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Highlights 

 Studied dynamic behavior of nanoscale liquids in graphene liquid cells using in situ TEM. 

 Captured fluctuations of liquid-gas bubble interfaces. 

 Imaged liquid nanodroplet formation resulting from dynamic motion of liquid-gas 

interfaces. 

 Discovered that improving wettability of graphene liquid cells by ultraviolet-ozone 

treatment has drastic effects on the dynamic behavior of liquid during TEM imaging. 

 

ABSTRACT 

Recent advances in graphene liquid cells for in situ transmission electron microscopy (TEM) 

have opened many opportunities for the study of materials transformations and chemical 

reactions in liquids with high spatial resolution. However, the behavior of thin liquids 

encapsulated in a graphene liquid cell has not been fully understood. Here, we report real time 

TEM imaging of the nanoscale dynamic behavior of liquids in graphene nanocapillaries. Our 

observations reveal that the interfaces between liquid and gas bubble can fluctuate, leading to 

the generation of liquid nanodroplets near the interfaces. Liquid nanodroplets often show 

irregular shape with dynamic changes of their configuration under the electron beam. We 

consider that the dynamic motion of liquid-gas interfaces might be introduced by the 

electrostatic energy from transiently charged interfaces. We find that improving the wettability 

of graphene liquid cells by ultraviolet-ozone treatment can significantly modify the dynamic 

motion of the encapsulated liquids. Our study provides valuable information of the interactions 
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between liquid and graphene under the electron beam, and it also offers key insights on the 

nanoscale fluid dynamics in confined spaces. 

 

Keywords 

Liquid cell TEM, in situ TEM, graphene liquid cells, nanoscale, liquid dynamics, solid-liquid-

gas interfaces 
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1. Introduction 

Liquid cell transmission electron microscopy (TEM) enables the direct observation of 

dynamic phenomena in liquids, including electrochemical reactions, crystal growth, and the 

activity of biological materials in their native environment. The high spatial and temporal 

resolution afforded by this emerging imaging modality is not achievable with other 

characterization tools (de Jonge and Ross, 2011; Ross et al., 2015; Zhu et al., 2015; Liao et al., 

2016; De Yoreo et al., 2016). Examples of implementation of this technique can be found in 

the in situ imaging of nucleation and growth of nanocrystals (Zheng et al., 2009; Nielsen et al., 

2013; Woehl et al., 2012; Lee et al., 2016; Sutter et al., 2017), nanoparticle self-assembly 

(Powers et al., 2016; Luo et al., 2017; Tan et al., 2017), materials transformations and 

nanocrystal shape evolution (Liao et al., 2014; Niu et al., 2014; Sutter et al., 2014; Jiang et al., 

2017), electrochemical process (Williamson et al., 2003; Gu et al., 2013; Zhang et al., 2017; 

Zeng et al., 2017; Song et al., 2018), and biological samples (Park et al., 2015a; Dahmke et al., 

2017). Technically, liquid cells separating the liquid samples from the high vacuum 

environment of TEM allow imaging with the general workflow of conventional TEM. The 

development of liquid cell TEM has benefited from the advances of both TEM instruments and 

liquid cell fabrication (Ross et al., 2015; Kim et al., 2018). Graphene can encapsulate thin 

pockets of liquids with thicknesses of tens of nanometers (Yuk et al., 2012). Since graphene is 

highly transparent to the electron beam, the electron beam scattering by the window materials 

and small volume of liquid solution is minimized, hence the spatial resolution using graphene 

liquids has been significantly improved (Yuk et al., 2012; Park et al., 2015b; Kelly et al., 2018; 

Textor et al., 2018; de Jonge, 2018). To comprehend the phenomena that take place during 

liquid cell TEM experiments, the fundamental understanding of nanoscale liquid dynamics 

under the electron beam is essential (Abellan, et al., 2014; Niu et al., 2015; Zhou et al., 2017). 
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Previously, the unique behavior of water nanodroplets on hydrophilic SiNx membrane has been 

captured using liquid cell TEM (Mirsaidov et al., 2012; Bhattacharya et al., 2014; Leong et al., 

2014). However, our understanding of the nanoscale liquid dynamics in graphene liquid cells 

is still limited. In the earlier studies, graphene has been regarded as inert (Yuk et al., 2012; 

Chen et al., 2013), but a recent study demonstrated that graphene can act as a radical scavenger 

during TEM measurements using graphene liquid cells (Cho et al., 2017). Considering the 

active properties and the applications of graphene as a unique substrate for various 

nanomaterials (Geim et al., 2013; Novoselov et al., 2016; Lee et al., 2015; Choi et al., 2015; 

Wang et al., 2015; Yang et al., 2017), graphene-liquid interactions cannot be neglected for 

studies using graphene liquid cells. 

From another point of view, nanoscale confined liquids have gained a great deal of interest 

because of their unique properties (Holt et al., 2006; Takaiwa et al., 2008; Li et al., 2014) and 

their potential applications in nanofluidic devices and biological processes (Lucent et al., 2007; 

Kim et al., 2015; Cohen-Tanugi et al., 2016). Investigating the dynamic behavior of confined 

nanoscale liquids has been a great challenge due to the lack of effective experimental 

techniques for characterizing their dynamics (Kolesnikov et al., 2004; Song et al., 2014; 

Dollekamp et al., 2017). Therefore, many of the previous works are based on computational 

approaches such as molecular dynamics (Pestana et al., 2018) and first principle studies (Cicero 

et al., 2008; Chen et al., 2016). A recent experimental study of nanoscale water confined 

between graphene sheets suggested a unique structure of liquid (Algara-Siller et al., 2015), 

however, there are currently considerable debates on this topic (Zhou et al., 2015; Chen et al., 

2016). 
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Herein we present an in situ TEM study of the dynamic behavior of aqueous solution 

encapsulated between two graphene sheets in a graphene liquid cell. The bubble formation and 

nanoscale fluctuations of liquid-gas interfaces are observed. We find that the dynamic motion 

of interfaces can lead to the formation of liquid nanodroplets near the interface and inside the 

gas bubbles. These liquid nanodroplets often show irregular shape with dynamic changes. We 

find that improving the wettability of graphene liquid cells through ultraviolet-ozone treatment 

has drastic effects on the dynamic behavior of liquid. This study facilitates fundamental 

understanding of nanoscale liquid dynamics during liquid cell TEM measurements, and it 

demonstrates in situ liquid cell TEM as a promising tool for studying nanofluidics. 

 

2. Experimental methods 

2.1. Fabrication of graphene liquid cells 

Graphene liquid cells containing aqueous solutions were prepared by encapsulating each 

solution between a pair of graphene-coated TEM grids. First, multilayer graphene sheets on 

copper foil were transferred to Quantifoil film TEM grids (Ted Pella Inc., US) by the modified 

direct wet transfer method (Regan et al., 2010). Specifically, multilayer graphene sheets (~3−5 

layers, ACS Materials, US) synthesized by chemical vapor deposition on copper foils were 

used in this study. Quantifoil carbon film TEM grids were placed on top of multilayer graphene 

on copper foils. Several drops of isopropanol (>99.5%, Sigma-Aldrich, US) were introduced 

between the Quantifoil carbon films and graphene sheets and dried under mild heating (80oC) 

to enhance the adhesion of graphene to the TEM grids. The copper substrate was etched by 

sodium persulfate (<98%, Sigma-Aldrich) solution (50 mg/mL in Milli-Q water) for ~8 hours 

to completely remove copper from the surface of graphene. The resulting graphene-coated 
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TEM grids were mildly washed with Milli-Q water at least three times. Finally, graphene liquid 

cells were obtained by encapsulating the aqueous solution between a pair of graphene-coated 

TEM grids. The aqueous solution was prepared by dissolving NaCl in Milli-Q water (~3 wt%). 

The addition of salt is expected to result in the increase of surface tension, which decreases the 

wettability of the water solution on hydrophobic surfaces (Zisman, 1964; Nayar et al., 2014). 

The relation between the wettability and the liquid dynamics is discussed in the Section 3.3. A 

small amount of the solution (< 0.1 µL) was placed on the graphene side of the as-prepared 

graphene-coated TEM grid. Another graphene-coated TEM grid was placed onto the liquid 

solution dispensed on the first TEM grid and the excess solution squeezed out was removed by 

a piece of filter paper. The top and bottom TEM grids were held together by tweezers for more 

than one hour, which resulted in the formation of many isolated liquid pockets in the graphene 

liquid cell.  

Comparison experiments were performed using surface modified graphene liquid cells. The 

ultraviolet-ozone (UVO) treatment was conducted using a Jelight UVO-Cleaner® Model 42. 

Graphene-coated TEM grids were treated by UVO for various exposure times (30, 90, 150, 

300, and 600 s) before the fabrication of liquid cells. 

2.2. TEM analysis 

 The graphene liquid cells were characterized by a JEOL JEM-2100 transmission electron 

microscope with a high-resolution pole piece, a LaB6 filament and a Gatan Orius SC200 CCD 

camera. The operating voltage of TEM was 200 kV. The electron dose rate was controlled 

(100−500 e-/Å2s) to limit bubble generation which can interrupt experiments. In situ TEM 

movies were acquired at 2-5 frames per second; the frame rate for each movie is indicated in 

the supplementary information. For all the movies in the supplementary information, the 
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playback speed is 4 times faster than their original speed. Movies were compressed into MP4 

format for publication, but the original data were used for the data analysis. Area, center of the 

mass, and circularity of the objects of interest were analyzed by FIJI software (Schindelin et 

al., 2012). The circularity is defined as, circularity=4area/perimeter2. The value is 1.0 for a 

perfect circle and is decreasing as a boundary become irregular or shape elongates. 

 Electron energy loss spectroscopy (EELS) analysis was performed using a monochromated 

FEI Tecnai F20 UT operated at 200 kV at the National Center for Electron Microscopy within 

the Molecular Foundry in Lawrence Berkeley National Laboratory. The microscope is 

equipped with a Tridiem Gatan imaging filter and a double-focusing Wien filter acting as a 

monochromator below the field-emission gun. The spectra were acquired with an energy 

dispersion of 0.1 eV/channel and with an exposure time of ~4 s. 

2.3. Other characterization methods 

Raman spectra of graphene-coated grids were acquired by a Horiba Jobin Yvon LabRAM 

ARAMIS automated scanning confocal Raman microscope under the excitation of a 532 nm 

laser. The contact angle of pure water on graphene-coated grids was measured using a Ramé-

Hart contact angle goniometer. Small drops (ca. 0.5 µL) of Mili-Q water were used for the 

measurements. The obtained images were analyzed by FIJI software (Schindelin et al., 2012) 

with a contact angle plug-in (Stalder et al., 2006). The final values were averaged from five 

measurements for each experimental condition. 
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3. Results and discussion 

3.1. Dynamics of liquid-gas interfaces and nanodroplet formation 

We characterize the aqueous solution encapsulated in graphene liquid cells using TEM 

operated at 200 kV. In situ observation reveals the dynamic behavior of the nanoscale liquid 

between two graphene sheets (Movie S1 and S2). The schematic illustration of the overall 

process is described in Figure 1(a), and the representative images from each movie are captured 

and displayed in Figure 1(b) and (c). The dark and bright parts in TEM images are liquid and 

gas (or dried regions), respectively, while the thickness of the liquid in graphene liquid cells is 

estimated to be in the range of tens of nanometers (Yuk et al., 2012). The liquid-gas interface 

is highlighted with dashed lines and their contour plots for each movie are displayed in Figure 

1(d) and (e). Gas bubbles in graphene liquid cells are observed at the initial stage (Figure 1(a)-

(c)), and their sizes range from several nanometers to micrometers. These gas bubbles are 

known to be originating from either the water radiolysis by the electron beam (Schneider et al., 

2014; Grogan et al., 2014) or from the evolution of external gas originally dissolved in the 

encapsulated liquid. It is also suggested that these gases are byproducts of the oxidation of 

graphene which acts as a radical scavenger (Cho et al., 2017). We note that aqueous solutions 

in graphene liquid cells can easily produce additional gases under electron beam exposure. 

Figure 1(f) displays the sizes of the bubbles in Movie S1 as a function of time, showing bubble 

growth (Figure 1(a)). Since bubbles in graphene liquid cells are known to be trapped on the 

graphene surface (i.e., surface bubbles), rather than free bubbles in bulk solution (Shin et al., 

2015), it is not a surprise that they exist in non-spherical shapes. Local inhomogeneity of the 

graphene surface from defects, topological variations or partial bending/folding of graphene on 

the holey carbon substrate might influence the non-spherical shape of the bubbles. The growth 
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of gas bubbles can generate liquid-gas interfaces with high curvature. Interestingly, in situ TEM 

movies show that the liquid-gas interface fluctuates, and the degree of fluctuation varies 

according to the curvature. Specifically, the local curvature is analyzed in the selected region 

of Movie S1 in the time range of 20−75 s (Figure S1). Figure 1(g) presents the change of local 

curvature in the next image frames according to the local curvature in the image of the previous 

frame. The change of the local curvature increases as the local curvature becomes larger, 

implying that local boundaries with higher curvature tend to deform more. With the synergetic 

effect of the bubble growth and the interface fluctuations, the liquid forms highly deformed 

shapes. In some cases, this results in the formation of liquid nanodroplets in the interior of 

surface nanobubbles (Figure 1(a), (e) and Movie S2). The condensation of liquid vapor might 

also contribute to the formation of liquid droplets (Bhattacharya et al., 2014; Song et al., 2014), 

although it cannot be quantitatively estimated here. By forming the liquid nanodroplet, the gas 

bubble recovers low curvature interface and is stabilized. Many nanodroplets can be formed in 

similar measurement conditions (Figure S2). These liquid nanodroplets can be easily 

distinguished from NaCl salt crystals that exhibit the crystalline lattice corresponding to the 

cubic crystal structure of NaCl (Figure S3, S4 and Movie S3) (Zhou et al., 2015). This is 

supported by the electron energy loss spectroscopy (EELS) spectrum of the liquid droplet 

region that exhibits distinctive signals of O K-edge, while that of dried area shows almost no 

signal at the same measurement condition (Figure S5).  

The electron dose rate affects the degree of the fluctuations of the liquid (Movie S4). The 

morphological fluctuation of the liquid becomes more severe with increased electron dose rate 

(400 e-/Å2s, which is more than twice compared to Movie S1 and S2). A series of 

representative TEM images, from the early stages of Movie S4, are displayed in Figure 2(a). 

In this case, the highlighted liquid inside the bubble keeps attached to the outer liquid with the 
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fast oscillating interfaces. The possible effect of the increasing dose rate on the morphology 

changes is discussed in details in Section 3.2. The contours of the highlighted liquid domain 

are shown in Figure 2(b). As shown in Figure 2(c), the size of the gas bubble keeps growing 

during the measurement of Movie S4, while its overall shape remains circular. The time-

dependent projected area and the circularity of the highlighted liquid domain is plotted in 

Figure 2(d) and (e), respectively. The projected area changes with the passage of time, which 

can be attributed to the significant morphology fluctuation of the liquid during the measurement 

and/or mass transport between the liquid domain and the liquid in the outer region. 

 

3.2. Motion and fluctuations of nanodroplet interfaces 

Another interesting feature is the dynamic behavior of the liquid droplets after their formation 

in the interior of a gas bubble. For example, in the mid-and-late part (68−86 s) of Movie S4 

(displayed in Figure 3(a)), as the experiment proceeds, the highly deformed liquid part is finally 

detached from the outer liquid and forms the liquid droplet in the interior of the gas bubble. 

TEM images of this liquid nanodroplet clearly show two boundaries, which can be attributed 

to the boundaries either formed by the liquid-gas interface contacting with graphene windows 

or maximum lateral size of the droplet. Schematics showing the cross section of the droplet is 

illustrated in Figure S6 for two possible models: the cylinder and the (hemi-)sphere model. The 

two boundaries are highlighted as red and blue dashed lines in Figure 3(a) and their contour 

plots are shown in Figure 3(b). At first glance, the nanodroplet is almost fixed in their position 

while its boundaries are fluctuating under the beam exposure. Figure 3(c) presents the area of 

the red and blue boundaries according to the time, showing consistent values during the 

measurement. This implies that the droplet is in the pseudo-steady state when it is detached 
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from the outer liquid. Figure 3(d) and (e) show the displacement in the center of the mass of 

the nanodroplet compared to that observed in the TEM image corresponding to the 

measurement time of 68 s, which confirms that there is almost no translational motion. The 

nanodroplets are almost pinned in their position, which is different from the previous study 

showing a huge slip movement of nanodroplets on the hydrophilic surface of SiNx (Mirsaidov 

et al., 2012). This pinning can be regarded as the suppressed translational motion of the droplet 

on the hydrophobic surface, which is discussed in details in Section 3.3. In addition, there might 

be defects in the graphene making the area hydrophilic to pin the droplets. The graphene can 

react with hydroxyl radicals (Radich et al., 2013; Qiu et al., 2014) which is one of the major 

products of water radiolysis under electron beam exposure (Woehl et al., 2017), and the 

resulting products of graphene oxidation would be hydrophilic. Thus, as graphene is irradiated 

in the presence of water, the hydrophilic defects form and/or become more significant, which 

finally be able to pin the droplet. The circularity of the droplet is estimated for the red and blue 

boundaries (Figure 3(f)), which is also consistent with the irregular and fluctuating shapes. 

Under the prolonged exposure of the electron beam, liquid droplets can be reattached to outer 

liquid (Movie S4), or merged into the outer liquid when gas bubbles disappear (Movie S5). 

All together, the above results reveal that the nanodroplets (or liquid) exhibit fluctuating non-

spherical irregular shapes under the electron beam. We have considered experimental factors 

that can induce the deformation of the liquid-gas interfaces. First of all, the electron beam 

induced heat effect is examined (Chen et al., 2018). Heating by the electron beam is not critical 

in microfabricated liquid cells with SiNx windows (Mirsaidov et al., 2012; Loh et al., 2012). 

For graphene liquid cells, the liquid thickness is thinner than that in the microfabricated liquid 

cells and the thermal conductivity of the graphene (Balandin et al., 2008) is superior to SiNx. 

In addition, the electron dose rate in our experiment is quite low (100−400 e-/Å2s). 
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Consequently, heating effects are negligible in graphene liquid cells. Secondly, we have 

checked whether the radiation pressure can exceed Laplace pressure of the droplets, or not. The 

Laplace pressure is determined from the Young-Laplace equation as follows:  

𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒 ≡ 𝑃𝑖𝑛𝑠𝑖𝑑𝑒 − 𝑃𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 𝛾(
1

𝑅1
+

1

𝑅2
)     (1) 

where 𝛾 is the liquid surface tension (0.075 N/m, Nayar et al., 2014), and R1 and R2 are the 

characteristic radii of the liquid: 𝑅1 is the radius of the droplet, and 1/𝑅2 can be regarded as 

0 because of the flat surface of the graphene/nanodroplet interfaces. On the other hand, the 

radiation pressure of the electron beam can be expressed by the following equation according 

to the previous study (Mirsaidov et al., 2012):  

𝑃𝑅𝑎𝑑 =
𝑁𝑡𝑜𝑡𝑎𝑙

𝐴∆𝑡
(1 − exp (−

𝑙

𝜆𝑚𝑒𝑎𝑛
))√2𝑚𝑒𝐸(1 − cos 𝜃)    (2) 

where l is the thickness of the liquid and 𝜆𝑚𝑒𝑎𝑛 is the mean free path of the 200 keV electron 

(Holtz et al., 2013). The maximum value is obtained when all the electrons are scattered 

completely backward (i.e., θ = 180). The result is plotted in Figure 3(g) for the electron dose 

rate (
𝑁𝑡𝑜𝑡𝑎𝑙

𝐴∆𝑡
) of 1,000 e-/Å2s, which is larger than our experiment condition. This analysis 

reveals that the calculated maximum radiation pressure is much smaller than the Laplace 

pressure, regardless of the liquid thickness or the droplet size. Thus, we can neglect the effects 

of radiation pressure.  

 Finally, we have examined whether the electrostatic energy (Eelectrostatic) by charging can 

overcome the surface energy of the droplet (Esurf). The surface energy of the cylindrical droplets 

can be expressed by the eq. (3): 

𝐸𝑠𝑢𝑟𝑓 = 𝛾𝐴 = 2𝜋𝛾𝑙𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡       (3) 
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where the surface area (A) of the droplet is approximately estimated from the cylindrical model 

(i.e., l is the thickness of the liquid and Rdroplet is the radius of the droplet). The electrostatic 

energy of cylindrical droplets can be expressed by eq. (4): 

𝐸𝑒𝑙𝑒𝑐𝑡𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =
𝑞2

2𝐶
=

𝑞2

4πε0𝑙
ln (

𝑅𝑏𝑢𝑏𝑏𝑙𝑒

𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡
)       (4) 

where q is charge and ε0 is permittivity (8.8510-12 F/m). So, the electrostatic energy exceeds 

the surface energy of the droplet when the portion of the charged water molecules is higher 

than the critical point. Similarly, the critical fraction is also estimated for the sphere model by 

simply modifying eq. (3) and (4). For both models, the calculated results are plotted in Figure 

3(h), demonstrating that very small amount (< ~0.001%) of charged water molecules can 

possibly induce the deformation of liquid. This is consistent with the fact that the fluctuation 

becomes more severe with the increasing electron dose rate. It has been proposed that the 

electrostatic repulsion causes large slip movements of water nanodroplets on hydrophilic 

surfaces (Mirsaidov et al., 2012). Here, on the hydrophobic surface, this results in the severe 

surface fluctuation instead of the slip movement. In addition, we also suspect that bubble 

generation can also contribute to the interface fluctuation (Cho et al., 2017), although it cannot 

be quantitatively estimated because of its inhomogeneous generation (Grogan et al., 2014). 

 

3.3. Impact of graphene wettability on the dynamic behavior of liquid 

We investigate the impact of the surface wettability on the liquid dynamics. The change in 

total surface free energy (∆G) of the cylindrical droplet due to the movement (∆R) can be 

expressed by eq. (5): 
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∆G ≈ (
𝑑𝐺

𝑑𝑅
)

∆R=0
∆R +

1

2
(

𝑑2𝐺

𝑑𝑅2)
∆R=0

∆R2 = 2π(𝛾𝐿𝑆 − 𝛾𝑆𝐺)∆R2    (5) 

where the total surface free energy, G(𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡) = 2(𝛾𝐿𝑆 − 𝛾𝑆𝐺)π𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡
2 + 2𝛾π𝑙𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 

and (
𝑑𝐺

𝑑𝑅
)

∆R=0
= 0 (Shanahan, 1995) (𝛾𝐿𝑆 and 𝛾𝑆𝐺 are surface energy density at liquid-solid 

and solid-gas interface, respectively). Thus, the step movement can be expressed according to 

eq. (6): 

 ∆R = √
∆G

2π(𝛾𝐿𝑆−𝛾𝑆𝐺)
        (6) 

By applying the macroscopic relation of contact angle and surface tension, 𝑐𝑜𝑠𝜃𝑐 = (𝛾𝑆𝐺 −

𝛾𝐿𝑆)/𝛾 , and by substituting the energy barrier as adhesion energy, 𝐸𝑎𝑑 ≈ 2 × 𝜋𝑅2𝛾(1 +

𝑐𝑜𝑠𝜃𝑐) (Zisman, 1964), we can obtain the calculated movement length of the interface as a 

function of the contact angle (Figure 4(a)). The calculation result for the hemisphere model is 

also displayed in Figure 4(a). For both models, the values are decreasing with increasing 

contact angle and in the range of a few nanometer scales, which is about one order of magnitude 

smaller than the slip step length of water nanodroplets on the hydrophilic substrate reported in 

the previous study (Mirsaidov et al., 2012). This small step length is consistent with our 

observation that liquids fluctuate rather than slip.  

To understand the significance of the surface energy on the dynamics of liquids on graphene, 

we compare the previous results with the dynamic behavior of the nanoscale liquid between 

the graphene sheets with hydrophilic surfaces. It is noted that the surface modification of 

graphene liquid cells has not been well established previously, so it is important to develop 

appropriate protocols for the fabrication of hydrophilic graphene liquid cells. Here, we utilize 

ultraviolet-ozone (UVO) treatment on graphene-coated grids. It has been recently 
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demonstrated that UVO treatment induces the attachment of oxygen atoms onto graphene 

monolayers without significant lattice distortion, while other methods such as the oxygen 

plasma treatment inevitably introduce topological defects during the surface modification (Ryu 

et al., 2017). The graphene-coated grids with various UVO treatment times are characterized 

by Raman spectroscopy. Figure 4(b) shows the Raman spectra of the graphene-coated grids 

with the different UVO exposure time from 0 s to 600 s. The characteristic peaks (D ~1,350 

cm-1, G ~1,700 cm-1, and 2D bands ~2,700 cm-1) of multilayer graphene are clearly detected 

for all the samples except the one with the longest exposure time of 600 s (Ferrari, 2007; Malard 

et al., 2009). This implies that the overall structure of the graphene is well preserved after the 

UVO treatment with the controlled time exposure. The relative intensity (I2D/IG) between G 

and 2D bands, which is correlated with the lattice distortion or defect of the graphene, is 

decreasing with the increasing exposure time. This can be attributed to the surface oxidation of 

graphene by the UVO treatment. 

To determine the optimum UVO treatment condition, we measured the contact angle of the 

pure water on the graphene-coated grids with various exposure times (Figure S8) and the result 

is summarized in Figure 4(c). The contact angles dramatically decrease with the exposure time 

up to 150 s and are within measurement error for the samples with the treatment time of 150 s 

and 300 s. These results suggest the trend qualitatively on the modifications of the surface 

wettability. It should be noted that the acquired values of the macroscale contact angle cannot 

be directly applied for nanoscale liquids and their absolute values are not quantitatively 

meaningful, because they can be significantly affected by various factors such as the volume 

of liquid and surface morphology (Zhu et al., 2018). For example, the estimated value for the 

untreated graphene-coated grid (~102) is smaller than the most widely accepted literature 

value for water on graphene (127, Wang et al., 2009). The result unambiguously confirms that 
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the UVO treatment can effectively modify the wettability of graphene grids from the 

hydrophobic to hydrophilic state within 150 s. Consequently, we selected the UVO treatment 

time of 150 s for the fabrication of liquid cells. 

Finally, we have fabricated the graphene liquid cells using the surface treated graphene-coated 

grids. For the comparison experiments, all the measurement conditions are almost identical to 

the other in situ TEM experiments conducted in this study, except the use of the UVO treated 

girds. The results are presented in Figure 4(d), (e) and Movie S6. The formation of a gas bubble 

is clearly observed, which directly confirms that liquid is well encapsulated in the UVO treated 

graphene liquid cells. This supports that the UVO treatment is not destructive, and thus, 

appropriate for the surface modification of graphene liquid cells. We can observe some 

different features in the liquid dynamics. The local fluctuation of the liquid-gas interface is 

observed, which is similar to the experiments with hydrophobic graphene. But the deformation 

of the liquid-gas interface can easily recover back to its low curvature state. Thus, the 

generation of liquid droplets is not observed in this comparison experiment. The smooth and 

fast translational motion of gas bubbles in the liquid cells is observed, which contrasts with the 

almost fixed position of surface bubbles in the previous observation. The spherical shape and 

fast translational motion are characteristics of non-surface free bubbles, which can be attributed 

to result of the enhanced wettability of the UVO treated graphene. 

 

4. Conclusions 

 In summary, we have studied the dynamic behavior of aqueous liquid encapsulated between 

two graphene nanosheets using in situ TEM. The morphology of liquid can change under 

electron beam exposure, which can be attributed to the bubble growth and the interface 
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fluctuations. This often leads to the formation of liquid nanodroplets that can exhibit 

morphological changes under the electron beam. We suggest that the electrostatic repulsion can 

cause the interfacial fluctuations of the liquid. In addition, the dynamic behavior of liquid can 

be controlled by the modification of the surface wettability of graphene liquid cells. Currently, 

there are still many challenges in order to fully understand the liquid dynamics of liquid cell 

TEM. For example, it is difficult to estimate the exact liquid thickness during liquid cell 

experiments (Holtz et al., 2013) and there exist many unexplored chemical effects (such as 

radical scavenging effect of graphene (Cho et al. 2017)) that need to be addressed in the future 

works. Nevertheless, our study provides some valuable information for investigating liquid 

samples in graphene liquid cells using TEM. It also opens up new opportunities for studying 

liquids in confined conditions. 

 

Acknowledgements 

This work was funded by U.S. Department of Energy, Office of Science, Office of Basic 

Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-

05-CH11231 within the insitu TEM program (KC22ZH). Work at the Molecular Foundry was 

supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department 

of Energy under Contract No. DE-AC02-05CH11231. 

 

Supplementary Information 

Supplementary data associated with this article can be found, in the online version. 

  

ACCEPTED M
ANUSCRIP

T



19 

 

References 

(1) de Jonge, N., Ross, F.M., 2011. Electron microscopy of specimens in liquid. Nat. 

Nanotechnol. 6, 695-704. 

(2) Ross, F.M., 2015. Opportunities and challenges in liquid cell electron microscopy. Science 

350, aaa9886. 

(3) Zhu, Y., Durr, H., 2015. The future of electron microscopy. Physics Today 68, 32-38. 

(4) Liao, H.-G., Zheng, H., 2016. Liquid cell transmission electron microscopy. Ann. Rev. 

Phys. Chem. 67, 719-747. 

(5) De Yoreo, J.J., Sommerdijk N.A.J.M., 2016. Investigating materials formation with liquid-

phase and cryogenic TEM. Nat. Rev. Mater. 1, 16035. 

(6) Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., 2009. 

Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 

1309-1312. 

(7) Nielsen, M.H., Aloni, S., De Yoreo, J.J., 2014. In situ TEM imaging of CaCO3 nucleation 

reveals coexistence of direct and indirect pathways. Science 345, 1158-1162. 

(8) Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., 2012. Direct in situ 

determination of the mechanisms controlling nanoparticle nucleation and growth. ACS 

Nano 6, 8599-8610. 

(9) Lee, J., Yang, J., Kwon, S.G., Hyeon, T., 2016. Nonclassical nucleation and growth of 

inorganic nanoparticles. Nat. Rev. Mater. 1, 16034. 

(10) Sutter, P., Li, Y., Argyropoulos, C., Sutter, E., 2017. In situ electron microscopy of 

plasmon-mediated nanocrystal synthesis. J. Am. Chem. Soc. 139, 6771-6776. 

(11) Powers, A.S., Liao, H.-G., Raja, S.N., Bronstein, N.D. Alivisatos, A.P., Zheng, H., 

2016. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. 

ACCEPTED M
ANUSCRIP

T



20 

 

Nano Lett. 17, 15-20. 

(12) Luo, B., Smith, J.W., Ou, Z., Chen, Q., 2017. Quantifying the self-assembly behavior 

of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. 

Chem. Res. 50, 1125-1133. 

(13) Tan, S.F., Chee, S.W., Lin, G., Mirsaidov, U., 2017. Direct observation of interaction 

between nanoparticles and their self-assembly in solution. Acc. Chem. Res. 50, 1303-1312. 

(14) Liao, H.-G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., 

Wang, L.-W., Zheng, H., 2014. Facet development during platinum nanocube growth. 

Science, 345, 916-919. 

(15) Niu, K.Y., Park, J., Zheng, H., Alivisatos, A.P., 2014. Revealing bismuth oxide hollow 

nanoparticle formation by the Kirkendall effect. Nano Lett. 13, 5715-5719. 

(16) Sutter, E. Jungjohann, K., Bliznakov, S., Courty, A., Maisonhaute, E., Tenney, S., 

Sutter, P., 2014. In situ liquid-cell electron microscopy of silver–palladium galvanic 

replacement reactions on silver nanoparticles. Nat. Commun. 5, 4946. 

(17) Jiang, Y., Zhu, G., Dong, G., Ling, F., Zhang, H., Yuan, J., Zhang, Z., Jin, C., 2017. 

Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by 

liquid cell transmission electron microscopy. Micron 97, 22-28. 

(18) Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., 2003. Dynamic 

microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532-

536. 

(19) Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, 

W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, 

L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I., Wang, C.-M., 2013. 

Demonstration of an electrochemical liquid cell for operando transmission electron 

ACCEPTED M
ANUSCRIP

T



21 

 

microscopy observation of the lithiation/delithiation behavior of Si nanowire battery 

anodes. Nano Lett. 13, 6106-6112. 

(20) Zhang, Q., Yin, K., Dong, H., Zhou, Y., Tan, X., Yu, K., Hu, X., Xu, T., Zhu, C., Xia, 

W., Xu, F., Zheng, H., Sun, L., 2017. Electrically driven cation exchange for in situ 

fabrication of individual nanostructures. Nat. Commun. 8, 14889.  

(21) Zeng, Z., Zheng, W., Zheng, H., 2017. Visualization of colloidal nanocrystal formation 

and electrode-electrolyte interfaces in liquids using TEM. Acc. Chem. Res. 50, 1808-1807. 

(22) Song, Z., Xie, Z.-H., 2018. A literature review of in situ transmission electron 

microscopy technique in corrosion studies. Micron 112, 69-83. 

(23) Park, J., Park, H., Ercius, P., Pegoraro, A.F., Xu, C., Kim, J.W., Han, S.H., Weitz, D.A., 

2015a. Direct observation of wet biological samples by graphene liquid cell transmission 

electron microscopy. Nano Lett. 15, 4737-4744. 

(24) Dahmke, I.N., Verch, A., Hermannsdorfer, J. Peckys, D.B., Weatherup, R.S., Hofmann, 

S., de Jonge, N., 2017. Graphene liquid enclosure for single-molecule analysis of 

membrane proteins in whole cells using electron microscopy. ACS Nano 11, 11108-11117. 

(25) Kim, B.H., Yang, J., Lee, D., Choi, B.K., Hyeon, T., Park, J., 2018. Liquid‐ phase 

transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. 

Mater. 30, 1703316. 

(26) Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y. 

Zettl, A., Alivisatos, A.P., 2012. High-resolution EM of colloidal nanocrystal growth using 

graphene liquid cells. Science 336, 61-64. 

(27) Park, J., Elmlund, H., Ercius, P., Yuk, J.M., Limmer, D.T., Chen, Q., Kim, K., Han, 

S.H., Weitz, D.A., Zettl, A., Alivisatos, A.P., 2015b. 3D structure of individual nanocrystals 

in solution by electron microscopy. Science 2015, 349, 290-295. 

ACCEPTED M
ANUSCRIP

T



22 

 

(28) Kelly, D., Zhou, M., Clark, N., Hamer, M.J., Lewis, E.A., Rakowski, A.M., Haigh, S.J., 

Gorbachev, R.V., 2018. Nanometer resolution elemental mapping in graphene-based TEM 

liquid cells. Nano Lett. 18, 1168-1174. 

(29) Textor, M., de Jonge, N., 2018. Strategies for preparing graphene liquid cells for 

transmission electron microscopy. Nano Lett. 18, 3313-3321. 

(30) de Jonge, N., 2018. Theory of the spatial resolution of (scanning) transmission electron 

microscopy in liquid water or ice layers. Ultramicroscopy 187, 113-125. 

(31) Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., 

Zhang, J.-G., Wang, C.-M., Evans, J.E., Browning, N.D., 2014. Probing the degradation 

mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron 

microscopy. Nano Lett. 14, 1293-1299. 

(32) Niu, K.Y., Frolov, T., Xin, H.L., Wang, J., Asta, M., Zheng, H., 2015. Bubble 

nucleation and migration in a lead-Iron hydroxide core-shell nanoparticle. Proc. Natl. Acad. 

Sci. U.S.A. 112, 12928-12932. 

(33) Zhou, Y., Powers, A.S., Zhang, X., Xu, T., Bustillo, K., Sun, L., Zheng, H., 2017. 

Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid 

junction. Nanoscale 9, 13915-13921. 

(34) Mirsaidov, U.M., Zheng, H., Bhattacharya, D., Casana, Y., Matsudaira, P., 2012. Direct 

observation of stick-slip movements of water nanodroplets induced by an electron beam. 

Proc. Natl. Acad. Sci. U.S.A. 109, 7187-7190. 

(35) Bhattacharya, D., Bosman, M., Mokkapati, V.R.S.S., Leong, F.Y., Mirsaidov, M., 2014. 

Nucleation dynamics of water nanodroplets. Microsc. Microanal. 20, 407-415. 

(36) Leong, F.Y., Mirsaidov, U.M., Matsudaria, P., Mahadevan, L., 2014. Dynamics of a 

nanodroplet under a transmission electron microscope. Physics of Fluids 26, 012003. 

ACCEPTED M
ANUSCRIP

T



23 

 

(37) Chen, Q., Smith, J.M., Park, J., Kim, K., Ho, D., Rasool, H.I., Zettl, A., Alivisatos, 

A.P., 2013. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron 

microscopy. Nano Lett. 13, 4556-4561. 

(38) Cho, H., Jones, M.R., Nguyen, S.C., Hauwiller, M.R., Zettl, A., Alivisatos, A.P., 2017. 

The use of graphene and its derivatives for liquid-phase transmission electron microscopy 

of radiation-sensitive specimens. Nano Lett. 17, 414-420. 

(39) Geim, A.K., Grigorieva, I.V., 2013. Van der Waals heterostructures. Nature 499, 419-

425. 

(40) Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H., 2016. 2D 

materials and van der Waals heterostructures. Science 353, aac9439. 

(41) Lee, W.C., Kim, K., Park, J., Koo, J., Jeong, H.Y., Lee, H., Weitz, D.A., Zettl, A., 

Takeuchi, S., 2015. Graphene-templated directional growth of an inorganic nanowire. Nat. 

Nanotechnol. 10, 423-428. 

(42) Choi, M.K., Park, I., Kim, D.C., Joh, E., Park, O.K., Kim, J., Kim, M., Choi, C., Yang, 

J., Cho, K.W., Hwang, J.-H., Nam, J.-M., Hyeon, T., Kim, J.H., Kim, D.-H., 2015. 

Thermally controlled, patterned graphene transfer printing for transparent and wearable 

electronic/optoelectronic system. Adv. Funct. Mater. 25, 7109-7118. 

(43) Wang, S., Wang, X., Warner, J.H., 2015. All chemical vapor deposition growth of 

MoS2:h-BN vertical van der Waals hetero structures. ACS Nano 9, 5246-5254. 

(44) Yang, J., Kim, K., Lee, Y., Kim, K., Lee, W.C., Park, J., 2017. Self-organized growth 

and self-assembly of nanostructures on 2D materials. FlatChem, 5, 50-68. 

(45) Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, 

C.P., Noy, A., Bakajin, O., 2006. Fast mass transport through sub-2-nanometer carbon 

nanotubes. Science 312, 1034-1037. 

ACCEPTED M
ANUSCRIP

T



24 

 

(46) Takaiwa, D., Hatano, I., Koga, K., Tanaka, H., 2008. Phase diagram of water in carbon 

nanotubes. Proc. Natl Acad. Sci. USA 105, 39-43. 

(47) Li, Q., Song, J., Besenbacher, F., Dong, M., 2014. Two-dimensional material confined 

water. Acc. Chem. Res. 48, 119-127. 

(48) Lucent, D., Vishal, V., Pande, V.S., 2007. Protein folding under confinement: A role 

for solvent. Proc. Natl. Acad. Sci. USA 104, 10430-10434. 

(49) Kim, J.-Y., Yang, J., Yu, J.H., Baek, W., Lee, C.-H., Son, H.J., Hyeon, T., Ko, M.J., 

2015. Highly efficient copper–indium–selenide quantum dot solar cells: Suppression of 

carrier recombination by controlled ZnS overlayers. ACS Nano 9, 11286-11295. 

(50) Cohen-Tanugi, D., Lin, L.-C., Grossman, J.C., 2016. Multilayer nanoporous graphene 

membranes for water desalination. Nano Lett. 16, 1027-1033. 

(51) Kolesnikov, A.I., Zanotti, J.-M., Loong, C.-K., Thiyagarajan, P., Moravsky, A.P., 

Loutfy, R.O., Burnham, C.J., 2004. Anomalously soft dynamics of water in a nanotube: A 

revelation of nanoscale confinement. Phys. Rev. Lett. 93, 035503. 

(52) Song, J., Li, Q., Wang, X., Li, J., Zhang, S., Kjems, J., Besenbacher, F., Dong, M., 

2014. Evidence of Stranski-Krastanov growth at the initial stage of atmospheric water 

condensation. Nat. Commun. 5, 4837. 

(53) Dollekamp, E., Bampoulis, P., Faasen, D.P. Zandvliet, H.J.W., Kooij, E.S., 2017. 

Charge induced dynamics of water in a graphene−mica slit pore. Langmuir 33, 11977-

11985. 

(54) Pestana, L.R., Felberg, L.E., Head-Gordon, T., 2018. Coexistence of multilayered 

phases of confined water: The importance of flexible confining surfaces. ACS Nano, 12, 

448-454. 

(55) Cicero, G., Grossman, J.C., Schwegler, E., Gygi, F., Galli, G., 2008. Water confined in 

ACCEPTED M
ANUSCRIP

T



25 

 

nanotubes and between graphene sheets: A first principle study. J. Am. Chem. Soc. 130, 

1871-1878. 

(56) Chen, J., Schusteritsch, G., Pickard, C.J., Salzmann, C.G., Michaelides, A., 2016. Two 

dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett. 116, 

025501. 

(57) Algara-Siller, G., Lehtinen, O., Wang, F.C., Nair, R.R., Kaiser, U., Wu, H.A., Geim, 

A.K., Grigorieva, I.V., 2015. Square ice in graphene nanocapillaries. Nature 519, 443-445. 

(58) Zhou, W., Yin, K., Wang, C., Zhang, Y., Xu, T., Borisevich, A., Sun, L., Idrobo, J.C., 

Chisholm, M.F., Pantelides, S.T., Klie, R.F., Lupini, A.R., 2015. The observation of square 

ice in graphene questioned. Nature 528, E1-E2. 

(59) Regan, W., Alem, N., Alemán, B., Geng, B., Girit, C., Maserati, L., Wang, F., Crommie, 

M., Zettl, A., 2010. A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102. 

(60) Zisman, W.A., 1964. Relation of the equilibrium contact angle to liquid and solid 

constitution, in: Fowkes, F.M. (Eds.), Contact angle, wettability, and adhesion. American 

Chemical Society, Washington, DC pp.1-51. 

(61) Nayar, K.G., Panchanathan, D., McKinley, G.H., Lienhard, J.H., 2014. Surface tension 

of seawater. J. Phys. Chem. Ref. Data. 43, 43103. 

(62) Schindelin, J., Arganda-Carreras, I., Frise, E.; Kaynig, V., Longair, M., Pietzsch, T., 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, 

V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for 

biological-image analysis. Nat. Methods 9, 676-682. 

(63) Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., Hoffmann, P., 2006. Snake-based 

approach to accurate determination of both contact points and contact angles. Colloids Surf. 

A 286, 92-103. 

ACCEPTED M
ANUSCRIP

T



26 

 

(64) Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., 

2014. Electron–water interactions and implications for liquid cell electron microscopy. J. 

Phys. Chem. C 118, 22373-22382. 

(65) Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., 2014. Bubble and pattern 

formation in liquid induced by an electron beam. Nano Lett. 14, 359-364. 

(66) Shin, D., Park, J.B., Kim, Y.-J., Kim, S.J., Kang, J.H., Lee, B., Cho, S.-P., Hong, B.H., 

Novoselov, K.S., 2015. Growth dynamics and gas transport mechanism of nanobubbles in 

graphene liquid cells. Nat. Commun. 6, 6068. 

(67) Radich, J.G, Kamat, P.V. 2013. Making graphene holey. Gold-nanoparticle-mediated 

hydroxyl radical attack on reduced graphene oxide. ACS Nano 7, 5546-5557. 

(68) Qiu, Y., Wang, Z., Owens, A.C.E., Kulaots, I., Chen, Y., Kane, A.B., Hurt, R.H., 2014. 

Antioxidant chemistry of graphene-based materials and its role in oxidation protection 

technology. Nanoscale 6, 11744−11755. 

(69) Woehl, T.J., Abellan, P., 2017. Defining the radiation chemistry during liquid cell 

electron microscopy to enable visualization of nanomaterial growth and degradation 

dynamics. J. Microsc. 265, 135-147, 

(70) Chen, L., Wang, Y., Zhang, Z., 2018. Temperature distribution of wedge-shaped 

specimen in TEM. Micron 110, 46-49. 

(71) Loh, N.D., Sen, S., Bosman, M., Tan, S.F., Zhong, J., Nijhuis, C., Kral, P., Matsudaira, 

P., Mirsaidov, U., 2017. Multi-step nucleation of nanocrystals. Nat. Chem. 9, 77-82. 

(72) Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, 

C.N., 2008. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907. 

(73) Holtz, M.E., Yu, Y., Gao, J., Abruña, H.D., Muller, D.A., 2013, In situ electron energy-

loss spectroscopy in liquids. Microsc. Microanal. 19, 1027-1035. 

ACCEPTED M
ANUSCRIP

T



27 

 

(74) Shanahan, M.E.R., 1995. Simple theory of “stick-slip” wetting hysteresis. Langmuir 

11, 1041-1043. 

(75) Ryu, G.H., Lee, J., Kang, D., Jo, H.J., Shin, H.S., Lee, Z., 2017. Effects of dry 

oxidation treatments on monolayer graphene. 2D Mater. 4, 024011. 

(76) Ferrari, A.C., 2007. Raman spectroscopy of graphene and graphite: Disorder, electron–

phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47-57. 

(77) Malard, L.M., Pimenta, M.A., Dersselhaus, G., Dersselhaus, M.S., 2009. Raman 

spectroscopy in graphene. Physics Reports 473, 51-87. 

(78) Zhu, Z., Guo, H.K., Jiang, X.K., Chen, Y.C., Song, B., Zhu, Y.M., Zhuang, S.L., 2018. 

Reversible hydrophobicity–hydrophilicity transition modulated by surface curvature. J. 

Phys. Chem. Lett. 9, 2346-2352. 

(79) Wang, S., Zhang, Y., Abidi, N., Cabrales, L., 2009. Wettability and surface free energy 

of graphene films. Langmuir 25, 11078-11081. 

  

ACCEPTED M
ANUSCRIP

T



28 

 

 

Figure 1. Liquid deformation and nanodroplet formation in graphene liquid cells. (a) 

Schematics illustrating the deformation of liquid and the formation of aqueous nanodroplets 

between graphene sheets under the electron beam. (b,c) In situ TEM images showing the 

deformation of liquid and the formation of nanodroplets. The boundaries at the liquid-gas 

interface are highlighted by dashed lines. The corresponding movies are displayed in Movie 

S1 and Movie S2, respectively. (d,e) Contour plots of the liquid boundaries. (f) Plot of the 

bubble area acquired from the dashed lines in Movie S1 as a function of the measurement time. 

(g) Graph showing the changes in the curvature of liquid boundaries in the next time frame of 

in situ TEM imaging depending on the curvature. The data are acquired from the selected part 

of Movie S1, which is shown in Figure S1. 
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Figure 2. Deformation of the liquid under the strong electron beam. (a) A time-series of in 

situ TEM images showing the liquid deformation under the strong electron beam (400 e-/Å2s). 

The colored and the white dashed lines highlight the deformed liquid and gas bubbles. The 

images are extracted from Movie S4. (b) A contour plot of the liquid boundaries. (c) Plot of the 

bubble area acquired from the white dashed lines as a function of the measurement time. (d,e) 

Plots showing the area (d) and the circularity (e) of the deformed liquid part (highlighted by 

the color dashed lines in panel a) as a function of time. 

  

ACCEPTED M
ANUSCRIP

T



30 

 

 

Figure 3. Motion and shape evolution of the nanodroplet. (a) A time-series of in situ TEM 

images showing the motion and shape evolution of the aqueous nanodroplet. The red and blue 

dashed lines highlight the two liquid boundaries formed by contacting top and bottom graphene 

sheets. The images are extracted from Movie S4. (b) Contour plots of the liquid boundaries. 

Plots I and II are corresponding to red and blue boundaries of panel a, respectively. (c-f) Plots 

of the area (c), the displacement in the center of the mass (d,e), and circularity (f) of the liquid 

droplet as a function of the time. The values are acquired from red and blue boundaries in panel 

a. (g) Comparison of the Laplace pressure of the droplets and the maximum radiation pressure 

by the electron beam. (h) The critical fraction of charged water molecules, which is required 

for the electrostatic energy to exceed the surface energy, as a function of the droplet radius. The 

solid lines and the orange dashed line represent the cylinder model for different bubble radii 

and the sphere model, respectively. 
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Figure 4. Experiment with a hydrophilic graphene liquid cell for comparison. (a) The 

calculated step movement lengths of nanodroplets with different droplet radii (2, 5, and 10 nm) 

according to the contact angle. The solid and dashed lines represent the cylinder model and the 

hemisphere model. (b) Raman spectra of graphene according to the UVO treatment time. (c) 

Macroscopic contact angles of pure water on the graphene-coated grids as a function of the 

UVO treatment time. The insets display representative photograph images acquired from non-

treated and UVO treated (150 s) graphene-coated grids. (d) A time-series of in situ TEM images 

showing dynamic behaviors of the liquid in the graphene liquid cell after surface treatment. 

The images are extracted from Movie S6. (e) A contour plot of the liquid-gas boundaries. 
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1. Supplementary Figures 

 

 

 

Figure S1. A TEM image showing the selected region (the red boxed area) for the local 

curvature analysis in Figure 1(g). The analysis was carried out in the time range of 20−75 s for 

Movie S1. 

 

 

 

 

 

Figure S2. A representative TEM image showing multiple nanodroplets.  
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Figure S3. In-situ TEM images showing dynamics of NaCl in the dried area of graphene liquid 

cells. The images are extracted from Movie S3. 

 

 

 

 

 

 

Figure S4. A representative high-resolution TEM image of NaCl observed in the dried part of 

the graphene liquid cells. The inset shows FFT of the image. 
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Figure S5. Electron energy loss spectroscopy (EELS) spectra of liquid and dried parts of the 

graphene liquid cell used in this study. 

 

 

 

 

Figure S6. Schematic illustrations showing the cross-section of two suggested models for 

droplets with inside the surface gas bubbles. (a) The cylinder model. The droplet is contacting 

with both top and bottom graphene. Two boundaries are formed by the liquid/gas interface 

contacting with the graphene windows. (b) The (hemi-)sphere model. The droplet is contacting 

with only contacting with single side of graphene. One boundary is formed by the liquid/gas 

interface contacting with the graphene and another boundary is formed by the liquid/gas 

interface at the maximum lateral size of the droplet. 
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Figure S7. Photograph images showing the result of contact angle measurement for the 

graphene-coated grids with various UVO exposure times. The yellow dashed lines show the 

result of fitting. 

 

 

2. Supplementary Movie Captions 

Movie S1. Deformation of liquid (measurement conditions: 2 fps; ~150 e-/Å2s). 

Movie S2. Formation of the liquid nanodroplet (measurement conditions: 2 fps; ~100 e-/Å2s). 

Movie S3. NaCl nanocrystals in the dried part (measurement conditions: 5 fps; ~400 e-/Å2s). 

Movie S4. Deformation and formation of the liquid nanodroplet (measurement conditions: 2.5 

fps; ~400 e-/Å2s). 

Movie S5. Merging of liquid droplets into outer liquid (measurement conditions: 2.5 fps; ~500 

e-/Å2s). 

Movie S6. Liquid dynamics in the hydrophilic graphene liquid cell (measurement conditions: 

3 fps; ~150 e-/Å2s). 
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