53 

Additive g_Ruminococcaceae.NK4A214 6 72.73 8.38 Elmod3 6 72.64 16.81 NA NA 0.03 0.24 

Additive g_Ruminococcaceae.NK4A214 6 72.73 8.38 Gm38832 6 72.64 12.29 NA NA 0.12 0.18 

Additive g_Ruminococcaceae.NK4A214 6 72.73 8.38 Mat2a 6 72.40 14.39 darkred turquoise 0.02 0.34 

Additive g_Ruminococcaceae.NK4A214 6 72.73 8.38 Rnf181 6 72.59 35.42 darkred turquoise -0.09 0.25 

Additive 
g_Ruminococcaceae.NK4A214 6 72.73 8.38 Tmem150

a 

6 72.67 10.53 darkred green 0.10 0.04 

Additive g_Romboutsia 10 117.97 8.19 Cpm 10 117.96 9.66 NA NA 0.16 0.07 

Additive g_Terrisporobacter 16 14.44 9.02 Mpv17l 16 13.04 9.73 darkred NA -0.03 0.76 

Additive g_Terrisporobacter 16 14.44 9.02 Nde1 16 13.96 8.43 darkred turquoise -0.09 0.31 

Additive g_Terrisporobacter 16 14.44 9.02 Ntan1 16 13.96 19.86 darkred blue -0.05 0.59 

Additive g_Terrisporobacter 16 14.44 9.02 Pdxdc1 16 14.95 10.88 NA blue 0.04 0.65 

Additive g_Terrisporobacter 16 14.44 9.02 Top3b 16 12.88 8.95 darkred NA -0.05 0.55 

Significance was considered when QTL results were P<0.05. 
acis-eQTLs are the result of the sex additive model. 
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5.5.8. Ptprk is a candidate gene for aortic lesion area and Lactococcus abundance 

Lastly, we searched candidate genes in the QTL confidence interval via trait-transcript 

correlation and high-resolution association mapping on chromosome 10 in females identified 

above. By applying systems genetics using cardiometabolic traits, microbial taxa and functional 

profiling, and liver transcriptome, we found that only expression of Ptprk gene, which encodes 

for the protein tyrosine phosphatase receptor type K transporter and belongs to the purple module 

(Table 5.13), was significantly correlated with both aortic lesion area (R=-0.25, P≤0.05) and 

Lactococcus abundance (R=-0.45, P≤0.001) in females, not males (Figure 5.15A and 5.15B). 

The purple module to which Ptprk gene belongs also had a significant correlation with both 

aortic lesion area (R=-0.27, P≤0.05) and Lactococcus abundance (R=-0.28, P≤0.01) in females 

(Figure 5.11A and 5.11C). In addition, SNPs in Ptprk gene were associated with aortic lesion 

area (17 SNPs), Lactococcus abundance (20 SNPs), and Ptprk gene expression (12 SNPs) 

(Figure 5.15C-5.15E and 5.16). Especially, wild-derived strains CAST and PWK alleles 

showed a strong positive association with the Ptprk gene expression (Figure 5.17A). The 10 

common SNPs that associated with aortic lesion area, Lactococcus abundance, and Ptprk gene 

expression were attributed to the CAST and PWK haplotypes (Table 5.14) and female mice with 

CAST and PWK haplotypes had significantly lower aortic lesion area and Lactococcus 

abundance, and higher Ptprk gene expression than mice with homozygous genotypes (Figure 

5.15C-5.15E). This is consistent with the result that Ptprk gene expression has a negative 

correlation with both aortic lesion area and Lactococcus abundance. Furthermore, Ptprk gene 

expression not only had a strong negative correlation with five candidate EC gene families 

known to be produced by Lactococcus lactis (Figures 5.18A and Table 5.15), but also showed a 

high association with the Ptprk SNP in females (Figure 5.18B). These data suggest that genetic 
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variants on the Ptprk locus drive changes in hepatic Ptprk gene expression, aortic lesion area 

level, and Lactococcus abundance in the feces (Figure 5.17B). 
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Figure 5.15. Identification of Ptprk gene associated with both aortic lesion area and 

Lactococcus abundance in DO-F1 female mice. 
(A) Ptprk gene expression is negatively associated with aortic lesion area in females (R = -0.25, 

p = 0.023), not males (R = -0.11, p = 0.32). (B) Ptprk gene expression is negatively associated 

with Lactococcus abundance in females (R = -0.43, p = 7.6E-05), not males (R = -0.041, p = 

0.72). (C-E) Association between a SNP (rs243273871) in Ptprk gene and aortic lesion area (C), 

Lactococcus abundance (D), and Ptprk gene expression (E). Heterozygous SNP (A/C) is from 

wild-type inbred strains (CAST or PWK strains) and homozygous SNP (C/C) is from laboratory 

inbred strains (A/J, 129, NOD, NZO, or WSB strains). 
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Figure 5.16. Significant associations between SNPs in Ptprk gene and aortic lesion area, 

Lactococcus abundance, or Ptprk gene expression in DO-F1 female mice. 

(A) Significant association between 17 SNPs in Ptprk gene and aortic lesion area. (B) A 

significant association between 20 SNPs in Ptprk gene and Lactococcus abundance. (C) A 

significant association between 10 SNPs in Ptprk gene and Ptprk gene expression. Differences 

between heterozygous (denoted “H” in x-axis) and homozygous genotype (denoted “A” or “B” 

in x-axis) were evaluated using an unpaired Wilcoxon signed-rank test. 
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Figure 5.17. Identification of Ptprk gene associated with both aortic lesion area and 

Lactococcus abundance in DO-F1 female mice.  

(A) Estimated founder strain levels of Ptprk gene were inferred in the DO-F1 population from 

the founder strain coefficients observed at the corresponding QTL on chr 10. B6, C57BL/6J; 

129, 129S1/SvlmJ; NOD, NOD/ShiLtJ; NZO, NZO/HILtJ; CAST, CAST/EiJ; PWJ, PWK/PhJ; 

WSB, WSB/EiJ. (B) Inset summarizes that SNPs on chromosome 10 (chr10) drive variation in 

Ptprk transcript abundance, aortic lesion area, and Lactococcus abundance, corroborated by a 

spearman correlation between hepatic Ptprk gene and aortic lesion area or Lactococcus 

abundance. 
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Figure 5.18. Identification of Ptprk gene associated with five EC gene families in DO-F1 

female mice. 

(A) Ptprk gene expression is negatively associated with five EC gene families in females, not 

males. (B) Association between a SNP (rs243273871) in Ptprk gene and five EC gene families. 

Heterozygous SNP (A/C) is from the CAST or PWK strains and homozygous SNP (C/C) is from 

the A/J, 129, NOD, NZO, or WSB strains. 
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Table 5.14. List of 10 Ptprk SNPs that showed a significant difference between heterozygous 

and homozygous genotypes. 

Maker Chr 
Position 

(Mbp) 
SNP 

Strains that have  

heterozygous 

genotype 

Allele 

from B6 

Allele from strains  

that have a 

heterozygous genotype 

UNCHS027770 10 28.14 rs29316154 CAST;PWK C T 

UNC17651750 10 28.22 rs243273871 CAST;PWK C A 

JAX00016183 10 28.29 rs46801305 CAST T G 

UNC17653128 10 28.32 rs248898676 CAST;PWK T G 

UNC17653533 10 28.35 rs52604325 CAST;PWK G T 

UNCHS027772 10 28.39 rs36371657 CAST;PWK A G 

UNCHS027775 10 28.40 rs50071536 CAST;PWK;WSB C T 

UNCHS027776 10 28.41 rs230967592 CAST;PWK A G 

UNCHS027779 10 28.46 rs238966765 PWK C G 

UNC17655660 10 28.49 rs225638435 CAST;PWK C T 
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Table 5.15. 6 candidate EC gene families QTLs, liver cis-eQTL, and a direct correlation between the mapped EC and 

transcript in three models. 

Model 

EC QTL cis-eQTLa EC:trait correlation coefficient and p-value 

EC Chr 
Position  

(Mbp) 
LOD Gene Chr 

Position  

(Mbp) 
LOD 

Module 

color 

(Females) 

Module 

color 

(Males) 

All mice Female mice 

r 
adjusted 

p-value 
r 

adjusted 

p-value 

Female EC.2.4.1.166 10 26.71 7.26 Ptprk 10 28.07 9.20 purple blue -0.24 0.00 -0.45 4.5E-05 

Female EC.2.4.1.166 10 26.71 7.26 Arhgap18 10 26.77 11.18 darkred blue -0.07 0.46 -0.25 0.04 

Female EC.2.4.1.166 10 26.71 7.26 Akap7 10 25.17 14.64 NA blue 0.08 0.43 -0.01 0.93 

Female EC.2.4.1.166 10 26.71 7.26 Gm10145 10 28.35 28.33 NA NA 0.15 0.08 0.24 0.04 

Female EC.2.4.1.166 10 26.71 7.26 Smlr1 10 25.66 9.74 NA NA -0.04 0.68 -0.03 0.84 

Female EC.3.2.1.139 10 26.79 7.39 Ptprk 10 28.07 9.20 purple blue -0.23 0.01 -0.44 7.6E-05 

Female EC.3.2.1.139 10 26.79 7.39 Arhgap18 10 26.77 11.18 darkred blue -0.05 0.58 -0.21 0.09 

Female EC.3.2.1.139 10 26.79 7.39 Akap7 10 25.17 14.64 NA blue 0.06 0.52 0.01 0.93 

Female EC.3.2.1.139 10 26.79 7.39 Gm10145 10 28.35 28.33 NA NA 0.15 0.09 0.15 0.22 

Female EC.3.2.1.139 10 26.79 7.39 Smlr1 10 25.66 9.74 NA NA -0.07 0.45 -0.05 0.75 

Female EC.3.2.1.8 10 26.71 7.43 Ptprk 10 28.07 9.20 purple blue -0.09 0.32 -0.20 0.10 

Female EC.3.2.1.8 10 26.71 7.43 Arhgap18 10 26.77 11.18 darkred blue -0.02 0.85 -0.11 0.42 

Female EC.3.2.1.8 10 26.71 7.43 Akap7 10 25.17 14.64 NA blue 0.06 0.55 -0.07 0.64 

Female EC.3.2.1.8 10 26.71 7.43 Gm10145 10 28.35 28.33 NA NA 0.10 0.30 0.15 0.22 

Female EC.3.2.1.8 10 26.71 7.43 Smlr1 10 25.66 9.74 NA NA 0.05 0.60 0.11 0.39 

Female EC.3.4.11.7 10 26.71 7.66 Ptprk 10 28.07 9.20 purple blue -0.23 0.01 -0.44 6.5E-05 

Female EC.3.4.11.7 10 26.71 7.66 Arhgap18 10 26.77 11.18 darkred blue -0.04 0.67 -0.21 0.08 

Female EC.3.4.11.7 10 26.71 7.66 Akap7 10 25.17 14.64 NA blue 0.12 0.21 0.07 0.64 

Female EC.3.4.11.7 10 26.71 7.66 Gm10145 10 28.35 28.33 NA NA 0.13 0.16 0.17 0.16 

Female EC.3.4.11.7 10 26.71 7.66 Smlr1 10 25.66 9.74 NA NA -0.04 0.68 -0.02 0.93 

Female EC.3.6.3.44 10 26.29 7.45 Ptprk 10 28.07 9.20 purple blue -0.24 0.00 -0.47 2.3E-05 

Female EC.3.6.3.44 10 26.29 7.45 Arhgap18 10 26.77 11.18 darkred blue -0.04 0.65 -0.22 0.06 

Female EC.3.6.3.44 10 26.29 7.45 Akap7 10 25.17 14.64 NA blue 0.06 0.53 -0.05 0.76 

Female EC.3.6.3.44 10 26.29 7.45 Gm10145 10 28.35 28.33 NA NA 0.16 0.08 0.20 0.09 

Female EC.3.6.3.44 10 26.29 7.45 Smlr1 10 25.66 9.74 NA NA -0.04 0.65 -0.03 0.88 

Female EC.4.1.1.74 10 26.86 7.44 Ptprk 10 28.07 9.20 purple blue -0.22 0.01 -0.46 3.5E-05 

Female EC.4.1.1.74 10 26.86 7.44 Arhgap18 10 26.77 11.18 darkred blue -0.05 0.58 -0.27 0.02 

Female EC.4.1.1.74 10 26.86 7.44 Akap7 10 25.17 14.64 NA blue 0.09 0.34 -0.04 0.82 

Female EC.4.1.1.74 10 26.86 7.44 Gm10145 10 28.35 28.33 NA NA 0.19 0.03 0.29 0.01 

Female EC.4.1.1.74 10 26.86 7.44 Smlr1 10 25.66 9.74 NA NA -0.04 0.67 -0.02 0.92 

Significance was considered when QTL results were P<0.05. 
acis-eQTLs are the result of the sex additive model.  

3
0
4
 

 



 

305 

 

 

5.6. Discussion 

Here, we characterize the gut microbiota composition and its association with cardiometabolic 

traits in the hyperlipidemic DO-F1 mice fed a HFHC diet designed to induce atherosclerotic 

lesions. In the present study, DO-F1 mice were used to generate a systems genetics resource that 

incorporates cardiometabolic traits, gut microbiome, and liver transcriptome and to assess the 

effect of genetic variation on trans-omics data. Our study utilizes a unique genetic diversity 

across the DO-F1 mice with heterozygous genetic architecture, which results in significant 

variations in the trans-omics data in a set of relatively limited environmental effects. The results 

have led to several conclusions. First, host genetic factors caused substantial inter-individual 

variation in the gut microbiota composition in DO-F1 mice. Second, we identified that gut 

microbial diversity, genera, and functional profiling were associated with key atherosclerotic 

traits, suggesting that gut microbiota may play a role in atherosclerosis development. Third, we 

observed  sex-specific liver gene networks that were highly associated with atherosclerosis and 

gut microbiota. Fourth, the integration of trans-omics datasets enabled the investigation of 

atherosclerosis pathophysiology at the systems level, which has improved our understanding of 

the complex trait contributing to atherosclerosis development. For example, we identified novel 

candidate genes for QTL that were previously mapped for atherosclerosis, which is a highly 

complex trait resulting from the interaction between genetic and environmental factors via high-

resolution mapping. We further interrogated this QTL by co-mapping with mbQTLs and liver 

cis-eQTLs, and by investigating the correlation between trans-omics datasets to identify a 

potential candidate gene for this QTL. Below we discuss each of these points in turn. 
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The profound effect of genetic background reflects the effectiveness of recent studies 

showing that gut microbial composition is a complex, polygenic trait. Many studies conducted in 

DO founder strains have demonstrated the impact of genetic background on gut microbiota 

(Campbell et al., 2012; Carmody et al., 2015; Kemis et al., 2019). Interestingly, several genetic 

studies using DO mice or F2 cross mice showed that multiple microbial taxa can be co-localized 

to a single-genetic locus, suggesting that pleiotropic loci may modulate the abundance of 

multiple taxa (Benson et al., 2010; Kemis et al., 2019). Our study also revealed significant 

pleiotropic loci for microbial taxa between Lachnospiraceae NK4A136 group and 

Lachnospiraceae FCS020 group on chromosome 14 and between Terrisporobacter and 

Clostridium sensu stricto 1 on chromosome 16 in entire mice. Furthermore, the pleiotropic loci 

were more prominent in QTL mapping of MetaCyc pathways and EC gene families predicted 

from microbial taxa. These results suggest that genetic variation affecting specific microbial taxa 

influences the gut microbiota composition.  

A number of studies in recent years have suggested that certain features in the gut 

microbiota are associated with metabolic phenotypes (Falony et al., 2016; Manor et al., 2020; 

Org et al., 2017). However, it is not yet clear whether associations for health status can be seen 

not only in individual taxa but also in the overall composition of the gut microbiota. Our 

pairwise correlation and association analysis not only showed a significant association of 

cardiometabolic traits with the gut microbiota, but also revealed how certain taxa and functional 

profiling might influence sex differences in atherosclerosis after HFHC diet intake. For example, 

in DO-F1 mice, Bifidobacterium, which was abundant in males, was negatively correlated with 

atherosclerotic traits (aortic lesion area, plasma TC, and hepatic TC), and female-specific 

abundant taxa such as Alistipes and Blautia were negatively correlated with those atherosclerotic 



 

307 

 

traits at 24 weeks. Several studies have found associations of Alistipes and Blautia with dysbiosis 

and gut permeability (Kong et al., 2019; Lam et al., 2012; Parker et al., 2020) which are 

predominantly manifested in patients with cardiovascular disease (Emoto et al., 2016; Kelly et 

al., 2016; Koren et al., 2011). In addition, Blautia has been reported to be associated with human 

genetic variants related to obesity and BMI (Bonder et al., 2016). Bifidobacterium has also been 

identified as a sexually dimorphic taxon in many human studies, and is generally more abundant 

in females with lower levels of metabolic traits (e.g., BMI, LDL-C, TG, insulin, and 

inflammatory markers) than males (Borgo et al., 2018; Gao et al., 2018; Takagi et al., 2019). 

Recent studies reveal that Bifidobacterium spp. decreases serum TC and LDL-C in 

hypercholesterolemic patients (Rerksuppaphol and Rerksuppaphol, 2015), prevents bacterial 

translocation and improves mucosal barrier function in rats by reducing the amount of LPS in the 

blood (Caplan et al., 1999), and shows a negative correlation with the fibrosis rate in patients 

with heart disease (Tuomisto et al., 2019), suggesting that it may play a beneficial role in the 

prevention of coronary atherosclerosis. Therefore, our results, consistent with other recent 

studies, have shown that microbial taxa are associated with susceptibility to atherosclerosis. 

Gene network-based analysis has been used by many groups to uncover the basis of 

complex diseases (Bennett et al., 2015; Chen et al., 2008; Gargalovic et al., 2006; Miller et al., 

2008) and gut microbiota (Fuess et al., 2021; Pan et al., 2021; Pfalzer et al., 2016). Genes with 

similar expression patterns can form complex pathways or participate in regulatory and signaling 

circuits (Huang et al., 2007; Ideker et al., 2002). Gene co-expression networks have been 

extensively studied to describe transcripts in many organisms, including yeast, flies, worms, 

mice, and humans (Bennett et al., 2015; Stuart et al., 2003). WGCNA is one of the most 

commonly used analysis tools for this type of analysis (Zhang and Horvath, 2005). WGCNA can 
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reduce the dimension of large RNA-seq data sets with dozens of modules of genes that share 

similar expression patterns and the same general function in transcripts. Once identified, the 

overall behavior and topology of the module can be related to the disease state. Since we 

observed the sexual dimorphism of cardiometabolic traits and liver transcriptome in Chapter 4, 

we constructed networks in each sex in order to avoid signal being overwhelmed by sexually 

dimorphic cardiometabolic traits. Among the sex-specific modules identified in each sex, the 

purple module enriched for protein ubiquitination in females and the black module enriched for 

steroid biosynthesis in males not only had negative correlations with aortic lesion area, but also a 

higher correlation with the microbial diversity, genera, and functional profiling than any other 

module. For example, Clostridium sensu strico 13, abundant in males and the mice with low 

atherosclerotic traits, showed a positive correlation with both modules, and Blautia and 

Oscillibacter, abundant in females and the mice with high atherosclerotic traits, had a negative 

correlation. These results indicate that co-expressed genes associated with aortic lesion area and 

gut microbiota showed similar directionalities in both sexes, but were sex-specifically enriched 

in functional pathways. 

To discover individual candidate genes within genomic mapping intervals of trans-omics 

data, we assessed three additional data sources: correlation, allele effects, and eQTL. We 

analyzed the correlation between each omics data (traits, microbial taxa, transcripts) and 

examined whether there is a significant association between each dataset. Since 8 alleles were 

segregated from the DO-F1 mice, the contribution of each allele to each omics data was 

assessed. Furthermore, hepatic cis-eQTL was screened in which the allele effect pattern is 

consistent with that of the cardiometabolic trait QTL or mbQTL. For example, this study 

confirmed that the QTL of Lactococcus abundance was co-localized with the aortic lesion area 
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QTL on chromosome 10. In addition, gene families of six enzymes reported to be produced in 

Lactococcus lactis subsp. lactis were also co-localized to the same region (Bolotin et al., 2001; 

Kelleher et al., 2017; McNulty et al., 2011; Passerini et al., 2013; Siezen et al., 2008). In order to 

find candidate genes that have a regulatory function for the aortic lesion area and Lactococcus 

abundance, we considered a significant correlation with the aortic lesion area, Lactococcus 

abundance, six EC gene families, hepatic gene modules, and cis-eQTL for candidate genes 

located in these loci, and only Ptprk meets all statistical criteria. This gene encodes protein 

tyrosine phosphatases (PTPs) and PTPs are important modulators of cellular processes such as 

migration, proliferation, and differentiation, which are involved in pathological vascular wall 

function (Kappert et al., 2005). Ptprk has previously been shown to associate with colorectal 

cancer (Yan et al., 2020), angiogenesis (Sun et al., 2017), and cell-cell contacts in epithelial cells 

(Fearnley et al., 2019); however, other biological functions are unclear. Human genome-wide 

association studies have shown that Ptprk SNPs are associated with athletic performance and risk 

of Celiac disease (Bondar et al., 2014; Pickering et al., 2019). Furthermore, data from the 

Phenotype-Genotype Integrator in NCBI (https://www.ncbi.nlm.nih.gov/gap/phegeni) 

demonstrate that Ptprk is associated with LDL-C, platelet function tests, and inflammatory bowel 

disease across approximately 500,000 individuals (Table 5.16). 

In conclusion, the integration of trans-omics datasets in a hyperlipidemic DO-F1 mouse 

population provides a powerful tool for the identification of microbial taxa, genes, and biological 

pathways involved in complex atherosclerotic traits. Specifically, we identified Ptprk gene as a 

regulator of atherosclerosis and Lactococcus abundance. Future validation studies are required to 

investigate how a perturbation of Ptprk expression affects aortic lesion area and the 

consequences on Lactococcus colonization in the hyperlipidemic mouse model. Finally, our 

https://www.ncbi.nlm.nih.gov/gap/phegeni
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study shows the power of systems genetics to identify novel interactions between 

cardiometabolic traits and gut microbial taxa, and trans-omics datasets and methodologies may 

help complement and validate existing and future discovery resources. 
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Table 5.16. Phenome wide association (PheWAS) with Ptprk gene that identified in aortic 

lesion area and Lactococcus abundance QTLs in DO-F1 female mice. 

Gene  

(Mouse) 

Chr  

(Mouse) 

Position  

(bp, 

Mouse) 

Phenotypes 

(Human) 

CVD or gut 

microbiota  

related 

phenotypes 

SNP_rs  

(Human) 

Gene  

(Human) 

Chr  

(Human) 

Position 

(bp, 

Human) 

P_Value 

(p<1×10-

7) 

Ptprk 10 28074820 Celiac Disease Yes 802734 PTPRK 6 127957653 3.00E-14 

Ptprk 10 28074820 
Multiple 
Sclerosis 

No 802734 PTPRK 6 127957653 6.00E-09 

Ptprk 10 28074820 Crohn Disease Yes 9491891 PTPRK 6 127956006 3.00E-16 

Ptprk 10 28074820 Crohn Disease Yes 13204742 PTPRK 6 127924620 8.00E-15 

Ptprk 10 28074820 

Inflammatory 

Bowel 

Diseases 

Yes 13204742 PTPRK 6 127924620 5.00E-10 

Ptprk 10 28074820 Menarche No 6938574 PTPRK 6 128069835 2.00E-09 

Ptprk 10 28074820 
Cholesterol, 

LDL 
Yes 7755473 PTPRK 6 128232071 4.75E-08 

Ptprk 10 28074820 
Platelet 

Function Tests 
Yes 9375562 PTPRK 6 128354763 5.81E-09 

Ptprk 10 28074820 
Platelet 
Function Tests 

Yes 17055564 PTPRK 6 128290066 1.82E-14 
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5.7. Limitations of Study 

Our study has several limitations. The transcriptomic analysis was limited to liver tissue and 

some major tissues (e.g. aorta and adipose tissue) in atherosclerosis development have not been 

tested. The genes responsible for atherosclerosis may not be expressed in the liver tissue we 

studied, or they may not show any expression differences or eQTLs. Secondly, the amplicon-

based prediction of the function of gut microbial taxa using PICRUSt2 may have a high 

correlation with the functional profile based on shotgun metagenomics sequencing data, but the 

actual functions found to be significantly different between groups can substantially differ. 

Lastly, a functional validation study targeting putative gene or taxon was missing.  
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CHAPTER 6. 

Conclusion and Future Direction 

 

This dissertation focuses on improving the current understanding of the potential 

mechanisms and therapeutic targets on the underlying genetic process of atherosclerosis, the 

effect of liver transcriptome on metabolic dysfunctions such as atherosclerosis and dyslipidemia 

depending on diet and genetic backgrounds, and the relationship between gut microbiota and 

atherosclerosis. In Chapter 2, we examined the associations of gut microbiota and microbial 

metabolites with atherosclerosis, coronary artery disease, blood pressure, and type 2 diabetes in 

human and rodent models. In Chapter 3, we assessed the effects of atherogenic diet and host 

genetics on the liver transcriptome, and focused on the Nox4 gene, which was associated with 

TMAO and liver triglyceride, which are risk factors of atherosclerosis and dyslipidemia. In 

Chapter 4, we utilized state-of-the-art mouse resources and bioinformatics tools to uncover sex-

specific liver genetic pathways, gene networks, and genetic loci associated with atherosclerosis 

in a population of hyperlipidemic DO-F1 mice. Finally, in Chapter 5, fecal microbial taxa 

associated with atherosclerotic traits were identified, and trans-omics analysis confirmed that 

aortic lesion area and Lactococcus abundance colocalized at the same loci. 

The studies presented in this dissertation suggest that complex traits related to 

atherosclerosis and CVD susceptibility are associated with the liver transcriptome and gut 

microbiota, and reveal novel findings of genes and microbial taxa that contribute to the genetic 

mapping through integrative genetic analysis with those omics data. This is the first study to 

characterize atherosclerosis with multi-omics approaches in DO-F1 mice. Follow-up studies 
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could be performed to reliably identify the biological relevance of genes and genetic variants 

identified by co-mapping between cardiometabolic traits, liver transcriptome, or microbial taxa. I 

will discuss the proposed experiments in turn below. 

6.1. Functional Significance of the CAST/EiJ and PWK/PhJ Alleles of Ptprk and Pten 

Genes in Atherosclerosis in a Sex-specific Manner  

We revealed sex-specific loci associated with atherosclerosis on chromosome 10 (LOD: 

7.3, BCI: 22.90-30.75 Mbp, 33 genes within the BCI) and chromosome 19 (LOD: 7.92, BCI: 

32.00-40.23 Mbp, 58 genes within the BCI) in DO-F1 mice. Among the genes located within the 

BCI of each aortic lesion area QTL, Ptprk (females) and Pten (males) genes that showed 

significant cis-eQTLs and correlated with the aortic lesion area were identified in each sex. In 

both aortic lesion area QTLs and cis-eQTLs for both genes, alleles from CAST/EiJ and 

PWK/PhJ were found to be associated with lesion size. This suggests that differential expression 

of these genes in each sex may contribute to differences in lesion size. Based on these results, we 

can compare the differences of expression in the Ptprk and Pten genes in each sex between 

hyperlipidemic CAST/EiJ, PWK/PhJ, and C57BL/6J or from mice with CAST/EiJ and PWK/PhJ 

allele contributions in the aortic lesion area QTLs compared to those that have contribution from 

the other founders. To do this, we can validate our findings with the Collaborative Cross (CC) 

mouse model. DO and CC mice are complementary resources and each DO mouse has a unique 

heterozygous genome, whereas CC mice that have a homozygous genome are maintained as 

reproducible strains. Therefore, it is possible to identify the difference between the two genes 

and aortic lesion area in each sex by obtaining CC lines with CAST/EiJ and PWK/PhJ alleles on 

the aortic lesion area QTLs identified in DO-F1 mice. Based on the results of our study, the 

hyperlipidemic CC line with the CAST/EiJ and PWK/PhJ alleles in Ptprk cis-eQTL may show 
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small lesions in females in response to the atherogenic diet, and the hyperlipidemic CC line with 

the CAST/EiJ and PWK/PhJ alleles in Pten cis-eQTL could show large lesions in males.  

If the results of these proposed studies suggest that CAST/EiJ and PWK/PhJ mice have 

causal genetic variants in the Ptprk and Pten genes that regulate atherosclerosis susceptibility, we 

will conduct in vitro and in vivo studies to determine the functional role of causal mutations in 

both genes. First, we can confirm the alterations in expression of two genes by inducing 

inflammatory conditions in macrophages and hepatocytes, or measure intracellular lipid 

accumulation, inflammatory cytokines, and cholesterol efflux after knockdown or 

overexpression of each gene. In in vivo models, we can also compare the levels of atherosclerotic 

traits in C57BL/6J, Ptprk-/-, and Pten-/- mice treated with an atherogenic diet in both sexes to 

assess the sex-specific effect of the two genes on atherosclerosis. In addition, CRISPR can be 

used to affect protein function by targeting missense variants or SNPs that were associated with 

atherosclerosis. Alternatively, the levels of atherosclerotic traits between the CAST, PWK, and 

C57BL/6J can be compared for each sex after knockdown or overexpression of each gene by tail 

vein injection of an adenovirus construct. The results of the above study will certainly confirm 

the functional roles of the CAST/EiJ and PWK/PhJ allelic contributions to candidate genes and 

provide a basis for understanding the biological mechanisms by which these strains may 

contribute to atherosclerosis susceptibility. 

6.2. Functional Validation of Lactococcus as a Candidate Taxon Regulating Atherosclerosis  

In the current study, we used four different models for QTL mapping such as sex additive 

(accounting for sex as an additive covariate), sex interactive (accounting for sex as an interactive 

covariate), females, and males to identify genetically regulated co-localized loci between 

atherosclerosis and microbial taxa. We found that aortic lesion area (LOD: 7.3, BCI: 22.90-30.75 
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Mbp, 33 genes within the BCI) and Lactococcus abundance (LOD: 7.45, BCI: 25.13-28.06 Mbp, 

8 genes within the BCI) QTLs were significantly co-mapped on chromosome 10 in DO-F1 

female mice. In addition, CAST/EiJ and PWK/PhJ allele effects were associated with low aortic 

lesion area and Lactococcus abundance levels at the locus. Consistent with these results, 

Lactococcus abundance showed a high positive correlation with plasma total cholesterol 

(R=0.26, P=7.3E-05 in males; R=0.17, P=0.012 in females) and hepatic total cholesterol (R=0.3, 

P=3.7E-06 in males; R=0.23, P=0.00047 in females) as well as aortic lesion area (R=0.22, 

P=0.00031 in males; R=0.14, P=0.028 in females) in both sexes. Based on these results, we 

assume that Lactococcus may play a functional role in the development of atherosclerosis. In 

order to validate the association between Lactococcus and atherosclerosis, CC lines also can be 

utilized. We plan to measure Lactococcus abundance and aortic lesion area levels after challenge 

with an atherogenic diet in 6-week-old CC mice with CAST/EiJ and PWK/PhJ allelic 

contribution at the chromosome 10 locus. CC lines with CAST/EiJ and PWK/PhJ allele 

contributions at chromosome 10 locus may exhibit lower Lactococcus abundance and aortic 

lesion area levels than other CC lines. 

After confirming this trend in a preliminary study, we can directly test the effect of 

Lactococcus administration on atherosclerosis in mice. For example, we can compare the 

development of atherosclerosis and gut microbiota changes after treatment with Lactococcus 

between atherosclerosis susceptible C57BL/6J and atherosclerosis resistant CAST/EiJ. In order 

to identify the species level of Lactococcus found in DO-F1 mice, it is necessary to directly 

isolate it from DO-F1 fecal samples and then perform metagenomic sequencing. Alternatively, 

the Lacococcus strain identified up to the species level can be purchased from the American 

Type Culture Collection (ATCC) or DSM companies, and then tested in an atherosclerotic 
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mouse model. We plan to set 2 of the 4 groups as controls for each C57BL/6J and CAST/EiJ 

strain and administrate Lactococcus strain orally (109 CFU/mouse in PBS) to the other 2 groups. 

All mice will be first treated with the antibiotics ciprofloxacin (0.2 g/L) and metronidazole (1 

g/L) once and challenged with an atherogenic diet for 16 weeks. Higher atherosclerosis-related 

phenotypic levels may be observed in mice administered Lactococcus strain. Additionally, in 

order to verify the effect of the Lactococcus strain on atherosclerosis in germ free model, we can 

confirm that the development of atherosclerosis is accelerated after co-administration of 

Lactococcus strain and core species commonly found in human microbiota to germ free 

C57BL/6J ApoE-/- mice. 

6.3. Future Directions 

The use of the DO mouse model with a heterozygous genetic architecture similar to the 

human genome is just beginning, and it is expected to increase worldwide to discover disease-

related targets through multi-omics analysis in the future. The advantages of using this mouse 

model in the future are as follows. First, it will bring the advancement of systems biology 

analysis by sharing a multi-omics integrated analysis platform. The DO mouse model has a 

relatively low barrier to entry because it is easier to control the environmental factors and collect 

samples than human multi-omics studies. In the future, the data generation cost of multi-omics 

will continue to decrease, and the high-resolution multi-omics integrated analysis platform, 

which will be built with the participation of many researchers, will greatly contribute to the 

advancement of metabolic disease research and academic development for researchers around 

the world. Second, the use of this mouse model will promote the dissemination of personalized 

efficacy evaluation techniques that take into account genetic factors. Previously, validation of the 

target has been performed only in one inbred strain which is susceptible to metabolic diseases 
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such as the C57BL/6J. However, it will be possible to evaluate the effectiveness of the disease-

related target considering genetic factors by validating the target in disease-susceptible (i.e. 

C57BL/6J) and resistant mouse strains (i.e. CAST/EiJ) that have the contribution of alleles on 

the target QTL. Third, this mouse model will facilitate the discovery of new targets associated 

with disease. In the case of human multi-omics data, uncontrolled confounding factors (race, age, 

sex, medication use, and underlying disease) for each cohort make it difficult to integrate with 

the omics data from other cohorts. However, the use of DO mice whose confounding factors are 

controlled and the sharing of rich multi-omics data obtained from them facilitate integration with 

other omics data from this mouse model, discovery of new disease-related targets, and 

development of disease diagnosis biomarkers. The biomarkers discovered in this way can be 

utilized for non-invasive analysis of metabolic organs relating to conditions such as 

cardiovascular disease, steatohepatitis, and kidney disease in the future. 

In summary, this is the first comprehensive study of diet, sex, and genetic effects on 

atherosclerosis, liver transcriptome, and gut microbiota in eight DO founder strains and DO-F1 

mice. These results increase our understanding of diet, sex, and genetic effects on atherosclerosis 

at the molecular and microbial taxa level. We will investigate the causal relationship between 

atherosclerosis and disease-related targets through functional validation of genes and microbial 

taxa that are expected to control atherosclerosis derived in this study according to the method 

proposed above. However, it is necessary to discover a novel biomarker that is highly related to 

atherosclerosis through integration with not only the liver transcriptome and gut microbiome we 

used, but also other omics data that can act as intermediate phenotypes. For example, our study 

focused on the relationship between the liver transcriptome, gut microbiota, and atherosclerosis, 

but the multi-omics-derived markers in metabolic organs (aorta and adipose tissue) that are 
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directly affected by atherosclerosis cannot be overlooked. In particular, single-cell RNA-

sequencing technology, which provides transcriptomic profiling for each cell type in tissue, will 

be able to identify novel atherosclerosis-related markers at the single-cell level by determining 

which expressed genes in specific cell types are associated with atherosclerosis (Williams et al., 

2020). However, since single-cell RNA-sequencing is 10 to 200 times more expensive and offers 

a limited read depth that can be detected per cell 10 times lower than bulk RNA-sequencing 

approaches, there are still limitations to applying this technique to hundreds of samples for QTL 

mapping. In addition, it is important to discover biomarkers for diagnosing atherosclerosis by 

identifying host or microbial metabolites that are genetically regulated at the same locus with the 

atherosclerosis via integration with other omics data such as metabolomics and lipidomics. 

Recently, novel genes related to lipid metabolism were identified via genetic mapping analysis of 

plasma and liver lipidomics in HMDP and DO mice with natural genetic variation (Linke et al., 

2020; Parker et al., 2019). To this end, we plan to perform metabolomic analysis on fecal and/or 

plasma samples collected from hyperlipidemic DO-F1 mice. Since the pathogenesis of 

atherosclerosis is associated with host and microbial metabolites, performing multi-omics 

analysis, genetic mapping, and correlation analysis on these samples from DO mice could 

provide greater insight into the regulatory mechanisms of atherosclerosis. As a result, the studies 

presented here were conducted using computational analysis of experimental data from mice and 

provides sufficient association and convincing data to expand. These results may contribute to 

the understanding of the regulatory mechanisms of atherosclerosis and serve as a strong basis for 

future integrated analysis with multiple omics data. 
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