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ARTICLE

NAIP/NLRC4 inflammasome activation in MRP8+

cells is sufficient to cause systemic inflammatory
disease
Randilea D. Nichols1, Jakob von Moltke1,5 & Russell E. Vance 1,2,3,4

Inflammasomes are cytosolic multiprotein complexes that initiate protective immunity in

response to infection, and can also drive auto-inflammatory diseases, but the cell types and

signalling pathways that cause these diseases remain poorly understood. Inflammasomes are

broadly expressed in haematopoietic and non-haematopoietic cells and can trigger numerous

downstream responses including production of IL-1β, IL-18, eicosanoids and pyroptotic cell

death. Here we show a mouse model with endogenous NLRC4 inflammasome activation in

Lysozyme2+ cells (monocytes, macrophages and neutrophils) in vivo exhibits a severe sys-

temic inflammatory disease, reminiscent of human patients that carry mutant auto-active

NLRC4 alleles. Interestingly, specific NLRC4 activation in Mrp8+ cells (primarily neutrophil

lineage) is sufficient to cause severe inflammatory disease. Disease is ameliorated on an

Asc−/− background, and can be suppressed by injections of anti-IL-1 receptor antibody. Our

results provide insight into the mechanisms by which NLRC4 inflammasome activation

mediates auto-inflammatory disease in vivo.
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The innate immune system detects infection using pattern
recognition receptors, such as Toll-like receptors (TLR)
and cytosolic nucleotide-binding domain, leucine-rich

repeat containing proteins (NLR)1, 2. Upon pathogen recogni-
tion, certain NLRs form cytosolic multiprotein complexes called
inflammasomes that function to activate a downstream protease,
Caspase-1 (CASP1)3, 4. CASP1 initiates inflammation, at least in
part, by processing interleukin-1β (IL-1β) and IL-18 into their
secreted and active forms. Active CASP1 also cleaves and acti-
vates a pore-forming protein called Gasdermin D5, 6, thereby
inducing cytokine release and a lytic cell death termed pyr-
optosis7, 8. It has been proposed that pyroptotic death is a ‘pro-
inflammatory’ form of cell death that is associated with the release
of inflammatory mediators9. However, the intrinsic inflammatory
effects of pyroptosis have been difficult to dissociate from the
concurrent release of pro-inflammatory cytokines, such as IL-1β
and IL-18.

There are several different inflammasomes, each of which is
responsive to unique ligands or stimuli3, 4. Activation of the NLR
family, CARD domain-containing protein 4 (NLRC4) inflam-
masome requires NLR family, apoptosis inhibitory proteins
(NAIP), which bind specific bacterial ligands and co-assemble
with NLRC410, 11. Studies have established that
NAIP5 specifically detects the C-terminus of flagellin12. Impor-
tantly, this region of flagellin is not sufficient to activate TLR5,
another innate immune flagellin sensor12. Though the CARD
domain of NLRC4 can interact directly with CASP1, NLRC4 also
recruits CASP1 via the adaptor protein, apoptosis-associated
speck-like protein containing a CARD (ASC). Asc−/− macro-
phages have decreased IL-1β and IL-18 processing but still initiate
NLRC4-induced pyroptosis13, 14.

The NAIP/NLRC4 inflammasomes presumably evolved to
initiate protective immune responses during bacterial infection.
Indeed, NAIP/NLRC4 deficiency results in variable degrees of
susceptibility to a wide range of bacteria15, 16. Conversely, inap-
propriate NLRC4 inflammasome activation can result in pathol-
ogy, or even death, in both mice and humans17–23. However, the
mechanisms by which chronic NLRC4 activation causes pathol-
ogy remain poorly understood. For example, it is not clear
whether IL-1β, IL-18 and/or pyroptotic cell death drive NLRC4-
induced disease in vivo. In addition, given that NLRC4 is func-
tional in multiple cell types, including haematopoietic and
intestinal epithelial cells, it remains unclear through which cell
types NLRC4 activation can drive pathology. A major limitation
has been the lack of mouse models that recapitulate NLRC4-
driven auto-inflammatory disease via cell-type specific activation
of endogenous NLRC4. Kitamura et al.19 reported that transgenic
mice expressing a constitutively active NLRC4 variant (H443P)
develop an auto-inflammatory disease. However, since these
transgenic mice overexpress a mutant NLRC4 allele under the
control of a non-native (invariant chain) promoter, it is not clear
whether persistent activation of endogenous NLRC4 might also
produce disease. In addition, it remains unclear in which cell
types NLRC4 activation will drive disease.

Prior in vivo studies have primarily used bacterial infection to
activate the endogenous NAIP/NLRC4 inflammasome (reviewed
in refs. 15, 16). Since bacterial infections typically activate
numerous innate immune pathways, including TLRs, it has been
difficult to separate the effects of NAIP/NLRC4 activation from
the downstream pro-inflammatory effects of TLR activation.
Consequently, it is not clear whether activation of endogenous
wild-type NLRC4 alone would be sufficient to drive inflammation
in vivo. For example, induction of IL-1β is generally thought to
require priming signals to induce expression of pro-IL-1β prior to
its processing by CASP1 downstream of NAIP/NLRC424–26.
Thus, NLRC4 activation in the absence of priming might be

insufficient to induce inflammation. As one approach to study the
priming-independent effects of NAIP/NLRC4 activation in vivo,
we and others have selectively activated NLRC4 using ‘FlaTox’, a
recombinant flagellin fusion protein that enters cells and activates
NLRC411, 18, 27, 28. Experiments with FlaTox demonstrated that
NAIP/NLRC4 activation in vivo can cause pathology in the
absence of ‘priming’ or inflammasome-induced IL-1β/-1818.
However, FlaTox has acute lethal effects that make it difficult to
model the chronic effects of inappropriate NLRC4 activation,
such as those observed in patients with NLRC4 gain-of-function
mutations.

We previously found that expression of the C-terminus of
bacterial flagellin from a mammalian promoter is sufficient to
activate the endogenous NAIP/NLRC4 inflammasome in mac-
rophages in vitro12. Here we report the generation of a genetically
engineered mouse that inducibly expresses the
C-terminal 166 amino acids of Legionella pneumophila flagellin,
fused to ovalbumin. An advantage of these mice is that they
permit the selective activation of the endogenous NAIP/NLRC4
inflammasome without the concomitant provision of additional
exogenous ‘priming’ signals. Mice in which endogenous NLRC4
is specifically and selectively activated in Lysozyme2+ cells
(monocytes, macrophages, neutrophils and select dendritic cell
populations29, 30) have a marked inflammatory disease char-
acterised by systemic neutrophilia, weight loss, and hind limb
joint swelling. The disease is NLRC4-dependent and is amelio-
rated on the Asc−/− background, suggesting a dominant function
for ASC-dependent cytokines and a minimal function for pyr-
optosis. Consistent with this interpretation, neutrophil levels and
disease symptoms decrease after blockade of the IL-1 receptor.
Interestingly, severe disease, including joint swelling, is recapi-
tulated by NLRC4 activation selectively in neutrophils and a small
subset of monocytes (using MRP8-Cre29, 31, 32), but the same
severe disease symptoms are not induced upon selective inflam-
masome activation in dendritic cells, tissue macrophages and a
small subset of monocytes (using CD11c-Cre29, 33). Disease that
arises after MRP8-Cre-induced NLRC4 activation is also ame-
liorated by anti-IL-1 receptor blockade. These results suggest that
neutrophil-dependent IL-1 is a major driver of inflammasome-
dependent auto-inflammatory disease in vivo.

Results
Genetic system for cell-specific inflammasome activation. To
address the physiological consequences of chronic cell type spe-
cific NAIP/NLRC4 activation in vivo, we generated a genetically
targeted ‘iOvaFla’ mouse that expresses, under Cre-inducible
control, a gene encoding chicken ovalbumin (Ova) (lacking its
signal sequence) fused to the C-terminal 166 amino acids of
Legionella pneumophila flagellin (Fla). Ova was included to per-
mit the eventual tracking of adaptive immune responses in these
mice, but this was not part of the present study. The gene
encoding the iOvaFla fusion protein was inserted into the ubi-
quitously expressed Rosa26 locus downstream of a loxP-flanked
transcriptional STOP cassette34 to prevent iOvaFla expression
until Cre recombinase is expressed (Fig. 1a). An IRES-GFP
reporter was also inserted downstream of the iOvaFla gene fusion
to allow us to visualise cells expressing iOvaFla. These mice were
created on a C57BL/6J background, competent for NAIP/NLRC4
components, unless otherwise indicated in figures.

To test for proper production of the iOvaFla-IRES-GFP
construct, we crossed the iOvaFla mice onto a Nlrc4−/−

background (to prevent any NLRC4-dependent cell death) and
to Lysozyme2-Cre (also called LysM-Cre) transgenic mice (to
induce iOvaFla-IRES-GFP expression in myeloid cells). Bone
marrow-derived macrophages (BMM) were differentiated from
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wild-type C56BL/6J (B6) mice, Nlrc4−/−; iOvaFla mice, and
Nlrc4−/−; iOvaFla; LysM-Cre+/− mice. As expected, ~44% of
Nlrc4−/−; iOvaFla+/−; LysM-Cre+/− BMMs were GFP+, compared
to ≤1% of B6 or Cre-negative Nlrc4−/−; iOvaFla BMMs (Fig. 1b).
As further confirmation of Cre-inducible iOvaFla-IRES-GFP
expression, we transduced B6, iOvaFla, and Nlrc4−/−; iOvaFla
BMMs with either an empty retroviral vector, a GFP expression
vector as a transduction efficiency control, or a vector expressing
only Cre recombinase (Supplementary Fig. 1a). BMMs trans-
duced with empty vector exhibited minimal GFP induction,
whereas BMMs transduced with the control GFP vector all
exhibited a significant population (27–33%) of GFP+ cells. Nlrc4
−/−; iOvaFla BMMs transduced with the Cre recombinase vector
also exhibited a robust GFP+ population (~27%), whereas <5% of

Cre-transduced iOvaFla macrophages were GFP+ (Supplemen-
tary Fig. 1a). The relative lack of GFP expression specifically in
NLRC4 inflammasome-competent BMMs is expected due to the
loss of GFP expressing cells as a result of NLRC4-induced
pyroptotic cell death, as we have previously described12.

We also assessed GFP expression in ex vivo isolated resident
peritoneal macrophages from iOvaFla mice. Though NLRC4
inflammasome-competent iOvaFla; LysM-Cre+/− macrophages
expressed GFP at a higher median fluorescence intensity (MFI) as
compared to their Cre-negative littermates, expression levels were
lower as compared to Nlrc4−/−; iOvaFla; LysM-Cre+/− mice
(Fig. 1c, Supplementary Fig. 1c). These results were confirmed by
GFP immunoblot (Supplementary Fig. 1b). The difference in GFP
levels between NLRC4 inflammasome-competent and Nlrc4−/−
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Fig. 1 Genetic system for inducible NLRC4 inflammasome activation in vivo. a Schematic showing iOvaFla transgene insertion in the Rosa26 locus. b Flow
cytometry analysis of bone marrow derived macrophages (BMMs) cultured from WT, Nlrc4−/−; iOvaFla and Nlrc4−/−; iOvaFla; LysM-Cre+/− mice
(representative images from three biological replicates), c peritoneal macrophages (CD11b+ F4/80+) from iOvaFla; LysM-Cre−/−, iOvaFla; LysM-Cre
+/−, and Nlrc4−/−; iOvaFla; LysM-Cre+/− mice, and d neutrophils (CD11b+ Ly6GHi, Ly6CLo) from the bone marrow, spleens and lymph nodes. Data in b–d
are representative of two independent experiments. Error bars are s.d. Results were analysed with a two-way ANOVA and Bonferroni post-tests; *p< 0.05,
**p< 0.01, ***p< 0.001
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macrophages is consistent with the expected loss of GFP+

macrophages via pyroptosis after NLRC4 inflammasome activa-
tion by iOvaFla.

Unlike macrophages, it has been controversial whether
neutrophils undergo pyroptosis upon NLRC4 activation35, 36.
Salmonella enterica serovar Typhimurium infected bone marrow
neutrophils and ex vivo peritoneal neutrophils release NLRC4-
dependent mature IL-1β but were reported to not undergo
pyroptosis as measured by lactate dehydrogenase release35. Ryu
et al.36 reported pyroptosis of lung neutrophils but only in the
absence of NADPH oxidase 2. We therefore sought to examine
GFP levels in bone marrow, splenic and lymph node neutrophils
from our iOvaFla mice as an indirect but in vivo assay for
pyroptosis. The auto-fluorescence of neutrophils made definitive
conclusions difficult. Nevertheless, in all tissues, Nlrc4−/−;
iOvaFla; LysM-Cre+/− neutrophils consistently had the highest
GFP MFI, whereas Cre-negative littermates had the lowest
apparent GFP MFI (green fluorescence in Cre-negative mice is
presumably due to background auto-fluorescence) (Fig. 1d,
Supplementary Fig. 1d). NLRC4-dependent loss of GFP was only
significant (p< 0.001 and p< 0.05, respectively, by two-way

ANOVA and Bonferroni post-test) in neutrophils from spleen
and lymph nodes and not in bone marrow neutrophils. One
interpretation of these data is that splenic or lymph node
neutrophils, but not bone marrow neutrophils, can undergo
NLRC4-dependent pyroptosis in vivo. However, because mea-
surement of GFP MFI is a highly indirect assay of pyroptosis,
other explanations are also possible. For example, NLRC4
activation may hinder the development or homing of splenic or
lymph node neutrophils. Importantly, we did not observe LysM-
Cre-induced GFP expression in other cell types (e.g., B cells and
T cells) (Supplementary Fig. 1e). Thus, taken together, the above
data demonstrate LysM-Cre-dependent induction of the iOvaFla-
IRES-GFP construct in macrophages and neutrophils in vivo.

Myeloid cell NLRC4 activation causes systemic inflammation.
We observed that iOvaFla; LysM-Cre+/− mice were runted prior
to weaning (Fig. 2a), and exhibited significantly lower body
weights throughout life, compared to their age-matched Cre-
negative littermates and the Nlrc4−/− control mice (Fig. 2b).
Unexpectedly, the iOvaFla; LysM-Cre+/− mice developed severe
limb swelling, most noticeably in the tibiotarsal (heel) joint
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(Fig. 2a). Tibiotarsal joint swelling was 100% penetrant, although
the age of onset varied, beginning as early as 4 weeks or as late as
10 weeks (Fig. 2b). Damage was more severe in the tibiotarsal
joint as compared to the femorotibial (knee) joint (Supplemen-
tary Fig. 2a). In the tibiotarsal joint of iOvaFla; LysM-Cre+/−

mice, there was substantial neutrophilic infiltration with slight to
severe bone and cartilage erosion in the joint. There were no
histopathological findings in the joints of Nlrc4−/−; iOvaFla;
LysM-Cre+/− (Fig. 2c) or in the LysM-Cre negative littermates
(Supplementary Fig. 2b). Of note, some of the patients with an
apparent auto-active NLRC4 mutation also experienced joint pain
and one was diagnosed with psoriatic arthritis19, 20, 23.

In addition to joint damage, iOvaFla; LysM-Cre+/− mice
exhibited systemic inflammation. Notably, nearly all tissues
examined exhibited significant neutrophilic infiltration. For
example, pronounced neutrophilia was observed in sections of
iOvaFla; LysM-Cre+/− duodenums. This neutrophilic inflamma-
tion was not apparent in the absence of NLRC4 (Fig. 2d).
Inflammation was distinguished by neutrophilic infiltration of the

submucosa and lamina propria that also extended into the
underlying muscularis externa. The inflammation was localised
primarily to the duodenum and was not accompanied by damage
to the surface epithelium (Fig. 2d). Interestingly, human patients
with chronic NLRC4 auto-activation also have intestinal
inflammation manifesting in the duodenum20, 21. There was also
varying degrees of kidney damage in iOvaFla; LysM-Cre+/− mice.
Some mice had fibrin and neutrophil accumulation within
glomeruli consistent with necrotizing glomerulonephritis, while
others had some glomeruli with only thickened membranes. Once
again, neither the Nlrc4−/−; iOvaFla; LysM-Cre+/− control (Fig. 2e)
nor the LysM-Cre negative mice (Supplementary Fig. 2b) had
pathological alterations. Consistent with hyperplasia, sick iOva-
Fla; LysM-Cre+/− mice exhibited enlarged spleen and lymph
nodes compared to their Cre negative littermates (Supplementary
Fig. 2c). These data demonstrate that chronic myeloid-specific
NAIP/NLRC4 inflammasome activation causes severe joint and
systemic inflammation.
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Inflammasome-driven disease induces myeloid cell hyperplasia.
To better understand inflammasome-driven pathology, we char-
acterised haematopoietic cell populations in sick vs. control
iOvaFla mice. Complete blood count (CBC) analysis of peripheral
blood revealed that iOvaFla; LysM-Cre+/− mice have decreased
haematocrit levels compared to LysM-Cre−/− littermates (Fig. 3a),
consistent with anaemia of chronic disease (ACD) that has also
been observed in other chronic inflammation models37, 38. Blood
lymphocytes of iOvaFla; LysM-Cre+/− mice were also decreased
compared to healthy littermate controls. Finally, there were also
significant (p< 0.05 and p< 0.01, respectively, by two-way
ANOVA and Bonferroni post-test) increases in both monocytes
and neutrophils in the peripheral blood of the sick LysM-Cre
positive mice as compared to healthy littermates (Fig. 3a).

Flow cytometric analysis of spleen and pooled peripheral and
mesenteric lymph nodes revealed that iOvaFla; LysM-Cre+/− mice
had increased levels of monocytes and neutrophils compared to
the NLRC4-deficient control (Fig. 3b, c, Supplementary Fig. 3a).
Although the OvaFla transgene should induce pyroptosis, the
penetrance of OvaFla expression or OvaFla-induced pyroptosis is
not complete (Supplementary Fig. 1), and it thus appears that
cellular recruitment to tissues can overcome a comparatively low
rate of pyroptosis. Lymphocyte populations were less dramatically
affected, with B cell numbers decreasing modestly in the lymph
nodes of iOvaFla; LysM-Cre+/− as compared to Nlrc4−/−; iOvaFla;
LysM-Cre+/− mice (Supplementary Fig. 3b, c). iOvaFla expression
led to only slight changes in T cells levels in the spleen and lymph
nodes, with perhaps a slight increase of T cells in the spleen as
compared to control mice. No significant changes in T cell
numbers were observed in the lymph nodes of iOvaFla;
LysM-Cre+/− mice compared to the control Nlrc4−/−; iOvaFla;
LysM-Cre+/− mice (Supplementary Fig. 3d, e). Thus, iOvaFla
expression in LysM-positive cells produces an increase in
monocytes and neutrophils in an NLRC4-dependent manner,
and only minor changes to the T and B cell numbers.

Systemic cytokines increase in inflammasome-driven disease.
Pro-IL-1β and pro-IL-18 are the two pro-cytokines known to be
processed into their active and secreted forms by CASP1.
Although pro-IL-18 is constitutively expressed in some cell
types39, pro-IL-1β is often suggested to require a priming signal
(‘signal 1’) for expression, prior to signals that activate CASP1
processing (‘signal 2’), as a safeguard to prevent inappropriate IL-
1β production26, 39. However, exceptions to this simple model
have been observed, including instances in which exogenous
priming40 or CASP1 processing41–43 do not appear to be required
for IL-1β production. Indeed, once inflammation is initiated,
endogenous priming signals (e.g., inflammatory signals released
from dying cells) may be sufficient to provide both signals 1 and 2
for IL-1β production. In our genetic system, no exogenous
priming signal is provided, allowing us to assess whether exo-
genous provision of signal 2 alone is sufficient to initiate inflam-
matory cytokine production. We used a cytokine bead array to
assay the amounts of IL-1α, IL-1β, IFNγ, IL-6, MCP-1 (also
known as CCL2), and TNF in the serum of sick iOvaFla; LysM-
Cre+/− mice. All of the cytokines/chemokines were significantly (p
< 0.05, p< 0.01 or p< 0.001, by two-way ANOVA and Bonferroni
post-test) elevated compared to Nlrc4−/−; iOvaFla; LysM-Cre+/−

mice (Fig. 4a). Interestingly, levels of IL-1β were also increased,
confirming that constitutive expression or endogenous priming
signals (e.g., from the microbiota) are sufficient to drive expres-
sion. IL-18 levels, as measured by ELISA, were also significantly (p
< 0.01, by Mann–Whitney test) increased in iOvaFla; LysM-Cre
+/− mice (Fig. 4b). No cytokines or chemokines were detectable in
Nlrc4−/−; iOvaFla; LysM-Cre+/− mice (Fig. 4a, b).

ASC deficiency greatly delays auto-inflammatory disease. The
inflammasome adaptor protein ASC has a key function in med-
iating cytokine processing downstream of NLRC4 activation.
Cytokine processing is largely dependent on ASC in vitro but less
so in vivo14, 44. In order to determine whether ASC is required for
disease in iOvaFla; LysM-Cre mice, we generated Asc−/−; iOvaFla;
LysM-Cre+/− mice. Interestingly, disease was almost entirely
ameliorated on the Asc−/− background, with normal weight gain
and no joint inflammation evident through 10 weeks (Fig. 5a).
Asc deficiency also severely reduced cytokine levels in the mice,
though some cytokines, such as IL-6, IFNγ, and TNF were slightly
increased on the Asc−/− background compared to the Nlrc4−/−

control mice (Fig. 5b). Levels of GFP in Asc–/–; iOvaFla; LysM-
Cre+/− resident peritoneal macrophages were comparable to those
observed in Asc+; iOvaFla; LysM-Cre+/− macrophages, and sig-
nificantly (p< 0.001, by two-way ANOVA and Bonferroni post-
test) lower than those observed on Nlrc4–/–; iOvaFla; LysM-Cre
+/− macrophages (Fig. 5c). These data imply that, as observed
previously in vitro14, pyroptosis in vivo does not require ASC,
and thus raise the possibility that cytokine release rather than
pyroptosis is the major driver of disease.

IL-1R signalling is necessary for the inflammatory phenotype.
After observing significant increases in IL-1 in sick iOvaFla mice
(Fig. 4) and the decrease of IL-1 in the relatively healthy Asc–/–;
iOvaFla; LysM-Cre+/− mice (Fig. 5b), we wanted to determine the
importance of IL-1 signalling in the inflammatory phenotype. We
therefore treated iOvaFla; LysM-Cre+/− mice displaying tibio-
tarsal joint swelling with an αIL-1R blocking antibody every
3–4 days for 2 weeks. After treatment, tibiotarsal joint swelling
decreased, and the mice gained weight compared to sick mice
treated with isotype control antibody (Fig. 6a). The αIL-1R
treated iOvaFla; LysM-Cre+/− mice had significantly (p< 0.001,
by two-way ANOVA and Bonferroni post-test) decreased
amounts of IL-1β. The decreases in MCP-1 and TNF levels in
treated mice were also statistically significant (p< 0.01, by two-
way ANOVA and Bonferroni post-test) (Fig. 6b). Humans with
auto-activating NLRC4 mutations still have elevated IL-18 after
Anakinra treatment21. Consistent with these observations, we did
not observe a statistically significant difference in IL-18 levels
between control antibody and αIL-1R-treated mice (Fig. 6b).
After αIL-1R antibody treatment, the sick iOvaFla; LysM-Cre+/−

mice also exhibited decreased levels of monocytes and neutrophils
in both the spleen and lymph nodes when compared to control
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treated mice (Fig. 6c, d). Therefore, IL-1R signalling appears
critical for development of the systemic inflammatory phenotype
present in iOvaFla; LysM-Cre+/− mice.

NLRC4 activation in MRP8+ cells is sufficient for disease.
Neutrophilia is a prominent clinical feature of inflammasome-
driven disease in our iOvaFla mice and in other mouse
models45, 46 and humans47–49. Considering IL-1 is a powerful
inducer of neutrophil recruitment to tissues, and given that we
can alleviate disease by blocking IL-1R, it seems likely that neu-
trophils are responsible for a large portion of the inflammation.
However, it is not clear whether inflammasome activation in
neutrophils is sufficient to initiate disease, or whether inflam-
masome activation in other cell types releases IL-1, which then
causes neutrophil recruitment. Therefore, we crossed the iOvaFla
mice to MRP8-Cre transgenic mice, which expresses Cre pri-
marily in neutrophils and in a small population of monocytes29,
31, 32. Surprisingly, the iOvaFla; MRP8-Cre+/− mice almost fully
recapitulated the severe disease phenotype of the iOvaFla; LysM-
Cre+ mice. iOvaFla; MRP8-Cre+/− mice are runted and develop
joint swelling only slightly slower than iOvaFla; LysM-Cre+/−

mice (Figs. 7a, 2b). Moreover, iOvaFla; MRP8-Cre+/− mice exhibit
increased cytokine levels, with IL-18 being the most significantly
(p< 0.001, by Mann–Whitney test) increased (Fig. 7b). Flow
cytometry analysis demonstrated increases in monocytes and
neutrophils in the spleen and lymph nodes, similar to what was
observed in iOvaFla; LysM-Cre+/− mice (Fig. 7c, d). In fact,
iOvaFla; MRP8-Cre+/− mice have even higher levels of monocytes
and neutrophils in the spleen as compared to iOvaFla;

LysM-Cre+/− mice. There was no notable difference between the
two genotypes in the numbers of inflammatory cells in the lymph
nodes (Fig. 7 d). To determine whether IL-1 drives disease in
iOvaFla; MRP8-Cre+/− mice, we treated iOvaFla; MRP8-Cre+/−

with the same αIL-1R blocking antibody and protocol we used to
treat iOvaFla; LysM-Cre+/− mice (Fig. 6b). The treatment alle-
viated joint swelling and the mice gained weight compared to the
isotype control treated mice, identical to LysM-Cre+/− treated
mice (Fig. 7e). These data suggest that inflammasome activation
in neutrophils is an important contributor to IL-1-dependent
inflammatory disease in vivo, though our data do not rule out
additional contributions from monocytes as well.

To address whether iOvaFla expression in other myeloid cell
types might also drive disease, we also crossed the iOvaFla mice
to CD11c-Cre transgenic mice. CD11c-Cre mice express Cre in
most dendritic cells, macrophages and monocytes, but unlike
LysM-Cre mice, there is no expression in neutrophils29, 33.
iOvaFla; CD11c-Cre+/− mice exhibited some disease symptoms,
including runting and elevation of monocytes and neutrophils in
tissues. However, iOvaFla; CD11c-Cre+/− mice exhibited less
severe symptoms than iOvaFla; LysM-Cre or iOvaFla; MRP8-Cre
mice. For example, iOvaFla; CD11c-Cre+/– mice did not develop
joint swelling (Supplementary Fig. 4a) even though monocyte and
neutrophil numbers are mildly elevated (Supplementary Fig. 4b,
c). Taken together, our results are consistent with the hypothesis
that NLRC4 activation in MRP8+ cells is an especially potent
driver of disease, though NLRC4 activation in CD11c+ cells can
contribute to milder disease symptoms.
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Discussion
The question of whether activation of an endogenous wild-type
inflammasome is a sufficient signal to trigger inflammatory dis-
ease remains unresolved. Several studies have used bacterial
infections to stimulate inflammasome activation in vivo, but these
infections are invariably accompanied by robust TLR activation,
making it difficult to ascertain the specific and sufficient functions
of inflammasome activation in vivo. Other studies have demon-
strated clear pathological effects mediated by gain-of-function
mutations in inflammasome genes45, 46, 50, but whether chronic

activation of wild-type inflammasomes can also mediate disease is
unresolved. For example, wild-type inflammasomes may be
subject to feedback inhibitory mechanisms that are circumvented
by the gain-of-function mutations observed in patients. In addi-
tion, patients may be exposed to other inflammatory stimuli, such
as infections, that may contribute to inflammatory disease. Thus,
to address whether chronic activation of endogenously expressed
wild-type inflammasomes is sufficient to produce disease, we
engineered a mouse that constitutively expresses cytosolic fla-
gellin, a ligand for the NAIP/NLRC4 inflammasome, in the
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absence of any other contaminating exogenous stimuli. We found
that selective NAIP/NLRC4 inflammasome activation in LysM+

positive cells is sufficient to cause a systemic inflammatory phe-
notype. iOvaFla; LysM-Cre+/− mice are runted, exhibit elevated
systemic cytokine levels, ACD, systemic neutrophilia, and obvious
joint swelling. Although our genetically driven system for flagellin
expression does not require or result in the provision of any

additional exogenous priming signals, it is important to
acknowledge that endogenous priming signals (e.g., from the
microbiota) are inescapably present in our mice and may con-
tribute to the disease symptoms we observe.

Disease in iOvaFla-expressing mice could be rescued by ther-
apeutic blockade of the IL-1R. Disease could also be significantly
reduced by crossing to the Asc−/− background. Interestingly, ASC

a c

Nlrc4 –/–; iOvaFla; LysM-Cre+/–

iOvaFla; MRP8-Cre+/–

iOvaFla; LysM-Cre+/–

iOvaFla; Cre–/–

αIL-1R antibody

Isotype control antibody

Ly6C

Ly6G
S

pl
ee

n
Ly

m
ph

 n
od

es

MOs
6.98

NEs
21.5

MOs
3.98

NEs
2.44

MOs
10.6

NEs
9.09

MOs
31.9

NEs
36.8

4 5 6 7 8 9 10

4 5 6 7 8 9 10

Weight

G
ra

m
s

Age (weeks)

0

10

20

30

Tibiotarsal joint size

M
ill

im
et

er
s

Age (weeks)

2

3

4

5

iOvaFla; MRP8-Cre–/– iOvaFla; MRP8-Cre+/–

iOvaFla; MRP8-Cre–/–

iOvaFla; MRP8-Cre+/–

d eb

LN cells

Weight

Tibiotarsal joint size

F
ol

d 
ch

an
ge

 o
ve

r 
st

ar
t

F
ol

d 
ch

an
ge

 o
ve

r 
st

ar
t

0.5

1.0

1.5

2.0

0.5
0 1 2

0 1 2

1.0

1.5

2.0

Weeks post-treatment

tx

Weeks post-treatment

tx ***
***

*****

0

2.0 × 103

2.5 × 103

1.0 × 103

1.5 × 103

5.0 × 102

0

5

10

15

20

ng
 / 

m
L

Serum cytokines

***
NS NS*

*

**
***

***
***

***

**

Spleen cells

0

8 × 103

6 × 103

4 × 103

2 × 103

MOs NEs

**

*
***

*** *** *** *** ***

***
***

MOs NEs

0

200

400

600

800

pg
 / 

m
L

IL-1α
IL-1β

IFNγ
TNFIL-6

MCP-1

Serum IL-18

NS ***** ** **

T
ot

al
 c

el
l n

um
be

rs
 in

 s
pl

ee
n

T
ot

al
 c

el
l n

um
be

rs
 in

 L
N

105

105

104

104

103

103

102

102

101

101
100

100 105104103102101100

105104103102101100105104103102101100

105

104

103

102

101

100

105

104

103

102

101

100

105

104

103

102

101

100

Fig. 7 Neutrophil iOvaFla expression is sufficient for inflammatory disease. a Weight and tibiotarsal joint swelling as iOvaFla; MRP8-Cre−/− and iOvaFla;
MRP8-Cre+/− mice age (n= 6 biological replicates per genotype). b Serum cytokines measured by a BD Biosciences cytokine bead array and IL-18 ELISA of
10–12-week-old mice. c Flow cytometry and d quantification of monocytes (MO; CD11b+ Ly6CHi Ly6GLo) and neutrophils (NE; CD11b+ Ly6CLo Ly6GHi). For
each flow cytometry plot, the top row is from the spleen and the second row from peripheral and mesenteric lymph nodes. Each column represents a
different genotype. e Weight and tibiotarsal joint measurements after OVA-Fla; MRP8-Cre+/− mice were administered either anti-IL-1R blocking antibody
or isotype control every 3–4 days for 2 weeks (n= 3 biological replicates per treatment). Data in b–d are representative of three independent experiments.
Error bars are s.d. Results were analysed with either a Mann–Whitney test or two-way ANOVA and Bonferroni post-tests; *p< 0.05, **p< 0.01,
***p< 0.001

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02266-w ARTICLE

NATURE COMMUNICATIONS |8:  2209 |DOI: 10.1038/s41467-017-02266-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


is not believed to be essential for NAIP/NLRC4-induced pyr-
optosis13, 14, and indeed, ex vivo Asc−/−; iOvaFla; LysM-Cre+/−

peritoneal macrophages still exhibited reduced expression of a co-
expressed GFP, indicative that pyroptosis is still occurring in vivo.
Similar to Asc deficiency, blockade of the IL-1R should also not
prevent pyroptosis, yet this treatment significantly ameliorated
disease. These lines of evidence suggest that chronic pyroptosis
itself is not a sufficient driver of the inflammatory disease we
observe after chronic inflammasome activation in vivo.

LysM-Cre is active in multiple cell types, including macro-
phages, monocytes, neutrophils and some dendritic cells29. Most
studies of the inflammasome have been conducted in macro-
phages or monocytes, though a few studies have also indicated
that neutrophils express functional inflammasomes35, 36, 51, 52.
Interestingly, we found that expression of cytosolic flagellin in
MRP8+ cells (mainly neutrophils) was sufficient to cause severe
NLRC4-dependent systemic and joint inflammation, which was
also rescued by blocking IL-1R. By contrast, chronic inflamma-
some activation mediated by CD11c-Cre (expressed in several cell
types, including dendritic cells, tissue macrophages, and mono-
cytes29,33 produced a milder disease with no joint pathology
(Supplementary Fig. 4). Our results therefore uncover an unex-
pected function for inflammasome activation in MRP8+ cells in
mediating systemic inflammatory disease.

Our results also indicate that IL-1 is a major driver of disease in
our model. IL-1 is vital to the development of various auto-
inflammatory human diseases, including inflammasome driven
auto-inflammatory disorders. Patients with Deficiency of IL-1
receptor antagonist (DIRA) have systemic inflammation,
including joint swelling and skin lesions. Lesion biopsies have
exhibited excessive neutrophilia49. Patients with either rheuma-
toid arthritis (RA) or systemic juvenile idiopathic arthritis (sJIA)
have increased serum IL-1 and joint neutrophil infiltration53, 54.
In a mouse model of RA, neutrophil derived IL-1 is necessary for
arthritis to develop54. Anaemia, leucocytosis, and arthritis are
decreased in patients with sJIA treated with Anakinra53. Human
inflammasomopathies have varying symptoms, some of which
include flares of joint swelling and pain, uticaria and fever19–23, 45.
When attempted, blocking IL-1R frequently improves the dis-
orders. Consistent with our data, Canna et al.21 saw increased
blood neutrophils during disease flares and decreased neutrophils
after treating with IL-1 receptor antagonist. Interestingly, a
patient carrying a V341A NLRC4 gain-of-function mutation was
described that did not respond to anti-IL1 monotherapy22, but
did respond to combination anti-IL-1 and anti-IL-18 therapy
(anti-IL-18 monotherapy was not tested). Thus, IL-18 may also
contribute to disease in specific scenarios.

Why might inflammasome activation in neutrophils be a
particularly strong driver of auto-inflammatory disease? One
possible explanation is that like other unusual cellular sub-
populations40, these cells might circumvent the typical require-
ment for signal one (‘priming’) for expression of pro-IL-1β.
Indeed, transcriptional profiling of specific neutrophil popula-
tions, including blood and liver neutrophils, indicates these cells
express relatively high levels of pro-IL-1β at homoeostasis55.
Another unusual feature of inflammasome activation in neu-
trophils is that it is reported in some cases to produce IL-1β
release in the absence of pyroptosis35. Although pyroptosis is
typically considered to be a pro-inflammatory form of cell death,
our data suggest that pyroptosis is not necessarily pro-
inflammatory or driving inflammatory disease in our model.
On the contrary, it is possible that pyroptotic cell death is an
important ‘self-limiting’ mechanism to prevent cells from sus-
tained or prolonged release of IL-1β. Indeed, though we could see
some evidence for NLRC4-dependent GFP loss from flagellin-
expressing neutrophils, an indirect measure of pyroptosis, the

pyroptotic loss of GFP in vivo was not nearly as prominent in
neutrophils as compared to peritoneal macrophages, a cell
population that has been shown to undergo robust pyroptosis18.
Thus, we speculate that inflammasome activation (without co-
incident pyroptosis) in neutrophils may drive pathology through
sustained release of constitutively expressed IL-1β. Though there
are few resident neutrophils in most tissues56–58, once inflam-
mation is initiated, neutrophil recruitment to tissues may be
enhanced and sustained by positive inflammatory feedback loops.
Once these inflammatory feedback loops are established, it is
possible they are maintained by IL-1 production by MRP8-Cre+,
as well as Cre-negative cells.

Taken together, our results have identified inflammasome
activation in MRP8+ cells, a population consisting primarily of
neutrophils, as a sufficient driver of severe systemic inflammatory
disease. In future studies, it will be of interest to determine with
more specificity the role of neutrophils or monocytes as potent
initiators of inflammation. In addition, it will be of interest to
determine what role inflammasome activation in neutrophils has
in the initiation and development of human inflammatory
diseases.

Methods
Animals. All mice are bred and housed under specific pathogen-free conditions
and fed a standard chow diet (Harlan irradiated laboratory animal diet). iOvaFla
mice were generated by targeting the Rosa26 locus for genomic insertion of a
construct encoding a loxP‐flanked transcriptional STOP cassette upstream of the
Ova-Fla fusion gene. An IRES-GFP was included downstream of the Ova-Fla
insertion to mark cells in which the STOP cassette has been excised and Ova-Fla
translated. Founders were crossed to ER-CreT2 (Jax strain 008463), LysM-Cre (Jax
strain 004781), MRP8-Cre (Jax strain 021614), CD11c-Cre (Jax strain 008068) and
Villin-Cre (Jax strain 004586) transgenic lines. The strains were also crossed to
Nlrc4−/− and Asc−/− to generate inflammasome-deficient control mice. Nlrc4−/−

and Asc−/− animals were from V. Dixit (Genentech, South San Francisco, CA;
Mariathasan et al.13).

Experiments were conducted on 10–16-week-old age- and generally sex-
matched mice. Under isoflurane anaesthesia, mice were weighed weekly and
callipers were used to measure tibiotarsal joint (heel) size. The mice were
euthanized with CO2 with secondary cervical dislocation. All animal experiments
and endpoints were approved by and performed in accordance with the regulations
of the University of California Berkeley Institutional Animal Care and Use
Committee.

Bone marrow derived macrophages. Bone marrow was collected from femurs,
and cells were differentiated into macrophages by culture in RPMI supplemented
with cell supernatant from MCSF-transfected 3T3 cells (gift of B. Beutler) and 10%
foetal bovine serum in a humidified incubator (37 °C, 5% CO2) for 7 days.

Tissue histopathology. Tissues were collected from mice and fixed in 10% neutral
buffered formalin. The fixed tissues were shipped to the University of Michigan
Unit for Laboratory Animal Medicine for analysis. Soft tissues were processed in
paraffin on an automated histology processor using standard IVAC protocols for
mouse tissue. Hindlimb samples were decalcified in a commercial formic acid
solution (ImmunoCal) for 3 days. After decalcification, the joints were rinsed and
the femorotibial (knee) and tibiotarsal joints were isolated by cutting the bone
proximal and distal to each joint. Joints were processed in paraffin as for soft
tissues. Following processing, tibiotarsal (heel) joints were embedded in the lateral
plane and the femorotibial (knee) joints and distal paw were embedded in the
frontal plane, with compression using a manual histology tissue press. 4-micron
thickness sections were cut on a rotary microtome and the sections were stained
with haematoxylin and eosin on an automated tissue stainer.

Light microscopic evaluation was performed by a board-certified veterinary
pathologist blinded to the groups at the time of sample evaluation. Representative
photomicrographs were taken using an Olympus DP72 12.5-megapixel digital
camera mounted to an Olympus BX45 light microscope and using the software
provided by the manufacturer (cellSens Standard 1.7.1, Olympus Corporation).
Photo processing and composite plate construction was performed in Adobe
Photoshop CS2, version 9.0. Photo processing was confined to global adjustments
of brightness, contrast, sharpness and image size that did not materially alter the
interpretation of the image. Correction of peripheral lens distortion was performed
if needed for low magnification photos.

Complete blood counts. Blood was collected from mice either by saphenous
bleeding or cardiac punctures followed by euthanasia. Blood was kept in EDTA-
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treated vacutainers (BD product 365974) and run on a Hemavet 850 at the Uni-
versity of California San Francisco Mouse Pathology Core.

Flow cytometry. Spleens and lymph nodes were collected from euthanized mice,
minced with scissors, and incubated in RPMI with 5% FBS containing collagenase
VIII (1 mg/mL, Sigma) at 37 °C for 45 min. After straining the digested spleens and
lymph nodes, single-cell suspensions were treated with ACK Lysing Buffer (Invi-
trogen A1049201) to lyse erythrocytes. Bone marrow flushed from femurs was also
treated with ACK Lysing Buffer. Cells were washed and filtered through 40-micron
nylon strainers (Fisher Scientific) and counted. Cells were blocked with anti-CD16/
32 antibody (2.4G2) and stained for extracellular markers (Supplemental Table 1).
The data were collected on Fortessa or ×20 flow cytometers (BD Biosciences), and
analysis was performed using FlowJo 10 Software (Tree Star). Gating strategy is
indicated in Supplementary Fig. 3.

Immunoblot. To obtain peritoneal macrophages, 5 mL of PBS was injected into the
peritoneal cavity then collected. Erythrocytes were lysed using ACK buffer (Invi-
trogen A1049201). 5 × 106 cells were lysed in RIPA buffer supplemented with 1
mM PMSF and ×1 Roche Complete Protease Inhibitor Cocktail (Sigma
4693159001). Lysates were spun at max speed in an Eppendorf microfuge at 4 °C
for 10 min and supernatants were mixed with SDS sample buffer (40% glycerol, 8%
SDS, 2% 2-ME, 40 mM EDTA, 0.05% bromophenol blue, and 250 mM Tris-HCl
(pH 6.8)), boiled for 5 min, and then separated by SDS-PAGE (Invitrogen 4–12%
BisTris gel catalogue NP0335PK2). Separated proteins were transferred to
Immobilon-FL PVDF membranes. Membranes were blocked with Odyssey
blocking buffer (Licor 927-40000). Anti-GFP JL-8 antibody (Clontech 632380) and
IRDye 800CW donkey anti-Mouse IgG (Licor 925-32212) were used. Densitometry
was performed with Licor image studio lite.

Serum cytokine measurements. To measure IL-18 by ELISA, Nunc Hi Affinity
ELISA plates were coated with anti-IL-18 antibodies (MBL catalogue D047-3) at
1 μg/mL, blocked with PBS with 1% BSA (w/v). Serum was diluted 1:5 in PBS with
1% BSA (w/v). Secondary biotin conjugated goat antibodies to IL-18 (MBL cata-
logue D048-6) were used at 1:2000 in PBS with 1% BSA (w/v). Purified IL-18
standard was from Invivogen. Plates were developed with 1 mg/mL OPD (Sigma)
in Citrate Buffer (PBS with 0.05 M NaH2PO4 and 0.02 M Citric acid) with a 3M
HCl acid stop after 10–15 min. Absorbance at 490 nm was measured on a Spec-
traMax M2. IL-1α, IL-1β, IFNγ, IL-6 and MCP-1 were measured with a custom BD
Biosciences Cytokine Bead Array according to the BD Biosciences’ guidelines.

Antibody treatments. Hamster IgG anti-mouse IL-1R antibody (mIL1R-M147)
was obtained from Amgen. Ultra-LEAF Purified Armenian Hamster IgG Isotype
Antibody from Biolegend (400940) was used for control injections. The mice were
treated with 150 μg of each antibody via retro-orbital injections every 3–4 days for
2 weeks.

Statistical analysis. Numerical data are expressed as the mean± s.d. and were
analysed with a Mann–Whitney test or a one-way or two-way ANOVA followed by
a Bonferroni post-test. Figure legends indicate with analysis was used in the figure.
95% confidence was applied and data were considered significant at *p< 0.05,
**p < 0.01, ***p< 0.001.

Data availability. The authors declare that the main data supporting the findings of
this study are available within the article and its Supplementary Information files.
Extra data are available from the corresponding author upon reasonable request.
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