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P H Y S I C A L  S C I E N C E S

Magnetic resonance insights into the heterogeneous, 
fractal-like kinetics of chemically recyclable polymers
Sophia N. Fricke1*, Shira Haber2, Mutian Hua2, Mia Salgado1, Brett A. Helms2,3,  
Jeffrey A. Reimer1,2*

Moving toward a circular plastics economy is a vital aspect of global resource management. Chemical recycling of 
plastics ensures that high-value monomers can be recovered from depolymerized plastic waste, thus enabling 
circular manufacturing. However, to increase chemical recycling throughput in materials recovery facilities, the 
present understanding of polymer transport, diffusion, swelling, and heterogeneous deconstruction kinetics 
must be systematized to allow industrial-scale process design, spanning molecular to macroscopic regimes. To 
develop a framework for designing depolymerization processes, we examined acidolysis of circular polydiketoe-
namine elastomers. We used magnetic resonance to monitor spatially resolved observables in situ and then evalu-
ated these data with a fractal method that treats nonlinear depolymerization kinetics. This approach delineated 
the roles played by network architecture and reaction medium on depolymerization outcomes, yielding parame-
ters that facilitate comparisons between bulk processes. These streamlined methods to investigate polymer hy-
drolysis kinetics portend a general strategy for implementing chemical recycling on an industrial scale.

INTRODUCTION
The transition from a linear to a circular economy hinges on wide-
spread implementation of chemically recyclable plastics with high 
materials efficiency and low process intensity (1–3). The develop-
ment of strategies for chemical, rather than mechanical, recycling of 
plastics ensures that high-value monomers can be recovered from 
depolymerized plastic waste—ideally the original monomers, so 
that circular manufacturing becomes possible. Practical realization 
of this goal is predicated upon an ability to understand and influ-
ence the molecular mechanisms underpinning polymer circu-
larity (4).

However, tracking polymer deconstruction is fraught with the 
difficulty of disentangling concurrent swelling, diffusion, and time-
dependent reaction kinetics. To understand and control the kinetic 
factors that influence this heterogeneous process, it is necessary to 
monitor this process in situ with rigorous spatiotemporal specificity 
and adequately treat its nonlinearity. Nuclear magnetic resonance 
(NMR)—in the forms of relaxometry, spectroscopy, and imaging—
has collectively emerged as a powerful and nondestructive tech-
nique to track complex processes in situ with chemical, spatial, and 
temporal specificity (5–7). Moreover, the information gained spans 
broad length and timescales, from the order of chemical bonds in 
the angstrom range for structure determination to macroscopic vol-
umes on the order of cubic centimeters or more, and captures phe-
nomena occurring in timescales from submillisecond chemical 
exchange and diffusion to the scope of multiday reaction processes.

Here, we examine the acid-catalyzed deconstruction of polydik-
etoenamines (PDKs), exemplary circular plastics whose molecular 
engineering enables deconstruction to constituent triketone and 
amine monomers in strong aqueous acid. We varied both PDK 
cross-linking density and the acid type and measured by using 

magnetic resonance (MR) techniques the reaction kinetics. Notably, 
we find that both the rate coefficient and reaction order are, in most 
cases, time dependent. Underlying this behavior, we find that poly-
mer swelling governs the initial reaction rates and the later stages of 
reaction are dominated by molecular diffusion. All reaction rates 
decrease in time, although in a manner that is nonlinear and non-
uniform with variation of the acid anion or polymer cross-linking 
density. We present a fractal treatment of the reaction kinetics that 
neatly incorporates this nonlinearity into a rate law model.

RESULTS
PDK resins can be formulated on the basis of their constituent trik-
etone and amine monomers, similar to polyurethane and epoxy res-
ins. The diketoenamine bond undergoes hydrolysis in strong 
aqueous acid as depicted in Fig.  1 (8–10). By altering the chain 
length of the triketone monomer unit and varying the acid anion, it 
is possible to control both the activation energy and the diffusive 
transport of the aqueous reactant that determine the hydrolysis rate, 
thereby enabling the recycling of mixtures of PDK variants that have 
different properties, without relying on sorting (11). Acidolysis, 
however, is confounded by the concurrent processes of polymer 
swelling, diffusion, and hydrolytic reaction, all of which are difficult 
to disentangle because they are interdependent and vary with time. 
Nonetheless, an understanding of these phenomena separately is 
critical for rational tuning of material properties and design of the 
corresponding recycling processes.

NMR is an ideal tool to examine the phenomenology shown in 
Fig. 1 in situ because it offers chemical and spatial specificity in 
a nondestructive way (12–19). The spin–spin relaxation rate 
( R2 = T−1

2
 ) and self-diffusion coefficient (D) are NMR measurables 

that relate to polymer swelling behavior and phase dynamics medi-
ated by Fickian diffusion of water, as well as the tortuous diffusion 
pathways of released monomers and oligomer chains in an increas-
ingly porous polymer network. Localized changes in spin dynamics 
can be unambiguously mapped with imaging (20, 21). We surmise 
that swelling and diffusion strongly influence the observed rate law 
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behavior of the hydrolysis process, with swelling dominating the 
fastest early stage of the deconstruction and diffusion limiting the 
later stages of the reaction as it slows because of lack of randomiza-
tion of the system (22, 23).

Figure 2 depicts R2-weighted MR images of PDK-T403 decon-
struction in 5 M HCl. The axial images show that there is a reaction 
front that forms with high signal intensity on the outer rim of a PDK 
cylinder, clearly visible as a bright yellow ring surrounding the PDK 
that appears as a central blue disk. This reaction front, correlated 
with the swelling front of water moving into the polymer layers, rep-
resents the active area of hydrolytic bond cleavage and is present for 
the initial ~10  hours of the hydrolysis. After 10 to 12  hours, this 
swelling front has moved through the sample, and the remaining 
reaction is diffusion mediated. Figure  S1 shows the initial PDK 
swelling ratio in three different acids over time: hydrochloric acid, 
hydrobromic acid, and sulfuric acid. Bromide, as the most chao-
tropic anion studied, leads to the fastest swelling behavior by aiding 
solubility, whereas the most kosmotropic anion, sulfate, leads to the 
slowest swelling behavior by hindering solubility. Changes in R2 are 
largely attributed to the depolymerization reaction rather than the 
swelling process, as shown by a control experiment monitoring R2 
during polymer swelling (fig. S2 in the Supplementary Materials). 
Figures S3 and S4 in the Supplemental Materials demonstrate repre-
sentative R2 mapping to confirm R2 localization and point-resolved 
1H spectroscopy obtained via reaction monitoring using deuterated 
acid, wherein signal is largely attributed to solvated polymer and 
liberated, protonated triamine monomer product. The change in 
magnetic resonance imaging (MRI)–derived surface areas shown in 
Fig. 2 can be used to calculate the instantaneous rate of change of the 
relative polymer cross-sectional area over time (figs. S5 and S6).

Analysis of these data requires examination of the physical and 
mathematical rate processes underlying the depolymerization pro-
cess. For example, reaction and swelling behavior in unstirred ves-
sels is marked by spatial separation of reactants and has been 
historically addressed with fractal-like kinetics (22). Hence, we turn 
to that methodology to further our analysis of the data in Fig. 2.

We note that nonlinear and nonuniform reaction rate laws are 
consistent with transport properties reported in fields beyond frac-
tal mathematics, as is well recognized in the areas of heat transfer, 
mass transfer, and fluid mechanics. There is a rich history of work 
investigating transport and diffusion in polymer gels and networks 
(24–26). Power laws have also been used to study the problems of 
drug release from hydrogels and non-Newtonian fluid dynamics 
(27–30). The exponent in a power law describes a dimensional coor-
dinate along a spatial or temporal axis and follows directly from a 
solution to differential equations of motion obeyed by the system 
(31, 32). In the case of chemical kinetics, the molecularity of the re-
action is the physical observable typically invoked to interpret the 
meaning of an exponent value. Although it is not universally de-
scribed with fractal terminology, a noninteger exponent can follow 
logically when the effective surface area and dimensionality of a sys-
tem evolve over the course of a reaction and points to a shift from 
anisotropic to isotropic diffusion of reactants. These notions have 
been lacking in the design of chemical recycling processes for plas-
tic waste.

Fractal objects have long been known in mathematics through 
their key features of self-similarity and recursiveness upon iteration 
(33). Either generated theoretically or found randomly in nature, 
they capture patterns that are self-similar across extended length 
scales or relate parameters with nonlinear scaling through a rela-
tively simple mathematic framework involving power laws with 
noninteger exponents. However, it was not until the 1960s that the 
term “fractal” appeared to provide a formalism for the fractional 

Fig. 1. A depiction of PDK acidolysis. A cross-linked PDK network is depolymer-
ized into a triketone monomer and a tribranched amine-terminated cross-linker, as 
described in Methods. The reaction front is influenced by both swelling and diffu-
sion processes, as depicted in the lower panel. The overall reaction rate is also af-
fected by cross-linker size and the water-ordering nature of the acid anion, as 
shown in the lower right panel. The arrows for “Diffusion,” “Swelling,” and the panel 
“Reaction front” respectively represent transport of released monomers to solution, 
water into the polymer network, and the boundary between mostly reacted and 
unreacted material where opposing transport pathways and the most chaotic and 
complex dynamics occur.

Fig. 2. MRI cross-sectional images of PDK acidolysis. Images of PDK-T403 in 5 M 
HCl are weighted by R2, as described in Methods. The polymer was prepared with 
cylindrical initial geometry 8 mm in diameter and 6 mm in height, in a 10-mm NMR 
tube surrounded by approximately 1 ml of acid. Initially, there is only signal from 
the surrounding aqueous solution, and no signal from the PDK due to R2 weight-
ing. The axial images show that there is a reaction front that forms with high signal 
intensity on the outer rim of a PDK cylinder, clearly visible as a bright yellow ring 
surrounding the PDK which appears as a central blue disk. By t = 20.4 hours, the 
sample has fully deconstructed, and the final image has uniform intensity within 
the NMR tube.
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dimensionality implied by noninteger exponents in power law scal-
ing relations. This “fractal dimension” can conveniently parameter-
ize rough topologies in space and time to precisely understand 
complex processes in real-world settings (33). Here, we describe the 
implementation of the fractal-based mathematics as they are below 
applied to rate law kinetics. The fractal dimension and Hurst expo-
nent (34, 35) are used to parameterize the time dependence of the 
reaction rate coefficient and molecularity.

In classical chemical kinetics, the rate constant k does not ex-
hibit any time dependence, and the rate law and mechanism are 
consistent for the duration of the reaction. However, in diffusion-
limited, heterogeneous systems, it has been observed that k(t) ~ D(t), 
where D represents the self-diffusion coefficient, and the measured 
values of both coefficients may vary in time (22, 36). In this case, k(t) ∝ 
t−h, and therefore, one may plot the instantaneous rate coefficient 
versus time as

where 0 ≤ h ≤ 1, and is the so-called Hurst exponent (35). In the 
classical limit, h = 0 because k is constant. Conversely, in diffusion-
mediated reactions that are confined within non-Euclidean, fractal 
spaces, h > 0 and k is time variant. Furthermore, in systems with 
complex transport dynamics reflecting concurrent molecular and 
thermodynamic processes, h may also vary in time; this is termed 
“multifractal” behavior and indicates a changing fractal dimension-
ality (37–39).

In the three spatial dimensions of Euclidean geometry, it is im-
mediately evident that the fractal dimension describes how surfaces 
or objects fill space, and nonlinear scaling between features such as 
surface area and volume may be conveniently expressed with a pow-
er law function (40). By extension, if we consider a temporal rather 
than spatial dimension, such as a time series, its fractal dimension 
will convey the jaggedness between time points (41). An idea of cen-
tral importance is that the fractal dimension of a time series, and by 
extension the Hurst exponent, reports the degree to which a process 
is deterministic or random (42). The Hurst exponent relates to an 
autocorrelation function for a process in time with a power spec-
trum, P(f), displaying exponential frequency dependence as

where f represents frequency and β is a scaling exponent (43, 44). 
Notably, for Brownian motion, β = 2 and h = (β− 1)∕2 = 0.5 (45, 46). 
In general, lower values of h indicate higher fractal dimensionality 
or jaggedness in a time series. The so-called fractal dimension can 
be calculated as n − h for an n-dimensional system. Multifractals 
involve more than one exponential parameter and as a result reflect 
the presence of multiple phenomena or processes taking place con-
currently in a system. It should be noted that variation of h in time 
is evidence of multifractal behavior in the system.

For a bimolecular reaction to take place, two reactant molecules 
must collide. As they react, they become depleted and the reactant 
pairs decrease in time. Classically, it is assumed that the ensemble 
regains randomness (i.e., spatially distributed reactants) throughout 
the process. However, in the diffusion-limited case, it may become 
apparent that mixing cannot compensate for reactant pair depletion, 
and the topology of the reaction gains importance. A convenient 
way to parameterize this is with the order parameter, F, defined as

which is the ratio of the initial rate, k0, to the steady-state value of k 
at long times, kss, achieved in low-dimensional systems, only after 
“self-ordering” is established. Self-ordering is understood as the 
spontaneous organization of an open, nonequilibrium system with-
out external influence. In heterogeneous reactions, the reaction rate 
increases with the size of the reaction interface (47). In other words, 
the rate per unit surface area is constant. Upon inspection, it is also 
immediately evident that noninteger molecularity in the integrated 
rate law of a chemical reaction can be described by a fractal dimen-
sion or with the Hurst exponent. Thus, the rate coefficient can be 
plotted versus time on a log-log scale to reveal the Hurst exponent, 
h, as the slope. However, if the reaction rate coefficient k also chang-
es nonlinearly in time, the time dependence of h can be revealed in 
turn by plotting the instantaneous rate of change of k. This is dem-
onstrated in figs. S5 and S6, where imaging data as shown in Fig. 2 
are presented as rates for PDK-T5000 decomposition in 5 M H2SO4.

Nonclassical behavior increases with diminishing 
cross-linking density
First, we investigated the effect of cross-linking density on the depo-
lymerization kinetics. As shown in Fig.  3A, the polyetheramine 
cross-linker with lowest molar mass, T403, behaved classically with 
a rate coefficient that was constant in time. However, we found that 
for cross-linkers with increasing molar mass, which produces a PDK 
elastomer with lower cross-linking density, the fractal-like proper-
ties of the PDK hydrolysis reaction became more apparent (tables S1 
and S2). These fractal properties emerged for unstirred reaction me-
dia via two-dimensional (2D) MRI, where the anisotropy of the 
PDK specimens—i.e., cylinders 8 mm in diameter and 6 mm in 
height, placed in a 10-mm NMR tube with acid—constrained the 
diffusion-limited, heterogeneous reaction in our observational 
window. Broadly, Fig.  3 demonstrates that decreasing the cross-
linking density of the PDK network causes a reduction in the reac-
tion rate. More specifically, Fig.  3A shows that cross-linker T403 
with the lowest molar mass does not display fractal characteristics, 
as the rate coefficient is approximately constant in time; cross-linker 
T3000, with an intermediate molar mass, demonstrates a rate coef-
ficient that linearly decreases in a manner adequately fitted by Eq. 1 
in Fig.  3B. However, cross-linker T5000, with the highest molar 
mass, exhibits a rate coefficient that varies nonlinearly on the log–
log scale in Fig. 3B, indicating multifractal behavior. It is remarkable 
that even in such a simple, self-similar system, these divergent be-
haviors become evident in the analysis of their deconstruction be-
haviors using MR methods.

With intermediate cross-linking density of PDK-T3000, initial 
experiments display a roughly bimodal distribution of rate coeffi-
cients that reflect a reaction that is fastest during the initial swelling 
phase and slows until hydrolysis completion. This is manifested as a 
discontinuity in a log-scale plot of NMR-derived PDK area versus 
time, shown in figs. S5 and S6, and appears with binary, quaternary, 
and ternary-level image thresholding.

Figure 4A shows the early- and late-stage rate coefficients (kearly 
and klate, respectively) fit with classical first-order kinetics equations 
for the hydrolysis of PDK-T3000 in 5 M HCl. As the number of MRI 
thresholding levels increases from binary to quaternary, the fitted 
rate constant tends to decrease due to detection of finer detail in the 
MRI signal. Nonetheless, all three thresholding methods report the 
same trend of rate that decreases in time: In all cases, kearly > klate.

logk = − hlogt + constant (1)

P(f ) ∝ f −β (2)

F = k0 ∕kss (3)
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To assess continuously changing rate coefficients, as well as to 
identify the Hurst exponent h, we test the temporal fractal reaction 
behavior by plotting the instantaneous rate coefficient, k, versus 
time on a logarithmic scale, as written in Eq. 1, and the results are 
shown in Fig. 4B. Here, the hydrolysis of PDK-T5000 in 5 M sulfuric 
acid data are shown in comparison to the swelling ratio. By plotting 
the instantaneous k, it is clear that the rate changes continuously 
even during the most rapid, swelling-mediated part of the reaction. 
By fitting k as a function of time on the log–log scale, it is possible to 
extract h as 0.74 ± 0.094.

Table S1 in the Supplementary Materials shows the combinations 
of PDK molecular weight variant and acids that were tested, as well 
as the anticipated effect of the acid anion on the relative rate of hy-
drolysis. As illustrated in Fig. 1, kosmotropic (i.e., water ordering) 
ions that tend to order water also effectively slow the depolymeriza-
tion process. The sulfate ion is the most kosmotropic anion of the 
series considered, and therefore leads to the lowest degree of poly-
mer solvation, highest ordering of reactant species present, and 
slowest overall reaction.

Varying acid anion affects water–polymer interactions that 
mediate depolymerization
Next, we explore the effect of varying the acid anion on the depoly-
merization rate. By changing the solvation shell, this manipulates 
the effective surface area to which the reaction is initially con-
strained, thus leading to the multifractal behavior that is illustrated 
in Fig. 5. In general, multifractal behavior reflects numerous forces 
driving the system. Here, multifractal analysis can shed light on nu-
merous complex features during PDK acidolysis, to the extent that 
some aspects of the process are characterized by cascades of scaling 
phenomena. These scaling phenomena affect the exponent in the 
power law and arise from physical means such as diffusion, convec-
tion, turbulence, et cetera. The same forces acting over an extended 
range of space- or timescales yield self-similar distributions, so we 
expect to observe fractal behavior. Multifractal behavior is evident if 
the Hurst exponent changes in time, as shown in Fig. 5B for PDK-
T5000, calculated from the set of k(t) reported in Fig.  5A. These 
changes are due to spatial inhomogeneity of reactant distribution 
between steps of the reaction, which hinders reactant pairing, lead-
ing to nonclassical behavior and variability between experiments 
that can manifest as lack of reproducibility. The sulfuric acid data 
appear to be time shifted because this acid, with the slowest kinetics, 
leads to swelling for longer times than HBr or HCl. Additional cal-
culated h and F values for PDK hydrolysis are tabulated in table S2.

These results are relevant to concepts of molecular memory and 
fractional theories of Brownian motion, as discussed in (48). Frac-
tional advection diffusion reaction models may provide valuable 
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Fig. 4. Classical versus fractal kinetics analysis. (A) A comparison of classical fitting of PDK-T3000 in 5 M HCl rate constants with three levels of MRI thresholding for 
early (kearly) versus late (klate) reaction with unconstrained reaction order. In all cases, the experimental fits demonstrate a consistent trend of decreasing rate as the reac-
tion progresses in time. (B) A test of temporal fractal reaction rate behavior for the first 5 hours of hydrolysis of PDK-T5000 in 5 M H2SO4. PDK-T5000 has the lowest cross-
linking density of the materials tested. The left ordinate reports the log of instantaneous k (blue diamonds), compared to the normalized volumetric swelling ratio on the 
right ordinate (blue circles). These 5 hours are the fastest of the overall reaction, as rate is an extensive property dependent on effective surface area. Fitting k(t) according 
to Eq. 1 yields h = 0.74 ± 0.094.

Fig. 3. Classical versus nonclassical rate behavior for different cross-linker sizes. 
Log–log plot of instantaneous k versus time for PDK hydrolysis in 5 M H2SO4 for PDK-
T403, PDK-T3000, and PDK-T5000 after the initial swelling. (A) PDK-T403 (yellow) 
does not display fractal character as k remains classically time-independent; h~0 if 
fit to Eq.  1. (B) PDK-T3000 (magenta) displays nonclassical fractal character as 
h = 0.32 ± 0.032 and fits well with Eq.  1. PDK-T5000 (blue) displays multifractal 
character as the decay in logarithmic k is nonlinear and cannot be fit with Eq. 1.
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methods for anchoring these experimental results in theory; how-
ever, their implementation is not necessarily straightforward in the 
context of evolving fractal pore networks and surface catalysis. This 
topic is considered in greater detail in the Discussion.

Increasing fractal dimension reveals diminishing 
configurational anisotropy
Water diffusion in the initial swelling front appears to be 1D with 
radial symmetry around the PDK surface for the initial stage of re-
action, as demonstrated in Fig.  2. As hydrolysis begins to occur 
while swelling moves radially inward, the roughness of the polymer 
surface increases, leading to a corresponding increase in the effec-
tive dimensionality and surface area for hydrolysis as shown in 
Fig. 5B. This can provide a physical interpretation of a noninteger 
exponent in the rate law. Moreover, this observation is consistent 
with a system whose effective surface area and dimensionality evolve 
over the course of a reaction and points to a shift from anisotropic to 
isotropic diffusion of reactants.

Relaxometry and self-diffusion unravel macroscopic 
molecular dynamics
This shift toward isotropic molecular motion as the PDK system 
evolves from polymer, to mixed chain-length oligomers, then to 
monomers in aqueous solution is reflected in the time-resolved 
measurement of spin-spin relaxation, where T2 = R−1

2
 , and D, the 

self-diffusion coefficient as determined by Carr–Purcell–Meiboom–
Gill (CPMG) and pulsed gradient spin echo (PGSE) experiments, 
respectively. From the self-diffusion coefficient, the tortuosity (τ) 
can be calculated as

as described in (49), where Deff(t) is the effective, time-dependent 
self-diffusion coefficient. Tortuosity can thus be understood as the 
ratio of free to restricted diffusion within a system and is immedi-
ately related to the entanglement of a polymer network. Values for 
T2(t), Deff(t), and τ(t) are presented in Fig. 6 for PDK-T5000 decon-
structing in H2SO4 and HBr, respectively. The shortening of R2 
throughout the hydrolysis and sharpening into two distinct envi-
ronments reflects increasing molecular mobility as the monomer 
product is produced in Fig. 6A. The initial broad distribution of R2 

values represents polymer swelling when the system is maximally 
heterogeneous in terms of macroscopic phases.

Likewise, the decrease in bulk diffusivity and corresponding in-
crease in tortuosity after 2 hours reflects incorporation of the trike-
tone monomer unit into the measured aqueous environment, 
as illustrated in Fig. 6 (B and C). The initial value of Deff (for t < 
2 hours) measured in the PGSE experiment primarily reflects the bulk 
diffusion of water, when the molecular tumbling is the most unhin-
dered and least tortuous. As the monomer concentration increases 
in solution, flow paths become more irregular, and tortuosity in-
creases as diffusivity drops. After the saturation point has been 
reached, Deff and τ reach a steady state; additional insoluble product 
precipitates and settles to the base of the reaction vessel.

Here, we note that the fractal model provides parameters that 
better describe the acidolysis process than “k”—T2 and D measure-
ments do not adequately describe the reaction kinetics and are pri-
marily provided to aid with interpretation of the qualitative physical 
meaning of the fractal model parameters. In the industrial setting 
where the progress or completeness of a depolymerization reaction 
is important for efficient materials recovery, it is desirable to identify 

τ(t) = DH2O
∕Deff(t) (4)

Fig. 5. Fractal analysis of nonlinear acidolysis kinetics. (A) The instantaneous rate coefficient, k, versus time for PDK-T5000 deconstructing in 5 M HBr (light blue), HCl 
(medium blue), and H2SO4 (dark blue) acid solutions after the initial swelling phase. Data were plotted according to Eq. 1 in the text. (B) The PDK-T5000 Hurst exponent 
and (C) fractal dimension change with time according to MRI data and Eq. 1. The sulfuric acid data appear to be time shifted because this acid, with the slowest kinetics, 
leads to swelling for longer times than HBr or HCl and gives rise to the largest solvation shell. The graphics in (C) aid interpretation of the changing fractal dimension, in-
dicating evolution from roughly 2D, anisotropic initial topography and dynamics toward 3D, isotropic topography and dynamics upon completion.

Fig. 6. In situ NMR relaxometry and diffusometry of PDK acidolysis. (A) Time-
resolved measurement of T2 during the hydrolysis of PDK-T5000 in 5 M H2SO4. 
Laplace inversion was accomplished with the Lawson and Hanson algorithm in the 
Prospa software; the color bar indicates amplitude of the contour plot on an arbi-
trary scale. Time-resolved measurement of Deff and τ during the hydrolysis of PDK-
T5000 in 5 M HBr in (B) and (C), respectively. Deff was fit with a monoexponential to 
reflect the average, bulk diffusion of the triketone monomer and water in solution 
together; the shaded region of the plot reflects error. The graphics connect relax-
ometry, diffusometry, and tortuosity to the analysis of changing fractal dimension 
in Fig. 5C.
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a metric that offers 1:1 correspondence with the reaction progress 
and changes monotonically between start and end points. This is 
something that the parameters from the fractal analytical model (h 
and F) provide and are further desirable because they do not require 
observation of the entire reaction to be measured. To measure h, one 
must only record the instantaneous rate of the reaction between two 
successive time points. To measure F, one must record only the ini-
tial and final (equilibrium) rates.

Our measured values of T2 and D are somewhat variable (be-
cause of internal gradients in magnetic field, temperature, B0 or ra-
dio frequency (rf) field inhomogeneity, experimental parameters, 
the part of the spectral density that is sampled, among other things) 
and therefore are poor descriptors of the process because there lacks 
a 1:1 correlation between the absolute value obtained from different 
instruments and the reaction progress. Thus, to draw direct com-
parisons of the depolymerization in differing media by plotting a 
“single number” from each experiment over time, T2 and D are poor 
choices because their shifts between resolved values and broad 
distributions—reflecting heterogeneity, among other things—makes 
developing ubiquitous analysis strategies challenging and motivates 
the implementation of alternative parameters such as h and F pro-
posed here.

DISCUSSION
It is critical to develop experimental and analytical methods to char-
acterize polymer deconstruction with chemical, spatial, and tempo-
ral resolution. The limitations of classical kinetics fitting approaches 
are well documented (50) and are immediately apparent when the 
reaction order and the molecularity are unconstrained and vary 
throughout heterogeneous reactions. Moreover, other commonly 
measured NMR parameters, such as T2 and D, fail to adequately 
capture the complexities of evolving polymer systems.

Fractals and multifractals are useful mathematical tools for dis-
entangling complex scaling relations in data because one can ap-
proximate both the spatial topology of a polymer as well as the 
temporal behavior of a heterogeneous chemical reaction. The prin-
cipal goal of this work is to present strategies to report, then treat, 
the nonlinearity in the process of tuning acidolysis reactions by 
variation of parameters such as the molecular weight of monomer 
units and the choice of acid anion. In the present PDK acidolysis 
study, we find that the hydrolysis rate coefficient decreases with 
time. The fitted reaction order also tends to be noninteger and de-
creases with time. A key correlation revealed by our analyses is that 
polymer deconstruction reactions constrained to irregular surfaces 
may occur at rates described by fractals evolving in time.

This approach can be used with any instantaneously calculated 
reaction rate coefficient, k. Here, k was derived from the changing 
relative reactant area from MR images, but the fractal analysis meth-
od for evaluating reaction kinetics can also be applied to 1D or 2D 
NMR spectra, microscopy, or intensity data from any other spec-
troscopy (such as ultraviolet-visible, infrared, etc.) in which the in-
tensity changes of a given resonance is indicative of a reaction 
process. Therefore, we propose that this could be a widely useful 
method that is not limited to imaging data.

We note that MRI and relaxometry provide convenient ways of 
localizing and detecting a reaction front, respectively, if an appropri-
ate contrast parameter can be identified for a given system and if this 
information is valuable in a given context. These findings are 

tempered by the recognition that the broader utility of an MRI-
based kinetics analysis is limited to the scope of comparisons be-
tween MRI instruments. Image thresholding is sensitive to 
fluctuations in relative signal intensity, which may limit the com-
parative robustness of this analysis with, for example, high Q MRI 
probes that are susceptible to detuning as the ionic concentration of 
the strong acid changes. Moreover, it is possible to incorrectly attri-
bute phenomena arising from different regions of a spatially hetero-
geneous sample as homogeneously nonlinear behavior. Thus, care 
must be taken with the interpretation of these results, and the con-
tinued development of experiments that provide resolution of spa-
tially and temporally inhomogeneous observables is warranted. It is 
beneficial to compare results with independently performed relax-
ometry, diffusion, and reaction monitoring experiments from other 
instruments to gain a broad understanding of the process of poly-
mer deconstruction as a whole. We have attempted to do so herein.

Comparison of experimental data with numerical simulations 
can further guide this process. Polymers are known to be fractal ob-
jects with self-similarity in length scales ranging from the size of the 
monomer(s) to the total chain length (33, 38, 51). However, by defi-
nition (34, 37, 39), fractal objects may be categorized as random or 
nonrandom spatial or temporal patterns. While this very fact sug-
gests that there may exist a mathematical relationship linking spatial 
and temporal objects, this work only attempts to demonstrate the 
fractal characteristics of the temporal process of depolymerization 
kinetics. On the basis of literature knowledge of polymers as arche-
typal fractals, we reveal a connection between objects exhibiting 
spatial fractal structures while presenting dynamic processes with 
fractal kinetics in time—an intriguing link between structure and 
dynamics.

Molecular self-diffusion is a central phenomenon behind this 
correlation, both of water in restricted environments and of the 
polymer chains themselves. To rigorously prove this connection be-
tween spatial and temporal fractal-like behavior, we posit that the 
reaction-diffusion equation must be solved for the relevant system 
with time-dependent, non-Euclidean boundary conditions. An ex-
emplary modified reaction-diffusion equation may be given by the 
O’Shaugnessy and Procaccia (OP) model (52, 53), but the time-
dependent boundary conditions are nontrivial to describe and im-
plement. These topics are the subject of current and crucial works. 
Broadly, though, we shall provide a holistic sketch of the results that 
consideration of this equation might yield. Spherical Bessel func-
tions are solutions for the cylindrically symmetric geometries we 
have considered here, assuming that the boundary conditions are 
Euclidean (54). However, these solutions are modified by the restric-
tion of fractal pore boundaries that are not monodisperse (48, 55–58) 
and must therefore be integrated over in the range present in the 
heterogeneous pore network. Moreover, because the pore network is 
also deconstructing in time, the time-dependent amplitudes of pore 
sizes must be weighted accordingly.

It is important to note that within suitably restricting pore net-
works, the motion of water is non-Brownian, which manifests as a 
velocity autocorrelation function with a long-time tail (59), al-
though the deconstruction of the polymer network serves to remove 
restriction and permit additional free, Brownian modes of aqueous 
self-diffusion. It is also nontrivial to assign the time-dependent am-
plitudes for the linear combination of these distinct modes of aque-
ous diffusion that exist in superposition with each other for the 
entirety of the observational window.



Fricke et al., Sci. Adv. 10, eadl0568 (2024)     3 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 9

If the various D values were known, it may be possible to solve the 
OP model for k(t) and extract h(t); however, there is yet another fore-
seeable complication. The system we consider has diffusive compo-
nents for water, polymer, and deconstructed polymer fragments. 
These components may not necessarily be resolved from each other. 
For example, free water is subject to simple Brownian diffusion, as 
discussed above, and represents the highest frequency moiety; cor-
related (and hence slower) restricted diffusion of water may not be 
spectrally resolved from the free diffusion of released monomers. 
Consideration of polymer and oligomer diffusion, which may be 
treated with reptation, Rouse, and Zimm models of polymer dynam-
ics (51), describes the low-frequency modes of diffusion that are dif-
ficult to disentangle from each other experimentally. Nonetheless, it 
is essential to discern the accurate range and assignment of D values 
for the system of reaction–diffusion equations for numerical simula-
tions to validate the fractal kinetics model presented here.

In addition, automation of image thresholding and segmentation 
is a key step in the analytical workflow that upcoming work 
must address to increase robustness, as the parameters in the re-
sulting rate power law are highly sensitive to small changes in the 
segmented image intensity. Thus, we recommend that improve-
ments in image segmentation algorithms be considered for future 
implementation.

A grand challenge of the present global economy is to transition 
from a linear flow of materials, which depletes and squanders re-
sources, to sustainable processes that leverage resource circularity. 
This paradigm shift will rely on widespread implementation of 
chemically recyclable plastics with high materials efficiency and low 
process intensity. To adopt these materials on the industrial scale, it 
is necessary to first understand the phenomena that influence their 
recycling properties, and then to develop robust metrics that suc-
cinctly describe these phenomena and properties. To this end, we 
report a fractal method for tracking polymer recycling that ade-
quately captures deconstruction nonlinearity, yet directly yields 
straightforward numeral parameters for immediate analysis. These 
capabilities provide much needed tools to enable and perfect chem-
ical recycling processes for mechanically processed plastic waste 
that are heterogeneous throughout their deconstruction in materi-
als recovery facilities.

MATERIALS AND METHODS
Experimental design
The principal objective of this study was to monitor the PDK depo-
lymerization process depicted in Fig. 1 and to track the macroscopic 
reaction kinetics through MRI, relaxometry, and diffusometry. PDK 
elastomers were synthesized by ball-milling a triketone monomer 
(1,10-​bis(2-hydroxy-4,4-dimethyl-6oxocyclohex-1-en-1-yl)decane-
1,10-dione) (8) with tribranched amine-terminated polypropylene 
glycol cross-linkers T403, T3000, and T5000 (Huntsman), whose 
molar masses are nominally 403, 3000, and 5000 g mol−1, respec-
tively. A detailed description is provided in the “PDK synthesis” sec-
tion of the Supplementary Materials. Acids were prepared in 5 M 
concentration of HBr, HCl, and H2SO4. These chemicals were ob-
tained from Sigma-Aldrich and used as received.

NMR relaxometry measurements were performed at room tem-
perature with an NMR-MOUSE (Mobile Universal Surface Explorer) 
PM25 0.3 T unilateral magnet (13, 60) and a Magritek Kea II spec-
trometer at a 1H resonant frequency of 13.11 MHz. A CPMG pulse 

sequence (61, 62) was used to detect R2 relaxation and fit with a 
Laplace inversion algorithm in Prospa v3.61 software from Magritek 
(Malvern, PA). For all experiments, π/2 rf pulse lengths were 2.5 μs, the 
delay between π rf pulses was 55 μs, 1500 spin echoes were obtained for 
CPMG detection, and the repetition time for signal averaging was 2.4 s 
to sum 128 CPMG transient signals. To cancel artifacts arising from 
pulse imperfections, the initial π/2 rf pulse and the receiver were cycled 
between +x and −x phase while holding the π rf pulse phase constant 
at +y . Laplace inversion was accomplished with the Lawson and 
Hanson algorithm in the Prospa software, with a smoothing value of 
0.9 chosen by minimizing χ2 without oversmoothing.

Imaging and PGSE experiments were carried out with a Pure Devices 
0.55 T Magspec magnet interfaced to Drive-L RF-100 and Gradient-600 
amplifiers and an actively damped Q probe (Pure Devices GmbH, 
Germany), at a 1H resonant frequency of 24.36 MHz, and tempera-
ture controlled at 29°C. Images were acquired using a standard spin 
echo pulse sequence with an echo time of 5 ms and a repetition time 
of 5T1 = 1 s for the 5 M strong acids, to maximize signal from the 
aqueous acid and minimize signal from solid PDK with R2 weighting. 
This was achieved in the standard gradient spin echo sequence by 
making the echo time long enough such that signal intensity only 
arose from the long R2 component (20). When the echo time is long 
relative to the fast R2 parts of the sample, only aqueous parts with 
slow R2 relaxation will retain sufficient phase coherence in the delay 
before the refocusing pulse. This was invoked to create “blank space 
images” in which bright parts correspond to bulk water and dark 
parts correspond to polymer. After thresholding, inverting the bright-
ness ordering of the bins creates an effective image of the polymer. A 
10-mm square field of view was chosen, corresponding to a 64 × 64 
sampling grid with a slice thickness of 5 mm for axial images cen-
tered on polymer cylinders 6 mm in height and 8 mm in diameter 
placed in approximately 1 cm3 of acid. Zero-filling interpolated the 
square pixel resolution from 156.2 to 39.1 μm (20) The PGSE experi-
ments were carried out with a 10-ms echo time, 2.5-s repetition time, with 
the diffusion-encoding b-value ramped from 2 × 109 to 10 × 109 s m−2 
to maximize sensitivity to aqueous diffusion while minimizing de-
tection of the slower modes of polymer diffusion.

Localized spectroscopy and R2-mapping experiments were per-
formed with a 9.4-T Bruker Avance Neo spectrometer equipped 
with a Micro 5 microimaging probe, at a 1H resonant frequency of 
400 MHz, using ParaVision 360 v3.2 software. Temperature was 
held constant at 20°C. Multislice, multiecho (MSME) experiments 
were conducted for R2-mapping, and point-resolved spectroscopy 
experiments provided localized 1H spectra. Voxel sizes were 1 × 2 × 
2 mm (X-Y-Z), with 32,768 points collected during acquisition 
times of 262 ms, with a bandwidth of 125 kHz, a dwell time of 4 μs 
for spectral resolution of 1.91 Hz per point, 10-s repetition time, 15-ms 
echo time, and 128 scans for signal averaging corresponding to 
20-min experiments. Square images were acquired with 256 × 256 
points within a 10-mm by 10-mm field of view, and eight slices with 
a slice thickness of 1 mm. For MSME experiments, the echo time 
was varied from 4 to 64 ms in 16 steps incremented by 4 ms, and 
repetition time was decreased to 1.5 s to maintain a total experiment 
time of 20 min.

Statistical analysis
Data analysis and fitting were completed in MATLAB (MathWorks, 
Natick, MA). The workflow for kinetics analysis of imaging data in-
volves (i) load the raw image data and stack it in a 3D array (two 
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dimensions are spatial; the third dimension is time); (ii) convert the 
3D image array to a segmented 3D array with an inverted intensity 
scale (thresholding methods are binary, with bins =  0, 1; ternary, 
with bins = 1, 2, 3; and quaternary, with bins = 1, 2, 3, 4); (iii) sum 
the area in each 2D image; collapse to a vector of area as a function 
of time, and rescale so the initial point matches for all three methods 
(binary ➔ 1; ternary ➔2 + 3; quaternary ➔2, 3, 4); (iv) calculate 
the instantaneous rate as the derivative between points; and (v) plot 
the log of k versus the log of time. A linear fit indicates a consistent 
fractal dimension, and h is extracted by fitting the slope. If the time 
variation of k is nonlinear, then the derivative �k∕�t can be calculated 
to plot both h and the fractal dimension over time. The fractal di-
mension is calculated as 3 − h for a 3D system, or 2 − h for a 
2D system.

It is noted that binary thresholding does not provide sufficient 
detail for fine signal changes, leading to steep drop-offs and sudden 
jumps in the calculated relative PDK area over time. On the other 
hand, quaternary (four-level) thresholding is highly sensitive to 
noise and other small variations in signal intensity as the reaction 
proceeds and the relative signal increases from the deconstructing 
and swelling polymer. Therefore, ternary (three-level) thresholding 
is chosen for automated image segmentation in the majority of this 
work. The Otsu algorithm is used here for automated choice of 
threshold levels (63).

Binary thresholding converts the image into zeroes and ones 
based on a single threshold value for signal intensity. Ternary thresh-
olding uses the standard MATLAB implementation of the Otsu al-
gorithm to select two threshold levels by minimizing variance 
within the bins and maximizing variance between the bins. This is 
accomplished through a weighted sum of variances of the two class-
es: The weights are iteratively varied as a function of the threshold 
level until the optimal threshold is identified. Therefore, the bins 
may not be chosen in exactly equidistant steps. This widely accepted 
method is essentially a discrete analog of Fisher’s discriminant anal-
ysis (64) and results in an image converted to values of ones, twos, 
and threes. This allows ready identification of water, polymer, and 
the bright “reaction front” as zones ascribed to a given number on 
the basis of their ordering of brightness, directly enabling area cal-
culations by summing the relevant number(s). Quaternary thresh-
olding was implemented in the same manner, but with four bins 
rather than three, resulting in an image of ones, twos, threes, 
and fours.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S6
Tables S1 and S2
Legends for Movies S1 to S18
Legends for Software S1 and S2

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S18
Software S1 and S2
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