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Dissertation Abstract

Molecular Docking Towards Drug Discovery:
Improving Interaction Specificity

Daniel A. Gschwend

The ever-increasing rate at which structural information is procured has had a

profound impact on our ability to combat disease. Detailed three-dimensional snapshots

offer exquisite insights into the molecular recognition events which govern all biological

processes. An understanding of how molecules associate offers a window for

chemotherapeutic intervention and consequently the possibility for modulating disease

states. One area of the growing field of computational chemistry focuses on the

identification of agents which bind specifically to a macromolecular target. This objective

presents two fundamental challenges which form the basis for this dissertation: locating

agents which are potent - those that bind tightly, and locating agents which are selective - those

that bind the desired site preferentially to others.

One computational method for locating novel agents involves scanning a database of

pre-existing structures for those which exhibit complementarity to the target. Strategies for

“molecular docking” are embodied within a spectrum of models for ligand binding, bounded

by the canonical Lock-and-Key and Induced Fit paradigms. I explore the potential of a rigid
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model in exploiting species specificity and of a tolerant model in predicting absolute ligand

binding affinity.

The ability of structure-based drug discovery to address receptor specificity is

verified through the identification of novel, selective inhibitors of dihydrofolate reductase

from the opportunistic fungal pathogen, Pneumocystis carinii. Differential design methodology

has enabled the discovery not only of nearly a dozen novel structural frameworks which

bind the microbial enzyme in preference to the human variant, but also of one agent which

displays in vitro potency and selectivity rivaling those of a common therapeutic.

Automated design protocols examine thousands of putative receptor-ligand

configurations and demand rapid feedback on quality of association. The calibration of an

empirical scoring scheme against over one hundred affinities for experimentally observed

complexes has led to a model capable of reproducing observed binding free energies to

within 1.7 kcal/mol. Emphasis has been placed on accuracy in predictions, robustness over

structural diversity, and speed of evaluation. The resulting tools are likely to be of general

use for assessing potency in structure-based drug design.
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Chapter 1.

Introduction

It comes as no surprise that the rapidly increasing amount of structural information

available to the pharmaceutical community has attracted particular interest from the

computational chemistry arena. Computational chemists, most being avid programmers,

enjoy the challenge of encoding rules into algorithmic 1's and 0's. Rules necessarily demand

information, and, in theory anyway, the quality of these rules generally exhibits some degree

of proportionality to the quantity of information at hand. So, the fruit of the blossoming

field of structural biology has enchanted those who would make rules - rules about

molecular association. Projecting into the future, then, there will come a day when we truly

understand what exactly goes on between a receptor and a ligand within the vast brew which

comprises a living organism. But it is already apparent that pharmaceutical science will not

simply halt when this time arrives, for new obstacles will present themselves, such as how

best to use this knowledge. Science is, after all, the process of overcoming obstacles in a

(more-or-less) systematic way.

The hurdle which now lies directly ahead is how, given structures detailed to one

ten-billionth of a meter, can we design a small molecule to bind tightly and specifically to a

macromolecular target? Dozens of approaches have been set forth over the last two decades
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to address various aspects of this remarkably complex problem. Broadly speaking, there are

two basic recipes for locating active biomolecules: we can assemble them from atoms or

groups of atoms, or we can locate them among a library of pre-existing molecules. Both

methods have characteristic advantages and disadvantages. The major drawback of building

molecules, particularly in an academic setting where synthetic resources may be limited, is

that proposed compounds must actually be made. Synthesis is demanding of time, money,

and often specialized expertise. These daunting prospects were stimuli enough to avert the

Kuntz group towards door #2. (It would be more accurate to phrase it such that this choice

was made not out of fear of synthesis, but rather out of aspirations for instant feedback.)

The possibility of selecting among commercially available compounds for novel, bioactive

agents was exciting indeed. Originating with the work of Renee DesJarlais, the Kuntz group

has since pioneered the searching of chemical databases for pre-existing small molecules

which might bind to a target receptor of known three-dimensional structure. Central to

“molecular docking,” to which it is commonly referred, are notions of complementarity:

what sticks to what?

The ability to evaluate complementarity impinges not only upon molecular docking,

but on all of structure-based drug design. All of what appears in this dissertation revolves

around issues related to scoring of putative receptor-ligand associations. In the course of my

graduate career, I have explored a spectrum of docking strategies varying in the level of

stringency in scoring. As Chapter 2 details, these strategies are embodied within the

canonical models for ligand binding. Lock-and-Key and Induced Fit. Chapter 2 represents

the proceedings of research I presented at the 36th Annual Buffalo Medicinal Chemistry

Symposium and has been accepted for publication in the Journal of Molecular Recognition.
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Written as a hybrid review/research article, Chapter 2 previews and unifies the work

discussed in Chapters 3, 4, and 5. Chapter 3 has been submitted in modified form to the

Journal of Medicinal Chemistry, an abridged version of Chapter 4 has been accepted into the

Journal of Computer-Aided Molecular Design, and Chapter 5 is being extended for submission at a

later date.

At one end of the spectrum of docking strategies lie the very exacting requirements

of a search for selective agents. Chapter 3 documents an investigation directed at identifying

therapeutically relevant, species-specific enzyme inhibitors. In many cases, locating an

inhibitor which binds the desired target is not enough - the often-overlooked but equally

important attribute of a clinical candidate is selectivity over related targets so that cross

reactivity may be avoided. Dale Bodian in the group introduced technology which enabled

emphasis to be placed on differing areas between two receptors. While a significant step

forward, these methods necessitated gross distinguishing features, such as a unique pocket,

which could be capitalized upon. Unfortunately, these opportunities are seldom as common

as one would like. Often two receptors much be distinguished which possess only subtly

divergent structures, demanding more stringent differentiation schemes. The enzyme

dihydrofolate reductase, while historically an immensely successful antimicrobial target,

presents precisely such a challenge in combating the opportunistic pathogen Pneumocystis

carinii. Chapter 3 demonstrates the surprisingly successful use of scoring optimization tools

as post-docking filters in locating novel, selective anti-Pneumocystis candidates. Differential

optimization permits a systematic bias enabling the selection of compounds likely to bind

one target but not another.

It makes sense that including score optimization into the docking process would

improve our capacity to exploit subtle structural features. Not only would this enhance the
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retrieval of selective agents, but more generally, strengthens our adherence to Lock-and-Key

docking by imposing stricter criteria on complementarity. But at what expense?

Optimization is a resource-intensive piece of technology - how would this affect docking

performance? Unexpectedly, as Chapter 4 explains, the incorporation of on-the-fly

optimization into the docking process garners a net favorable return on efficiency. In the

most comprehensive analysis of configurational sampling yet, the tight relationship between

sampling and scoring unfolds.

On the other end of the spectrum of docking strategies lies the generality afforded

by a tolerant, universally-applicable scoring function. As molecular docking by design

presents thousands of putative ligands to a receptor which has never seen them before, a bit

of clemency in deciding how they might interact is warranted. What is required is an

evaluation function capable of estimating (rapidly, no less) free energies of binding for a

structurally diverse set of molecular arrangements. This is the brass ring for of all of

structure-based drug design. Rather than borrow a scoring method from another branch of

computational chemistry, I set out to devise an evaluation scheme which was parameterized

on the very values we seek: binding affinities of small-molecule ligands for macromolecules.

Chapter 5 discusses the development of an empirical scoring function calibrated against the

largest set of binding affinities reported to date. Through careful interaction characterization

and statistical analysis, a working model capable of reproducing observed affinities to within

1.7 kcal/mol has been derived. The predictive ability of the model, while validated by

statistical metrics, remains to be verified in a practical setting. It is clear, however, that the

omission of entropic terms in assessing interaction strengths seriously dampens the true

potential of molecular docking.
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My graduate expedition has journeyed through Lock-and-Key docking, through

species-specificity, through score optimization, and through “alternative” scoring functions;

all the while I sat behind my workstation (not entirely - I did do a handful of real

experiments!) amidst applications work and methodology development. Working on real

world, therapeutically relevant problems was stimulating. Developing code useful to the

group and to the scientific community was satisfying. Perhaps most enlightening, however,

was the research with which I conclude my tenure here at UCSF: the study of over a

hundred structurally diverse molecular assemblies we call proteins. Nature has concealed a

wealth of information within the confines of molecular recognition snapshots. The

incorporation into structure-based design strategies of empirically-derived evaluation

schemes which directly take advantage of this information (such as of the flavor outlined in

Chapter 5) have the potential to vastly improve our understanding and the quality of lead

discovery.
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Molecular Docking Towards Drug Discovery

Daniel A. Gschwend, Andrew C. Good, and Irwin D. Kuntz'

Department of Pharmaceutical Chemistry,

University of California, San Francisco, CA 94143-0446

f Current address: Rhône Poulenc Rorer, Dagenham Research Centre JB4-0, Dagenham, Essex RM107XS,
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ABSTRACT

Fueled by advances in molecular structure determination, tools for structure-based

drug design are proliferating rapidly. Lead discovery through searching of ligand databases

with molecular docking techniques represents an attractive alternative to high-throughput

random screening. The size of commercial databases imposes severe computational

constraints on molecular docking, compromising the level of calculational detail permitted

for each putative ligand. We describe alternative philosophies for docking which effectively

address this challenge. With respect to the dynamic aspects of molecular recognition, these

strategies lie along a spectrum of models bounded by the Lock-and-Key and Induced-Fit

theories for ligand binding. We explore the potential of a rigid model in exploiting species

specificity and of a tolerant model in predicting absolute ligand binding affinity. Current

molecular docking methods are limited primarily by their ability to rank docked complexes;

we therefore place particular emphasis on this aspect of the problem throughout our

validation of docking strategies.

Keywords: molecular docking; empirical scoring schemes; species specificity; DOCK
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INTRODUCTION

Overview

Molecular recognition is a problem fundamental to structural biology. The

interaction of molecules, be they macromolecules or small ligands, is a prerequisite for nearly

all biological events. Specific modulation of these interactions has been the ambition of

medicinal chemists for over a century. To gain more rapid access to therapeutic agents, we

must not only understand, but be able to predict, the structural details of recognition events.

A precise understanding of the basis for complementarity would allow us to venture

predictions for purposes of drug design. The inaccuracy of such predictions generally

parallels the divergence in the nature of interactions thought to be involved - the brass ring

of the field is the quantitative assessment of affinity among structurally unrelated ligands. It

is important to bear in mind, however, that true measures of affinity can only be inferred

when proper geometries among the components have been established. In broad terms, the

prediction of a molecular recognition event embodies two not altogether independent

obstacles: the generation of appropriate geometries, and the assessment of complementarity.

Although we narrow our discussion to that of small molecule ligands, the general principles

are extensible to macromolecular ligands as well.

Structure-based drug de■ ign

Structural information is critical to an analysis of molecular recognition events. The

experimental determinations which give rise to such data lie at the heart of the structure
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Known

Structure Target Theory\ Structure /

Proposed
Ligands

Successful
Candidates

Testing —/ | \ Synthesis

Figure 1. Structure-based drug design paradigm.
The figure emphasizes the cyclic and multidisciplinary aspects of this type of project.

based drug design cycle presented in Figure 1. The application of theoretical principles

results in the proposal of putative ligands that are subsequently synthesized and tested. Bio

logical data and receptor-ligand complex determination help to refine working hypotheses

about complementarity (note that we use the term receptor in the non-classical sense to

encompass any biological macromolecule that will bind ligands). The repeated application

of the cycle constitutes incremental optimization of an initial bioactive compound, or lead.

Tools which identify lead compounds themselves are of particular interest for acquiring

chemically diverse starting points for optimization. Such diversity at the outset is valuable in

maximizing the array of possibilities further downstream when pharmacokinetic and

toxicological complications inevitably arise. There are a variety of computational techniques

which may be useful in lead discovery in the context of detailed receptor information

(Kuntz, 1992; Greer et al., 1994; Kuntz et al., 1994; Guida, 1994, Lybrand, 1995).
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Two of the purest forms, stimulated by rapid advances in molecular structure

determination, are database searching (Martin, 1992; Good & Mason, 1995) and structure

generation (Lewis & Leach, 1994). The former selects ligands complementary to a receptor

from a library of pre-existing compounds, while the latter attempts to create ligands tailor

made to fit the site of interest (“de novo design”). We here focus on the former - the

molecular “docking” problem, which we define as the prediction of the observed (native)

orientation of two interacting components given detailed three-dimensional information of

each independently.

Molecular docking

Molecular docking attempts to arrange molecules in favorable configurations by

matching complementary features (for a review of approaches, see Blaney and Dixon, 1993).

This is a difficult task because there are many ways in which complex molecules can be

associated. The problem is further complicated by an exponential dependence on molecule

size, so that the number of possible configurations explodes when docking involves

biological macromolecules such as proteins or nucleic acid polymers. An exhaustive

computational analysis of configuration space is not tractable (Kuhl et al., 1984; Connolly,

1986; Wang, 1991; Kuntz et al., 1994), especially for database searching. Current docking

methodologies thus invoke either geometric- or energy-based schemes to guide

configurational sampling (Kuntz et al., 1994), the former relying upon the matching of

topographical features and the latter upon optimization along a potential energy surface of

some kind. As alluded to earlier, however, configurational sampling is only half of the

problem. The ranking of each configuration by some metric of complementarity constitutes

the other major hurdle.

10
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Complementarity

Complementarity can be assessed in many ways (see, for example, Shoichet &

Kuntz, 1991). A configuration may be evaluated by its agreement with an input query or on

its own merits, such as by a score independent of the method in which the docked complex

was generated. One of the earliest conceptualizations of complementarity was the pairing of

knobs and holes in packed O-helices (Crick, 1953). Somewhat more recently, these ideas

were formulated into an algorithm for molecular docking by Connolly (1986), with variable

success. Lin et al. (1994) have extended this formulation to the use of sparse critical points in

a highly efficient solution to the docking problem (Fischer et al., 1995). The use of surface

complementarity has long been a fashionable scheme for guiding docking analyses (Wodak

& Janin, 1978; Greer & Bush, 1978; Connolly, 1986; Jiang & Kim, 1991; Wang, 1991;

Katchalski-Katzir et al., 1992; Bacon & Moult, 1992; Helmer-Citterich & Tramontano, 1994;

Norel et al., 1994). Other mechanisms include compatibility assessments of individual atom

contacts (Kuntz et al., 1982; Lawrence & Davis, 1992; Shoichet & Kuntz, 1993) and extend

to methods targeting specific interactions such as scoring by simplified electrostatic

representations (Walls & Sternberg, 1992), satisfaction of hydrogen bonding constraints

(Smellie et al., 1991; Kasinos et al., 1992; Yamada & Itai, 1993), or hydrophobic

complementarity (Meng et al., 1994; Vakser & Aflalo, 1994). Molecular mechanics force

fields remain extremely popular for the evaluation of docked complexes (Goodsell & Olson,

1990; Meng et al., 1992; Hart & Read, 1992; Lawrence & Davis, 1992; Yamada & Itai, 1993;

Miller et al., 1994), while empirical schemes have met with renewed attention in recent years

(Bohacek & McMartin, 1992; Bohacek & McMartin, 1994, Böhm, 1994a,b; Aqvist et al.,

1994; Warshel et al., 1994).

11
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Computational issues

The computational demands imposed by the very goals of molecular docking

severely constrain the level of detail permitted in various aspects of the study.

Computational screening aims to scan a 3-D database containing thousands or even millions

of compounds in the time frame of days to weeks on a workstation. This leaves only on the

order of a few seconds or less for an analysis of each putative ligand. Necessarily, these

conditions impose serious limitations as to the thoroughness of each calculation. The typical

tradeoff that results is one of speed versus storage; with unlimited physical memory, we may

afford to sacrifice storage space for speed; conversely, with more realistic physical

limitations, we must sacrifice speed for the sake of efficiency in storage. Approximations are

therefore unavoidable. The most common simplifications include assumption of inflexible

ligands and receptors, neglect of solvation effects, and use of crude scoring systems. It

remains a challenge to formulate an interaction evaluation scheme which is both efficient

and accurate. The computational constraints defined by molecular docking objectives

establish a framework for deriving effective strategies.

Docking strategies

Molecular recognition events are dynamic processes. Any attempt to simulate such a

process must come to terms with the kinetics and equilibria of molecules in solution. Each

method must at the outset state which effects will be considered and which approximations

will be made. Thus, there are a number of philosophies about how molecular docking might

be carried out and which assumptions are in order. As will be described in more detail, these

strategies span a spectrum of models bounded by the Lock-and-Key and Induced Fit

theories for ligand binding. We explore two such strategies and examine scoring

12
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enhancements which further validate each as an appropriate model for molecular docking

studies. The underlying motif of the work described here addresses our ability to rank

docked complexes. Rapid methods now exist for carrying out efficient configurational

sampling (Shoichet et al., 1992; Lawrence & Davis, 1992; Norel et al., 1994; Kuntz et al.,

1994), so we adjust our focus to the evaluation phase of a docking analysis. The attention

that this aspect of the docking problem merits can not be underestimated in light of our

successes with the combinatorial challenge. How we evaluate docked complexes has

immediate repercussions on our estimation of what defines an optimal configuration, and

hence, how well we mimic the physical process of molecular recognition. Proper ranking is

essential for reaping the benefits of a molecular docking analysis, not only for the potential

in drug discovery, but also for gaining thermodynamic insights into binding events.

Thermodynamic estimates, in particular, will require more than just correct relative rankings

among distinct binding modes; here, accurate gauges of absolute affinity may be necessary.

The latter is, in fact, the prime directive of the field of structure-based drug design: can we

predict with any certainty how tightly one molecule will bind to another?

LOCKAND KEY DOCKING

Rigid approaches

That molecular recognition events can be highly specific interactions is not new to

medicinal chemists. Analogies to a “lock-and-key” concept to describe these processes were

first put forth a century ago by Fischer (1894) and by Ehrlich (1909) (see also Lichtentaler,

1994). This model entails a precise matching of immutable components; the implications for

molecular docking are that we may approximate the receptor and the ligand as rigid

13
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molecules. This greatly simplifies the docking problem by reducing the number of degrees

of freedom from several thousand to only six. Along the spectrum of strategies for the

simulation of dynamic processes, the lock-and-key concept lies at one extreme. What value

does such a simplified model offer for molecular docking studies?

We envision the lock-and-key docking model as follows. A discrete conformation of

the receptor has been observed experimentally. Discrete, reasonably low-energy

conformations of potential ligands exist in the molecular database to be searched. Can one

find exact fits between these pre-existing conformations? It is possible that the individual

conformations will be sufficiently populated in solution that a binding event can occur with

a resulting stabilization of the complex. It is upon these assumptions that molecular docking

under the lock-and-key philosophy relies. These hypotheses warrant caution, but experience

has taught us that this model can be quite informative.

The assumption of a rigid receptor is often less severe than one might think.

Proteins are generally observed to behave as rigid entities, as studies of complexed and

uncomplexed crystal structures indicate (Janin & Chothia, 1990). Although large

conformational changes upon complexation have been illustrated (Miller et al., 1989; Schulz

et al., 1990; Van Duyne et al., 1991), backbone movement is typically restricted to less than 1

A (Cherfils & Janin, 1993). The well-established prevalence of sidechain motion will present

a challenge for all docking methodologies. That macromolecular plasticity (Koshland, 1971)

defeats lock-and-key docking has yet to be shown. The practical application of DOCK, one

of the first automated molecular docking programs (Kuntz et al., 1982; DesJarlais et al., 1988;

Shoichet et al., 1992; Meng et al., 1992), has resulted in numerous successes under the simple

rigid-body docking model (DesJarlais et al., 1990; Kerwin et al., 1991; Shoichet et al., 1993;

Ring et al., 1993; Bodian et al., 1993; Rutenber et al., 1993). Albeit a tremendous
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simplification, it is apparent that the assumption of an inflexible receptor has significant

value associated with it.

One of the most formidable tasks in drug design is that of obtaining specificity in

interactions over related receptors. Species specificity is a common instance of this general

theme. Differentiating functionally identical and structurally very similar targets requires

extremely sensitive technology. We now push the envelope of the lock-and-key concept by

attempting to distinguish, at an atomic level, two enzymes whose discrimination continues to

frustrate modern medicinal chemistry: an example of exquisite similarity among

phylogenetically distinct species is that of dihydrofolate reductase (DHFR) from humans and

that from the pathogenic fungus Pneumocystis carinii (Edman et al., 1988).

Pneumocystis, a fungal opportunist

Pneumocystis carinii harmlessly infects nearly all humans, but upon reactivation of

latent infection by immunodeficiency can induce a disease state characterized by a crippling

pneumonia (Murray & Mills, 1990; Bartlett & Smith, 1991). Not surprisingly, this

opportunist is the principal agent of morbidity and mortality in HIV-infected persons

(Murray & Mills, 1990; Mills & Masur, 1990). Without chemoprophylaxis, 60 to 85% of

AIDS patients eventually will be afflicted by P. carinii pneumonia, and 25% will die from it

(Walzer et al., 1974; Mills, 1986; Kovacs & Masur, 1988; Justice et al., 1989; Bartlett & Smith,

1991). Agents in a variety of mechanistically distinct classes are being explored, but the most

successful of these approaches thus far have been the antifolates and DNA-replication

antagonists. Co-trimoxazole and pentamidine isethionate are the most widely prescribed

preparations for therapy and prophylaxis of Pneumocystis carinii pneumonia (Kovacs & Masur,

1988; Murray & Mills, 1990; U.S. Public Health Service, 1993; Gallant et al., 1994).
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Unfortunately, these treatments are plagued with adverse reactions (Walzer et al., 1974; Jaffe

et al., 1983; Gordin et al., 1984; Kovacs et al., 1984; Wharton et al., 1986; Allegra et al., 1987).

The frequency of such reactions is not surprising in the case of co-trimoxazole: the

dihydropteroate synthetase (DHPS) inhibitor component, sulfamethoxazole, is quite toxic

(Masur, 1992) and the DHFR inhibitor component, trimethoprim, is weak and non-selective

(Edman et al., 1989; Margosiak et al., 1993). In fact, it is almost general that clinically relevant

DHFR inhibitors are selective for human DHFR (Margosiak et al., 1993). The lack of

selectivity and resulting side effects of antifolates is likely a direct consequence of the

similarity between host and pathogen DHFR.

Based on published sequence alignments (Blakley, 1984; Edman et al., 1989), P. carinii

DHFR displays highest similarity with that of vertebrates. Sequence identities of 35-40%

and homologies near 70% are observed. High-resolution crystal structures of human

(Davies et al., 1990) and P. carinii (Oefner et al., 1991) DHFR confirm only minor differences.

Within the folate binding pocket, there are only six non-identical residues. The active site

aspartate common to bacterial and protozoan DHFR is replaced with glutamate in P. carinii,

as in all vertebrate DHFRs. Further drug design complications arise from the fact that the

Pneumocystis active site is nearly universally smaller than the human active site, making

exploitation of unique pockets impossible. The extensive similarity of the active site

molecular surfaces (Connolly, 1983a,b) is depicted in Figure 2.

Figure 2. Active site superimposition of DHFR.

(following page) The molecular surface of Pneumocystis carinii DHFR is shown in magenta;
the molecular surface of human DHFR is shown in yellow. Structures were aligned by
superimposition of 55 active site o-carbons (0.55 Arms). A cross-section of the active site
is depicted, showing substrate (folate) and cofactor (NADPH) colored by atomic identity.

16



Molecular Docking Towards Drug Discovery Chapter 2

17



Molecular Docking Towards Drug Discovery Chapter 2

The lack of differentiation by mainstream agents highlights the urgency for

alternative molecular frameworks. Thus, molecular docking is ideally suited to this task.

The lock-and-key model, applied in stringent fashion, has been used to discern minute

differences between the host and pathogen receptors. We here summarize the application of

the DOCK screening process toward the therapeutically important problem of identifying

novel, selective anti-Pneumocystis agents. This work will be published in greater detail

elsewhere [Gschwend et al., 1995 (Chapter 3)].

DOCK

The DOCK suite of programs, like other molecular docking packages, is designed to

identify putative ligands complementary to a receptor of known 3-D structure. The details

of the method have been described previously (Kuntz et al., 1982; Shoichet et al., 1992; Meng

et al., 1992) - only an overview is given here. By filling the receptor site with overlapping

spheres of varying sizes, a negative image capturing the bumps and grooves of the region of

interest is generated. A 3-D database is searched (DesJarlais et al., 1988) for molecules

whose interatomic distances match the inter-sphere-center distances. Each compound is

evaluated in thousands of orientations in the active site by an approximate molecular

mechanics interaction energy (Meng et al., 1992). The best-scoring compounds presumably

exploit multiple geometric and/or chemical properties of the receptor site and are thus of

considerable interest as inhibitor candidates. The DOCK procedures have been tested

through studies of crystallographic complexes (Kuntz et al., 1982; Shoichet & Kuntz, 1991;

Meng et al., 1992; Shoichet et al., 1992; Shoichet & Kuntz, 1993; Meng et al., 1993). The

experimental geometries are associated with the best-scoring orientations, generally within 1

A r.m.s. deviation. More importantly, compounds that have radically different structures

from known inhibitors are often found.
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Method

The human [Protein Data Bank (Bernstein et al., 1977) entry 1dhf (Davies et al.,

1990)] and P. carinii (Oefner et al., 1991) DHFR structures were aligned by superimposing

active site o-carbons. The Fine Chemicals Directory (FCD3D v.89.2, MDL Information

Systems, Inc., San Leandro, CA), a database of commercially available compounds (now

called the Available Chemicals Directory), was screened with DOCK version 3.0 (Meng et

al., 1992) against Pneumocystis DHFR. Figure 3 illustrates the complementarity of the sphere

description used to characterize the target site and perform the docking. An average of

19,000 orientations was examined for each of 53,328 compounds. The over one billion total

configurations investigated at a rate of 800 per second (Silicon Graphics PI 4D/35) attest to

the speed of the DOCK program. Roughly the top 5% (2,700) top force-field scoring

ligands were retained for further analysis. Each of these was then subject to a quasi-Newton

rigid-body minimization (Meng et al., 1993) to optimize the intermolecular interactions of its

best scoring orientation. This refinement was carried out independently in the context of

both P. carinii and human DHFR active sites. Thus, the starting configuration in Pneumocystis

DHFR was determined by DOCK, while the starting configuration in human DHFR was

determined by the structural alignment. The differential, optimized force-field scores were

used as an indication of species selectivity.

Figure 3. Docking spheres.
(following page) The molecular surface of Pneumocystis carinii DHFR is shown in magenta,
sphere centers used in docking are shown as small green balls, and the collective surface of
the sphere description is illustrated in white. Note the shape complementarity between the
surface of the sphere description and the surface of the receptor.
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A manual screening process of the computationally selected 2,700 compounds

ensued. Filters were introduced to target deficiencies in the DOCK scoring scheme, such as

solvation effects and neglect of conformational entropy. Hits were visually evaluated for fit

using the Midasplus graphics package (Ferrin et al., 1988). As only a finite number of

compounds can be assayed, chemical diversity screens with the aid of the MACCS-II 3D

software (MDL Information Systems, Inc., San Leandro, CA) were employed. Substructure

clustering enabled the selection of only the structurally most dissimilar compounds for

biological characterization. Finally, practical concerns including solubility, reactivity, toxicity

and commercial availability were addressed.

Results

Forty structurally distinct compounds were assayed for activity against Pneumocystis

carinii dihydrofolate reductase. Of these, nearly half showed significant inhibition, greater

than 20% at an inhibitor concentration of 100 plM. Roughly one quarter demonstrated IC50

values at or better than 100 H.M. Seven of the more potent compounds against P. carinii

DHFR were assayed against human DHFR for specificity. All were selective for the

pathogenic isozyme, as illustrated in Figure 4. The most potent compound, which inhibits P.

carinii DHFR with an IC50 of 7 plM, shows 25-fold selectivity. An analysis of the DOCK

predicted mode of binding for this inhibitor attributes this differentiation to contact with

four of the six non-identical residues in the active site.
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Figure 4. Selectivity plot for novel DHFR inhibitors.

Percent inhibition of DHFR at an inhibitor concentration of 100 puM is shown for each of

seven assayed ligands. The diagonal line represents the absence of selectivity.

It is important to put this seemingly minor species-specificity into perspective.

Trimethoprim, the DHFR inhibitor component of the most widely prescribed preparation

for P. carinii infection, is a weak inhibitor and exhibits essentially no preference for the

pathogenic enzyme, while all other clinically relevant therapeutics show modest to great

selectivity for the human enzyme (Margosiak et al., 1993). An analysis of progress in the

antifolate literature indicates that even a 10-fold preference for P. carinii DHFR is a relatively
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rare occurrence. The 7-1M inhibitor discovered with the molecular docking approach

described above is a lead; it is clearly not a drug. However, in the context of the extreme

difficulty with which selective anti-Pneumocystis agents are identified, this lead may prove an

advantageous starting point toward therapeutic usefulness. Finally, it is not inconsequential

that the molecular framework of this agent bears no resemblance to any previously

established antifolate.

Macroscopic correlations

Computational strategies for structure-based drug discovery offer a valuable

alternative to the costly and time-consuming process of random screening (Kuntz, 1992).

Coupled with a database of commercially available compounds, such as the ACD, programs

like DOCK can provide extremely rapid access to novel leads. However, because of the

many approximations underlying the search and scoring engines (e.g. neglect of solvation

terms, rigidity of ligand and receptor, discretized scoring), DOCK can not be expected to

yield predictions of a quantitative nature. Rather, we prefer to value DOCK as a

“macroscopic correlator” of binding affinity and interaction score. Even in the daunting

task of species-specificity, macroscopic correlations when applied in sequence can, as

demonstrated here, confer a powerful tool.

In the method previewed here, the rigid-body minimization acts as the selectivity

filter. An optimization of this type as a post-docking utility has been shown to improve

agreement with experimentally determined binding modes (Meng et al., 1993). Of the 50,000

compounds in the database, an enrichment for agents which inhibit P. carinii DHFR was

achieved with DOCK (the first macroscopic correlation). Subsequently, the differential

optimization in the context of both isozymes offered resolution along an additional
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dimension for these remaining compounds. By choosing structures which score highly in

Pneumocystis DHFR and poorly in human DHFR (the second macroscopic correlation), an

enrichment for agents selective against host DHFR has now been accomplished.

To summarize, our simple implementation of the lock-and-key model has proven

extremely effective even in the compounded task of searching for selective agents. The

optimization used here does not counteract the lock-and-key model. It offers a jiggling of

the rigid components with respect to one another, allowing a more exact match to be

located. The refinement in essence strengthens our adherence to the lock-and-key model by

providing a more stringent scoring scheme for the evaluation of docked complexes. As

dictated by the exquisite structural similarities within the species specificity problem

addressed here, such a stringency is paramount in discerning atomic level differences.

New technologies

An even stricter adherence to the lock-and-key model can readily be envisioned.

The optimization of intermolecular interactions described above took the form of a post

DOCK refinement: thousands of orientations of a ligand with respect to its receptor were

generated, the best-scoring configuration was identified, and finally the fit of this one

optimal configuration was refined. It would be more faithful to the lock-and-key model and

less biased in approach if every orientation of the ligand was optimized, rather than only one

configuration deemed best by an unrefined score. Rankings among configurations as gauged

by pre- and post-refinement scores differ, sometimes dramatically (data not shown). It

therefore makes sense to harness the power of minimization as a post-docking scoring tool

directly in the evaluation phase of docking. This computationally demanding advance has

been accomplished with an unexpected performance increase and incorporated into DOCK
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version 3.5. Despite advances in computational resources which make features such as on

the-fly optimization yet more palatable, the time spent in refinement is still large when

compared with the time spent sampling configuration space. If one could judiciously reduce

the number of orientations actually optimized, however, the refinement bottleneck might be

dissipated.

Given the large number of spatially distributed descriptors and atoms involved in

molecular docking, it is not surprising that there are many ways of pairing them which give

rise to similar geometric orientations. This is obviously the result of over-sampling in certain

regions, but without which some binding modes would be under-sampled or even

overlooked. In the absence of refinement, this over-sampling provides a sort of rigid-body

minimization itself. A better way to optimize local interactions is to find only one

orientation per mode of binding and energy-minimize that orientation, while never again

paying close attention to similar orientations. By removing so-called “degenerate”

configurations, many non-informative minimizations are avoided. Progress towards this

goal with a technique we refer to as “degeneracy checking, as well as the specifics of on-the

fly force-field score optimization, will be published in greater detail elsewhere [Gschwend &

Kuntz, 1995 (Chapter 4)].

Summary

Our experiences with lock-and-key docking have been encouraging. We here have

previewed the discovery of a novel, selective enzyme inhibitor under this model, and append

our application to a growing list of DOCK successes. The use of DOCK to pursue selective

leads of therapeutic interest had not yet been reported. Thus, this marks the first attempt to

push the lock-and-key model to the limit of differentiation at an atomic level. Detection of
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minute differences between structurally similar targets requires a refined scoring procedure.

The force-field score, comprised of Coulombic electrostatic and Lennard Jones van der

Waals terms, is by nature very sensitive to exact atomic positions. This conforms well with

our interpretation of the lock-and-key model for molecular docking, outlined previously,

which demands stringency in the evaluation phase to locate exact matches. Heightened

resolution is achieved by rigid-body optimization, which allows a configuration to exploit

optimal local interactions and thereby accentuate subtle differences between targets. As

gauged by the broad success in locating selective agents in the face of few distinguishing

features, it appears this technology is quite powerful. The incorporation of on-the-fly

refinement into the docking process can only enhance our ability to detect optimal fits. The

methodology enhancements and species-specificity results reinforce our view of the lock

and-key model as a valid strategy for molecular docking.

INDUCED FIT MODEL

Flexible approaches

The lock-and-key model for protein-ligand binding can not explain all aspects of

enzyme specificity (Koshland, 1994). For example, the function of ligands which modulate

enzyme activity but do not participate directly in catalysis could not be defined (Koshland,

1971). Observations such as these led to the proposal of a modified theory, the induced-fit

theory (Koshland, 1958), which maintains that ligands induce changes in protein structure

before a suitable fit can occur. The ideas of induced-fit effects and macromolecular plasticity

find mounting support as structural and mechanistic details of molecular recognition events

are elucidated (see Jorgensen, 1991, and references therein).
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The hand-shaking that occurs between receptor and ligand upon binding is difficult

to simulate computationally. The inclusion of conformational degrees of freedom in

addition to the six orientational degrees of freedom exhibited by rigid objects results in a

configurational explosion. Molecular dynamics simulations offer assistance in the local

exploration of conformational flexibility, but become intractable in a molecular docking

context when a single starting position can not be assumed. There have been many

approaches to tackling this massively complicated docking problem. One method which

juxtaposes discrete ligand and receptor conformations has been reported (Leach, 1994).

Numerous approaches, while ignoring receptor mobility, do treat ligand flexibility - these

include energy-based methods (Goodsell & Olson, 1990; Hart & Read, 1992), genetic

algorithms (Judson et al., 1994; Jones et al., 1995; Oshiro et al., 1995), distance geometry

(Ghose & Crippen, 1985), descriptor-based methods (Yamada & Itai, 1993), fragment-based

techniques (DesJarlais et al., 1986; Leach & Kuntz, 1992), and the independent docking of

discrete, pre-generated ligand conformations (Miller et al., 1994). With the exception of the

last method [which scales as the number of conformations per ligand, typically of order 10

(Miller et al., 1994)] and those methods which are not trivially automated (e.g. fragment-based

techniques), these approaches for incorporating flexibility require (justifiably) roughly 50- to

5,000-fold longer execution times than an efficient rigid-body docking method. For single

molecule docking studies, where we can afford a more detailed analysis, this sacrifice is

entirely acceptable. For purposes of drug discovery, however, such penalties become

prohibitive.
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Goals of molecular docking

Molecular docking for drug discovery aims to scan a database of compounds for

ligands which exploit some aspect of complementarity to the receptor of interest. An

attempt to simulate molecular recognition is made for ligands which the receptor has never

“seen” before. This point deserves some clarification. The receptor structure designated for

docking has been observed experimentally or modeled by homology either in an unbound or

a bound state. Thus, the receptor exists in a pre-defined conformation, one possibly molded

to a particular ligand. It would behoove docking studies if the receptor were allowed to

respond to the presence of each putative ligand. A plasticity on the part of the receptor

would permit formation of improved interactions, thereby offering a fairer gauge of the

compound's potential as a true ligand. Short of introducing explicit flexibility and suffering a

severe performance penalty, we wonder whether it is possible to manifest some aspects of

conformational flexibility in the docking process.

Soft docking

An implicit breathing on the part of the receptor (and the ligand) can be introduced

via a tolerant evaluation function. For example, a softer scoring potential permits slight

atomic interpenetrations without penalty, in effect implying a resolving conformational

change. The idea of so-called “soft docking” is not new. This concept hails from protein

protein docking investigations in which structures of unbound components are docked to

reproduce the observed complexed structure (Wodak & Janin, 1978; Shoichet & Kuntz,

1991; Jiang & Kim, 1991; Walls & Sternberg, 1992). The success of such methods hinges

upon a local insensitivity that fosters conformational shifts upon complexation. Tolerance is

brought about either by simplified geometric representations (Wodak & Janin, 1978; Jiang &
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Kim, 1991) or by imprecise scoring schemes (Shoichet & Kuntz, 1991; Walls & Sternberg,

1992). We can apply these concepts, in a somewhat more constrained manner, towards

addressing dynamic aspects of small-molecule recognition.

Scoring philosophy

The scoring function we seek for drug discovery through molecular docking should

exhibit four distinct qualities: 1) it should be robust over a structurally diverse set of

receptor-ligand complexes; 2) it should incorporate molecular plasticity; 3) it should be easy

to implement; and 4) it must be rapid to evaluate. The philosophy that this work subscribes

to presupposes that, in keeping with induced-fit notions, the receptor will respond to the

presence of a ligand. Thus, unfavorable interactions will be avoided, while favorable

interactions will be optimized, both by concerted motion on the part of the components.

These assumptions naturally compromise our ability to detect subtleties, but, as will be seen

shortly, afford generality across structurally diverse receptor-ligand complexes.

Force-field;

In deriving a robust scoring function, we opt to deviate from the sensitive molecular

mechanics functions of many molecular docking programs and revert to simpler, digital

interaction evaluations. To a first approximation, we consider interactions as being either

present or not. This implementation ensures ease of use and an insensitivity to exact local

geometries, at the cost of potential accuracy. Furthermore, we avoid problematic issues

confronted in using force-fields, such as partial charge computation, choice of dielectric

behavior, careful assignment of atom types, and hydrogen placement. To illustrate the latter

sensitivity, consider hydroxyl hydrogens (for example, on serine, threonine, and tyrosine
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residues). Preference for hydrogen bond geometry about these functionalities is weak (Baker

& Hubbard, 1984; Thanki et al., 1988; Tintelnot & Andrews, 1989), while molecular

mechanics-based schemes require selection of an exact hydrogen position. Interaction

strength is thus spuriously sensitive to the (typically arbitrary) placement of this hydrogen.

Finally, we note that molecular mechanics is not directly parameterized to reproduce binding

affinities. Force-field scores report an enthalpy of interaction; the quantity of interest is the

free energy of interaction. In our experience, force-field scores are effective at identifying the

optimal binding mode of a single ligand, but perform poorly at predicting even relative

binding energies across a panel of ligands. Entropic contributions are likely to be fairly

similar for different binding modes of one ligand, but clearly can vary substantially from one

ligand to the next. It stands to reason that without the entropic half of the equation we have

little hope of predicting binding affinities for structurally diverse ligands. [Successful,

system-dependent examples of enthalpic correlations with binding affinity have been

reported (e.g. Holloway et al., 1995). Here, we emphasize the need for robustness across

structurally unrelated ligands binding to varied receptors.]

Empirical schemes

Given the scope of the molecular docking problem, it is not unreasonable to design a

scoring scheme especially suited to the task at hand - that is, evaluating strengths of

interactions for a diversity of receptor-ligand complexes. There currently exist nearly as

many ways of evaluating docked complexes as there are docking methods. As early

researchers in the protein docking field have noted, even the simplest scoring schemes

perform virtually as well as more advanced molecular mechanics treatments (Shoichet &

Kuntz, 1991; Cherfils & Janin, 1993). There is thus the potential to derive an evaluation
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method which is not borrowed from the objectives of another branch of computational

chemistry, but rather, which is parameterized to reproduce precisely the type of values we

are attempting to predict.

The field of empirical scoring systems for the estimation of small-molecule binding

affinities has rapidly become an active area of investigation (Bohacek & McMartin, 1992;

Krystek et al., 1993; Bohacek & McMartin, 1994, Böhm, 1994a,b; G.R. Marshall, personal

communication; J.S. Dixon, personal communication; M.A. Murcko, personal

communication; A.N. Jain, personal communication). Paralleling a QSAR study, the general

procedure consists of amassing a series of receptor-ligand complexes [typically from the

Protein Data Bank (Bernstein et al., 1977)] with experimentally determined affinities, devising

various calculable terms which describe physical interactions of interest, and attempting to

obtain affinity correlations while varying coefficients for each term. Approaches vary widely

in the data set composition, the terms employed in correlations, and the method in which

the terms are computed. As with any correlation analysis, great care must be taken to

acquire a large and diverse data set, to gauge the statistical validity of the output, to verify

predictivity of proposed models, and to avoid overinterpretation of physical significance.

■ To avoid duplication of some material, the reader is referred to Chapter 5 for a detailed discussion of the

empirical scheme we have developed.]
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Summary

Empirical schemes show great potential for benefiting database screening by

molecular docking. Their simplicity by design makes them rapid to calculate and easy to

implement, avoiding challenges associated with force-field implementations such as atomic

parameterization and partial charge computation. The nature of the tolerant functions used

in our empirical schemes makes them insensitive to exact local geometries. An implicit

breathing on the part of the receptor and ligand can therefore be sanctioned. Along the

spectrum of strategies for the simulation of dynamic processes, induced-fit models which

address explicit flexibility on the part of the ligand and receptor are intractable for a database

screening application. Our compromise toward implicit plasticity, in contrast, suffers no

performance penalty. It remains to be proven whether we gain anything in a practical

setting, but empirical schemes are designed to be and have shown themselves to be robust

over diverse data sets. A molecular docking implementation utilizing a carefully formulated

empirical scheme should be able to harness this robustness to our advantage.

OUTLOOK

Reasonable methods now exist for combining the pieces of the 3-D molecular jigsaw

puzzle; we here have focused on aspects of judging whether the puzzle looks right. Given

the varied ways in which one can make this judgment, there are seemingly infinite stances to

be assumed for molecular docking strategies. Our flexibility becomes more limited,

however, in the face of database screening applications where ligand analyses must be

completed in a few seconds. We have explored two approaches here, one very exacting and

one very tolerant.
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The lock-and-key model has been immensely successful for molecular docking,

generating leads in an array of biological systems (Kuntz, 1992). In our experience with

enzymes, typical hit rates at the micromolar level range between 2 and 20%. Even in the

compounded problem of addressing species specificity, we have demonstrated an ability to

locate novel, selective leads. These accounts are encouraging, and validate the lock-and-key

model as a strategy for drug discovery through molecular docking. We have extended our

interpretation of the lock-and-key model by introducing rigid-body optimization into the

docking process. This technology strengthens our adherence to the goal of identifying exact

matches, which epitomizes lock-and-key docking.

Our initial steps toward capturing induced-fit effects into a docking strategy appear

promising. Empirical schemes incorporating implicit plasticity herald a generality not seen

with sensitive molecular mechanics-based approaches. The robustness over diverse

structural arrangements embraces the presentation of thousands of molecular skeletons to a

receptor which is not explicitly allowed to respond. This challenge is the essence of

molecular docking for drug discovery: can we gauge the affinity of an arbitrary ligand for a

given receptor? Ultimately, only methods which address the whole of the Gibbs free energy

equation will prevail. Amidst the wake of vast quantities of detailed structural information

now becoming available, it is imperative for comprehending molecular recognition and for

pursuing structure-based drug design that we master the subtleties of complementarity.
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ABSTRACT

The concern for specificity is an important but unfortunately often-overlooked

aspect of structure-based drug design. The ability to selectively modulate biochemical

processes without interfering with related systems is crucial to the success of chemotherapy.

Distinguishing between related targets in different organisms is another example within this

theme. Pneumocystis carinii is a fungal opportunist which causes a crippling pneumonia in

immunocompromised individuals and continues to frustrate modern medicinal chemistry.

We report on the application of computational molecular docking techniques for

identification of novel inhibitors of P. carinii dihydrofolate reductase (DHFR) that are

selective against the human isozyme. The Fine Chemicals Directory, a database of

commercially available compounds, was screened with the DOCK program suite. We have

introduced a post-docking refinement directed at discerning subtle structural and chemical

features and acting as an indicator of species specificity. Of forty compounds predicted to

exhibit anti-Pneumocystis DHFR activity, each of novel chemical framework, thirteen (33%)

show IC50 values better than 150 puM in an enzyme assay. These inhibitors were further

assayed against human DHFR: ten (77%) bind preferentially to the fungal enzyme. The

most potent compound identified is a 7 plM-inhibitor of P. carinii DHFR and displays 25-fold

selectivity. This agent exhibits a number of appealing properties which might make it a

suitable candidate for further investigation. The ability of molecular docking methods to

locate selective inhibitors reinforces our view of structure-based drug discovery as a valuable

strategy, not only for identifying lead compounds, but also for addressing more complex

issues concerning receptor specificity.
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INTRODUCTION

Successful chemotherapeutic treatment depends upon the exploitation of

biochemical differences between host and pathogen. An ideal drug is harmful to an invader

without being harmful to the host. The success of selective toxicity hinges upon the

inhibition of a biochemical process vital to the pathogen's survival. Such processes present a

spectrum of targets with varying risks of host toxicity. Genuinely unique biochemical

systems are seldom available. Generally, differences between host and pathogen are more

subtle, forcing distinction between functionally equivalent targets. The work presented here

focuses on the discrimination of structurally similar entities with the intent of designing

species-specific drugs.

Structural information is critical to understanding differences between functionally

equivalent targets. Atomic coordinates own form a basis for directed drug design, as

knowledge of the topography and chemistry within the active site allows tailoring of specific

interactions. The DOCK suite of programs (Kuntz et al., 1982; Shoichet et al., 1992; Meng et

al., 1992) is one computational method that uses the three-dimensional (3-D) structure of a

receptor to identify ligands of complementary shape. DOCK has been used to identify leads

in a number of diverse systems (Kuntz, 1992). However, DOCK has not been explicitly

applied to the discovery of selective inhibitors of therapeutic interest. To explore this

avenue, a clinically relevant system has been chosen for which high-resolution structural

information exists for a variety of species.

The regeneration of reduced folate cofactors required for nucleotide biosynthesis is

performed by dihydrofolate reductase (DHFR). Despite its universally crucial role, this

enzyme commonly exhibits low sequence conservation. This potential for selective drug
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design has not passed unnoticed: DHFR is thoroughly characterized with respect to

structural biology across species (Kraut & Matthews, 1987; Morrison, 1991). At least a

dozen crystal structures are available spanning all combinations of bound and unbound

states. Thousands of inhibitors with varying potencies and selectivities have been identified

(Blaney et al., 1984). Thus far DHFR has proven a rewarding target for selective inhibition,

resulting in numerous antibacterial, antiprotozoal, and antineoplastic agents (Schweitzer et

al., 1990). However, such success has been elusive in treating Pneumocystis carinii infections.

Pneumocystis carinii is a pathogen harmlessly infecting nearly all humans, but upon

reactivation of latent infection by immunodeficiency can induce a disease state characterized

by a crippling pneumonia (Murray & Mills, 1990; Bartlett & Smith, 1991). Not surprisingly,

this opportunist is the principal agent of morbidity and mortality in HIV-infected persons

(Murray & Mills, 1990; Mills & Masur, 1990). Without chemoprophylaxis, 60 to 85% of

AIDS patients eventually will be afflicted by P. carinii pneumonia, and 25% will die from it

(Walzer et al., 1974; Mills, 1986; Kovacs & Masur, 1988; Justice et al., 1989; Bartlett & Smith,

1991). Much of the research towards chemotherapy stems from treatments found effective

against similar pathogens, as the metabolic pathways in Pneumocystis are largely

uncharacterized. The organism's phylogeny is therefore quite important. Mounting

evidence places P. carinii among the fungi (Edman et al., 1988; Edman et al., 1989; Stringer et

al., 1989; Pixley et al., 1991; Ypma-Wong et al., 1992; Belfield et al., 1993; Furlong et al., 1994),

yet the atypical cell membrane composition (Kaneshiro et al., 1989; Furlong et al., 1994)

appears to thwart common antifungal drugs (Bartlett et al., 1994b). Agents in a variety of

other mechanistically distinct classes are being explored, including antifolates (Allegra et al.,

1987b; Kovacs et al., 1989; Margosiak et al., 1993), DNA-replication antagonists (Walzer et

al., 1988; Tidwell et al., 1990; Dykstra & Tidwell, 1991; Fishman et al., 1993; Dykstra et al.,
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1994; Walzer et al., 1994), inhibitors of polyamine biosynthesis (Lipschik et al., 1991; Saric &

Clarkson, 1994), compounds which interfere with cell wall integrity (Schmatz et al., 1990;

Powles et al., 1994; Yasuoka et al., 1995), growth-stunting iron chelators (Weinberg, 1994),

inhibitors of pyrimidine biosynthesis (Falloon et al., 1991; Artymowicz & James, 1993, Ittarat

et al., 1995), microtubule disrupting agents (Bartlett et al., 1994a), and sodium channel

blockers (Shaw et al., 1994). The most successful of these approaches thus far have been the

antifolates and DNA-replication antagonists.

Co-trimoxazole and pentamidine isethionate are the most widely prescribed

preparations for therapy and prophylaxis of Pneumocystis carinii pneumonia (Kovacs & Masur,

1988; Murray & Mills, 1990; U.S. Public Health Service, 1993; Gallant et al., 1994).

Unfortunately, these treatments are plagued with adverse reactions. Fifty percent of patients

using pentamidine and 65% using co-trimoxazole will suffer major side effects (Walzer et al.,

1974; Jaffe et al., 1983; Kovacs et al., 1984, Gordin et al., 1984, Wharton et al., 1986). On

average, one in four patients will suffer reactions severe enough to force discontinuation of

treatment (Allegra et al., 1987a). The frequency of such reactions is not surprising in the case

of co-trimoxazole: the dihydropteroate synthetase (DHPS) inhibitor component,

sulfamethoxazole, is quite toxic (Masur, 1992) and the DHFR inhibitor component,

trimethoprim, is weak and non-selective (Edman et al., 1988; Margosiak et al., 1993). In fact,

it is almost general that clinically relevant DHFR inhibitors are selective for human DHFR

(Margosiak et al., 1993). Derivitization of mainstream antifolates to improve selectivity for P.

carinii DHFR has also been largely unsuccessful. Trimetrexate (Queener, 1991; Gangjee et

al., 1994; Rosowsky et al., 1993), piritrexim (Rosowsky et al., 1993; Gangjee et al., 1994), and

triazine (Rosowsky et al., 1995) analogues fail to display any selectivity toward Pneumocystis,

while some 2,4-diaminopteridine and 2,4-diaminoquinazoline derivatives (Queener, 1991;
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Rosowsky et al., 1995) exhibit favorable selectivities only on the order of 2- to 20-fold. The

lack of selectivity and resulting side effects of antifolates is likely a direct consequence of the

similarity between host and pathogen DHFR.

Based on published sequence alignments (Blakley, 1984; Edman et al., 1989), P. carinii

DHFR displays highest similarity with that of vertebrates. Sequence identities of 35-40%

and homologies near 70% are observed. High-resolution crystal structures of human

(Davies et al., 1990) and P. carinii (Oefner et al., 1991) DHFR confirm only minor differences.

Figure 2 in Chapter 2 depicts the extensive surface similarity in the active site region of the

two enzymes. Within the folate binding pocket, there are in fact only six non-identical

residues. The active site aspartate common to bacterial and protozoan DHFR is replaced

with glutamate in P. carinii, as in all vertebrate DHFR. Further drug design complications

arise from the fact that the Pneumocystis active site is nearly universally smaller than the

human active site, making exploitation of unique pockets impossible. Despite the structural

similarities of the target isozymes, there are differences between host and pathogen that can

work to our advantage. The stronger binding affinity of substrate for human DHFR relative

to P. carinii DHFR suggests that antifolates will be able to compete more effectively with

dihydrofolate in the pathogen (Margosiak et al., 1993). Pneumocystis also demonstrates an

inability to salvage pre-formed reduced folates from the environment (Allegra et al., 1987b),

thus amplifying the intrinsic selectivity of any antifolate.

The lack of differentiation by mainstream agents highlights the urgency for

alternative molecular frameworks. The derivitization of compounds which exhibit weak

potency, unfavorable selectivity, poor uptake, or otherwise toxic effects is one approach for

obtaining a clinically useful agent. We will adopt a complementary approach: the

identification of novel chemical skeletons from which to initiate new routes of optimization.
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Such leads frequently offer an entirely different spectrum of pharmacological properties. We

here present the application of the DOCK screening process toward the therapeutically

important problem of identifying novel, selective anti- Pneumocystis agents (Gschwend, 1995).

METHODS

Structural Preparation

The P. carinii DHFR structure used in this study was the ternary crystal complex with

folate (a poor substrate) and NADPH (cofactor) solved to 1.8 Å resolution by Oefner et al.

(1991). Substrate and cofactor, as well as all crystallographically observed water molecules,

were removed from the structure. The human crystal structure employed was the binary

complex with substrate [Protein Data Bank (Bernstein et al., 1977) entry 1DHF solved to 2.3

A resolution published by Davies et al. (1990). Of the two molecules in the human DHFR

unit cell, Davies et al. deem the B-chain more reliable, so the A-chain was removed. The

substrate and all waters were also deleted. A structural alignment based on the sequence

alignment of Edman et al. (1989) was performed using alpha carbons of all active site

residues present in both structures (55 residues yielding a root-mean-square (rms) deviation

of 0.56 A).

Docking Overview

The DOCK suite of programs is designed to identify putative ligands

complementary to a receptor of known 3-D structure. The details of the method have been

described previously (Kuntz et al., 1982; Shoichet et al., 1992; Meng et al., 1992) - only an

overview is given here. By filling the receptor site with overlapping spheres of varying sizes
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(Kuntz et al., 1982), a negative image capturing the bumps and grooves of the region of

interest is generated. A 3-D database is searched (DesJarlais et al., 1988) for molecules

whose interatomic distances match the inter-sphere-center distances. Each compound is

evaluated in thousands of orientations in the active site by an approximate molecular

mechanics interaction energy (Meng et al., 1992). The best-scoring compounds presumably

exploit multiple geometric and/or chemical properties of the receptor site and are thus of

considerable interest as inhibitor candidates. The DOCK procedures have been tested

through studies of crystallographic complexes. The experimental geometries are associated

with the best-scoring orientations, generally within 1 A rms deviation. More importantly,

compounds that have radically different structures from known inhibitors are often found

(Kuntz, 1992).

Docking Analysis

A molecular surface was generated for the P. carinii active site using Connolly's MS

algorithm (Connolly, 1983a,b). The resulting surface formed the basis for the SPHGEN

(Kuntz et al., 1982) calculation, which produced a set of spheres characterizing the topology

of the target site. As the length of the docking calculation depends combinatorially on the

number of spheres (Shoichet et al., 1992), the sphere cluster was manually trimmed to a

minimal set spanning the folate binding pocket and extending to the nicotinamide-ribose

portion of the cofactor groove. Spheres representing the remainder of the cofactor pocket

were removed to avoid retrieving compounds which might bind exclusively to the cofactor

binding region and hence bind non-specifically to multiple targets in the body. Seventy-four

spheres thus defined the targeted site, as illustrated with their collective molecular surface in
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Figure 3 of Chapter 2. SPHGEN’s ability to capture shape features precisely is evident in the

extensive complementarity between the sphere surface and the receptor molecular surface.

A box of dimensions 25 A x 22 A x 14 A encompassed the spheres and delimited

the force-field scoring grid. The scoring grid was computed with CHEMGRID (Meng et al.,

1992) using a 0.25 A grid spacing, a dielectric of 4 r (where r is the interatomic separation),

and a generous non-bonded cutoff of 20 A; hydrogens were added in standard geometries.

Close contact limits were set at 2.3 and 2.8 A for polar and nonpolar atoms, respectively.

Results are not sensitive to the precise location of the grid (data not shown). The Fine

Chemicals Directory [FCD3D v.89.2 (this database is now called the Available Chemicals

Directory), MDL Information Systems, Inc., San Leandro, CA] was screened with DOCK

version 3.0 (Meng et al., 1992). Dislim was set to 1.5 A, modlim to 4, and bin parameters to

0.2,0.0, 1.0, and 0.0 A (■ hinºx, lowlap, shinsz, soulap, respectively); force-field score interpolation

was on. An average of 19,000 orientations was examined for each of 53,328 ligands,

utilizing 350 hours of CPU time (Silicon Graphics PI 4D/35; Silicon Graphics, Inc.,

Mountain View, CA). The over one billion total configurations investigated at a rate of 800

per second attest to the speed of the DOCK program.

Database Screening

The stepwise screening of the FCD is outlined in Figure 1. Arbitrarily, the top 2700

force-field scoring compounds were saved from the DOCK run against Pneumocystis DHFR.

Each compound was then subject to a quasi-Newton rigid-body minimization (Meng et al.,

1993) to optimize the intermolecular interactions of the best scoring orientation. This

refinement was carried out independently in the context of both P. carinii and human DHFR

active sites. Thus, the starting configuration in Pneumocystis DHFR was determined by
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53,328
1. Computational screen

• DOCK all compounds in database against P. carinii DHFR
W • keep those with best force-field scores

2700

2. Energetic considerations
• rigid-body minimize within both P. carinii and human DHFR sites

W • remove highly charged or poor scoring compounds
1434

3. Quality of fit
• multiple-pass visual screen for fit in Midasplus

W • no scores taken into account
837

4. Chemical diversity I
• keep best-scoring/most-selective compounds for a given substructure
• retain alternates or otherwise interesting compounds

W • remove overly flexible or overly hydrophobic compounds
302

5. Chemical diversity II
• further substructure searches - keep only one per class

W • increase stringency of score cutoffs
89

6. Practical considerations

• remove those that are too hydrophobic, reactive, unstable, or toxic
W • insure commercial availability

40

7. Purchase candidates for assay.

Figure 1. Fine Chemicals Directory screening pipeline.
See text. The number of compounds at each stage is indicated.

DOCK, while the starting configuration in human DHFR was determined by the structural

alignment discussed previously. The differential, optimized force-field scores were used as

an indication of species selectivity. We term Epc and Ehum the optimized force-field scores in

Pneumocystis and human DHFR respectively, and the differential score E sel = Epc-Ehum.

A manual screening process of the computationally selected 2700 compounds

ensued. Because the DOCK 3.0 force-field score (Meng et al., 1992) incorporates no formal

solvation terms, an attempt to counter this deficiency was made. Compounds with a net
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charge of -3 or less (6%) were discarded. Compounds with a net charge of +1 or +2 (74%)

were retained if Epes -40, an intermediate cutoff chosen to force charged compounds to

score better than a hypothetical neutral counterpart. Compounds which were net neutral

(20%) were retained regardless of score. 1434 compounds emerged from this crude

solvation filter. These compounds were examined visually on a graphics terminal using the

Midasplus package (Ferrin et al., 1988) in two independent passes. No scores were taken

into account in this filter - structures were examined for fit to the site and for visually

appealing interactions. Compounds that were either too small or too large, or docked to the

surface of the receptor, were also removed at this stage. 837 compounds passed the

visualization filter.

Two chemical diversity screens were introduced. Compounds were clustered by

substructural class with the aid of the MACCS-II 3D package (MDL Information Systems,

Inc., San Leandro, CA). The structures in each class predicted to have either high affinity

for P. carinii DHFR (Epº) or exhibit selectivity (Esc) for P. carinii DHFR were retained.

Overly flexible or extremely hydrophobic compounds were eliminated during this filter. The

302 remaining compounds were subject to the second, more stringent, chemical diversity

screen. Further substructure searches were used to select the most dissimilar compounds.

At this point, only one compound per class was saved, gauged by more restrictive E pc and

Ese cutoffs. Finally, practical considerations were applied to the 89 candidate compounds.

Compounds which appeared too reactive, unstable, toxic, or insoluble were discarded. After

verifying commercial availability, forty compounds were declared candidates and purchased

for biological evaluation.
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Chemical;

NADPH and dihydrofolic acid were purchased from Sigma. DOCK-selected

candidates for assay were purchased from various chemical suppliers, as indicated in Table 1.

Each compound was prepared as a stock solution in DMSO and subsequently diluted in

water to provide a range of concentrations suitable for IC 50 determination. The final

concentration of DMSO in the enzymatic assay was less than 1% to avoid inhibition of the

reaction by DMSO itself.

Dihydrofolate reductase assay

The spectrophotometric assay for DHFR activity is well-characterized. Activity is

determined by monitoring the decrease in absorption at 340 nm, corresponding to the

utilization of NADPH, at 25°C (Hillcoat et al., 1967; Sirawaraporn et al., 1991). The standard

assay (1 ml) contained 50 mM Tes (pH 7.0), 75 mM 3-mercaptoethanol, 1 mM EDTA, 1

mg/ml bovine serum albumin, 50 puM NADPH, 20 puM dihydrofolic acid, and limiting

enzyme. Dihydrofolic acid concentration was checked by UV absorption and confirmed

enzymatically using Aesto of 12,300 M-1 cm−1. Reactions were initiated with NADPH, mixed

thoroughly, and monitored for 5 minutes. No-enzyme blanks were used to control for

background decomposition of NADPH and/or inhibitor. The concentration of inhibitor

required to reduce DHFR activity by 50% (IC50) was determined by interpolation of

sigmoidal plots of percentage inhibition versus log inhibitor concentration.
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Table 1. Biological evaluation of DOCK-selected inhibitor candidates.
Compounds are sorted by increasing optimized force-field score against P. carinii DHFR.

Formal FF-Scorea Inhibition”

# Compound Supplier Charge PC Hu PC Hu

1 5-bromo-2'-deoxyuridine-5'-mono Sigma –2 -57.3 -49.4 Ø
phosphate

2 Acid Blue 40 Aldrich –1 -53.8 -47.8 77 × 500c

35,5’-thiodisalicylic acid Bader -2 -52.5 -26.3 (13%)
45-bromo-4-chloro-3-indolyl phosphate Aldrich –2 -50.7 -40.5 Ø

5 Palatine Fast Black WAN Janssen –1 –49.1 -11.3 Q)

6 4'-(2-thiazolylsulfamoyl) phthalanilic Bader –1 –48.1 –37.1 Ø
acid

74-(2-(2-chlorobenzoyl)acetamido Bader -1 -47.3 -32.6 (26%)
benzoic acid

8 Acid Red 1 Aldrich –2 -46.8 –22.8 Ø

9 3',3',5',5'-tetraiodo phenolphthalein Aldrich –2 -46.7 -38.1 92 290

10 1-(4-pyridylcarbonyl)-2-(carboxy Bader -1 -46.3 -36.3 (14%)
methoxyacetyl) hydrazine

11 N-furfuryltetrachlorophthalanilic acid Bader -1 -45.6 -33.6 (12%)
12 Benzoyl Leuco Methylene Blue TCI 0 -45.5 -34.9 Ø

13 Palatine Chrome Black 6BN Aldrich -1 -44.4 -9.5 80 140

142,3',6-trichloro indophenol TCI -1 -44.4 –32.2 95 226

15 ethyl-4-(5-chloro-2-phenoxyphenyl Bader 0 -44.2 -16.7 (17%)
ureido) benzoate

16 Pamoic Acid Aldrich –2 -43.8 277.8 96 172

17 terephthaloyl-bis-glycine Riedel –2 -43.7 -25.2 Ø

18 2,5-bis (2-methoxyanilino)-3,6-dichloro- Bader 0 -43.4 -35.5 (31%)
1,4-benzoquinone

19 N,N'-(2-bromo-6-methylphenylene) his Bader 0 -43.3 -30.8 90 60
(4-methylcoumarin-7ylcarbamate)

20 Gallein Sigma 0 -42.4 -29.9 74 228

213,4,5,6-tetrachloro-3'-(trifluoro methyl)- Bader -1 -42.3 -25.7 (>21%)
phthalanilic acid

22 3,3',5-triiodo thyropropionic acid Sigma –1 -42.3 -31.9 120 × 500c

233,5,6-tri-(2-pyridyl)-1,2,4-triazine Maybridge 0 -41.1 -35.5 Ø
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Formal FF-Scorea Inhibitionb

# Compound Supplier Charge PC Hu PC Hu

24 N-(3-methoxyphenyl) picrylamine Bader 0 -41.0 -33.2 100 43

25 3,3',4,4',5-pentamethoxybenzophenone Bader 0 -40.8 -18.8 100 42

26 Threne Red Violet RH TCI 0 -40.3 –33.3 6.9 -2003

27 N-(p-(2-benzoxazolyl) phenyl)- Kodak 0 -40.3 -34.3 Ø
maleimide

28 1-(3-bromobenzoyl)-2-(2-napthoyl) Bader 0 -40.0 –33.8 Ø
hydrazine

29 5’-benzoyluridine Sigma 0 -39.9 -35.5 Ø

30 Disperse Orange 13 Aldrich –39.7 -36.0 Ø

31 1-(4-chlorobenzyl)-1-methyl-3-phenyl-2- Bader 0 –39.2 –32.9 Ø
thiourea

32 4,4'-dimethyl-2,2'-dihydroxy-6,6'- Bader 0 –39.1 -28.7 Ø
biquinoline

33 4-chloro-6-fluorosulfonyl-2-(4- Bader 0 -38.5 -25.0 41 ~150d
nitrophenyl) quinoline

34 1-(2,6-dichlorophenyl)-3-(6-methyl-3- Bader 0 –37.2 –32.7 Ø
pyridyl) urea

35 N-(2-hydroxyphenyl)-3,4,5,6-tetrachloro Bader 0 -37.1 -34.1 (2)
phthalimide

36 N-(4-(ethoxycarbonyl) phenyl)-2-(2,4,5- Bader 0 -37.1 -34.5 Ø
trichlorophenoxy) acetamide

37 2-(N-(3,4-dichlorophenyl) carbamoyl) Bader 0 -36.1 -32.0 (24%)
amin-6-methoxybenzothiazole

38 Murexide Aldrich 0 –35.7 -32.9 Ø

39 2,4,6-triphenoxy-4-triazine Aldrich 0 -35.2 -18.4 130 - 500 d

402,4-bis (p-tolylthio)-1,3-dithia-2,4- TCI –33.6 –40.5 Ø
diphosphetane-2,4-disulfide

* Optimized force-field score (kcal/mol) against P. carinii (PC) and human (Hu) DHFR

* Assayed inhibition against P. carinii (PC) and human (Hu) DHFR. Values are HM IC50 values, except those in

parentheses, which indicate percentage inhibition at an inhibitor concentration of 100 puM. Q denotes that no
inhibition was observed. Data are the result of at least duplicate determinations, agreeing to within 10-20%.
Blank entries were unassayed.

* No inhibition was observed at half-millimolar concentrations.

* IC50 is estimated by extrapolation due to solubility limitations.
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Figure 2. Structures of compounds with measured IC50's against P. carinii DHFR.
(previous page) The numbering corresponds to that given in Table 1.

RESULTS

The forty compounds examined in the enzyme assay are listed in Table 1. Twenty

one (53%) displayed measurable inhibition against P. carinii DHFR at the 100 puM level, with

eleven (28%) showing IC50's of 100 puM or less. Of the thirteen compounds which were

potent and soluble enough to permit an IC50 determination against P. carinii DHFR

(structures shown in Figure 2), ten (77%) exhibited selectivity ranging from 2- to 25-fold

against human DHFR. The marked success in identifying species-specific agents is depicted

graphically in Figure 3. Although the binding kinetics of these inhibitors has not been

determined, their selective nature suggests that binding is not non-specific. The most potent

compound (26) is also the most selective, having an IC50 of 7 |M and approximately 25-fold

selectivity for P. carinii DHFR. DOCK's predicted mode of binding for this compound

(Figure 4) places the structure in contact with four of the six non-identical residues in the

active site.

The optimized DOCK force-field scores, used to select compounds for assay, are

provided in Table 1. For comparison, methotrexate, a picomolar inhibitor of both P. carinii

and human DHFR (Marogosiak et al., 1993), receives a force-field score on the order of -70

kcal/mol. No apparent correlation is observed between these scores and assayed inhibition

or selectivity. As detailed in the Discussion section, this was not unexpected. Also

noteworthy is the bias of the force-field scores toward more highly charged molecules,

evidenced by the larger proportion of such compounds higher in Table 1. This behavior
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Figure 3. Species-specificity of novel P. carinii DHFR inhibitors.
IC50's for compounds assayed against both P. carinii and human DHFR are plotted. The
dashed line represents the absence of selectivity; compounds falling above the line show
favorable specificity. Numbers identify compounds as given in Table 1.

results from the lack of a desolvation penalty in the force-field score. Countering

deficiencies like this one is the goal of the post-DOCK filtering process.

DISCUSSION

Computational strategies for structure-based drug discovery offer a valuable

alternative to the costly and time-consuming process of random screening (Kuntz, 1992).

Coupled with a database of commercially available compounds, such as the FCD, programs
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like DOCK can provide extremely rapid access to novel leads (Gschwend et al., 1995). In

our experience, DOCK typically demonstrates a hit rate at the micromolar level of 2 to 20%

for compounds assayed for inhibition. However, because of the many approximations

underlying the search and scoring engines (e.g. neglect of solvation terms, rigidity of ligand

and receptor, discretized scoring), DOCK can not be expected to yield predictions of a

quantitative nature. Rather, we prefer to value DOCK as a “macroscopic correlator” of

binding affinity and interaction score. Even in the daunting task of species-specificity,

macroscopic correlations when applied in sequence can, as demonstrated here, confer a

powerful tool.

In the method presented here, the rigid-body minimization acts as the selectivity

filter. An optimization of this type as a post-docking utility has been shown to improve

agreement with experimentally determined binding modes (Meng et al., 1993; Gschwend &

Kuntz, unpublished results). Of the 50,000 compounds in the database, an enrichment for

agents which inhibit P. carinii DHFR was achieved with DOCK (the first macroscopic

correlation). Subsequently, the differential optimization in the context of both isozymes

offered resolution along an additional dimension for these remaining compounds. By

choosing structures which score highly in Pneumocystis DHFR and poorly in human DHFR

(the second macroscopic correlation), an enrichment for agents selective against host DHFR

has now been accomplished.

The manual processing of DOCK hits is an important stage for improving the true

hit rate as defined by assayed inhibition. It would be unwise to purchase the top 50 DOCK

hits and take them straight to the laboratory. Several of the limitations inherent to a DOCK

investigation can be addressed with prudent post-docking analysis. One of the foremost

insufficiencies of the DOCK force-field score is in the treatment of solvation effects.
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Charged compounds experience a severe penalty for coming out of solution. Because the

present scoring scheme incorporates no formal expression for desolvation, the affinity of

such ligands is likely to be overestimated. A preference for neutral compounds and more

restrictive criteria for charged compounds serves to counteract this deficiency. It is readily

apparent from Table 1 that charged compounds are favored by the force-field score. A

breakdown of the 11 “hits” (compounds with IC50's s 100 piM) reveals that six (55%) were

net neutral, three (27%) had a -1 formal charge, and two (18%) had a -2 formal charge.

However, when normalized by the total number of compounds tested in each charge class,

roughly equal hit rates are observed: 6/23 = 26% for net neutral compounds, 3/10 = 30%

for singly-charged compounds, and 2/7 = 28% for doubly-charged compounds. We would

speculate, given the absence of a desolvation penalty in scoring, that selecting charged

DOCK compounds for assay without increased stringency as compared with neutral

compounds would result in a much lower hit rate for charged compound classes.

Scanning possible candidates visually on a graphics terminal in the context of their

receptor is a valuable tool for identifying leads. At this point one can mentally evaluate the

relative importance of putative interactions while at the same time introducing some

“virtual” flexibility into the rigidly docked components. Interactions that look as though

they could be formed in the face of local breathing warrant attention. Although crude, this

approach mitigates the lack of conformational flexibility in docking. A visual analysis also

permits filtering by proximity to pre-defined (e.g. by other known ligands, mutagenesis data,

etc.) hot-spots in the active site. Ligands docked to the surface or outer edge of the receptor

are unlikely to exhibit the same degree of specificity for this receptor as ligands docked deep

within a cleft. The medicinal chemist's intuition plays a significant role in transforming a list

of DOCK suggestions to a list of plausible candidates.
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Much of the often subjective post-DOCK analysis could be automated within the

DOCK program with appropriate technological advances. The development of a more

accurate scoring function to estimate true binding affinities would obviate the need for many

of the solvation- and entropy-related corrections now performed manually. This is an active

area of research (Gschwend et al., 1995). Until such time as accurate evaluation methods are

available, pre-organizing structural databases will be useful, allowing user-specified filtering

before docking is begun. Examples of possible metrics for pre-organization might include

formal charge, the number of rotatable bonds, or practical concerns such as cost, reactivity,

or toxicity. Features enabling the targeting of specific regions of the receptor have been

introduced into DOCK 3.5 (unpublished results), bypassing a post-DOCK visual filter for

this purpose.

In practice, the number of assayable compounds is finite. With the goal of

discovering lead compounds, it is vital to span as chemically diverse a cross-section of

candidates as possible. In this study, we have employed two-dimensional substructure

searches, separating compounds into structurally distinct classes. Within each class,

structures which were predicted to have the highest affinity for P. carinii DHFR or show the

most selectivity were chosen as representatives. Overly flexible compounds were

disregarded in this analysis to combat the lack of a conformational entropy term in the

scoring procedure (this is reflected by the rigidity of active entities shown in Figure 2).

Extremely hydrophobic compounds were also avoided to circumvent problems of solubility

and of non-specific binding.

The structural and chemical diversity of the resultant hits is made apparent in Figure

2 and highlights one of the strengths of database searching techniques for drug discovery.

All of these compounds, to our knowledge, have never been identified as having antifolate
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activity. Each represents a unique avenue of optimization toward a clinically useful agent.

Because pharmacological and toxicological complications inevitably arise in the drug

development pipeline, it is advantageous to maximize the number of diverse routes for

evolution at the outset. Clearly, none of the inhibitors identified in this study is a drug; only

a handful will even make suitable leads. The progression of low-micromolar enzyme

inhibitors discovered by DOCK to more potent and therapeutically valuable agents has been

reported (Rutenber et al., 1993; Shoichet et al., 1993; B.K. Shoichet, personal communication;

Li et al., 1995).

More pertinent to assessing the relevance of novel, micromolar inhibitors is the

relative weakness and lack of selectivity of several mainstream anti- Pneumocystis agents.

Although IC50 values are not directly comparable, trimethoprim and pyrimethamine, for

example, show IC50's in the low-micromolar range (Allegra et al., 1987b; Sirawaraporn et al.,

1991; Broughton & Queener, 1991; Queener, 1991). Furthermore, an analysis of progress in

the antifolate literature indicates that even a 10-fold preference for P. carinii DHFR is a

relatively rare occurrence. Improved specificity will be required to reduce folate-related

toxicity (Blakley, 1969; Margosiak et al., 1993). The novel chemical frameworks identified in

this study will clearly possess distinct pharmacological profiles, but may be likely to avoid

sources of antifolate toxicity which are not folate-related [e.g. inhibition of histamine

metabolism (Duch et al., 1980)]. Although the potency of the inhibitors found here is

relatively weak, the above points justify investigation into their potential for novel antifolate

classes. Because of the substructure searches used to categorize similar molecules, each

inhibitor represents a class of compounds identified in the DOCK run as exhibiting

Compounds related to 2 have been observed to interact with nucleotide-requiring enzymes, including DHFR
(Beissner & Rudolph, 1978; Chambers & Dunlap, 1979).
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complementarity to the receptor. Probing within the substructure class represented by each

inhibitor is a rational first step towards lead optimization.

Compound 26, on account of both its potency and selectivity, merits further

exploration. From the perspective of DOCK, 26 is an ideal molecule: it is entirely rigid and

possesses no formal charge. As the force-field score's lack of a conformational entropy term

and overestimation of charged interactions are therefore not an issue, these attributes lend

weight to the DOCK-predicted orientation for this compound. The predicted binding mode

(Figure 4) entails contact with four of the six non-identical residues in the active site,

offering an explanation for the 25-fold selectivity and reinforcing the plausibility of specific

binding. The major hurdle for any enzyme-assay lead is the critical question of fungal

uptake, which remains to be addressed in a cell-based assay. The hydrophobic nature of

many of the DOCK hits (Figure 2) will be useful in this regard. For 26 in particular,

compounds exhibiting structural similarity have been reported to display antifungal activity

(Collier et al., 1991; Klein et al., 1994).

Perhaps the most effective anti-Pneumocystis agents will result from efforts targeting

dihydropteroate synthetase (DHPS), an enzyme involved in de novo folate synthesis. DHPS is

not present in mammalian cells, as preformed folate is acquired in the diet, and thus makes

an ideal target for species-specific drug design. Sulfa drugs which target DHPS are used in

therapy against P. carinii, yet are relatively weak inhibitors of the enzyme (Merali et al., 1990;

Voeller et al., 1994; Hong et al., 1995). The potential for the discovery of more potent agents

without species-specificity issues remains substantial. To date, no structural information has

been published concerning DHPS.
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In the frequent absence of suitable targets unique to a pathogen, drug discovery must

proceed via more stringent means by discerning similar entities. When afforded three

dimensional structural information, techniques such as molecular docking are desirable for

rapid access to novel leads. We have introduced a simple methodology enhancement which

expands the domain of molecular docking to encompass selective inhibition studies. A post

docking, differential refinement enables the discrimination among similar receptors in the

face of few distinguishing features. In light of the success achieved in locating selective

enzyme inhibitors with a post-docking methodology advance, it is logical to expect that

transferring this tool directly into the docking process (Gschwend & Kuntz, unpublished

results) can only amplify our ability to detect subtle features. Although there have been

numerous reports of DOCK's success at identifying lead compounds in a diversity of

systems (Kuntz, 1992; Gschwend et al., 1995), this study represents the first attempt to locate

selective inhibitors of therapeutic interest. The results further validate molecular docking as

a strategy toward drug discovery, and herald favorable prospects for structure-based

differential design.

Figure 4. DOCK-predicted mode of binding for 26.

(following page) Four active site residues which differ between P. carinii and human DHFR

and which are proposed to interact with this ligand are indicated.
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ABSTRACT

Strategies for computational association of molecular components entail a

compromise between configurational exploration and accurate evaluation. Following the

work of Meng et al. [Proteins 17 (1993) 266], we investigate issues related to sampling and

optimization in molecular docking within the context of the DOCK program. An extensive

analysis of diverse sampling conditions for six receptor-ligand complexes has enabled us to

evaluate the tractability and utility of on-the-fly force-field score minimization, as well as the

method for configurational exploration. We find that the sampling scheme in DOCK is

extremely robust in its ability to produce configurations near to those which are

experimentally observed. Furthermore, despite the heavy resource demands of refinement,

the incorporation of a rigid-body, grid-based simplex minimizer directly into the docking

process results in a docking strategy which is more efficient at retrieving experimentally

observed configurations than docking in the absence of optimization. We investigate the

capacity for further performance enhancement by implementing a degeneracy checking

protocol aimed at circumventing redundant optimizations of geometrically similar

orientations. Finally, we present methods which assist in the selection of sampling levels

appropriate to desired result quality and available computational resources.

Keywords: molecular recognition; configurational sampling; ligand docking;

structure-based drug design
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INTRODUCTION

Molecular recognition is a problem fundamental to structural biology. The

interaction of molecules, be they macromolecules or small ligands, is a prerequisite for nearly

all biological events. Specific modulation of these interactions has been the ambition of

medicinal chemists for over a century. To gain more rapid access to therapeutic agents, we

must not only understand, but be able to predict, the structural details of recognition events.

The prediction of the observed orientations of two interacting components is known as the

“docking problem.”

There exist many computational approaches to the docking problem [1,2], but each

must accomplish two principal tasks: sampling and evaluation. The task of sampling relates

to the exploration of the large number of configurations varying in the relative geometry of

the components. The task of evaluation refers to the ranking of each configuration by some

metric. These seemingly independent phases of docking are in fact closely linked. Without

an accurate evaluation scheme, the native configuration can not be recognized even when it

has been sampled. Conversely, without adequate sampling, even the most accurate

evaluation scheme can not recognize the native configuration if it has not been generated.

The molecular docking problem in particular is further complicated by the thousands of

degrees of freedom available to interacting atomic assemblies. Even when constraining the

components to only six translational and rotational degrees of freedom, the docking problem

is a difficult one because there are still myriads of possible configurations. Heuristics must

be invoked to direct sampling and ensure computational tractability.
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We previously have reported a descriptor-based rigid-body method (DOCK) to

address the molecular docking problem [3-5]. More recently, an investigation into

orientational sampling issues was undertaken [6]. That study presented the juxtaposition of

sampling with optimization: are known binding modes retrieved more effectively with

intensive sampling alone or with modest sampling and a post-docking refinement? The

favorable effects of rigid-body minimization as a post-docking tool were clearly evident -

steric clashes were resolved, scores were improved significantly, and experimentally observed

geometries were reproduced more accurately. Unfortunately, the implementation was

impractically slow. In this paper, we describe an enhancement to the minimization method,

achieving nearly a 50-fold increase in speed. This accelerated rate now permits

incorporation of the refinement directly into the docking process. Every configuration

generated can be optimized in the context of the receptor, thus capturing the power of

minimization as a post-docking scoring tool in the evaluation phase of docking. We shall

also show that on-the-fly minimization improves sampling, further supporting the close

relationship between sampling and scoring.

Despite advances in computational resources which make features such as on-the-fly

optimization more palatable, the time spent in the refinement is still large when compared

with the time spent sampling. If one could judiciously reduce the number of orientations

actually optimized, however, the refinement bottleneck might be dissipated. We describe

progress toward this goal with a technique we refer to as “degeneracy checking.” Given the

large number of spatially distributed descriptors and atoms involved in molecular docking, it

is not surprising that there are many ways of pairing them which give rise to “similar”

geometric orientations. This is obviously the result of over-sampling in certain regions. In

the absence of refinement, this over-sampling provides a sort of rigid-body minimization
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itself. A better way to optimize local interactions is to find only one orientation per “family”

(i.e. mode of binding) and energy-minimize that orientation, while never again paying close

attention to further orientations generated in that family. By removing so-called

“degenerate” configurations, many non-informative minimizations are avoided.

Following the work of Meng et al. [6], this paper delves further into issues related to

sampling and refinement in molecular docking. We investigate the tractability and utility of

on-the-fly optimization, with and without coupling to a degeneracy checking protocol. The

current sampling scheme used in DOCK is evaluated in light of these data.

Table 1. Test systems.

PDB Resol. Receptor Docked ligand Ligand Receptor
entry (A) Atoms” Spheres

1gst 2.2 glutathione S-transferase glutathione 20 114

2gbp 1.9 D-galactose/D-glucose 3-D-glucose 12 75

binding protein

3cpa 2.0 carboxypeptidase A glycyl-L-tyrosine 17 44

3dfr 1.7 L. casei dihydrofolate methotrexate 33 72

reductase

4dfr 1.7 E. coli dihydrofolate 2,4-diamino-6- 13 86

reductase methyl pteridine

6rsa 2.0 ribonuclease A uridine 3'-phosphate 21 47

*Number of non-hydrogen ligand atoms.
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METHODS

Test Systems

Six well-determined structures of ligand-receptor complexes available in the

Brookhaven Protein Data Bank [7] were selected for analysis (Table 1): 1gst (glutathione S

transferase: glutathione [8]), 2gbp (D-galactose/D-glucose binding protein: 3-D-glucose [9]),

3cpa (carboxypeptidase A: glycyl-L-tyrosine [10]), 3dfr (L. casei dihydrofolate reductase:

methotrexate [11]), 4dfr (E. coli dihydrofolate reductase: methotrexate [11]), 6rsa

(ribonuclease A: uridine vanadate [12]). The 2gbp, 3cpa, 4dfr, and 6rsa systems have been

used in previous investigations of sampling [6] and scoring issues [5], as has the 3dfr system

[4,13]. For reasons noted in earlier work [5], the docked ligands for the 4dfr and 6rsa

systems differ from the complexed ligands; they are 2,4-diamino-6-methylpteridine and

uridine 3'-phosphate, respectively. The 1gst complex has proven a difficult one to

reproduce with the current site characterization, so we introduce it as a stringent test of

methods.

Preparation for docking for all systems was carried out as described previously [5] -

we give only an overview here. For each system, all water molecules and ions were removed

and the ligand and receptor were separated. A molecular surface of the receptor binding

pocket was computed with MS [14]. The program SPHGEN [3] was used to generate a

negative image of the binding pocket by filling the molecular surface with overlapping

spheres of varying sizes. The number of spheres generated for docking is given in Table 1.

Hydrogens were added to both ligand and receptor in standard geometries. CHEMGRID [5]

was used to generate the force-field scoring grid (0.30 Å resolution). DOCK force-field

scores are approximate intermolecular interaction enthalpies, comprised of a 6-12 Lennard
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Jones van der Waals term and a Coulombic electrostatics term. Van der Waals parameters

and partial atomic charges were derived as before [5]. For electrostatic calculations, a 10.0-A

cutoff and dielectric function of £ = 4r were used, where ris the interatomic distance.

Force-field Score Optimization

A rigid-body minimizer, affecting only the six intermolecular rotational and

translational degrees of freedom, was incorporated directly into the DOCK scoring scheme.

The simplex technique of Nelder and Mead [15] is employed, with slight modifications in the

convergence treatment. Because the simplex method requires no derivatives, it lends itself

to optimization on a jagged potential surface. The function that is minimized is the grid

based force-field score of Meng et al. [5]. One change to the standard DOCK force-field

scoring van der Waals parameter file was also required, however - polar hydrogens were

given a small (0.6 A) non-zero radius. This was necessary to prevent the minimizer from

taking advantage of the large electrostatic attraction that would result from a charged,

volumeless hydrogen approaching an oppositely charged nucleus. Construction of the initial

simplex allowed up to 1.0 A translation and 0.5 degrees of rotation. Minimization

convergence is treated in a two-stage fashion. Convergence within a simplex occurs when

upper and lower bounds concur within 0.2 kcal/mol. Completion of a simplex signals a

restart, initiating a new simplex. The minimization is deemed complete when a restarted

simplex fails to reduce the force-field score by more than 1.0 kcal/mol. Other parameter

values for simplex construction or convergence criteria resulted in slower and/or premature

convergence (data not shown).

Explicit comparisons between the simplex minimizer and the quasi-Newton method

published previously [6] were carried out using the stand-alone programs DOCKMIN_SIM and
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DOCKMIN_DFP (distributed with DOCK 3.5) where the effect of optimization could be

isolated. For each system, one DOCK run at an intermediate sampling level was chosen in

which between 400 and 600 orientations were written. These output orientations were

subject to stand-alone minimization. Performance was assessed for both minimization

techniques in each of two modes: continuum (using exact interatomic distance calculations)

and grid-based (using pre-calculated interaction scores). Stand-alone minimization was

performed with default parameters. Trilinear interpolation [5] was utilized for all grid-based

force-field scoring.

Degeneracy Checking

Problem Description

Degeneracy checking aims to remove geometrically similar orientations of the ligand

to reduce the number of time-consuming minimizations. To be maximally efficient, such a

protocol must operate without knowledge of atomic coordinates, as placement of the ligand

into the context of the receptor (the “orienting” phase (2,16) requires a significant

investment of CPU resources. The removal of degenerate configurations after orienting

would be much less advantageous than removal before this time-intensive step. The

difficulty then lies in deciphering where in the active site an orientation lies based solely on

the sphere-atom pairings involved in the match. Furthermore, the degeneracy checking

algorithm must be able to perceive when the same geometry has been produced with different

sphere-atom pairing. Consider the simple model depicted in Figure 1, with E representing the

“receptor,” F the “ligand,” and circled points the atoms and spheres to be matched. Using a

three-node match, one can superimpose F onto E by the pairings b3, c4, d5. However, the
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4 5 C dE.
b e2 1
|

Figure 1. Hypothetical, two-dimensional degeneracy checking example.
See text. E represents the receptor, F the ligand; spheres are numbered and atoms are
lettered.

matching of a2, e6, d5 produces the identical geometric orientation. Given the latter

pairing, the algorithm must recognize that this will generate an orientation degenerate with

the former.

Degeneracy Check
When a unique orientation is found (e.g. the very first match), the new procedure

records the nearest sphere to every atom in the ligand – this information is, of course,

dependent on the orientation relative to the receptor. Every subsequent orientation must be

checked for degeneracy, i.e. has this geometry been seen before? To avoid wasting

considerable time orienting the ligand with respect to the receptor, only knowledge

concerning the sphere-atom pairings involved in the match may be used for assessing

degeneracy. A simple check to see if all pairings occurred simultaneously in a previous

unique match imparts the answer. Note that the nearest sphere to every atom in the ligand

for unique matches must be recorded to allow detection of similar geometries produced by

different pairings.
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Information Storage and Retrieval
Simply saving a list of all matches for each possible sphere-atom pairing would

require allotting a tremendous amount of memory (particularly since Fortran does not

support dynamic memory allocation). With the current dimensions in DOCK, this brute

force approach would require 500 (maxlig, the maximum number of ligand atoms) by 120

(maxpts, the maximum number of receptor spheres) by at least 10,000 unique matches at four

bytes per integer, or a 2.4Gb array. As much of this array would be empty, methods for

compacting it can be devised. We choose hashing, employing open addressing with double

hashing as described by Knuth [17]. A hash table allows the storage of only non-zero

elements of the 3-dimensional array mentioned above, with clever methods of retrieving

information given a hash code. The hash code is a function of one sphere-atom pairing and

dictates where in the table matches containing this pair can be found. Thus, given one

sphere-atom pairing, one can quickly retrieve all other orientations which contained this

pairing.

Sensitivity Reduction: virtual spheres
All that is required for differentiating orientations is a small set of way points in the

active site. Here, a way point is merely a geometric descriptor which signals the occupancy

by the ligand of a particular portion of the active site volume. A typical active site will be

represented by on the order of 50-100 spheres, an excess for such a simple task. Each way

point describes a particular volume within the site, the size of which is generally inversely

proportional to the number of way points. A ligand orientation is described by the way

points its atoms “see.” The more way points used, the more discerning the algorithm will be

in differentiating active site volume: fewer degenerate orientations will be removed because

more matches will be considered unique. The goal here is the opposite: to reduce the
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number of orientations passed through to the minimizer. The number of way points can be

reduced easily by clustering the sphere set (“true spheres”) to generate a reduced set of

“virtual” spheres. We average all neighboring (within some distance uph) true spheres into

one virtual sphere with a single-linkage clustering algorithm. This creates an even

distribution of way points throughout docking space. It is these reduced virtual spheres,

rather than full set of receptor spheres, that are used only in the degeneracy checking

process. The nearest virtual sphere to each point on a cubic lattice is stored for rapid access

during degeneracy assessment, analogous to the utilization of a force-field scoring grid for

interaction evaluation.

Degeneracy Stringency: wobble
Another method for increasing the number of degenerate orientations removed is to

tolerate error in comparing the sphere-atom pairings with those in unique matches. This

feature is termed “wobble” (borrowing the term from codon mismatch in protein synthesis),

as a non-zero number of “mistakes” is permitted in the degeneracy check. The predictable

effect of introducing wobble is to increase the number of degenerate orientations because

binding modes are smeared out over a larger volume.

Safety net
Because the first orientation in a family is deemed the representative of a particular

binding mode, the depiction of this binding mode is highly dependent on the quality of this

orientation. All future orientations in this family will be considered degenerate to the initial

member. If the quality (e.g. force-field score) is very poor, then this binding mode is unfairly

represented. It would be beneficial to afford popular binding modes renewed chances at

locating an optimal representative. The parameter degenerate save intervaldictates how often a

degenerate orientation must be found in a given family before orienting and minimizing
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another member. This feature has the desirable effect of smoothing sampling over all

binding modes.

Configurational Sampling

DOCK version 3.5 was run in single mode for all docking studies. The matching

algorithm for generating ligand orientations remains unchanged from that in DOCK 2.0 [4].

Because the method for orientation generation defines how configurational sampling is

done, we summarize the matching algorithm. Ligand orientations are produced by matching

all distances among (a minimum of) four non-hydrogen ligand atoms to complementary

distances among receptor spheres. Distances are first computed relative to a seed “node”, a

node being any one sphere-atom pairing. All possible combinations of ligand atoms with

receptor spheres are employed as seed nodes. Ligand atoms and receptor spheres are then

placed into bins based upon the distance from their counterpart in the seed (first) node. As

four nodes are required to form a match (a clique), the three bins furthest from the ligand

atom of the seed node are explored. For each of these three bins, every atom in the bin is

paired with every sphere in the corresponding receptor sphere bin. The second node of the

growing clique is thus drawn from the first (furthest) bin. Every sphere-atom pairing from

this bin results in a possible second node, as only one distance need be complementary and

the complementarity of this distance is guaranteed by the bin architecture. The third and

fourth nodes are sought in the second and third furthest bins from the seed node. However,

with each node beyond the second, additional complementarity checks must be made to

insure that new nodes are compatible with all existing nodes, not just the seed node.

Compatibility in DOCK's matching algorithm is defined as agreement of two distances to

within some tolerance.
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The number of configurations (matches) generated and thus the level of sampling

performed is under user control through five parameters (all in units of Angstroms). In

addition to the matching tolerance, the user controls the ligand bin size, receptor bin size,

ligand bin overlap, and receptor bin overlap. Enlarging bin sizes results in a greater number

of atoms or spheres per bin, and a corresponding combinatorial expansion in possible

matches. The overlap parameters smooth the discrete nature of the bin architecture and

increase sampling by merging portions of neighboring bins. Of the thousands of matches

typically generated for a DOCK run, only a subset is written out subject to user-specified

score cutoffs. Here, all orientations were examined that had negative (i.e. favorable) force

field scores. To insure that timing results were unbiased by slow I/O routines, coordinates

for acceptable matches were never written to disk.

Performance Evaluation

To obtain a clear picture of the impact of new features related to sampling, it is vital

to examine performance over a diverse array of sampling parameters. In contrast to prior

investigations related to sampling issues [4-6,13], where at most a handful of different

sampling levels were examined for a particular system, here we examine DOCK's ability to

reproduce experimentally observed complexes over a continuum of sampling conditions.

Rather than arbitrarily choose a few select combinations of bin parameters, we opt to vary

two sampling parameters independently in discrete increments over a large range. Our

method is as follows. The two parameters to be varied are the bin size and bin overlap. We

set both the ligand bin size and receptor bin size equal to the variable bin size. Similarly, we

set both the ligand bin overlap and receptor bin overlap equal to the variable bin overlap.

Finally, we set the matching distance tolerance to be equal to the sum of the bin size and the
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bin overlap. The dependence of the distance tolerance on the bin parameters insures that all

distance compatibility assessments for growing cliques are made with similar stringency.

Bin sizes and bin overlaps ranged in increments of 0.05 A from 0.05 A to between

0.40 A and 1.00A. In general, bin parameters were no longer incremented when runtimes

began to exceed several minutes. This protocol led to a few hundred individual single mode

DOCK runs per system, enabling a statistically significant analysis of result quality versus

CPU time. For each DOCK run, a record was kept of the number of matches attempted, the

best force-field score obtained, the root-mean-square (rms) deviation of the orientation

having the best force-field score to the experimentally observed orientation (hydrogens were

not included), and the amount of CPU time invested. All acceptable matches were formed

from exactly four nodes and tolerated no more than two bad contacts.

For evaluation of new technology, three sets of runs as described above were

performed for each system: once using traditional DOCK without new features, once with

on-the-fly force-field score minimization, and once with on-the-fly force-field score

minimization coupled to degeneracy removal. Data were transformed into a success- ver■ us

effort format as follows. Effort was quantified in two ways: by the number of matches

attempted, and by the amount of CPU time required. Success was also measured in two

ways: by whether the rms deviation of the best force-field scoring orientation was within 1.0

A of the observed mode, and by whether the best force-field score obtained was within

some cutoff (typically 5 kcal/mol) about the global minimum. The global minimum force

field score was taken as the best force-field score seen by any of the DOCK runs for that

system. Thus, this extremum represents the best among no fewer than several million

configurations. Effort is binned on a logarithmic scale: within each effort bin, a probability

of success was computed by dividing the number of successful DOCK runs in the bin into
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the total number of DOCK runs falling in the bin. A seven-point moving average was used

to smooth plots.

Sampling Robustne■ s

To assess whether failure by DOCK to reproduce experimentally observed

geometries generally results from deficiencies in sampling or in scoring, we isolated the

effects from sampling. By removing scoring restrictions and analyzing only agreement in

Cartesian space between docked orientations and the observed binding mode, the precision

of the sampling algorithm is revealed. A set of DOCK runs with sampling level varied as

described above was thus performed in which all orientations within 2.5 A rms deviation

from the experimentally observed configuration were written out, regardless of force-field

SCOre.

Hardware

All calculations were carried out on a Silicon Graphics 200MHz R4400 Indigo2

workstation (Silicon Graphics, Inc., Mountain View, CA) with 128Mb of physical memory.

RESULTS

Sampling Robustness

The ability of DOCK's sampling algorithm to locate the experimentally observed

binding mode is illustrated in Figure 2. For each system, those sampling levels (indicated by

the number of matches attempted) which produced an orientation within 2.5 Å rms

deviation, regardless of score, are plotted. It can be seen that for all receptor-ligand
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complexes explored here, the matching algorithm is robust enough to find the native

configuration. With the exception of the 1gst system (Figure 2a), a few hundred to a

thousand matches are sufficient to locate an orientation within 1.0 Arms deviation. This

point highlights the robust nature of the sphere description and matching algorithm used in

DOCK. Having demonstrated that the sampling method is adequate, it thus becomes a task

for scoring schemes to recover the native mode as the optimal configuration.

Figure 2, a-f. Rms deviation vs. matches tried.
(following pages) The best rms deviation to the experimentally observed configuration seen,
regardless of force-field score is plotted as a function of number of matches attempted.
Each point represents a single DOCK run with distinct sampling parameters.
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Minimizer Performance

To verify that a fast rigid-body optimization suitable for incorporation into DOCK

could operate as effectively as the more resource-intensive method explored by Meng et al.

[6], we compared the ability of minimization techniques to refine pre-existing DOCK

output. Table 2 juxtaposes the performance of the grid-based simplex minimizer with that

of the continuum-mode quasi-Newton Davidon-Fletcher-Powell (DFP) [18] method

described previously [6]. Approximately 500 orientations obtained from an intermediate

sampling level DOCK run for each system were subject to post-DOCK optimization.

Between 30- and 75-fold faster operation is achieved by implementing the simplex using pre

calculated interaction scores on a lattice. The near-unit slopes and reasonably high

correlation coefficients between the optimized scores indicate result quality is both balanced

and comparable. The offset favoring the continuum DFP by 1-2 kcal/mol is attributable to

the use of exact interatomic distances rather than trilinear interpolation among pre-calculated

grid scores. Convergence radii for the two minimization techniques are of similar

magnitudes. We take as a measure of convergence radius, or the capacity to pull distant

structures into a local minimum, the rms deviation occurring during minimization. The

simplex operating in continuum mode and the grid-based DFP demonstrated performance

intermediate to the two methods presented in Table 2 (data not shown).
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Table 2. Performance comparison of minimization methods.

System CPU time per ligand (sec.) rms deviation (A)* Correlation”

continuum DFP grid simplex continuum DFP grid simplex

1gst 3.10 0.070 0.00 to 3.77 0.10 to 5.31 r’= 0.77

1.04 + 0.63 1.09 + 0.63 y = 0.88x -2.30

2gbp 1.47 0.039 0.00 to 3.26 0.11 to 2.70 r = 0.80

0.76 + 0.46 0.81 + 0.44 y = 0.97x - 0.83

3cpa 2.93 0.062 0.00 to 3.93 0.00 to 5.78 r = 0.86

0.91 + 0.67 0.95+ 0.72 y = 1.01.x - 0.76

3dfr 3.92 0.115 0.00 to 4.77 0.07 to 3.57 r’= 0.95

1.14 + 0.76 1.09 + 0.65 y = 1.01.x - 1.03

4dfr 2.72 0.037 0.00 to 1.95 0.00 to 2.10 r’= 0.87

0.50 + 0.29 0.49 + 0.28 y = 1.00x - 1.30

6rsa 2.02 0.064 0.00 to 5.14 0.00 to 6.56 r’= 0.88

1.37 ■ 0.98 1.39 + 0.96 y = 0.99x - 1.28

* rms deviation from starting position is given as minimum and maximum values, followed by average it
standard deviation; hydrogens were not included in calculations.
approximately 500 DOCK output orientations for each system.

Values represent minimization of

* Correlations of continuum DFP force-field scores () versus grid simplex force-field scores (x).
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On-the-fly Optimization and Degeneracy Checking

The performance impact of on-the-fly force-field score optimization and degeneracy

checking was gauged via success-versus-effort analyses in a three-stage approach. A set of

runs with variable sampling parameters was performed for DOCK in “native” mode

(without any new technology), for DOCK with force-field score minimization, and for

DOCK with force-field score minimization coupled to the degeneracy checking protocol.

The range of sampling parameters, number of DOCK runs, and total configurations

generated for each set are enumerated in Table 3. A grand total in excess of 2,500 DOCK

runs covering a wide range of sampling conditions has allowed a comprehensive analysis of

tradeoffs between configurational exploration and rigid-body optimization.

[Footnotes to Table 3]

* “native” refers to DOCK runs in which neither force-field score minimization nor degeneracy checking was

used. “min” refers to DOCK runs in which force-field score minimization was used without degeneracy

checking, “min-Fdeg” refers to DOCK runs in which force-field score minimization was used in conjunction

with degeneracy checking.

* Increments of 0.05A were used within these ranges.

* The number of DOCK runs examined is in some cases less than the bin ranges would indicate for three

possible reasons: runtimes began to exceed several minutes, convergence at 100% in the success-versus

effort plots had been reached, or the maximum number of allowable unique matches for degeneracy

checking had been exceeded.

"Minimum force-field score (kcal/mol) observed over all DOCK runs for each system.

* For bin sizes of 0.55 to 1.00 in the 3cpa native DOCK runs, bin overlaps ranged only from 0.55 to 1.00, hence

only 300 runs resulted. This was an effort to obtain more high-sampling runs.

* Degeneracy parameters: wobble = 2, vph = 1.5, degenerate_jave interval = 10.

* Degeneracy parameters: wobble = 2, vph = 2.0, degenerate save interval = 25.
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Table 3. Sampling conditions explored in methodology evaluation.

System DOCK Bin size Bin overlap DOCK total # matches/ global
features" range (A)" range (A) runs" matches second minimum"

1gst native 0.05 - 0.50 0.05 - 1.00 200 18,833,108 2647 -49.037

min 0.05 - 0.40 0.05 - 0.80 128 2,421,887 83

min-deg 0.05 - 0.50 0.05 - 1.00 128 1,783,514 626

2gbp native 0.05 - 0.50 0.05 - 1.00 200 14,270,188 4187 -24.538

min 0.05 - 0.50 0.05 - 0.50 100 306,144 52

min-deg 0.05 - 0.50 0.05 - 1.00 126 956,378 281

3cpa native 0.05 - 1.00 0.05 - 1.00 300e 28,582,470 2566 –47.188

min 0.05 - 0.50 0.05 - 0.50 100 117,713 78

min-Haeg■ 0.05 - 0.50 0.05 - 1.00 162 1,597,427 626

3dfr native 0.05 - 0.40 0.05 - 0.80 128 7,136,487 2863 -70.945

min 0.05 - 0.40 0.05 - 0.40 64 125,421 326

min-Höegg 0.05 - 0.40 0.05 - 0.80 111 2,616,774 1882

4dfr native 0.05 - 0.50 0.05 - 1.00 200 6,207,365 2354 -33.916

min 0.05 - 0.50 0.05 - 0.50 100 180,282 36

min-deg 0.05 - 0.50 0.05 - 1.00 152 1,951,826 293

6rsa native 0.05 - 0.50 0.05 - 1.00 200 2,834,980 1731 -66.003

min 0.05 - 0.50 0.05 - 0.50 100 68,953 68

min-deg 0.05 - 0.50 0.05 - 1.00 171 1,493,590 596

Table 3 footnotes are given on previous page.

Figure 3 illustrates, for each of the six receptor-ligand systems, the probability of

locating an orientation with a force-field score within 5 kcal/mol of the global minimum as a

function of the number of matches attempted. It is readily apparent that the use of force

field score minimization consistently outperforms native DOCK in this respect. This is to

be expected: both methods generate the identical orientations but the former is afforded an

optimization of intermolecular interactions, an operation which can only improve results. In
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the limit of ideality, coupling to a degeneracy checking protocol would show identical

behavior to minimization alone, when effort is measured by number of matches. This is

because on a match-per-match basis, force-field score optimization on its own defines the

maximal envelope of result quality. In actuality, we see that our degeneracy checking

method, although in some cases (3cpa, 6rsa) reasonably close to the outer envelope,

generally falls intermediate to DOCK with and without minimization. Note that in two

systems examined here (1gst, 3dfr), native DOCK is completely unable to locate an

orientation close to the global minimum in the absence of refinement, even when sampling

on the order of one million configurations. Plots of success in placing the best force-field

scoring orientation within 1 Arms deviation of the experimentally observed configuration as

a function of number of matches tried parallel nearly identically the force-field score success

plots in Figure 3 (data not shown).

Figure 3, a-f. Force-field score success vs. matches tried.
(following pages) The probability of locating an orientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of number of matches attempted.
“dock” represents native DOCK, “min” represents DOCK with on-the-fly minimization,
“mindeg” represents DOCK with on-the-fly minimization and degeneracy checking. The
absence of a curve for native DOCK in some systems indicates that no successful run ever
occurred.

Figure 4, a-f. Force-field score success vs. CPU time.
(following pages) The probability of locating an orientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of CPU seconds required. The
key is as given in the legend for Figure 3.
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In practice, however, the primary concern for molecular docking is not how many

configurations are examined, but rather how much computer time is required. Because each

optimization takes on average one hundred times longer to carry out than a single score

evaluation (data not shown), DOCK runs employing force-field score minimization are likely

to become intractable unless sampling is reduced. But can sampling be reduced sufficiently

to counteract this great disadvantage while maintaining high-quality solutions? Figure 4

depicts the transformation from effort measured in numbers of configurations to effort

gauged by computational demands.

Excepting only the 4dfr system (Figure 4e), we see that using on-the-fly optimization

is dramatically more efficient than native DOCK at arriving at near-global-minimum

solutions, despite the much higher per-match resource requirements (Table 3). The

implementation of the degeneracy checking protocol, while equally superior to native

DOCK, does not display as dramatic improvements when compared with minimization

alone. In one case (6rsa) we see significant gains, in two cases (1gst, 3.cpa) slight

improvements, in two cases (2gbp, 4dfr) no difference, and in one case (3dfr) slightly worse

behavior. Degeneracy checking generally manifests its advantages at lower sampling levels,

as evidenced by the early successes seen in the 1gst, 3.cpa, and 6rsa complexes.

Figure 5, a-f. Rms success vs CPU time.
(following pages) The probability of the best force-field-scoring orientation having a rms
deviation to the experimentally observed configuration of less than 1.0 A is plotted as a
function of CPU seconds required. The key is as given in the legend for Figure 3.

Figure 6, a-f. Force-field score success vs. CPU time with variable cutoff.

(following pages) The probability of locating an orientation having a force-field score within
a variable cutoff of the global minimum is plotted as a function of CPU seconds required.
The cutoff in kcal/mol is given in the key. Curves apply to native DOCK only.
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Although not applicable to database searches, a common metric in evaluating docked

complexes is the similarity to an observed configuration. In Figure 5 we present the

probability of the best force-field-scoring orientation having a rms deviation to the

experimentally observed orientation of less than 1.0 A. We note that native DOCK,

although it suffers from convergence problems, is quite successful at short run-times in

several systems (2gbp, 3cpa, 3dfr, 4dfr). The ability of DOCK to locate the known binding

mode so rapidly (see also Figure 2) hints at why implementing optimization is so powerful.

To validate the selection of a 5 kcal/mol threshold for “success” about a force-field

score global minimum, we have examined the effect on the success- versus-effort plots of

varying this threshold. Figure 6 shows the DOCK native runs plotted using success

thresholds of 2.5, 5.0, 7.5, and 10.0 kcal/mol. In all systems but 2gbp it is apparent that a

2.5 kcal/mol cutoff is too stringent for a fair comparison with minimization. The 5.0

kcal/mol and 7.5 kcal/mol envelopes look similar in the 2gbp, 3cpa, 4dfr, and 6rsa systems,

indicating that a plateau has been reached. 5.0 kcal/mol is a reasonable upper limit on the

noise in making comparisons among different ligands in a database scan. The 10.0 kcal/mol

threshold is too tolerant for a sensible comparison, particularly given that this value

represents 20-40% of the global minimum for the majority of the test cases (Table 3). The

analogous series of envelopes for minimization with and without degeneracy checking are

nearly constant across the entire 2.5 - 10.0 kcal/mol range (data not shown).

One can envision a simple alternative to introducing force-field score optimization

into the docking process: merely performing a stand-alone minimization on the output of a

native DOCK run. Given the negligible cost of a single grid-based simplex refinement

(Table 2), this could conceivably be an efficient method for improving results. We have

entertained this possibility in four of the test systems, and compare post-DOCK
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minimization to native DOCK and DOCK with on-the-fly optimization in Figure 7. In two

systems (2gbp, 3cpa) post-DOCK minimization is actually the most effective method for

short run-times, but displays convergence problems as runtimes lengthen, particularly in the

case of 3cpa (and also 1gst). A shortcoming of such a method is illustrated in the 6rsa

system, where post-DOCK minimization is barely an improvement over native DOCK.

Possible explanations for why this behavior is likely to be a common instance are taken up in

the Discussion.

Figure 7, a-d. Force-field score success vs. CPU time.
(following pages) The probability of locating an orientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of CPU seconds required. “dock”
represents native DOCK, “min” represents DOCK with on-the-fly minimization, “postmin”
represents native DOCK with stand-alone grid-based simplex minimization performed on
the output.
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DISCUSSION

Perspective

Molecular docking has become an increasingly popular tool for drug discovery in

recent years [19]. To be truly useful, docking methods must successfully integrate effective

site description techniques, robust configurational sampling algorithms, and accurate

evaluation schemes in an efficient manner. Our focus here is on a feature which ties

together sampling and evaluation: interaction optimization. Interaction optimization is

designed to improve how two components fit together, but the physical movement involved

in the refinement impinges directly upon the apparent performance of the sampling

algorithm. Thus, our investigation into the utility of rigid-body refinement in DOCK

necessarily probes configurational search methods.

Interaction optimization is not new to automated molecular docking methods [20

23]. However, to our knowledge, this article represents the first published systematic

exploration of sampling space for a docking method. We analyze in excess of 2,500 docking

runs, not simply an arbitrary slice of the vast configurational universe. This study enables an

objective analysis of the tradeoff between computationally inexpensive, discrete optimization

in the form of configurational sampling and the considerably more expensive, continuous

optimization in the form of rigid-body refinement.

Our assessment of the results is colored by our standpoint on molecular docking as a

tool for database searching toward lead discovery. This perspective carries two biases

associated with it: 1) we prefer the amount of CPU time spent per ligand to be on the order

of seconds, not minutes; and 2) we rank binding modes and ligands by interaction scores,
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not rms deviations to observed configurations. The latter point implies that efforts should

be directed toward locating the global minimum in a scoring function, not necessarily toward

identifying a known binding mode. We make the assumption that the experimentally observed

orientation is in fact at the global minimum. It is therefore the task of scoring function developers

to insure coincidence between the global optimum of the evaluation scheme and the

observed mode. For all six systems studied here, the global minimum of the force-field

score developed by Meng et al. [5] does indeed correspond to the crystallographic solution

(to within 0.5 Arms deviation).

Robustness in Sampling and Optimization

The grid-based simplex minimizer introduced here displays close to a 50-fold average

speed increase over the quasi-Newton method used in the previous investigation [6], with no

loss in accuracy. This dramatic improvement has enabled the incorporation of refinement

into the docking process, albeit still at considerable computational expense when compared

with the speed of matching or force-field scoring alone (Table 3). We note that native

DOCK processes about 2000-3000 matches per second, while DOCK with on-the-fly

minimization only about 2% of that. The actual cost of one minimization is 100 times that

of a single force-field score evaluation (data not shown), but the full effect of this penalty is

not realized within DOCK because not all orientations are minimized (only those which pass

the bad contacts filter). We see in Figure 4 the nearly across-the-board ability of on-the-fly

optimization to not only counteract this handicap, but significantly surpass native DOCK in

efficiently locating low-energy solutions. Why should this be so?

The compelling plots presented in Figure 2 speak to the robust nature of the sphere

description and matching algorithm currently implemented in DOCK. The fact that the
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sampling method can readily retrieve configurations extremely close to the experimentally

observed configuration indicates that failure to identify this mode as optimal lies with

scoring and not with sampling. The effect of minimization, then, is to salvage the many

orientations generated near the crystallographic mode which would otherwise be thrown out

due to steric clashes with the receptor. Optimization allows maximal use to be made of all

information provided by the matching algorithm. We expect on-the-fly optimization to benefit

database searches most by rescuing ligands for which the proper binding mode is sampled

but for which no low energy orientations can be found in the absence of refinement. Two

such examples appear in this work, 1gst and 3dfr (Figure 4 and Figure 6), and their recovery

underscores the utility of on-the-fly optimization. The tolerance of a non-zero number of

bad contacts within DOCK is imperative to taking full advantage of the potential of

minimization as a rescue device.

Degeneracy Removal

The degeneracy checking protocol described here has met with mixed success.

Although typically 90% of orientations are deemed degenerate and not examined further,

this savings under the current implementation does not significantly outweigh the cost of

assessing degeneracy. The advantages are manifested primarily at shorter runtimes, as

evidenced in the 1gst, 3.cpa, and 6rsa systems (Figure 4). This capacity will find use in

database searching applications when CPU resources are quite limited, as not all ligands are

likely be sampled adequately with the same set of sampling parameters.

The judicious selection of fewer orientations for optimization is obviously a

compromise between refining all and refining none. By refining all orientations, resources

are spent insuring each orientation is within a local minimum, not sampling the vast
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configurational universe (akin to a depth-first search). Conversely, by refining no

orientations, resources are spent exploring configuration space without particular regard to

the quality of each orientation (a breadth-first search). Refinement is relatively expensive

computationally and configurational exploration inexpensive, so the optimal tradeoff comes

when configuration space is thinly but evenly sampled with refined orientations. The early

advantages evidenced with the degeneracy removal protocol at short runtimes are the result

of exactly this tradeoff. At longer runtimes when inexpensive configurational sampling is

more intense, minimization alone generally performs at least as well as when coupled with

degeneracy removal.

We believe the largest hurdle in devising a more successful degeneracy removal

protocol lies in the selection of a representative for each binding mode. In this work, we

choose the first orientation found in a binding mode as that family’s “parent” for assessing

degeneracy. If this orientation should be a poor representative, further orientations in that

family will nonetheless be considered degenerate and thrown out, regardless of how they

might have scored. The degenerate save interval alleviates this bias to some extent, but

functions as a crutch rather than a solution.

There are many degeneracy parameters to be varied, but their effects have not been

examined systematically here. In preliminary exploration, we find that uph of 1.5 to 20 A

for creating virtual spheres, wobble of 2, and degenerate save interval of 10 to 25 appear to offer

a reasonable compromise between speed and accuracy. Although a hash table is used to

reduce the memory requirements of storing information about unique matches, the memory

demands of degeneracy checking are still quite steep. When the hash table begins to fill,

retrieval from the table also becomes more costly and performance begins to degrade.
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Hence, we again advocate the use of degeneracy checking for low to medium sampling levels

only.

Prospects for Post-DOCK Optimization

The appropriate control experiment for the introduction of on-the-fly minimization

entails performing a DOCK run without minimization and subsequently optimizing the

output in the same fashion. In this way, we reveal the benefits imparted by minimizing all

DOCK orientations as opposed to minimizing only the best unoptimized orientation. The

most obvious danger of selecting only the lowest-energy unoptimized orientation is that

other orientations may lie higher in energy but in a deeper well, so that upon optimization

these other orientations would have finished lower in energy. This possibility is borne out

by the shuffling of pre- and post-optimization force-field scores (data not shown).

Surprisingly, the 2gbp and 3cpa systems perform quite well at short runtimes, but along with

1gst begin to suffer from convergence problems as runtimes lengthen.

The convergence problems shown in the 19st and 3cpa systems and the lack of

improvement seen in the 6rsa system (Figure 7) are likely to be common occurrences for the

following reasons. Finding an orientation in the observed binding mode is a necessary but

not a sufficient condition for obtaining a force-field score near the global minimum after

optimization. Because on-the-fly optimization refines every orientation, it is afforded the

luxury of the chance that any of the orientations near the observed binding mode (Figure 2)

will refine near to the global minimum in force-field score. In contrast, DOCK without on

the-fly optimization has available only one orientation deemed best by an unoptimized force

field score, with the additional constraint that this one orientation must be in the observed

binding mode (Figure 5). DOCK without on-the-fly optimization therefore gets at most one
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chance to refine an orientation into the global minimum if post-docking optimization is

performed. Thus, it is to be expected that situations such as that displayed by 6rsa will occur

frequently. Nonetheless, we see that performing a post-DOCK optimization is in all cases

superior, and in many cases substantially so, to performing a native DOCK run without any

refinement whatsoever.

Matching Algorithm Discontinuities

A disconcerting consequence of the bin architecture for ligand-site matching is that

results obtained at a low level of sampling are not guaranteed to be a subset of results

obtained at a higher level of sampling. This point has been noted previously [6]. Although

in general this is not the case, this artifact can lead to strange behavior, particularly when

examining arbitrary slices of sampling parameters. The analysis of hundreds of DOCK runs

for each system in this study enables us to collect statistically significant success probabilities

and bypass much of the problem. One will note, however, that the plots in Figure 2 through

Figure 7 do not display monotonic functions: the jagged nature of these curves is the result

of the discontinuity arising from the bin architecture. Fortunately, the physical convergence

of orientations into local minima by on-the-fly minimization mitigates the severity of this

artifact.

Sampling Guidelines

One of the most instructive findings from the great number of DOCK runs

examined is insight into the amount of sampling required to obtain a desired probability of

success. The success-versus-effort plots carry a great deal of information, and can be used as

guidelines for performing DOCK runs appropriate to available resources. For instance, one

119



Sampling and Minimization in Docking Chapter 4

might be interested in performing a large database search where each ligand would be

allotted the minimum resources to obtain 100% success. In this case, one might calibrate

sampling conditions to expend an average of 10 CPU seconds per ligand (or on the order of

1000 to 3000 matches; Figure 3). In another example, one might be interested in analyzing a

small database with the assurance that each ligand was well into the 100% success plateau.

For this case, one might calibrate sampling conditions to expend 100 CPU seconds per

ligand. It would be reasonable to construct a success- ver■ us-effort plot for a known ligand, if

available, for performance gauges customized to the system being studied. In this manner,

the success-versus-effort plots provide a valuable mechanism for setting sampling levels in

molecular docking.

CONCLUSIONS

We have coupled a fast and effective grid-based, rigid-body simplex minimizer with

the robust configurational sampling algorithm used in DOCK to allow on-the-fly force-field

score optimization in a tractable manner. This coupling, despite the heavy resource

demands of refinement, results in a docking strategy which is computationally more efficient

at retrieving experimentally observed configurations than docking in the absence of

optimization. In some cases, only with the use of on-the-fly optimization could the

observed binding mode be identified as the global minimum in the scoring function. On

the-fly optimization salvages poor orientations which would otherwise be discarded, thus

making maximal use of information afforded by the sampling algorithm. The removal of

geometrically similar orientations to circumvent redundant optimizations is a tradeoff

between expensive refinement and inexpensive sampling - our implementation shows mixed

success, but with greatest potential at short per-ligand runtimes. Finally, while not as
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effective as on-the-fly optimization, it is clearly wiser to perform a post-docking

optimization than none at all. We find that success- versus-effort plots for gauging docking

performance lend valuable insight into the setting of sampling levels for the inevitable

compromise between result quality and computational resources.
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ABSTRACT

Computational methods for drug design have benefited tremendously from the

burgeoning field of structure determination. The availability of high-resolution structural

information has promoted innovative techniques for exploring receptor-ligand interactions.

The greatest hindrance to structure-based strategies remains the inability to accurately and

consistently estimate ligand binding affinities. Automated design protocols examine

thousands of putative receptor-ligand configurations and demand rapid feedback on the

quality of the association. Towards this goal, we present the development of an empirical

scoring scheme calibrated against binding affinities for experimentally observed complexes.

Emphasis is placed on accuracy in predictions, robustness in handling structural diversity,

and speed of evaluation. Effective interaction descriptions coupled with an all-possible

subsets multiple linear regression analysis have led to a model capable of reproducing

observed binding free energies to within 1.7 kcal/mol for a large, complex data set. The

calibration data set, the largest yet reported, consists of 103 structurally diverse receptor

ligand complexes spanning over twelve orders of magnitude in binding affinity. The

performance of the empirical model is contrasted with a molecular mechanics function used

in a popular molecular docking package. It is crucial for evaluation methods which aim to

be generally applicable in structure-based design strategies to consider both enthalpic and

entropic contributions to binding free energy.

Keywords: structure-based drug design, empirical scoring schemes, interaction evaluation,

binding affinity prediction, molecular docking
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INTRODUCTION

The wealth of high-resolution structural data furnished by crystallographic and

spectroscopic techniques has kindled structure-based drug design strategies. There are now

a variety of computational techniques which may be useful towards drug discovery in the

context of detailed receptor information (Kuntz, 1992; Greer et al., 1994; Guida, 1994;

Lybrand, 1995). In striving to identify agents which will bind to a receptor of known

structure, these techniques are divided broadly amongst those which dock molecules and

those which build them. Docking methods scan databases of pre-existing compounds for

complementary ligands (Blaney & Dixon, 1993; Kuntz et al., 1994; Good & Mason, 1995);

building (“de novo design”) methods create ligands tailored to the site of interest (Lewis &

Leach, 1994). While core technology is well-established, i.e. configurational sampling for the

former and molecular assembly for the latter, each approach manifests characteristic

weaknesses: docking methods are limited by the diversity of the compound library, while

building methods suffer from concerns regarding synthetic feasibility.

All structure-based approaches, however, are limited by the accuracy with which the

affinity of proposed ligands can be gauged. Correct relative ranking of putative ligand

receptor associations is prerequisite to a useful strategy for drug design. Hence, it is the

evaluation scheme which scores interactions between components that now commands the

most attention. Scoring functions must be rapidly evaluable, as docking and building

strategies typically consider thousands of ligand-receptor complexes. Complementarity itself

may be evaluated in many ways (Cherfils & Janin, 1993; Gschwend et al., 1995). One of the

most popular methods for assessing small-molecule binding, ushered in by the early work of

Goodford (1985), employs a molecular mechanics force-field. More recently, empirical

schemes have met with significant interest (Bohacek & McMartin, 1992; Horton & Lewis,
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1992, Krystek et al., 1993; Bohacek & McMartin, 1994, Böhm, 1994a,b; Vajda et al., 1994;

G.R. Marshall, personal communication; A.N. Jain, personal communication; M.A. Murcko,

personal communication). The free energy perturbation (FEP) methods are currently the

most rigorous and most accurate for determining relative binding free energies (Beveridge &

DiCapua, 1989, Kollman & Merz, 1990; Straatsma & McCammon, 1992). Despite various

approximations geared towards performance enhancements (Gerber et al., 1993; Aqvist et al.,

1994; Warshel et al., 1994), these techniques remain restricted by staggering computational

demands and to small molecular systems, precluding their use for screening thousands of

ligands of varying chemical framework.

Our goal in this study is to derive an empirical scoring function that can rapidly

estimate affinities over a structurally diverse array of receptor-ligand complexes. By rapid,

we desire that several evaluations be performed in one second, not one evaluation in several

minutes or hours. This requirement is dictated by the vast number of arrangements which

must be considered within the molecular docking and de novo design paradigms. These

structure-based design tools are intended to generate many unnatural associations expressly

so that novel, potent binding agents can be discovered. To engender an ability to cope with

such foreign molecular combinations, the evaluation function should be calibrated against a

large and complex data set. Thus, rather than borrow a functional description parameterized

against an endpoint different from that which interests us, we seek to derive a function

designed to estimate absolute binding free energies for use specifically in automated

structure-based drug design techniques.

In particular, we aim to deviate from molecular mechanics-based functions.

Molecular mechanics has been parameterized to reproduce internal properties of small

molecules, such as dipole moments, torsional barriers, and heats of formation (Clark, 1985).
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When used for assessing intermolecular interactions, “force-field scores” report an enthalpy

of interaction, while the quantity of most interest in structure-based drug design is a free

energy of interaction. In our experience, force-field scores are effective at identifying the

optimal binding mode of a single ligand (Meng et al., 1992; Gschwend & Kuntz, unpublished

results), but perform poorly at predicting even relative binding energies across a panel of

ligands. Entropic contributions are likely to be fairly similar for different binding modes of

one ligand, but clearly can vary substantially from one ligand to the next. Without the

entropic half of the equation we have little hope of predicting binding affinities for

structurally diverse ligands. It is noteworthy, however, that successful, system-specific

examples of enthalpic correlations with binding affinity have been reported (e.g. Holloway et

al., 1995). Here, we emphasize the need for robustness across structurally unrelated ligands

binding to varied receptors.

To compensate for the omission of entropic contributions by molecular mechanics,

several researchers have augmented the standard description with empirical terms (Novotny

et al., 1989; Wilson et al., 1991; Krystek et al., 1993; Vajda et al., 1994). While this has

appeared useful, we nevertheless choose to dispose of traditional electrostatic and van der

Waals representations for several reasons. First, we avoid problematic issues such as

selection of partial charge set and choice of dielectric behavior, both of which remain

subjective yet can have profound effects on results. Second, we bypass the need for

hydrogen placement. To illustrate, consider hydroxyl hydrogens - on serine, threonine, and

tyrosine residues, for example. Preference for hydrogen bond geometry about these

functionalities is weak (Baker & Hubbard, 1984; Thanki et al., 1988; Tintelnot & Andrews,

1989), while molecular mechanics-based schemes require selection of an exact hydrogen

position. Interaction strength is thus spuriously sensitive to the (typically arbitrary)
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placement of this hydrogen. Finally, and perhaps most importantly, the over-sensitivity to

precise atomic position, rooted in the steep van der Waals potential, undermines the

robustness of molecular mechanics-based functions. A softer potential favors generality

across diverse systems, though possibly at the expense of accuracy in details.

Automated structure-based design methods seek ligands which exploit some aspect

of complementarity to the receptor of interest. An attempt to simulate molecular

recognition is made for ligands which the receptor has never encountered (Gschwend et al.,

1995). The receptor is modeled in a pre-defined conformation, frequently one molded to a

particular ligand, yet it would be beneficial for design strategies if the receptor were allowed

to respond to the presence of each putative ligand. An implicit breathing on the part of

interacting components can be introduced by a tolerant evaluation function. For example, a

soft scoring potential might permit slight atomic interpenetrations without penalty, in effect

implying a resolving conformational change. The concept of so-called “soft docking” hails

from protein-protein docking investigations in which structures of unbound components are

docked to reproduce the observed complexed structure (Wodak & Janin, 1978; Shoichet &

Kuntz, 1991; Jiang & Kim, 1991; Walls & Sternberg, 1992). The success of such methods

hinges upon a local insensitivity that fosters conformational shifts upon complexation. By

adopting some of these ideas, we aim to introduce generality in the scoring function's ability

to predict binding affinities.

As early researchers in the protein docking field have noted, even the simplest

scoring schemes perform virtually as well as more advanced molecular mechanics treatments

(Shoichet & Kuntz, 1991; Cherfils & Janin, 1993). There is thus the potential to derive an

evaluation method which is not borrowed from the objectives of another branch of

computational chemistry, but rather, which is parameterized to reproduce precisely the type
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of values we are attempting to predict. In the same vein as Böhm's work (1994a), our

empirical evaluation scheme is derived by calibration against experimentally determined

affinities of ligand-macromolecule complexes for which structural information is available.

The general procedure consists of amassing a series of receptor-ligand complexes [typically

from the Protein Data Bank (Bernstein et al., 1977)] with known affinities, devising various

calculable terms which describe physical interactions of interest, and attempting to obtain

affinity correlations while varying coefficients for each term. Approaches vary widely in the

data set composition, the terms employed in correlations, and the method in which the

terms are computed. We use restrictive, pre-defined criteria for selecting complexes to

comprise a calibration set which is significantly larger than any yet reported: nearly 150

complexes form our basis set. The use of multiple linear regression with an all-possible

subsets protocol enables careful analysis of the relative importance of each proposed

contribution to affinity.

The absolute assessment of ligand-receptor affinity remains one of the greatest

challenges for computational chemistry. Theoretically-rigorous, resource-intensive methods

such as FEP can in the best cases estimate binding energies to within one kcal/mol of

experiment (Beveridge & DiCapua, 1989; Kollman & Merz, 1990), and only for systems of

limited complexity. We would be foolish to believe that simple empirical schemes, with

resource requirements many orders of magnitude smaller, could supplant such methods.

What we seek is simply a guide for rapidly screening huge numbers of diverse ligand

receptor associations generated by automated structure-based design strategies.
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METHODS

Data Set

All ligand-receptor complexes analyzed in this study have been obtained from the

Protein Data Bank (PDB) (Bernstein et al., 1977). A list of 237 complexes from the PDB for

which experimental affinity data have been determined, generously provided by Keske &

Dixon (unpublished results), was combined with the list complexes taken from the PDB

used by Böhm (1994a). The consolidated list was stripped of complexes which were either

unrefined or model-built, or which contained covalently-bound, incompletely-modeled, or

macromolecular ligands. Affinity data and experimental conditions for the assay and for

structure determination were located in the literature for each of the 144 remaining

complexes. Affinity data vary considerably in assay methods, measurement error, and type

of affinity reported; a handful are IC50 values, but most represent Ki, Kd, or Km

determinations. We present the affinity data as pKi (-log K) or plC50 values. Over twelve

orders of magnitude in binding affinity are spanned by the data set. The structural data are

diverse (64 different receptors are represented) and of high quality (85% of the complexes

are solved to 2.5 Å resolution or better). Of 144 complexes, 126 display associated water

structure. (See Appendix C for the complete complex listing - note that, as discussed below,

not all complexes in this listing were used in the calibration data set.)

Preparation of Receptor-Ligand Complexes

Ligand
Each ligand was separated from the remainder of the complex and further processed

with the Sybyl modeling package (version 6.1; Tripos Associates, St. Louis, MO). Atoms
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were assigned appropriate types and hydrogens added in standard geometries. After

correcting formal charges, partial atomic charges were computed by the method of Gasteiger

and Marsili (Gasteiger & Marsili, 1980, 1981; Marsili and Gasteiger, 1980). Note that we

define ligand in a structural, not a functional, sense: in some cases the “ligand” to which the

affinity refers is a cofactor.

Receptor
Solvent molecules, if present, were extracted and saved as a separate entity. All

remaining atoms (i.e. save for those in the solvent or in the ligand in question), including

metal ions, glycosylation sites, and other ligands and/or cofactors, were treated as the

receptor. Hydrogens were added in standard geometries.

Evaluation of Ligand-Receptor Affinity: Molecular Mechanics

The molecular mechanics method of interaction evaluation (Meng et al., 1992) used

in the DOCK molecular docking program (Kuntz et al., 1982; Shoichet et al., 1992) was

applied to each ligand-receptor complex to gauge the performance of proposed empirical

schemes. This force-field score, an approximation to intermolecular interaction enthalpy, is

comprised of Lennard-Jones van der Waals and Coulombic electrostatics terms (Meng et al.,

1992). To alleviate contacts in the experimental structure deemed unfavorable by the force

field score, each ligand was subject to a quasi-Newton rigid-body optimization as described

by Meng et al. (1993). The DOCKMIN_DFP minimization program, distributed with DOCK

3.5, was run in continuum mode with default parameters and a 4 r dielectric (where r is the

interatomic separation). Resulting optimized force-field scores were used as one estimate of

ligand-receptor binding affinity.
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Evaluation of Ligand-Receptor Affinity: Empirical Scoring

Overview

The empirical evaluation of affinity proceeds through the calculation of many terms

describing interactions or properties of the ligand-receptor system. These properties are

used in multilinear regression analysis to select terms which contribute most strongly to

observed affinity. Thus, many more terms are computed than appear in the final functional

form. The following sections outline the major phases in deriving an empirical affinity

prediction model: 1) evaluation of pairwise intermolecular interactions, 2) assessment of

surface area burial, 3) lattice implementation, 4) calculation of interaction-independent

terms, and 5) model refinement.

Evaluation of Pairwise Intermolecular Interactions

Labeling. All ligand, receptor, and solvent atoms are first assigned a chemical label

which will be used in assessing interactions. These labels are derived from Sybyl atom types.

Each atom receives only one of ten possible labels: hydrophobe (sulfur, phosphorous,

silicon, halogens, and non-aromatic carbon atoms not adjacent to a charged atom), aromatic

(aromatic carbon and nitrogen atoms), acceptor (hydrogen bond acceptors), donor

(hydrogen bond donors), polar (hydrogen bond acceptors and donors), imidazole (nitrogens

in imidazole rings), plus (positively charged atoms, not including monatomic cations), minus

(negatively charged atoms), water, cation (monatomic cations, e.g. Ca”, Zn2+, Mg”). Atoms

are initially assigned generic labels which are refined by detecting progressively more specific

functional groups. Functional groups perceived include ether, aniline, hydroxyl, imidazole,

guanidyl, amidine, carboxylate, nitro, sulfoxide, sulfone, sulf(on)ate, and phosph(on)ate.

Hydrogens receive the same label as their parent atom. Throughout the labeling procedure,

formal charges in accord with physiological pH are assigned to functional groups and split
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among component atoms (e.g. carboxylate oxygens each receive half of a negative formal

charge, guanidyl nitrogens each receive one-third of a positive formal charge).

Charge Smoothing. The strength of interaction between a charged group on the

ligand and a charged sidechain on a receptor will be dependent on whether the sidechain

neighbors other charged residues on the receptor. We introduce such receptor polarization

effects to capture qualitatively some aspects of short-range electrostatics. All charged

sidechains on the receptor within typical hydrogen-bonding distance of an oppositely

charged sidechain are demoted from charged status. That is, the component atoms (for

example, carboxylate oxygens of an aspartate sidechain and guanidyl nitrogens and

hydrogens of a neighboring arginine sidechain) would be re-assigned an uncharged chemical

label indicative of their hydrogen bonding capabilities alone. The neighbor-defining distance

is set by the user.

Interaction Evaluation. A matrix, supplied by the user, indicates an interaction

type associated with each possible pairing among the ten labels. As an example, donor

acceptor, polar-acceptor, and polar-donor pairings might provide a minimal set of neutral

hydrogen bonds and therefore would all assigned the same interaction type. The matrix

used in this work is shown in Table 1. Each interaction type is attributed a cutoff distance

which defines the interacting step function: an interatomic separation less than this value

receives unit contribution, while interatomic separations greater than this value receive zero

contribution. Ligand and receptor non-hydrogen atoms are examined pairwise for

contributions appropriate to the interaction type defined by their atom labels. The

evaluation protocol proceeds in three stages.
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The first stage entails assessing interactions among charged and hydrogen bonding

atoms. A simple tally of the number of contacts for each interaction type involving these

atoms (codes A - F in Table 1) is maintained. Interactions between two charged atoms

(codes A, B) are modulated by the product of the formal charges on the component atoms

(e.g. a carboxylate oxygen interacting with a guanidyl nitrogen would contribute -0.500 ×

0.333 = -0.167 interaction units). To extract a number of specific hydrogen bonding terms

which might contribute to affinity, more extensive analysis is performed.

Table 1. Interaction matrix.

Numbers represent atom labels and letters indicate interaction types as given in the
accompanying key.

Wºm LETT.I.T.T.T.T.T.T.T.T.T.T.T.T.T.T.
unassigned 0 J J J J J J J J J J J

hydrophobe 1 J | H | H | I | I I | I | 1 | I I I
aromatic 2 J | H G | I | I I I I I I I
acceptor 3 J I I | D C C E | F | C E | C :
donor 4 || J I | I C D C F | E | C F | C
polar 5 || J | 1 || 1 || C c || C | E | E c | E | C
plus 6 || J | I | I | E | F | E B | A E | B | E

minus 7 || J I I F | E E | A B | E | A | A
Water 8 J I | I | C C C E | E | C E C

cation 9 || J I I E | F | E B | A E | B | E
imidazole 10 || J | I | I | C | C | C | E | A || C | E | C

Interaction code Interaction type
A charge-charge attractive
B charge-charge repulsive
C hydrogen bond
D acceptor-acceptor/donor-donor clash
E charged hydrogen bond
F charged acceptor-acceptor/donor-donor clash
G aromatic

H hydrophobic
I hydrophobic-polar clash
J unassigned with anything
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For each pair of atoms which could potentially form a hydrogen bond, the

interacting geometry is analyzed. The angular dependence of hydrogen bond strength is

gauged typically by the deviation from linearity of the two heavy atoms and intervening

hydrogen. Unfortunately, crystallographic methods provide no direct information

concerning hydrogen position. Although the position of many protein hydrogens is well

defined (e.g. amide protons), there is ambiguity, as discussed earlier, around functionalities

such as hydroxyl groups. To circumvent this difficulty, hydrogen bonds involving poorly

defined hydrogens are gauged by two angles involving only non-hydrogen atoms. These two

angles are computed among X:D-A and D-A-X atoms (D = donor, A = acceptor), where X

represents the adjacent heavy-atom providing the best possible angular geometry. There are

Table 2. Angular classes used for evaluation of hydrogen bond geometry.

Class Angle Bounds Donor Acceptor
(degrees) Functionalities Functionalities

ideal 0 - 45a amide nitrogen
secondary sp?-nitrogen

narrCW 75 - 165b hydroxyl secondary sp?-nitrogen
ether

carboxylate

wide 75 - 180b primary sp?-nitrogen hydroxyl
primary sp?-nitrogen carbonyl

phosph(on)ate
sulf(on)ate
sulfoxide, sulfone

* Angle is measured as D:H - A (D = donor, A = acceptor).
* Angle is measured as X-D - A or X:A - D (D = donor, A = acceptor, X = adjacent heavy atom).
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three classes, “ideal”, “narrow”, and “wide”, which define the angular tolerance about the

interacting atom. These angular classes and the functionalities to which they apply are given

in Table 2. Geometry is classified as either “good”, “bad”, or “none” according to the

angular class of the interacting atom. Angles which fall within the bounds listed in Table 2

are deemed good. Angles which do not deviate more than 15 degrees from the bounds are

deemed bad. Both angles must be good for the hydrogen bond geometry to be deemed

good overall; if either of the angles is bad, the hydrogen bond geometry is also deemed bad.

In the case of angles involving water molecules or monatomic cations where no adjacent

non-hydrogen atoms exist, only one angle is used in the geometry analysis. A tally of the

number of good hydrogen bonds, bad hydrogen bonds, charged hydrogen bonds (good

hydrogen bonds where only one partner is charged), and hydrogen bonds to water is thus

kept.

The second stage of the evaluation protocol examines atoms which were not

involved in an interaction in the first stage (interaction codes G - I in Table 1). Atoms which

participated in hydrogens bonds can not, for example, be penalized at this stage for clashes

with hydrophobic atoms. Polar atoms are permitted at most one clash with hydrophobic

atoms (code I). Interactions between hydrophobic atoms and aromatic atoms or other

hydrophobic atoms (code G) are based on surface area. That is, for every such interacting

pair, the solvent accessible surface area of each atom and it's attached hydrogens, if any, is

summed. We add the constraint, however, that the surface area for any atom may be

included only once.

In the third and final stage of the evaluation protocol, after all interacting atoms have

been paired, terms relating to the collective state of paired or unpaired atoms are assessed.

The number of hydrogen bonds left unsatisfied in the complexed state is evaluated. The
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atomic formal charges buried (where buried is defined as being involved in an interaction)

on the part of the ligand and receptor are summed. The number of single bonds buried in

the ligand and receptor is also tallied in an effort to gauge a conformational entropy penalty.

Assessment of Buried Surface Area

The use of surface area as a measure for solvation effects has considerable precedent

(Hermann, 1972; Chothia, 1974; Reynolds et al., 1974; Eisenberg & McLachlan, 1986; Sharp

et al., 1991). We compute the amount of solvent-accessible surface area buried upon

complexation by methods described in Appendix A. Buried surface area is subdivided based

on atomic label and molecule of origin (receptor or ligand), giving rise to twenty possible

terms. Surface area calculations are performed with a 1.0 dot/A * density.

Lattice Implementation
Like the force-field score computation, the empirical interaction evaluation can

benefit from pre-computing certain terms and storing them on a lattice. As angular

information needs to be calculated for classifying hydrogen bonds, gauging hydrogen bond

strength using a lattice is difficult. We may still garner significant performance

enhancements by simply storing the identify of every receptor atom near to each lattice

point. This implementation allows the examination of only nearby receptor atoms rather than

all receptor atoms when assessing the interactions a ligand atom makes with the receptor

(“nearby” is defined as the maximum interaction radius, usually about 4.0 A).

Storing a list of nearby receptor atoms for every lattice point requires a great amount

of memory. As Fortran does not support dynamic memory allocation, arrays must be

dimensioned at compile-time, not run-time. The need for pre-dimensioning forces sizing of

arrays based on worst-case behavior. One can, however, implement a simple innovation to

permit dimensioning based on average-case behavior. Rather than storing an array of nearby
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atoms for each lattice point, one can catenate the list of nearby atoms for all lattice points

into one array. Only one array need therefore be pre-dimensioned. By maintaining pointers

into this array for lattice point, the receptor atoms near any lattice point are readily retrieved.

The lattice implementation of interaction evaluation bypasses many needless distance

calculations, thus greatly speeding up evaluation time. We sacrifice memory for the sake of

this efficiency. By altering the storage format, we can cut the high memory requirements

roughly in half. Considerably more troublesome than evaluating pairwise interactions on a

lattice, however, is the assessment of surface area burial on a lattice. Expedient methods for

determining the amount of solvent accessible surface area buried upon complexation using a

lattice implementation are described in Appendix A.

Calculation of Interaction-Independent Terms
In addition to the affinity terms which depend on intermolecular interaction, several

interaction-independent properties are used in model selection. Ligand volume is included

as a regressor, as it might conceivably be proportional to the entropic bonus for removing

solvent molecules from the binding pocket. Several alternative representations of ligand

conformational entropy are invoked, including the number of rotatable bonds in the ligand

and the log of the number of conformations of the unbound ligand. The number of ligand

conformations is estimated in three ways: theoretically, based simply on a factorial

expansion of rotatable bonds; energetically, using the Sybyl systematic search feature; and

rule-based, using Chem-X (Chemical Design Ltd.). The log of ligand molecular weight has

been shown to correlate with the loss of rotational and translational entropy upon

complexation (Williams et al., 1991). Finally, because experimentally determined structures

frequently are obtained under conditions which differ from those of the affinity assay, the

structure pH and assay pH are used as additional regressors.
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Model Refinement

All of the terms described are introduced into the multilinear regression package to

be outlined shortly. Only regressors which significantly contribute to a proposed model

should be included; the optimal model represents a tradeoff between predictivity and the

number of terms involved. The best models which can be derived will therefore result from

a subset and/or combination of the many descriptors characterized above. The

combination of terms avoids overly complex representations of minor effects and simplifies

interpretations. True orthogonalization of all terms is difficult, so introducing contention

between competing descriptions may illuminate which better represents the desired

interaction. Descriptors have been defined to capture forces deemed important for ligand

binding. It is important to bear in mind, however, that whether the terms in a proposed

model sustain the intended physical meaning is a matter of considerable debate.

The manual optimization of adjustable parameters such as the interaction cutoff

distances and hydrogen bonding angles was carried out by iteratively performing the

interaction evaluation and examining models with regression analysis. Note that in this

process, the parameters to be optimized were assumed to behave independently, which

clearly may be a questionable assumption. Improved methods for optimization at this stage,

however, can only increase model performance. The most time-consuming step of the

interaction evaluation is reading receptor and ligand coordinates and surface areas off the

disk. To facilitate the optimization cycle, the interaction evaluation program was rewritten

to sacrifice memory for efficiency. By reading all data into memory only once and entering a

command mode, the user can make changes to the parameter files, evaluate interactions, and

perform regression analysis, all without exiting the program and having to re-read data off

disk. While seemingly a trivial innovation, the amount of memory required for storing
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atomic, coordinate, and surface area data for receptor and ligand of more than one hundred

complexes is tremendous; conservative methods of data storage must be devised.

Regression Analysis: GREMLIN

The Fortran program GREMLIN (an anagram for Multiple LINear REGression) has

been written to facilitate data analysis. This program computes linear regressions against the

observed data for all possible subsets of input regressors using Gaussian elimination. Thus,

given ten input descriptors, 2" or 1024 regressions result (each regressor has the option of

being included or excluded). The use of a constant is optional. Other features of the

analysis package include sorting of data by various metrics, crude graphing abilities, versatile

methods for regression filtering and retrieval, cross-validation, analysis of variance, and

computation of Kendall's tau statistic".

To run GREMLIN, the user provides an input file containing all of the calculated and

observed data for each system and for each independent variable, a short description and

optionally intended coefficient sign. Regressions which generate coefficients with signs

different from those specified are tagged and can be filtered out easily. This feature is useful

for imposing preconceived notions upon a particular term (one might not unreasonably

insist, for example, that burial of nonpolar surface area be favorable; regressions which

fortuitously indicate the opposite can be discarded). After statistics have been computed for

# correct—# incorrect

* Kendall's t statistic is defined (Press et al., 1988) as . For all "T % pairs of n observedn(n − 1)
2

data values, the observed ranking is compared with the predicted ranking for the two values. If the ranking is

the same, #correct is incremented; if the ranking is opposite, #incorrect is incorrect. t ranges from -1.0 (all

rankings opposite) to +1.0 (all rankings correct).
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all regressions, the user may page through sorted regressions sequentially or search for

regressions utilizing particular regressors or number of regressors. Analyzing the variables

involved in the best models as judged by r*-value quickly lends insight as to which

descriptors are the most useful. To assess whether models will have any value outside the

data set, model predictivity is gauged by leave-one-out cross-validation. In this process, each

observation (in this case, receptor-ligand complex) is sequentially left out of the regression

and predicted based on the remaining observations. Cross-validation measures how well a

model predicts data not used in model construction. In our experience, a cross-validated r *

less than 90% of the fitted r* indicates bias of the model towards particular observations,

warning of limited predictivity. Kendall's t statistic gauges the ability to rank data rather

than the ability to reproduce it. For automated structure-based strategies such as molecular

docking and de novo design, the capacity to rank output is often sufficient to guide discovery

efforts. Following Jain et al. (1994), we report t for each model as a useful metric for activity

prediction methods.

Hardware

All calculations were carried out on a Silicon Graphics 200MHz R4400 Indigo2

workstation (Silicon Graphics, Inc., Mountain View, CA) with 128Mb of physical memory.

RESULTS

Preliminary results toward empirical scoring schemes for automated structure-based

design strategies follow. We present performance over a data set consisting of 103 receptor

ligand complexes for the molecular mechanics scoring function currently in use in the
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DOCK program (Meng et al., 1992) and for an empirical scoring scheme. Only 103 of the

126 water-containing complexes were included due to parameterization difficulties

encountered with setting up molecular mechanics evaluation.

The poor performance of the force-field score in estimating absolute binding affinity

is revealed in Table 3. The fitted and cross-validated r* values are very low and reflect

standard errors in excess of two log units. Model A, which represents the typical

implementation of the force-field score in the DOCK package, is illustrated in Figure 1.

Virtually the same binding energy is predicted regardless of what is observed experimentally.

Allowing electrostatics and van der Waals terms to vary independently improves the model

(B), in effect implying that a 4r dielectric is sub-optimal. The four-fold scaling of van der

Waals to electrostatics coefficients indicates that perhaps a 16 r dielectric would be more

appropriate. This tendency to reduce the contribution of electrostatics argues that our

characterization of electrostatic interactions is insufficient. Note that electrostatics on its

own is completely useless in predicting affinity (a negative q " is in fact possible).

Table 3. Force-field score regression models.

Term Coefficients” Regression Statistics”

Modell volw ele total ff const n r2 S F q? t

A –0.0417 4.0534|| 2 0.191 2.187 23.8 0.131 0.305

B || -0.0852 -0.0205 3.1406| 3 0.316 2.020 23.1 0.252 0.409

C || -0.0823 3.5832| 2 0.283 2.058 39.9 0.250 0.401

D -0.0143 5,7640|| 2 0.016 2.411 1.7 -0.038 0.017

* All coefficients are in pK. units. Coefficients indicate contributions to each regression model by the following
terms: pdw = van der Waals component of the force-field score; ele = electrostatic component of the force-field
score; totalf-sum of van der Waals and electrostatics components; const = constant term in regression.
* Statistics are as follows: n = number of adjustable parameters; r = fitted rº; 3 = standard error of fitted model

(log units); F = fitted model significance given by F-ratio; q = cross-validated rº; t = Kendall's tau statistic.
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Figure 1. Binding energy predictions: minimized DOCK force-field score.
Predicted vs. observed affinity is plotted for 103 receptor-ligand complexes using model A
(Table 3). The diagonal line has unit slope and represents ideality. r *=0.191, q2=0.131,
s=2.19 (2.97 kcal/mol), 2 adjustable parameters. Force-field scores were optimized with the
quasi-Newton method described in Meng et al. (1993).

The ability to reproduce absolute binding affinities with a preliminary empirical

scheme is considerably better. Table 4 presents models involving the use of eight

descriptors which have been found to contribute to the best empirical regression solutions.

Model E utilizes all of these descriptors, while subsequent models (F - M) illustrate the effect
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of dropping each term independently. The amount of non-polar solvent accessible surface

area of the ligand buried upon complexation is the most significant term, while the number

of good-geometry hydrogen bonds and aromatic contacts also play a large role. The least

significant of the terms shown in Table 4 is the entropic penalty measured by the number of

receptor single bonds immobilized upon complexation - note that the sign of the coefficient

varies when other terms are left out. The number of formal charges buried is also a minor

contributor, yet consistently has appeared in the best regression models. The effect of

leaving out both of these terms is given in model N, which, because it involves the fewest

number of terms but maintains predictivity, garners the highest F significance statistic. Our

experience with this data set and thousands of resultant regression models leads us to believe

that the number of buried formal charges is a contribution worth retaining. Thus, we have

settled on regression M, with a standard error of 1.7 kcal/mol, as the working model.

Predicted versus observed affinities obtained using this model are plotted in Figure 2. The

statistical significance and 95% confidence intervals for terms in model M are excellent, as

Table 5 indicates.
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Table4.
Empiricalscoringschemeregressionmodels.

TermCoefficients”

RegressionStatistics”

Model|lnp8AburchggChggFIBbHBwhBafornrfrozconst
|nrºSFq’t

E||
0.0073–0.28851.09000.2409-0.6.185-0.20470.3383-0.08013.9952
||9
0.7581.23936.90.7130.679 F

-0.40281.21240.2239-0.6987-0.26990.31080.10935.1629
||8
0.5641.65517.60.4660.548 G|

0.00770.66600.1998-0.6594–0.219.40.3322-0.06373.4279
||8
0.7301.30236.80.6890.655 H||

0.00770.05480.2271-0.6405–0.17170.3472-0.08343.3544
||8
0.6731.43427.90.6160.627 I

0.0070-0.04680.9896-0.4650–0.17710.30410.00074.4946
||8
0.6211.54422.20.5580.579

J
100077-0.33491.12040.2113–0.19020.3218–0.08933.7145
||8
0.6901.39530.20.6360.643 K0.0080-0.33160.97080.2271-0.58120.3354–0.11793.6266

||8
0.7001.37231.70.6500.642 L

0.0069–0.26361.13440.2171-0.5592-0.2006–0.02483.9550
||8
0.6241,53722.50.5490.579 M

|00061-0.259610966021670.63270.2275031453.8302
||8
0.745126739.607010.668. Nlooooº0.70610.1835-0.6676–0.23670.313333400|7072213164150.6840.652

*
All
coefficients
areinpK,units.Coefficientsindicatecontributions
toeachregressionmodelbythefollowingterms:ImpSA
=
ligandnonpolarsolventaccessible surfaceareaburieduponcomplexation;burchg

=
numberofformalchargesonreceptorandligandburieduponcomplexation;gChg=
numberofsaltbridgesformed withgoodhydrogenbondgeometry;gFIB=

numberof
hydrogenbondsformedwithgoodgeometry;bFIb=
numberof
hydrogenbondsformedwithbadhydrogen bondgeometry;whib=

numberof
hydrogenbondstowatermolecules;arom=
numberof
aromatic-aromaticcontacts;■ roz=numberofsinglebondsonthereceptor immobilizeduponcomplexation;const=

constanttermin
regression.Fordefinitions
of“good”and“bad”geometry,seetext.

*

Statisticsareas
follows:
n=
numberof
adjustableparameters,
r=fittedrº,s=
standarderroroffittedmodel(logunits);F=fittedmodelsignificancegivenbyF

º

ratio;
q=

cross-validated
rº;t=
Kendall'staustatistic.
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Figure 2. Binding energy predictions: empirical scheme.
Predicted vs. observed affinity is plotted for 103 receptor-ligand complexes using model M
(Table 4). The diagonal line has unit slope and represents ideality. rº–0.745, q’=0.701,
s=1.27 (1.72 kcal/mol), 8 adjustable parameters.

Table 5. Significance of coefficients for empirical regression model M (Table 4).
Terma Coefficient Standard Error P-value

lnpSA 0.0061 0.0007 (11.0%) 1.4 × 10-14
burchg –0.2596 0.0884 (34.1%) 4.2 × 10−3
gChg 1.0966 0.1929 (17.6%) 1.4 x 10-7
gHB 0.2167 0.0319 (14.7%) 9.7 x 10-10
bHB -0.6327 0.1227 (19.4%) 1.4 x 10-6
WHB –0.2275 0.0429 (18.8%) 7.3 × 10-7
21 marm 0.3145 0.0467 (14.9%) 1.3 × 109
COInStant 3.8302 0.3933 (10.3%) 6.0 x 10-16
* Term descriptions are as given in Table 4.
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DISCUSSION

The juxtaposition of analyses differing greatly in the number of adjustable

parameters, while statistically reconcilable, nevertheless merits a healthy suspicion. Our

justification for contrasting the two methods is only to evaluate the current DOCK scheme

and highlight direction for improvement. We do not imply that molecular mechanics is

fundamentally flawed, but rather that it is incomplete. The omission of entropic and

solvation effects undeniably contributes to the poor performance of the force-field score at

predicting binding affinities across diverse receptor-ligand complexes. The empirical

regression illustrated in Figure 2, in contrast, does include terms intended to capture both

enthalpic and entropic effects. Moreover, this scheme, unlike the force-field score, has been

derived explicitly to reproduce binding affinities, so it’s improved performance is not

unexpected. The evaluation of the empirical scheme, while not as efficient as the force-field

score, is fairly rapid. About ten evaluations per second are possible, but as the current code

computes many additional terms not used in the regression model, this rate could

conceivably be increased by an order of magnitude.

The descriptors comprising the empirical model can be equated with physical

principles. We prefer to interpret the model in terms of solubilities in different media, i.e. an

aqueous phase and a receptor-bound phase. Every molecule will have its affinity for a

receptor modulated by one or more terms. Functionalities on the ligand which hydrogen

bond with water, for example, will increase solubility in the aqueous phase, thus decreasing

affinity for the receptor (the negative whb term). Charged moieties will also favor the

aqueous state, unless a salt bridge can be made with the receptor (negative burchg and

positive gChg terms, respectively). The formation of poor-quality hydrogen bonds between

the ligand and the receptor will once again favor the solvated state (negative bFIB term),
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where hydrogen bonds can optimally be satisfied. However, should good-quality hydrogen

bonds between ligand and receptor be made, these are likely to be stronger than hydrogen

bonds to water due to full unit occupancies of receptor atoms, thus favoring a bound

configuration (positive gHB). The additional favorably entropy of displacing water

molecules on the formation of receptor-ligand hydrogen bonds may contribute to the gHB

term. The removal of hydrophobic surface area from water must entropically also be

favorable - this is reflected by the positive /mp.S.A term [two notes regarding this term deserve

mention: first, the coefficient is much smaller than the others because this term is in units of

square Angstroms of surface area; and second, the sum of receptor and ligand nonpolar

surface areas is generally preferable, but removing the receptor portion greatly simplifies and

accelerates the computations (see Appendix A)]. Finally, the placement of aromatic groups

on the ligand adjacent to similar groups on the receptor results in a significant decrease in

aqueous solubility.

The empirical scheme presented here compares favorably with similar investigations

by other researchers. Böhm (1994a) reported a standard error of 1.38 log units and cross

validated r2 of 0.696 for a set of 45 complexes using five adjustable parameters; Marshall

(personal communication) reported a standard error of 1.15 log units and cross-validated rº

of 0.72 for a set of 52 complexes using in excess of ten parameters through partial-least

squares (PLS) analysis. Our model with a cross-validated r* of 0.701 and standard error of

1.27 log units with only eight adjustable parameters over a data set consisting of more than

100 complexes is very encouraging. Our analysis finds strength in a calibration data set more

than twice as large as any yet reported. In contrast to the work of Böhm (1994a) and of

G.R. Marshall (personal communication), our data set is sparsely populated with instances of

numerous ligands binding to the same receptor. It is our opinion that this introduces some
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bias with respect to the types of interactions being represented and reduces the overall

complexity of the problem as it applies to screening molecular databases. Clearly, both

approaches are valid and informative, but we prefer to stress diversity in our analysis. With a

compilation of nearly 150 complexes, we now are afforded the luxury of subdividing the

data set into distinct structural classes. For example, an analysis of all peptidic ligands or of

all hydrophobic ligands permits the isolation of specific molecular features which are

contributing to interaction strength with different receptors. Conversely, it is important that

a proposed model perform well in reproducing trends amongst different ligands binding to

the same receptor.

In deriving scoring functions, it is crucial to consider interactions relative to a

solvated medium, not a vacuum. For example, we believe that, as a large fraction of

hydrogen bonds are satisfied in aqueous solution (Kuntz, 1971; Williams et al., 1991), we

should penalize for hydrogen bonds lost upon complexation (Fersht et al., 1985) rather than

reward for hydrogen bonds “gained” (Jorgensen, 1989; Sali et al., 1991). The use of water

information has and will play a critical role in obtaining a complete representation of

molecular recognition events. Despite much work on the prediction of water binding sites

(Danziger & Dean, 1989; Pitt et al., 1993), cleverness will be required to rapidly determine

sites for an optimal arrangement of receptor-ligand water-mediated hydrogen bonds.

We have completed a reasonable first step toward rapid and accurate empirical

affinity prediction schemes for use in structure-based design strategies. Many issues remain

to be resolved, leaving much room for future work. The predictivity of proposed models

must be verified on data not included in the calibration set. Leave-one-out cross-validation

is a helpful diagnostic tool for monitoring predictivity, but its usefulness becomes limited
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when the data set reaches the size it has here. Larger test sets of order twenty complexes

will be required to obtain practical estimates of predictive ability.

The incorporation of empirical schemes into molecular docking and de novo design

programs introduces additional complexities. Because automated design strategies generate

many poor molecular arrangements, empirical schemes must be appropriately parameterized

for negative interactions - steric clashes and neighboring like charges, for example. This is

difficult due to the under-representation of such effects in experimentally observed

structures. Our regression model also presupposes information regarding water structure (a

significant contribution: term whb in Table 4). This vastly complicates the evaluation phase

when each of thousands of putative ligand-receptor configurations must be solvated. A

further complication arises because empirical scoring schemes are calibrated against

experimentally observed configurations. Most, if not all, configurations produced by

automated methods deviate from the observed mode, so the ability to retrieve this mode

from a deviant configuration must be manifest in the scoring scheme. One might envision

calibrating the scoring function against not just one observed configuration of the ligand, but

against several which differ slightly in translation and rotation. This might introduce

sufficient softness in the evaluation scheme so as to permit recognition of a sub-optimal

configuration as the observed binding mode. Finally, we propose the following experiment

as a practical measure of any scoring function's utility for molecular docking methods. For a

receptor-ligand complex data set such as that described in this work, extract all ligands and

create a structural database. To increase the stringency of the test, this ligand database can

be supplemented with “random” compounds from one of the many commercially available

structural databases. The ligand database is then docked against each receptor in the data

set, saving the best-scoring ligand. The evaluation scheme which most often pairs a receptor
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with its cognate ligand, preferentially to all other ligands in the database, is likely to be a

useful scoring method for molecular docking applications.

Finally, we remark that even the best scoring scheme will not achieve perfect

accuracy. Resource-intensive calculations such as free energy perturbation rarely achieve

accuracies much better than 1 kcal/mol (Beveridge & DiCapua, 1989, Kollman & Merz,

1990), and moreover, experimental affinity determinations are error-prone and subject to

variability in method of ascertainment. However, rapid evaluation methods capable of

predicting binding affinities to within 1 to 2 kcal/mol will prove immensely useful in

structure-based drug design applications.

CONCLUSIONS

The greatest hindrance to structure-based drug design is the inability to accurately

and consistently estimate the affinity of ligands for a receptor. There are nearly as many

ways of assessing molecular interactions as there are design strategies. This study presents

the development of an empirical scoring scheme for use in automated design strategies with

emphasis on robustness over structurally diverse molecular arrangements, accuracy in

absolute binding affinity prediction, and speed of evaluation. A model, calibrated against a

complex set of diverse structural data, has been derived using effective interaction

descriptions and statistical analysis to reproduce observed binding affinities to within 1.7

kcal/mol. This model performs considerably better than the molecular mechanics function

used in the DOCK molecular docking suite. Interaction evaluation methods which manifest

both enthalpic and entropic contributions to binding affinity will display great potential in

drug discovery efforts.
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Appendix A.

Evaluation of Buried Solvent-Accessible Surface Area

Using a Lattice

BACKGROUND

Biological processes occur in an aqueous environment. The energetics of solvent

solute interactions determine the behavior of molecular associations. The most common

characterization of the extent to which a molecule can interact with solvent involves the

solvent accessible surface area (SASA) (Lee & Richards, 1971). The SASA has been defined

succinctly by Chothia (1975): “For a given atom it is defined as the area over which the

center of a water molecule can be placed while retaining van der Waals’ contact with that

atom and not penetrating any other atom.” Accessible surface areas correlate well with

hydrophobic free energies (Hermann, 1972; Chothia, 1974; Reynolds et al., 1974; Eisenberg

& McLachlan, 1986; Sharp et al., 1991) and merit exploration for incorporation into

evaluation functions for structure-based design strategies. While the construction of a SASA

is easy, the rapid evaluation of changes in area between two states of a molecular system is

not trivial. To be useful for automated design strategies, this evaluation must be capable of

being performed many times per second - herein lies the challenge. I here describe an

efficient lattice-based method for computing the amount of solvent accessible area buried

upon molecular complexation. This method may make a useful addition for addressing
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solvation issues within the existing molecular mechanics force-field (Meng et al., 1992) or

within empirically derived scoring schemes such as that described in Chapter 5.

METHOD

Surface area generation

A Fortran program, entitled “access,” has been written to generate surface areas of

molecules or SPHGEN (Kuntz et al., 1982) sphere clusters. The algorithm is simple. For

each atom, a net of evenly spaced points is placed on a sphere having a radius equal to the

sum of the atom's van der Waals’ radius and the solvent radius. After laying such a net

around each atom, all points internal (closer than a distance equal to the sum of an atom's

van der Waals' radius and the probe radius) are removed. Each point is assigned an

associated surface area. The computation is reasonably quick: to generate a surface having a

density of 5.0 dots/A* using a solvent radius of 1.4A requires only about 0.1 sec (SGI

200MHz R4400 Indigo2) for a typical ligand and about 10 sec for a 20kD protein. The

program accepts both PDB and Sybyl MOL2 (Tripos Associates, St. Louis, MO, 63.117)

formats and can be instructed to use either Sybyl, Amber (Weiner et al., 1984), or MS

(Connolly, 1983) atomic radii. Solvent radius and surface density are also under user control.

The output surface format is the same as that of the UCSF MS implementation.

Evaluation of buried surface area on a lattice

Input
Coordinates and pre-generated solvent accessible surfaces are required for both

ligand and receptor (practical implementations, such as that described in Chapter 5, can
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generate the ligand surface on-the-fly without significant penalty). A density of 1.0 dots/A2

is sufficiently dense for excellent results. MS atomic radii were used for all calculations in

this work.

Lattice Construction

For every point on a lattice spanning the region of interest (see Meng et al., 1992), a

list is stored of all nearby receptor surface points. “Nearby” is defined as within the a

distance equal to the sum of ligand probe atom and solvent radii. A lattice is saved for

several ligand probe atom radii, generally ranging from 1.2 to 2.2 Å in 0.2 Å increments to

cover the common range of atomic radii. Thus, using these parameters, six lattices would be

constructed, each containing a list of nearby receptor surface points but varying in the radius

of the probing atom. As more than one lattice is retained in memory, the density of the

lattice must be reduced. A lattice resolution of 1.0 A is sufficient. Implementing lists as

described above is very memory intensive. I use the method detailed under “Lattice

Implementation” in Chapter 5 to reduce memory requirements.

An additional lattice, the occlusion grid, is constructed for the receptor. This lattice

is of higher density (typically 0.3 A resolution) and contains binary values indicating whether

lattice points lie inside or outside of the receptor SASA.

Lattice-Based Burial Evaluation

The evaluation of buried surface area is now simple, given the appropriately

constructed lattices. To assess surface area burial for an arbitrary configuration and/or

conformation of the ligand, the ensuing protocol is followed.

Receptor SASA burial. For every atom in the ligand, the lattice with the probe

radius nearest to the radius of the atom is employed. The lattice point nearest the ligand
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atom is located, and the list of all nearby receptor surface points is extracted. All nearby

receptor surface points are then considered buried by this ligand atom. After processing all

ligand atoms, the surface areas of all receptor points that were buried by this orientation of

the ligand are summed, giving rise to the amount of receptor surface area buried upon

complexation.

Ligand SASA burial. For each ligand surface point, a simple check on the

occlusion grid reveals whether the point (and its associated surface area) lie within the SASA

of the receptor. If so, this portion of ligand surface area is considered buried. A summation

over all buried ligand surface points gives rise to the amount of ligand surface area buried

upon complexation.

“Actual” Burial Evaluation

The amount of surface area buried upon complexation is equal to the sum of the

surface areas of the receptor and ligand minus the surface area of the complex. This total

area of burial can be partitioned into area lost by the receptor and by the ligand. To gauge

the accuracy of the lattice-based evaluation of buried surface area, results were compared

with answers obtained by computing accessible surface areas for the receptor, ligand, and

receptor-ligand complex using the access program. Note that these “actual” buried areas use

exact distances but do not represent analytical surface area calculations.

Hardware

Calculations were performed on a SGI 150MHz R4400 Challenge with 256Mb of

physical memory.
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RESULTS

Table 1 compares three methods for computing surface area burial for each of seven

test receptor-ligand systems: actual calculations using a high and low density surface and

lattice-based using a low density surface. Differences between the use of high and low

density surfaces in actual assessments of surface areas amount to only on the order of 1%.

For a fair comparison, the low-density lattice-based evaluation is compared with the low

density actual calculation. The errors introduced by using the lattice-based method are

approximately 1-3%. However, the lattice-based evaluation can be performed several hundred

times per second, making it at least four orders of magnitude faster than the actual method (data

not shown), which involves computing and subtracting the surface area of the entire

complex from the sum of receptor and ligand surface areas.

[Footnotes to Table 1]

* Systems are: pcdhfr/flt = P. carinii dihydrofolate reductase and folate; 2gbp/gle = D-galactose/D-glucose

binding protein and 3-D-glucose, 3cpa/yg = carboxypeptidase A and glycyl-L-tyrosine; 4dfr/mtx = E. coli

dihydrofolate reductase and methotrexate; 6rsa/urp = ribonuclease A and uridine phosphate; 1 flºf/fk5 =

FK506 binding protein and FK506; 3cla/clim = chloramphenicol acetyltransferase and chloramphenicol. With

the exception of the pcdhfr/flt system (see Chapter 3), all are available in the Protein Data Bank (Bernstein et

al., 1977).

* Methods for computation are as follows: act 5.0 = actual solvent accessible areas determined by the access

program using a surface density of 5.0 dots/A” act 1.0 = actual solvent accessible areas determined by the

access program using a surface density of 1.0 dots/A* grid 1.0 = lattice-based estimation using a surface

density of 1.0 dots/A2. Error is given as the percent error between grid 1.0 and act 1.0 methods.

• In units of A2.

"Total buried area is the sum of receptor and ligand accessible areas less the complexed accessible area.
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Table 1. Comparison of surface-area burial estimation methods.
Molecular Accessible Areac Total Contribution" of

System. Method receptor ligand complex buriedº ligand receptor
pcdhfr/flt act 5.0 10882.8 700.6 10589.6 993.8 632.4 361.4

act 1.0 10931.0 701.0 10637.0 995.0 629.0 366.0

grid 1.0 989.0 627.0 362.0

CrrCr 0.6% 0.3% 1.1%

2gbp/gle act 5.0 13151.8 347.2 13093.8 405.2 346.8 58.4

act 1.0 13221.0 347.0 13164.0 404.0 344.0 60.0

grid 1.0 405.0 346.0 59.0

CrrCr 0.2% 0.6% 1.7%

3cpa/yg act 5.0 12089.4 462.4 11945.6 606.2 446.0 160.2

act 1.0 12175,0 456.0 12030.0 601.0 437.0 164.0

grid 1.0 607.0 438.0 169.0

error 1.0% 0.2% 3.0%

4dfr/mtx act 5.0 8705.6 709.2 8535.8 879.0 548.0 331.0

act 1.0 8745.0 716.0 8588.0 873.0 543.0 330.0

grid 1.0 884.0 545.0 339.0

error 1.3% 0.4% 2.7%

6rsa/urp act 5.0 7110.4 455.2 7014.4 551.2 337.2 214.0

act 1.0 7088.0 465.0 7001.0 552.0 342.0 210.0

grid 1.0 568.0 343.0 225.0

error 2.9% 0.3% 7.1 %

1fkf/fk5 act 5.0 6049.0 1036.2 6151.6 933.6 542.0 391.6

act 1.0 6061.0 1059.0 6150.0 970.0 565.0 405.0

grid 1.0 963.0 561.0 402.0

error 0.7% 0.7% 0.7%

3cla/clim act 5.0 10856.6 483.8 10744.0 596.4 361.2 235.2

act 1.0 10925.0 483.0 10816.0 592.0 359.0 233.0

grid 1.0 602.0 361.0 241.0

Crfor 1.7% 0.6% 3.4%
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The lattice-based method offers the further advantage that surface area burial can be

attributed to specific atoms. This makes for trivial implementation of atomic solvation

parameter-based methods such as that pioneered by Eisenberg & McLachlan (1986). One

should be aware, however, that although errors for total molecular surface area burial, as

presented in Table 1, may be small, errors on an atomic basis may still be large. Large per

atom errors may be opposite in direction, thus masking their presence in the total molecular

area. Naturally, if effective atomic solvation parameter methods are desired, accurate atomic

surface area changes are required. For the 332 total ligand atoms in the seven systems

studied, the atomic errors between lattice-based and actual methods were distributed as

follows: 91% showed exact agreement, 5.7% differed by 1 A2, 1.8% by 2 A2, and 1.2% by 3

A2. (The analogous analysis for receptor atoms is slightly more involved, as the many

internal receptor atoms which do not have any surface area dominate the distribution).

Thus, the lattice-based scheme is quite accurate at reproducing changes in both atomic and

molecular surface areas.

SUMMARY

A highly efficient lattice-based method has been developed for quantifying surface

area changes that occur upon receptor-ligand complexation. Surface area changes computed

by explicit non-lattice-based calculations are reproduced precisely, at an atomic and

molecular level. The algorithm, while memory-intensive, is capable of several hundred

evaluations per second and is dependent on both ligand configuration and conformation.

These features make it amenable to incorporation into automated structure-based drug

design packages. The ability to compute accessible surface area differences between
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molecular systems afford improved assessments of solvation effects in evaluating receptor

ligand interactions.

REFERENCES

Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Jr., Brice, M.D., Rodgers, J.R.,
Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). J. Mol Biol. 112,535.

Chothia, C.H. (1974). Nature 248,338.

Chothia, C.H. (1975). Nature 256, 705.

Connolly, M.L. (1983). Science 221,709.

Eisenberg, D. and McLachlan, A.D. (1986). Nature 319, 199.

Hermann, R.B. (1972). J. Phys. Chem. 76,2754.

Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E. (1982). J. Mol. Biol. 161,
269.

Lee, B. and Richards, F.M. (1971). J. Mol Biol. 55,379.

Meng, E.C., Shoichet, B.K. and Kuntz, I.D. (1992). J. Comp. Chem. 13,505.

Reynolds, J.A., Gilbert, D.B. and Tanford, C. (1974). Proc. Natl. Acad. Sci. U.S.A. 71,29257.

Sharp, K.A., Nicholls, A., Fine, R.F. and Honig, B. (1991). Science 252, 106.

Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. and
Weiner, P. (1984). J. Am. Chem. Soc. 106,765.

164



Appendix B.

MDL SDFile to Tripos MOL2
Database Conversion

BACKGROUND

The advent of scoring schemes that require detailed information concerning atomic

hybridization raises a concomitant need for more accurate automated atom typing in

structural databases used for docking. The empirical scheme developed in Chapter 5, for

example, necessitates a knowledge not only of elemental type, but also of hybridization and

charge state for each atom. The Sybyl modeling package (Tripos Associates, St. Louis,

63117), with which DOCK has had close association in the past (Meng, 1993), possesses a

versatile set of atom types in the Tripos MOL2 file format. Databases prepared for force

field scoring (Meng, 1993) demanded less stringent standards for atom typing because the

Sybyl atom types were eventually mapped into appropriate Amber (Weiner et al., 1984) atom

types used in DOCK-format databases. Nevertheless, Elaine Meng made significant strides

toward a useful atom typing scheme for the conversion of Molecular Design Limited (MDL

Information Systems, San Leandro, CA, 94577) structural databases into Tripos MOL2

format and ultimately into DOCK 3.0 databases (Meng, 1993).

Future versions of DOCK will in all likelihood read MOL2 format databases

directly, allowing maximum use to be made of the versatility of this format and bypassing
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the need for yet another database format. While Sybyl has the capacity to read MDL

format databases, it does a considerably less-than-satisfactory job of interpreting atomic

hybridization and charge states. I here describe an advanced conversion process which is

rapid, easy to use, and most importantly, faithful in recognizing correct Sybyl atom types.

This scheme will benefit scoring methods which make explicit use of atom type information

and may even improve the accuracy of charge computations by providing more precise atom

hybridization states.

METHODS

This conversion process begins with an MDL SDFile (structure data file) containing

structures for any number of molecules. The SDFile is currently obtained by a relatively

painless but terribly slow extraction using the ISIS package (MDL Information Systems, San

Leandro, CA, 94577) and specially designed ISIS PL scripts. This task will not be described

here, except to mention that the output should contain molecule names, registry numbers,

and elemental identities, three-dimensional coordinates, connectivities and bond orders for

each atom. Hydrogen atoms are occasionally present in MDL database structures, but, as

their presence can not be relied upon, are ignored and added a later step. There are two

major stages in the conversion process: 1) atom typing, and 2) hydrogen addition and charge

computation. The first stage is performed by the Fortran program “sdf2mol2,” while the

second stage is performed by the Sybyl SPL program “sybdb.”
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sd;2mo/2

Description
This program takes as input an MDL SDF database file and writes out a Sybyl multi

MOL2 file. This step types all atoms using Sybyl's fairly versatile and descriptive atom types.

Usage
sdf2mol2 -i SDFile –o MOL2 file [-b start_at stop at )

where SDFile is the name of the input MDL SDFile; MOL2 file is the name of

the output multi-MOL2 file; start at and stop at are optional

bounds for starting and ending structure numbers; e.g. to process only the

first hundred structures, use

sdf2mol2 -i SDFile –o MOL2 file –b 1 100

Speed
~10 min for 100,000 structures (SGI R4400 Indigo2)

Method

0. Read in SDF structure. Obtain connectivity and bond orders. Define hybridization

of each atom based on the highest bond order.

1. Search for rings. A breadth first search is used to find the smallest number of

smallest rings.

2. Assign generic atom types. Atoms other than C, O, N, S, and P receive an atom type

the same as the atom name - this is useful for atoms which have only one possible

hybridization state (e.g. halogens) and atoms such as metals. All phosphorous atoms

become P.3 as this is the only possible phosphorous atom type. Atoms C, O, N, and

S get assigned types based on their hybridization as inferred from the bond orders.
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E.g. doubly-bonded nitrogens become N.2, triply-bonded carbons become C.1, etc.

Nitrogens with either zero or 4 neighbors are automatically assigned N.4.

3. Detect aromaticity. All rings which contain only X.2 or Xar atoms are considered

aromatic, subject to the following constraint (please note that the Hückel 4n+2 rule

is not employed). Rings which have all X.2 atoms but only as a result of exocyclic

double bonds, e.g. quinones, are not assigned as aromatic.

4. Treat specific functionalities.

a)

b)

Carboxylate-like oxygens are typed. This includes carboxylates,

sulf(on,in)ates, phosph(on,in)ates, and nitros. For purposes of this

discussion, a singly-connected atom refers to one which has only one

neighbor atom, regardless of the bond order of that bond. A carbon with

two or more singly-connected oxygens, or, a sulfur with three or more singly

connected oxygens, or, a terminal sulfur with two or more singly-connected

oxygens, or, a phosphorous with two or more singly-connected oxygens: the

oxygens in these groups all considered O.co2's with single bonds. A

nitrogen with two or more singly-connected oxygens is considered a nitro -

the oxygens are both assigned O.2 with double-bonds, and the nitrogen is

given N.pl? status (this is the way Sybyl does it).

Nitrogen functionalities. Any nitrogen alpha to an olefin is N.pl?. Any

nitrogen alpha to an X=O or X=S group is considered an amide N.am.

Sulfur functionalities. If the number of singly-connected oxygens is one, this

is a sulfoxide (S given S.O type); if two, this is a sulfone (S given S.O2 type);

168



SDFile to MOL2 Database Conver■ ion Appendix B

10.

otherwise, the sulfur becomes S.2 if it has a double bond, S.3 in all other

CaSCS.

Consider functionalities which may depend on completion of step 4 entirely.

a) Guanidyls and amidines. A carbon with three neighbors is considered an

amidine if at least one neighbor is a Car and the other two neighbors are

non-aromatic nitrogens. If the central carbon is in a ring, the two nitrogens

may not be members of this ring. A guanidyl is any carbon with three non

aromatic nitrogen neighbors. Nitrogens in amidines and guanidyls are given

N.pl3, the central carbon is assigned C.cat to insure a formal charge of +1

(again, this is the way Sybyl does it; viz. arginine). Finally, for both amidines

and guanidyls, if any of the nitrogens themselves have heteroatom neighbors,

this functionality is considered too electron-deficient to be charged and

hence not an amidine or guanidyl.

Insure correct protonation state. Tetrahedral (N.3) nitrogens which do not have

heteroatoms or olefins as neighbors are considered protonated and hence promoted

to N.4.

Lone atoms are removed (e.g. single-atom counterions).

Atoms are renumbered sequentially and atom names made uppercase. Spaces in

molecule name converted to underscores.

The structure is written out.

Return to 0.
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sybdh

Description
This program is a shell script which creates a Sybyl command file which creates and

runs a Sybyl SPL macro. Input is an sqf2mol2 output multi-MOL2 file, output is a multi

MOL2 file. The program removes all but the largest covalently bonded substructure, adds

hydrogens, adjusts formal charges as appropriate, and computes partial charges using the

method of Gasteiger & Marsili (Gasteiger & Marsili, 1980; Marsili & Gasteiger, 1980;

Gasteiger & Marsili, 1981).

Usage
Customization: before the first use, please update inside the sybdb script the

location of Sybyl. This will require modifying the variable TA_ROOT, which specifies the

root directory for your version of Sybyl, and sybcommand, which stores the actual

command used to access Sybyl at your site.

sybdb inputMOL2 file outputMOL2 file

where inputMOL2 file is the output from sqf2mol2 and outputMOL2 file is

the cleaned up multi-MOL2 format file.

A log file called Sybdb. log is also written which includes the name of each molecule

processed, formal charges, modifications to formal charges by the script, and any other

warnings that Sybyl may have generated. The file sybdb.out contains a record of the

entire Sybyl session so that all actions may be examined.

Note 1: Due to memory limitations, you will in all likelihood need to run sybdb on multi

MOL2 files containing fewer molecules (e.g. 1000). Please use the accompanying “chunks”
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script for this purpose. This script will allow you to process a database of any size by

splitting it into manageable pieces, processing each piece, then catenating all results.

Note 2: The Gasteiger-Marsili charges within Sybyl do not have parameters for the very

common sulfoxide and sulfone functional groups. If you do not supply parameters for these

types of sulfurs, charges on the sulfur and accompanying oxygens will be 01 What I have

done is to copy the S.3 parameters to S.O and S.O2 so that at least something gets used. To

do this, you should edit the file

$TA_ROOT/sybylbase/tables/gastpar. tab

and add the following four lines exactly as shown here:

S 29 2. 3900 1 0. 1400 20 - 6500 SO copied from S3

P 29 0.0000 6. 6000 20.6400 SO copied from S3

S 30 2. 3900 10. 1400 20. 6500 SO2 copied from S3

P 30 0.0000 6. 6000 20. 6400 SO2 copied from S3

You may use an altered gastpar. tab for temporary use only be placing it in your

working directory. If no gastpar. tab is found in the working directory, the default file

specified above will be used. For further details, see “Appendix 1: Parameter Tables:

Charges” in the Sybyl Theory manual. (This is section A-1.7 beginning on page A-444 in the

Sybyl 6.1 8/94 documentation.)

Speed
~3-4 hours for 100,000 structures (R4400 Indigo2)
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Method

0. Setup:

a) Add new bond parameters. A bogus N.ar-H bond type and length is

assigned. Sybyl can not seem to accommodate a tertiary (and hence charged)

aromatic nitrogen. It would prefer to add a hydrogen and so needs bonding

information for the N.ar-H bond. By setting the bond type to no (not

connected), this hydrogen atom never really gets added, but the +1 formal

charge is indeed now recognized. A bogus N.1-H bond type and length is

also assigned, for similar reasons.

b) Set up to use Gasteiger-Marsili pi charges (off by default).

c) Load metal parameters. This is to insure that Sybyl does not assign dummy

types to unrecognizable atoms.

Read in all molecules, then loop over each one as follows.

Remove all but the largest substructure.

Add hydrogens.

Remove any dummy atoms.

Rename atoms sequentially - this insures that added hydrogens will have names, as

the “fillvalence” command adds hydrogens without giving them names.

Check for functionalities for which Sybyl incorrectly adds hydrogens. Tri-alkyl

phosphines incorrectly get an additional hydrogen on the phosphorous. These

hydrogens are stripped. Isocyanates (-N=C) should be net neutral (i.e. +1 on

nitrogen, -1 on carbon), so the hydrogen normally added to the carbon is removed.
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7. Adjust formal charges. Sulf(on)ates and phosph(on)ates get their formal charge

distributed evenly about the O.co.2 oxygens.

8. Compute partial charges with the modified formal charges.

9. Return to 2 using next structure.

Further processing

To convert the multi-MOL2 database resulting from sybdb to a dock database, run

mol2db but be sure to say no to charge adjustment, as this has already been done within the

sybdb program.
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Receptor-Ligand Complex Data Set

OVERVIEW

The following table reports the structural and affinity data used in Chapter 5 for the

derivation of empirical scoring schemes. These receptor-ligand complexes are all available in

the Protein Data Bank (Bernstein et al., 1977). Affinities given in the table are presented as

Ki values, but frequently represent Kd or Km values, and on occasion even IC50 values. Two

abbreviated literature references are provided for each receptor-ligand complex: one reports

the structure solution and the other the affinity determination. Note that crystallization and

assay conditions may not be reported in these papers and often appear elsewhere in the

literature - these additional references have also been compiled but will not be discussed

here. In rare instances where no reference for affinity determination could be found, the

affinity reported by Keske & Dixon (unpublished results) or by Böhm (1994) was used. It is

worth mentioning that in some cases affinities identified by Keske & Dixon or by Böhm

differed, sometimes substantially, from those located in the literature. I owe great thanks to

Jonathan Keske for supplying his list of affinity data, which served as a starting point for the

data which follow. This data set should prove invaluable in the development of scoring

tools for structure-based drug design.
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Table 1 lists the source, affinity, crystallographic resolution, and literature references

for all 144 complexes. The 103 complexes indicated with an asterisk were used in the model

calibration discussed in Chapter 5.
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Table
1.

Receptor-ligandcomplexdataset. CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

1abeara"E.coliL-arabinosebindingproteinL-arabinose
1.76.52J.Biol.Chem.2547529-7533(1979)J.Biol.Chem.2547529-7533

(1979)

1abffucºE.coliL-arabinosebindingproteinD-fucose1.95.42Nature340.404–407(1989)
J.Biol.Chem.258:13665–13672

(1983)

1ak3ampbovineheartadenylatekinaseAMP1.93.86Eur.J.
Biochem.93:263-270(1979)Eur.J.
Biochem.93:263-270(1979)

mitochondrialmatrix

1apbfuc”E.coliL-arabinosebindingproteinD-fucose1.765.82J.Biol.Chem.265:16592-16603
J.Biol.Chem.265:16592-16603

P254G(1990)(1990)

1aptst"
PenicilliumjanthinellumpenicillopepsinIva-Val-Val-Lysta-OEt
1.89.4 1apusta"Penicilliumjanthinellumpenicillopepsiniva-val-val-sta-P-OEt

1.87.66J.Org,Chem.85:6268-6274(1990)J.Org.Chem.85,6268-6274(1990) 1apvfºotPenicilliumjanthinellumpenicillopepsiniva-val-val-(2,2-difluoro-3-
1.89.00Biochemistry31:3872-3886(1992)Biochemistry31:3872-3886(1992)

hydrostatone)-N-methylamide

1apwfsi"Penicilliumjanthinellumpenicillopepsiniva-val-val-difluorostatine-N-
1.88.00Biochemistry31:3872-3886(1992)Biochemistry31:3872-3886(1992)

methylamide

1bapara”E.coliL-arabinosebindingproteinL-arabinose1.756.85J.Biol.Chem.265:16592-16603
J.Biol.Chem.265:16592-16603

P254G(1990)(1990)

1cbxbzs"bovinepancreascarboxypeptidase
A
L-benzylsuccinate2.06.35J.Mol.Biol.223:573-578(1992)Biochemistry12:2070-2078(1973)

1claclim"plasmidR387chloramphenicolchloramphenicol
2.345.28Biochemistry29.2075-2080(1990)Biochemistry29.2075-2080(1990)

acetyltransferase
type
3

1cpscpm”bovinecarboxypeptidase
ACPM.[L-(-)-2-carboxy-3-
2.256.66J.Biol.Chem.267:19192-19197
J.Am.Chem.Soc.111:4467-4472

phenylpropyl)methyl-sulfodiimine
(1992)(1989)

1.csccmcchickenheartmusclecitratesynthasecarboxymethylcoenzyme
A1.77.10Biochemistry29:2213-2219(1990)Eur.J.
Biochem.120.47-52(1981) 1.cscmalchickenheartmusclecitratesynthaseL-malate1.71.62Eur.J.

Biochem.93.505-513(1979)Eur,J.
Biochem.93.505-513(1979)

1
dr1biochickenliverdihydrofolatereductasebiopterin2.25.57Biochemistry31:7264-7273(1992)
J.Biol.Chem.242:3934–3942

(1967)

1drffol”humanrecombinantdihydrofolatereductasefolate2.07.44Biochemistry27:3664-3671(1988)Biochemistry27.3664-3671(1988) 1dwbbnz"humanplasmaalpha-thrombinbenzamidine3.162.90Thromb.Res.36:457-465(1984)Thromb.Res.36:457-465(1984) 1.dwcmit"humanplasmaalpha-thrombinMD-805(agratroban):(2R,4R)-4-3.07.41J.Biol.Chem.266:20085-20093Biochemistry23:85-90(1984)

methyl-1-(N-alpha-[3-methyl-
(1991) 1,2,3,4-tetrahydro-8- quinolinyl)sulphonyl)-L-arginyl)-2- piperidinecarboxylic

acid

1dwdmid"humanplasmaalpha-thrombinNAPAP,N-alpha-(2-naphthyl-
3.08.18J.Biol.Chem.266:20085-20093Thromb.Res.29:635-642(1983)

sulfonyl-glycyl)-(DL)-para-
(1991)

amidinophenylalanyl-piperidine

1etugapE.colielongationfactorTuGDP2.98.52Biochemistry20:6265-6272(1981)Biochemistry20,6265-6272(1981)

3.



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

1stpbio
Streptomycesavidiniistreptavidinbiotin2.613.46J.Am.Chem.Soc.114:3197-3200
J.Am.Chem.Soc.114:3197-3200

(1984)(1984)

1thaiit"humanplasmatransthyretin(prealbumin)3,3'-diiodo-L-thyronine
2.05.35Biochemistry19:55-63(1980)Biochemistry19:55-63(1980) 1tlppho"Bacillusthermolysinphosphoramidon

2.37.56Arch.Biochem.Biophys.171:727-731Arch.Biochem.Biophys.171:727

thermoproteolyticus(1975)731(1975)

1tmnclf*BacillusthermolysinN-(1-carboxy-3-phenylpropyl)-L-
1.97.30Biochem.Biophys.Res.Commun.
J.Biol.Chem.255:3482-3486

thermoproteolyticusleucyl-L-tryptophan102.963-969(1981)(1980)

1ulbgunhumanerythrocytespurinenucleosideguanine2.754.40J.Med.Chem.36:1024–1031(1993)

phosphorylase

1wgcsgc"wheatgermagglutininN-acetylneuraminyllactose
2.23.13Biochemistry21:3050-3057(1982)Biochemistry21:3050-3057(1982) 1xhthç”ArthrobacterD-xyloseisomerase5-thio-alpha-D-glucose

2.51.48J.Mol.Biol.212:211-235(1990)unpublishedresults:(1990) 2cppcam”PseudomonasputidacytochromeP450camcamphor1.635.94J.Biol.Chem.263:18842-18849
J.Biol.Chem.263:18842-18849

(1988)(1988)

2cscmal”chickenheartmusclecitratesynthaseD-malate1.73.36Eur.J.
Biochem.93.505–513(1979)Eur,J.
Biochem.93.505-513(1979) 2er6h25"chestnutblightfungusendothiapepsinH-2562.07.22Nature327:349-352(1987)Nature327:349-352(1987) 2er7h26*chestnutblightfungusendothiapepsinH-2611.69.15J.Mol.Biol.216:1017-1029(1990)

J.
Hyperten.3:13-18(1985) 2fnrampspinachferredoxinreductase2'-phospho-5'-AMP

3.05.70J.Biol.Chem.261:11214–11223
J.Biol.Chem.261:11214–11223

(1986)(1986)

2gbpgle"E.coli
D-galactose/D-glucoseD-glucose1.97.40J.Biol.Chem.255.2465-2471(1980)J.Biol.Chem.255:2465-2471

bindingprotein(1980)

2ifbplm"rat
recombinantintestinalfattyacidbindingpalmitate2.05.44J.Biol.Chem.262.5931-5937(1987)J.Biol.Chem.262.5931-5937

protein(1987)

2ldbnad".BacillusL-lactatedehydrogenaseNAD+3.04.15Biochemistry27:1617-1622(1988)Biochemistry27:1617-1622(1988)

stearothermophilus
2mcpppcmouseimmunoglobulinMC/PC603phosphocholine
3.14.70PNAS66:3689-3692(1972)PNAS66:3689-3692(1972)

FAB

2phhadp".Pseudomonasfluorescensp-hydroxybenzoateADPribose2.73.36Biochemistry28:7199-7205(1989)Biochemistry28:7199-7205(1989)

hydroxylase

2phhphb”Pseudomonasfluorescensp-hydroxybenzoatep-hydroxybenzoate
2.74.60Eur.J.
Biochem.128:21-27(1983)Eur,J.
Biochem.128:21-27(1983)

hydroxylase

2pk4aca"humanplasminogenkringle
4

epsilon-aminocaproic
acid2.254.32Biochemistry28:1368-1376(1989)Biochemistry28:1368-1376(1989) 2r()4winhumanvirusrhinovirus

14WINIV3.06.22PNAS85:3304-3308(1988) 2rntgpg."Aspergillusoryzaeribonuclease
T1K25
guanylyl-2',5'-guanosine
1.83.78In:TheEnzymesEd:BoyerPD:435-In:TheEnzymesEd:Boyer

465(1982)PD:435-465(1982)

2snsdpt
StaphylococcusaureusStaphylococcalnuclease
2'-deoxy-3',5'-diphosphothymidine
1.56.70In:TheEnzymesEd.BoyerPD:177.In:TheEnzymesEd.Boyer

200(1971)PD:177-200(1971)

2tmnnpl"BacillusthermolysinN-phosphoryl-L-leucinamide
1.65.89Biochemistry18:3032-3038(1979)Biochemistry18:3032-3038(1979)

thermoproteolyticus
2tsccb3*E.colithymidylatesynthaseCB37171.979.00Biochem.Pharmacol.32:3783–3790Biochem.Pharmacol.32:3783-3790

(1983)

(1983)

s



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

1fbcahg"porcinekidneycortex
fructose-1,6-bisphosphatase2,5-anhydroglucitol-1,6-
2.66.26J.Biol.Chem.251:2963-2966(1976)
J.Biol.Chem.251:2963-2966

bisphosphate(1976)

1fbfahm"porcinekidneycortex
fructose-1,6-bisphosphatase2,5-anhydromannitol-1,6-
2.76.00J.Biol.Chem.259:5115-5123(1984)
J.Biol.Chem.259:5115-5123

bisphosphate(1984)

1fbpampporcinekidneycortex
fructose-1,6-bisphosphatase
AMP2.54.82PNAS87.5243–5247(1990)
J.Biol.Chem.243:4923-4926

(1968)

1fbpfopporcinekidneycortex
fructose-1,6-bisphosphatasefructose-6-phosphate
2.50.00PNAS88.2989-2993(1991)PNAS88.2989-2993(1991) 1■ kbrap"E.coliFK506bindingproteinrapamycin1.79.70J.Mol.Biol.229:105-124(1993)PNAS87.9231-9235(1990) 1fkfflºS*humanrecombinantFK506bindingproteinFK5061.78.77PNAS87.9231-9235(1990)Biochemistry29:3813-3816(1990) 1gpdnadlobsterD-glyceraldehyde-3-NAD+2.98.30Biochim.Biophys.Acta191:214–220Biochim.Biophys.Acta191:214–

phosphatedehydrogenase(1969)220(1969)

1gstgsh"ratliverglutathioneS-transferaseglutathione2.24.68J.Biol.Chem.267:4296-4299(1992)
J.Biol.Chem.267:4296-4299

(1992)

1183bnz*bacteriophage
T4lysozymeC54T,C97A.L99Abenzene1.703.40Nature355:371-373(1992)Nature355:371-373(1992) 1ldmndhdogfishmusclelactatedehydrogenaseNADH2.15.44In:TheEnzymesEd:BoyerPD:193-In:TheEnzymesEd:Boyer

292(1975)PD:193-292(1975)

1mbiimdspermwhalemyoglobrinimidazole2.01.66J.Mol.Biol.158:305-315(1982)
J.Mol.Biol.158:305-315(1982) 1phapimPseudomonasputidacytochromeP450cam2-phenylimidazole

1.65.15Biochemistry19:3590-3599(1980)Biochemistry19:3590-3599(1980) 1phfpimPseudomonasputidacytochromeP450cam4-phenylimidazole
1.64.40Biochemistry19:3590-3599(1980)Biochemistry19:3590-3599(1980) 1phgmtyPseudomonasputidacytochromeP450cammetyrapone

1.67.37Biochemistry11:4740-4745(1972)Arch.Biochem.Biophys.145:531

542(1971)

1phhdhbPseudomonasfluorescensp-hydroxybenzoate3,4-dihydroxybenzoate
2.33.3Proteins21:22-29(1995)
J.Biol.Chem.254.6657-6666

hydroxylase(1979)

1phhfad
Pseudomonasfluorescensp-hydroxybenzoateFAD2.37.35Biochemistry28:7199-7205(1989)Eur.J.
Biochem.128:21-27(1983)

hydroxylate

1ppcnap”bovinetrypsinNAPAP,N-alpha-(2-naphthyl-
1.86.16FEBSLett.287:133-138(1991)

sulfonyl-glycyl)-DL-p- amidinophenylalanyl-piperidine

1pphtap"bovinetrypsin3–TAPAP1.95.92FEBSLett.287:133-138(1991) 1ppliva"Penicilliumjanthinellumpenicillopepsiniva-val-val-leu-P-(O)phe-OMe
1.78.55J.Org.Chem.85:6268–6274(1990)
J.Org.Chem.85,6268-6274(1990) 1ppmzaa"PenicilliumjanthinellumpenicillopepsinCbz-Ala-Ala-Leu-P-(O)Phe-OMe

1.75.80J.Org.Chem.85,6268–6274(1990)
J.Org.Chem.85,6268-6274(1990) 1rbpret”humanserumretinolbindingproteinretinol2.06.72Proteins8:44–61(1990)Eur.J.

Biochem.65:71-78(1975) 1rnbdgcºBacillusamyloliquefaciens
sedGPC1.90.00

recombinant
1rnecgp"humanrecombinantreninCGP38'5602.48.70J.Struct.Biol.107:227(1991)
J.Med.Chem,31:1839-1846(1988) 1rntgmp”Aspergillusoryzaeribonuclease

T12'-GMP1.95.18In:TheEnzymesEd:BoyerPD:435-In:TheEnzymesEd:Boyer

465(1982)PD:435-465(1982)

1rusphg
Rhodospirillumrubrumrubisco3-phosphoglycerate
2.93.08Biochemistry20:2219–2225(1981)Biochemistry20:2219–2225(1981)

recombinant
1sncdpt*Staphylococcusaureusstaphylococcalnucleasedeoxythymidine
3',5'bisphosphate1.656.70In:TheEnzymesEd.BoyerPD:177-In:TheEnzymesEd.Boyer

recombinant200(1971)PD:177-200(1971)

:



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

2ximxylºActinoplanesD-xyloseisomeraseK253Rxylitol2.32.28Biochemistry31:2239-2253(1992)Biochemistry31:2239-2253(1992)

missouriensisrecombinant
2yhxotg

Saccharomycescerevisiaeyeasthexokinase
B

ortho-toluoylglucosamine
2.15.00PNAS75:4848-4852(1978)J.Biol.Chem.148:117(1943) 2ypipga"Saccharomycescerevisiaetriosephosphateisomerase2-phosphoglycolic

acid2.54.82 3.claclim"plasmidR387chloramphenicolchloramphenicol
1.754.94Biochemistry30:3763-3770(1991)Biochemistry30:3763-3770(1991)

recombinantacetyltransferase
type3

3cpagypbovinepancreascarboxypeptidase
A

glycyl-L-tyrosine
2.04.00In:Advances
in
ProteinChemistry
In:Advances
in
ProteinChemistry

Ed:AnfinsenCB,EdsallJT,RichardsEd:AnfinsenCB,EdsallJT, FM:1-47(1971)RichardsFM:1-47(1971)

3csccoa”chickenheartmusclecitratesynthaseacetylcoenzyme
A1.95.15J.Mol.Biol.174.205-219(1984)ActaChem.Scand.17:S129-S134

(1963)

3csomal”chickenheartmusclecitratesynthaseL-malate1.92.64Biochemistry30:6024-6031(1991) 3fs2.fmn”DesulfovibriovulgarisflavodoxinFMN1.99.3

recombinant
3gapcmp”.E.colicatabolitegeneactivatorcAMP2.55.00J.Biol.Chem247:2717-2722(1972)J.Biol.Chem247:2717-2722

protein(1972)

3pgmphgSaccharomycescerevisiaephosphoglyceratemutasephosphoglycerate
2.83.19Biochem.Soc.Trans.18:257(1989)Arch.Biochem.Biophys.165:179

187(1974)

3ptbbnz”bovinepancreasbeta-trypsinbenzamidine
1.74.50Biophys.Chem.54:75-81(1995)Biophys.Chem.54.75-81(1995) 3tpiivp"bovinepancreastrypsinogenIle-Val1.94.27J.Mol.Biol.127:357-374(1979)

J.Mol.Biol.127:357-374(1979) 4claclim”plasmidR387chloramphenicolchloramphenicol
2.05.47Biochemistry30:3763-3770(1991)Biochemistry30:3763-3770(1991)

recombinantacetyltransferase
type3

L100F

4dfrmtx*E.coli
dihydrofolatereductasemethotrexate
1.78.62J.Biol.Chem.254.8143(1979)
J.Biol.Chem.254.8143(1979) 4er■pd.1*chestnutblightfungusendothiapepsinPD1259672.06.62Biochemistry31:8142-8150(1992)Biochemistry31:8142-8150(1992) 4er2pep"chestnutblightfungusendothiapepsinpepstatin2.09.30Biochem.

J.

289-2:363-371(1993)Biochem.
J.

289-2:363-371(1993) 4er4h!4*chestnutblightfungusendothiapepsinH1422.16.80Biochemistry26.5585-5590(1987)Biochemistry26.5585-5590(1987) 4fabfolsmouseIgGkappaFab4-4-20fluoresceindianion2.78.05Proteins5:271-280(1989)Proteins3:155-160(1988) 4gr1rgs”humanerythrocytesglutathionereductaseretro-GSSG
2.42.20J.Biol.Chem.265:10443–10445

(1990)

4hmgsiainfluenzavirushemagglutininL226Qsialicacid3.02.55Biochemistry28:8388-8396(1989)Biochemistry28:8388-8396(1989)

recombinant
4hvpmvt”syntheticHIV1proteaseMVT1012.36.11Science246:1149-1152(1989)Science246:1149-1152(1989) 4mbaimdseaharemyoglobinimidazole2.01.62J.Mol.Biol.158:305-315(1982)

J.Mol.Biol.158:305-315(1982) 4mdhnad”porcineheartcytoplasmicmalateNAD+2.53.23In:TheEnzymesEd.BoyerPD:369

dehydrogenase
395(1975)

4phv170°recombinantHIV1proteaseL700,4172.109.17Biochem.Biophys.Res.Commun.Biochem.Biophys.Res.Commun.

164:955-960(1989)164:955-960(1989)

4sgapap"Streptomycesgriseusproteinase
A

Ace-Pro-Ala-Pro-Phe
1.83.27J.Mol.Biol.14443-88(1980)Biochemistry15:1296-1299(1976) 4timphg"Trypanosomabruceitriosephosphateisomerase2-phosphoglycerate

2.42.16J.Med.Chem.34:2709-2718(1991)Eur.J.
Biochem.168.69-74(1987)

º



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

4tlinlno”BacillusthermolysinL-leucyl-hydroxylamine
2.33.72Acc.Chem.Res.21:333-340(1988)Biochemistry17:2846-2850(1978)

thermoproteolyticus
4tmnfla"BaccilusthermolysinZF-P-LA:Cbz-Phe-P-Leu-Ala
1.710.17Acc.Chem.Res.21:333-340(1988)Biochemistry26.8553-8561(1987)

thermoproteolyticus
4tpivvp"bovinepancreastrypsinogenVal-Val2.22.80J.Mol.Biol.127:357-374(1979)
J.Mol.Biol.127:357-374(1979) 4xiasor"arthrobacterD-xyloseisomeraseD-sorbitol2.31.54In:TheEnzymesEd:BoyerPD:349.In:TheEnzymesEd.Boyer

355(1972)PD:349-355(1972)

5acntro”pigheartaconitasetricarballylicacid2.12.80Biochemistry23:4572-4580(1984)Biochemistry23:4572-4580(1984) 5cppadmPseudomonasputidacytochromeP450camadamantanone2.085.89J.Am.Chem.Soc.107:5018-5019

(1985)

5enlphg”Saccharomycescerevisiaeenolase2-phospho-D-glycerate
2.23.8Biochem.Biophys.Res.Commun.Biochem.Biophys.Res.Commun.

211:607-613(1995)211:607-613(1995)

5er2.cp6"chestnutblightfungusendothiapepsinCP-69,7991.86.57EMBO
J.

8:2179-2188(1989) 5hvppep"recombinantHIV1proteaseacetyl-pepstatin
2.07.46FEBSLett.247:113-117(1989)FEBSLett.247:113-117(1989) 5icdict"E.coliisocitratedehydrogenaseisocitrate2.55.29J.Biol.Chem.264.20482-20486

J.Biol.Chem.264:20482-20486

(1989)(1989)

5ldhnalpigheartlactatedehydrogenaseS-Lac-NAD+
2.72.82Biochemistry17:4621–4626(1978)Biochemistry17:4621-4626(1978) 5p21gpp"humanrecombinant

rasp21proteinGPPNP.guanosine-5'-1.355.32Science249.169-171(1990)Science249:169-171(1990)

(beta,gamma-imido)triphosphate

5sgappy"Streptomycesgriseusproteinase
A

Ace-Pro-Ala-Pro-Tyr
1.82.85J.Mol.Biol.14443-88(1980)Biochemistry15:1295,1296-1299

(1976)

5tlnina”BacillusthermolysinHONH-benzylmalonyl-L-
2.36.37Acc.Chem.Res.21:333-340(1988)Biochemistry17:2846-2850(1978)

thermoproteolyticusalanylglycine-p-nitroanilide
5tmnzgn"BacillusthermolysinZG-P-LL:Cbz-Gly-P-Leu-Leu
1.68.04Acc.Chem.Res.21:333-340(1988)Science235:569-571(1987)

thermoproteolyticus
5xiaxyl"arthrobacterD-xyloseisomerasexylitol2.52.60In:TheEnzymesEd:BoyerPD:349-In:TheEnzymesEd:Boyer

355(1972)PD:349-355(1972)

6abpara"E.coliL-arabinosebindingproteinL-arabinose1.676.36Biochemistry30:6861-6866(1991)Biochemistry30:6861-6866(1991)

M108L

6apriva"Rhizopuschinensisrhizopuspepsinpepstatin2.57.77Proteins13:195-205(1992)In:AsparticProteinasesandTheir

Inhibitors.Ed:KotskaV:401-420 (1985)

6cpazafbovinepancreascarboxypeptidase
A

ZAA-P-(O)F:O-[(1R)-In-
2.011.52Biochemistry29.5546-5555(1990)Biochemistry28,6294-6305(1989)

phenylmethoxycarbonyl)-L- alanyl]aminolethylhydroxyphosphi nyl)-L-3-phenylactate

6cppcan
PseudomonasputidacytochromeP450camcamphane1.94.34J.Biol.Chem.263:18842-18849
J.Biol.Chem.263:18842-18849

(1988)(1988)

6enlphg”Saccharomycescerevisiaeenolasephosphoglycolic
acid2.23.0Biochem.Biophys.Res.Commun.Biochem.Biophys.Res.Commun.

211:607-613(1995)

211:607-613(1995)

g



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

6rntamp”Aspergillusoryzaeribonuclease
T12'-AMP1.82.37J.Biol.Chem.266:15128-15134
J.Biol.Chem.266:15128-15134

recombinant(1991)(1991)

6timg3p"Trypanosomabruceitriosephosphateisomeraseglycerol-3-phosphate
2.23.21Proteins10:50-69(1991)Eur,J.
Biochem.168.69-74(1987) 6tmnzg!"BacillusthermolysinZG-P-(O)I.L.Cbz-Gly-P-(O)-

1.65.05Acc.Chem.Res.21:333-340(1988)Science235:569-571(1987)

thermoproteolyticusLeu-Leu

7abpfucºE.coliL-arabinosebindingproteinD-fucose1.676.46Biochemistry30:6861-6866(1991)Biochemistry30:6861-6866(1991)

M108L

7acnictporcineheartaconitaseisocitrate2.04.31Biochemistry19:2358-2362(1980)Biochemistry19:2358-2362(1980) 7catndp"beeflivercatalaseNADPH2.58.00PNAS81:4343-4347(1984)PNAS81:4343-4347(1984) 7cpafº■ 'bovinepancreascarboxypeptidase
AFVF:o-(((1R)-((N-
2.013.96Biochemistry30:8165-8170(1991)Biochemistry30:8165-8170(1991)

(phenylmethoxycarbonyl)-L- phenylalanyl)amino)isobutyl)hydro xyphosphinyl)-L-3-phenylactate

7cppnomPseudomonasputidacytochromeP450camnorcamphor
2.03.82J.Am.Chem.Soc.107:5018-5019

(1985)

7dfrfolE.colidihydrofolatereductasefolate2.54.96In:AStudyof
Enzymes,vol2,In:AStudyof
Enzymes,vol2,

Mechanism
ofEnzymeActionEd:Mechanism
ofEnzymeActionEd: KubySA:193-226(1991)KubySA:193-226(1991)

7dfrndp
E.coli

dihydrofolatereductaseNADP+2.56.10In:AStudyof
Enzymes,vol2,In:AStudyof
Enzymes,vol2,

Mechanism
ofEnzymeActionEd:Mechanism
ofEnzymeActionEd: KubySA:193-226(1991)KubySA:193-226(1991)

7estt■ a"porcinepancreaselastaseTFAP;trifluoroacetyl-L-leucyl-L-
1.87.60J.Mol.Recogn.3:36-43(1990)
J.Biol.Chem.258:8312-8316

alanyl-p-(1983)
trifluorometylphenylanilide

7hvpig3*syntheticHIV1proteaseJG-3652.49.62PNAS87.8805-8809(1990)PNAS87-8805-8809(1990) 7timpghtSaccharomycescerevisiaetriosephosphateisomerasephosphoglycolohydroxamate
1.95.40J.Biol.Chem.249.136-142(1974)J.Biol.Chem.249.136-142(1974) 8abpgal”E.coliL-arabinosebindingproteinD-galactose1.49800Biochemistry30:6861-6866(1991)Biochemistry30:6861-6866(1991)

M108L

8acnnicbovineheartaconitasenitroisocitrate
2.07.14Biochemistry19:2358-2362(1980) 8atcpal”E.coliaspartatePALA.N-phosphonacetyl-L-

2.57.57J.Biol.Chem.246.6599-6605(1971)J.Biol.Chem.246.6599-6605

carbamoyltransferaseaspartate(1971)

8cpaagf"bovinepancreascarboxypeptidase
A

ZAG-P-(O)F.Cbz-Ala-Gly-P-(O)-
209.15Biochemistry30:8165-8170(1991)Biochemistry30:8165-8170(1991)

Phe

8cpptem.PseudomonasputidacytochromeP450camthiocamphor
2.15.52J.Biol.Chem.263:18842-18849
J.Biol.Chem.263:18842-18849

(1988)(1988)

8hvpu85"syntheticHIV1proteaseU-85548E2.59.00J.Biol.Chem.265:14675-14683Biochemistry29:264-269(1990)

(1990)

8icdict”E.coliisocitratedehydrogenaseisocitrate2.53.02Science249:1044–1046(1990)Science249:1044–1046(1990)

S113E

8xiaxys"StreptomycesrubiginosusD-xyloseisomeraseD-xylose1.92.95In:TheEnzymesEd.BoyerPD:349.In:TheEnzymesEd.Boyer

355(1972)

PD:349-355(1972)

2.



CodeReceptorSourceReceptorLigandResol-AffinityAffinityReferenceAssayReference

utionA(-logK)

9aatpmp"chickenheartaspartateaminotransferasepyridoxal-5'-phosphate
2.28.22J.Mol.Biol.225:495-517(1992)Biochem.Biophys.Res.Commun.

mitochondria89.345-352(1979)

9abpgal'E.coliL-arabinosebindingproteinD-galactose1.978.00J.Biol.Chem.265:16592-16603
J.Biol.Chem.265.16592-16603

P254G(1990)(1990)

9hvpa■ 4recombinantHIV1proteaseA-747042.88.35Science249:527-533(1990)Science247,954-958(1990) 9ldtndhporcinemusclelactatedehydrogenaseNADH2.05.43In:TheEnzymesEd.BoyerPD:193-In:TheEnzymesEd.Boyer

292(1975)PD:193-292(1975)

9ldtoxmporcinemusclelactatedehydrogenaseOxanate2.04.74In:TheEnzymesEd.BoyerPD:193-In:TheEnzymesEd.Boyer

292(1975)PD:193-292(1975)

9rubrub
Rhodospirillumrubrumrubiscoribulose-1,5-bisphosphate
2.64.70Biochemistry20:2219–2225(1981)Biochemistry20:2219–2225(1981)

recombinant
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