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Dissertation Abstract

Molecular Docking Towards Drug Discovery:
Improving Interaction Specificity

Daniel A. Gschwend

The ever-increasing rate at which structural information is procured has had a
profound impact on our ability to combat disease. Detailed three-dimensional snapshots
offer exquisite insights into the molecular recognition events which govern all biological
processes.  An understanding of how molecules associate offers a window for
chemotherapeutic intervention and consequently the possibility for modulating disease
states. One area of the growing field of computatonal chemistry focuses on the
identification of agents which bind specifically to a macromolecular target. This objective
presents two fundamental challenges which form the basis for this dissertation: locating
agents which are potent - those that bind tightly, and locating agents which are selective - those

that bind the desired site preferentially to others.

One computational method for locating novel agents involves scanning a database of
pre-existing structures for those which exhibit complementarity to the target. Strategies for
“molecular docking” are embodied within a spectrum of models for ligand binding, bounded

by the canonical Lock-and-Key and Induced Fit paradigms. I explore the potential of a rigid
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model in exploiting species specificity and of a tolerant model in predicting absolute ligand
binding affinity.

The ability of structure-based drug discovery to address receptor specificity is
verified through the identification of novel, selective inhibitors of dihydrofolate reductase
from the opportunistic fungal pathogen, Preumocystis carinii. Differential design methodology
has enabled the discovery not only of nearly a dozen novel structural frameworks which
bind the microbial enzyme in preference to the human variant, but also of one agent which

displays #n vitro potency and selectivity rivaling those of a common therapeutic.

Automated design protocols examine thousands of putative receptor-ligand
configurations and demand rapid feedback on quality of association. The calibration of an
empirical scoring scheme against over one hundred affinities for experimentally observed
complexes has led to a model capable of reproducing observed binding free energies to
within 1.7 kcal/mol. Emphasis has been placed on accuracy in predictions, robustness over
structural diversity, and speed of evaluation. The resulting tools are likely to be of general

use for assessing potency in structure-based drug design.
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Chapter 1.

Introduction

It comes as no surprise that the rapidly increasing amount of structural information
available to the pharmaceutical community has attracted particular interest from the
computational chemistry arena. Computational chemists, most being avid programmers,
enjoy the challenge of encoding rules into algorithmic 1’s and 0’s. Rules necessarily demand
information, and, in theory anyway, the quality of these rules generally exhibits some degree
of proportionality to the quantity of information at hand. So, the fruit of the blossoming
field of structural biology has enchanted those who would make rules - rules about
molecular association. Projecting into the future, then, there will come a day when we truly
understand what exactly goes on between a receptor and a ligand within the vast brew which
comprises a living organism. But it is already apparent that pharmaceutical science will not
simply halt when this time arrives, for new obstacles will present themselves, such as how
best to use this knowledge. Science is, after all, the process of overcoming obstacles in a

(more-or-less) systematic way.

The hurdle which now lies directly ahead is how, given structures detailed to one
ten-billionth of a meter, can we design a small molecule to bind tightly and specifically to a

macromolecular target? Dozens of approaches have been set forth over the last two decades
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to address various aspects of this remarkably complex problem. Broadly speaking, there are
two basic recipes for locating active biomolecules: we can assemble them from atoms or
groups of atoms, or we can locate them among a library of pre-existing molecules. Both
methods have characteristic advantages and disadvantages. The major drawback of building
molecules, particularly in an academic setting where synthetic resources may be limited, is
that proposed compounds must actually be made. Synthesis is demanding of time, money,
and often specialized expertise. These daunting prospects were stimuli enough to avert the
Kuntz group towards door #2. (It would be more accurate to phrase it such that this choice
was made not out of fear of synthesis, but rather out of aspirations for instant feedback.)
The possibility of selecting among commercially available compounds for novel, bioactive
agents was exciting indeed. Originating with the work of Renee DesJarlais, the Kuntz group
has since pioneered the searching of chemical databases for pre-existing small molecules
which might bind to a target receptor of known three-dimensional structure. Central to
“molecular docking,” to which it is commonly referred, are notions of complementarity:

what sticks to what?

The ability to evaluate complementarity impinges not only upon molecular docking,
but on all of structure-based drug design. All of what appears in this dissertation revolves
around issues related to scoring of putative receptor-ligand associations. In the course of my
graduate career, I have explored a spectrum of docking strategies varying in the level of
stringency in scoring. As Chapter 2 details, these strategies are embodied within the
canonical models for ligand binding: Lock-and-Key and Induced Fit. Chapter 2 represents
the proceedings of research I presented at the 36t Annual Buffalo Medicinal Chemistry

Symposium and has been accepted for publication in the Journal of Molecular Recognition.
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Written as a hybrid review/research article, Chapter 2 previews and unifies the work
discussed in Chapters 3, 4, and 5. Chapter 3 has been submitted in modified form to the
Journal of Medicinal Chemistry, an abridged version of Chapter 4 has been accepted into the
Journal of Computer-Aided Molecular Design, and Chapter 5 is being extended for submission at a

later date.

At one end of the spectrum of docking strategies lie the very exacting requirements
of a search for selective agents. Chapter 3 documents an investigation directed at identifying
therapeutically relevant, species-specific enzyme inhibitors. In many cases, locating an
inhibitor which binds the desired target is not enough - the often-ovetlooked but equally
important attribute of a clinical candidate is selectivity over related targets so that cross-
reactivity may be avoided. Dale Bodian in the group introduced technology which enabled
emphasis to be placed on differing areas between two receptors. While a significant step
forward, these methods necessitated gross distinguishing features, such as a unique pocket,
which could be capitalized upon. Unfortunately, these opportunities are seldom as common
as one would like. Often two receptors much be distinguished which possess only subtly
divergent structures, demanding more stringent differentiation schemes. The enzyme
dihydrofolate reductase, while historically an immensely successful antimicrobial target,
presents precisely such a challenge in combating the opportunistic pathogen Preumocystis
carinis. Chapter 3 demonstrates the surprisingly successful use of scoring optimization tools
as post-docking filters in locating novel, selective anti-Preumogystis candidates. Differential
optimization permits a systematic bias enabling the selection of compounds likely to bind

one target but not another.

It makes sense that including score optimization #nto the docking process would

improve our capacity to exploit subtle structural features. Not only would this enhance the
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retrieval of selective agents, but more generally, strengthens our adherence to Lock-and-Key
docking by imposing stricter criteria on complementarity. But at what expense?
Optimization is a resource-intensive piece of technology - how would this affect docking
performance? Unexpectedly, as Chapter 4 explains, the incorporation of on-the-fly
optimization into the docking process garners a net fawrable return on efficiency. In the
most comprehensive analysis of configurational sampling yet, the tight relationship between

sampling and scoring unfolds.

On the other end of the spectrum of docking strategies lies the generality afforded
by a tolerant, universally-applicable scoring function. As molecular docking by design
presents thousands of putative ligands to a receptor which has never seen them before, a bit
of clemency in deciding how they might interact is warranted. What is required is an
evaluation function capable of estimating (rapidly, no less) free energies of binding for a
structurally diverse set of molecular arrangements. This is the brass ring for of all of
structure-based drug design. Rather than borrow a scoring method from another branch of
computational chemistry, I set out to devise an evaluation scheme which was parameterized
on the very values we seek: binding affinities of small-molecule ligands for macromolecules.
Chapter 5 discusses the development of an empirical scoring function calibrated against the
largest set of binding affinities reported to date. Through careful interaction characterization
and statistical analysis, a working model capable of reproducing observed affinities to within
1.7 kcal/mol has been derived. The predictive ability of the model, while validated by
statistical metrics, remains to be verified in a practical setting. It is clear, however, that the
omission of entropic terms in assessing interaction strengths seriously dampens the true

potential of molecular docking.
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My graduate expedition has journeyed through Lock-and-Key docking, through
species-specificity, through score optimization, and through “alternative” scoring functions;
all the while I sat behind my workstation (not entirely - I did do a handful of rea/
experiments!) amidst applications work and methodology development. Working on real-
wotld, therapeutically relevant problems was stimulating. Developing code useful to the
group and to the scientific community was satisfying. Perhaps most enlightening, however,
was the research with which I conclude my tenure here at UCSF: the study of over a
hundred structurally diverse molecular assemblies we call proteins. Nature has concealed a
wealth of information within the confines of molecular recognition snapshots. The
incorporation into structure-based design strategies of empirically-derived evaluation
schemes which directly take advantage of this information (such as of the flavor outlined in
Chapter 5) have the potential to vastly improve our understanding and the quality of lead

discovery.
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Molecular Docking Towards Drug Discovery
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ABSTRACT

Fueled by advances in molecular structure determination, tools for structure-based
drug design are proliferating rapidly. Lead discovery through searching of ligand databases
with molecular docking techniques represents an attractive alternative to high-throughput
random screening. The size of commercial databases imposes severe computational
constraints on molecular docking, compromising the level of calculational detail permitted
for each putative ligand. We describe alternative philosophies for docking which effectively
address this challenge. With respect to the dynamic aspects of molecular recognition, these
strategies lie along a spectrum of models bounded by the Lock-and-Key and Induced-Fit
theories for ligand binding. We explore the potential of a rigid model in exploiting species
specificity and of a tolerant model in predicting absolute ligand binding affinity. Current
molecular docking methods are limited primarily by their ability to rank docked complexes;
we therefore place particular emphasis on this aspect of the problem throughout our

validation of docking strategies.

Keywords: molecular docking; empirical scoring schemes; species specificity; DOCK
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INTRODUCTION

Overview

Molecular recognition is a problem fundamental to structural biology. The
interaction of molecules, be they macromolecules or small ligands, is a prerequisite for nearly
all biological events. Specific modulation of these interactions has been the ambition of
medicinal chemists for over a century. To gain more rapid access to therapeutic agents, we
must not only understand, but be able to predict, the structural details of recognition events.
A precise understanding of the basis for complementarity would allow us to venture
predictions for purposes of drug design. The inaccuracy of such predictions generally
parallels the divergence in the nature of interactions thought to be involved - the brass ring
of the field is the quantitative assessment of affinity among structurally unrelated ligands. It
is important to bear in mind, however, that true measures of affinity can only be inferred
when proper geometries among the components have been established. In broad terms, the
prediction of a molecular recognition event embodies two not altogether independent
obstacles: the generation of appropriate geometries, and the assessment of complementarity.
Although we narrow our discussion to that of small molecule ligands, the general principles

are extensible to macromolecular ligands as well.

Structure-based drug design

Structural information is critical to an analysis of molecular recognition events. The

experimental determinations which give rise to such data lie at the heart of the structure-
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/— Theory

 Proposed
Ligands

\— Synthesis

Figure 1. Structure-based drug design paradigm.
The figure emphasizes the cyclic and multidisciplinary aspects of this type of project.

based drug design cycle presented in Figure 1. The application of theoretical principles
results in the proposal of putative ligands that are subsequently synthesized and tested. Bio-
logical data and receptor-ligand complex determination help to refine working hypotheses
about complementarity (note that we use the term receptor in the non-classical sense to
encompass any biological macromolecule that will bind ligands). The repeated application
of the cycle constitutes incremental optimization of an initial bioactive compound, or lead.
Tools which identify lead compounds themselves are of particular interest for acquiring
chemically diverse starting points for optimization. Such diversity at the outset is valuable in
maximizing the array of possibilities further downstream when pharmacokinetic and
toxicological complications inevitably arise. There are a variety of computational techniques
which may be useful in lead discovery in the context of detailed receptor information

(Kuntz, 1992; Greer et al., 1994; Kuntz et al., 1994; Guida, 1994, Lybrand, 1995).
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Two of the purest forms, stimulated by rapid advances in molecular structure
determination, are database searching (Martin, 1992; Good & Mason, 1995) and structure
generation (Lewis & Leach, 1994). The former selects ligands complementary to a receptor
from a library of pre-existing compounds, while the latter attempts to create ligands tailot-
made to fit the site of interest (“de movo design”). We here focus on the former - the
molecular “docking” problem, which we define as the prediction of the observed (native)
orientation of two interacting components given detailed three-dimensional information of

each independently.

Molecular docking

Molecular docking attempts to arrange molecules in favorable configurations by
matching complementary features (for a review of approaches, see Blaney and Dixon, 1993).
This is a difficult task because there are many ways in which complex molecules can be
associated. The problem is further complicated by an exponential dependence on molecule
size, so that the number of possible configurations explodes when docking involves
biological macromolecules such as proteins or nucleic acid polymers. An exhaustive
computational analysis of configuration space is not tractable (Kuhl e 2/, 1984; Connolly,
1986; Wang, 1991; Kuntz ef a/, 1994), especially for database searching. Current docking
methodologies thus invoke either geometric- or energy-based schemes to guide
configurational sampling (Kuntz ef 4/, 1994), the former relying upon the matching of
topographical features and the latter upon optimization along a potential energy surface of
some kind. As alluded to earlier, however, configurational sampling is only half of the
problem. The ranking of each configuration by some metric of complementarity constitutes

the other major hurdle.

10
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Complementarity

Complementarity can be assessed in many ways (see, for example, Shoichet &
Kuntz, 1991). A configuration may be evaluated by its agreement with an input query or on
its own merits, such as by a score independent of the method in which the docked complex
was generated. One of the earliest conceptualizations of complementarity was the pairing of
knobs and holes in packed ot-helices (Crick, 1953). Somewhat more recently, these ideas
were formulated into an algorithm for molecular docking by Connolly (1986), with variable
success. Lin ez al (1994) have extended this formulation to the use of sparse critical points in
a highly efficient solution to the docking problem (Fischer ef 4/, 1995). The use of surface
complementarity has long been a fashionable scheme for guiding docking analyses (Wodak
& Janin, 1978; Greer & Bush, 1978; Connolly, 1986; Jiang & Kim, 1991; Wang, 1991;
Katchalski-Katzir ef a/, 1992; Bacon & Moult, 1992; Helmer-Citterich & Tramontano, 1994;
Norel et al,, 1994). Other mechanisms include compatibility assessments of individual atom
contacts (Kuntz ¢f a/, 1982; Lawrence & Davis, 1992; Shoichet & Kuntz, 1993) and extend
to methods targeting specific interactions such as scoring by simplified electrostatic
representations (Walls & Sternberg, 1992), satisfaction of hydrogen bonding constraints
(Smellie ez a4/, 1991; Kasinos et al, 1992; Yamada & Itai, 1993), or hydrophobic
complementarity (Meng ef al, 1994; Vakser & Aflalo, 1994). Molecular mechanics force-
fields remain extremely popular for the evaluation of docked complexes (Goodsell & Olson,
1990; Meng e# al., 1992; Hart & Read, 1992; Lawrence & Davis, 1992; Yamada & Itai, 1993;
Miller ef al, 1994), while empirical schemes have met with renewed attention in recent years
(Bohacek & McMartin, 1992; Bohacek & McMartin, 1994; Bohm, 1994a,b; Aqvist e al,

1994; Warshel et al., 1994).

11
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Computational issues

The computational demands imposed by the very goals of molecular docking
severely constrain the level of detail permitted in various aspects of the study.
Computational screening aims to scan a 3-D database containing thousands or even millions
of compounds in the time frame of days to weeks on a workstation. This leaves only on the
order of a few seconds or less for an analysis of each putative ligand. Necessarily, these
conditions impose serious limitations as to the thoroughness of each calculation. The typical
tradeoff that results is one of speed versus storage: with unlimited physical memory, we may
afford to sacrifice storage space for speed; conversely, with more realistic physical
limitations, we must sacrifice speed for the sake of efficiency in storage. Approximations are
therefore unavoidable. The most common simplifications include assumption of inflexible
ligands and receptors, neglect of solvation effects, and use of crude scoring systems. It
remains a challenge to formulate an interaction evaluation scheme which is both efficient
and accurate. ‘The computational constraints defined by molecular docking objectives

establish a framework for deriving effective strategies.

Docking strategies

Molecular recognition events are dynamic processes. Any attempt to simulate such a
process must come to terms with the kinetics and equilibria of molecules in solution. Each
method must at the outset state which effects will be considered and which approximations
will be made. Thus, there are a number of philosophies about how molecular docking might
be carried out and which assumptions are in order. As will be described in more detail, these
strategies span a spectrum of models bounded by the Lock-and-Key and Induced Fit

theories for ligand binding. We explore two such strategies and examine scoring
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enhancements which further validate each as an appropriate model for molecular docking
studies. The underlying motif of the work described here addresses our ability to rank
docked complexes. Rapid methods now exist for carrying out efficient configurational
sampling (Shoichet ez a/, 1992; Lawrence & Davis, 1992; Norel e 4/, 1994; Kuntz et al,
1994), so we adjust our focus to the evaluation phase of a docking analysis. The attention
that this aspect of the docking problem merits can not be underestimated in light of our
successes with the combinatorial challenge. How we evaluate docked complexes has
immediate repercussions on our estimation of what defines an optimal configuration, and
hence, how well we mimic the physical process of molecular recognition. Proper ranking is
essential for reaping the benefits of a molecular docking analysis, not only for the potental
in drug discovery, but also for gaining thermodynamic insights into binding events.
Thermodynamic estimates, in particular, will require more than just correct relative rankings
among distinct binding modes; here, accurate gauges of absolute affinity may be necessary.
The latter is, in fact, the prime directive of the field of structure-based drug design: can we

predict with any certainty how tightly one molecule will bind to another?

LOCK AND KEY DOCKING

Rigid approaches

That molecular recognition events can be highly specific interactions is not new to
medicinal chemists. Analogies to a “lock-and-key” concept to describe these processes were
first put forth a century ago by Fischer (1894) and by Ehilich (1909) (see also Lichtentaler,
1994). This model entails a precise matching of immutable components; the implications for

molecular docking are that we may approximate the receptor and the ligand as rigid
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molecules. This greatly simplifies the docking problem by reducing the number of degrees
of freedom from several thousand to only six. Along the spectrum of strategies for the
simulation of dynamic processes, the lock-and-key concept lies at one extreme. What value

does such a simplified model offer for molecular docking studies?

We envision the lock-and-key docking model as follows. A discrete conformation of
the receptor has been observed experimentally.  Discrete, reasonably low-energy
conformations of potential ligands exist in the molecular database to be searched. Can one
find exact fits between these pre-existing conformations? It is possible that the individual
conformations will be sufficiently populated in solution that a binding event can occur with
a resulting stabilization of the complex. It is upon these assumptions that molecular docking
under the lock-and-key philosophy relies. These hypotheses warrant caution, but experience

has taught us that this model can be quite informative.

The assumption of a rigid receptor is often less severe than one might think.
Proteins are generally observed to behave as rigid entities, as studies of complexed and
uncomplexed crystal structures indicate (Janin & Chothia, 1990).  Although large
conformational changes upon complexation have been illustrated (Miller e 2/, 1989; Schulz
et al., 1990; Van Duyne e# a/,, 1991), backbone movement is typically restricted to less than 1
A (Cherfils & Janin, 1993). The well-established prevalence of sidechain motion will present
a challenge for all docking methodologies. That macromolecular plasticity (Koshland, 1971)
defeats lock-and-key docking has yet to be shown. The practical application of DOCK, one
of the first automated molecular docking programs (Kuntz ¢f 4/, 1982; DesJatlais ez a/,, 1988;
Shoichet ef a/., 1992; Meng et al.,, 1992), has resulted in numerous successes under the simple
tigid-boay docking model (DesJarlais et a/, 1990; Kerwin ef al, 1991; Shoichet et a/, 1993;

Ring et al, 1993; Bodian et al, 1993; Rutenber et 4/, 1993). Albeit a tremendous
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simplification, it is apparent that the assumption of an inflexible receptor has significant

value associated with it.

One of the most formidable tasks in drug design is that of obtaining specificity in
interactions over related receptors. Species specificity is a common instance of this general
theme. Differentiating functionally identical and structurally very similar targets requires
extremely sensitive technology. We now push the envelope of the lock-and-key concept by
attempting to distinguish, at an atomic level, two enzymes whose discrimination continues to
frustrate modern medicinal chemistry: an example of exquisite similarity among
phylogenetically distinct species is that of dihydrofolate reductase (DHFR) from humans and

that from the pathogenic fungus Preumocystis carinii (Edman et al., 1988).

Pneumocystis, @ fungal opportunist

Preumocystis carinii harmlessly infects nearly all humans, but upon reactivation of
latent infection by immunodeficiency can induce a disease state characterized by a crippling
pneumonia (Murray & Mills, 1990; Bartlett & Smith, 1991). Not surprisingly, this
opportunist is the principal agent of morbidity and mortality in HIV-infected persons
(Murray & Mills, 1990; Mills & Masur, 1990). Without chemoprophylaxis, 60 to 85% of
AIDS patients eventually will be afflicted by P. caninii pneumonia, and 25% will die from it
(Walzer et al, 1974; Mills, 1986; Kovacs & Masur, 1988; Justice ¢f 2/, 1989; Bartlett & Smith,
1991). Agents in a variety of mechanistically distinct classes are being explored, but the most
successful of these approaches thus far have been the antifolates and DNA-replication
antagonists. Co-trimoxazole and pentamidine isethionate are the most widely prescribed
preparations for therapy and prophylaxis of Preumocystis carinii pneumonia (Kovacs & Masur,

1988; Murray & Mills, 1990; U.S. Public Health Service, 1993; Gallant e al, 1994).
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Unfortunately, these treatments are plagued with adverse reactions (Walzer ez a/., 1974; Jaffe
et al., 1983; Gordin et al., 1984; Kovacs ef al., 1984; Wharton et a/, 1986; Allegra et al., 1987).
The frequency of such reactions is not surprising in the case of co-trimoxazole: the
dihydropteroate synthetase (DHPS) inhibitor component, sulfamethoxazole, is quite toxic
(Masur, 1992) and the DHFR inhibitor component, trimethoprim, is weak and non-selective
(Edman et al., 1989; Margosiak ez a/,, 1993). In fact, it is almost general that clinically relevant
DHFR inhibitors are selective for human DHFR (Margosiak e al, 1993). The lack of
selectivity and resulting side effects of antifolates is likely a direct consequence of the

similarity between host and pathogen DHFR.

Based on published sequence alignments (Blakley, 1984; Edman et 4/, 1989), P. carinii
DHEFR displays highest similarity with that of vertebrates. Sequence identities of 35-40%
and homologies near 70% are observed. High-resolution crystal structures of human
(Davies et al., 1990) and P. carinii (Oefner et al,, 1991) DHFR confirm only minor differences.
Within the folate binding pocket, there are only six non-identical residues. The active site
aspartate common to bacterial and protozoan DHFR is replaced with glutamate in P. carinsi,
as in all vertebrate DHFRs. Further drug design complications arise from the fact that the
Pneumocystis active site is nearly universally smaller than the human active site, making
exploitation of unique pockets impossible. The extensive similarity of the active site

molecular surfaces (Connolly, 1983a,b) is depicted in Figure 2.

Figure 2. Active site superimposition of DHFR.

(following page) The molecular surface of Preumocystis carinsi DHFR is shown in magenta;
the molecular surface of human DHFR is shown in yellow. Structures were aligned by
superimposition of 55 active site a-carbons (0.55 A r.m.s.). A cross-section of the active site

is depicted, showing substrate (folate) and cofactor INADPH) colored by atomic identity.
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The lack of differentiation by mainstream agents highlights the urgency for
alternative molecular frameworks. Thus, molecular docking is ideally suited to this task.
The lock-and-key model, applied in stringent fashion, has been used to discern minute
differences between the host and pathogen receptors. We here summarize the application of
the DOCK screening process toward the therapeutically important problem of identifying
novel, selective anti-Pneumocystis agents. This work will be published in greater detail

elsewhere [Gschwend ef al,, 1995 (Chapter 3)].

DOCK

The DOCK suite of programs, like other molecular docking packages, is designed to
identify putative ligands complementary to a receptor of known 3-D structure. The details
of the method have been described previously (Kuntz ez al, 1982; Shoichet ef a/., 1992; Meng
et al., 1992) - only an overview is given here. By filling the receptor site with overlapping
spheres of varying sizes, a negative image capturing the bumps and grooves of the region of
interest is generated. A 3-D database is searched (DesJarlais e# a/, 1988) for molecules
whose interatomic distances match the inter-sphere-center distances. Each compound is
evaluated in thousands of orientations in the active site by an approximate molecular
mechanics interaction energy (Meng ¢f al,, 1992). The best-scoring compounds presumably
exploit multiple geometric and/or chemical properties of the receptor site and are thus of
considerable interest as inhibitor candidates. The DOCK procedures have been tested
through studies of crystallographic complexes (Kuntz e# a/, 1982; Shoichet & Kuntz, 1991;
Meng ez al., 1992; Shoichet et al, 1992; Shoichet & Kuntz, 1993; Meng e# al.,, 1993). The
experimental geometries are associated with the best-scoring orientations, generally within 1
A r.m.s. deviation. More importantly, compounds that have radically different structures

from known inhibitors are often found.
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Method

The human [Protein Data Bank (Bernstein ez a/, 1977) entry 1dhf (Davies et 4/,
1990)] and P. carinii (Oefner et al., 1991) DHFR structures were aligned by superimposing
active site O-carbons. The Fine Chemicals Directory (FCD3D v.89.2, MDL Information
Systems, Inc., San Leandro, CA), a database of commercially available compounds (now
called the Available Chemicals Directory), was screened with DOCK version 3.0 (Meng ef
al., 1992) against Preumocystis DHFR. Figure 3 illustrates the complementarity of the sphere
description used to characterize the target site and perform the docking. An average of
19,000 orientations was examined for each of 53,328 compounds. The over one billion total
configurations investigated at a rate of 800 per second (Silicon Graphics PI 4D/35) attest to
the speed of the DOCK program. Roughly the top 5% (2,700) top force-field scoring
ligands were retained for further analysis. Each of these was then subject to a quasi-Newton
rigid-body minimization (Meng ef a/., 1993) to optimize the intermolecular interactions of its
best scoring orientation. This refinement was carried out independently in the context of
both P. carinis and human DHFR active sites. Thus, the starting configuration in Preumocystis
DHFR was determined by DOCK, while the starting configuration in human DHFR was
determined by the structural alignment. The differential, optimized force-field scores were

used as an indication of species selectivity.

Figure 3. Docking spheres.
(following page) The molecular surface of Preumocystis carinii DHFR is shown in magenta,

sphere centers used in docking are shown as small green balls, and the collective surface of
the sphere description is illustrated in white. Note the shape complementarity between the

surface of the sphere description and the surface of the receptor.
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A manual screening process of the computationally selected 2,700 compounds
ensued. Filters were introduced to target deficiencies in the DOCK scoring scheme, such as
solvation effects and neglect of conformational entropy. Hits were visually evaluated for fit
using the MidasPlus graphics package (Ferrin ef 4/, 1988). As only a finite number of
compounds can be assayed, chemical diversity screens with the aid of the MACCS-II 3D
software (MDL Information Systems, Inc., San Leandro, CA) were employed. Substructure
clustering enabled the selection of only the structurally most dissimilar compounds for
biological characterization. Finally, practical concerns including solubility, reactivity, toxicity

and commercial availability were addressed.

Results

Forty structurally distinct compounds were assayed for activity against Preumocystis

carinii dihydrofolate reductase. Of these, nearly half showed significant inhibition, greater
than 20% at an inhibitor concentration of 100 UM. Roughly one quarter demonstrated ICso
values at or better than 100 UM. Seven of the more potent compounds against P. carinii

DHFR were assayed against human DHFR for specificity. All were selective for the
pathogenic isozyme, as illustrated in Figure 4. The most potent compound, which inhibits P.
carinii DHFR with an ICso of 7 UM, shows 25-fold selectivity. An analysis of the DOCK-
predicted mode of binding for this inhibitor attributes this differentiation to contact with

four of the six non-identical residues in the active site.
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Figure 4. Selectivity plot for novel DHFR inhibitors.
Percent inhibition of DHFR at an inhibitor concentration of 100 UM is shown for each of

seven assayed ligands. The diagonal line represents the absence of selectivity.

It is important to put this seemingly minor species-specificity into perspective.
Trimethoptim, the DHFR inhibitor component of the most widely prescribed preparation
for P. carinii infection, is a weak inhibitor and exhibits essentially no preference for the
pathogehic enzyme, while all other clinically relevant therapeutics show modest to great
selectivity for the human enzyme (Margosiak e a/, 1993). An analysis of progress in the

antifolate literature indicates that even a 10-fold preference for P. carinii DHFR is a relatively
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rare occurrence. The 7-UM inhibitor discovered with the molecular docking approach
described above is a lead; it is clearly not a drug. However, in the context of the extreme
difficulty with which selective anti-Preumocystis agents are identified, this lead may prove an
advantageous starting point toward therapeutic usefulness. Finally, it is not inconsequential
that the molecular framework of this agent bears no resemblance to any previously

established antifolate.

Macroscopic correlations

Computational strategies for structure-based drug discovery offer a valuable
alternative to the costly and time-consuming process of random screening (Kuntz, 1992).
Coupled with a database of commercially available compounds, such as the ACD, programs
like DOCK can provide extremely rapid access to novel leads. However, because of the
many approximations underlying the search and scoring engines (¢.g. neglect of solvation
terms, rigidity of ligand and receptor, discretized scoring), DOCK can not be expected to
yield predictons of a quantitative nature. Rather, we prefer to value DOCK as a
“macroscopic correlator” of binding affinity and interaction score. Even in the daunting
task of species-specificity, macroscopic correlations when applied in sequence can, as

demonstrated here, confer a powerful tool.

In the method previewed here, the rigid-body minimization acts as the selectivity
filter. An optimization of this type as a post-docking utility has been shown to improve
agreement with experimentally determined binding modes (Meng ez 4/, 1993). Of the 50,000
compounds in the database, an enrichment for agents which inhibit P. carinii DHFR was
achieved with DOCK (the first macroscopic correlation). Subsequently, the differential

optimization in the context of both isozymes offered resolution along an additional
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dimension for these remaining compounds. By choosing structures which score highly in
Preumocystis DHFR and pootly in human DHFR (the second macroscopic correlation), an

enrichment for agents selective against host DHFR has now been accomplished.

To summarize, our simple implementation of the lock-and-key model has proven
extremely effective even in the compounded task of searching for selective agents. The
optimization used here does not counteract the lock-and-key model. It offers a jiggling of
the rigid components with respect to one another, allowing a more exact match to be
located. The refinement in essence strengthens our adherence to the lock-and-key model by
providing a more stringent scoring scheme for the evaluation of docked complexes. As
dictated by the exquisite structural similarities within the species specificity problem

addressed here, such a stringency is paramount in discerning atomic level differences.

New technologies

An even stricter adherence to the lock-and-key model can readily be envisioned.
The optimization of intermolecular interactions described above took the form of a post-
DOCK refinement: thousands of orientations of a ligand with respect to its receptor were
generated, the best-scoring configuration was identified, and finally the fit of this one
optimal configuration was refined. It would be more faithful to the lock-and-key model and
less biased in approach if every orientation of the ligand was optimized, rather than only one
configuration deemed best by an unrefined score. Rankings among configurations as gauged
by pre- and post-refinement scores differ, sometimes dramatically (data not shown). It
therefore makes sense to harness the power of minimization as a post-docking scoring tool
directly in the evaluation phase of docking. This computationally demanding advance has

been accomplished with an unexpected performance increase and incorporated into DOCK
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version 3.5. Despite advances in computational resources which make features such as on-
the-fly optimization yet more palatable, the time spent in refinement is still large when
compared with the time spent sampling configuration space. If one could judiciously reduce
the number of orientations actually optimized, however, the refinement bottleneck might be

dissipated.

Given the large number of spatially distributed descriptors and atoms involved in
molecular docking, it is not surprising that there are many ways of pairing them which give
rise to similar geometric orientations. This is obviously the result of over-sampling in certain
regions, but without which some binding modes would be under-sampled or even
overlooked. In the absence of refinement, this over-sampling provides a sort of rigid-body
minimization itself. A better way to optimize local interactions is to find only one
orientation per mode of binding and energy-minimize that orientation, while never again
paying close attention to similar orientations. By removing so-called “degenerate”
configurations, many non-informative minimizations are avoided. Progress towards this
goal with a technique we refer to as “degeneracy checking, as well as the specifics of on-the-
fly force-field score optimization, will be published in greater detail elsewhere [Gschwend &

Kuntz, 1995 (Chapter 4)].

Summary

Our experiences with lock-and-key docking have been encouraging. We here have
previewed the discovery of a novel, selective enzyme inhibitor under this model, and append
our application to a growing list of DOCK successes. The use of DOCK to pursue selective
leads of therapeutic interest had not yet been reported. Thus, this marks the first attempt to

push the lock-and-key model to the limit of differentiation at an atomic level. Detection of
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minute differences between structurally similar targets requires a refined scoring procedure.
The force-field score, comprised of Coulombic electrostatic and Lennard Jones van der
Waals terms, is by nature very sensitive to exact atomic positions. This conforms well with
our interpretation of the lock-and-key model for molecular docking, outlined previously,
which demands stringency in the evaluation phase to locate exact matches. Heightened
resolution is achieved by rigid-body optimization, which allows a configuration to exploit
optimal local interactions and thereby accentuate subtle differences between targets. As
gauged by the broad success in locating selective agents in the face of few distinguishing
features, it appears this technology is quite powerful. The incorporation of on-the-fly
refinement into the docking process can only enhance our ability to detect optimal fits. The
methodology enhancements and species-specificity results reinforce our view of the lock-

and-key model as a valid strategy for molecular docking.

INDUCED FIT MODEL

Flexible approaches

The lock-and-key model for protein-ligand binding can not explain all aspects of
enzyme specificity (Koshland, 1994). For example, the function of ligands which modulate
enzyme activity but do not participate directly in catalysis could not be defined (Koshland,
1971). Obsetvations such as these led to the proposal of a modified theory, the induced-fit
theory (Koshland, 1958), which maintains that ligands induce changes in protein structure
before a suitable fit can occur. The ideas of induced-fit effects and macromolecular plasticity
find mounting support as structural and mechanistic details of molecular recognition events

are elucidated (see Jorgensen, 1991, and references therein).
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The hand-shaking that occurs between receptor and ligand upon binding is difficult
to simulate computationally. The inclusion of conformational degrees of freedom in
addition to the six orientational degrees of freedom exhibited by rigid objects results in a
configurational explosion. Molecular dynamics simulations offer assistance in the local
exploration of conformational flexibility, but become intractable in a molecular docking
context when a single starting position can not be assumed. There have been many
approaches to tackling this massively complicated docking problem. One method which
juxtaposes discrete ligand and receptor conformations has been reported (Leach, 1994).
Numerous approaches, while ignoring receptor mobility, do treat ligand flexibility - these
include energy-based methods (Goodsell & Olson, 1990; Hart & Read, 1992), genetic
algorithms (Judson ef a4/, 1994; Jones e al, 1995; Oshiro et al, 1995), distance geometry
(Ghose & Crippen, 1985), descriptor-based methods (Yamada & Itai, 1993), fragment-based
techniques (Des]Jatlais ¢f 4/, 1986; Leach & Kuntz, 1992), and the independent docking of
discrete, pre-generated ligand conformations (Miller ez 4/, 1994). With the exception of the
last method [which scales as the number of conformations per ligand, typically of order 10
Miller ez al,, 1994)] and those methods which are not trivially automated (e.g. fragment-based
techniques), these approaches for incorporating flexibility require (justifiably) roughly 50- to
5,000-fold longer execution times than an efficient rigid-body docking method. For single-
molecule docking studies, where we can afford a more detailed analysis, this sacrifice is
entirely acceptable. For purposes of drug discovery, however, such penalties become

prohibitive.
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Goals of molecular docking

Molecular docking for drug discovery aims to scan a database of compounds for
ligands which exploit some aspect of complementarity to the receptor of interest. An
attempt to simulate molecular recognition is made for ligands which the receptor has never
“seen” before. This point deserves some clarification. The receptor structure designated for
docking has been observed experimentally or modeled by homology either in an unbound or
a bound state. Thus, the receptor exists in a pre-defined conformation, one possibly molded
to a particular ligand. It would behoove docking studies if the receptor were allowed to
respond to the presence of each putative ligand. A plasticity on the part of the receptor
would permit formation of improved interactions, thereby offering a fairer gauge of the
compound’s potential as a true ligand. Short of introducing explicit flexibility and suffering a
severe performance penalty, we wonder whether it is possible to manifest some aspects of

conformational flexibility in the docking process.

Soft docking

An impliat breathing on the part of the receptor (and the ligand) can be introduced
via a tolerant evaluation function. For example, a softer scoring potential permits slight
atomic interpenetrations without penalty, in effect implying a resolving conformational
change. The idea of so-called “soft docking” is not new. This concept hails from protein-
protein docking investigations in which structures of unbound components are docked to
reproduce the observed complexed structure (Wodak & Janin, 1978; Shoichet & Kuntz,
1991; Jiang & Kim, 1991; Walls & Sternberg, 1992). The success of such methods hinges
upon a local insensitivity that fosters conformational shifts upon complexation. Tolerance is

brought about either by simplified geometric representations (Wodak & Janin, 1978; Jiang &
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Kim, 1991) or by imprecise scoring schemes (Shoichet & Kuntz, 1991; Walls & Stemnberg,
1992). We can apply these concepts, in a somewhat more constrained manner, towards

addressing dynamic aspects of small-molecule recognition.

Scoring philosophy

The scoring function we seek for drug discovery through molecular docking should
exhibit four distinct qualities: 1) it should be robust over a structurally diverse set of
receptor-ligand complexes; 2) it should incorporate molecular plasticity; 3) it should be easy
to implement; and 4) it must be rapid to evaluate. The philosophy that this work subscribes
to presupposes that, in keeping with induced-fit notions, the receptor will respond to the
presence of a ligand. Thus, unfavorable interactions will be avoided, while favorable
interactions will be optimized, both by concerted motion on the part of the components.
These assumptions naturally compromise our ability to detect subtleties, but, as will be seen

shortly, afford generality across structurally diverse receptor-ligand complexes.

Force-fields

In deriving a robust scoring function, we opt to deviate from the sensitive molecular
mechanics functions of many molecular docking programs and revert to simpler, digital
interaction evaluations. To a first approximation, we consider interactions as being either
present or not. This implementation ensures ease of use and an insensitivity to exact local
geometries, at the cost of potential accuracy. Furthermore, we avoid problematic issues
confronted in using force-fields, such as partial charge computation, choice of dielectric
behavior, careful assignment of atom types, and hydrogen placement. To illustrate the latter

sensitivity, consider hydroxyl hydrogens (for example, on serine, threonine, and tyrosine
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residues). Preference for hydrogen bond geometry about these functionalities is weak (Baker
& Hubbard, 1984; Thanki e 4/, 1988; Tintelnot & Andrews, 1989), while molecular
mechanics-based schemes require selection of an exact hydrogen position. Interaction
strength is thus spuriously sensitive to the (typically arbitrary) placement of this hydrogen.
Finally, we note that molecular mechanics is not directly parameterized to reproduce binding
affinities. Force-field scores report an enthalpy of interaction; the quantity of interest is the
free energy of interaction. In our experience, force-field scores are effective at identifying the
optimal binding mode of a single ligand, but perform poorly at predicting even relative
binding energies across a panel of ligands. Entropic contributions are likely to be fairly
similar for different binding modes of one ligand, but clearly can vary substantially from one
ligand to the next. It stands to reason that without the entropic half of the equation we have
little hope of predicting binding affinities for structurally diverse ligands. [Successful,
system-dependent examples of enthalpic correlations with binding affinity have been
reported (e.g. Holloway ef al, 1995). Here, we emphasize the need for robustness across

structurally unrelated ligands binding to varied receptors.]

Empirical schemes

Given the scope of the molecular docking problem, it is not unreasonable to design a
scoring scheme especially suited to the task at hand - that is, evaluating strengths of
interactions for a diversity of receptor-ligand complexes. There currently exist nearly as
many ways of evaluating docked complexes as there are docking methods. As early
researchers in the protein docking field have noted, even the simplest scoring schemes
perform virtually as well as more advanced molecular mechanics treatments (Shoichet &

Kuntz, 1991; Cherfils & Janin, 1993). There is thus the potential to derive an evaluation
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method which is not borrowed from the objectives of another branch of computational
chemistry, but rather, which is parameterized to reproduce precisely the type of values we

are attempting to predict.

The field of empirical scoring systems for the estimation of small-molecule binding
affinites has rapidly become an active area of investigation (Bohacek & McMartin, 1992;
Krystek et al, 1993; Bohacek & McMartin, 1994; Bohm, 1994a,b; G.R. Marshall, personal
communication; J.S. Dixon, personal communication; M.A. Murcko, personal
communication; A.N. Jain, personal communication). Paralleling a QSAR study, the general
procedure consists of amassing a series of receptor-ligand complexes [typically from the
Protein Data Bank (Bernstein ¢f 4/, 1977)] with experimentally determined affinities, devising
various calculable terms which describe physical interactions of interest, and attempting to
obtain affinity correlations while varying coefficients for each term. Approaches vary widely
in the data set composition, the terms employed in correlations, and the method in which
the terms are computed. As with any correlation analysis, great care must be taken to
acquire a large and diverse data set, to gauge the statistical validity of the output, to verify

predictivity of proposed models, and to avoid overinterpretation of physical significance.

[To avoid duplication of some material, the reader is referred to Chapter 5 for a detailed discussion of the

empirical scheme we have developed.]
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Summary

Empirical schemes show great potential for benefiting database screening by
molecular docking. Their simplicity by design makes them rapid to calculate and easy to
implement, avoiding challenges associated with force-field implementations such as atomic
parameterization and partial charge computation. The nature of the tolerant functions used
in our empirical schemes makes them insensitive to exact local geometries. An implicit
breathing on the part of the receptor and ligand can therefore be sanctioned. Along the
spectrum of strategies for the simulation of dynamic processes, induced-fit models which
address explicit flexibility on the part of the ligand and receptor are intractable for a database
screening application. Our compromise toward implicit plasticity, in contrast, suffers no
performance penalty. It remains to be proven whether we gain anything in a practical
setting, but empirical schemes are designed to be and have shown themselves to be robust
over diverse data sets. A molecular docking implementation utilizing a carefully formulated

empirical scheme should be able to harness this robustness to our advantage.

OUTLOOK

Reasonable methods now exist for combining the pieces of the 3-D molecular jigsaw
puzzle; we here have focused on aspects of judging whether the puzzle looks right. Given
the varied ways in which one can make this judgment, there are seemingly infinite stances to
be assumed for molecular docking strategies. Our flexibility becomes more limited,
however, in the face of database screening applications where ligand analyses must be
completed in a few seconds. We have explored two approaches here, one very exacting and

one very tolerant.
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The lock-and-key model has been immensely successful for molecular docking,
generating leads in an array of biological systems (Kuntz, 1992). In our experience with
enzymes, typical hit rates at the micromolar level range between 2 and 20%. Even in the
compounded problem of addressing species specificity, we have demonstrated an ability to
locate novel, selective leads. These accounts are encouraging, and validate the lock-and-key
model as a strategy for drug discovery through molecular docking. We have extended our
interpretation of the lock-and-key model by introducing rigid-body optimization into the
docking process. This technology strengthens our adherence to the goal of identifying exact

matches, which epitomizes lock-and-key docking.

Our initial steps toward capturing induced-fit effects into a docking strategy appear
promising. Empirical schemes incorporating implicit plasticity herald a generality not seen
with sensitive molecular mechanics-based approaches. The robustness over diverse
structural arrangements embraces the presentation of thousands of molecular skeletons to a
receptor which is not explicitly allowed to respond. This challenge is the essence of
molecular docking for drug discovery: can we gauge the affinity of an arbitrary ligand for a
given receptor? Ultimately, only methods which address the whole of the Gibbs free energy
equation will prevail. Amidst the wake of vast quantities of detailed structural information
now becoming available, it is imperative for comprehending molecular recognition and for

pursuing structure-based drug design that we master the subtleties of complementarity.
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ABSTRACT

The concern for specificity is an important but unfortunately often-overlooked
aspect of structure-based drug design. The ability to selectively modulate biochemical
processes without interfering with related systems is crucial to the success of chemotherapy.
Distinguishing between related targets in different organisms is another example within this
theme. Pneumocystis carinii is a fungal opportunist which causes a crippling pneumonia in
immunocompromised individuals and continues to frustrate modern medicinal chemistry.
We report on the application of computational molecular docking techniques for
identificadon of novel inhibitors of P. carinii dihydrofolate reductase (DHFR) that are
selective against the human isozyme. The Fine Chemicals Directory, a database of
commercially available compounds, was screened with the DOCK program suite. We have
introduced a post-docking refinement directed at discerning subtle structural and chemical
features and acting as an indicator of species specificity. Of forty compounds predicted to
exhibit anti-Preumocystis DHFR activity, each of novel chemical framework, thirteen (33%)
show ICso values better than 150 UM in an enzyme assay. These inhibitors were further
assayed against human DHFR: ten (77%) bind preferentially to the fungal enzyme. The
most potent compound identified is a 7 WM-inhibitor of P. carinii DHFR and displays 25-fold
selectivity. This agent exhibits a number of appealing properties which might make it a
suitable candidate for further investigation. The ability of molecular docking methods to
locate selective inhibitors reinforces our view of structure-based drug discovery as a valuable
strategy, not only for identifying lead compounds, but also for addressing more complex

issues concerning receptor specificity.
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INTRODUCTION

Successful chemotherapeutic treatment depends upon the exploitation of
biochemical differences between host and pathogen. An ideal drug is harmful to an invader
without being harmful to the host. The success of selective toxicity hinges upon the
inhibition of a biochemical process vital to the pathogen’s survival. Such processes present a
spectrum of targets with varying risks of host toxicity. Genuinely unique biochemical
systems are seldom available. Generally, differences between host and pathogen are more
subtle, forcing distinction between functionally equivalent targets. The work presented here
focuses on the discrimination of structurally similar entities with the intent of designing

species-specific drugs.

Structural information is critical to understanding differences between functionally
equivalent targets. Atomic coordinates ofte;l form a basis for directed drug design, as
knowledge of the topography and chemistry within the active site allows tailoring of specific
interactions. The DOCK suite of programs (Kuntz ez a/, 1982; Shoichet ez a/, 1992; Meng ez
al., 1992) is one computational method that uses the three-dimensional (3-D) structure of a
receptor to identify ligands of complementary shape. DOCK has been used to identify leads
in a number of diverse systems (Kuntz, 1992). However, DOCK has not been explicitly
applied to the discovery of selective inhibitors of therapeutic interest. To explore this
avenue, a clinically relevant system has been chosen for which high-resolution structural

information exists for a variety of species.

The regeneration of reduced folate cofactors required for nucleotide biosynthesis is
performed by dihydrofolate reductase (DHFR). Despite its universally crucial role, this

enzyme commonly exhibits low sequence conservation. This potential for selective drug
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design has not passed unnoticed: DHEFR is thoroughly characterized with respect to
structural biology across species (Kraut & Matthews, 1987; Morrison, 1991). At least a
dozen crystal structures are available spanning all combinations of bound and unbound
states. Thousands of inhibitors with varying potencies and selectivities have been identified
(Blaney ez al,, 1984). Thus far DHFR has proven a rewarding target for selective inhibition,
resulting in numerous antibacterial, antiprotozoal, and antineoplastic agents (Schweitzer ef

al, 1990). However, such success has been elusive in treating Preumocystis carinii infections.

Preumocystis carinii is a pathogen harmlessly infecting nearly all humans, but upon
reactivation of latent infection by immunodeficiency can induce a disease state characterized
by a crippling pneumonia (Murray & Mills, 1990; Bartlett & Smith, 1991). Not surprisingly,
this opportunist is the principal agent of morbidity and mortality in HIV-infected persons
(Murray & Mills, 1990; Mills & Masur, 1990). Without chemoprophylaxis, 60 to 85% of
AIDS patients eventually will be afflicted by P. carinii pneumonia, and 25% will die from it
(Walzer ez al., 1974; Mills, 1986; Kovacs & Masur, 1988; Justice e# 4/, 1989; Bartlett & Smith,
1991). Much of the research towards chemotherapy stems from treatments found effective
against similar pathogens, as the metabolic pathways in Preumocystis are largely
uncharacterized. The organism’s phylogeny is therefore quite important. Mounting
evidence places P. carinii among the fungi (Edman ef 4/, 1988; Edman e# al, 1989; Stringer ez
al., 1989; Pixley ez al, 1991; Ypma-Wong e al., 1992; Belfield e# al, 1993; Furlong ez al, 1994),
yet the atypical cell membrane composition (Kaneshiro ez a/, 1989; Furlong ef a/, 1994)
appears to thwart common antifungal drugs (Bartlett ¢z a/, 1994b). Agents in a variety of
other mechanistically distinct classes are being explored, including antifolates ( Allegra ef al,
1987b; Kovacs et al, 1989; Margosiak e# al, 1993), DNA-replication antagonists (Walzer ez

al, 1988; Tidwell ez al, 1990; Dykstra & Tidwell, 1991; Fishman ez a/, 1993; Dykstra ef al,
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1994; Walzer e al., 1994), inhibitors of polyamine biosynthesis (Lipschik ez a/, 1991; Saric &
Clarkson, 1994), compounds which interfere with cell wall integrity (Schmatz ef al, 1990;
Powles et al, 1994; Yasuoka e# al., 1995), growth-stunting iron chelators (Weinberg, 1994),
inhibitors of pyrimidine biosynthesis (Falloon ef 4/, 1991; Artymowicz & James, 1993; Ittarat
et al, 1995), microtubule disrupting agents (Bartlett e a/, 1994a), and sodium channel
blockers (Shaw ez a/, 1994). The most successful of these approaches thus far have been the

antifolates and DNA-replication antagonists.

Co-trimoxazole and pentamidine isethionate are the most widely prescribed
preparations for therapy and prophylaxis of Preumocystis carinii pneumonia (Kovacs & Masur,
1988; Murray & Mills, 1990; U.S. Public Health Service, 1993; Gallant ez al, 1994).
Unfortunately, these treatments are plagued with adverse reactions. Fifty percent of patients
using pentamidine and 65% using co-trimoxazole will suffer major side effects (Walzer e# al,
1974; Jaffe et al., 1983; Kovacs ef al, 1984; Gordin ef a/,, 1984; Wharton 7 al, 1986). On
average, one in four patients will suffer reactions severe enough to force discontinuation of
treatment (Allegra ¢ al, 1987a). The frequency of such reactions is not surprising in the case
of co-trimoxazole:  the dihydropteroate synthetase (DHPS) inhibitor component,
sulfamethoxazole, is quite toxic (Masur, 1992) and the DHFR inhibitor component,
trimethoprim, is weak and non-selective (Edman ez a/, 1988; Margosiak e# a/, 1993). In fact,
it is almost general that clinically relevant DHFR inhibitors are selective for human DHFR
(Matrgosiak ef al, 1993). Derivitization of mainstream antifolates to improve selectivity for P.
carinii DHFR has also been largely unsuccessful. Trimetrexate (Queener, 1991; Gangjee ef
al., 1994; Rosowsky ez al, 1993), piritrexim (Rosowsky e# al, 1993; Gangjee ef al, 1994), and
triazine (Rosowsky e# a/, 1995) analogues fail to display any selectivity toward Preumocystis,

while some 2,4-diaminopteridine and 2,4-diaminoquinazoline derivatives (Queener, 1991;
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Rosowsky ez al, 1995) exhibit favorable selectivities only on the order of 2 - to 20-fold. The
lack of selectivity and resulting side effects of antifolates is likely a direct consequence of the

similarity between host and pathogen DHFR.

Based on published sequence alignments (Blakley, 1984; Edman ez a/, 1989), P. carinii
DHEFR displays highest similarity with that of vertebrates. Sequence identities of 35-40%
and homologies near 70% are observed. High-resolution crystal structures of human
(Davies et al., 1990) and P. carinii (Oefner et al., 1991) DHFR confirm only minor differences.
Figure 2 in Chapter 2 depicts the extensive surface similarity in the active site region of the
two enzymes. Within the folate binding pocket, there are in fact only six non-identical
residues. The active site aspartate common to bacterial and protozoan DHFR is replaced
with glutamate in P. carini, as in all vertebrate DHFR. Further drug design complications
arise from the fact that the Preumocystis active site is neatly universally smaller than the
human active site, making exploitation of unique pockets impossible. Despite the structural
similarities of the target isozymes, there are differences between host and pathogen that can
work to our advantage. The stronger binding affinity of substrate for human DHFR relative
to P. carinii DHFR suggests that antifolates will be able to compete more effectively with
dihydrofolate in the pathogen (Margosiak e al, 1993). Pneumocystis also demonstrates an
inability to salvage pre-formed reduced folates from the environment (Allegra ef 4/, 1987b),

thus amplifying the intrinsic selectivity of any antifolate.

The lack of differentiaion by mainstream agents highlights the urgency for
alternative molecular frameworks. The derivitization of compounds which exhibit weak
potency, unfavorable selectivity, poor uptake, or otherwise toxic effects is one approach for
obtaining a clinically useful agent. We will adopt a complementary approach: the

identification of novel chemical skeletons from which to initiate new routes of optimization.
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Such leads frequently offer an entirely different spectrum of pharmacological properties. We
here present the application of the DOCK screening process toward the therapeutically

important problem of identifying novel, selective anti- Preamocystis agents (Gschwend, 1995).

METHODS

Structural Preparation

The P. carinii DHFR structure used in this study was the ternary crystal complex with
folate (a poor substrate) and NADPH (cofactor) solved to 1.8 A resolution by Oefner e a/.
(1991). Substrate and cofactor, as well as all crystallographically observed water molecules,
were removed from the structure. The human crystal structure employed was the binary
complex with substrate [Protein Data Bank (Bernstein ez a/, 1977) entry 1DHF] solved to 2.3
A resolution published by Davies e a/. (1990). Of the two molecules in the human DHFR
unit cell, Davies ef a/ deem the B-chain more reliable, so the A-chain was removed. The
substrate and all waters were also deleted. A structural alignment based on the sequence
alignment of Edman e# 4/ (1989) was performed using alpha carbons of all active site
residues present in both structures (55 residues yielding a root-mean-square (rms) deviation

of 0.56 A).

Docking Overview

The DOCK suite of programs is designed to identify putatve ligands
complementary to a receptor of known 3-D structure. The details of the method have been
described previously (Kuntz e a/, 1982; Shoichet e# al, 1992; Meng e# al, 1992) - only an

overview is given here. By filling the receptor site with overlapping spheres of varying sizes
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Kuntz et al, 1982), a negative image capturing the bumps and grooves of the region of
interest is generated. A 3-D database is searched (DesJarlais e a/, 1988) for molecules
whose interatomic distances match the inter-sphere-center distances. Each compound is
evaluated in thousands of orientations in the active site by an approximate molecular
mechanics interaction energy (Meng ez a/, 1992). The best-scoring compounds presumably
exploit multiple geometric and/or chemical properties of the receptor site and are thus of
considerable interest as inhibitor candidates. The DOCK procedures have been tested
through studies of crystallographic complexes. The experimental geometries are associated
with the best-scoring otientations, generally within 1 A rms deviation. More importantly,
compounds that have radically different structures from known inhibitors are often found

(Kuntz, 1992).

Docking Analysis

A molecular surface was generated for the P. carinii active site using Connolly’s MS
algorithm (Connolly, 1983a,b). The resulting surface formed the basis for the SPHGEN
(Kuntz et al,, 1982) calculation, which produced a set of spheres characterizing the topology
of the target site. As the length of the docking calculation depends combinatorially on the
number of spheres (Shoichet ez al, 1992), the sphere cluster was manually trimmed to a
minimal set spanning the folate binding pocket and extending to the nicotinamide-ribose
portion of the cofactor groove. Spheres representing the remainder of the cofactor pocket
were removed to avoid retrieving compounds which might bind exclusively to the cofactor
binding region and hence bind non-specifically to multiple targets in the body. Seventy-four

spheres thus defined the targeted site , as illustrated with their collective molecular surface in

49



Selective Inbibitors of P. carinii DHFR Chapter 3

Figure 3 of Chapter 2. SPHGEN’s ability to capture shape features precisely is evident in the

extensive complementarity between the sphere surface and the receptor molecular surface.

A box of dimensions 25 A x 22 A X 14 A encompassed the spheres and delimited
the force-field scoring grid. The scoring grid was computed with CHEMGRID (Meng 7 al,
1992) using a 0.25 A grid spacing, a dielectric of 4 r (where r is the interatomic separation),
and a generous non-bonded cutoff of 20 A; hydrogens were added in standard geometries .
Close contact limits were set at 2.3 and 2.8 A for polar and nonpolar atoms, respectively.
Results are not sensitive to the precise location of the grid (data not shown). The Fine
Chemicals Directory [FCD3D v.89.2 (this database is now called the Available Chemicals
Directory), MDL Information Systems, Inc., San Leandro, CA] was screened with DOCK
version 3.0 (Meng ¢t al, 1992). Dislim was set to 1.5 A, nodlim to 4, and bin parameters to
0.2,0.0, 1.0, and 0.0 A (%binsg, loviap, shinsg, sovlap, respectively); force-field score interpolation
was on. An average of 19,000 orientations was examined for each of 53,328 ligands,
utilizing 350 hours of CPU time (Silicon Graphics PI 4D/35; Silicon Graphics, Inc.,
Mountain View, CA). The over one billion total configurations investigated at a rate of 800

per second attest to the speed of the DOCK program.

Database Screening

The stepwise screening of the FCD is outlined in Figure 1. Arbitrarily, the top 2700
force-field scoring compounds were saved from the DOCK run against Preumocystis DHFR.
Each compound was then subject to a quasi-Newton rigid-body minimization (Meng e# 4/,
1993) to optimize the intermolecular interactions of the best scoring orientation. ‘This
refinement was carried out independently in the context of both P. carinii and human DHFR

active sites. Thus, the starting configuration in Prneumocystis DHFR was determined by
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53,328

2700

1434

837

\J
40

1. Computational screen
¢ DOCK all compounds in database against P. carinii DHFR
o keep those with best force-field scores

2. Energetic considerations
¢ rigid-body minimize within both P. carinii and human DHEFR sites
e remove highly charged or poor scoring compounds

3. Quality of fit
¢ multiple-pass visual screen for fit in MidasPlus
® no scores taken into account

4. Chemical diversity I
® keep best-scoring/most-selective compounds for a given substructure
e retain alternates or otherwise interesting compounds
e remove overly flexible or overly hydrophobic compounds

5. Chemical diversity II
e further substructure searches - keep only one per class
e increase stringency of score cutoffs

6. Practical considerations
e remove those that are too hydrophobic, reactive, unstable, or toxic
e insure commercial availability

7. Purchase candidates for assay.

Figure 1. Fine Chemicals Directory screening pipeline.

See text. The number of compounds at each stage is indicated.

DOCK, while the starting configuration in human DHFR was determined by the structural

alignment discussed previously. The differential, optimized force-field scores were used as

an indication of species selectivity. We term Epc and Ehum the optimized force-field scores in

Pneumocystis and human DHFR respectively, and the differential score E st = Epc - Enum.

A manual screening process of the computationally selected 2700 compounds

ensued. Because the DOCK 3.0 force-field score (Meng e# al,, 1992) incorporates no formal

solvation terms, an attempt to counter this deficiency was made. Compounds with a net

51



Selective Inhibitors of P. carinii DHFR Chapter 3

charge of -3 or less (6%) were discarded. Compounds with a net charge of 1 or 2 (74%)
were retained if Epc < -40, an intermediate cutoff chosen to force charged compounds to
score better than a hypothetical neutral counterpart. Compounds which were net neutral
(20%) were retained regardless of score. 1434 campounds emerged from this crude
solvation filter. These compounds were examined visually on a graphics terminal using the
MidasPlus package (Ferrin ef a/, 1988) in two independent passes. No scores were taken
into account in this filter - structures were examined for fit to the site and for visually
appealing interactions. Compounds that were either too small or too large, or docked to the
surface of the receptor, were also removed at this stage. 837 compounds passed the

visualization filter.

Two chemical diversity screens were introduced. Compounds were clustered by
substructural class with the aid of the MACCS-II 3D package (MDL Information Systems,
Inc., San Leandro, CA). The structures in each class predicted to have either high affinity
for P. carinii DHFR (Epc) or exhibit selectivity (Ese) for P. carinii DHFR were retained.
Ovetly flexible or extremely hydrophobic compounds were eliminated during this filter. The
302 remaining compounds were subject to the second, more stringent, chemical diversity
screen. Further substructure searches were used to select the most dissimilar compounds.
At this point, only one compound per class was saved, gauged by more restrictive E pc and
Ea cutoffs. Finally, practical considerations were applied to the 89 candidate compounds.
Compounds which appeared too reactive, unstable, toxic, or insoluble were discarded. After
verifying commercial availability, forty compounds were declared candidates and purchased

for biological evaluation.
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Chemicals

NADPH and dihydrofolic acid were purchased from Sigma. DOCK-selected
candidates for assay were purchased from various chemical suppliers, as indicated in Table 1.
Each compound was prepared as a stock solution in DMSO and subsequently diluted in
water to provide a range of concentrations suitable for IC so determination. The final
concentration of DMSO in the enzymatic assay was less than 1% to avoid inhibition of the

reaction by DMSO itself.

Dihydrofolate reductase assay

The spectrophotometric assay for DHFR activity is well-characterized. Activity is

determined by monitoring the decrease in absorption at 340 nm, corresponding to the
utilization of NADPH, at 25°C (Hillcoat ¢t a/,, 1967; Sirawaraporn e# a/., 1991). The standard
assay (1 ml) contained 50 mM Tes (pH 7.0), 75 mM B-mercaptoethanol, 1 mM EDTA, 1
mg/ml bovine serum albumin, 50 pM NADPH, 20 pM dihydrofolic acid, and limiting
enzyme. Dihydrofolic acid concentration was checked by UV absorption and confirmed
enzymatically using A€340 of 12,300 M-! cm'!. Reactions were initiated with NADPH, mixed
thoroughly, and monitored for 5 minutes. No-enzyme blanks were used to control for
background decomposition of NADPH and/or inhibitor. The concentration of inhibitor

required to reduce DHFR activity by 50% (ICso) was determined by interpolation of

sigmoidal plots of percentage inhibition versus log inhibitor concentration.
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Table 1. Biological evaluation of DOCK-selected inhibitor candidates.
Compounds are sorted by increasing optimized force-field score against P. carinii DHFR.

Formal FF-Score? Inhibitionb
# Compound Supplier Charge Pc Hu Pc  Hu
1 5-bromo-2’-deoxyuridine-5’-mono Sigma -2 573 -494 %)
phosphate
2 Acid Blue 40 Aldrich -1 -538 -47.8 77 >500¢
3 5,5-thiodisalicylic acid Bader -2 525 -263 (13%)
4 5-bromo-4-chloro-3-indolyl phosphate ~ Aldrich -2 -50.7 -405 %)
5 Palatine Fast Black WAN Janssen -1 -491 -113 1)
6 4’-(2-thiazolylsulfamoyl) phthalanilic Bader -1 -481 -371 %)
acid
7 4-(2-(2-chlorobenzoyl) acetamido Bader -1 473 -326  (26%)
benzoic acid
8 Acid Red 1 Aldrich -2 -46.8 -228 0]
9 3,3”,5°,5”-tetraiodo phenolphthalein Aldrich -2 -46.7 -38.1 92 290
10 1-(4-pyridylcarbonyl)-2-(carboxy Bader -1 <463 -363  (14%)
methoxyacetyl) hydrazine
11 N-furfuryltetrachloro phthalanilic acid ~ Bader -1 456 -336 (12%)
12 Benzoyl Leuco Methylene Blue TCI 0 -455 -349 %)
13 Palatine Chrome Black 6BN Aldrich -1 444 95 80 140
14 2,3’,6-trichloro indophenol TCI -1 444 322 95 226
15 ethyl-4-(5-chloro-2-phenoxyphenyl Bader 0 -442 -167 (17%)
ureido) benzoate
16 Pamoic Acid Aldrich -2 -438 2778 9% 172
17 terephthaloyl- bis-glycine Riedel -2 -437 -252 %)
18 2,5-bis (2-methoxyanilino)-3,6-dichloro- Bader 0 -434 -355 (31%)
1,4-benzoquinone
19 N,N’-(2-bromo-6-methylphenylene) 4is Bader 0 -433 -308 90 60
(4-methylcoumarin-7ylcarbamate)
20 Gallein Sigma 0 -424 -299 74 228
21 3,4,5,6-tetrachloro-3’-(trifluoro methyl)- Bader -1 423 -25.7 (>21%)
phthalanilic acid
22 3,3’,5-triiodo thyropropionic acid Sigma -1 423 -319 120 >500¢
23 3,5,6-tri-(2-pyridyl)-1,2,4-triazine Maybridge 0 -41.1 -355 o
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Formal FF-Score® Inhibition®

# Compound Supplier Charge Pc Hu Pc  Hu

24 N-(3-methoxyphenyl) picrylamine Bader 0 -41.0 -332 100 43

25 3,3’,4,4’,5-pentamethoxy benzophenone Bader 0 -40.8 -18.38 100 42

26 Threne Red Violet RH TCI 0 -403 -333 6.9 ~2004

27 N-(p-(2-benzoxazolyl) phenyl)- Kodak 0 -403 -343 o
maleimide

28 1-(3-bromobenzoyl)-2-(2-napthoyl) Bader 0 -40.0 -338 %)
hydrazine

29 5’-benzoyluridine Sigma -39.9 -355 o

30 Disperse Orange 13 Aldrich -39.7 -36.0 o

31 1-(4-chlorobenzyl)-1-methyl-3-phenyl-2- Bader -39.2  -329 %)
thiourea

32 4,4’-dimethyl-2,2’-dihydroxy-6,6- Bader 0 -391 -287 %]
biquinoline

33 4-chloro-6-fluorosulfonyl-2-(4- Bader 0 -385 -25.0 41 ~1504
nitrophenyl) quinoline

34 1-(2,6-dichlorophenyl)-3-(6-methyl-3-  Bader 0 -37.2 -327 %)
pyridyl) urea

35 N-(2-hydroxyphenyl)-3,4,5,6-tetrachloro Bader 0 -371 -341 %)
phthalimide

36 N-(4-(ethoxycarbonyl) phenyl)-2-(2,4,5- Bader 0 -37.1 -345 %)
trichlorophenoxy) acetamide

37 2-(N-(3,4-dichlorophenyl) carbamoyl)  Bader 0 -361 -320 (24%)
amin-6-methoxy benzothiazole

38 Murexide Aldrich 0 -357 -329 %)

39 2,4,6-triphenoxy- s-triazine Aldrich 0 -352 -184 130 ~5004

40 2,4-bis (p-tolylthio)-1,3-dithia-2,4- TCI -33.6 -40.5 0]

diphosphetane-2,4-disulfide

* Optimized force-field score (kcal/mol) against P. carinii (Pc) and human (Hu) DHFR
b Assayed inhibition against P. carinii (Pc) and human (Hu) DHFR. Values are pM ICsp values, except those in

parentheses, which indicate percentage inhibition at an inhibitor concentration of 100 WM. @ denotes that no

inhibition was observed. Data are the result of at least duplicate determinations, agreeing to within 10-20%.

Blank entries were unassayed.
¢ No inhibition was observed at half-millimolar concentrations.

41Csp is estimated by extrapolation due to solubility limitations.
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Figure 2. Structures of compounds with measured ICso’s against P. carinif DHFR.

(previous page) The numbering corresponds to that given in Table 1.

RESULTS

The forty compounds examined in the enzyme assay are listed in Table 1. Twenty-
one (53%) displayed measurable inhibition against P. carinii DHFR at the 100 UM level, with
eleven (28%) showing ICso’s of 100 UM or less. Of the thirteen compounds which were
potent and soluble enough to permit an ICso determination against P. carinii DHFR
(structures shown in Figure 2), ten (77%) exhibited selectivity ranging from 2- to 25-fold
against human DHFR. The marked success in identifying species-specific agents is depicted
graphically in Figure 3. Although the binding kinetics of these inhibitors has not been
determined, their selective nature suggests that binding is not non-specific. The most potent
compound (26) is also the most selective, having an IC so of 7 UM and approximately 25-fold
selectivity for P. carinii DHFR. DOCK’s predicted mode of binding for this compound
(Figure 4) places the structure in contact with four of the six non-identical residues in the

active site.

The optimized DOCK force-field scores, used to select compounds for assay, are
provided in Table 1. For comparison, methotrexate, a picomolar inhibitor of both P. carinis
and human DHFR (Marogosiak ef @/, 1993), receives a force-field score on the order of -70
kcal/mol. No apparent correlation is observed between these scores and assayed inhibition
or selectvity. As detailed in the Discussion section, this was not unexpected. Also
noteworthy is the bias of the force-field scores toward more highly charged molecules,

evidenced by the larger proportion of such compounds higher in Table 1. This behavior
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Figure 3. Species-specificity of novel P. cariniif DHFR inhibitors.

ICso’s for compounds assayed against both P. carinii and human DHFR are plotted. The

dashed line represents the absence of selectivity; compounds falling above the line show

favorable specificity. Numbers identify compounds as given in Table 1.

results from the lack of a desolvation penalty in the force-field score.

deficiencies like this one is the goal of the post-DOCK filtering process.

DISCUSSION

Countering

Computational strategies for structure-based drug discovery offer a valuable

alternative to the costly and time-consuming process of random screening (Kuntz, 1992).

Coupled with a database of commercially available compounds, such as the FCD, programs

58



Selective Inbibitors of P. carinii DHFR Chapter 3

like DOCK can provide extremely rapid access to novel leads (Gschwend e¢f 4/, 1995). In
our experience, DOCK typically demonstrates a hit rate at the micromolar level of 2 to 20%
for compounds assayed for inhibition. However, because of the many approximations
underlying the search and scoring engines ( e.g. neglect of solvation terms, rigidity of ligand
and receptor, discretized scoring), DOCK can not be expected to yield predictions of a
quantitative nature. Rather, we prefer to value DOCK as a “macroscopic correlator” of
binding affinity and interaction score. Even in the daunting task of species-specificity,
macroscopic correlations when applied in sequence can, as demonstrated here, confer a

powerful tool.

In the method presented here, the rigid-body minimization acts as the selectivity
filter. An optimization of this type as a post-docking utility has been shown to improve
agreement with experimentally determined binding modes (Meng e# a/, 1993; Gschwend &
Kuntz, unpublished results). Of the 50,000 compounds in the database, an enrichment for
agents which inhibit P. carinii DHFR was achieved with DOCK (the first macroscopic
correlation). Subsequently, the differential optimization in the context of i)Oth isozymes
offered resolution along an additional dimension for these remaining compounds. By
choosing structures which score highly in Preumocystis DHFR and pootly in human DHFR
(the second macroscopic correlation), an enrichment for agents selective against host DHFR

has now been accomplished.

The manual processing of DOCK hits is an important stage for improving the true
hit rate as defined by assayed inhibition. It would be unwise to purchase the top 50 DOCK
hits and take them straight to the laboratory. Several of the limitations inherent to a DOCK
investigation can be addressed with prudent post-docking analysis. One of the foremost

insufficiencies of the DOCK force-field score is in the treatment of solvation effects.
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Charged compounds experience a severe penalty for coming out of solution. Because the
present scoring scheme incorporates no formal expression for desolvation, the affinity of
such ligands is likely to be overestimated. A preference for neutral compounds and more
restrictive criteria for charged compounds serves to counteract this deficiency. It is readily
apparent from Table 1 that charged compounds are favored by the force-field score. A
breakdown of the 11 “hits” (compounds with IC so’s < 100 uM) reveals that six (55%) were
net neutral, three (27%) had a -1 formal charge, and two (18%) had a -2 formal charge.
However, when normalized by the total number of compounds tested in each charge class,
roughly equal hit rates are observed: 6/23 = 26% for net neutral compounds, 3/10 = 30%
for singly-charged compounds, and 2/7 = 28% for doubly-charged compounds. We would
speculate, given the absence of a desolvation penalty in scoring, that selecting charged
DOCK compounds for assay without increased stringency as compared with neutral

compounds would result in a much lower hit rate for charged compound classes.

Scanning possible candidates visually on a graphics terminal in the context of their
receptor is a valuable tool for identifying leads. At this point one can mentally evaluate the
relative importance of putative interactions while at the same time introducing some
“virtual” flexibility into the rigidly docked components. Interactions that look as though
they could be formed in the face of local breathing warrant attention. Although crude, this
approach mitigates the lack of conformational flexibility in docking. A visual analysis also
permits filtering by proximity to pre-defined (g by other known ligands, mutagenesis data,
etc) hot-spots in the active site. Ligands docked to the surface or outer edge of the receptor
are unlikely to exhibit the same degree of specificity for this receptor as ligands docked deep
within a cleft. The medicinal chemist’s intuition plays a significant role in transforming a list

of DOCK suggestions to a list of plausible candidates.
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Much of the often subjective post-DOCK analysis could be automated within the
DOCK program with appropriate technological advances. The development of a more
accurate scoring function to estimate true binding affinities would obviate the need for many
of the solvation- and entropy-related corrections now performed manually. This is an active
area of research (Gschwend ef 4/, 1995). Until such time as accurate evaluation methods are
available, pre-organizing structural databases will be useful, allowing user-specified filtering
before docking is begun. Examples of possible metrics for pre-organization might include
formal charge, the number of rotatable bonds, or practical concerns such as cost, reactivity,
or toxicity. Features enabling the targeting of specific regions of the receptor have been
introduced into DOCK 3.5 (unpublished results), bypassing a post-DOCK visual filter for

this purpose.

In practice, the number of assayable compounds is finite. With the goal of
discovering lead compounds, it is vital to span as chemically diverse a cross-section of
candidates as possible. In this study, we have employed two-dimensional substructure
searches, separating compounds into structurally distinct classes. Within each class,
structures which were predicted to have the highest affinity for P. carinii DHFR or show the
most selectivity were chosen as representatives.  Overly flexible compounds were
disregarded in this analysis to combat the lack of a conformational entropy term in the
scoring procedure (this is reflected by the rigidity of active entities shown in Figure 2).
Extremely hydrophobic compounds were also avoided to circumvent problems of solubility

and of non-specific binding.

The structural and chemical diversity of the resultant hits is made apparent in Figure
2 and highlights one of the strengths of database searching techniques for drug discovery.

All of these compounds, to our knowledge, have never been identified as having antifolate
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activity.” Each represents 2 unique avenue of optimization toward a clinically useful agent.
Because pharmacological and toxicological complications inevitably arise in the drug
development pipeline, it is advantageous to maximize the number of diverse routes for
evolution at the outset. Clearly, none of the inhibitors identified in this study is a drug; only
a handful will even make suitable leads. The progression of low-micromolar enzyme
inhibitors discovered by DOCK to more potent and therapeutically valuable agents has been
reported (Rutenber e# a/, 1993; Shoichet e# al, 1993; B.K. Shoichet, personal communication;

Li et al, 1995).

More pertinent to assessing the relevance of novel, micromolar inhibitors is the
relative weakness and lack of selectivity of several mainstream anti- Preumocystis agents.
Although ICsp values are not directly comparable, trimethoprim and pyrimethamine, for
example, show ICso’s in the low-micromolar range (Allegra ef al, 1987b; Sirawaraporn ef 4/,
1991; Broughton & Queener, 1991; Queener, 1991). Furthermore, an analysis of progress in
the antifolate literature indicates that even a 10-fold preference for P. carinii DHFR is a
relatively rare occurrence. Improved specificity will be required to reduce folate-related
toxicity (Blakley, 1969; Margosiak ez a/, 1993). The novel chemical frameworks identified in
this study will cleatly possess distinct pharmacological profiles, but may be likely to avoid
sources of antifolate toxicity which are not folate-related [ e.g inhibition of histamine
metabolism (Duch e a/, 1980)]. Although the potency of the inhibitors found here is
relatively weak, the above points justify investigation into their potential for novel antifolate
classes. Because of the substructure searches used to categorize similar molecules, each

inhibitor represents a class of compounds identified in the DOCK run as exhibiting

* Compounds related to 2 have been observed to interact with nucleotide-requiring enzymes, including DHFR
(Beissner & Rudolph, 1978; Chambers & Dunlap, 1979).
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complementarity to the receptor. Probing within the substructure class represented by each

inhibitor is a rational first step towards lead optimization.

Compound 26, on account of both its potency and selectivity, merits further
exploration. From the perspective of DOCK, 26 is an ideal molecule: it is entirely rigid and
possesses no formal charge. As the force-field score’s lack of a conformational entropy term
and overestimation of charged interactions are therefore not an issue, these attributes lend
weight to the DOCK-predicted orientation for this compound. The predicted binding mode
(Figure 4) entails contact with four of the six non-identical residues in the active site,
offering an explanation for the 25-fold selectivity and reinforcing the plausibility of specific
binding. The major hurdle for any enzyme-assay lead is the critical question of fungal
uptake, which remains to be addressed in a cell-based assay. The hydrophobic nature of
many of the DOCK hits (Figure 2) will be useful in this regard. For 26 in particular,
compounds exhibiting structural similarity have been reported to display antifungal activity

(Collier ez a/., 1991; Klein ez al,, 1994).

Perhaps the most effective anti- Preumocystis agents will result from efforts targeting
dihydropteroate synthetase (DHPS), an enzyme involved in de novo folate synthesis. DHPS is
not present in mammalian cells, as preformed folate is acquired in the diet, and thus makes
an ideal target for species-specific drug design. Sulfa drugs which target DHPS are used in
therapy against P. carinii, yet are relatively weak inhibitors of the enzyme (Merali ef 4/, 1990;
Voeller et al,, 1994; Hong et al, 1995). The potendal for the discovery of more potent agents
without species-specificity issues remains substantial. To date, no structural information has

been published concerning DHPS.
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In the frequent absence of suitable targets unique to a pathogen, drug discovery must
proceed via more stringent means by discerning similar entities. When afforded three-
dimensional structural information, techniques such as molecular docking are desirable for
rapid access to novel leads. We have introduced a simple methodology enhancement which
expands the domain of molecular docking to encompass selective inhibition studies. A post-
docking, differential refinement enables the discrimination among similar receptors in the
face of few distinguishing features. In light of the success achieved in locating selective
enzyme inhibitors with a post-docking methodology advance, it is logical to expect that
transferring this tool directly into the docking process (Gschwend & Kuntz, unpublished
results) can only amplify our ability to detect subtle features. Although there have been
numerous reports of DOCK’s success at identifying lead compounds in a diversity of
systems (Kuntz, 1992; Gschwend e a/, 1995), this study represents the first attempt to locate
selectve inhibitors of therapeutic interest. The results further validate molecular docking as
a strategy toward drug discovery, and herald favorable prospects for structure-based

differential design.

Figure 4. DOCK-predicted mode of binding for 26.
(following page) Four active site residues which differ between P. carinii and human DHFR

and which are proposed to interact with this ligand are indicated.
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ABSTRACT

Strategies for computational association of molecular components entail a
compromise between configurational exploration and accurate evaluation. Following the
work of Meng ez al. [Proteins 17 (1993) 266], we investigate issues related to sampling and
optimization in molecular docking within the context of the DOCK program. An extensive
analysis of diverse sampling conditions for six receptor-ligand complexes has enabled us to
evaluate the tractability and utility of on-the-fly force-field score minimization, as well as the
method for configurational exploration. We find that the sampling scheme in DOCK is
extremely robust in its ability to produce configurations near to those which are
experimentally observed. Furthermore, despite the heavy resource demands of refinement,
the incorporation of a rigid-body, grid-based simplex minimizer directly into the docking
process results in a docking strategy which is more efficient at retrieving experimentally
observed configurations than docking in the absence of optimization. We investigate the
capacity for further performance enhancement by implementing a degeneracy checking
protocol aimed at circumventing redundant optimizations of geometrically similar
orientations. Finally, we present methods which assist in the selection of sampling levels

appropriate to desired result quality and available computational resources.

Keywords. molecular recognition; configurational sampling; ligand docking;

structure-based drug design
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INTRODUCTION

Molecular recognition is a problem fundamental to structural biology. The
interaction of molecules, be they macromolecules or small ligands, is a prerequisite for nearly
all biological events. Specific modulation of these interactions has been the ambition of
medicinal chemists for over a century. To gain more rapid access to therapeutic agents, we
must not only understand, but be able to predict, the structural details of recognition events.
The prediction of the observed orientations of two interacting components is known as the

“docking problem.”

There exist many computational approaches to the docking problem [1,2], but each
must accomplish two principal tasks: sampling and evaluation. The task of sampling relates
to the exploration of the large number of configurations varying in the relative geometry of
the components. The task of evaluation refers to the ranking of each configuration by some
metric. These seemingly independent phases of docking are in fact closely linked. Without
an accurate evaluation scheme, the native configuration can not be recognized even when it
has been sampled. Conversely, without adequate sampling, even the most accurate
evaluation scheme can not recognize the native configuraton if it has not been generated.
The molecular docking problem in particular is further complicated by the thousands of
degrees of freedom available to interacting atomic assemblies. Even when constraining the
components to only six translational and rotational degrees of freedom, the docking problem
is a difficult one because there are still myriads of possible configurations. Heuristics must

be invoked to direct sampling and ensure computational tractability.
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We previously have reported a descriptor-based rigid-body method (DOCK) to
address the molecular docking problem [3-5]. More recently, an investigation into
orientational sampling issues was undertaken [6]. That study presented the juxtaposition of
sampling with optimization: are known binding modes retrieved more effectively with
intensive sampling alone or with modest sampling and a post-docking refinement? The
favorable effects of rigid-body minimization as a post-docking tool were clearly evident -
steric clashes were resolved, scores were improved significantly, and experimentally observed
geometries were reproduced more accurately. Unfortunately, the implementaton was
impractically slow. In this paper, we describe an enhancement to the minimization method,
achieving nearly a 50-fold increase in speed. This accelerated rate now permits
incorporation of the refinement directly into the docking process. Every configuration
generated can be optimized in the context of the receptor, thus capturing the power of
minimization as a post-docking scoring tool in the evaluation phase of docking. We shall
also show that on-the-fly minimization improves sampling, further supporting the close

relationship between sampling and scoring.

Despite advances in computational resources which make features such as on-the-fly
optimization more palatable, the time spent in the refinement is still large when compared
with the time spent sampling. If one could judiciously reduce the number of orientations
actually optimized, however, the refinement bottleneck might be dissipated. We describe
progress toward this goal with a technique we refer to as “degeneracy checking.” Given the
large number of spatially distributed descriptors and atoms involved in molecular docking, it
is not surprising that there are many ways of pairing them which give rise to “similar”
geometric orientations. This is obviously the result of over-sampling in certain regions. In

the absence of refinement, this over-sampling provides a sort of rigid-body minimization
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itself. A better way to optimize local interactions is to find only one orientation per “family”
(r.e. mode of binding) and energy-minimize that orientation, while never again paying close
attention to further orentations generated in that family. By removing so-called

“degenerate” configurations, many non-informative minimizations are avoided.

Following the work of Meng e# a/. [6], this paper delves further into issues related to
sampling and refinement in molecular docking. We investigate the tractability and utility of
on-the-fly optimization, with and without coupling to a degeneracy checking protocol. The

current sampling scheme used in DOCK is evaluated in light of these data.

Table 1. Test systems.

PDB Resol. Receptor Docked ligand Ligand Receptor
entry (A Atoms*  Spheres
1gst 2.2 glutathione S-transferase  glutathione 20 114
2gbp 1.9  D-galactose/D-glucose B-D-glucose 12 75
binding protein
3cpa 2.0  carboxypeptidase A glycyl-L-tyrosine 17 44
3dfr 1.7 L. casei dihydrofolate methotrexate 33 72
reductase
4dfr 1.7  E. coli dihydrofolate 2,4-diamino-6- 13 86
reductase methyl pteridine
6rsa 2.0  ribonuclease A uridine 3’-phosphate 21 47

2 Number of non-hydrogen ligand atoms.
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METHODS

Test Systems

Six well-determined structures of ligand-receptor complexes available in the
Brookhaven Protein Data Bank [7] were selected for analysis ( Table 1): 1gst (glutathione S-
transferase: glutathione [8]), 2gbp (D-galactose/D-glucose binding protein: B-D-glucose [9]),
3cpa (carboxypeptidase A: glycyl-L-tyrosine [10]), 3dfr (L. cases dihydrofolate reductase:
methotrexate [11]), 4dfr (E. co/ dihydrofolate reductase: methotrexate [11]), G6rsa
(ribonuclease A: uridine vanadate [12]). The 2gbp, 3cpa, 4dfr, and 6rsa systems have been
used in previous investigations of sampling [6] and scoring issues [5], as has the 3dfr system
[4,13]. For reasons noted in earlier work [5], the docked ligands for the 4dfr and G6rsa
systems differ from the complexed ligands; they are 2,4-diamino-6-methylpteridine and
uridine 3’-phosphate, respectively. The 1gst complex has proven a difficult one to
reproduce with the current site characterization, so we introduce it as a stringent test of

methods.

Preparation for docking for all systems was carried out as described previously [5] -
we give only an overview here. For each system, all water molecules and ions were removed
and the ligand and receptor were separated. A molecular surface of the receptor binding
pocket was computed with MS [14]. The program SPHGEN [3] was used to generate a
negative image of the binding pocket by filling the molecular surface with overlapping
spheres of varying sizes. The number of spheres generated for docking is given in Table 1.
Hydrogens were added to both ligand and receptor in standard geometries. CHEMGRID [5]
was used to generate the force-field scoring grid (0.30 A resolution). DOCK force-field

scores are approximate intermolecular interaction enthalpies, comprised of a 6-12 Lennard
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Jones van der Waals term and a Coulombic electrostatics term. Van der Waals parameters

and partial atomic charges were derived as before [5]. For electrostatic calculations, a 10.0-A

cutoff and dielectric function of € = 4r were used, where ris the interatomic distance.

Force-field Score Optimization

A rigid-body minimizer, affecting only the six intermolecular rotational and
translational degrees of freedom, was incorporated directly into the DOCK scoring scheme.
The simplex technique of Nelder and Mead [15] is employed, with slight modifications in the
convergence treatment. Because the simplex method requires no derivatives, it lends itself
to optimization on a jagged potential surface. The function that is minimized is the grid-
based force-field score of Meng ef al [5]. One change to the standard DOCK force-field
scoring van der Waals parameter file was also required, however - polar hydrogens were
given a small (0.6 A) non-zero radius. This was necessary to prevent the minimizer from
taking advantage of the large electrostatic attraction that would result from a charged,
volumeless hydrogen approaching an oppositely charged nucleus. Construction of the initial
simplex allowed up to 1.0 A translation and 0.5 degrees of rotation. Minimization
convergence is treated in a two-stage fashion. Convergence within a simplex occurs when
upper and lower bounds concur within 0.2 kcal/mol. Completion of a simplex signals a
restart, initiating a new simplex. The minimization is deemed complete when a restarted
simplex fails to reduce the force-field score by more than 1.0 kcal/mol. Other parameter
values for simplex construction or convergence ctiteria resulted in slower and/or premature

convergence (data not shown).

Explicit comparisons between the simplex minimizer and the quasi-Newton method

published previously [6] were carried out using the stand-alone programs DOCKMIN_SIM and
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DOCKMIN_DFP (distributed with DOCK 3.5) where the effect of optimization could be
isolated. For each system, one DOCK run at an intermediate sampling level was chosen in
which between 400 and 60O orientations were written. These output ofientations were
subject to stand-alone minimization. Performance was assessed for both minimization
techniques in each of two modes: continuum (using exact interatomic distance calculations)
and grid-based (using pre-calculated interaction scores). Stand-alone minimizaton was
performed with default parameters. Trilinear interpolation [5] was utilized for all grid-based

force-field scoring.

Degeneracy Checking

Problem Description

Degeneracy checking aims to remove geometrically similar orientations of the ligand
to reduce the number of time-consuming minimizations. To be maximally efficient, such a
protocol must operate without knowledge of atomic coordinates, as placement of the ligand
into the context of the receptor (the “orienting” phase [2,16]) requires a significant
investment of CPU resources. The removal of degenerate configurations after otrienting
would be much less advantageous than removal before this time-intensive step. The
difficulty then lies in deciphering where in the active site an orientation lies based solely on
the sphere-atom pairings involved in the match. Furthermore, the degeneracy checking
algorithm must be able to perceive when the same geometry has been produced with different
Sphere-atom pairings. Consider the simple model depicted in Figure 1, with E representing the
“receptor,” F the “ligand,” and circled points the atoms and spheres to be matched. Using a

three-node match, one can superimpose F onto E by the pairings b3, c4, d5. However, the
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4 5 c d
3E b e
2 1 aE

Figure 1. Hypothetical, two-dimensional degeneracy checking example.

See text. E represents the receptor, F the ligand; spheres are numbered and atoms are

lettered.

matching of a2, e6, d5 produces the identical geometric orientaton. Given the latter
pairing, the algorithm must recognize that this will generate an orientation degenerate with

the former.

Degeneracy Check

When a unique orientation is found (eg the very first match), the new procedure
records the nearest sphere to every atom in the ligand — this information is, of course,
dependent on the orientation relative to the receptor. Every subsequent orientation must be
checked for degeneracy, ie has this geometry been seen before? To avoid wasting
considerable time orenting the ligand with respect to the receptor, only knowledge
concerning the sphere-atom pairings involved in the match may be used for assessing
degeneracy. A simple check to see if all pairings occurred simultaneously in a previous
unique match imparts the answer. Note that the nearest sphere to every atom in the ligand
for unique matches must be recorded to allow detection of similar geometries produced by

different pairings.
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Information Storage and Retrieval

Simply saving a list of all matches for each possible sphere-atom pairing would
require allotting a tremendous amount of memory (particularly since Fortran does not
support dynamic memory allocation). With the current dimensions in DOCK, this brute
force approach would require 500 (max/ig, the maximum number of ligand atoms) by 120
(maxpts, the maximum number of receptor spheres) by at least 10,000 unique matches at four
bytes per integer, or a 2.4Gb array. As much of this array would be empty, methods for
compacting it can be devised. We choose hashing, employing open addressing with double
hashing as described by Knuth [17]. A hash table allows the storage of only non-zero
elements of the 3-dimensional array mentioned above, with clever methods of retrieving
information given a hash code. The hash code is a function of one sphere-atom pairing and
dictates where in the table matches containing this pair can be found. Thus, given one
sphere-atom pairing, one can quickly retrieve all other orientations which contained this
pairing.

Sensitivity Reduction: virtual spheres

All that is required for differentiating orientations is a small set of way points in the
active site. Here, a way point is merely a geometric descriptor which signals the occupancy
by the ligand of a particular portion of the active site volume. A typical active site will be
represented by on the order of 50-100 spheres, an excess for such a simple task. Each way
point describes a particular volume within the site, the size of which is generally inversely
proportional to the number of way points. A ligand orientation is described by the way
points its atoms “see.” The more way points used, the more discerning the algorithm will be
in differentiating active site volume: fewer degenerate orientations will be removed because

more matches will be considered unique. The goal here is the opposite: to reduce the
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number of orientations passed through to the minimizer. The number of way points can be
reduced easily by clustering the sphere set (“true spheres”) to generate a reduced set of
“virtual” spheres. We average all neighboring (within some distance ssph) true spheres into
one virtual sphere with a single-linkage clustering algorithm. This creates an even
distribution of way points throughout docking space. It is these reduced virtual spheres,
rather than full set of receptor spheres, that are used only in the degeneracy checking
process. The nearest virtual sphere to each point on a cubic lattice is stored for rapid access
during degeneracy assessment, analogous to the utilization of a force-field scoring grid for

interaction evaluation.

Degeneracy Stringency: wobble

Another method for increasing the number of degenerate otientations removed is to
tolerate error in comparing the sphere-atom pairings with those in unique matches. This
feature is termed “wobble” (borrowing the term from codon mismatch in protein synthesis),
as a non-zero number of “mistakes” is permitted in the degeneracy check. The predictable
effect of introducing wobble is to increase the number of degenerate orientations because

binding modes are smeared out over a larger volume.

Safety net

Because the first orientation in a family is deemed the representative of a particular
binding mode, the depiction of this binding mode is highly dependent on the quality of this
orientation. All future orientations in this family will be considered degenerate to the initial
member. If the quality (e.g force-field score) is very poor, then this binding mode is unfairly
tepresented. It would be beneficial to afford popular binding modes renewed chances at
locating an optimal representative. The parameter degenerate_save_interval dictates how often a

degenerate orientation must be found in a given family before orienting and minimizing
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another member. This feature has the desirable effect of smoothing sampling over all

binding modes.

Configurational Sampling

DOCK version 3.5 was run in single mode for all docking studies. The matching
algorithm for generating ligand orientations remains unchanged from that in DOCK 2.0 [4].
Because the method for orientation generation defines how configurational sampling is
done, we summarize the matching algorithm. Ligand orientations are produced by matching
all distances among (a minimum of) four non-hydrogen ligand atoms to complementary
distances among receptor spheres. Distances are first computed relative to a seed “node”, a
node being any one sphere-atom pairing. All possible combinations of ligand atoms with
receptor spheres are employed as seed nodes. Ligand atoms and receptor spheres are then
placed into bins based upon the distance from their counterpart in the seed (first) node. As
four nodes are required to form a match (a cligue), the three bins furthest from the ligand
atom of the seed node are explored. For each of these three bins, every atom in the bin is
paired with every sphere in the corresponding receptor sphere bin. The second node of the
growing clique is thus drawn from the first (furthest) bin. Every sphere-atom pairing from
this bin results in a possible second node, as only one distance need be complementary and
the complementarity of this distance is guaranteed by the bin architecture. The third and
fourth nodes are sought in the second and third furthest bins from the seed node. However,
with each node beyond the second, additional complementarity checks must be made to
insure that new nodes are compatible with 4/ existing nodes, not just the seed node.
Compatibility in DOCK’s matching algorithm is defined as agreement of two distances to

within some tolerance.

84



Sampling and Minimization in Docking Chapter 4

The number of configurations (matches) generated and thus the level of sampling
performed is under user control through five parameters (all in units of Angstroms). In
addition to the matching tolerance, the user controls the ligand bin size, receptor bin size,
ligand bin overlap, and receptor bin overlap. Enlarging bin sizes results in a greater number
of atoms or spheres per bin, and a corresponding combinatorial expansion in possible
matches. The overlap parameters smooth the discrete nature of the bin architecture and
increase sampling by merging portions of neighboring bins. Of the thousands of matches

typically generated for a DOCK run, only a subset is written out subject to user-specified

score cutoffs. Here, all orientations were examined that had negative ( ie. favorable) force
field scores. To insure that timing results were unbiased by slow 1/O routines, coordinates

for acceptable matches were never written to disk.

Performance Evaluation

To obtain a clear picture of the impact of new features related to sampling, it is vital
to examine performance over a diverse array of sampling parameters. In contrast to prior
investigations related to sampling issues [4-6,13], where at most a handful of different
sampling levels were examined for a particular system, here we examine DOCK’s ability to
reproduce experimentally observed complexes over a continuum of sampling conditions.
Rather than arbitrarily choose a few select combinations of bin parameters, we opt to vary
two sampling parameters independently in discrete increments over a large range. Our
method is as follows. The two parameters to be varied are the bin size and bin overlap. We
set both the ligand bin size and receptor bin size equal to the variable bin size. Similarly, we
set both the ligand bin overlap and receptor bin overlap equal to the variable bin overlap.

Finally, we set the matching distance tolerance to be equal to the s« of the bin size and the

85



Sampling and Minimigation in Docking Chapter 4

bin overlap. The dependence of the distance tolerance on the bin parameters insures that all

distance compatibility assessments for growing cliques are made with similar stringency.

Bin sizes and bin overlaps ranged in increments of 0.05 A from 0.05 A to between
0.40 A and 1.00 A. In general, bin parameters were no longer incremented when runtimes
began to exceed several minutes. This protocol led to a few hundred individual single mode
DOCK runs per system, enabling a statistically significant analysis of result quality versus
CPU tme. For each DOCK run, a record was kept of the number of matches attempted, the
best force-field score obtained, the root-mean-square (rms) deviation of the orientation
having the best force-field score to the experimentally observed orientation (hydrogens were
not included), and the amount of CPU time invested. All acceptable matches were formed

from exactly four nodes and tolerated no more than two bad contacts.

For evaluation of new technology, three sets of runs as described above were
performed for each system: once using traditional DOCK without new features, once with
on-the-fly force-field score minimization, and once with on-the-fly force-field score
minimization coupled to degeneracy removal. Data were transformed into a success- versus-
effort format as follows. Effort was quantified in two ways: by the number of matches
attempted, and by the amount of CPU time required. Success was also measured in two
ways: by whether the rms deviation of the best force-field scoring orientation was within 1.0
A of the observed mode, and by whether the best force-field score obtained was within
some cutoff (typically 5 kcal/mol) about the global minimum. The global minimum force-
field score was taken as the best force-field score seen by any of the DOCK runs for that
system. Thus, this extremum represents the best among no fewer than several million
configurations. Effort is binned on a logarithmic scale: within each effort bin, a probability

of success was computed by dividing the number of successful DOCK runs in the bin into
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the total number of DOCK runs falling in the bin. A seven-point moving average was used

to smooth plots.

Sampling Robustness

To assess whether failure by DOCK to reproduce experimentally observed
geometries generally results from deficiencies in sampling or in scoring, we isolated the
effects from sampling. By removing scoring restrictions and analyzing only agreement in
Cartesian space between docked orientations and the observed binding mode, the precision
of the sampling algorithm is revealed. A set of DOCK runs with sampling level varied as
described above was thus performed in which all orientations within 2.5 A rms deviation
from the experimentally observed configuration were written out, regardless of force-field

score.

Hardware

All calculations were carried out on a Silicon Graphics 200MHz R4400 Indigo2

workstation (Silicon Graphics, Inc., Mountain View, CA) with 128Mb of physical memory.

RESULTS

Sampling Robustness

The ability of DOCK’s sampling algorithm to locate the experimentally observed
binding mode is illustrated in Figure 2. For each system, those sampling levels (indicated by
the number of matches attempted) which produced an orientation within 2.5 A rms

deviation, regardless of score, are plotted. It can be seen that for all receptor-ligand
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complexes explored here, the matching algorithm is robust enough to find the native
configuration. With the exception of the 1gst system (Figure 2a), a few hundred to a
thousand matches are sufficient to locate an orientation within 1.0 A rms deviation. This
point highlights the robust nature of the sphere description and matching algorithm used in
DOCK. Having demonstrated that the sampling method is adequate, it thus becomes a task

for scoring schemes to recover the native mode as the optimal configuration.

Figure 2, a-f. Rms deviation vs. matches tried.
(following pages) The best rms deviation to the experimentally observed configuration seen,
regardless of force-field score is plotted as a function of number of matches attempted.

Each point represents a single DOCK run with distinct sampling parameters.

88



Sampling and Minimization in Docking Chapter 4

1gst
25
A ° * 9
o o
20
* o 00 e 00
* o
< ¢ o o o ¢
"’15 Y * o hd
g ' X
')
o . 00 D0 M0
5 *de o
® e oo ale o
§1.0 *—0—0—¢- * XXX
.
®* o o
05 r——
0.0
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2a.
25
2.0 >
L
0. 'Y

—-—
<
*
*poeere o o
%

o o ¢ 6 o ¢

. LR
0.5 . . -~ 7Y oo o
o M SUPS P IV ot o
o w o l{' Vet o oo 1}}00{}‘00"8‘“;‘,““
0.0 t
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2b.

89



Sampling and Minimigation in Docking Chapter 4
3cpa
25
. o ¢
20 ; ,
*Y e,
— * o0 o
-s L 2R 2
15 -
$ .
s L K K J *
E 1.0 s‘—r“c’*‘i I
% 0’0"0’0‘0 oo
o 0000 © *
o ® & eluwmes
0.5 w—w—‘-m,
L 2K J AX . '
0.0
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2c.
3dfr
25 v
* *
20 -
% e
—
.< L )
E 1.5
i
E 1.0 +
o o L ]
[ 2 *
* > [ ] L 2 * L
. .
» ® [ R0 he R OMYQYos 00 0
40&... @ o o o
05 TTTT 2 T T e
e ¢ ¢ 060 0 *
0.0
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2d.

90



Sampling and Minimization in Docking

Chapter 4

4dfr
25
2.0
2 o oo . .
A 4
c 15
(<]
8 O
2 AR J oo o
3 o o v
® 1.0 S | 00 00000 o
E
= ol® o
R TRY XN
L LN
0.5 x‘ev‘m
[N I N 4
* HBNOWIOWPIN & %O
XM XXX
0.0
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2e.
6rsa
25
¢ o d e o o
o o o
2.0
. ) MO AR I *
A S. F¥ 42 31T LIRS e o o
— [ 2K J
<
c 1.5 ® 00 6 o o0
g 00 00 PO BVOO
.§ . 000 00d
o e o
o %
g 1.0 2 * *
o 00 o o '0‘
- * sevjwe®NN
¢ ® o o °
0.5 o0 oo o @
O P o 00c00cctmpee
® e 0000 ¢ o
0.0
10 100 1,000 10,000 100,000 1,000,000
number of matches
Figure 2f.

91



Sampling and Minimization in Docking Chapter 4

Minimizer Performance

To verify that a fast rigid-body optimization suitable for incorporation into DOCK
could operate as effectively as the more resource-intensive method explored by Meng e# a/.
[6], we compared the ability of minimization techniques to refine pre-existing DOCK
output. Table 2 juxtaposes the performance of the grid-based simplex minimizer with that
of the continuum-mode quasi-Newton Davidon-Fletcher-Powell (DFP) [18] method
described previously [6]. Approximately 500 orientations obtained from an intermediate
sampling level DOCK run for each system were subject to post-DOCK optimization.
Between 30- and 75-fold faster operation is achieved by implementing the simplex using pre-
calculated interaction scores on a lattice. The near-unit slopes and reasonably high
correlation coefficients between the optimized scores indicate result quality is both balanced
and comparable. The offset favoring the continuum DFP by 1-2 kcal/mol is attributable to
the use of exact interatomic distances rather than trilinear interpolation among pre-calculated
grid scores. Convergence radii for the two minimization techniques are of similar
magnitudes. We take as a measure of convergence radius, or the capacity to pull distant
structures into a local minimum, the rms deviaton occurring during minimization. The
simplex operating in continuum mode and the grid-based DFP demonstrated performance

intermediate to the two methods presented in Table 2 (data not shown).
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Table 2. Performance comparison of minimization methods.

System CPU time per ligand (sec.) rms deviation (A)* Correlationb
continuum DFP  grid simplex continuum DFP  grid simplex
1gst 3.10 0.070 0.00 to 3.77 0.10 to 5.31 #=0.77
1.04+0.63 1.09+0.63 y=0.88x-2.30
2gbp 1.47 0.039 0.00 to 3.26 0.11 t0 2.70 #=0.80
0.76 £ 0.46 0.81 £044 y=0.97x-0.83
3cpa 2.93 0.062 0.00 to 3.93 0.00 to 5.78 #=0.86
0.91 £ 0.67 0.95+0.72 y=1.01x-0.76
3dfr 3.92 0.115 0.00 to 4.77 0.07 to 3.57 #=095
1.14 £ 0.76 1.09+£0.65 »=101x-1.03
4dfr 2.72 0.037 0.00 to 1.95 0.00 to 2.10 #=0.87
0.50 £ 0.29 0491028 »y=1.00x-1.30
6rsa 2.02 0.064 0.00 to 5.14 0.00 to 6.56 #=0.88
1.37£0.98 1.39+096 »=0.99x-1.28

2 rms deviation from starting position is given as minimum and maximum values, followed by average *

standard deviation; hydrogens were not included in calculations.

approximately 500 DOCK output orientations for each system.

Values represent minimization of

b Correlations of continuum DFP force-field scores () sersus grid simplex force-field scores (x).
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On-the-fly Optimization and Degeneracy Checking

The performance impact of on-the-fly force-field score optimization and degeneracy
checking was gauged via success- versus-effort analyses in a three-stage approach. A set of
runs with variable sampling parameters was performed for DOCK in “natve” mode
(without any new technology), for DOCK with force-field score minimization, and for
DOCK with force-field score minimization coupled to the degeneracy checking protocol.
The range of sampling parameters, number of DOCK runs, and total configurations
generated for each set are enumerated in Table 3. A grand total in excess of 2,500 DOCK
runs covering a wide range of sampling conditions has allowed a comprehensive analysis of

tradeoffs between configurational exploration and rigid-body optimization.

[Footnotes to Table 3]

* “native” refers to DOCK runs in which neither force-field score minimization nor degeneracy checking was
used. “min” refers to DOCK runs in which force-field score minimization was used without degeneracy
checking. “min+deg” refers to DOCK runs in which force-field score minimization was used in conjunction
with degeneracy checking.

b Increments of 0.05 A were used within these ranges.

< The number of DOCK runs examined is in some cases less than the bin ranges would indicate for three
possible reasons: runtimes began to exceed several minutes, convergence at 100% in the success-versus-
effort plots had been reached, or the maximum number of allowable unique matches for degeneracy
checking had been exceeded.

4 Minimum force-field score (kcal/mol) observed over all DOCK runs for each system.

¢ For bin sizes of 0.55 to 1.00 in the 3cpa native DOCK runs, bin overlaps ranged only from 0.55 to 1.00, hence
only 300 runs resulted. This was an effort to obtain more high-sampling runs.

f Degeneracy parameters: wobble = 2, vsph = 1.5, degenerate_save_interval = 10.

8 Degeneracy parameters: wobble = 2, vsph = 2.0, degenerate_save_interval = 25.
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Table 3. Sampling conditions explored in methodology evaluation.

System DOCK  Binsize Binoverlap DOCK total# matches/ global

features* range (A)® range (A)® runsc matches second minimum9

1gst native 0.05-0.50 0.05-1.00 200 18,833,108 2647  -49.037
min 0.05-0.40 0.05-0.80 128 2,421,887 83
min+degf 0.05-0.50 0.05-1.00 128 1,783,514 626

2gbp native 0.05-0.50 0.05-1.00 200 14,270,188 4187  -24.538
min 0.05-0.50 0.05-0.50 100 306,144 52
min+degf 0.05-0.50 0.05-1.00 126 956,378 281

3cpa native 0.05-1.00 0.05-1.00 300 28,582,470 2566  -47.188
min 0.05-0.50 0.05-0.50 100 117,713 78
min+degf 0.05-0.50 0.05-1.00 162 1,597,427 626

3dfr native 0.05-0.40 0.05-0.80 128 7,136,487 2863  -70.945
min 0.05-0.40 0.05-0.40 64 125,421 326
min+degt 0.05-0.40 0.05-0.80 111 2,616,774 1882

4dfr native 0.05-0.50 0.05-1.00 200 6,207,365 2354  -33.916
min 0.05-0.50 0.05-0.50 100 180,282 36
min+degf 0.05-0.50 0.05-1.00 152 1,951,826 293

6rsa native 0.05-0.50 0.05-1.00 200 2,834,980 1731 -66.003
min 0.05-0.50 0.05-0.50 100 68,953 68
min+degf 0.05-0.50 0.05-1.00 171 1,493,590 596

Table 3 footnotes are given on previoss page.

Figure 3 illustrates, for each of the six receptor-ligand systems, the probability of

locating an orientation with a force-field score within 5 kcal/mol of the global minimum as a

function of the number of matches attempted. It is readily apparent that the use of force-

field score minimization consistently outperforms native DOCK in this respect. This is to

be expected: both methods generate the identical orientations but the former is afforded an

optimization of intermolecular interactions, an operation which can only improve results. In
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the limit of ideality, coupling to a degeneracy checking protocol would show identical
behavior to minimization alone, when effort is measured by number of matches. This is
because on a match-per-match basis, force-field score optimization on its own defines the
maximal envelope of result quality. In actuality, we see that our degeneracy checking
method, although in some cases (3cpa, G6rsa) reasonably close to the outer envelope,
generally falls intermediate to DOCK with and without minimization. Note that in two
systems examined here (Igst, 3dfr), native DOCK is completely unable to locate an
orientation close to the global minimum in the absence of refinement, even when sampling
on the order of one million configurations. Plots of success in placing the best force-field
scoring orientation within 1 A rms deviation of the experimentally observed configuration as
a function of number of matches tried parallel nearly identically the force-field score success

plots in Figure 3 (data not shown).

Figure 3, a-f. Force-field score success vs. matches tried.

(following pages) The probability of locating an orientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of number of matches attempted.
“dock” represents native DOCK, “min” represents DOCK with on-the-fly minimization,
“mindeg” represents DOCK with on-the-fly minimization and degeneracy checking. The
absence of a curve for native DOCK in some systems indicates that no successful run ever

occurred.

Figure 4, a-f. Force-field score success vs. CPU time.

(following pages) The probability of locating an otientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of CPU seconds required. The
key is as given in the legend for Figure 3.

96



Sampling and Minimigation in Docking Chapter 4

1gst M min Omindeg M dock |

100%

probability of score success

Figure 3a.

100%

80%

40%

probability of score success

20%

10 100 1,000 10,000 100,000

Figure 3b.

97



Sampling and Minimization in Docking Chapter 4

Emin Omindeg @ dock]

100%

80%

60%

40%

probability of score success

20%

0% +—————+—+
10 100 1,000 10,000 100,000 1,000,000

number of matches

Figure 3c.

3dfr H min Omindeg @ dock|

100%

80%

60% -

40%

probability of score success

20%

0% -

number of matches

Figure 3d.

98



Sampling and Minimigation in Docking Chapter 4

4dfr B min O mindeg @ dockj

100%

2

#

*

probability of score success

3

0%
10 100 1,000 10,000 100,000
number of matches
Figure 3e.
6rsa {l min O mindeg B dock |

probability of score success

10 100 1,000 10,000 100,000

Figure 3f.

99



Sampling and Minimization in Docking Chapter 4

1gst |Omindeg M min M dock|

100%

probability of score success

0.1 1
CPU seconds

Figure 4a.

2gbp W min Omindeg Mdock|

100%

5 3 3

probability of score success

2

Figure 4b.

100



Sampling and Minimization in Docking Chapter 4

3cpa |Omindeg Mmin @ dock|

100%

probability of score success

0.1

Figure 4c.

3dir B min O mindeg @ dock

probability of score success

Figure 4d.

101



Sampling and Minimizgation in Docking Chapter 4

4dfr [l dock O mindeg H min‘

100%

probability of score success

20%

0.1

CPU seconds
Figure 4e.

6rsa | mindeg Mmin M dock

100%

60%

40%

probability of score success

20%

CPU seconds

Figure 4f.

102



Sampling and Minimization in Docking Chapter 4

In practice, however, the primary concern for molecular docking is not how many
configurations are examined, but rather how much computer time is required. Because each
optimization takes on average one hundred times longer to carry out than a single score
evaluation (data not shown), DOCK runs employing force-field score minimization are likely
to become intractable unless sampling is reduced. But can sampling be reduced sufficiently
to counteract this great disadvantage while maintaining high-quality solutions?  Figure 4
depicts the transformation from effort measured in numbers of configurations to effort

gauged by computational demands.

Excepting only the 4dfr system (Figure 4¢), we see that using on-the-fly optimization
is dramatically more efficient than native DOCK at arriving at near-global-minimum
solutions, despite the much higher per-match resource requirements ( Table 3). The
implementation of the degeneracy checking protocol, while equally superior to native
DOCK, does not display as dramatic improvements when compared with minimization
alone. In one case (6rsa) we see significant gains, in two cases (lgst, 3cpa) slight
improvements, in two cases (2gbp, 4dfr) no difference, and in one case (3df) slightly worse
behavior. Degeneracy checking generally manifests its advantages at lower sampling levels,

as evidenced by the early successes seen in the 1gst, 3cpa, and 6rsa complexes.

Figure 5, a-f. Rms success vs CPU time.
(following pages) The probability of the best force-field-scoring orientation having a rms
deviation to the experimentally observed configuration of less than 1.0 A is plotted as a

function of CPU seconds required. The key is as given in the legend for Figure 3.

Figure 6, a-f. Force-field score success vs. CPU time with variable cutoff.
(following pages) The probability of locating an orientation having a force-field score within
a variable cutoff of the global minimum is plotted as a function of CPU seconds required.

The cutoff in kcal/mol is given in the key. Curves apply to native DOCK only.
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Although not applicable to database searches, a common metric in evaluating docked
complexes is the similarity to an observed configuraton. In Figure 5 we present the
probability of the best force-field-scoring orientation having a rms deviaton to the
experimentally observed orientation of less than 1.0 A. We note that natve DOCK,
although it suffers from convergence problems, is quite successful at short run-times in
several systems (2gbp, 3cpa, 3dfr, 4dfr). The ability of DOCK to locate the known binding

mode so rapidly (see also Figure 2) hints at why implementing optimization is so powerful.

To validate the selection of a 5 kcal/mol threshold for “success” about a f orce-field
score global minimum, we have examined the effect on the success- versus-effort plots of
varying this threshold. Figure 6 shows the DOCK native runs plotted using success
thresholds of 2.5, 5.0, 7.5, and 10.0 kcal/mol. In all systems but 2gbp it is apparent that a
2.5 kcal/mol cutoff is too stringent for a fair comparison with minimization. The 5.0
kcal/mol and 7.5 kcal/mol envelopes look similar in the 2gbp, 3cpa, 4dft, and 6rsa systems,
indicating that a plateau has been reached. 5.0 kcal/mol is a reasonable upper limit on the
noise in making comparisons among different ligands in a database scan. The 10.0 kcal/mol
threshold is too tolerant for a sensible comparison, particularly given that this value
represents 20-40% of the global minimum for the majority of the test cases ( Table 3). The
analogous series of envelopes for minimization with and without degeneracy checking are

nearly constant across the entire 2.5 - 10.0 kcal/mol range (data not shown).

One can envision a simple alternative to introducing force-field score optimization
into the docking process: merely performing a stand-alone minimization on the output of a
native DOCK run. Given the negligible cost of a single grid-based simplex refinement
(Table 2), this could conceivably be an efficient method for improving results. We have

entertained this possibility in four of the test systems, and compare post-DOCK
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minimization to native DOCK and DOCK with on-the-fly optimization in Figure 7. In two
systems (2gbp, 3cpa) post-DOCK minimization is actually the most effective method for
short run-times, but displays convergence problems as runtimes lengthen, particularly in the
case of 3cpa (and also 1gst). A shortcoming of such a method is illustrated in the Grsa
system, where post-DOCK minimization is barely an improvement over native DOCK.
Possible explanations for why this behavior is likely to be a common instance are taken up in

the Discussion.

Figure 7, a-d. Force-field score success vs. CPU time.

(following pages) The probability of locating an orientation having a force-field score within
5 kcal/mol of the global minimum is plotted as a function of CPU seconds required. “dock”
represents native DOCK, “min” represents DOCK with on-the-fly minimization, “postmin”
represents native DOCK with stand-alone grid-based simplex minimization performed on

the output.
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DISCUSSION

Perspective

Molecular docking has become an increasingly popular tool for drug discovery in
recent years [19]. To be truly useful, docking methods must successfully integrate effective
site description techniques, robust configurational sampling algorithms, and accurate
evaluation schemes in an efficient manner. Our focus here is on a feature which ties
together sampling and evaluation: interaction optimization. Interaction optimization is
designed to improve how two components fit together, but the physical movement involved
in the refinement impinges directly upon the apparent performance of the sampling
algorithm. Thus, our investigation into the utility of rigid-body refinement in DOCK

necessarily probes configurational search methods.

Interaction optimization is not new to automated molecular docking methods [20-
23). However, to our knowledge, this article represents the first published systematic
exploration of sampling space for a docking method. We analyze in excess of 2,500 docking
runs, not simply an arbitrary slice of the vast configurational universe. This study enables an
objective analysis of the tradeoff between computationally inexpensive, discrete optimization
in the form of configurational sampling and the considerably more expensive, continuous

optimization in the form of rigid-body refinement.

Our assessment of the results is colored by our standpoint on molecular docking as a
tool for database searching toward lead discovery. This perspective carries two biases
associated with it: 1) we prefer the amount of CPU time spent per ligand to be on the order

of seconds, not minutes; and 2) we rank binding modes and ligands by interaction scores,
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not rms deviatons to observed configurations. The latter point implies that efforts should
be directed toward locating the global minimum in a scoring function, not necessatily toward
identifying a known binding mode. We make the assumption that the experimentally observed
orientation is in fact at the global minimum. It is therefore the task of scoring function developers
to insure coincidence between the global optimum of the evaluation scheme and the
observed mode. For all six systems studied here, the global minimum of the force-field
score developed by Meng e# a/. [5] does indeed correspond to the crystallographic solution

(to within 0.5 A rms deviation).

Robustness in Sampling and Optimization

The grid-based simplex minimizer introduced here displays close to a 50-fold average
speed increase over the quasi-Newton method used in the previous investigation [6], with no
loss in accuracy. This dramatic improvement has enabled the incorporation of refinement
into the docking process, albeit still at considerable computational expense when compared
with the speed of matching or force-field scoring alone (Table 3). We note that native
DOCK processes about 2000-3000 matches per second, while DOCK with on-the-fly
minimizaton only about 2% of that. The actual cost of one minimization is 100 times that
of a single force-field score evaluation (data not shown), but the full effect of this penalty is
not realized within DOCK because not all orientations are minimized (only those which pass
the bad contacts filter). We see in Figure 4 the nearly across-the-board ability of on-the-fly
optimization to not only counteract this handicap, but significantly surpass native DOCK in

efficiently locating low-energy solutions. Why should this be so?

The compelling plots presented in Figure 2 speak to the robust nature of the sphere

description and matching algorithm currently implemented in DOCK. The fact that the
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sampling method can readily retrieve configurations extremely close to the experimentally
observed configuration indicates that failure to identify this mode as optimal lies with
scoring and not with sampling. The effect of minimization, then, is to salvage the many
orientations generated near the crystallographic mode which would otherwise be thrown out
due to steric clashes with the receptor.  Optimization allows maximal use to be made of all
information provided by the matching algorithm. We expect on-the-fly optimization to benefit
database searches most by rescuing ligands for which the proper binding mode is sampled
but for which no low energy orientations can be found in the absence of refinement. Two
such examples appear in this work, 1gst and 3dfr ( Figure 4 and Figure 6), and their recovery
underscores the utility of on-the-fly optimization. The tolerance of a non-zero number of
bad contacts within DOCK is imperative to taking full advantage of the potential of

minimization as a rescue device.

Degeneracy Removal

The degeneracy checking protocol described here has met with mixed success.
Although typically 90% of orientations are deemed degenerate and not examined further,
this savings under the current implementation does not significantly outweigh the cost of
assessing degeneracy. The advantages are manifested primarily at shorter runtimes, as
evidenced in the 1gst, 3cpa, and G6rsa systems (Figure 4). This capacity will find use in
database searching applications when CPU resources are quite limited, as not all ligands are

likely be sampled adequately with the same set of sampling parameters.

The judicious selection of fewer orientations for optimization is obviously a
compromise between refining all and refining none. By refining all orientations, resources

are spent insuring each orentation is within a local minimum, not sampling the vast
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configurational universe (akin to a depth-first search). Conversely, by refining no
orientations, resources are spent exploring configuration space without particular regard to
the quality of each orientation (a breadth-first search). Refinement is relatively expensive
computationally and configurational exploration inexpensive, so the optimal tradeoff comes
when configuration space is thinly but evenly sampled with refined orientations. The early
advantages evidenced with the degeneracy removal protocol at short runtimes are the result
of exactly this tradeoff. At longer runtimes when inexpensive configurational sampling is
more intense, minimization alone generally performs at least as well as when coupled with

degeneracy removal.

We believe the largest hurdle in devising a more successful degeneracy removal
protocol lies in the selection of a representative for each binding mode. In this work, we
choose the first orientation found in a binding mode as that family’s “parent” for assessing
degeneracy. If this orientation should be a poor representative, further orientations in that
family will nonetheless be considered degenerate and thrown out, regardless of how they

might have scored. The degenerate_save_interval alleviates this bias to some extent, but

functions as a crutch rather than a solution.

There are many degeneracy parameters to be varied, but their effects have not been
examined systematically here. In preliminary exploration, we find that »gph of 1.5 to 2.0 A
for creating virtual spheres, wobble of 2, and degenerate_save_interval of 10 to 25 appear to offer
a reasonable compromise between speed and accuracy. Although a hash table is used to
reduce the memory requirements of storing information about unique matches, the memory
demands of degeneracy checking are still quite steep. When the hash table begins to fill,

retrieval from the table also becomes more costly and performance begins to degrade.
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Hence, we again advocate the use of degeneracy checking for low to medium sampling levels

only.

Prospects for Post-DOCK Optimigation

The appropriate control experiment for the introduction of on-the-fly minimization
entails performing a DOCK run without minimization and subsequently optimizing the
output in the same fashion. In this way, we reveal the benefits imparted by minimizing all
DOCK orientations as opposed to minimizing only the best unoptimized orientation. The
most obvious danger of selecting only the lowest-energy unoptimized orientation is that
other orientations may lie higher in energy but in a deeper well, so that upon optimization
these other orientations would have finished lower in energy. This possibility is borne out
by the shuffling of pre- and post-optimization force-field scores (data not shown).
Surprisingly, the 2gbp and 3cpa systems perform quite well at short runtimes, but along with

1gst begin to suffer from convergence problems as runtimes lengthen.

The convergence problems shown in the 1gst and 3cpa systems and the lack of
improvement seen in the 6rsa system ( Figure 7) are likely to be common occurrences for the
following reasons. Finding an orientation in the observed binding mode is a necessary but
not a sufficient condition for obtaining a force-field score near the global minimum after
optimization. Because on-the-fly optimization refines every orientation, it is afforded the
luxury of the chance that any of the orientations near the observed binding mode ( Figure 2)
will refine near to the global minimum in force-field score. In contrast, DOCK without on-
the-fly optimization has available only o#e orientation deemed best by an unoptimized force-
field score, with the additional constraint that this one orientation must be in the observed

binding mode (Figure 5). DOCK without on-the-fly optimization therefore gets a# most one
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chance to refine an orientation into the global minimum if post-docking optimization is
performed. Thus, it is to be expected that situations such as that displayed by 6rsa will occur
frequently. Nonetheless, we see that performing a post-DOCK optimization is in all cases
superior, and in many cases substantially so, to performing a native DOCK run without any

refinement whatsoever.

Matching Algorithm Discontinutties

A disconcerting consequence of the bin architecture for ligand-site matching is that
results obtained at a low level of sampling are not guaranteed to be a subset of results
obtained at a higher level of sampling. This point has been noted previously [6]. Although
in general this is not the case, this artifact can lead to strange behavior, particularly when
examining arbitrary slices of sampling parameters. The analysis of hundreds of DOCK runs
for each system in this study enables us to collect statistically significant success probabilities
and bypass much of the problem. One will note, however, that the plots in Figure 2 through
Figure 7 do not display monotonic functions: the jagged nature of these curves is the result
of the discontinuity arising from the bin architecture. Fortunately, the physical convergence
of orientations into local minima by on-the-fly minimization mitigates the severity of this

artifact.

Sampling Guidelines

One of the most instructive findings from the great number of DOCK runs
examined is insight into the amount of sampling required to obtain a desired probability of
success. The success- versus-effort plots carry a great deal of information, and can be used as

guidelines for performing DOCK runs appropriate to available resources. For instance, one
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might be interested in performing a large database search where each ligand would be
allotted the minimum resources to obtain 100% success. In this case, one might calibrate
sampling conditions to expend an average of 10 CPU seconds per ligand (or on the order of
1000 to 3000 matches; Figure 3). In another example, one might be interested in analyzing a
small database with the assurance that each ligand was well into the 100% success plateau.
For this case, one might calibrate sampling conditions to expend 100 CPU seconds per
ligand. It would be reasonable to construct a success- versus-effort plot for a known ligand, if
available, for performance gauges customized to the system being studied. In this manner,
the success-versus-effort plots provide a valuable mechanism for setting sampling levels in

molecular docking.

CONCLUSIONS

We have coupled a fast and effective grid-based, rigid-body simplex minimizer with
the robust configurational sampling algorithm used in DOCK to allow on-the-fly force-field
score optimization in a tractable manner. This coupling, despite the heavy resource
demands of refinement, results in a docking strategy which is computationally more efficient
at retrieving experimentally observed configurations than docking in the absence of
optimization. In some cases, only with the use of on-the-fly optimizaton could the
observed binding mode be identified as the global minimum in the scoring function. On-
the-fly optimization salvages poor orientations which would otherwise be discarded, thus
making maximal use of information afforded by the sampling algorithm. The removal of
geometrically similar orientations to circumvent redundant optimizations is a tradeoff
between expensive refinement and inexpensive sampling - our implementation shows mixed

success, but with greatest potental at short per-ligand runtimes. Finally, while not as
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effective as on-the-fly optimization, it is clearly wiser to perform a post-docking
optimization than none at all. We find that success- versus-effort plots for gauging docking
performance lend valuable insight into the setting of sampling levels for the inevitable

compromise between result quality and computational resources.
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ABSTRACT

Computational methods for drug design have benefited tremendously from the
burgeoning field of structure determination. The availability of high-resolution structural
information has promoted innovative techniques for exploring receptor-ligand interactions.
The greatest hindrance to structure-based strategies remains the inability to accurately and
consistently estimate ligand binding affinities. Automated design protocols examine
thousands of putative receptor-ligand configurations and demand rapid feedback on the
quality of the association. Towards this goal, we present the development of an empirical
scoring scheme calibrated against binding affinities for experimentally observed complexes.
Emphasis is placed on accuracy in predictions, robustness in handling structural diversity,
and speed of evaluation. Effective interaction descriptions coupled with an all-possible-
subsets multiple linear regression analysis have led to a model capable of reproducing
observed binding free energies to within 1.7 kcal/mol for a large, complex data set. The
calibration data set, the largest yet reported, consists of 103 structurally diverse receptor-
ligand complexes spanning over twelve orders of magnitude in binding affinity. ‘The
performance of the empirical model is contrasted with a molecular mechanics function used
in a popular molecular docking package. It is crucial for evaluaton methods which aim to
be generally applicable in structure-based design strategies to consider both enthalpic and

entropic contributions to binding free energy.

Keywords: structure-based drug design, empirical scoring schemes, interaction evaluation,

binding affinity prediction, molecular docking

124



Predscting Ligand-Receptor Binding Affinity Chapter 5

INTRODUCTION

The wealth of high-resolution structural data furnished by crystallographic and
spectroscopic techniques has kindled structure-based drug design strategies. There are now
a variety of computational techniques which may be useful towards drug discovery in the
context of detailed receptor information (Kuntz, 1992; Greer ef @/, 1994; Guida, 1994;
Lybrand, 1995). In striving to identify agents which will bind to a receptor of known
structure, these techniques are divided broadly amongst those which dock molecules and
those which build them. Docking methods scan databases of pre-existing compounds for
complementary ligands (Blaney & Dixon, 1993; Kuntz ef a/, 1994; Good & Mason, 1995);
building (“de novo design”) methods create ligands tailored to the site of interest (Lewis &
Leach, 1994). While core technology is well-established, 7.e. configurational sampling for the
former and molecular assembly for the latter, each approach manifests characteristic
weaknesses: docking methods are limited by the diversity of the compound library, while

building methods suffer from concerns regarding synthetic feasibility.

All structure-based approaches, however, are limited by the accuracy with which the
affinity of proposed ligands can be gauged. Correct relative ranking of putative ligand-
receptor associations is prerequisite to a useful strategy for drug design. Hence, it is the
evaluation scheme which scores interactions between components that now commands the
most attention. Scoring functions must be rapidly evaluable, as docking and building
strategies typically consider thousands of ligand-receptor complexes. Complementarity itself
may be evaluated in many ways (Cherfils & Janin, 1993; Gschwend ez a/, 1995). One of the
most popular methods for assessing small-molecule binding, ushered in by the early work of
Goodford (1985), employs a molecular mechanics force-field. More recently, empirical

schemes have met with significant interest (Bohacek & McMartin, 1992; Horton & Lewis,
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1992; Krystek ez al, 1993; Bohacek & McMartin, 1994; Bohm, 1994a,b; Vajda ef al, 1994;
G.R. Marshall, personal communication; A.N. Jain, personal communication; M.A. Murcko,
personal communication). The free energy perturbaton (FEP) methods are currently the
most rigorous and most accurate for determining relative binding free energies (Beveridge &
DiCapua, 1989; Kollman & Merz, 1990; Straatsma & McCammon, 1992). Despite vatious
approximations geared towards performance enhancements (Gerber e al, 1993; Aqvist e al,
1994; Warshel ef a/., 1994), these techniques remain restricted by staggering computational
demands and to small molecular systems, precluding their use for screening thousands of

ligands of varying chemical framework.

Our goal in this study is to derive an empirical scoring function that can rapidly
estimate affinities over a structurally diverse array of receptor-ligand complexes. By rapid,
we desire that several evaluations be performed in one second, not one evaluation in several
minutes or hours. This requirement is dictated by the vast number of arrangements which
must be considered within the molecular docking and de mow design paradigms. These
structure-based design tools are intended to generate many unnatural associations expressly
so that novel, potent binding agents can be discovered. To engender an ability to cope with
such foreign molecular combinations, the evaluation function should be calibrated against a
large and complex data set. Thus, rather than borrow a functional description parameterized
against an endpoint different from that which interests us, we seek to derive a function
designed to estimate absolute binding free energies for use specifically in automated

structure-based drug design techniques.

In particular, we aim to deviate from molecular mechanics-based functions.
Molecular mechanics has been parameterized to reproduce internal properties of small

molecules, such as dipole moments, torsional batriers, and heats of formation (Clark, 1985).
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When used for assessing intermolecular interactions, “force-field scores” report an enthalpy
of interaction, while the quantity of most interest in structure-based drug design is a free
energy of interaction. In our experience, force-field scores are effective at identifying the
optimal binding mode of a single ligand (Meng e# a/, 1992; Gschwend & Kuntz, unpublished
results), but perform poorly at predicting even relative binding energies across a panel of
ligands. Entropic contributions are likely to be fairly similar for different binding modes of
one ligand, but clearly can vary substantially from one ligand to the next. Without the
entropic half of the equation we have little hope of predicting binding affinides for
structurally diverse ligands. It is noteworthy, however, that successful, system-specific
examples of enthalpic correlations with binding affinity have been reported ( e.g. Holloway ez
al., 1995). Here, we emphasize the need for robustness across structurally unrelated ligands

binding to varied receptors.

To compensate for the omission of entropic contributions by molecular mechanics,
several researchers have augmented the standard description with empirical terms (Novotny
et al, 1989; Wilson e al, 1991; Krystek ez al, 1993; Vajda et al, 1994). While this has
appeared useful, we nevertheless choose to dispose of traditional electrostatic and van der
Waals representations for several reasons. First, we avoid problematic issues such as
selection of partial charge set and choice of dielectric behavior, both of which remain
subjective yet can have profound effects on results. Second, we bypass the need for
hydrogen placement. To illustrate, consider hydroxyl hydrogens - on serine, threonine, and
tyrosine residues, for example. Preference for hydrogen bond geometry about these
functionalities is weak (Baker & Hubbard, 1984; Thanki e 2/, 1988; Tintelnot & Andrews,
1989), while molecular mechanics-based schemes require selection of an exact hydrogen

position. Interaction strength is thus spuriously sensitive to the (typically arbitrary)
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placement of this hydrogen. Finally, and perhaps most importantly, the over-sensitivity to
precise atomic position, rooted in the steep van der Waals potential, undermines the
robustness of molecular mechanics-based functions. A softer potential favors generality

across diverse systems, though possibly at the expense of accuracy in details.

Automated structure-based design methods seek ligands which exploit some aspect
of complementarity to the receptor of interest. An attempt to simulate molecular
recognition is made for ligands which the receptor has never encountered (Gschwend ¢f 4/,
1995). The receptor is modeled in a pre-defined conformation, frequently one molded to a
particular ligand, yet it would be beneficial for design strategies if the receptor were allowed
to respond to the presence of each putative ligand. An implicit breathing on the part of
interacting components can be introduced by a tolerant evaluation function. For example, a
soft scoring potential might permit slight atomic interpenetrations without penalty, in effect
implying a resolving conformational change. The concept of so-called “soft docking” hails
from protein-protein docking investigations in which structures of unbound components are
docked to reproduce the observed complexed structure (Wodak & Janin, 1978; Shoichet &
Kuntz, 1991; Jiang & Kim, 1991; Walls & Sternberg, 1992). The success of such methods
hinges upon a local insensitivity that fosters conformational shifts upon complexation. By
adopting some of these ideas, we aim to introduce generality in the scoring function’s ability
to predict binding affinities.

As early researchers in the protein docking field have noted, even the simplest
scoring schemes perform virtually as well as more advanced molecular mechanics treatments
(Shoichet & Kuntz, 1991; Cherfils & Janin, 1993). There is thus the potental to derive an

evaluation method which is not borrowed from the objectives of another branch of

computational chemistry, but rather, which is parameterized to reproduce precisely the type
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of values we are attempting to predict. In the same vein as Bohm’s work (1994a), our
empirical evaluation scheme is derived by calibration against experimentally determined
affinities of ligand-macromolecule complexes for which structural information is available.
The general procedure consists of amassing a series of receptor-ligand complexes [typically
from the Protein Data Bank (Bernstein ef 4/, 1977)] with known affinities, devising various
calculable terms which describe physical interactions of interest, and attempting to obtain
affinity correlations while varying coefficients for each term. Approaches vary widely in the
data set composition, the terms employed in correlations, and the method in which the
terms are computed. We use restrictive, pre-defined criteria for selecting complexes to
comprise a calibration set which is significantly larger than any yet reported: nearly 150
complexes form our basis set. The use of multiple linear regression with an all-possible-
subsets protocol enables careful analysis of the relative importance of each proposed

contribution to affinity.

The absolute assessment of ligand-receptor affinity remains one of the greatest
challenges for computational chemistry. Theoretically-rigorous, resource-intensive methods
such as FEP can in the best cases estimate binding energies to within one kcal/mol of
experiment (Beveridge & DiCapua, 1989; Kollman & Merz, 1990), and only for systems of
limited complexity. We would be foolish to believe that simple empirical schemes, with
resource requirements many orders of magnitude smaller, could supplant such methods.
What we seek is simply a guide for rapidly screening huge numbers of diverse ligand-

receptor associations generated by automated structure-based design strategies.
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METHODS

Data Set

All ligand-receptor complexes analyzed in this study have been obtained from the
Protein Data Bank (PDB) (Bernstein ez a/, 1977). A list of 237 complexes from the PDB for
which experimental affinity data have been determined, generously provided by Keske &
Dixon (unpublished results), was combined with the list complexes taken from the PDB
used by B6hm (1994a). The consolidated list was stripped of complexes which were either
unrefined or model-built, or which contained covalently-bound, incompletely-modeled, or
macromolecular ligands. Affinity data and experimental conditions for the assay and for
structure determination were located in the literature for each of the 144 remaining
complexes. Affinity data vary considerably in assay methods, measurement error, and type
of affinity reported; a handful are ICsp values, but most represent K;, K4, or Km
determinations. We present the affinity data as pK i (-log Ki) or pICsp values. Over twelve
orders of magnitude in binding affinity are spanned by the data set. The structural data are
diverse (64 different receptors are represented) and of high quality (85% of the complexes
are solved to 2.5 A resolution or better). Of 144 complexes, 126 display associated water
structure. (See Appendix C for the complete complex listing - note that, as discussed below,

not all complexes in this listing were used in the calibration data set.)
Preparation of Receptor-Ligand Complexes
Ligand

Each ligand was separated from the remainder of the complex and further processed

with the Sybyl modeling package (version 6.1; Tripos Associates, St. Louis, MO). Atoms
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were assigned appropriate types and hydrogens added in standard geometries. After
correcting formal charges, partial atomic charges were computed by the method of Gasteiger
and Marsili (Gasteiger & Marsili, 1980, 1981; Marsili and Gasteiger, 1980). Note that we
define ligand in a structural, not a functional, sense: in some cases the “ligand” to which the

affinity refers is a cofactor.

Receptor

Solvent molecules, if present, were extracted and saved as a separate endty. All
remaining atoms (Z.e. save for those in the solvent or in the ligand in question), including
metal jons, glycosylation sites, and other ligands and/or cofactors, were treated as the

receptor. Hydrogens were added in standard geometries.

Evaluation of L igand-Receptor Affinity: Molecular Mechanics

The molecular mechanics method of interaction evaluation (Meng 7 a/, 1992) used
in the DOCK molecular docking program (Kuntz e a/, 1982; Shoichet et al, 1992) was
applied to each ligand-receptor complex to gauge the performance of proposed empirical
schemes. This force-field score, an approximation to intermolecular interaction enthalpy, is
comprised of Lennard-Jones van der Waals and Coulombic electrostatics terms (Meng 7 4.,
1992). To alleviate contacts in the experimental structure deemed unfavorable by the force-
field score, each ligand was subject to a quasi-Newton rigid-body optimization as described
by Meng e a/. (1993). The DOCKMIN_DFP minimization program, distributed with DOCK
3.5, was run in continuum mode with default parameters and a 4 r dielectric (where ris the
interatomic separation). Resulting optimized force-field scores were used as one estimate of

ligand-receptor binding affinity.
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Evaluation of Ligand-Receptor Affinity: Empirical Scoring

Overview

The empirical evaluation of affinity proceeds through the calculation of many terms
describing interactions or properties of the ligand-receptor system. These properties are
used in multlinear regression analysis to select terms which contribute most strongly to
observed affinity. Thus, many more terms are computed than appear in the final functional
form. The following sections outline the major phases in deriving an empirical affinity-
prediction model: 1) evaluation of pairwise intermolecular interactions, 2) assessment of
surface area burial, 3) lattice implementation, 4) calculation of interaction-independent

terms, and 5) model refinement.

Evaluation of Pairwise Intermolecular Interactions

Labeling. All ligand, receptor, and solvent atoms are first assigned a chemical label
which will be used in assessing interactions. These labels are derived from Sybyl atom types.
Each atom receives only one of ten possible labels: hydrophobe (sulfur, phosphorous,
silicon, halogens, and non-aromatic carbon atoms not adjacent to a charged atom), aromatic
(aromatic carbon and nitrogen atoms), acceptor (hydrogen bond acceptors), donor
(hydrogen bond donors), polar (hydrogen bond acceptors and donors), imidazole (nitrogens
in imidazole rings), plus (positively charged atoms, not including monatomic cations), minus
(negatively charged atoms), water, cation (monatomic cations, eg Ca?*, Zn?*, Mg?*). Atoms
are initially assigned generic labels which are refined by detecting progtessively more specific
functional groups. Functional groups perceived include ether, aniline, hydroxyl, imidazole,
guanidyl, amidine, carboxylate, nitro, sulfoxide, sulfone, sulf(on)ate, and phosph(on)ate.
Hydrogens receive the same label as their parent atom. Throughout the labeling procedure,

formal charges in accord with physiological pH are assigned to functional groups and split
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among component atoms (e.g. carboxylate oxygens each receive half of a negative formal

charge, guanidyl nitrogens each receive one-third of a positive formal charge).

Charge Smoothing. The strength of interaction between a charged group on the
ligand and a charged sidechain on a receptor will be dependent on whether the sidechain
neighbors other charged residues on the receptor. We introduce such receptor polatization
effects to capture qualitatively some aspects of short-range electrostatics. All charged
sidechains on the receptor within typical hydrogen-bonding distance of an oppositely
charged sidechain are demoted from charged status. That is, the component atoms (for
example, carboxylate oxygens of an aspartate sidechain and guanidyl nitrogens and
hydrogens of a neighboring arginine sidechain) would be re-assigned an uncharged chemical
label indicative of their hydrogen bonding capabilities alone. The neighbor-defining distance

is set by the user.

Interaction Evaluation. A matrix, supplied by the user, indicates an interacton
type associated with each possible pairing among the ten labels. As an example, donor-
acceptor, polar-acceptor, and polar-donor pairings might provide a minimal set of neutral
hydrogen bonds and therefore would all assigned the same interaction type. The matrix
used in this work is shown in Table 1. Each interaction type is attributed a cutoff distance
which defines the interacting step function: an interatomic separation less than this value
receives unit contribution, while interatomic separations greater than this value receive zero
contribution.  Ligand and receptor non-hydrogen atoms are examined pairwise for
contributions appropriate to the interaction type defined by their atom labels. The

evaluation protocol proceeds in three stages.
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The first stage entails assessing interactions among charged and hydrogen bonding
atoms. A simple tally of the number of contacts for each interaction type involving these
atoms (codes A - F in Table 1) is maintained. Interactions between two charged atoms

(codes A, B) are modulated by the product of the formal charges on the component atoms
(e.g a carboxylate oxygen interacting with a guanidyl nitrogen would contribute -0.500 X

0.333 = -0.167 interaction units). To extract a number of specific hydrogen bonding terms

which might contribute to affinity, more extensive analysis is performed.

Table 1. Interaction matrix.
Numbers represent atom labels and letters indicate interacton types as given in the

accompanying key.

: Atom Label | code | 12137456 718]°9]10%
unassigned 0 N A AN A 0 0 A O I I
- hydrophobe 1 JIH|H| I | T |1 ]T1T]1]1]1 I
aromatic 2 JIH|G |1 |1 |11 |1 |@|T1]1
acceptor 3 Jl1}J1|DJC|C|]E}|F|C|]E| C
donor 4 Jlrjrjc|opjc|F|E|JC|E| C
polar 5 fjitrj1rjclc|cleE|lE]|JC|E]| C
plus 6 {J|1|1|E|]F|E|B|A|E|B| E
minus 7 JJ1| 1| F|E|E|A|B|E]|A]| A
water 8 Jl]t1|1}]JcjCc|C|E|]E|JC|E] C
cation 9 JI|1T|1|E|F|E|B|A|E|B| E |
imidazole 10 JjlirjrjclJ]c]|]cl|EJAJC]E] C
Interaction code Interaction type
A charge-charge attractive
B charge-charge repulsive
C hydrogen bond
D acceptor-acceptor/donor-donor clash
E charged hydrogen bond
F charged acceptor-acceptor/donor-donor clash
G aromatic
H hydrophobic
I hydrophobic-polar clash
J unassigned with anything
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For each pair of atoms which could potentially form a hydrogen bond, the
interacting geometry is analyzed. The angular dependence of hydrogen bond strength is
gauged typically by the deviaton from linearity of the two heavy atoms and intervening
hydrogen.  Unfortunately, crystallographic methods provide no direct information
conceming hydrogen position. Although the position of many protein hydrogens is well-
defined (e.g amide protons), there is ambiguity, as discussed earlier, around functionalities
such as hydroxyl groups. To circumvent this difficulty, hydrogen bonds involving poorly-
defined hydrogens are gauged by two angles involving only non-hydrogen atoms. These two
angles are computed among X:D-A and D-A:X atoms (D = donor, A = acceptor), where X

represents the adjacent heavy-atom providing the best possible angular geometry. There are

Table 2. Angular classes used for evaluation of hydrogen bond geometry.

Class Angle Bounds  Donor Acceptor
(degrees) Functionalities Functionalities
ideal 0-45° amide nitrogen

secondary sp3-nitrogen

narrow 75 - 165> hydroxyl secondary sp2-nitrogen
ether

carboxylate

wide 75 - 180> primary sp3-nitrogen hydroxyl
primary sp2-nitrogen carbonyl
phosph(on)ate
sulf(on)ate
sulfoxide, sulfone

* Angle is measured as D:H - A (D = donort, A = acceptor).

b Angle is measured as X:D - A or X:A - D (D = donor, A = acceptor, X = adjacent heavy atom).
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three classes, “ideal”, “narrow”, and “wide”, which define the angular tolerance about the
interacting atom. These angular classes and the functionalities to which they apply are given
in Table 2. Geometry is classified as either “good”, “bad”, or “none” according to the
angular class of the interacting atom. Angles which fall within the bounds listed in Table 2
are deemed good. Angles which do not deviate more than 15 degrees from the bounds are
deemed bad. Both angles must be good for the hydrogen bond geometry to be deemed
good overall; if either of the angles is bad, the hydrogen bond geometry is also deemed bad.
In the case of angles involving water molecules or monatomic cations where no adjacent
non-hydrogen atoms exist, only one angle is used in the geometry analysis. A tally of the
number of good hydrogen bonds, bad hydrogen bonds, charged hydrogen bonds (good
hydrogen bonds where only one partner is charged), and hydrogen bonds to water is thus

kept.

The second stage of the evaluation protocol examines atoms which were not
involved in an interaction in the first stage (interaction codes G - I in Table 1). Atoms which
participated in hydrogens bonds can not, for example, be penalized at this stage for clashes
with hydrophobic atoms. Polar atoms are permitted at most one clash with hydrophobic
atoms (code I). Interactions between hydrophobic atoms and aromatic atoms or other
hydrophobic atoms (code G) are based on surface area. That is, for every such interacting
pair, the solvent accessible surface area of each atom and it’s attached hydrogens, if any, is
summed. We add the constraint, however, that the surface area for any atom may be

included only once.

In the third and final stage of the evaluation protocol, after all interacting atoms have
been paired, terms relating to the collective state of paired or unpaired atoms are assessed.

The number of hydrogen bonds left unsatisfied in the complexed state is evaluated. The
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atomic formal charges buried (where buried is defined as being involved in an interaction)
on the part of the ligand and receptor are summed. The number of single bonds buried in

the ligand and receptor is also tallied in an effort to gauge a conformational entropy penalty.

Assessment of Buried Surface Area

The use of surface area as a measure for solvation effects has considerable precedent
(Hermann, 1972; Chothia, 1974; Reynolds e 4/, 1974; Eisenberg & McLachlan, 1986; Sharp
et al, 1991). We compute the amount of solvent-accessible surface area buried upon
complexation by methods described in Appendix A. Buried surface area is subdivided based
on atomic label and molecule of origin (receptor or ligand), giving rise to twenty possible

terms. Surface area calculations are performed with a 1.0 dot/A 2 density.

Lattice Implementation

Like the force-field score computation, the empirical interaction evaluation can
benefit from pre-computing certain terms and storing them on a lattice. As angular
information needs to be calculated for classifying hydrogen bonds, gauging hydrogen bond
strength using a latdce is difficult. ~We may still garner significant performance
enhancements by simply storing the identify of every receptor atom near to each lattice
point. This implementation allows the examination of only #earby receptor atoms rather than
all receptor atoms when assessing the interactions a ligand atom makes with the receptor

(“nearby” is defined as the maximum interaction radius, usually about 4.0 A).

Storing a list of nearby receptor atoms for every lattice point requires a great amount
of memory. As Fortran does not support dynamic memory allocation, arrays must be
dimensioned at compile-time, not run-time. The need for pre-dimensioning forces sizing of
arrays based on worst-case behavior. One can, however, implement a simple innovation to

permit dimensioning based on average-case behavior. Rather than storing an array of nearby
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atoms for each lattice point, one can catenate the list of nearby atoms for all lattice points
into one array. Only one array need therefore be pre-dimensioned. By maintaining pointers

into this array for lattice point, the receptor atoms near any lattice point are readily retrieved.

The lattice implementation of interacdon evaluation bypasses many needless distance
calculations, thus greatly speeding up evaluation time. We sacrifice memory for the sake of
this efficiency. By altering the storage format, we can cut the high memory requirements
roughly in half. Considerably more troublesome than evaluating pairwise interactions on a
lattice, however, is the assessment of surface area burial on a lattice. Expedient methods for
determining the amount of solvent accessible surface area buried upon complexation using a

lattice implementation are described in Appendix A.

Calculation of Interaction-Independent Terms

In addition to the affinity terms which depend on intermolecular interaction, several
interaction-independent properties are used in model selection. Ligand volume is included
as a regressor, as it might conceivably be proportional to the entropic bonus for removing
solvent molecules from the binding pocket. Several alternative representations of ligand
conformational entropy are invoked, including the number of rotatable bonds in the ligand
and the log of the number of conformations of the unbound ligand. The number of ligand
conformations is estimated in three ways: theoretically, based simply on a factorial
expansion of rotatable bonds; energetically, using the Sybyl systematic search feature; and
rule-based, using Chem-X (Chemical Design Ltd.). The log of ligand molecular weight has
been shown to correlate with the loss of rotational and translational entropy upon
complexation (Williams ef 4/, 1991). Finally, because experimentally determined structures
frequently are obtained under conditions which differ from those of the affinity assay, the

structure pH and assay pH are used as additional regressors.
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Model Refinement

All of the terms described are introduced into the multilinear regression package to
be outlined shortly. Only regressors which significantly contribute to a proposed model
should be included; the optimal model represents a tradeoff between predictivity and the
number of terms involved. The best models which can be derived will therefore result from
a subset and/or combination of the many descriptors charactetized above. The
combination of terms avoids overly complex representations of minor effects and simplifies
interpretations. True orthogonalizaton of all terms is difficult, so introducing contention
between competing descriptions may illuminate which better represents the desired
interaction. Descriptors have been defined to capture forces deemed important for ligand
binding. It is important to bear in mind, however, that whether the terms in a proposed

model sustain the 7ntended physical meaning is a matter of considerable debate.

The manual optimization of adjustable parameters such as the interaction cutoff
distances and hydrogen bonding angles was carried out by iteratively performing the
interaction evaluation and examining models with regression analysis. Note that in this
process, the parameters to be optimized were assumed to behave independently, which
clearly may be a questionable assumption. Improved methods for optimization at this stage,
however, can only increase model performance. The most time-consuming step of the
interaction evaluation is reading receptor and ligand coordinates and surface areas off the
disk. To facilitate the optimization cycle, the interaction evaluation program was rewritten
to sacrifice memory for efficiency. By reading all data into memory only once and entering a
command mode, the user can make changes to the parameter files, evaluate interactions, and
perform regression analysis, all without exiting the program and having to re-read data off

disk. While seemingly a trivial innovation, the amount of memory required for storing
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atomic, coordinate, and surface area data for receptor and ligand of more than one hundred

complexes is tremendous; conservative methods of data storage must be devised.

Regression Analysis: GREMLIN

The Fortran program GREMLIN (an anagram for Multiple LINear REGression) has
been written to facilitate data analysis. This program computes linear regressions against the
observed data for all possible subsets of input regressors using Gaussian elimination. Thus,
given ten input descriptors, 210 or 1024 regressions result (each regressor has the option of
being included or excluded). The use of a constant is optional. Other features of the
analysis package include sorting of data by various metrics, crude graphing abilities, versatile
methods for regression filtering and retrieval, cross-validation, analysis of variance, and

computation of Kendall’s tau statistic *.

To run GREMLIN, the user provides an input file containing all of the calculated and
observed data for each system and for each independent variable, a short description and
optionally intended coefficient sign. Regressions which generate coefficients with signs
different from those specified are tagged and can be filtered out easily. This feature is useful
for imposing preconceived notions upon a particular term (one might not unreasonably
insist, for example, that burial of nonpolar surface area be favorable; regressions which

fortuitously indicate the opposite can be discarded). After statistics have been computed for

# correct—# incorrect

* Kendall’s 1 statistic is defined (Press ¢ ak, 1988) as ; y . Forall "~ % pairs of » observed
n(n —
2

data values, the observed ranking is compared with the predicted ranking for the two values. If the ranking is

the same, #correct is incremented; if the ranking is opposite, #incorrect is incorrect. T ranges from -1.0 (all

rankings opposite) to +1.0 (all rankings correct).
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all regressions, the user may page through sorted regressions sequendally or search for
regressions utilizing particular regressors or number of regressors. Analyzing the variables
involved in the best models as judged by r2-value quickly lends insight as to which
descriptors are the most useful. To assess whether models will have any value outside the
data set, model predictivity is gauged by leave-one-out cross-validation. In this process, each
observation (in this case, receptor-ligand complex) is sequendally left out of the regression
and predicted based on the remaining observations. Cross-validation measures how well a
model predicts data not used in model construction. In our experience, a cross-validated r 2
less than 90% of the fitted r2 indicates bias of the model towards particular observations,
warning of limited predictvity. Kendall’s 7T statistic gauges the ability to rank data rather
than the ability to reproduce it. For automated structure-based strategies such as molecular
docking and de now design, the capacity to rank output is often sufficient to guide discovery
efforts. Following Jain ez a/ (1994), we report T for each model as a useful metric for activity

prediction methods.

Hardware

All calculations were carried out on a Silicon Graphics 200MHz R4400 Indigo2

workstation (Silicon Graphics, Inc., Mountain View, CA) with 128Mb of physical memory.

RESULTS

Preliminary results toward empirical scoring schemes for automated structure-based
design strategies follow. We present performance over a data set consisting of 103 receptor-

ligand complexes for the molecular mechanics scoring function currently in use in the
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DOCK program (Meng e? al, 1992) and for an empirical scoring scheme. Only 103 of the
126 water-containing complexes were included due to parameterization difficulties

. encountered with setting up molecular mechanics evaluation.

The poor performance of the force-field score in estimating absolute binding affinity
is revealed in Table 3. The fitted and cross-validated r?2 values are very low and reflect
standard errors in excess of two log units. Model A, which represents the typical
implementation of the force-field score in the DOCK package, is illustrated in Figure 1.
Virtually the same binding energy is predicted regardless of what is observed experimentally.
Allowing electrostatics and van der Waals terms to vary independently improves the model
(B), in effect implying that a 4r dielectric is sub-optimal. The four-fold scaling of van der
Waals to electrostatics coefficients indicates that perhaps a 16 r dielectric would be more
appropriate. This tendency to reduce the contribution of electrostatics argues that our
characterizaton of electrostatic interactions is insufficient. Note that electrostatics on its

own is completely useless in predicting affinity (a negative q 2 is in fact possible).

Table 3. Force-field score regression models.

Term Coefficients* Regression Statistics®
Model} vdw ele totalff const| n 2 8 F q? T
A -0.0417 4.0534| 2  0.191 2.187 238 0.131 0.305
B ]-0.0852 -0.0205 3.1406) 3 0316 2.020 23.1 0.252 0.409
C ]-0.0823 3.5832| 2 0.283 2058 39.9 0.250 0.401
D -0.0143 57640 2  0.016 2411 1.7 -0.038 0.017

* All coefficients are in pK; units. Coefficients indicate contributions to each regression model by the following
terms: dw = van der Waals component of the force-field score; el = electrostatic component of the force-field
score; fotal ff = sum of van der Waals and electrostatics components; const = constant term in regression.

b Statistics are as follows: # = number of adjustable parameters; 7 = fitted 1% s = standard error of fitted model

(log units); F = fitted model significance given by F-ratio; 4° = cross-validated 1 T = Kendall’s tau statistic.
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Figure 1. Binding energy predictions: minimized DOCK force-field score.

Predicted 5. observed affinity is plotted for 103 receptor-ligand complexes using model A

(Table 3). The diagonal line has unit slope and represents ideality. r 2=0.191, q?=0.131,
§=2.19 (2.97 kcal/mol), 2 adjustable parameters. Force-field scores were optimized with the

quasi-Newton method described in Meng et. a/. (1993).

The ability to reproduce absolute binding affinities with a preliminary empirical
scheme is considerably better. Table 4 presents models involving the use of eight
descriptors which have been found to contribute to the best empirical regression solutions.

Model E utilizes all of these descriptors, while subsequent models (F - M) illustrate the effect
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of dropping each term independently. The amount of non-polar solvent accessible surface
area of the ligand buried upon complexation is the most significant term, while the number
of good-geometry hydrogen bonds and aromatic contacts also play a large role. The least
significant of the terms shown in Table 4 is the entropic penalty measured by the number of
receptor single bonds immobilized upon complexation - note that the sign of the coefficient
varies when other terms are left out. The number of formal charges buried is also a minor
contributor, yet consistently has appeared in the best regression models. The effect of
leaving out both of these terms is given in model N, which, because it involves the fewest
number of terms but maintains predictivity, garners the highest F significance statistic. Our
experience with this data set and thousands of resultant regression models leads us to believe
that the number of buried formal charges is a contribution worth retaining. Thus, we have
settled on regression M, with a standard error of 1.7 kcal/mol, as the working model.
Predicted versus observed affinities obtained using this model are plotted in Figure 2. The
statistical significance and 95% confidence intervals for terms in model M are excellent, as

Table 5 indicates.
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Figure 2. Binding energy predictions: empirical scheme.

Predicted vs. observed affinity is plotted for 103 receptor-ligand complexes using model M
(Table 4). The diagonal line has unit slope and represents ideality. 12=0.745, q>=0.701,
s=1.27 (1.72 kcal/mol), 8 adjustable parameters.

Table 5. Significance of coefficients for empirical regression model M (Table 4).

Term? Coefficient  Standard Error P-value
InpSA 0.0061 0.0007 (11.0%) 1.4 x 1014
burchg -0.2596 0.0884 (34.1%) 4.2x%103
gChg 1.0966 0.1929 (17.6%) 1.4x% 107
gHB 0.2167 0.0319 (14.7%) 9.7 x 1010
bHB -0.6327 0.1227 (19.4%) 1.4x 10
wHB -0.2275 0.0429 (18.8%) 7.3% 107
armarm 0.3145 0.0467 (149 %) 1.3x10°
constant 3.8302 0.3933 (10.3%) 6.0 x 1016

* Term descriptions are as given in Table 4.
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DISCUSSION

The juxtaposition of analyses differing greatly in the number of adjustable
parameters, while statistically reconcilable, nevertheless merits a healthy suspicion. Our
justification for contrasting the two methods is only to evaluate the current DOCK scheme
and highlight direction for improvement. We do not imply that molecular mechanics is
fundamentally flawed, but rather that it is incomplete. The omission of entropic and
solvation effects undeniably contributes to the poor performance of the force-field score at
predicting binding affinities across diverse receptor-ligand complexes. The empirical
regression illustrated in Figure 2, in contrast, does include terms intended to capture both
enthalpic and entropic effects. Moreover, this scheme, unlike the force-field score, has been
derived explicitly to reproduce binding affinities, so it’s improved performance is not
unexpected. The evaluation of the empirical scheme, while not as efficient as the force-field
score, is fairly rapid. About ten evaluations per second are possible, but as the current code
computes many additional terms not used in the regression model, this rate could

conceivably be increased by an order of magnitude.

The descriptors comprising the empirical model can be equated with physical
principles. We prefer to interpret the model in terms of solubilities in different media, 7.e. an
aqueous phase and a receptor-bound phase. Every molecule will have its affinity for a
receptor modulated by one or more terms. Functionalities on the ligand which hydrogen
bond with water, for example, will increase solubility in the aqueous phase, thus decreasing
affinity for the receptor (the negative wHB term). Charged moieties will also favor the
aqueous state, unless a salt bridge can be made with the receptor (negative burchg and
positive gChg terms, respectively). The formation of poor-quality hydrogen bonds between

the ligand and the receptor will once again favor the solvated state (negative 4HB term),
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where hydrogen bonds can optimally be satisfied. However, should good-quality hydrogen
bonds between ligand and receptor be made, these are likely to be stronger than hydrogen
bonds to water due to full unit occupancies of receptor atoms, thus favoring a bound
configuration (positive gHB). ‘The additional favorably entropy of displacing water
molecules on the formation of receptor-ligand hydrogen bonds may contribute to the gHB
term. The removal of hydrophobic surface area from water must entropically also be
favorable - this is reflected by the positive /zpS.A term [two notes regarding this term deserve
mention: first, the coefficient is much smaller than the others because this term is in units of
square Angstroms of surface area; and second, the sum of receptor and ligand nonpolar
surface areas is generally preferable, but removing the receptor portion greatly simplifies and
accelerates the computations (see Appendix A)]. Finally, the placement of aromatic groups
on the ligand adjacent to similar groups on the receptor results in a significant decrease in

aqueous solubility.

The empirical scheme presented here compares favorably with similar investigations
by other researchers. Bohm (1994a) reported a standard error of 1.38 log units and cross-
validated r2 of 0.696 for a set of 45 complexes using five adjustable parameters; Marshall
(personal communication) reported a standard error of 1.15 log units and cross-validated 2
of 0.72 for a set of 52 complexes using in excess of ten parameters through partial-least-
squares (PLS) analysis. Our model with a cross-validated r2 of 0.701 and standard etror of
1.27 log units with only eight adjustable parameters over a data set consisting of more than
100 complexes is very encouraging. Our analysis finds strength in a calibration data set more
than twice as large as any yet reported. In contrast to the work of B6hm (1994a) and of
G.R. Marshall (personal communication), our data set is sparsely populated with instances of

numerous ligands binding to the same receptor. It is our opinion that this introduces some
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bias with respect to the types of interactions being represented and reduces the overall
complexity of the problem as it applies to screening molecular databases. Clearly, both
approaches are valid and informative, but we prefer to stress diversity in our analysis. With a
compilation of nearly 150 complexes, we now are afforded the luxury of subdividing the
data set into distinct structural classes. For example, an analysis of all peptidic ligands or of
all hydrophobic ligands permits the isolation of specific molecular features which are
contributing to interaction strength with different receptors. Conversely, it is important that
a proposed model perform well in reproducing trends amongst different ligands binding to

the same receptor.

In deriving scoring functions, it is crucial to consider interactions relative to a
solvated medium, not a vacuum. For example, we believe that, as a large fraction of
hydrogen bonds are satisfied in aqueous solution (Kuntz, 1971; Williams ef a/, 1991), we
should penalize for hydrogen bonds /st upon complexation (Fersht e# 4/, 1985) rather than
reward for hydrogen bonds “gained” (Jorgensen, 1989; Sali ef 4/, 1991). The use of water
information has and will play a critical role in obtaining a complete representation of
molecular recognition events. Despite much work on the prediction of water binding sites
(Danziger & Dean, 1989; Pitt et a/, 1993), cleverness will be required to rapidly determine

sites for an optimal arrangement of receptor-ligand water-mediated hydrogen bonds.

We have completed a reasonable first step toward rapid and accurate empirical
affinity prediction schemes for use in structure-based design strategies. Many issues remain
to be resolved, leaving much room for future work. The predictivity of proposed models
must be verified on data not included in the calibration set. Leave-one-out cross-validation

is a helpful diagnostic tool for monitoring predictivity, but its usefulness becomes limited
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when the data set reaches the size it has here. Larger test sets of order twenty complexes

will be required to obtain practical estimates of predictive ability.

The incorporation of empirical schemes into molecular docking and de 7ovo design
programs introduces additional complexities. Because automated design strategies generate
many poor molecular arrangements, empirical schemes must be appropriately parameterized
for negative interactions - steric clashes and neighboring like charges, for example. This is
difficult due to the under-representation of such effects in experimentally observed
structures. Our regression model also presupposes information regarding water structure (a
significant contribution: term wHB in Table 4). This vastly complicates the evaluation phase
when each of thousands of putative ligand-receptor configurations must be solvated. A
further complication arises because empirical scoring schemes are calibrated against
experimentally observed configurations. Most, if not all, configurations produced by
automated methods deviate from the observed mode, so the ability to retrieve this mode
from a deviant configuration must be manifest in the scoring scheme. One might envision
calibrating the scoring function against not just one observed configuration of the ligand, but
against several which differ slightly m translation and rotation. This might introduce
sufficient softness in the evaluation scheme so as to permit recognition of a sub-optimal
configuration as the observed binding mode. Finally, we propose the following experiment
as a practical measure of any scoring function’s utility for molecular docking methods. For a
receptor-ligand complex data set such as that described in this work, extract all ligands and
create a structural database. To increase the stringency of the test, this ligand database can
be supplemented with “random” compounds from one of the many commercially available
structural databases. The ligand database is then docked against each receptor in the data

set, saving the best-scoring ligand. The evaluation scheme which most often pairs a receptor
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with its cognate ligand, preferentially to all other ligands in the database, is likely to be a

useful scoring method for molecular docking applications.

Finally, we remark that even the best scoring scheme will not achieve perfect
accuracy. Resource-intensive calculations such as free energy perturbation rarely achieve
accuracies much better than 1 kcal/mol (Beveridge & DiCapua, 1989; Kollman & Merz,
1990), and moreover, experimental affinity determinations are error-prone and subject to
variability in method of ascertainment. However, rapid evaluation methods capable of
predicting binding affinities to within 1 to 2 kcal/mol will prove immensely useful in

structure-based drug design applications.

CONCLUSIONS

The greatest hindrance to structure-based drug design is the inability to accurately
and consistently estimate the affinity of ligands for a receptor. There are nearly as many
ways of assessing molecular interactions as there are design strategies. This study presents
the development of an empirical scoring scheme for use in automated design strategies with
emphasis on robustness over structurally diverse molecular arrangements, accuracy in
absolute binding affinity prediction, and speed of evaluation. A model, calibrated against a
complex set of diverse structural data, has been derived using effective interaction
descriptions and statistical analysis to reproduce observed binding affinities to within 1.7
kcal/mol. This model performs considerably better than the molecular mechanics function
used in the DOCK molecular docking suite. Interaction evaluation methods which manifest
both enthalpic and entropic contributions to binding affinity will display great potential in

drug discovery efforts.
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Appendix A.

Evaluation of Buried Solvent-Accessible Surface Area
Using a Lattice

BACKGROUND

Biological processes occur in an aqueous environment. The energetics of solvent-
solute interactions determine the behavior of molecular associations. The most common
characterization of the extent to which a molecule can interact with solvent involves the
solvent accessible surface area (SASA) (Lee & Richards, 1971). The SASA has been defined
succinctly by Chothia (1975): “For a given atom it is defined as the area over which the
center of a water molecule can be placed while retaining van der Waals’ contact with that
atom and not penetrating any other atom.” Accessible surface areas correlate well with
hydrophobic free energies (Hermann, 1972; Chothia, 1974; Reynolds e# 4/, 1974; Eisenberg
& McLachlan, 1986; Sharp e# 4/, 1991) and merit exploration for incorporation into
evaluation functions for structure-based design strategies. While the construction of a SASA
is easy, the rapid evaluation of changes in area between two states of a molecular system is
not trivial. To be useful for automated design strategies, this evaluation must be capable of
being performed many times per second - herein lies the challenge. I here describe an
efficient lattice-based method for computing the amount of solvent accessible area buried

upon molecular complexation. This method may make a useful addition for addressing
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solvation issues within the existing molecular mechanics force-field (Meng ef al, 1992) or

within empirically derived scoring schemes such as that described in Chapter 5.

METHOD

Surface area generation

A Fortran program, entitled “access,” has been written to generate surface areas of
molecules or SPHGEN (Kuntz e 4/, 1982) sphere clusters. The algorithm is simple. For
each atom, a net of evenly spaced points is placed on a sphere having a radius equal to the
sum of the atom’s van der Waals’ radius and the solvent radius. After laying such a net
around each atom, all points internal (closer than a distance equal to the sum of an atom’s
van der Waals’ radius and the probe radius) are removed. Each point is assigned an
associated surface area. The computation is reasonably quick: to generate a surface having a
density of 5.0 dots/A2 using a solvent radius of 1.4A requires only about 0.1 sec (SGI
200MHz R4400 Indigo2) for a typical ligand and about 10 sec for a 20kD protein. The
program accepts both PDB and Sybyl MOL2 (Tripos Associates, St. Louis, MO, 63117)
formats and can be instructed to use either Sybyl, Amber (Weiner e 4/, 1984), or MS
(Connolly, 1983) atomic radii. Solvent radius and surface density are also under user control.

The output surface format is the same as that of the UCSF MS implementation.

Evaluation of buried surface area on a lattice

Input

Coordinates and pre-generated solvent accessible surfaces are required for both

ligand and receptor (practical implementations, such as that described in Chapter 5, can
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generate the ligand surface on-the-fly without significant penalty). A density of 1.0 dots/A?2
is sufficiently dense for excellent results. MS atomic radii were used for all calculations in

this work.

Lattice Construction

For every point on a lattice spanning the region of interest (see Meng ef al, 1992), a
list is stored of all nearby receptor surface points. “Nearby” is defined as within the a
distance equal to the sum of ligand probe atom and solvent radii. A lattice is saved for
several ligand probe atom radii, generally ranging from 1.2 to 2.2 A in 0.2 A increments to
cover the common range of atomic radii. Thus, using these parameters, six lattices would be
constructed, each containing a list of nearby receptor surface points but varying in the radius
of the probing atom. As more than one lattice is retained in memory, the density of the
lattice must be reduced. A lattice resolution of 1.0 A is sufficient. Implementing lists as
described above is very memory intensive. I use the method detailed under “Lattice

Implementation” in Chapter 5 to reduce memory requirements.

An additional lattice, the occlusion grid, is constructed for the receptor. This lattice
is of higher density (typically 0.3 A resolution) and contains binary values indicating whether

lattice points lie inside or outside of the receptor SASA.

Lattice-Based Burial Evaluation

The evaluation of buried surface area is now simple, given the appropriately
constructed lattices. To assess surface area burial for an arbitrary configuration and/or

conformation of the ligand, the ensuing protocol is followed.

Receptor SASA burial. For every atom in the ligand, the lattice with the probe

radius nearest to the radius of the atom is employed. The lattice point nearest the ligand
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atom is located, and the list of all nearby receptor surface points is extracted. All nearby
receptor surface points are then considered buried by this ligand atom. After processing all
ligand atoms, the surface areas of all receptor points that were buried by this orientation of
the ligand are summed, giving rise to the amount of receptor surface area buried upon

complexation.

Ligand SASA burial. For each ligand surface point, a simple check on the
occlusion grid reveals whether the point (and its associated surface area) lie within the SASA
of the receptor. If so, this portion of ligand surface area is considered buried. A summation
over all buried ligand surface points gives rise to the amount of ligand surface area buried

upon complexation.

“Actual” Burial Evaluation

The amount of surface area buried upon complexation is equal to the sum of the
surface areas of the receptor and ligand minus the surface area of the complex. This total
area of burial can be partitioned into area lost by the receptor and by the ligand. To gauge
the accuracy of the lattice-based evaluation of buried surface area, results were compared
with answers obtained by computing accessible surface areas for the receptor, ligand, and
receptor-ligand complex using the access program. Note that these “actual” buried areas use

exact distances but do nof represent analytical surface area calculations.

Hardware

Calculations were petformed on a SGI 150MHz R4400 Challenge with 256Mb of

physical memory.
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RESULTS

Table 1 compares three methods for computing surface area burial for each of seven
test receptor-ligand systems: actual calculations using a high and low density surface and
lattice-based using a low density surface. Differences between the use of high and low
density surfaces in actual assessments of surface areas amount to only on the order of 1%.
For a fair comparison, the low-density lattice-based evaluation is compared with the low-
density actual calculaton. The errors introduced by using the lattice-based method are
approximately 1-3%. However, the lattice-based evaluation can be performed several hundred
times per second, making it at least four orders of magnitude faster than the actual method (data
not shown), which involves computing and subtracting the surface area of the entire

complex from the sum of receptor and ligand surface areas.

[Footnotes to Table 1]

* Systems are: pcdhfr/flt = P. carinii dihydrofolate reductase and folate; 2gbp/glc = D-galactose/D-glucose
binding protein and B-D-glucose; 3cpa/yg = carboxypeptidase A and glycyl-L-tyrosine; 4dfr/mtx = E. ki
dihydrofolate reductase and methotrexate; 6rsa/urp = ribonuclease A and uridine phosphate; 1fkf/fk5 =
FK506 binding protein and FK506; 3cla/clm = chloramphenicol acetyltransferase and chloramphenicol. With
the exception of the pcdhfr/flt system (see Chapter 3), all are available in the Protein Data Bank (Bemnstein ef

al, 1977).

b Methods for computation are as follows: act 5.0 = actual solvent accessible areas determined by the access
program using a surface density of 5.0 dots/A2. act 1.0 = actual solvent accessible areas determined by the
access program using a surface density of 1.0 dots/A2 grid 1.0 = lattice-based estimation using a surface

density of 1.0 dots/A2. Error is given as the percent error between grid 1.0 and act 1.0 methods.
< In units of A2

d Total buried area is the sum of receptor and ligand accessible areas less the complexed accessible area.
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Table 1. Comparison of surface-area burial estimation methods.

Molecular Accessible Areac Total Contribution© of
System*  Method® receptor ligand complex buriedsd ligand receptor
pcdhfr/flt act 5.0 10882.8 700.6 10589.6 993.8 632.4 361.4
act 1.0 10931.0  701.0 10637.0 9950  629.0 366.0
grid 1.0 989.0  627.0 362.0
error 06% 03% 11 %
2gbp/glc act 5.0 13151.8 347.2 13093.8 4052 3468 58.4
act 1.0 13221.0 347.0 131640 404.0 344.0 60.0
grid 1.0 405.0  346.0 59.0
error 02% 0.6% 1.7 %
3cpa/yg act 5.0 12089.4 4624 119456 606.2  446.0 160.2
act 1.0 12175.0  456.0 12030.0 601.0  437.0 164.0
grid 1.0 607.0  438.0 169.0
error 10% 02% 3.0%
4dfr/mtx act 5.0 8705.6 709.2 8535.8 879.0 548.0 331.0
act 1.0 8745.0  716.0 8588.0 873.0  543.0 330.0
grid 1.0 884.0 545.0 339.0
error 13% 04% 27 %
6rsa/urp act 5.0 71104 4552 7014.4 551.2 337.2 214.0
act 1.0 7088.0  465.0 7001.0 552.0  342.0 210.0
grid 1.0 568.0  343.0 225.0
error 29% 03% 71 %
1£kf/fk5 act 5.0 6049.0 1036.2 6151.6 933.6 542.0 391.6
act 1.0 6061.0 1059.0 6150.0 970.0 565.0 405.0
grid 1.0 963.0 561.0 402.0
error 07% 07% 0.7 %
3cla/clm act 5.0 10856.6  483.8 10744.0 596.4  361.2 235.2
act 1.0 10925.0 483.0 10816.0 592.0  359.0 233.0
grid 1.0 602.0  361.0 241.0
error 1.7% 0.6% 34%
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The lattice-based method offers the further advantage that surface area burial can be
attributed to specific atoms. This makes for trivial implementation of atomic solvation
parameter-based methods such as that pioneered by Eisenberg & McLachlan (1986). One
should be aware, however, that although errors for total molecular surface area burial, as
presented in Table 1, may be small, errors on an atomic basis may still be large. Large per-
atom errors may be opposite in direction, thus masking their presence in the total molecular
area. Naturally, if effective atomic solvation parameter methods are desired, accurate atomic
surface area changes are required. For the 332 total ligand atoms in the seven systems
studied, the atomic errors between lattice-based and actual methods were distributed as
follows: 91% showed exact agreement, 5.7% differed by 1 A2, 1.8% by 2 A2, and 1.2% by 3
A2 (The analogous analysis for receptor atoms is slightly more involved, as the many
internal receptor atoms which do not have any surface area dominate the distribution).
Thus, the lattice-based scheme is quite accurate at reproducing changes in both atomic and

molecular surface areas.

SUMMARY

A highly efficient lattice-based method has been developed for quantifying surface
area changes that occur upon receptor-ligand complexation. Surface area changes computed
by explicit non-lattice-based calculations are reproduced precisely, at an atomic and
molecular level. The algorithm, while memory-intensive, is capable of several hundred
evaluations per second and is dependent on both ligand configuraton and conformation.
These features make it amenable to incorporation into automated structure-based drug

design packages. The ability to compute accessible surface area differences between
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molecular systems afford improved assessments of solvation effects in evaluating receptor-

ligand interactions.
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Appendix B.

MDL SDFile to Tripos MOL2
Database Conversion

BACKGROUND

The advent of scoring schemes that require detailed information concerning atomic
hybridization raises a concomitant need for more accurate automated atom typing in
structural databases used for docking. The empirical scheme developed in Chapter 5, for
example, necessitates a knowledge not only of elemental type, but also of hybridization and
charge state for each atom. The Sybyl modeling package (Tripos Associates, St. Louis,
63117), with which DOCK has had close association in the past (Meng, 1993), possesses a
versatile set of atom types in the Tripos MOL2 file format. Databases prepared for force-
field scoring (Meng, 1993) demanded less stringent standards for atom typing because the
Sybyl atom types were eventually mapped into appropriate Amber (Weiner ¢# a/, 1984) atom
types used in DOCK-format databases. Nevertheless, Elaine Meng made significant strides
toward a useful atom typing scheme for the conversion of Molecular Design Limited (MDL
Information Systems, San Leandro, CA, 94577) structural databases into Tripos MOL2

format and ultimately into DOCK 3.0 databases (Meng, 1993).

Future versions of DOCK will in all likelihood read MOL2 format databases

directly, allowing maximum use to be made of the versatility of this format and bypassing
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the need for yet another database format. While Sybyl has the capacity to read MDL-
format databases, it does a considerably less-than-satisfactory job of interpreting atomic
hybridization and charge states. I here describe an advanced conversion process which is
rapid, easy to use, and most importantly, faithful in recognizing correct Sybyl atom types.
This scheme will benefit scoring methods which make explicit use of atom type information
and may even improve the accuracy of charge computations by providing more precise atom

hybridization states.

METHODS

This conversion process begins with an MDL SDFile (structure data file) containing
structures for any number of molecules. The SDFile is currently obtained by a relatively
painless but terribly slow extraction using the ISIS package (MDL Information Systems, San
Leandro, CA, 94577) and specially designed ISIS PL scripts. This task will not be described
here, except to mention that the output should contain molecule names, registry numbers,
and elemental identities, three-dimensional coordinates, connectivities and bond orders for
each atom. Hydrogen atoms are occasionally present in MDL database structures, but, as
their presence can not be relied upon, are ignored and added a later step. There are two
major stages in the conversion process: 1) atom typing, and 2) hydrogen addition and charge
computation. The first stage is performed by the Fortran program “sdf2mol2,” while the

second stage is performed by the Sybyl SPL program “sybdb.”
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sdf2mol2

Description

This program takes as input an MDL SDF database file and writes out a Sybyl multi-
MOL2 file. This step types all atoms using Sybyl’s fairly versatile and descriptive atom types.

Usage
sdf2mol2 -i SDFile -o MOL2file [-b start_at stop_at]

where SDFile is the name of the input MDL SDFile; MOL2f1ile is the name of
the output muli-MOL2 file; start_at and stop_at are optional
bounds for starting and ending structure numbers; ¢g to process only the

first hundred structures, use

sdf2mol2 -i SDFile -o MOL2file -b 1 100

Speed
~10 min for 100,000 structures (SGI R4400 Indigo2)

Method

0. Read in SDF structure. Obtain connectivity and bond orders. Define hybridization
of each atom based on the highest bond order.

1. Search for rings. A breadth first search is used to find the smallest number of

smallest rings.

2. Assign generic atom types. Atoms other than C, O, N, S, and P receive an atom type
the same as the atom name - this is useful for atoms which have only one possible
hybridization state (e.g. halogens) and atoms such as metals. All phosphorous atoms
become P.3 as this is the only possible phosphorous atom type. Atoms C, O, N, and

S get assigned types based on their hybridization as inferred from the bond orders.
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E.g. doubly-bonded nitrogens become N.2, triply-bonded carbons become C.1, et

Nitrogens with either zero or 4 neighbors are automatically assigned N.4.

3. Detect aromaticity. All rings which contain only X.2 or X.ar atoms are considered
aromatic, subject to the following constraint (please note that the Hiickel 4n+2 rule
is not employed). Rings which have all X.2 atoms but only as a result of exocyclic

double bonds, e.g. quinones, are not assigned as aromatic.
4. Treat specific functionalities.

a) Carboxylate-like oxygens are typed. This includes carboxylates,
sulf(on,in)ates, phosph(on,in)ates, and nitros. For purposes of this
discussion, a singly-connected atom refers to one which has only one
neighbor atom, regardless of the bond order of that bond. A carbon with
two or more singly-connected oxygens, or, a sulfur with three or more singly-
connected oxygens, or, a terminal sulfur with two or more singly-connected
oxygens, or, a phosphorous with two or more singly-connected oxygens: the
oxygens in these groups all considered O.co2’s with single bonds. A
nitrogen with two or more singly-connected oxygens is considered a nitro -
the oxygens are both assigned O.2 with double-bonds, and the nitrogen is

given N.pl3 status (this is the way Sybyl does it).

b) Nitrogen functionalities. Any nitrogen alpha to an olefin is N.pl3. Any

nitrogen alpha to an X=0 or X=S group is considered an amide N.am.

<) Sulfur functionalities. If the number of singly-connected oxygens is one, this

is a sulfoxide (S given S.O type); if two, this is a sulfone (S given S.O2 type);
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10.

otherwise, the sulfur becomes S.2 if it has a double bond, S.3 in all other

cases.
Consider functionalities which may depend on completion of step 4 entirely.

a) Guanidyls and amidines. A carbon with three neighbors is considered an
amidine if at least one neighbor is a C.ar and the other two neighbors are
non-aromatic nitrogens. If the central carbon is in a ring, the two nitrogens
may not be members of this ring. A guanidyl is any carbon with three non-
aromatic nitrogen neighbors. Nitrogens in amidines and guanidyls are given
N.pl3, the central carbon is assigned C.cat to insure a formal charge of +1
(again, this is the way Sybyl does it; viz. arginine). Finally, for both amidines
and guanidyls, if any of the nitrogens themselves have heteroatom neighbors,
this functionality is considered too electron-deficient to be charged and

hence 7of an amidine or guanidyl.

Insure correct protonation state. Tetrahedral (N.3) nitrogens which do not have
heteroatoms or olefins as neighbors are considered protonated and hence promoted

to N.4.
Lone atoms are removed (e.g single-atom counterions).

Atoms are renumbered sequentially and atom names made uppercase. Spaces in

molecule name converted to underscores.
The structure is written out.

Return to 0.
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sybdb

Description

This program is a shell script which creates a Sybyl command file which creates and
runs a Sybyl SPL macro. Input is an sdf2mol2 output multi-MOL2 file, output is a muld-
MOL2 file. The program removes all but the largest covalently bonded substructure, adds
hydrogens, adjusts formal charges as appropriate, and computes partial charges using the
method of Gasteiger & Marsili (Gasteiger & Marsili, 1980; Marsili & Gasteiger, 1980;

Gasteiger & Marsili, 1981).

Usage

Customization: before the first use, please update inside the sybdb script the
location of Sybyl. This will require modifying the variable TA_ROOT, which specifies the
root directory for your version of Sybyl, and sybcommand, which stores the actual

command used to access Sybyl at your site.
sybdb inputMOL2file outputMOL2file
where inputMOL2file is the output from sdf2mol2 and outputMOL2fileis

the cleaned up muld-MOL2 format file.

A log file called sybdb.log is also written which includes the name of each molecule
processed, formal charges, modifications to formal charges by the script, and any other
warnings that Sybyl may have generated. The file sybdb.out contains a record of the

entire Sybyl session so that all actions may be examined.

Note 1: Due to memory limitations, you will in all likelihood need to run sybdb on mult-

MOL2 files containing fewer molecules (e.g. 1000). Please use the accompanying “chunks”
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script for this purpose. This script will allow you to process a database of any size by

splitting it into manageable pieces, processing each piece, then catenating all results.

Note 2: The Gasteiger-Marsili charges within Sybyl do no# have parameters for the very
common sulfoxide and sulfone functional groups. If you do not supply parameters for these
types of sulfurs, charges on the sulfur and accompanying oxygens will be 0! What I have
done is to copy the S.3 parameters to S.O and S.O2 so that at least something gets used. To

do this, you should edit the file

STA_ROOT/sybylbase/tables/gastpar. tab

and add the following four lines exactly as shown here:

S 29 2.3900 10.1400 20.6500 SO copied from S3
P 29 0.0000 6.6000 20.6400 so copied from S3
S 30 2.3900 10.1400 20.6500 S02 copied from S3
P 30 0.0000 6.6000 20.6400 S02 copied from S3

You may use an altered gastpar.tab for temporary use only be placing it in your
working directory. If no gastpar.tab is found in the working directory, the default file
specified above will be used. For further details, see “Appendix 1: Parameter Tables:
Charges” in the Sybyl Theory manual. (This is section A-1.7 beginning on page A-444 in the

Sybyl 6.1 8/94 documentation.)

Speed
~3-4 hours for 100,000 structures (R4400 Indigo2)
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Method

0.

Setup:

a) Add new bond parameters. A bogus N.ar-H bond type and length is
assigned. Sybyl can not seem to accommodate a tertiary (and hence charged)
aromatic nitrogen. It would prefer to add a hydrogen and so needs bonding
information for the N.ar-H bond. By setting the bond type to nc (not
connected), this hydrogen atom never really gets added, but the +1 formal
charge is indeed now recognized. A bogus N.1-H bond type and length is

also assigned, for similar reasons.
b) Set up to use Gasteiger-Marsili pi charges (off by default).

c) Load metal parameters. This is to insure that Sybyl does not assign dummy

types to unrecognizable atoms.
Read in all molecules, then loop over each one as follows.
Remove all but the largest substructure.
Add hydrogens.
Remove any dummy atoms.

Rename atoms sequentially - this insures that added hydrogens will have names, as

the “fillvalence” command adds hydrogens without giving them names.

Check for functionalities for which Sybyl incorrectly adds hydrogens. Tri-alkyl

phosphines incorrectly get an additional hydrogen on the phosphorous. These
hydrogens are stripped. Isocyanates (-N=C) should be net neutral (fe. +1 on

nitrogen, -1 on carbon), so the hydrogen normally added to the carbon is removed.
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7. Adjust formal charges. Sulf(on)ates and phosph(on)ates get their formal charge

distributed evenly about the O.co2 oxygens.
8. Compute partial charges with the modified formal charges.

9. Return to 2 using next structure.

Further processing

To convert the multi-MOL2 database resulting from sybdb to a dock database, run

mol2db but be sure to say #0 to charge adjustment, as this has already been done within the

sybdb program.
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RecePtor-Ligand ComPlex Data Set

OVERVIEW

The following table reports the structural and affinity data used in Chapter 5 for the
derivation of empirical scoring schemes. These receptor-ligand complexes are all available in
the Protein Data Bank (Bernstein ef a/, 1977). Affinities given in the table are presented as
K values, but frequently represent K4 or K values, and on occasion even ICs values. Two
abbreviated literature references are provided for each receptor-ligand complex: one reports
the structure solution and the other the affinity determination. Note that crystallization and
assay conditions may not be reported in these papers and often appear elsewhere in the
literature - these additional references have also been compiled but will not be discussed
here. In rare instances where no reference for affinity determination could be found, the
affinity reported by Keske & Dixon (unpublished results) or by Bohm (1994) was used. Itis
worth mentioning that in some cases affinities identified by Keske & Dixon or by Béhm
differed, sometimes substantially, from those located in the literature. I owe great thanks to
Jonathan Keske for supplying his list of affinity data, which served as a starting point for the
data which follow. This data set should prove invaluable in the development of scoring

tools for structure-based drug design.
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Table 1 lists the source, affinity, crystallographic resolution, and literature references
for all 144 complexes. The 103 complexes indicated with an asterisk were used in the model

calibration discussed in Chapter 5.
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