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Improved efficient physics-based computational modeling of regional 
wave-driven coastal flooding for reef-lined coastlines 
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W. Beck a 
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A B S T R A C T   

Coastal flooding affects low-lying communities worldwide and is expected to increase with climate change, 
especially along reef-lined coasts, where wave-driven flooding is particularly prevalent. However, current 
regional modeling approaches are either insufficient or too computationally expensive to accurately assess risks 
in these complex environments. This study introduces and validates an improved computationally efficient and 
physics-based approach to compute dynamic wave-driven regional flooding on reef-lined coasts. We coupled a 
simplified-physics flood model (SFINCS) with a one-dimensional wave transformation model (XBeach-1D). To 
assess the performance of the proposed approach, we compared its results with results from a fully resolving two- 
dimensional wave transformation model (XBeach-2D). We applied this approach for a range of storms and sea- 
level rise scenarios for two contrasting reef-lined coastal geomorphologies: one low relief area and one high relief 
area. Our findings reveal that SFINCS coupled with XBeach-1D generates flood extents comparable to those 
produced by XBeach-2D, with a hit rate of 92%. However, this method tends to underpredict the flood extent of 
weaker, high-frequency storms and overpredict stronger, low-frequency storms. Across scenarios, our approach 
overpredicted the mean flood water depth, with a positive bias of 7 cm and root mean square difference of 15 cm. 
Offering approximately 100 times greater computational efficiency than its two-dimensional XBeach counter
part, this flood modeling technique is recommended for wave-driven flood modeling in scenarios with high 
computational demands, such as modeling numerous scenarios or undertaking detailed regional-scale modeling.   

1. Introduction 

Coastal flooding affects low-lying communities around the world and 
is expected to increase due to climate change effects on sea-level rise 
(SLR), wave action, and ecosystem degradation (Ferrario et al., 2014; 
Lashley et al., 2018; Reguero et al., 2021; Sheppard et al., 2005; Stor
lazzi et al., 2015, 2018; Taherkhani et al., 2020). Accurate regional (e.g., 
spatial scales on the order of 10s – 1000s km) flood risk assessments are 
essential to inform communities of risk, develop flood risk management 
strategies, and prioritize management actions amongst locations. 
Therefore, regional flood modeling must be improved, particularly in 
complex wave-driven flooding environments such as reef-lined coasts. 

Wave-driven processes can have a significant contribution to inland 
flooding on reef-lined coasts. Particularly, coral reef-lined coasts can 
experience severe flooding due to the combination of tide, storm surge, 

wave setup, wave runup, and sometimes wave resonance (Cheriton 
et al., 2016; Quataert et al., 2015; Torres-Freyermuth et al., 2012). These 
complex environments are characterized by an abrupt fore-reef slope, 
shallow reef crest, and relatively horizontal reef flat; such features 
dissipate incoming offshore wave energy due to wave breaking and 
bottom friction (Hardy and Young, 1996; Péquignet et al., 2011), mainly 
affecting high-frequency sea-swell waves (>0.04 Hz), which energy has 
been found to reduce toward the coast (Nwogu and Demirbilek, 2010). 
Part of the high-frequency wave energy is transferred to the 
low-frequency energy band (<0.04 Hz), leading to a dominance of 
low-frequency waves on the reef flat. The dominance of these waves on 
the reef flat drives coastal flooding in these environments due to their 
relevant contribution to overwash and runup (Cheriton et al., 2016; 
Nwogu and Demirbilek, 2010). 

Even though coral reefs are the first line of protection against 
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flooding, they can also enhance flooding during storm conditions due to 
their impact on wave dynamics (Péquignet et al., 2009; Roeber and 
Bricker, 2015; Shimozono et al., 2015). Wave breaking on the fore reef 
generates high radiation stress gradients, which are balanced by an in
crease in mean water level on the reef flat (i.e., wave setup). The latter 
allows the propagation of larger waves on the reef flat, which can 
enhance runup and, consequently, flooding. Thus, to properly model 
runup wave-driven flooding, both the changes in water level due to 
wave setup and the oscillations around this water level (i.e., swash) must 
be considered. 

Coastal wave-driven flooding at a local scale (~10 km) can be 
accurately modeled with physics-based wave-resolving models such as 
two-dimensional XBeach (XBeach-2D; Roelvink et al., 2009, 2018), 
SWASH (Zijlema et al., 2011) and FUNWAVE-TVD (Shi et al., 2012). The 
first two models are based on the nonlinear shallow water equations and 
the latter on nonlinear Boussinesq equations. These models are adept at 
resolving complex wave-hydrodynamics and computing the corre
sponding wave-driven flooding. Moreover, they include ecosystem 
modeling through friction and vegetation modeling, which is relevant in 
coral reef-lined coasts (Reguero et al., 2021; Storlazzi et al., 2019). 
However, the high computational demand of these models limits their 
applicability for larger, regional-scale studies. These studies, such as 
evaluating flood risk under specific storm conditions for an entire Ha
waiian island, typically utilize circulation models like ADCIRC (Luettich 
et al., 1992) and Delft3D (Kernkamp et al., 2011) coupled with a sta
tionary wave solver (e.g., SWAN; Booij et al., 1999). These models have 
lower computational costs than two-dimensional physics-based 
wave-resolving models. However, they focus on tide and surge modeling 
and do not account for unsteady wave-driven processes such as swash 
and runup. 

Between these two physics-based modeling approaches, there are 
several methods ranging from metamodels or surrogate models to wave- 
resolving models coupled with flood models. Metamodels are simplified 
approximations of complex models that emulate input/output behavior. 
These models are data based and rely on the analysis between a limited 
amount of simulations to predict an outcome (e.g., Camus et al. 2014, 
Gouldby et al. 2014, Rueda et al. 2019a, van Vloten et al. 2022). Met
amodels for flooding can include statistical-based models (Camus et al., 
2014; Rohmer and Idier, 2012), Radial Basis Functions (Rueda et al., 
2019b), and machine learning methods (Zahura et al., 2020). These 
models are trained to be a valuable and fast tool and have the potential 
to be successfully used for coastal flooding proxies (Rohmer and Idier, 
2012), early warning systems (Betancourt et al., 2020; Idier et al., 2021), 
and real-time inundation forecasting and management (Zahura et al., 
2020). However, even though these models can be trained with 
physics-based data and/or relations, the resulting flooding will always 
be an approximate result. These methods lack the fundamental inclusion 
of physical principles and laws that govern the behavior of natural 
phenomena, which might influence their consistency across different 
scenarios for which they are not trained yet and thus the predictive 
power for unseen (extreme) cases. 

An alternative approach involves the integration of one-dimensional 
(1D) wave-resolving models with two-dimensional (2D) inland flood 
models. This strategy varies in complexity, ranging from basic tech
niques like the bathtub or interpolation methods to more advanced 2D 
reduced-physics models. Such hybrid modeling has been employed in 
various studies. For example, Barnard et al. (2019) predicted flood 
depths with 1D XBeach transects, which were interpolated onto regular 
grids and subtracted from high-resolution digital modeling to calculate 
flood maps. Toimil et al. (2023) computed total water levels from 
XBeach and derived statistically robust extreme total water levels to 
define tidal profiles similar to the Storm Gloria peak, which were used as 
boundary conditions for the hydraulic model RFSM-EDA (Jamieson 
et al., 2012). Armaroli et al. (2019) used discharge time series obtained 
after the dune crest from XBeach transect outputs to force Lisflood-FP 
(Bates et al., 2005). However, it is notable that these studies primarily 

focused on beach and dune systems, omitting the modeling of ecosys
tems and their impact on wave dynamics and flooding. Additionally, 
several of these studies employed a statistical imposition of runup 
heights, thereby overlooking the dynamic aspects of flooding. Alterna
tively, although some coupled models do incorporate water level time 
series, they often neglect the inclusion of low-frequency wave time se
ries. This aspect is particularly crucial in areas where features like coral 
reef coastlines significantly influence flood wave dynamics. 

Our study aims to introduce and validate a physics-based computa
tionally efficient approach to dynamically assess wave-driven regional 
flooding on reef-lined coastlines with acceptable accuracy. We propose a 
method that couples at a specific depth (i.e., coupling line) the new 
Super-Fast INundation of CoastS model (SFINCS; Leijnse et al., 2021) 
with one-dimensional XBeach models (XBeach-1D), including both 
static water level and (unsteady) wave time series as boundary condi
tions on coral reef environments. SFINCS calculates compound flooding 
by applying simplified mass and momentum equations (Local Inertial 
Equations; LIE) and, with the inclusion of advection, it can effectively 
model dynamic wave-driven flooding (Simplified Shallow Water Equa
tions; SSWE). In this framework, XBeach is used in 1D ‘surfbeat’ mode in 
which the spatio-temporal wave energy changes are computed on the 
incident wave group period scale. The wave force resulting from wave 
energy variation in time is used to resolve low-frequency waves and 
wave setup (Roelvink et al., 2009). The wave data generated by XBeach 
are crucial for SFINCS, which by itself does not produce infragravity 
waves and setup. 

SFINCS-LIE has previously been used to determine the compound 
flooding hazards of tropical storm systems (Eilander et al., 2023; 
Sebastian et al., 2021). However, these studies did not account for the 
impact of swash and runup on flooding and, consequently, did not 
dynamically model wave-driven flooding. Leijnse et al. (2021) demon
strated that SFINCS-SSWE is able to simulate wave runup and 
wave-driven flooding when advection is included. In this study, we use 
SFINCS-SSWE to account for advective processes. To evaluate the ac
curacy and computational efficiency of the proposed flooding approach, 
we compare it to XBeach-2D results for different SLR and storm sce
narios. Additionally, to assess its performance in different reef geo
morphologies, this study compares both coastal flooding approaches in 
two endmembers of the reef-lined coastlines: a low relief area (Miami 
Beach, FL, USA) and a high relief area (Kailua-Waimanalo area on 
O’ahu, HI, USA). 

2. Methods 

2.1. Study sites and modeled scenarios 

To assess the accuracy of the SFINCS approach (SFINCS-SSWE 
coupled with XBeach-1D), we compared the results of the proposed 
flooding approach to XBeach-2D results for different storm and SLR 
scenarios at two study sites (Fig. 1). The sites have different coastal 
geomorphologies and are two endmembers of coral reef-lined coastlines: 
a low relief area and a high relief area. Miami Beach, Florida, USA 
(25.79◦ N, 80.13◦ W), is a low relief area with a broader shelf, relatively 
uniform alongshore coastline, and a coastal system characterized by 
offshore reefs, barrier islands, and a low-lying coastal zone. On the other 
end of the spectrum, Kailua-Waimanalo, O’ahu, Hawai’i, USA (21.44◦ N, 
158.00◦ W), represents a high relief area with a steeper insular shelf, 
distinct fringing reefs, a curvilinear coastline with bays and headlands, 
and relatively higher-elevation coastal zone. 

The selected storms are based on prior analyses (Reguero et al., 2021; 
Storlazzi et al., 2019), where wave climate and water levels were 
calculated as univariate probability. In these studies, hourly offshore 
wave data from 1948 to 2008 were obtained from the Global Ocean 
Wave (GOW) database (Reguero et al., 2012). The wave data were 
synthesized into 500 sea state combinations (wave heights, wave pe
riods, and wave directions) that best represented the 61 years of 
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deep-water conditions. The latter was achieved using a maximum 
dissimilarity algorithm based on Camus et al. (2011). The selected 500 
sea states were propagated to the fore reef using the physics-based 
third-generation spectral wave model Simulating Waves Nearshore 
(SWAN; Booij et al., 1999), which has been proven to simulate short 
wave propagation around coral reef-lined islands accurately (Hoeke 
et al., 2011; Lowe et al., 2009; Storlazzi et al., 2015). Finally, the 
propagated wave conditions were extracted every 100 m along the 
coastline at ~30 m water depth and reconstructed into 61 year hourly 
time series using radial basis functions (Camus et al., 2011). Each of 
these nearshore time series was fit to a generalized Pareto distribution to 
calculate the 10-, 50-, 100-, and 500-yr storm return periods wave height 
and wave period (average values are shown in Table 1). For each return 
period, the corresponding extreme water level was extracted from the 
nearest National Oceanic and Atmospheric Administration tidal station 
(NOAA, 2020), which is based on a Generalized Extreme Value 

probability distribution function. The daily and 1-yr return period 
storms were linearly extrapolated from the 10-yr return period storm. 
Each scenario was run at three different sea levels to assess the impact of 
SLR: 0.0, +0.5, and +1.0 m. This range of conditions allows for a reliable 
accuracy estimate of the SFINCS flooding approach across different 
events (i.e., daily events and rare storms). The hydrodynamic forcing for 
each return period was then propagated with the numerical model 
XBeach. 

2.2. Model setup 

XBeach is a numerical model that simulates nearshore hydrody
namics by solving the depth-averaged nonlinear shallow-water equa
tions. XBeach was originally derived for sandy beaches but has been 
successfully advanced and applied to predict coral reef hydrodynamics 
accurately (Quataert et al., 2015; van Dongeren et al., 2013). XBeach has 

Fig. 1. Study sites and hydrodynamic models used for the comparison of the proposed SFINCS flood modeling approach (SFINCS-SSWE coupled with XBeach-1D) to 
XBeach-2D in Miami Beach, Florida, USA (A) and Kailua-Waimanalo, O’ahu, Hawai’i, USA (B). The black polygon represents the XBeach-2D model area. The gray 
lines are XBeach-1D transects coupled with SFINCS at the coupling line (red). The percentage of coral cover is represented in a pink gradient, the 5-m isobaths are 
displayed as white lines, and the SFINCS model bed elevation can be seen in a range of colors from 2 m depth to 5 m elevation. Miami Beach is characterized by 
relatively low coastal relief, and Kailua-Waimanalo by relatively high coastal relief. 

Table 1 
Design return-period (RP) storms used for both study sites and flooding methodologies to allow direct comparison between the models’ results. SWL is the still water 
level relative to the mean sea level, Hs is the spatially averaged significant wave height, and Tp is the spatially averaged peak wave period. The number in brackets 
indicates the corresponding standard deviation for each spatially averaged value.   

Miami Beach, FL. Kailua-Waimanalo, HI. 

RP SWL (m) Hs (m) Tp (s) SWL (m) Hs (m) Tp (s) 

Daily 0.28 [0.00] 2.25 [0.00] 11.25 [0.00] 0.68 [0.00] 1.33 [0.00] 12.66 [0.00] 
1 year 0.77 [0.00] 2.97 [0.00] 12.72 [0.00] 0.72 [0.00] 3.14 [0.00] 15.37 [0.00] 
10 years 1.11 [0.00] 3.65 [0.21] 13.68 [0.54] 0.74 [0.00] 3.98 [0.23] 16.75 [0.27] 
50 years 1.33 [0.00] 4.04 [0.28] 14.44 [0.53] 0.76 [0.00] 4.61 [0.34] 17.78 [0.47] 
100 years 1.51 [0.00] 4.18 [0.30] 14.78 [0.54] 0.81 [0.00] 4.94 [0.41] 18.36 [0.60] 
500 years 2.33 [0.00] 4.48 [0.35] 15.57 [0.59] 1.19 [0.00] 5.85 [0.65] 20.22 [1.08]  
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three modes including, ‘stationary,’ ‘surfbeat,’ and the ‘non-hydrostatic’ 
mode. The ‘surfbeat’ mode solves the short-wave energy variation on a 
group scale, whereas the ‘non-hydrostatic’ mode solves each individual 
short wave. The ‘surfbeat’ mode was chosen in this study because it 
saves computational time and has been proven to provide accurate 
flooding results in reef environments (Quataert et al., 2020). XBeach was 
run as cross-shore transects or one-dimensional models (XBeach-1D) and 
as a two-dimensional model (XBeach-2D). The main differences between 
a 1D and 2D application are 1) lack of spatial variability and 2) lack of 
directional spreading when running a 1D model. The XBeach-2D model 
results are used as a flooding benchmark based on their history of 
accurately simulating coastal hydrodynamics and flooding (Quataert 
et al., 2015; van Dongeren et al., 2013), and the XBeach-1D models were 
coupled with the new Deltares flood model SFINCS to provide incoming 
infragravity waves (0.004 - 0.04 Hz). The details of this coupling can be 
found in Section 2.3. 

SFINCS is a reduced-complexity physics-based model that dynami
cally calculates compound flooding in coastal systems (Leijnse et al., 
2021) with higher computational efficiency than other physics-based 
approaches. SFINCS works with rectangular grids where each grid cell 
is defined as an active cell (flooding is calculated), an inactive cell 
(flooding is not calculated to optimize the run, i.e., on very high 
elevation areas), or a boundary cell. In this study, grid cells intersecting 
with the coupling line were defined as boundary cells, grid cells offshore 
of the coupling line or with an elevation higher than 20 m were inactive, 
and all the rest of the grid cells were active. To model coastal flooding, 
SFINCS is forced with time series of both water levels (slowly varying) 
and infragravity waves (rapidly varying) as boundary condition points. 
These time series were calculated from water level time series extracted 
from each XBeach-1D model at the intersection with the coupling line. A 
boundary condition point was generated every 100 m along the coupling 
line. Each boundary condition grid cell was forced with a weighted 
average of the two closest boundary condition points. The advection 
term in the momentum equations is included, which is necessary to 
model shock flows such as dam breaks but also incident broken waves 
(SFINCS-SSWE; Leijnse et al., 2021). However, SFINCS does not include 
any stationary wave drivers and thus can not generate wave setup and 
infragravity waves. 

The topography and bathymetry data sets (Carignan et al., 2015; 
Love et al., 2019) used to build the models have a 10 m resolution. 
Cross-shore transects from Reguero et al. (2021) and Storlazzi et al. 
(2019) were used as the base for the XBeach-1D models. These transects 
were created perpendicular to the shore and are spaced every 100 m 
alongshore, extending from 30 m water depth to 20 m elevation. More 
details of the transect generation can be found in Reguero et al. (2021) 
and Storlazzi et al. (2019). The coral cover percentage and extent along 
these coastlines were taken from benthic habitat maps of the areas 
(Anderson, 2007; FFWCC-FWRI, 2016) and used to represent the inci
dent sea-swell wave friction coefficient (fw) and the infragravity wave 
and current friction coefficient (Manning n-coefficient) based on van 
Dongeren et al. (2013). For the inland area of SFINCS and XBeach-2D 
models, a Manning coefficient of 0.035 m1/3/s was used. 

The XBeach-2D models (grids, bed levels, and friction coefficients) 
were set up first, and their data were used as input to build XBeach-1D 
and SFINCS models to decrease possible differences due to interpolation. 
The XBeach-2D models have an alongshore grid resolution of 10 m and a 
cross-shore resolution varying from 10 m offshore to 2 m onshore. The 
XBeach-1D models have the exact cross-shore resolution as XBeach-2D, 
and the SFINCS models have a constant 2 m cross-shore and 10 m 
alongshore grid resolution. To accurately compare SFINCS and XBeach- 
2D results, the SFINCS grids offshore boundary starts where the XBeach- 
2D grid cross-shore resolution becomes constant (i.e., 2 m), giving a 
perfect match between models’ grid cells across the SFINCS model. An 
example of each model’s main setup file can be found in the Appendix. 

Each XBeach-1D transect was forced with a JONSWAP spectrum 
(Hasselmann et al., 1973) based on the closest wave climate point 

extracted from the SWAN models (see for the average values in Table 1). 
Therefore, two consecutive transects do not necessarily have the same 
forcing and thus vary alongshore. XBeach-2D was forced with the same 
spatially varying boundary conditions used on XBeach-1D. Waves were 
imposed shore normal on both models. Furthermore, the default direc
tional spreading of s = 10 was applied. The lack of alongshore variation 
and directional spreading on 1D models leads to an infragravity wave 
energy overprediction compared to 2D models (Guza and Feddersen, 
2012). Even if a directional spreading value is used in XBeach-1D 
models, it can only be modeled in XBeach-2D. Thus, to compensate for 
this overprediction, the effects of the directional spreading were 
included in XBeach-1D models through the model parameter wbcE
varreduce = 0.5, which reduces the short-wave group variance at the 
boundary by 50% on the XBeach-1D models. This parameter is a 
first-order estimate to reduce the infragravity wave energy on 
XBeach-1D models and was used for calibration purposes. To determine 
the needed reduction factor (wbcEvarreduce), a sensitivity analysis was 
carried out by comparing the resulting significant wave height between 
XBeach-1D and XBeach-2D models in several nearshore points. The 
highest skill compared to XBeach-2D results was achieved when using a 
wave energy reduction of 75% on the low relief area (less extreme wave 
climate and broader shelf) and 45% on the high relief area (more 
extreme wave climate and steeper shelf). The 50% was selected as a 
value with acceptable performance for both areas. For more information 
on this implementation, one is referred to McCall et al. (2023). The 
implications of this modeling choice are described in the Discussion. 

2.3. Flood modeling approaches 

The flooding approaches compared in this study (Fig. 2) used the 
same input data and boundary conditions and covered the same areas. 
The XBeach-2D approach used the boundary conditions directly to 
calculate flood maps (Fig. 2 upper panel – Approach 1). The SFINCS 
approach used the boundary conditions first in XBeach-1D, and its re
sults provided SFINCS’s boundary conditions (Fig. 2 bottom panel – 
Approach 2). This section discusses the coupling methodology and de
scribes the location where the total water level time series were 
extracted from XBeach-1D output and used as SFINCS inputs. 

The XBeach-1D total water level outputs were used to compute the 
two time series used as the boundary conditions to force SFINCS: a) the 
still water level and b) the swash or infragravity wave time series. The 
still water level time series was built starting from zero and slowly 
ramping up until reaching the mean water level at the XBeach-1D 
extraction location. The ramp-up was designed to avoid bathtub-type 
flooding at the start of the simulation due to the initial water level. 
The wave time series were computed using the incoming signal from the 
XBeach-1D outputs, which was calculated by splitting the total water 
level into incoming and outgoing based on Guza et al. (1984). The swash 
time series can be constructed in two different ways: 1) directly using the 
incoming water level time series from XBeach-1D as SFINCS’ input, or 2) 
by using a spectra-based generated time series. Moving forward, we 
refer to these coupling methods as ‘direct’ and ‘indirect,’ respectively. 
The direct method does not require further data processing after 
extracting the incoming signal from the total water level as computed by 
XBeach. However, it computes irregular phase differences between 
consecutive wave boundary locations due to the direct use of incoming 
signals from independent XBeach-1D transects. The indirect method 
requires more data processing because a random signal must be gener
ated based on the spectrum calculated from the XBeach-1D incoming 
water levels. The generation of a wave time series from a wave spectrum 
(i.e., the indirect method) is based on the implementation in XBeach 
(Roelvink et al., 2009; van Dongeren et al., 2003), where each wave 
component is defined by frequency, amplitude, and phase. The sum
mation of all components gives a time series of the surface elevation on 
the sea-swell timescale along the offshore boundary. The phases are 
selected once using the random phase method and applied to all 
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components alongshore. This ensures regular phase differences between 
consecutive wave boundary locations. When using the indirect method, 
the water levels and the spectra (before calculating the random signal) 
are smoothed in the longshore direction to overcome large spatial 
differences. 

Coupling (or nesting) XBeach-1D with SFINCS requires finding an 
optimal depth or coupling location, which can vary between different 
transects, storm scenarios, sea levels, and geographic areas. The closer to 
shore the coupling occurs, the more cross-shore evolution of wave- 
hydrodynamics is resolved within XBeach-1D, allowing a better char
acterization of shallow water conditions. However, if the coupling 
location ever becomes dry (water depth becomes zero), numerical in
stabilities can occur in SFINCS. Further complicating the coupling, local 
short-wave energy can result in more wave setup than accounted for at 
the extraction location. A setup correction can be applied to counteract 
the missed wave setup by increasing the SFINCS input still water level by 
the difference between the mean water level at the extraction point and 
the mean water level at a certain minimum water depth (0.1 – 0.5 m) 
landward of this point. 

2.4. Model to model comparison 

The skill predictability of the SFINCS flooding approach was assessed 
based on the differences in flood extents and water depths of flooding 
with XBeach-2D for every modeled scenario. 

We compared flood extents based on the Hit Rate, False Alarm, and 
Critical Success Index, following Wing et al. (2017). Hit Rate is the ratio 
between SFINCS flooded cells divided by total flooded cells on the 
benchmark model (XBeach-2D). This ratio reflects how much SFINCS 
underpredicts flooding compared to XBeach-2D and ranges from zero 
(model floods zero of the cells from the benchmark model) to one (both 
methodologies flood the same grid cells). The False Alarm ratio or False 
reflects the proportion of flooded cells in SFINCS that are not flooded in 
XBeach-2D, which is a metric of overestimation. The False value ranges 
from 0 (no false alarm) to 1 (all false alarms). The Critical Success Index 
is a metric that matches results in both modeling approaches by 
factoring in simultaneous underestimation and overestimation values 
and by ignoring cells that are not flooded in both models. The Success 
Index has values between 0 (no match between approaches) and 1 
(100% match). This study defines a threshold of 10 cm of water depth to 

define flooding. Thus, every grid cell with a bed elevation higher than 
0 m and a water depth equal to or above 10 cm is considered flooded. 

For the water depth differences, we used the statistics of mean 
average difference (MAD), root mean square difference (RMSD), and 
bias, calculated as: 

MAD =
1
n
∑n

i=1

⃒
⃒xi,SFINCS − xi,XBeach2D

⃒
⃒

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
xi,SFINCS − xi,XBeach2D

)2

√

bias =
1
n

∑n

i=1

(
xi,SFINCS − xi,XBeach2D

)

The water depth differences between models were calculated per 
grid cell and scenario. MAD indicates the mean difference between 
models, RMSD is a metric of the model’s relative accuracy, and bias 
reflects the tendency of the SFINCS approach to overestimate (positive 
value) or underestimate (negative value) the water depth of flooding. 

3. Results 

3.1. One-dimensional test: finding an optimal coupling methodology and 
extraction location 

To find the optimal coupling methodology and extraction location, 
we compared the runup computed by SFINCS to XBeach-1D. SFINCS 
runup results have a bias of underestimating the runup signal compared 
to XBeach-1D (Fig. 3) when forced directly or indirectly with XBeach-1D 
outputs. For a 100-yr return period storm and +1.0 m of SLR, the 
maximum runup is underestimated on average by 12 and 5%, respec
tively, for the direct and indirect coupling methods. When correcting the 
indirect method with a wave setup correction calculated at a water 
depth of 25 cm (SFINCS indirect with setup correction method at 25 cm), 
it is possible to offset this bias and get a better reproduction of the whole 
wave runup signal at the cost of overpredicting, on average, 4% of the 
maximum runup. However, when the setup correction is calculated in 
shallower waters (SFINCS indirect with setup correction method at 10 
cm), the overprediction can increase across the different probabilities of 

Fig. 2. Diagram detailing the steps of the different flooding approaches compared in this study to assess coastal flooding. The benchmark approach (upper panel) 
uses the computationally expensive XBeach-2D model. The approach introduced in this study (lower panel) couples the less computationally expensive XBeach-1D 
model with the super-fast SFINCS flood model. The methodology section describes the coupling of the models in more detail. 
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runup elevations and shift the runup peak to higher runup elevations. 
Thus, model results are sensitive to the depth at which the setup 
correction is calculated, so this depth must be appropriately analyzed 
and calibrated. For the rest of the analysis, we will use the setup 

correction calculated at a water depth of 25 cm due to its better repre
sentation of the entire runup series, including the peak runup. 

SFINCS, directly or indirectly coupled with XBeach-1D, has a clear 
pattern of increasing skill the closer to shore XBeach-1D outputs are 

Fig. 3. Cumulative Distribution Function (CDF – A&B) and Probability Density Function (PDF – C&D) of the runup signal for a representative transect of the low 
relief area (A&C) and the high relief area (B&D) for a 100-yr return period storm and +1.0 m of sea-level rise. The colors represent different methods for coupling 
XBeach-1D with SFINCS. XBeach-1D outputs can be used directly as SFINCS input (SFINCS direct), or they can be processed to calculate a spectrum-based time series 
for SFINCS input (SFINCS indirect), which has the option to add a setup correction to account for higher water levels shoreward of the coupling line (SFINCS indirect 
with setup correction at a water depth of 25 cm and 10 cm). For both areas, the SFINCS indirect method with setup correction calculated at a water depth of 25 cm 
gives the closest result to the XBeach-1D model runup signal. 

Fig. 4. Runup signal scatter index (SCI) for different coupling methods and extraction locations across the reef for a representative transect of the low relief area 
(A&C) and the high relief area (B&D). Upper panels (A&B): Scatter Index (SCI) of the SFINCS runup signal compared to XBeach-1D runup signal. SCI is computed for 
different coupling methods, extraction locations, and modeled scenarios shown in Table 1. Solid lines are the median estimate, and shadings are the 95% confidence 
interval (CI) range. Different colors are the three different methods for coupling XBeach-1D with SFINCS, as shown in Fig. 3. Lower panels (C&D): transect bed level 
and mean water level. For both areas, the SFINCS indirect with setup correction coupling method shows a better performance, with the scatter index reaching a stable 
value lower than 20% for any extraction location shallower than 5 m depth. 
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extracted (Fig. 4). However, it is possible to extract XBeach-1D deeper in 
the surf zone and improve the reproductive capabilities of SFINCS by 
including a setup correction. For example, when including a wave setup 
correction calculated at a water depth of 25 cm, XBeach-1D results can 
be extracted at a depth of ~5 m, and the model is able to produce results 
with an SCI of less than 20% (95% confidence). 

The indirect coupling method with setup correction was used to 
validate the SFINCS flooding approach (XBeach-1D results coupled with 
SFINCS for 2D flood modeling). The indirect method was selected 
instead of the direct because it generates a consistent alongshore 

phasing, which is needed for a 2D application. However, this is a 
simplification since one would expect phase locking (i.e., a specific ratio 
between certain frequency components) and a slowly varying along
shore variation of the phase instead of a constant. Secondly, due to its 
better wave runup reproduction (Fig. 3), we included a setup correction 
computed at a water depth of 25 cm. Furthermore, the extraction 
location is defined at the 2 m isobath, which falls in this study’s range of 
high accuracy and has been used in previous efforts coupling wave 
models with SFINCS (Leijnse et al., 2021). 

Fig. 5. Comparison of the low relief area flood maps computed with both flooding approaches. Maximum water level elevation computed with XBeach-2D (A), 
SFINCS forced by XBeach-1D (B), and the difference between both approaches (C). The shown modeled scenario is one of a 100-year return period storm and current 
sea level. Overall, both flooding approaches generate similar flooding patterns, but the SFINCS approach overestimates flooded areas and water levels. Satellite image 
extracted from Microsoft Bing Maps. 
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3.2. Two-dimensional case study: validating the SFINCS flood modeling 
approach 

On the low relief area, the maximum water levels computed with 
XBeach-2D (Fig. 5A) and the proposed SFINCS flooding approach 
(Fig. 5B) result in similar flooding patterns, except on the lower part of 
the map where SFINCS floods a larger area. Water level differences 
between the models (Fig. 5C) are present across the flood plain. In 
particular, the proposed SFINCS workflow generally overestimates the 
nearshore water level. This overestimation is related to the wave setup 
correction included at the boundary. Overall, the proposed SFINCS 
method overestimates the surface level and associated flooding with a 
mean value of 12 cm, which is ~20% of the average flood depth of 
SFINCS and XBeach-2D. 

Due to its steeper topography, a more extreme scenario is shown for 
the high relief area to allow more flooding (Fig. 6). The SFINCS 
approach results in similar flood extents to XBeach-2D. However, water 
level differences are present across the area. Again, there is an over
estimation of the nearshore water level (due to the added setup 
correction), and regions of both flooding underestimation (red colors 
Fig. 6C) and overestimation (blue colors Fig. 6C) when using the SFINCS 
approach. Inland waterways and adjacent areas had the largest flood 
depth and extent underestimations (Fig. 6C). On average, the water 
levels are overestimated by 3 cm when using SFINCS instead of XBeach- 
2D, which is ~8% of the average flood depth. 

When comparing the flooded area (i.e., flood extent) for all the 
modeled scenarios, the SFINCS approach underpredicts the flooded area 
for the less extreme scenarios and overpredicts as the scenarios become 

more extreme (upper panels Fig. 7). SFINCS overpredicts the flood depth 
for all the modeled scenarios (lower panels Fig. 7). The models’ differ
ences tend to increase with larger waves and storm surges (higher storm 
return periods) for each SLR scenario. This pattern is more noticeable for 
the high relief area, where there is a better agreement between models 
for less extreme and more frequent storms than for more extreme and 
less frequent ones. The similarity between the models for more extreme 
scenarios on the low relief area is caused by near total flooding. 

The differences between flood depth and extent between the two 
flooding approaches are larger for the low relief area than for the high 
relief area. For the low relief area, SFINCS overpredicts, on average, 20% 
of the flood extent, with a maximum overestimation of 72% and an 
underestimation of 30%. Meanwhile, in the high relief area, SFINCS, on 
average, overpredicts 5% of the flood extent, with a maximum over
estimation of 26% and an underestimation of 7%. The water depth of 
flooding is overestimated between 2 and 68% (32% on average) in the 
low relief area and between 8 and 39% (20% on average) in the high 
relief area. 

SFINCS performance compared to the benchmark model XBeach-2D 
has different statistical values for the low relief area and high relief area 
(Fig. 8). Overall, in the low relief area, there are larger flood depth 
differences between models, with larger standard deviations than the 
high relief area but fewer outliers. The high relief area has around 8% 
higher Success Index for flood extent than the low relief area even 
though the low relief area has a higher Hit Rate (upper panels Fig. 8). 
This can be explained primarily due to the high relief area having lower 
False values than the low relief area. Thus, an overall higher underes
timation (lower Hit Rate) is compensated by a lower overestimation 

Fig. 6. Comparison of the high relief area flood maps computed with both flooding approaches. Maximum water level elevation computed with XBeach-2D (A), 
SFINCS forced by XBeach-1D (B), and the difference between both approaches (C). The shown modeled scenario is one of a 100-year return period storm and 1 m sea- 
level rise. Both flooding approaches generate similar flooding patterns, with an overall overestimation of water levels by the SFINCS approach, except for some inland 
waterways where XBeach-2D projects higher water levels. Satellite image extracted from Microsoft Bing Maps. 
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(lower False). Overall, the SFINCS approach produces flood extents with 
an accurate performance across scenarios with a low median False be
tween 12–18%, high median Hit Rates between 90–100%, and a high 
median Success between 78–85%. 

Regarding the water depth differences (lower panels Fig. 8), the 
median MAD, RMSD, and bias are larger for the low relief area than for 
the high relief area. Both areas present bias values equal to or greater 
than zero, indicating that the SFINCS flooding method tends to over
predict the flood depth. This overprediction is greater in the low relief 
area because the water level differences between models are larger at 
the offshore boundary than in the high relief area, which leads to a lower 
energy dissipation due to friction when using SFINCS. 

A transect analysis was conducted to understand what is driving the 
flooding overestimation when using the SFINCS approach. Even when 
reducing the short-wave group variance by 50% (XBeach-1D model 
parameter wbcEvarreduce = 0.5), XBeach-1D water levels and wave 
heights are larger than XBeach-2D (Fig. 9). As a result, SFINCS is being 
forced with larger boundary conditions than XBeach-2D. Close to the 
extraction point, SFINCS water levels are higher than XBeach-1D due to 
the added setup correction. As SFINCS does not resolve wave dynamics, 
the maximum water level decreases inland due to friction, whereas 
XBeach-1D and XBeach-2D can still add setup after the extraction 
location due to the presence of short waves (lower panel Fig. 9). Thus, 

differences between SFINCS and XBeach-2D are higher closer to the 
offshore boundary and decrease inland. 

4. Discussion 

We compared the proposed SFINCS flooding approach to XBeach-2D 
on two contrasting coral reef-lined coastal geomorphologies: a low relief 
area and a high relief area. This was done to give a range of results inside 
which most coastlines could be characterized. The proposed flooding 
approach prioritizes cross-shore processes (e.g., wave shoaling, 
breaking, and infragravity wave generation) for solving nearshore wave 
dynamics while neglecting along-shore processes such as diffraction and 
refraction. Thus, the SFINCS approach is more suitable for environments 
where cross-shore wave dynamics are the main flooding driver, and it 
may be subject to higher uncertainty in environments where along-shore 
processes are dominant (e.g., mild beach coastlines, harbors, headlands, 
and deep embayments). 

Overall, the results of this study indicate that the approach intro
duced in this paper calculates flooding similarly to XBeach-2D (Fig. 8). 
However, there are differences between the models’ outputs, resulting in 
both flooding overprediction and underprediction. These differences can 
be explained by several simplifications applied to the SFINCS approach 
to make it computationally efficient. The main simplification is using 1D 

Fig. 7. Comparison of flooding computed with both approaches for all the modeled scenarios in the low relief area (A&C) and the high relief area (B&D). Upper 
panels (A&B): percentage of the modeled spatial area that is flooded or flood extent. Lower panels (C&D): average water depth of the flooded area. The modeled 
scenarios include six storm return periods (different markers) across three sea-level rise scenarios (different colors). Markers on the black dash-dotted line (SFINCS =
XBeach-2D) mean both models produce the same flooding; above means SFINCS overestimates flooding, and below underestimates flooding compared to XBeach-2D. 
The dashed lines denote 50% of SFINCS underestimation (light gray) and overestimation (dark gray). Generally, SFINCS overestimates flooding compared to the 
benchmark XBeach-2D model, with most overestimations being less than 50%. 
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models that assume alongshore-uniform hydrodynamics and do not 
include wave directional spreading. Therefore, a runup overprediction is 
expected due to differences between momentum balances between these 

two types of modeling. To overcome this difference in the runup and 
infragravity wave generation, we applied a heuristic reduction on 
infragravity wave generation at the XBeach boundary with the model 
parameter wbcEvarreduce. We compared wave height values between 
XBeach-1D and XBeach-2D models between 2 and 0 m isobaths to 
determine an optimal value to use. However, we made this comparison 
for the fourth largest storm return periods and did not include SLR 
scenarios in our analysis. A better assessment would be to compare re
sults for the lowest and highest return period storms and SLR. The 
comparison should consist of both nearshore wave heights and mean 
water levels for a more comprehensive calibration of this model 
parameter value. 

Another main simplification is applying a setup correction to 
compensate for using a simplified physics model such as SFINCS. As this 
model does not solve radiation stress, these wave dynamics must be 
solved within XBeach-1D and offshore of the coupling line (i.e., 2 m 
isobath). However, as we study a wide range of storm and SLR condi
tions, wave breaking can still occur onshore of the coupling line, which 
generates a wave setup that can lead to a higher mean water level than 
the one calculated at the coupling line. To compensate for this 
mismatch, a setup correction, calculated at a water depth of 25 cm, was 
added to the SFINCS boundary conditions to reproduce a similar runup 
signal to the XBeach-1D transects (Fig. 3). The setup correction 
approach has the caveat of having, on average, a maximum runup 
overestimation of 4% (Fig. 3) and a SCI in the runup signal of 20% 
(Fig. 4), which can lead to some flooding overprediction in the nearshore 
(Figs. 5 and 6). However, it can also help compensate for some under
prediction in flooding from the SFINCS approach, mainly occurring on 
inland waterways and surrounding areas (Fig. 6). This underprediction 
happens because the remaining high-frequency sea-swell waves close to 
shore (lower panel Fig. 9) continue propagating inland, as demonstrated 
when using the more complete XBeach-2D. However, these high- 
frequency waves are not accounted for in SFINCS boundary condi
tions. Therefore, SFINCS tends to underestimate flooding in inland wa
terways when high-frequency waves have not yet been largely 
dissipated. 

To better understand uncertainties arising from our proposed 

Fig. 8. Flood extent and water depth differences between both modeled 
flooding approaches for all the simulated scenarios on the low relief area (in 
blue) and the high relief area (in green). Upper panel: statistical values for flood 
extent differences (Hit Rate, False, and Success). Lower panel: statistical values 
for water depth differences (MAD, RMSD, and Bias). Overall, the SFINCS 
method results show accurate flooding compared to XBeach-2D, with a median 
Success of around 80% and a median absolute water depth difference of 10 cm 
or less in both areas. 

Fig. 9. Water level and wave height comparison between all the hydrodynamics models used in this study on a high relief area representative transect. The scenario 
shown is a 500-year return period storm and current sea level. Upper panel: maximum water levels (zsmax) and mean water levels (zsmean). Lower panel: short wave 
significant wave height (HSHF) and infragravity wave significant wave height (HSLF). Water levels and wave heights are higher in XBeach-1D and SFINCS models than 
in XBeach-2D. 
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approach, we also forced SFINCS with water level time series extracted 
from XBeach-2D at the coupling line (i.e., 2 m isobath). We used the 
indirect method for the same scenarios modeled in Figs. 5 and 6 and did 
not apply a setup correction. We found that when forced with XBeach- 
2D outputs, SFINCS tends to underpredict flooding (not shown). The 
water depth of flooding was underpredicted on average by 9 cm in the 
low relief area and 5 cm in the high relief area. When forced with data 
extracted at the 1 m isobath, the underestimation decreases slightly 
(~1%) in both areas. We hypothesize that this underestimation is driven 
by missing the water level increase due to the setup generated by waves 
breaking onshore of the coupling line. These tests restate the importance 
of extracting the data where relevant hydrodynamics have been solved. 
However, as previously mentioned, this optimal extraction location 
varies depending on the boundary conditions and the bathymetry 
(Fig. 4) and is thus unknown a priori. Using the proposed methodology 
that relies on 1D models, these effects can be partially counterbalanced 
with the setup correction. 

Flooding differences between the modeling approaches can be 
reduced when more numerical parameters are calibrated per site. For 
example, in regions with a complex relief and different infragravity 
wave contributions to flooding, the correction of the incoming infra
gravity wave generation (model parameter wbcEvarreduce) can be 
adjusted in XBeach-1D models to reproduce the generation of infra
gravity waves more accurately. Particularly in our study, we found that 
flooding differences between SFINCS and XBeach-2D are higher in the 
low relief area than in the high relief area. The latter can be partially 
explained because the low relief area needs at least ~25% more infra
gravity wave generation reduction than the 50% we accounted for in our 
study. For example, when reducing the infragravity wave generation by 
75% in the low relief area for the same scenario as Fig. 5, the average 
water depth of flooding difference between models was reduced by 25% 
compared to when using 50% of wave energy reduction. The water level 
differences in the nearshore decreased, and the flood extent became 
more similar (not shown), especially in the lower part of Fig. 5, where 
more of the overestimated flood extent occurred. On the other hand, 
when applying a 75% infragravity wave generation reduction in the 
high relief area for the same scenario as Fig. 6, the average water depth 
of flooding difference decreased by 66% compared to when using a 50% 
wave energy reduction. However, larger areas of flooding underesti
mation could be found close to the coastline and inland waterways (not 
shown). Furthermore, the flood extent and water depth of flooding were 
overestimated when the XBeach-1D infragravity wave generation was 
not reduced. The overestimation of the water depth of flooding 
increased on average by 17% in the low relief area and 73% in the high 
relief area. These differences highlighted the relevance of calibrating 
these models per specific site. For new projects, it is advised to carry out 
a site calibration by selecting a short representative coast stretch and 
compare the proposed SFINCS flooding method with a fully resolving 2D 
model (e.g., XBeach-2D) for a range of wbcEvarreduce values and 
boundary conditions. 

Additionally, the SFINCS flooding accuracy can be improved by 
adjusting the minimum depth defined to account for the setup correc
tion. For example, the SFINCS approach in the low relief area gave 
slightly more accurate results when the setup correction was calculated 
based on 50 cm water depth instead of the 25 cm obtained for the high 
relief area (not shown). The selected water depth to account for extra 
setup can increase or decrease the maximum runup height and shift the 
runup peak compared to XBeach-1D results (Fig. 3). Thus, for future 
projects, it is advised to carry out a site calibration by selecting repre
sentative transects and developing an analysis similar to Fig. 3. It is 
recommended to calibrate the model for the endmembers of the 1D 
models wave climate and water level boundary conditions. An extra step 
for calibration would be to calibrate SFINCS bottom friction values by 
comparing results between SFINCS forced with XBeach-1D and XBeach- 
2D outputs. 

Even though additional steps are needed to couple SFINCS with 

XBeach-1D outputs (Fig. 2), the computational cost is on the order of 
100 times faster than when using XBeach-2D. For one scenario, XBeach- 
2D takes ~11 days to run in parallel using the whole capacity of a 32- 
logical processor computer with 48 GB RAM, and the SFINCS 
approach takes ~0.1 days (~1–1.5 h) when running ~30 XBeach-1D in 
series and SFINCS using total capacity. This efficiency is based on 1) the 
efficiency of SFINCS in solving overland flooding and 2) only resolving 
wave hydrodynamics on transects. The savings in computational cost 
make the proposed flooding approach especially suitable for large-scale 
areas and regional models where flooding needs to account for wave- 
driven processes, and several XBeach-2D models would be required to 
cover the project area. XBeach-2D would be more applicable for 
modeling small-scale projects requiring higher accuracy. Although the 
initial effort needed to build the SFINCS model can be time-consuming, 
primarily due to the manual editing of the coupling line, this effort only 
needs to be done once when the extraction location is selected shallower 
than 5 m of water depth and the setup correction is included in the 
boundary conditions (Fig. 4). In that case, the same SFINCS setup can be 
used for a wide range of wave climate and sea level rise scenarios, and 
only the SFINCS boundary conditions need to be adjusted per scenario. 
Therefore, the proposed flooding approach using SFINCS can save 
considerable computational expense, allowing the simulation of more 
scenarios or larger geographical domains. 

Future steps should focus on continued model validation. First, non- 
hydrostatic models (that resolve short and infragravity waves) have 
been found to better represent more frequent storms compared to hy
drostatic models (Quataert et al., 2020). These models could help to 
better represent flood extents caused by low return period storms and 
low SLR scenarios, which were generally underestimated in our study 
(Fig. 7). Thus, evaluating discrepancies between models is crucial to 
understanding their accuracy. We envision exploring the range of 
boundary conditions under which the SFINCS method may benefit from 
using non-hydrostatic models as a source of boundary conditions. Sec
ond, validating the proposed flooding approach with observations in 
addition to wave models is essential to assess its uncertainties. Such 
validations will also help calibrate and improve the SFINCS approach, 
which could be used for other applications such as global modeling, 
different ecosystems modeling, and early warning systems. 

5. Conclusions 

In this study, we introduced and validated, against XBeach-2D, an 
improved physics-based and computationally efficient approach, 
SFINCS coupled with XBeach-1D, to assess regional wave-driven flood
ing on reef-lined coastlines. Different coupling methodologies were 
tested, and it was found that coupling SFINCS with XBeach-1D using an 
indirect coupling method (i.e., spectra-based with constant phase dif
ference) and adding a setup correction (‘SFINCS indirect with setup 
correction’) gives an accurate runup reproduction compared to XBeach- 
1D results. When using this method and coupling the models at a water 
depth of less than 5 m, the scatter index for wave runup is contained 
under 20% across modeled wave climate scenarios and geographies. 

The proposed flooding approach yields a similar flooding extent 
compared to XBeach-2D, flooding on average 92% of the same cells (Hit 
Rate). However, weaker, high-frequency storm flood extents tend to be 
underpredicted (maximum of 7% for the high relief area and 30% for the 
low relief area). In contrast, stronger, low-frequency storm flood extents 
are overpredicted (maximum of 26% for the high relief area and 70% for 
the low relief area). The predicted water depth of flooding generally 
exhibits an overestimation across scenarios, with a positive bias of 7 cm, 
an MAE of 9 cm, and an RMSD of 15 cm. 

The proposed method offers a 100 times the computational speed-up 
compared to XBeach-2D. This makes it a suitable choice for large-scale 
flood modeling involving numerous scenarios, particularly in regions 
where wave-driven flooding is the primary concern due to the model’s 
emphasis on cross-shore wave processes. 
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Appendix 

XBeach-1D (params.txt file) 

%%% Flow boundary condition parameters front = abs_1d left =
wall right = wall back = abs_1d 

%%% Flow parameters bedfriction = manning bedfricfile = bed
fricfile.txt 

%%% General avalanching = 0 fwfile = fwfile.txt rotate = 0 wbcE
varreduce = 0.500000 

%%% Grid parameters depfile = bed.dep posdwn = − 1 nx = 1802 ny 
= 0 vardx = 1 dy = 0 xfile = x.grd yfile = y.grd xori = 0 yori = 0 the
tamin = 0 thetamax = 360 dtheta = 360 

%%% Model time tstop = 23,400 
%%% Physical processes sedtrans = 0 morphology = 0 
%%% Tide boundary conditions zs0file = tide.txt tideloc = 1 
%%% Wave boundary condition parameters instat = jons 
%%% Wave-spectrum boundary condition parameters bcfile =

jonswap.txt rt = 25,560 
%%% Output variables outputformat = netcdf rugdepth = 0.020000 

tintm = 7200 tintp = 0.500000 tintg = 3600 tstart = 100 nglobalvar = 7 
H zs zb 
E urms taubx tauby nmeanvar = 6 
H zs zb urms taubx tauby npointvar = 5 zb zs u 

H v npoints = 3 
631,036.07 2370,336.87 
630,993.39 2370,350.00 
630,962.09 2370,359.63 nrugauge = 1 
630,948.7066 2370,363.7511 

SFINCS (sfincs.inp file) 

mmax = 1320 nmax = 2241 dx = 10 dy = 2 x0 = 637,638.4588 y0 =
2358,950.8301 rotation = 120 latitude = 0 tref = 20,100,101 000,000 
tstart = 20,100,101 000,000 tstop = 20,100,101 074,400 tspinup = 60 
dtmapout = 3600 dthisout = 1 dtmaxout = 3600 dtwnd = 3600 alpha =
0.5 theta = 0.8 huthresh = 0.005 manning = 0.04 manning_land =
0.035 manning_sea = 0.02 rgh_lev_land = 0 zsini = 0 qinf = 0 rhoa =
1.25 rhow = 1024 dtmax = 999 maxlev = 999 bndtype = 1 advection =
2 baro = 0 pavbnd = 0 gapres = 101,200 advlim = 5 stopdepth = 100 
depfile = sfincs.dep mskfile = sfincs.msk indexfile = sfincs.ind bndfile =
sfincs.bnd obsfile = sfincs.obs inputformat = bin outputformat = net 
cdnrb = 3 cdwnd = 0 28 50 cdval = 0.001 0.0025 0.0015 geomskfile =
sfincs.gms dtout = 3600 min_lev_hmax = − 10 netbndbzsbzifile=
sfincs_netbndbzsbzifile.nc bzifile = dummy 

XBeach-2D (params.txt file) 

%%% Flow parameters bedfriction = manning bedfricfile = bed
fricfile.txt 

%%% General dtheta_s = 10 fwfile = fwfile.txt nspectrumloc = 132 
rotate = 0 single_dir = 1 vegetation = 0 wavemodel = surfbeat 

%%% Grid parameters depfile = bed.dep posdwn = − 1 nx = 2826 ny 
= 1319 alfa = 0 vardx = 1 xfile = x.grd yfile = y.grd xori = 0 yori =
0 thetamin = 0 thetamax = 360 dtheta = 360 thetanaut = 1 

%%% Model time tstop = 27,480 
%%% Physical processes sedtrans = 0 morphology = 0 
%%% Tide boundary conditions zs0file = tide.txt tideloc = 1 
%%% Wave boundary condition parameters instat = jons 
%%% Wave numerics parameters maxiter = 1000 
%%% Wave-spectrum boundary condition parameters bcfile =

loclist.txt rt = 27,481 
%%% Output variables outputformat = netcdf tintm = 3600 tintg =

1800 nglobalvar = 5 zs zb u v H 
nmeanvar = 5 zs zb u v H 
npointvar = 5 zs zb u v 

References 

Anderson, M., 2007. Benthic Habitats of the Main Eight Hawaiian Islands Derived from 
IKONOS and Quick Bird Satellite Imagery, 2004–2006. Analytical Laboratories of 
Hawaii. https://products.coastalscience.noaa.gov/collections/benthic/e97hawa 
ii/data2007.aspx. 

Armaroli, C., Duo, E., Viavattene, C., 2019. From hazard to consequences: evaluation of 
direct and indirect impacts of flooding along the Emilia-Romagna Coastline, Italy. 
Front. Earth Sci. 7 (August), 1–20. https://doi.org/10.3389/feart.2019.00203. 

Barnard, P.L., Erikson, L.H., Foxgrover, A.C., Hart, J.A.F., Limber, P., O’Neill, A.C., van 
Ormondt, M., Vitousek, S., Wood, N., Hayden, M.K., Jones, J.M., 2019. Dynamic 
flood modeling essential to assess the coastal impacts of climate change. Sci. Rep. 9 
(1), 1–13. https://doi.org/10.1038/s41598-019-40742-z. 

Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J., Wicks, J., Ali Mohamed 
Hassan, M.A., 2005. Simplified two-dimensional numerical modelling of coastal 
flooding and example applications. Coastal Eng. 52 (9), 793–810. https://doi.org/ 
10.1016/j.coastaleng.2005.06.001. 

Betancourt, J., Bachoc, F., Klein, T., Idier, D., Pedreros, R., Rohmer, J., 2020. Gaussian 
process metamodeling of functional-input code for coastal flood hazard assessment. 
Reliab. Eng. Syst. Saf. 198, 106870 https://doi.org/10.1016/j.ress.2020.106870. 
November 2019.  

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal 
regions 1. Model description and validation. J. Geophys. Res. Oceans 104 (C4), 
7649–7666. https://doi.org/10.1029/98JC02622. 

Camus, P., Méndez, F.J., Losada, I.J., Menéndez, M., Espejo, A., Pérez, J., 2014. 
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