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Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches
are commonly used. In this study, the authors report on a fully automatic chest template-based
method.
Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among
them, one case was randomly selected and used as the template, and the remaining 30 cases were
used for testing. Unlike most model-based breast segmentation methods that use the breast region
as the template, the chest body region on a middle slice was used as the template. Within the chest
template, three body landmarks (thoracic spine and bilateral boundary of the pectoral muscle) were
identified for performing the initial V-shape cut to determine the posterior lateral boundary of the
breast. The chest template was mapped to each subject’s image space to obtain a subject-specific
chest model for exclusion. On the remaining image, the chest wall muscle was identified and ex-
cluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the mid-
dle slice were used as the reference for the segmentation of adjacent slices, and the process continued
superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evalu-
ated by an experienced radiologist to mark voxels that were wrongly included or excluded for error
analysis.
Results: The breast volumes measured by the proposed algorithm were very close to the radiologist’s
corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with
a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion
errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of
3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the
algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to
2.52% with a mean of 1.03% ± 1.03%. The total error by adding the inclusion and exclusion errors
ranged from 0.16% to 11.8%, with a mean of 2.89% ± 2.55%.
Conclusions: The automatic chest template-based breast MRI segmentation method worked well
for cases with different body and breast shapes and different density patterns. Compared to the
radiologist-established truth, the mean difference in segmented breast volume was approximately
1%, and the total error by considering the additive inclusion and exclusion errors was approximately
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3%. This method may provide a reliable tool for MRI-based segmentation of breast density. © 2013
American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4828837]

Key words: model-based breast segmentation, chest body template, breast MRI, breast density,
demons algorithm

1. INTRODUCTION

Breast MRI is a well-established clinical imaging modality
for the management of breast diseases. The current clinical
indications include screening, detection, diagnosis, preopera-
tive staging, therapy response monitoring, and surveillance.
In addition, since MRI acquires a set of three-dimensional
(3D) images with a strong contrast between fibroglandular
tissue (or, generally described as “breast density”) and fatty
tissue, it is the optimal imaging modality for measurement
of volumetric breast density. Breast density has been proven
as an independent risk factor associated with development
of breast cancer,1, 2 and there is a strong interest to develop
reliable quantitative methods that can be used to evaluate
density on different imaging modalities. Since MRI acquires
many 3D images to cover the whole breast, applying com-
puter algorithm-based segmentation methods is the only fea-
sible approach. An initial segmentation of the breast area on
MR images is the first required step. Then, the chest wall (pec-
toralis) muscle needs to be identified and excluded. Within
the segmented breast, the fibroglandular tissue, fatty tissue,
and the skin are further separated to measure the volume of
fibroglandular tissue and the percent density by normalizing
to the breast volume.

Breasts have a large variety in shapes and density patterns,
and it is difficult to develop an automatic algorithm-based seg-
mentation method that can work for all types of breasts. The
major task is to define the lateral posterior boundary using a
consistent criterion, and to delineate the chest wall muscle.
For cases with dense breasts, the fibroglandular tissue may
be very close to the chest wall muscle, which increases the
technical difficulty to exclude the muscle while preserving the
dense tissue.

Currently, most of the reported methods in the literature
are based on semiautomated methods that require some op-
erator interventions.3–8 They are time-consuming and sub-
ject to variations from an operator’s personal judgment. Lee
et al.6 used edge detection to determine the breast-air inter-
face and manually outlined the breast-chest wall interface.
Khazen et al.4 used a thresholding operation to limit the extent
of breast volume and manually defined a straight line anterior
to the chest wall muscle at each axial slice. In our previous
work, we used body landmarks of each individual woman,
e.g., using the thoracic spine and lateral boundary of pectoral
muscle for a V-shape cut7 or using the sternum for a horizon-
tal cut3 to standardize the initial segmentation and minimize
an operator’s variation.

Some studies have attempted to develop automatic breast
segmentation methods either for density analysis or for
computer-aided-diagnosis of breast cancer. Active contour
based methods9, 10 have been applied to detect the boundary

of chest wall muscle. Wang et al.11 used Hessian filtering to
locate the potential location of chest wall muscle and further
used the morphological operations to automatically delineate
the actual boundary. However, these methods still required
an initial segmentation of the breast region, and also they
were not integrated into a complete framework for analysis
of breast density. Template-based registration methods may
be applied for automatic segmentation. This approach is com-
monly used for the brain, but it is much more challenging
for the breast. Gallego and Martel12 proposed an automated
model-based 3D segmentation method for the breast. The sub-
ject’s breast boundary was identified using edge detection to
generate the surface meshes, and they were matched to the
surface meshes of the template for segmentation. Gubern-
Mérida et al.13 proposed a probabilistic atlas which included
both body and breast tissues for breast segmentation in MRI.
Reed et al.14 proposed a 3D model-based method for breast
segmentation in CT using nonrigid registration. A cellular
neural network has also been applied to extract the breast re-
gion from MR images.15

So far, most of the model-based segmentation methods
mentioned above used the whole breast as the template. How-
ever, because of the large variability in the shape of breasts,
simply using one universal template may not be robust enough
to segment all types of breasts. On the other hand, in most
breast MR scans, the chest region including the lung and the
heart can be detected at similar locations with similar shape
and intensity features. In this study, we present a new auto-
matic template-based method using the chest body model for
breast segmentation. The analysis starts from the middle slice
of the 3D image set. The chest template is coregistered to
each subject’s chest region to obtain a subject-specific chest
model on the middle slice that is excluded. On the remaining
image, a chest wall muscle detection algorithm with Bezier
curve fitting is developed to exclude the muscle and obtain a
clean segmentation of the breast. The boundary of the chest
and the muscle determined on the middle slice is then used as
the reference for segmentation on the adjacent slices, and the
process continues until all slices are segmented. The obtained
segmentation results using this method were evaluated by an
experienced radiologist to calculate the error percentage. The
resulting error in the segmented fibroglandular tissue was also
evaluated.

2. MATERIALS AND METHODS

The step-by-step procedures of our template-based breast
segmentation method are described in this section. The seg-
mentation starts from the middle slice of the acquired 3D
imaging slab (Sec. 2.B), and then the segmented chest re-
gion on this slice is used in the adjacent images until all
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images are segmented (Sec. 2.C). Evaluation of this method
is in Sec. 2.D.

2.A. Image data

T1-weighted MR scans from 31 healthy female volun-
teers (age range 22–54 y/o, mean 42 y/o) without any symp-
tom of breast diseases were used in this study. Imaging was
performed on a Philips Achieva 3.0T scanner (Eindhoven,
Netherlands) using the turbo spin echo pulse sequence with-
out fat suppression. A total of 90 image slices with 2 mm
thickness were acquired to cover the entire breast. Other
imaging parameters were: TR/TE = 645/9.0 ms, echo train
= 5, slice gap = 0, phase encoding R-L, bandwidth per
pixel = 174 Hz, field of view = 330 mm, imaging matrix
= 328 × 384, and parallel imaging with SENSE factor = 2.
These 31 cases presented a variety of breast sizes, shapes, and
fibroglandular tissue patterns. One case was selected to gen-
erate the chest region template, and the remaining 30 cases
were used for testing and evaluation.

2.B. Breast segmentation on the middle 2D MR slice

For each case, the starting slice number and the ending
slice number of the breasts were determined by a radiologist,
and the middle slice was selected for the initial segmenta-
tion. The generation of the chest region template with three
body landmarks (thoracic spine and bilateral boundary of the
pectoral muscle) for a V-shape cut to determine the posterior
boundary of the breast is described in Sec. 2.B.1. The registra-
tion of the template to the chest region of an individual subject
for initial segmentation using the V-shape cut is described in
Sec. 2.B.2. The identification and exclusion of the chest wall
muscle to obtain the final segmented breast is described in
Sec. 2.B.3.

2.B.1. Generation of the chest region template

The 3D breast MR scans of the 31 subjects covered a large
region to ensure that both breasts were entirely contained in
the imaging slab. In the middle of this imaging slab, the chest
region always included the lung and the heart, and showed
similar shape and signal intensity features. Therefore, the cen-
ter slice was chosen as the starting point to ensure the pres-
ence of these similar tissue components (heart, lung, thoracic
spine, pectoral muscles). Of the 31 cases, one case was ran-
domly selected to generate the chest template (Fig. 1). An ap-
proximate contour of the chest body region was roughly out-
lined manually along the posterior chest wall muscle and the
outer boundary of the lung [the red contour in Fig. 1(a)]. We
used three body landmarks: the thoracic spine and the lateral
margins of the bilateral pectoralis muscles [the highlighted
points in Fig. 1(a)], to perform an initial V-shape cut to de-
fine the posterior boundary of the breast. These three points
were manually marked. Within this roughly drawn region, the
k-means clustering algorithm was used to identify the dark
signal intensity coming from the lung tissue for refining the
contour as the chest template [cyan contour in Fig. 1(b)]. Af-

FIG. 1. Generation of the chest template using one arbitrarily selected case.
(a) An approximate contour of the chest body region is roughly outlined man-
ually along the posterior chest wall muscle and the outer boundary of the
lung. Three body landmarks: the thoracic spine and the lateral margin of the
bilateral pectoralis muscles are also manually marked. (b) Within this roughly
drawn region, the k-means clustering algorithm is used to identify the dark
signal intensity coming from the lung tissue for refining the contour as the
chest template. (c) The image is cropped at 8 mm above the chest model
contour, and after excluding the chest determined in (b) the remaining image
is normalized into ten clusters using k-means clustering algorithm followed
by Gaussian smoothing to generate the Smoothed, Normalized, and Cropped
“SNC image” for registration.

ter the chest region was defined, it was excluded by setting the
signal intensity to zero. The image was then smoothed, nor-
malized, and cropped to generate a “SNC image” used for reg-
istration. In order to have the registration process focus on the
chest region, the image was cropped at 8 mm above the chest
model contour. An ideal SNC image needed to keep some
tissues above the chestwall muscle, and with a flat anterior
boundary to avoid complications during the registration. A
thickness of 8 mm was chosen to keep sufficient tissues above
and also to make sure that the boundary was flat. The remain-
ing image was normalized using the k-means clustering al-
gorithm followed by Gaussian smoothing. The normalization
and smoothing was required to achieve the optimal quality
in registration. The final SNC image of the generated chest
region template is shown in Fig. 1(c), and was registered to
other subjects’ SNC images to generate subject-specific chest
models. Detailed methods to generate the SNC image, includ-
ing the reasons for choosing the cluster number in k-means
clustering, will be described in Sec. 2.B.2.

2.B.2. Registration between chest region template
and subject’s chest region

The chest region on the middle slice includes the lungs
and heart (and the band of artifacts associated with the heart
motion) which have different signal intensities. Figure 2 il-
lustrates the step-by-step procedures for estimating the air
region (lung tissue) inside the chest to generate the chest
contour, similar to that shown in Fig. 1(b), so they can be
coregistered. The original breast MR image with background
noise (e.g., the ghosting artifact coming from the heart mo-
tion outside the breast) is shown in Fig. 2(a). This outside
noise is removed by using Otsu’s automated thresholding
algorithm16 followed by morphological operations of ero-
sion and open [Fig. 2(b)]. Since the lung (mainly containing
air) is much darker compared to other tissues, an initial k-
means clustering with (k = 2) is applied to locate the dark
region [Fig. 2(c)], which may also include fibroglandular tis-
sue and chest wall muscle. Within this contour [Fig. 2(d)],
k-means clustering (k = 10) is applied again to identify
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FIG. 2. The step-by-step procedures for estimating the air (lung region) in each subject to generate the chest model for coregistration with the template. (a) The
original breast MR image with background noise (e.g., the ghosting artifact coming from the heart motion outside the breast). (b) This outside noise is removed
by using Otsu’s automated thresholding algorithm followed by morphological operations of erosion and open. (c) An initial k-means clustering with (k = 2) is
applied to locate the dark region, which may also include fibroglandular tissue and chest wall muscle. (d) Within this contour, k-means clustering (k = 10) is
applied again to identify the area with the lowest intensity (cluster#1). (e) The largest area of cluster#1 in the left side and the right side is detected and the center
of mass in each side is used as the seed point for region growing. (f) Based on the center of the initial air region (the highlighted dot), an ellipse that has the
best fit to the initial air region is then generated. For the chest region above the center, the boundary of the initial air region and the estimated ellipse is averaged
and smoothed to obtain a smooth boundary. For the chest region below the center, the boundary estimated by region growing is directly used. (g) The resulted
contour is indicated by circles. Bezier curve fitting is then applied to the circles to obtain a smooth contour of the estimated chest region. (h) Finally, the SNC
image is generated (cropped at 8 mm above the chest model contour, and then normalized into 10 clusters and smoothed).

the area with the lowest intensity (cluster#1). The center line
is manually drawn based on the center point between the left
and the right breasts along with the thoracic spine. The largest
area of cluster#1 in the left side and the right side is detected
and the center of mass in each side is used as the seed point
for region growing. The intensity step for region growing is
set as α · max (I) with α = 0.1. The region growing results
from these two seed points are merged as the initial air re-
gion [Fig. 2(e)]. We have tried different cluster numbers and
found that by using a total number of N = 10 clusters the low-
est cluster identified the darkest tissue with a sufficient num-
ber of pixels to define a center of mass as the seed for region
growing.

As shown in Fig. 2(e), the upper boundary is not smooth,
and it is not the correct upper chest boundary. Based on the
center of the initial air region [the highlighted dot in Fig. 2(f)],
an ellipse that has the best fit to the initial air region is then
generated. For the chest region above the center, the bound-
ary of the initial air region, and the estimated ellipse is aver-
aged and smoothed to obtain a smooth boundary [circles in
Fig. 2(g)]. For the chest region below the center, the bound-
ary estimated by region growing is directly used. Bezier curve
fitting17 is then applied to the circles to obtain a smooth con-
tour of the estimated chest region [Fig. 2(g)]. Finally, the SNC
image is generated based on the description in Sec. 2.B.1 for
registration [cropped at 8 mm above the anterior point of the
chest model contour, and then normalized into ten clusters
and smoothed, Fig. 2(h)]. The SNC images of the subject
and the template are co-registered using the non-rigid demons
algorithm.18, 19

To demonstrate the robustness of this chest-template based
segmentation method, we chose two subjects who have differ-
ent breast and body shapes compared to that of the template
case for illustrations, shown in Figs. 3(a) and 3(b), respec-

tively. The subject in Fig. 3(a) had a complete chest covered
within the field of view, showing relatively small breasts in a
large body with more subcutaneous body fat. The subject in
Fig. 3(b) had an incomplete chest covered within the field of
view, with the bottom of the chest cut-off and showing very
dark signal intensity. As noted in Fig. 3(b), although part of
chest was cut-out, the registration in the anterior part of the
chest still worked well and the landmarks used for v-shape
cut were mapped to reasonable locations. After applying the
v-shape cut, the lateral boundary of the breast was well de-
fined and the remaining image showed decent signal intensity
for the next chest wall muscle exclusion procedure.

2.B.3. Exclusion of residual chest wall muscle

After applying the V-shape cut and excluding the chest
area using the subject’s specific chest model (the last col-
umn images shown in Fig. 3), one example of the residual
breast image is shown in Fig. 4(a). Since the chest template
was mainly used to exclude the lung tissue, the chest wall
muscle still remained on the resulting image and needed to be
removed. The search of the chest wall muscle was confined
within 15 mm from the posterior boundary [the highlighted
area in Fig. 4(a)]. This thickness was decided based on the
consideration to cover the entire muscle, and not cover ex-
cessive breast tissue that can lead to increased segmentation
difficulty. The choice of 15 mm worked well for all analyzed
cases.

In general, there is a strong contrast between the chest wall
muscle and the adjacent fatty tissues, and edge detection is
able to detect such intensity contrast. In the present study,
the Canny edge detection method20 with the threshold of 0.2
was applied [Fig. 4(b)]. As shown in the figure, some edge
points belong to the breast dense tissue and not the chest wall
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FIG. 3. The coregistration process to obtain subject-specific chest model. (a) This subject has a complete chest covered within the field of view, and has
relatively small breasts in a large body with more subcutaneous body fat. (b) This subject has an incomplete chest covered within the field of view, with the
bottom of the chest cut-out and showing very dark signal intensity. The original images of the subject and the template case are shown in the first column. The
subject SNC and the template SNC images are shown in the second column. The template SNC is coregistered to the subject’s SNC image using the Demons
algorithm to obtain the deformation matrix, shown in the third column. The last column shows the obtained chest model superimposed on the original subject
image. The three body landmarks manually marked on the template are also transformed to the subject’s space for performing the V-Shape cut to define the
posterior extent of the bilateral breasts. As noted in (b), although part of chest is cut-out, the registration in the anterior part of the chest still works well and the
landmarks used for v-shape cut are mapped to reasonable locations.

FIG. 4. Procedures to define and exclude chest wall muscle. (a) The resid-
ual image after applying the V-shape cut and excluding the chest area us-
ing the subject’s specific chest model. (b) Canny edge detection method
is applied to search the edge of chest wall muscle in a confined area
within 15 mm from the posterior breast boundary. (c) Bezier curve fit-
ting is then applied to find a smooth chest wall muscle boundary. (d) The
area between this fitted curve and the posterior boundary is used to seg-
ment the chest wall muscle by using the k-means clustering (k = 3). (e)
The two lower intensity clusters (including cluster#1 and cluster#2) are se-
lected as the chest wall muscle. (f) The layer of the skin is excluded by
using gradient-based skin detection method to obtain a clean segmented
breast.

muscle, so Bezier curving fitting was then applied to find
a smooth chest wall muscle boundary [Fig. 4(c)]. The
area between this fitted curve and the posterior boundary
[Fig. 4(d)] was used to segment the chest wall muscle by us-
ing the k-means clustering (k = 3). The two lower intensity
clusters (including cluster#1 and cluster#2) were selected as
the chest wall muscle [Fig. 4(e)] and excluded. Since the cov-
ered area was small, the choice of three clusters was the most
commonly used setting. Finally, the layer of the skin was ex-
cluded by using our published gradient-based skin detection
method21 to obtain a clean segmented breast [Fig. 4(f)].

2.C. 3D segmentation framework

The scheme for segmentation of all MR slices based on the
central slice is shown in Fig. 5. After the breast region in the
center slice (the mth slice) is first segmented, the chest model
for the mth slice is then used as reference for the m − 1th slice
and the m + 1th slice. The boundary for m + 1th is used for
m + 2th; the boundary for m − 1th is used for m − 2th, etc.
The process continues superiorly and inferiorly until all slices
are segmented. The rationale is based on the fact that there is
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FIG. 5. The scheme for segmentation of all MR slices based on the central
slice. After the breast region in the center slice (the mth slice) is first seg-
mented, the chest model for the mth slice is then used as reference for the
m − 1th slice and the m + 1th slice. The boundary for m + 1th is used for
m + 2th; the boundary for m − 1th is used for m − 2th, etc. The process
continues superiorly and inferiorly until all slices are segmented.

often a high similarity and correlation between two adjacent
MR slices. Each slice is only 2 mm thick.

Figure 6 shows the segmentation results in the adjacent im-
ages in the superior (slice-44) and inferior (slice-46) direction
based on the central slice (slice-45) as the template. As shown
in the figure, the differences between adjacent slices are rela-
tively small. Especially in the chest body region, the location
of the chest wall muscle can be assumed to have a small shift
compared to the one in the neighboring slice. Figure 6 also
shows the results in the far superior (slice-20) and far infe-
rior (slice-74) directions. It can be seen that as slices move
on in both directions, the images become very different, yet

FIG. 6. The segmentation results in the adjacent images in the superior
(slice-44) and inferior (slice-46) direction based on the central slice (slice-
45). As slices move on in both directions, the images become very different,
yet the method can still yield excellent segmentation results in the far supe-
rior (slice-20) and far inferior (slice-74) directions. The images from left to
right are from slice-20, 44, 45, 46, and 74, respectively.

by starting from the middle slice and going one slice by one
slice, the method works well for the entire set of 3D breast
images.

After the segmentation of the breast region was completed
for all slices, the k-means clustering method was used to seg-
ment the fibroglandular tissue. The detailed procedures have
been published in our previous work.22 Briefly, a bias-field
correction algorithm combining N3 and FCM was applied to
correct for the signal intensity inhomogeneity, and k-means
clustering (k = 6) was used to separate the fibroglandular tis-
sue (the lower three intensity clusters) and the fatty tissue (the
higher three intensity clusters). From our experience, since
the image contrast between fat and fibroglandular tissue was
very strong, the typical setting was to use a total cluster of N
= 6 (3 for fat, and 3 for fibroglandular tissue); or use a total
cluster of N = 5 (2 or 3 for fat, and 3 or 2 for fibroglandular
tissue).3, 7, 22

2.D. Evaluation metrics

An experienced radiologist evaluated the accuracy of the
segmented breast and made corrections manually by using
a graphical-user-interface (GUI) program developed inhouse.
Two types of corrections were made: (1) inclusion: to select
the breast tissues that were missed by the algorithm; (2) exclu-
sion: to remove the tissues that were wrongly included as part
of the breast. The radiologist only needed to drag the wrongly
segmented boundary near the correct location, and the pro-
gram would perform fitting to find the correct boundary. The
total voxels that were marked as inclusion and exclusion cor-
rections were independently recorded. The % difference be-
tween the algorithm-measured volume and the radiologist-
corrected volume was calculated. In addition, in order not to
have the inclusion and exclusion errors cancel each other out,
the total error percentage was calculated as the total corrected
voxels (inclusion + exclusion) divided by the total number of
breast voxels from the true breast region determined by the
radiologist.

Since one main purpose for developing the automated
breast segmentation methods is for density analysis, the total
fibroglandular tissue volume analyzed based on the breast
region segmented by the computer algorithm and the ground
truth corrected by the radiologist was quantitatively com-
pared. Similarly, the inclusion and exclusion errors were
determined. The % difference of the fibroglandular tis-
sue volume measured within the algorithm-measured and
radiologist-measured breasts were calculated, and the total
error by considering the additive effect of inclusion error and
exclusion error was calculated.

3. RESULTS

Figure 7 shows the segmentation results in four cases with
different breast shapes and density patterns using the pro-
posed method. The two cases shown in Figs. 7(a) and 7(b)
have a high density, with fibroglandular tissue close to the
chest wall muscle. Figure 7(c) shows one case with moder-
ately dense breast and Fig. 7(d) shows one case with a low
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FIG. 7. The segmentation results in four cases with different breast shapes
and density patterns. (a) and (b) Two cases with a high density and fibrog-
landular tissue close to the chest wall muscle; (c) one case with moderately
dense breast; (d) one case with low density.

density. The results demonstrate that our breast segmentation
method worked well, and that the chest template randomly se-
lected from one of these 31 subjects could be used to detect
the breast region in all other subjects with different breast and
body shapes. The results also show that our chest wall muscle
detection method worked well to exclude the muscle while
preserving fibroglandular tissues nearby.

The proposed method was implemented in MATLAB and
run on a laptop computer with the Intel Core i7 2.5 Ghz CPU
and 8 GB RAM. After the template was generated, all other
procedures were fully automatic without the need of any op-
erator intervention. The execution time for analyzing cases
with the resolution of 384 × 384 × 90 ranged from 2 to
4 min. The proposed method can be further speeded up by
at least 3–4 times with GPU implementation on C/C++.

Figure 8 shows four examples of the imaging slices with
wrong segmentation that need correction. Figures 8(a) and
8(b) have the fibroglandular tissues closely connected to the
chest wall muscle. As indicated by the arrows, although the
fitted chest wall muscle boundary presents a smooth contour,
some part of the chest wall muscle was mistakenly included
into the breast region. These required “exclusion correction,”
and the radiologist needed to exclude them using the correc-
tion program. Figure 8(c) shows a case that needed “inclusion
correction.” One part of the fibroglandular tissue connected
to the chest wall muscle was identified as chest wall mus-
cle and mistakenly excluded. The radiologist needed to in-
clude it into the breast region using the correction program. In
Fig. 8(d), some parts of fatty tissue on both breasts were
wrongly excluded by the chest model. They also required “in-
clusion correction” and the radiologist needed to include them
back to the breast region using the correction program. Since
this correction only involved fatty tissue, it does not affect the
accuracy in the segmentation of fibroglandular tissue.

FIG. 8. Illustration of the corrections done in four examples using the GUI
contour modification program by an experienced radiologist. (a) and (b) Two
cases that have the fibroglandular tissues closely connected to the chest wall
muscle. Some part of the chest wall muscle is mistakenly included into the
breast region in both cases and they need to be excluded, as “exclusion error.”
(c) One part of the fibroglandular tissue connected to the chest wall muscle
is identified as chest wall muscle and mistakenly excluded. It needs to be
included back into the breast, as “inclusion error.” (d) Parts of fatty tissue on
bilateral breasts are wrongly excluded by the chest model. They need to be
included back into the breast region, as “inclusion error.”

Table I shows the results of the breast volume segmented
using the template-based method and the results after the ra-
diologist’s correction. The whole breast volume (including
both sides, after radiologist’s correction) ranges from 376 to
1590 cm3 with a mean of 834 ± 293 cm3. The breast volume
measured by the proposed algorithm is very close to the ra-
diologist’s corrected volume, with the % difference ranging
from 0.01%–3.04% and a mean of 0.86% ± 0.72%. The vol-
ume of exclusion correction ranges from 0.28 to 46.11 cm3

with a mean of 15.16 ± 11.35 cm3. The volume of inclusion
correction ranges from 0 to 35.87 cm3 with a mean of 10.11
± 8.86 cm3. The total error percentage by considering both
inclusion and exclusion pixels ranges from 0.05% to 6.75%
with a mean of 3.05% ± 1.93%.

Table II shows the results of the fibroglandular tissue vol-
ume measured based on the breast segmented using the auto-
matic template-based method and the radiologist’s corrected
breast. The volume of the fibroglandular tissues (including
both sides, within radiologist-measured breasts) ranges from
41 to 513 cm3 with a mean of 180 ± 116 cm3. The fibroglan-
dular tissue segmented within the breast region determined
by the algorithm and the radiologist are also very close, with
the differences ranging from 0.02% to 2.52% and a mean
of 1.03% ± 1.03%. The exclusion volume ranges from 0.18
to 27.35 cm3 with a mean of 3.48 ± 5.17 cm3. The inclu-
sion volume ranges from 0 to 9.35 cm3 with a mean of 1.51
± 1.93 cm3. The total error percentage by adding the inclu-
sion and exclusion pixels ranges from 0.16% to 11.8% with
a mean of 2.89% ± 2.55%. The largest total error of 11.8%
is seen in case #22 (in Table II), but interestingly, the% dif-
ference between the two methods was only −0.73%. In this
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TABLE I. The breast volume segmented by using the proposed template-
based algorithm, the corrected volume by an experienced radiologist, the %
difference, and the inclusion, exclusion and total % errors.

Breast Breast Inclusion Exclusion
vol (cm3) vol (cm3) Difference correction correction Total

Cases algorithm radiologist % vol (cm3) vol (cm3) error %

1 704 706 − 0.22% 14.1 12.6 3.78%
2 1292 1287 0.36% 13.8 18.5 2.51%
3 1545 1540 0.30% 3.08 7.74 0.70%
4 1087 1083 0.35% 14.3 18.2 3.00%
5 730 718 1.65% 8.24 20.1 3.95%
6 561 550 1.88% 2.33 12.7 2.72%
7 747 739 1.07% 2.41 10.3 1.73%
8 898 881 1.89% 16.9 33.5 5.72%
9 802 801 0.11% 12.7 13.5 3.27%
10 912 905 0.83% 24.2 31.6 6.17%
11 934 932 0.29% 19.7 22.3 4.51%
12 817 810 0.89% 6.98 14.2 2.61%
13 784 779 0.53% 24.2 28.4 6.75%
14 343 341 0.54% 6.32 8.16 4.25%
15 1600 1590 0.64% 35.9 46.1 5.16%
16 1066 1061 0.39% 21.2 25.4 4.39%
17 734 736 − 0.19% 11.0 9.65 2.81%
18 423 418 1.05% 10.6 15.0 6.13%
19 717 702 2.11% 11.9 26.7 5.48%
20 960 953 0.77% 5.98 13.3 2.03%
21 380 376 1.09% 1.42 5.52 1.83%
22 877 890 − 1.49% 17.8 4.54 2.55%
23 949 949 0.01% 0.23 0.28 0.05%
24 912 899 1.41% 0 12.7 1.39%
25 623 624 − 0.16% 1.68 0.67 0.38%
26 441 439 0.61% 0 2.66 0.60%
27 752 759 − 1.00% 8.16 0.57 1.16%
28 1033 1033 − 0.02% 3.26 3.09 0.61%
29 868 842 3.04% 5.11 30.8 4.13%
30 686 680 0.88% 0 5.96 0.87%

Mean 839 834 0.86%a 10.11 15.16 3.05%
Stdev 294 293 0.72%a 8.86 11.35 1.93%

aThe mean % difference was calculated by considering the absolute values of the
% difference from all cases, so the undermeasured and overmeasured cases would
not have a cancellation effect.

case, the inclusion error was 9.35 cm3 and exclusion error was
8.26 cm3, and they canceled each other out leading to a close
measurement of the fibroglandular volume with a very small
error of 0.73%. This case illustrates why we need to consider
both inclusion and exclusion errors separately for a detailed
understanding about the sources of errors.

The percent density was calculated as the volume of the
fibroglandular tissue divided by the volume of the breast
(×100%, using radiologist-corrected results), which ranged
from 3.02% to 55.2%, with a mean of 23.35% ± 14.33%. The
percent density calculated using algorithm-analyzed results
were very close: 23.40% ± 14.39%. The subjects analyzed
in this study were healthy Asian women with a mean of 42
years old, and they have a higher mean percent density com-
pared to our previously reported results from normal breasts
of diagnostic patients in our institute, e.g., 17% reported in
Chang et al.3

TABLE II. The fibroglandular tissue volume segmented within the breast re-
gion obtained by using the proposed template-based algorithms and within
the breast region corrected by the radiologist, the % difference, and the inclu-
sion, exclusion, and total % errors.

Fibrogland Fibrogland Inclusion Exclusion
vol (cm3) vol (cm3) Difference correction correction Total

Cases algorithm radiologist error % vol (cm3) vol (cm3) error %

1 134.4 134.0 0.29% 0.42 0.81 0.92%
2 129.6 128.5 0.90% 1.22 2.38 2.80%
3 94.69 93.53 1.24% 0.47 1.63 2.25%
4 518.0 513.0 0.98% 2.14 7.15 1.81%
5 248.2 246.9 0.55% 0.12 1.48 0.65%
6 104.9 103.4 1.49% 0.62 2.16 2.69%
7 243.7 241.8 0.77% 1.47 3.32 1.98%
8 163.7 162.5 0.70% 0.41 1.54 1.20%
9 41.39 41.24 0.36% 0.47 0.62 2.64%
10 231.0 228.4 1.13% 1.54 4.12 2.48%
11 197.2 196.6 0.32% 0.21 0.84 0.53%
12 97.11 96.24 0.90% 1.54 2.41 4.10%
13 88.03 87.48 0.63% 0.68 1.23 2.18%
14 48.48 48.04 0.92% 1.25 1.69 6.12%
15 49.22 48.01 2.52% 1.02 2.23 6.77%
16 107.2 105.2 1.83% 0.65 2.58 3.07%
17 102.0 101.7 0.31% 1.02 1.34 2.32%
18 108.1 109.1 − 0.88% 1.85 0.89 2.51%
19 62.43 61.94 0.79% 0 0.49 0.79%
20 136.5 135.5 0.72% 1.45 2.43 2.86%
21 209.7 207.5 1.09% 2.12 4.39 3.14%
22 148.0 149.0 − 0.73% 9.35 8.26 11.8%
23 274.7 274.8 − 0.02% 0.25 0.18 0.16%
24 232.5 223.4 4.07% 2.69 11.79 6.48%
25 157.4 157.1 0.20% 0.23 0.54 0.49%
26 151.5 150.7 0.58% 1.43 2.3 2.48%
27 200.0 200.1 − 0.05% 0.91 0.81 0.86%
28 360.9 359.4 0.42% 1.39 2.89 1.19%
29 474.5 453.9 4.54% 6.77 27.35 7.52%
30 334.9 332.0 0.87% 1.57 4.45 1.81%
Mean 182 180 1.03%a 1.51 3.48 2.89%
Stdev 118 116 1.03%a 1.93 5.17 2.55%

aThe mean % difference was calculated by considering the absolute values of the
% difference from all cases, so the undermeasured and overmeasured cases would
not have a cancellation effect.

4. DISCUSSION

In this study, we report on an automatic chest template-
based method for segmentation of the breast on MRI. Most
model-based breast segmentation methods reported in the
literature use the breast as the template to initialize the
segmentation.12, 14 The breasts often have a large variability
in shape and density pattern, and it is difficult to define a uni-
versal breast template that works well for all types of breast.
The chest body region, on the other hand, often presents an
ellipse shape on breast MR images and it is much easier to fit
its contour for initial exclusion to facilitate further breast seg-
mentation. Although the entire chest body region may vary
substantially among individual subjects, the shape is similar
in the middle slice and the demons algorithm is robust enough
to achieve a good registration quality. Therefore, we propose
to use the chest body region in the middle slice as the starting
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slice to obtain the subject-specific chest model in each case.
Since the chest region from all women is similar at the middle
location, this approach can be applied to most women regard-
less of the differences in the breast shapes and body sizes.
After the chest region is defined at the middle slice, it is then
used as the reference for adjacent slices. Again, based on the
high similarity between neighboring slices, this approach has
a high likelihood of success, as demonstrated in the illustrated
case examples in this work.

Since there is no clear boundary to indicate where the lat-
eral breast ends, the initial identification of the breast region
is a challenging task. We have previously proposed to use a
V-shape cut based on thoracic spine and the lateral boundary
of pectoral muscle7 or a horizontal cut based on the sternum3

to determine the posterior boundaries of the bilateral breasts.
In this study, since the chest region that includes the three
landmarks used for V-shape cut is mapped out, they can be
easily identified and transformed to the subject’s image space
to perform the initial V-shape cut. After the V-shape lines are
determined on the middle slice, they are propagated to all im-
age slices in the entire 3D dataset. Therefore, one important
advantage of using the chest model is the ability to automat-
ically locate these body landmarks based on registration, for
each individual woman. This provides a consistent criterion
for performing this initial segmentation to define the breast
area that will be further analyzed, without the need of oper-
ator’s subjective input. Since the purpose of the V-shape cut
is to determine the lateral posterior boundary of the breast,
even if the three body landmarks are not precisely located, the
formed V-lines can still define the breast boundary reasonably
well, as in the case illustrated in Fig. 3(b).

The segmentation needs to be done slice-by-slice, which
may be time-consuming even using algorithms. The nonrigid
registration methods are often criticized as a time-consuming
process; therefore, we only apply the demons algorithm to
the middle slice. As shown in Fig. 6, since the slice thickness
is only 2 mm, the chest region has high similarity in neigh-
boring slices, and we can use the segmented chest and the
muscle for mth slice as the reference for adjacent m + 1th
and m − 1th slices. The boundary for m + 1th is used for m
+ 2th; the boundary for m − 1th is used for m − 2th, etc.
The chestwall muscle detection method is based on the sig-
nal intensity contrast between the muscle and the nearby fatty
tissue right above the muscle. On nonfat-sat images, the mus-
cle is dark and the fat is bright, so the contrast is very strong
to help determine a precise boundary. For MR images that
are acquired using different scan protocols and parameters,
the method needs to be modified. For example, if fat suppres-
sion is used, the fatty tissue will appear much darker than in
nonfat-sat images analyzed in this study, and it will be much
more difficult to differentiate them from the chest wall mus-
cle. The edge detection method used in this study may not
work well on fat-sat images.

For studies that use a smaller field of view or only contain
part of the chest region, the template used in this study may
not be valid any more. However, as shown in Fig. 3(b) case,
as long as a major part of chest is present, since the segmenta-
tion process is mainly focused in the anterior part of the chest

region, our method is still applicable. We have applied this
method and the template used in this study to several nonfat-
sat image datasets that were acquired using different imag-
ing protocols and different MR systems (GE, Siemens, and
other Philips scanners), and obtained excellent results with-
out the need of further modifying the program. This method
is based on excluding the chest region; so one critical fac-
tor that is needed for this method to work is a good con-
trast between the chest (dark intensity lung tissue), chest wall
muscle (medium intensity), and the fat breast tissues (bright
intensity). The typical nonfat-suppressed breast image has a
strong contrast to differentiate these three different tissues, so
the method is robust and the results are not dependent on the
choice of the template or the patient’s body shape and sizes.
For other datasets that use a rectangle field of view and only
cover a very small part of the chest, it may be possible to gen-
erate an appropriate study-specific template by only including
a very small part of the chest. In this case, some modifications
in the program, e.g., putting more weighting in the anterior
part of the chest, may also help, but this needs to be further
investigated.

We did a careful evaluation of the segmentation quality by
using the slice-by-slice correction done by an experienced ra-
diologist. As shown in the case examples in Figs. 6–8, our
framework by incorporating various algorithms provides a
fully automatic, robust, and fast method for breast segmen-
tation in the analyzed datasets. Specifically, we evaluated the
inclusion error and exclusion error separately to better charac-
terize the source of errors. When only the segmented volumes
were concerned, the inclusion and exclusion errors canceled
each other out, and that led to a very good estimate of vol-
ume, with a mean of <1% error in segmented breast volume
and approximately 1% error in the fibroglandular tissue vol-
ume. When comparing the inclusion and exclusion errors, the
exclusion error was seen more often with more pixels [e.g., in
Figs. 8(a) and 8(b), part of muscle was wrongly included
into the breast and needed to be excluded]. In breast seg-
mentation results summarized in Table I, of the total of 30
cases, the algorithm-estimated breast volume was greater than
radiologist’s corrected volume in 26 cases. The volume of
exclusion correction ranged from 0.28 to 46.11 cm3 with a
mean of 15.16 ± 11.35 cm3, which was greater compared to
the inclusion correction ranging from 0 to 35.87 cm3 with
a mean of 10.11 ± 8.86 cm3. The total error percentage by
considering both inclusion and exclusion pixels ranged from
0.05% to 6.75% with a mean of 3.05% ± 1.93%. This to-
tal error of 3% was still very small. Most errors were minor
and happened in the posterior breast regions where the tis-
sue contrast was lower. The three main source of errors were:
part of chest wall muscle was included into breast region
[Figs. 8(a) and 8(b)], dense tissue very close to the muscle
was excluded [Fig. 8(c)], or fatty tissue near the chest bound-
ary was excluded [Fig. 8(d)].

Since we did a slice-by-slice correction, the errors could
be carefully inspected for developing more sophisticated cor-
rection algorithms in the future. The wrong segmentation in
Figs. 8(a) and 8(b) came from the noise in chest wall mus-
cle (the bright tissues inside the chest wall muscle). In this
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method, the potential boundary points of the chest wall mus-
cle were selected using edge detection, and this might not
work well when there were artifacts inside the chest wall
muscle. In order to solve this problem, the potential bound-
ary points can be selected from the longest continuously con-
nected edge.23 The segmentation error in Figs. 8(c) and 8(d)
came from the wrong chest region exclusion. For the middle
slice, this came from the registration error to the template. For
all other slices, it might come from the suboptimal reference
of the chest region built based on previous slices. Different
solutions are needed for solving different problems, but their
pros and cons need to be carefully evaluated to find optimal
correction methods.

5. CONCLUSION

In summary, we demonstrate a new automatic chest
template-based breast segmentation method for nonfat-sat
breast MR images in this study. Unlike most of the model-
based breast segmentation methods that use the breast region
as the template, we used the chest body region as the tem-
plate. Since these reported methods were developed for dif-
ferent studies that were acquired using different MR imag-
ing protocols with different tissue contrasts, it was difficult
to make a direct comparison about their performances. The
bottom line is: before a particular method is applied, the re-
liability needs to be evaluated through careful error analysis.
The method proposed in this work is fully automatic, and can
achieve satisfactory results with small errors in cases with dif-
ferent types of breast shapes and different breast density pat-
terns. This method may provide a great tool for reliable vol-
umetric measurement of breast density based on nonfat-sat
MRI. For the fat-sat images, since the contrast near the chest
wall muscle is not as clear, the program may not work well
and will need further modification.
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