
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Energy and task management in energy harvesting wireless sensor networks for structural
health monitoring

Permalink
https://escholarship.org/uc/item/14k4v3v2

Author
Steck, Jamie Bradley

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14k4v3v2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Energy and Task Management in Energy Harvesting Wireless Sensor Networks
for Structural Health Monitoring

A Thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Jamie Bradley Steck

Committee in charge:

Professor Tajana Simunic Rosing, Chair
Professor Rajesh Gupta
Professor Ryan Kastner

2009

Copyright

Jamie Bradley Steck, 2009

All rights reserved.

The Thesis of Jamie Bradley Steck is approved and it is acceptable in quality
and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my amazing grandmother, Jean “Nana” Baron, with love.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Abstract of the Thesis . xii

Chapter 1. Introduction . 1
1. Wireless Sensor Networks . 2
2. Energy Harvesting . 3
3. Structural Health Monitoring . 4
4. Thesis Contribution . 5

Chapter 2. Related Work . 7
1. Energy Harvesting . 8
2. Task Scheduling in Energy Harvesting WSNs 9
3. Data Collection . 12
4. Summary . 15

Chapter 3. Structural Health Monitoring . 16
1. Statistical Pattern Recognition Paradigm . 17
2. Piezoelectric Transducers . 18
3. Damage Identification . 20
4. Current Systems . 23
5. SHiMmer . 26
6. Summary . 32

Chapter 4. System Energy and Task Management . 34
1. System Description . 35

A. Task Model . 36
B. Energy Model . 40
C. Prediction Model . 42

2. Energy and Task Management Algorithms 44
A. Energy Constraint (EC) . 46
B. Time Constraint (TC) . 48

v

C. Utility Constraint (UC) . 51
3. Steady State Operation . 51
4. External Trigger State Operation . 55
5. Summary . 57

Chapter 5. Results . 58
1. Application . 59
2. Evaluation Setup . 63
3. Energy and Task Management Algorithms 63

A. Energy Constraint (EC) Algorithm 64
B. Time Constraint (TC) Algorithm . 67
C. Utility Constraint (UC) Algorithm 74

4. Steady State Operation . 79
5. External Trigger State Operation . 82
6. Summary . 83

Chapter 6. Conclusions . 86
1. Contributions . 87
2. Future Work . 88

References . 90

vi

LIST OF FIGURES

Figure 2.1: Data Collection: Routing [30] . 13
Figure 2.2: Data Collection: Data Muling [30] . 14

Figure 3.1: Two PZTs on an Aluminum Plate . 19
Figure 3.2: PZTs on a Bridge . 19
Figure 3.3: Damage Identification Using PZTs [16] . 21
Figure 3.4: Two Structural Engineers Evaluating Data 21
Figure 3.5: Remote Controlled Robot Used for Collecting SHM Data 25
Figure 3.6: SHiMmer Design [16] . 26
Figure 3.7: SHiMmer Board: Topview . 26
Figure 3.8: SHiMmer Board: Block Diagram [16] . 27
Figure 3.9: Maxstream’s OEM RF Modules: XBee and XBee PRO 30
Figure 3.10: XBee System Flow Diagram . 30
Figure 3.11: XBee API: Transmit Frame Structure . 31
Figure 3.12: XCTU: Interaction with SHiMmer . 32

Figure 4.1: System Model . 36
Figure 4.2: Example Task Graph . 37
Figure 4.3: Energy Buffer Constraints . 41
Figure 4.4: Energy Constraint Algorithm . 47
Figure 4.5: Time Constraint Algorithm . 49
Figure 4.6: Utility Constraint Algorithm . 52
Figure 4.7: Steady State Control Flow . 54

Figure 5.1: SHM Task Graph . 60
Figure 5.2: Solar Panel Data: Actual, Predicted, and EWMA 64
Figure 5.3: EC: Effect of Available Energy on Execution Time and Utility 65
Figure 5.4: EC: Effect of Priority on Achievable Utility 67
Figure 5.5: EC: Effect of Processing on Execution Time 68
Figure 5.6: EC: Effect of Processing on Average Utility 69
Figure 5.7: TC: Varying the Threshold Value . 70
Figure 5.8: TC: Achievable Utility at Different Times of Day 71
Figure 5.9: TC: Impact of a Task’s Priority on Achievable Utility 72
Figure 5.10: TC: Achievable Task Utility for Various Levels of Processing 73
Figure 5.11: TC: Energy Consumption for Various Levels of Processing 73
Figure 5.12: UC: Energy and Time Characteristics During A Sunny Day 75
Figure 5.13: UC: Energy and Time Characteristics During A Cloudy Day 75
Figure 5.14: UC: Energy and Time Characteristics During During the Night . . . 76
Figure 5.15: UC: Altering the Number of Active Paths 78
Figure 5.16: UC: Execution Time for Different Levels of Processing 78
Figure 5.17: UC: Energy Consumption for Different Levels of Processing 79

vii

Figure 5.18: The Effect of Execution Rate on the Number of Maximum Utility
Executions Per Day . 81
Figure 5.19: Convergence of Execution Rate . 82
Figure 5.20: Steady State for Levels of Processing . 83
Figure 5.21: Steady State Evolution with Many Random External Requests 84
Figure 5.22: Steady State Evolution with Isolated Random External Requests . . 84

viii

LIST OF TABLES

Table 3.1: Description of SHiMmer Hardware Components 28

Table 4.1: Variables Used in the ILPs . 44
Table 4.2: ILP Formulation of the Energy Constraint Problem 45
Table 4.3: ILP Formulation of the Time Constraint Problem 45
Table 4.4: ILP Formulation of the Utility Constraint Problem 45

Table 5.1: SHM Execution Definitions . 61
Table 5.2: SHM Execution Data . 61
Table 5.3: Modes with Various Priority Combinations 66
Table 5.4: Levels of Processing . 68
Table 5.5: Execution Rate Data: Per Day on Average 80

ix

ACKNOWLEDGEMENTS

I would first like to thank my parents and my husband for their continuous en-

couragement and unconditional love. You have given me a glimpse of how much God

loves me. I would also like to thank all my professors, company officers, and senior en-

listed at the U.S. Naval Academy, specifically CDR Osborn USN, COL Athens USMCR,

and MAJ Bishop, USMC, for encouraging me to attend graduate school and for showing

me how to be a leader of character.

Additionally, I would like to thank my research advisor, Tajana Simunic Rosing,

for her interest in this work and continual guidance. I would like to thank all the current

members of SEE Lab: Edoardo, Diana, Gaurav, Ayse, Giacomo, Priti, Raid, Shervin,

Denis, and Todor. Their company and sense of humor enabled me to push through

the tough times with a dose of laughter and cynicism. Finally, I cannot thank Joaquin

enough for his mentorship when I first began on this project, as I know I would not have

come this far without it.

I would also like to thank Los Alamos National Laboratory for their support

and motivation for this work. The research presented within this thesis was funded

by Los Alamos National Laboratory through colloboration with UCSD, for which I am

thoroughly appreciative. The structural engineers from UCSD and LANL, both students

and faculty, provided the motivation and resources to accomplish this work. The input

and explanations from Eric Flynn and David Mascarenas were invaluable, and I am

extremely grateful.

x

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Networked Sensing Systems, 2009, Steck, Jamie Bradley; Rosing, Tajana

Simunic. The thesis author was the primary investigator and author of this paper. Chap-

ter 4, in part, is currently being prepared for submission for publication of the material.

Steck, Jamie Bradley; Rosing, Tajana Simunic. The thesis author was the primary in-

vestigator and author of this material.

Chapter 5, in part, has been submitted for publication of the material as it may

appear in Networked Sensing Systems, 2009, Steck, Jamie Bradley; Rosing, Tajana

Simunic. The thesis author was the primary investigator and author of this paper. Chap-

ter 5, in part, is currently being prepared for submission for publication of the material.

Steck, Jamie Bradley; Rosing, Tajana Simunic. The thesis author was the primary in-

vestigator and author of this material.

xi

ABSTRACT OF THE THESIS

Energy and Task Management in Energy Harvesting Wireless Sensor Networks
for Structural Health Monitoring

by

Jamie Bradley Steck

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Tajana Simunic Rosing, Chair

Energy harvesting sensor nodes reduce the need for post-deployment physical

human interaction by using environmental power and wireless communication; how-

ever, they must adapt performance to accommodate the energy availability. This thesis

presents three application-independent algorithms that adapt performance based on en-

ergy availability for steady and external trigger state conditions. Steady state operation

describes the periodic execution of a set of tasks on the system. For steady state oper-

xii

ation, a method is presented that adapts the execution rate to achieve high performance

while maintaining sufficient energy. External trigger state operation occurs when an

external device makes a request to the system. For external trigger state operation, algo-

rithms are used to determine the execution time, energy consumption and performance

of the request. These methods are applied to SHiMmer, a wireless, energy-harvesting

structural health monitoring platform. Unlike other sensor systems that periodically

monitor a structure and route information to a base station, SHiMmer is designed to

acquire data using active sensing and process it locally before communicating with an

external device. Results from this application demonstrate the controller’s ability to

adapt at runtime and maintain sufficient energy. Steady state results show that the exe-

cution rate changes with weather conditions. On average, the execution rate on a sunny

day increases by 62% compared to the rate on cloudy days. External trigger state results

show that processing significantly affects the efficiency of a structural health monitoring

system; specifically, complex processing requires 17 times less execution time and 2.5

times less energy than transmitting raw data.

xiii

Chapter 1

Introduction

During rush-hour traffic on August 1, 2007, the I-35W bridge in Minneapolis,

Minnesota collapsed, resulting in 13 deaths. After intense review and analysis, the US

National Transportation Safety Board found the cause to be inadequate design of the

gusset plates that failed that day, causing the unexpected catastrophe. Among other

recommendations found in the accident report [24], the board advised the Federal High-

way Administration to require the use of nondestructive evaluation technologies to be

implemented in addition to current visual inspection methods.

Due to the need for nondestructive evaluation and in response to advances in

sensor technology, sensor networks are being employed to enhance the visual inspection

required for all US government-owned bridges. These networks use sensors and data

processing algorithms to measure material or geometric qualities of a bridge and indicate

a possible failure or need for repair that visual inspections may miss.

Along with bridge inspection, many applications are in need of smart wireless

1

2

sensor networks for remote monitoring. A significant challenge for these types of net-

works is energy consumption. Energy harvesting is a promising technique to signifi-

cantly enhance the lifetime of sensor networks by gathering energy from the environ-

ment. However, harvesting energy from the environment requires strict energy and task

management in order to maintain energy neutrality - the amount of energy consumed

must equal the amount of energy harvested.

This thesis presents the design of a controller for an energy-harvesting, wireless

sensing system that adapts performance to maintain energy neutrality. The design is ap-

plied to a structural health monitoring application, showing how energy neutrality can be

maintained by adapting performance. This work has been motivated by three promis-

ing research areas: wireless sensor networks, energy harvesting, and structural health

monitoring, each of which will be described in more detail in the following sections.

1.1 Wireless Sensor Networks

As a result of the increase in computing power and decrease in chip cost and

size, the emergence of small, inexpensive devices has enabled the development of wire-

less sensor networks. A wireless sensor network (WSN) is composed of a collection

of small, wireless nodes with sensing technology, and the scope of use for WSNs is

continuously expanding, from environmental and structural monitoring to robotics. For

example, WSNs are used for habitat monitoring on Great Duck Island in Maine [11] and

for underwater coral reef monitoring surrounding the island of Moorea [1].

3

One of the most attractive features of WSNs is their ability to operate without

human intervention. Through wireless communication, nodes can route data through

the network to a base station, enabling them to be placed in obscure, inaccessible ar-

eas without access to a constant power supply. The sensor nodes used at Great Duck

Island, for example, operate on batteries for approximately 8 months during breeding

season without need for any physical human intervention. While batteries can serve as

a temporary power supply, they must eventually be replaced, limiting the lifetime of the

network. Energy harvesting is a promising solution to this limitation and is described in

the following section.

1.2 Energy Harvesting

Energy harvesting involves the use of environmental energy sources, such as the

sun, to sustain devices. Because an energy harvesting system obtains power from the

environment, it can operate without human intervention for long periods of time. Suc-

cessful use of energy harvesting in a remote area can be seen from the Mars Exploration

Rovers [17]. The rovers carry two rechargeable lithium batteries, powered using solar

arrays that provide, on average, 900 watt-hours per Martian day. As impressive as the

numbers are, even the Mars Rovers have limitations. Due to the location of sunlight, the

rovers are limited to exploring only certain regions of the planet.

A significant challenge in an energy harvesting system is the management and

conservation of energy. In order for the system to operate for long periods of time

4

without human intervention, the system must maintain energy neutrality, meaning that

it can only consume as much energy as it can harvest. Typically, the goal of a sensing

system is to complete a sequence of tasks within a designated period of time; however,

to maintain energy neutrality, the system may need to either wait to complete all tasks

until additional energy can be obtained or reduce the accuracy, or utility, of the tasks.

Therefore, when given a sequence of tasks, the system must find a way to complete the

sequence while respecting the system’s unique constraints.

1.3 Structural Health Monitoring

One application that can benefit from energy-harvesting WSNs is structural health

monitoring. Monitoring certain features of a structure over time and evaluating these

features to determine the health of a structure is referred to as Structural Health Moni-

toring (SHM). The structure can be anything from a bridge to a building to an aircraft,

and the feature can be any material or geometric property of the structure that signifies

a defect or flaw in the system, such as temperature, strain, or cracks. Non-destructive

testing, specifically, involves evaluating a structure by measuring the output in result to

a known input without damaging the structure or inhibiting its operation.

Currently, most deployed SHM systems are wired, and thus take a significant

amount of time and money to install. Evolving these networks to use wireless commu-

nication and design can help to reduce cost, time of installation, and maintenance re-

quirements. For these reasons, SHM is a practical application for an energy-harvesting

5

wireless sensor network. In contrast to current SHM sensor networks, this thesis dis-

cusses a wireless, energy-harvesting sensing system that uses local processing to provide

long-lasting structural health monitoring.

1.4 Thesis Contribution

To provide energy and task management for energy harvesting wireless sens-

ing systems, a system software controller is presented that adapts performance based

on energy availability. Three application-independent algorithms are presented to bal-

ance performance and execution time subject to an energy constraint and then applied

to external trigger state and steady state conditions. Steady state operation defines the

periodic execution of a set of tasks on the system, adapting the execution rate to the en-

ergy profile. External trigger state operation, on the other hand, occurs when an external

device makes a request to the system, specifying either a time limit or a desired utility.

The energy and task management methods are then applied to a structural health

monitoring application. Structural health monitoring (SHM) consists of monitoring a

structure over time and evaluating the health of the structure to determine if damage

exists. SHiMmer [16] is a wireless platform that combines active sensing and localized

processing with energy harvesting to provide long-lived structural health monitoring,

using piezoelectric transducers (PZTs) to evaluate a portion of a structure to determine

if damage exists. Unlike other sensor systems that periodically monitor a structure and

route information to a base station, SHiMmer is designed to acquire data and process

6

it locally before communicating with an external device, such as a remote controlled

helicopter.

Results from this SHM application demonstrate the controller’s ability to adapt

at runtime and maintain energy neutrality. Steady state results show that the execution

rate adapts to varying weather conditions. On average, the execution rate on a sunny

day increases by 62% compared to the rate on cloudy days. External trigger state results

show that processing significantly affects the efficiency of a structural health monitoring

system; specifically, complex processing requires 17 times less execution time and 2.5

times less energy than transmitting raw data.

The remainder of this thesis describes the design and the contributions of the

work in more detail. Chapter 2 summarizes relevant research relating to energy har-

vesting, energy management, and task assignment. Chapter 3 describes structural health

monitoring techniques, technology, and related systems. Chapter 4 defines the energy

and task management problem for a wireless sensing system and presents solutions for

steady state and external trigger state operation. Chapter 5 then provides results obtained

from evaluation of both modes of operation. Finally, chapter 6 concludes the thesis and

discusses future work.

Chapter 2

Related Work

While abundant research has been conducted in the area of energy-constrained

wireless sensor networks, the literature for energy-harvesting networks is scarce. This

chapter provides an overview of related work in energy harvesting and wireless sensor

networks. The first section discusses the work specific to energy harvesting: the chal-

lenges of energy harvesting systems [22], the differences between supercapacitors and

rechargeable batteries [6], and the concept of energy neutrality [8] [9]. The following

section addresses task scheduling in WSNs, from adjusting task execution rates [13] [15]

to choosing among multiple task versions [25] [26] to mapping tasks among multiple

systems [32]. Finally, two different methods for network data collection are outlined:

routing [33] and data muling [29].

7

8

2.1 Energy Harvesting

Energy harvesting embedded systems present unique challenges and require cre-

ative solutions. Raghunathan and Chou [22] present an overview of design considera-

tions for energy harvesting systems at both the system level and the software level,

including energy storage, energy harvesting, power management policies, and energy-

aware routing. The goal of an energy harvesting system is to maintain energy neutrality,

a term used to describe the seemingly perpetual operation of a system - the amount of

energy consumed should not exceed the amount of energy harvested. Thus, the power

management policy of a single sensor node must adapt both the performance and energy

consumption of the system to maintain energy neutrality.

A significant challenge and design decision for energy harvesting systems is the

buffer used for energy storage. In the past, batteries and rechargeable batteries were

used; however, batteries have a limited lifetime due to a limited number of recharge

cycles. An alternative to a battery is a supercapacitor. Supercapacitors have a signifi-

cantly longer lifetime than batteries but also typically have a reduced capacity. Thus, the

needs of the system should dictate which storage buffer is used. In response to this chal-

lenge, Jiang et al. [6] propose a storage hierarchy, consisting of a supercapacitor and a

rechargeable battery. The supercapacitor is the primary storage unit, while the battery is

only used when the energy stored in the supercapacitor is insufficient. This hierarchy at-

tempts to provide the benefits of both storage buffers, capitalizing on the longevity of the

supercapacitor and the increased capacity of the battery. An energy management policy

9

determines which buffer provides power to the system based on the energy buffer levels,

the rate of energy harvesting, and the system state. Additionally, the algorithms estimate

the highest allowed duty cycle for a given energy level to maintain energy neutrality.

The concept of energy neutrality is discussed in detail in [8], [9], and [5]. To

guarantee energy neutral operation, Kansal et al. [9] present a harvesting theory that

characterizes an energy source and energy consumer and determines the necessary stor-

age capacity needed to ensure a desired performance level. Furthermore, in [8], Kansal

et al. prove that a system can achieve energy neutrality using these characterizations

with the assumption that task execution is modified using duty cycling alone. In [5],

Hsu et al. present an algorithm for estimating the amount of future harvested energy

and use this prediction to alter the node’s duty cycle accordingly. While these works

provide a means to adapt the duty cycle to account for changes in harvested energy, for

many applications, duty cycling alone is not enough. Systems containing a variety of in-

terdependent tasks require a more detailed task model. Additionally, this work assumes

that the system power consumption is constant, which is an assumption not made in this

thesis.

2.2 Task Scheduling in Energy Harvesting WSNs

The most relevant related work for this thesis is the scheduling and execution of

tasks. The methods described in [6, 9, 8] adapt the duty cycle to account for the changes

in harvested energy. Duty cycling is a energy-saving technique achieved by shutting

10

down the device for a designated period of time1. A duty cycle of 1% indicates that 1%

of the time the device will be active, and 99% of the time it will be shut down. In a simple

system, duty cycling may suffice; however, many applications require more detailed task

scheduling due to the variety of tasks and their inter-dependencies. Additionally, duty

cycling prohibits the system from adapting to the stochastic nature of sunlight. For the

applications targeted in this research, more sophisticated task scheduling is needed.

Moser et al. [14] present the Lazy Scheduling Algorithm (LSA) for an energy-

driven scenario. The LSA gathers environmental energy and schedules tasks when either

1) the energy storage buffer is full, and thus, unused energy will be wasted, or 2) a task

will miss its deadline if not scheduled. The goal of the LSA is to find the optimal start

time for a task by considering task requirements, such as deadline and arrival time, and

the node energy capacity. The LSA does not acknowledge dependencies between tasks

and in many systems, tasks must occur in a designated order, as data dependencies exist.

Moser et al., in [13], however, consider task dependencies by presenting an

energy-harvesting system design to maximize node utility by adjusting task execution

rates. An estimator predicts the amount of energy harvested in the future, while a con-

troller adapts the system parameters to maximize node utility using critical regions de-

fined offline with multi-parametric linear programming. The work provided in [15]

extends [13] by reducing the number of critical regions using approximation. Both [13]

and [15] demonstrate their solution using only two tasks and restrict task variation to al-

tering only the execution rate, not providing a method for application-specific accuracy

1Another effective energy-saving technique not applied in this thesis is Dynamic Voltage Scaling [27].

11

measurements.

Rusu et al. [25] [26] present the only work to my knowledge that considers

the accuracy level when scheduling tasks. In [25], each task has an associated reward,

a measurement of the value of the task to the system. The goal of the system is to

maximize the system value while meeting the global deadline and respecting the energy

constraint. The authors present a heuristic that schedules tasks based on reward until

a constraint is violated. The heuristics presented do not require that every task must

be scheduled and do not address the dependencies between tasks. In [26], however,

the authors extend the problem by assuming that each task can have multiple versions

that each produce a different reward and also requiring that all (mandatory) tasks be

scheduled. A similar heuristic is provided to maximize the system value while adhering

to the energy and deadline requirements of the system. The algorithm requires that

there exist a discrete number of versions per task (using four versions per task in their

simulations) and assumes that a minimum amount of energy is available at the beginning

of each “discharge” period.

Finally, Tian et al. [32] propose a task scheduling and mapping method for

energy-constrained WSNs called EcoMapS. Tasks and their dependencies are modeled

using directed acyclic graphs (DAG), where a hyper-DAG accounts for the communi-

cation constraints - a virtual node is used to represent the communication channel, and

virtual tasks are used to represent communication between two nodes. The EcoMapS so-

lution is composed of two stages: the initialization phase and the quick recovery phase.

Initialization consists of two parts. First, tasks are arranged into a list/queue such that

12

dependencies are maintained and critical paths occur first. Second, tasks are dequeued

and assigned to sensors with minimum execution start time, which is done iteratively

with different numbers of sensors. The schedule with the minimum length that meets

the energy budget is chosen. Quick recovery occurs if a sensor node fails, and all tasks

assigned to the failed node are given to the node with the most idle time.

Regardless of the energy and task management used on systems, a WSN must

have a method for getting data from nodes to a base station. There are two primary ways

of accomplishing this: the first is through multi-hop routing to a base station, and the

second is through the use of a technique called data muling.

2.3 Data Collection

The most common form of data collection is multi-hop routing. Voigt et al. [33]

present two solar-aware routing protocols that are related to directed diffusion but where

route selection prefers solar-powered nodes over battery-powered nodes. The first pro-

tocol modifies directed diffusion gradients to include information about energy supply

(solar vs. battery) and balances solar-powered nodes with nodes on the shortest path.

The second extends directed diffusion by adding extra header fields and a mechanism to

prevent loops from occurring.

Voigt et al. [23] also propose a solar-aware extension to LEACH, the popular

low-energy adaptive clustering hierarchy. In the modified LEACH, solar-powered nodes

are preferred during cluster head selection, and cluster heads can be changed during a

13

Figure 2.1: Data Collection: Routing [30]

round depending on solar changes. To extend the centralized LEACH protocol, each

node sends its solar status to the base node in addition to its remaining energy and

position. Base nodes then select cluster heads using a heuristic. To extend the distributed

LEACH protocol, solar-powered nodes have a higher probability of becoming a cluster

head and thus, will be a cluster head more often than typical nodes. The handover

mechanism allows a current cluster head to relinquish its responsibilities to another node

if the energy profile changes.

In contrast to routing, a mobile external agent can also be used to collect data

from nodes in a sensor field. Sugihara and Gupta [29] provide an overview of the con-

cept of data muling and the challenge of optimizing the trade off between energy con-

sumption and data delivery latency. Eliminating multi-hop routing in a network reduces

the energy consumption but requires intelligent and efficient data muling. They show

that the path selection problem for data muling is NP-hard, but present a near optimal

algorithm.

Additionally, Taylor et al. [30] use an unmanned vehicle to collect data from

14

Figure 2.2: Data Collection: Data Muling [30]

sensor nodes on a bridge. The authors use figures 2.1 and 2.2 to contrast the differences

between routing and data muling for the purpose of data collection in their application.

They describe the implementation and practical experience from using a mobile agent

to not only collect data but to also power the sensor nodes using radio-frequency trans-

mission.

Data muling has a promising future but requires solutions unique from the tra-

ditional routing paradigm. The work in [29] and [30] each address a challenge of data

muling, specifically, choosing the optimal path for data collection and remotely power-

ing sensor nodes using radio transmission. While this thesis does not address these two

challenges, it focuses on the interaction between the data mule and the sensor node char-

acterized by external trigger state operation. Energy management is presented for both

types of data collection: data muling using external trigger state operation and routing

using steady state operation.

15

2.4 Summary

In summary, past research has focused on many aspects of energy-harvesting

systems such as guaranteeing energy neutrality [8] [9], adjusting system duty cycle [13]

[15], choosing among multiple task versions depending on energy constraints [25] [26],

and collecting data in an energy efficient way [33] [13] [15].

While significant research has been explored in the area of energy management

and task scheduling in energy-harvesting systems, only a few specifically address the

trade off between performance and energy. In contrast to previous work, this the-

sis specifically addresses the trade off between performance and system constraints in

energy-harvesting systems and provides a flexible and adaptable solution for maintain-

ing energy neutrality.

Chapter 3

Structural Health Monitoring

The process of monitoring a structure for the purpose of damage identification is

known as structural health monitoring (SHM). SHM requires knowledge of the undam-

aged state of the structure as a means of comparison, as well as continual comparison

of periodic measurements. SHM can be separated into two basic categories: rapid event

assessment and periodic lifetime monitoring. Rapid event assessment addresses the

need to obtain data from a structure immediately following a significant event, such as

an earthquake. Periodic lifetime monitoring seeks to identify damage that accumulates

over a long period of time.

This chapter describes the fundamentals of structural health monitoring as they

relate to the work in this thesis. First, section 3.1 provides an overview of the Statistical

Pattern Recognition Paradigm used for SHM. Then, section 3.2 discusses a specific type

of SHM - non-destructive evaluation using piezoelectric transducers (PZTs), followed

by an example damage identification process in section 3.3. Section 3.4 describes two

16

17

current SHM systems, while section 3.5 provides an overview of the wireless SHM

platform that is used in this thesis.

3.1 Statistical Pattern Recognition Paradigm

The SHM process can be described using the four step, statistical pattern recog-

nition paradigm as presented by Farrar and Worden [2]. The first step is operational

evaluation, the process of observing and testing a system to determine the part(s) of the

system that should be monitored and the best method for monitoring them. As with

the other steps, operational evaluation is application specific as each system has its own

characteristics that can be exploited for accurate damage identification. The second step

is a combination of data acquisition, normalization, and cleansing. Data is first collected

from the system using sensors, followed by normalization and cleansing, the processes

of distinguishing between damage and environmental factors and choosing which data

to disregard. The next step in the paradigm is feature selection and information con-

densation. A feature is a specific property of a system that can be used to identify

damage. Features can be extracted from the data, which, inherently, reduces the amount

of data. Finally, statistical model development for feature discrimination involves the

evaluation of features to quantify the damage. Statistical modeling refers to three types

of algorithms: group classification, regression analysis, and outlier detection. Each of

these types of algorithms attempts to classify damage by one or more of the following

properties:

18

1. Existence: Does damage exist?

2. Location: Where is the damage?

3. Type: What kind of damage is it?

4. Extent: How severe is the damage?

5. Prognosis: How much useful life remains?

The statistical pattern recognition paradigm is a general framework for structural

health monitoring and can be applied to various types of sensors and methods of sens-

ing. Typically, sensors are thought of as passive - essentially “listening” to something

and recording the results. Sensors can also be active, however, by stimulating the envi-

ronment and recording the response to the stimulus. Piezoelectric transducers, a type of

a material that perform non-destructive evaluation by actively sensing a structure, will

be described in more detail in the next section.

3.2 Piezoelectric Transducers

In contrast to passive sensing, damage monitoring can be accomplished using

nondestructive evaluation, such as the use of smart materials. A promising method for

SHM is the integration of smart materials, such as Lead-Zirconate-Titanate Piezoelectric

Transducers (PZTs) shown in figures 3.1 and 3.21. A PZT can be used to generate as

well as sense signals and thus is capable of performing the role of both an actuator and a

sensor. For example, a PZT can use high frequency vibrations to generate a lamb wave,
1Several pictures were taken at the Alamosa Canyon Bridge in New Mexico while LANL structural

engineers were performing tests.

19

Figure 3.1: Two PZTs on an Aluminum Plate

Figure 3.2: PZTs on a Bridge

a type of elastic perturbation that can propagate in and reveal certain characteristics

about a solid. The speed of a lamb wave is dependent on the frequency of the solid

and can be generated by a smart material, such as a PZT. For the SHM application in

this thesis, lamb waves are generated by a PZT at a frequency of 1 MHz frequency

with a peak-to-peak maximum amplitude of 15 volts and sampled by another PZT at 10

MHz. Because the electrical impedance of a PZT is directly related to the structure’s

mechanical impedance, this impedance-based method can use lamb waves to monitor

the structure’s mechanical impedance in order to detect and locate damage in a structure.

SHM requires knowledge of the undamaged state of the structure as a means

of comparison to determine if damage may exist. Operational evaluation using PZTs

20

involves testing a structure by generating a lamb wave and sensing the resulting wave to

evaluate the impedance of the structure. Gathering data from a healthy, undamaged state

of the structure can be evaluated against data acquired during operation. The features

of both the undamaged and operational state can then be compared to see if damage ex-

ists. The following section describes in detail an example damage identification process

using active sensing with PZTs.

3.3 Damage Identification

Structural damage can be defined as any geometric or material change introduced

into a system that negatively impacts its current or future performance [2]. Damage

detection is the process of identifying this change and can either be global or local.

Global damage detection is accomplished by placing a small number of sensors across

a structure to identify global properties, such as monitoring the effect of temperature on

a bridge’s length. Local damage detection, on the other hand, involves the placement of

many sensors in a small area, focusing on specific parts of a structure such as a bolt or

plate. The work in this thesis is based on local damage identification [10].

The first step in damage identification [3] is the collection of data, referred to

as actuation and acquisition. The process of actuation and acquisition uses PZTs to

actuate a wave through the structure and then sense the wave and its reflections. A path

is defined as the pairing of one PZT as the actuator with another PZT as the sensor.

Figure 3.3 shows sixteen PZTs, resulting in up to 120 paths. Greater reliability can

21

Figure 3.3: Damage Identification Using PZTs [16]

Figure 3.4: Two Structural Engineers Evaluating Data

22

be obtained by interrogating one path several times and then averaging the multiple

iterations. After a path is evaluated, the data must be processed to determine if damage

exists. Figure 3.41 shows two structural engineers evaluating data using sophisticated

algorithms implemented in MatLab.

The first part of processing is to remove noise from the received signal by filter-

ing. Filtering noise from the signal can be done using either a bandpass or a matching

filter. The signal is converted to the frequency domain using the FFT, multiplied by the

filter, and converted back to the time domain using the inverse FFT [28]2. While FFT

complexity has improved over time, a single FFT still requires approximately 4Nlog2N

floating point operations [7]. Thus, if N is 10,000 points, one FFT would require 531,510

floating point operations3.

After a signal is filtered, it is divided into blocks such that each block represents

a different route from the actuator to the sensor. The first block of the signal indicates

the direct route from one PZT to the other, while each subsequent block is a reflection

from the area surrounding the two PZTs. To perform feature extraction, each block

is compared to a baseline signal, where the baseline is the response of the system to a

healthy, non-damaged structure (obtained a priori to deployment.) The root mean square

deviation between the two signals is called the feature and represents the difference

between the healthy signal and the current signal [19].

Using these extracted features from many paths, damage can be identified by

2Filtering can also be done in the time domain using a moving window averaging procedure.
3Fixed point arithmetic could also be used to increase efficiency, depending on the architecture of the

DSP.

23

correlating different paths. Within the sensing area of the structure, points of interests

are identified that may be susceptible to damage. For each point of interest, several

steps are taken. Before deployment, the distance between the point of interest and each

PZT path is calculated, indicating the location in each path corresponding to the point

of interest. Using this information during deployment, the system can find a weighted

average of the previously computed features to determine the feature of each path cor-

responding to the point of interest, referred to as that point’s feature vector. Comparing

the sum of the features from all paths to a threshold value can indicate if damage exists

at the point of interest.

3.4 Current Systems

There have been several wireless sensor networks designed specifically for the

purpose of SHM. The range of SHM platforms varies depending on the sensing method.

PZTs, for example, can be used in an active or passive manner. PZTs are used for active

sensing when actuation and sensing occur(as described in section 3.2), but can also

be used for passive sensing through impedance monitoring [30]. Accelerometers also

provide a method for SHM sensing by measuring structural vibration [34] [18]. Two

current SHM systems include the WID 3.0 network [30] and Wisden [34].

Taylor et al. [30] present a mobile-agent based SHM wireless sensor network.

The WID 3.0 is a sensor node that passively monitors the impedance of a several piezo-

electric transducers. The WID 3.0 is combined with a data acquisition system to assist

24

in data acquisition and storage. The WID 3.0 can be remotely powered using a rectenna

(rectifying antenna) that converts transmitted microwave energy into DC power. In test-

ing, a bridge is outfitted with many of these sensor nodes. A remote-controlled robot,

shown in figure 3.5, travels along the bridge, stops at each node, powers the node, and

then receives acquired data. The data is then transmitted to a base station to be pro-

cessed using SHM analyzing software. Additionally, small local area networks (LANs)

are designed such that one sensor node acts as a coordinator while other sensor nodes

act as end devices. The robot then only communicates with the coordinator to retrieve

data. However, in this LAN scenario, all nodes are powered using batteries without the

addition of energy harvesting.

Xu et al. [34] describe the design and deployment of an SHM network paradigm

called Wisden. Wisden nodes, specifically Mica-2 motes, use accelerometers to collect

structural data and transmit it to a base station. The nodes self-configure to form a tree

topology such that the root of the tree is the base station. Important design characteristics

of Wisden include: reliable data transfer, topology self-configuration, hop-by-hop reli-

ability, end-to-end reliability, data (time) synchronization, and data compression. The

primary disadvantage of this design is that it is only a data acquisition system and does

not perform any local processing. Local processing, while consuming significant power,

reduces the amount of data to be transmitted and also provides the means to interrogate

a structure based on past data.

25

Figure 3.5: Remote Controlled Robot Used for Collecting SHM Data

26

Figure 3.6: SHiMmer Design [16]

Figure 3.7: SHiMmer Board: Topview

3.5 SHiMmer

Unlike the previously described systems, SHiMmer4 [16], a wireless SHM plat-

form, is designed to actively sense a structure using PZTs and communicate with an

external device, such as a remote controlled helicopter shown in figure 3.6. SHiMmer

needs to both actively sense the structure and also process the readings using the sophis-

4The SHiMmer platform discussed in this thesis has no connection to the SHIMMER health monitor-
ing sensors [20].

27

Figure 3.8: SHiMmer Board: Block Diagram [16]

ticated SHM damage-detection algorithms described in section 3.3. SHiMmer is part of

a joint project between the Los Alamos National Laboratory (LANL) Engineering Insti-

tute and the University of California, San Diego. The goal of this project is to develop a

wireless sensor network to be deployed over civil infrastructure and mechanical systems

for SHM purposes.

The SHiMmer platform can be categorized into three parts: the digital compo-

nents, the analog components, and the energy harvesting components. The parts relating

to energy harvesting will be further described in chapter 5, as SHiMmer can operate with

any power source. The digital and analog components form the hardware of the plat-

form. As seen in figures 3.7 and 3.8, SHiMmer is composed of several key hardware

components described in table 3.1. The Atmel 128L microcontroller controls the en-

tire operation of the platform, communicating with the DSP and the radio. To enhance

functionality and assist in control, the microcontroller runs a real time operating system

(freeRTOS [4]) that provides OS primitives such as mutual exclusion, time synchroniza-

tion, and task abstraction. The DSP, on the other hand, executes the application-specific

28

Table 3.1: Description of SHiMmer Hardware Components

Component Purpose Characteristics
Atmel 128L Microcon-
troller

Platform Control High-performance, Low-power, 8-
bit, RISC architecture

TI TMS320C2811 Digital
Signal Processor

Actuation, Sens-
ing, and Data
Processing

32 bit, 135 MIPs

Maxstreams XBee OEM
RF module

Wireless Com-
munication

IEEE 802.15.4 Zigbee standard
protocol, low power, low data rate

Cypress 8Mbits SRAM Data Storage 8Mbit, Low power, high speed
Sandisk 4Gbits Serial
Flash Memory

DSP Code Stor-
age

8 GB, low power, small form factor

DAC902 Digital to Ana-
log Converter

Conversion of
Actuation Signal

12-Bit, 165MSPS

LT1218 Current to Volt-
age Converter

Conversion of
Actuation Signal

low input offset voltage

LT1210 and THS4082
Amplifiers

Sensing Signal
Amplification

1.1A, 35MHz and 175-MHz low-
power, high-speed

UART and SPI Platform Com-
munication

UART Baud rate = 9600, SPI fre-
quency = 1-30 MHz

Radio Triggering Circuit External Trigger-
ing

2.4GHz, requires 2.0 V

29

tasks, such as data processing and wave generation. Specifically, SHiMmer is equipped

with a multiplexer and demultiplexer that select a couple of the 16 PZTs. Using a DAC,

waves can be generated with a frequency up to 1 MHz and a peak-to-peak amplitude of

15 volts. During acquisition, waves can be sampled at a frequency of 10 mega-samples

per second.

SHiMmer communicates with external devices using Maxstreams XBee OEM

RF Module [12]. The XBee module uses the IEEE 802.15.4 Zigbee standard protocol

and operates in the ISM 2.4 GHz frequency band. The radio can transmit to distances up

to 100 meters, assuming line of sight. The diagrams of both the XBee and XBee PRO

modules are show in Figure 3.9. On The SHiMmer platform, however, only a subset

of the available pins are connected, specifically: PIN 1 (supply voltage), PIN 2 (UART

data out), PIN 3 (UART data in), PIN 9 (sleep control line), and PIN 10 (ground). The

XBee module interfaces with a host device through a serial port and, thus, can commu-

nicate with the microcontroller using SHiMmer UARTs interface. Figure 3.10 shows the

relationship between SHiMmer and the XBee module. Data is sent from the SHiMmer

microcontroller over the DI pin and back through the DO pin. Because the Clear-to-

Send and Request-to-Send pins are not connected on the SHiMmer platform, the DI06

and DI07 configurations were disabled, and, thus, hardware flow control cannot be used.

Instead, software flow control was implemented in order to avoid buffer overflow.

XBee can operate in two modes: transparent and API. In transparent operation,

the XBee module acts as a serial line replacement, transmitting only the UART data

received from the microcontroller and passing the exact received data back to the UART;

30

Figure 3.9: Maxstream’s OEM RF Modules: XBee and XBee PRO

Figure 3.10: XBee System Flow Diagram

31

Figure 3.11: XBee API: Transmit Frame Structure

no additional information is added. Due to the fact that hardware flow control cannot be

used, it is necessary to use software techniques when interacting with the XBee module,

such as ensuring that size of the data sent to the module is smaller than the size of the

DI buffer. In addition, there is no way in transparent operation to check if a packet

has been sent successfully or whether another attempt should be made. In API mode,

however, the XBee module packages data in a structured interface and provides the

desired functionality for SHiMmer. Data sent over the DI pin must be contained in the

specified frame, defining what type of event is to be performed (transmit, AT command,

etc.)

Using the API operations enables SHiMmer to receive the status of a transmitted

packet, which is essential to determining if data is sent successfully. Whenever data

is to be transmitted, the Transmit Request frame format is used, as shown in Figure

3.11. Finally, the RF data contains the precisely defined SHiMmer packet format, which

is interpreted at the receiving end [16]. In the same manner, when data is received

from the XBee module, the interrupt service routine processes the received packet as

32

Figure 3.12: XCTU: Interaction with SHiMmer

either a transmit status packet or a received packet, which can be determined by the API

identifier. Figure 3.12 shows the XCTU console running on a desktop that is used to test

the SHiMmer platform. XCTU receives a packet from SHiMmer, sends a packet back

to SHiMmer, and subsequently, receives a transmit status packet that indicates that the

packet was sent successfully.

3.6 Summary

In this chapter, the fundamentals of structural health monitoring were described

as they relate to the work in this thesis. The Statistical Pattern Recognition Paradigm is a

four-step paradigm for SHM that involves operational evaluation, data acquisition, fea-

ture extraction, and statistical modeling. Piezoelectric Transducers (PZTs) are a type of

33

smart material that can be used for SHM active, non-destructive evaluation and applied

to the paradigm using a process of damage identification. Two relevant SHM systems

are described - one uses PZTs for passive sensing and the other uses accelerometers. Un-

like these systems, however, SHiMmer uses PZTs to actively sense a structure, process

the results to determine if damage exists, and transmit to a mobile device. The following

chapter presents energy and task management algorithms that maintain energy neutrality

while executing the necessary tasks, such as actuation and processing.

Chapter 4

System Energy and Task Management

In contrast to battery powered systems, the goal of an energy harvesting sensing

system is to maximize performance while maintaining energy neutrality. Because en-

ergy harvested from the environment depends on the environment (such as solar power

depending on the sun), performance must be adapted based on variations in the envi-

ronmental energy source. For example, on a sunny day, a system should sense a large

amount of data and perform extensive processing on the data, while on a cloudy day,

less data can be sensed and processing should be reduced. Additionally, the system must

adapt performance according to external requests and requirements of the network. For

instance, if a system is notified of an emergency situation, it should temporarily sacrifice

energy neutrality to fulfill the requirements needed by the emergency.

The system can operate in one of two modes: steady state and external trigger

state. Steady state operation is typical of sensor nodes; data is gathered, processed, and

transmitted according to a predefined schedule over a long period of time. The goal

34

35

of steady state operation is to periodically execute a set of tasks while maintaining a

desired level of energy and either send this data to a base station or store the results

for a later time. In contrast, when external trigger state operation occurs, an external

device is present and issues a request to the system that imposes a constraint. The goal

of the system in this state is to meet the constraint and inform the external device of

the expected performance of the request. The external device can be any device that

communicates with the system, such as a base station, a mobile agent, or another sensor

node.

This chapter proposes three application-independent algorithms for energy and

task management in externally-triggered, energy harvesting sensing systems. Specific

to the state of operation, a software controller uses these algorithms to determine sys-

tem performance, execution time, and energy consumption in order to maintain energy

neutrality and satisfy performance constraints. This chapter is structured as follows.

Section 4.1 describes the system model, specifically the task, energy, and prediction

models. Section 4.2 details the three application-independent algorithms. Section 4.3

describes steady state operation, while section 4.4 describes external triggering state

operation. The chapter concludes in section 4.5.

4.1 System Description

The purpose of the system is to execute a set of tasks while maintaining energy

neutrality. The system model, shown in Figure 4.1, illustrates the components that com-

36

Figure 4.1: System Model

prise the sensor node. The system is assumed to be powered by an energy harvesting

device, denoted as the energy source, and to store the energy in either a rechargeable

battery or a super capacitor, labeled as the energy buffer. The two primary software

components are the predictor and the controller. The predictor, further described in sec-

tion 4.1.3, uses past energy harvesting information to estimate the future rate of energy

harvesting. The controller then uses this predicted information, along with the current

amount of energy in the buffer, Ebuffer, and the system requirements to determine the

performance, energy consumption, and execution time of a set of tasks. The following

subsections describe in detail the three models used in the system: the task model, the

energy model, and the prediction model.

4.1.1 Task Model

The relationship among the tasks in a system is modeled as a Directed Acyclic

Graph (DAG). In the DAG G = (T,E), each vertex represents a task τ ∈ T, which is an

37

Figure 4.2: Example Task Graph

action or combination of actions that the system performs. Each edge eij ∈ E represents

a dependency between tasks such that τj cannot begin execution until τi is complete. It

is assumed that the Worst Case Execution Time (WCET) for each task is known ahead

of time.

DAGs have several useful properties for the model. First, in a DAG, there exists

at least one vertex with no incoming edges. A task with no incoming edges is referred to

as an entry task. Conversely, a DAG contains at least one vertex with no outgoing edges.

This vertex is referred to as an exit task. Tasks are also identified by their connecting

edges. Suppose that there is an edge from task τi to task τj. Task τi is then called the

predecessor of task τj, while task τj is the successor of task τi. A task can have multiple

predecessors and successors, which indicates the dependencies that exist among tasks in

the system. Figure 4.2 illustrates a task DAG. Tasks τ1-τ3 are entry tasks, as they have

no incoming edges. Upon execution of their predecessors, task τ4 can begin execution.

After task τ4 completes, the exit tasks, τ5 and τ6 can execute.

In the system, each task τ is defined by its relationship with the other tasks in

the system, its priority, and its application specific execution characteristics, each of

38

which will be described in further detail in this section. A task τi can be represented as

a seven-tuple {pτi
, Uτi , tτi , Pτi , sτi , fτi , dτi} where pτi

is the priority, Uτi is the utility, tτi

is the WCET, Pτi is the power, sτi is the start time, fτi is the finishing time, and dτi is the

amount of data produced.

Upon the completion of any task τi, an amount of data, dτi , is produced. The

produced data is a function of the utility, Uτ , although the exact relationship is defined

by the application. This data is then passed on to successors in the DAG. For example,

as shown in figure 4.2, task τ4 sends data dτ4 to both of its successors, tasks τ5 and τ6,

upon completion.

In this model, each task τ is executed with a level of utility, Uτ , such that 0 ≤

Uτ ≤ 1. In this work, the terms utility and accuracy will be used interchangeably, as in

most applications, they have similar implications. A utility of 1 represents the highest

level of utility a task can perform, while a utility of 0.1 indicates little to no accuracy,

and a utility of 0 indicates that the task should not be executed at all.

The relative importance or priority of each task τ in the system is denoted by

the task’s priority, pτ , as shown in the task graph in Figure 4.2. The priority is used to

determine the utility of each instance of a task in relation to other tasks in the system

such that equation 4.1 holds. The task with the highest priority will be executed with

the highest utility and so forth.

39

Uτi =
pτi

Ntasks∑
j=1

pτj

∗
Ntasks∑
j=1

Uτj (4.1)

For example, consider a system designed to provide a video interface for a tele-

conference; the two tasks in this system might be: task τ1, display local video, and τ2,

display remote video. In this system, it is desirable to display the remote video at a

higher resolution than the local video, as it is of more importance to see the other person

than oneself. Thus, the priority for τ1, display local video, should be smaller than that

of τ2, display remote video. If pτ1 = 1 and pτ2 = 2, the utility of task τ2 should be twice

that of task τ1.

Because the relative importance of each task may change depending on the sys-

tem’s current conditions, the task’s priority is expected to change in a system over time.

The priorities of tasks are assumed to only change before or after an iteration of the task

graph.

The relationship between the utility of a task and its specific execution charac-

teristics must be defined by the application. The expected execution times for each level

of utility for each task can either be experimentally measured or calculated using a func-

tional relationship such that tτ equals the expected execution time of τ . For the general

solution, this application specific relationship is referred to as f(Uτ), shown in equation

4.2. The energy consumption eτ of a task τ can then be determined using the execution

time tτ and the task power Pτ . To simplify the model, the power Pτ is assumed to be

constant for all utility values of a task; however, this may not be the case for all applica-

40

tions, in which case the power can be determined in the same manner as the execution

time using an application specific function.

tτ = f (Uτ) (4.2)

eτ = tτ ∗ Pτ (4.3)

It is expected that as the utility Uτ of a task increases, the energy and time of task

τ will also increase; however, the actual implementation of the above function depends

entirely on the application. One possibility for the relationship between the utility and

time of a task is a function. The utility of a temperature sensor reading, for example, may

increase logarithmically with its execution time, as saturation occurs. Another possible

relationship could be the use of a lookup table representing only several discrete utility

values. For instance, video resolution may only have two levels of utility: low (U = .5)

or high (U = 1). Chapter 5 defines these relationships for SHiMmer, a Structural Health

Monitoring system.

4.1.2 Energy Model

The energy model for this work has two parts: the energy harvesting source

and the energy storage buffer. A requirement for the system is that the status and level

of both of these components must be closely monitored as they are the lifeline of the

device. Decisions made by the controller must adhere to the energy storage constraints

41

and can exploit the knowledge of the energy source to improve performance.

Energy Harvesting

The energy harvested from the energy source at time t, Eharvestt , is defined as the

amount of energy harvested between time t-1 and time t such that the time between

time t-1 and time t is the period T. The total energy harvested at time t is a result of

the energy at the source, Esourcet , the efficiency of conversion, ηconversion, and the energy

lost due to leakage in the period T, Eleakage. The instantaneous rate of energy harvesting,

RateEH = dE
dT , can then be defined as the energy harvested at time t divided by the time

period T.

Eharvestt = ηconversion ∗ Esourcet − Eleakaget
(4.4)

Energy Storage

Figure 4.3: Energy Buffer Constraints

Energy thresholds, shown in Figure 4.3, are set based on the needs of the appli-

cation and the characteristics of the buffer and source. The energy storage buffer has

42

capacity, Ecapacity, and a maximum allowed amount, Emax, that may or may not be equal

to Ecapacity. For example, Recas et al. [21] show that the recharge rate of a supercapaci-

tor is significantly lower when the buffer is nearly full and thus, it is more beneficial to

use the extra energy to execute tasks than to completely fill the supercapacitor. During

steady state operation, Ebuffer ≥ Esteady, and during an external request, Ebuffer ≥ Emin. The

available energy at any time t is denoted as Eavailable. The energy in the buffer at time t,

Ebuffert , is the sum of the buffer energy at time t-1, Ebuffert-1 and the energy harvested at

time t, Eharvestt less the energy consumed, Econsumedt-1 .

Ebuffert = Ebuffert-1 + Eharvestt − Econsumedt-1 (4.5)

4.1.3 Prediction Model

At any point in time, there may not be enough energy available to execute all the

desired tasks immediately. The controller can thus estimate the additional time needed to

harvest energy, twait, shown in equation 4.6, using the expected rate of energy harvesting,

as provided by the predictor, described in detail below. Erequired is the sum of the energy

required for each task in the system at the desired utility level.

twait =
Erequiredt

− Eavailablet

E[RateEHt+1]
(4.6)

Erequiredt
=

Ntasks∑
j=1

eτj (4.7)

43

To estimate the amount of time needed to harvest the additional energy, the sys-

tem must predict how much energy can be harvested in the future. For this, a method

based on work by Recas et al. is used [21]. The predictor uses past energy harvesting

information from previous days to estimate the rate of energy harvesting in the next

period, E[RateEHt+1]. To do this, the predictor stores data gathered from past days in a

matrix of size DxN, where D is the number of past stored days, and N is the number of

energy values stored per day. At any time t, the predictor provides a predicted rate of

energy harvesting for time t+1 that indicates the number of expected joules per second

that will be harvested in the next time period.

The basic equation shown in figure 4.8 uses an Exponentially Weighted Moving-

Average combined with a GAP factor to account for differences specific to solar energy

harvesting. α is the weight given to the previous time period in the current day, while

(1-α) is the weight given to data from the previous D days. The GAP factor accounts for

the variations in weather conditions among days by comparing the average solar energy

in a given time period. If GAP is greater than 1, then the energy harvesting rate of the

current day is greater than the average; conversely, if GAP is less than 1, then the rate

of the current day is smaller than the average. GAP can be used to estimate if the day

is sunny, cloudy, or somewhere in between. To compute the GAP factor, a vector V

is defined, where each element in V equals the current rate divided by the average rate

from the past D days. The vector V is then multiplied by a weighting vector P, which

weights the current time of day higher than previous times during the day, and is finally

normalized by dividing by the sum of P. The results from [21] show that this predictor

44

Table 4.1: Variables Used in the ILPs
pτi

: priority for task τi twait: Time delay for energy harvesting
Uτi: Utility for task τi Tlimit: Execution time limit for all tasks
sτi: Start time of task τi ttotal: Total time needed to complete all tasks
tτi: WCET of task τi E[RateEH]: Expected rate of energy harvesting (J/sec)

Pτi: Power of task τi Ntasks: Total number of tasks
fτi: Finish time of task τi X: Set of utilities specified by the external request
dτi: Data produced by task τi Eavailable: Energy available for task execution

can predict future energy within a 30 minute time frame with 10% accuracy.

E[RateEHt+1] = αRateEHt + (1− α)GAP
∑D

i=1 RateEHt+1

D
(4.8)

GAP =
V ∗ P∑

P
(4.9)

4.2 Energy and Task Management Algorithms

The goal of the system controller is to maintain energy neutrality while satisfy-

ing performance constraints. There are three ways to approach this problem, each with a

different constraint. First, the controller can determine the maximum achievable utility

using only the current energy available in the system (energy constraint). Second, the

controller can determine the maximum achievable utility given a time limit (time con-

straint). Finally, the controller can determine the expected execution time, harvesting

time, and energy consumption given a desired utility (utility constraint). Each of these

algorithms must meet the energy restrictions outlined in section 4.1.2 and also account

for additional time needed to harvest energy if appropriate.

45

Table 4.2: ILP Formulation of the Energy Constraint Problem

maximize
Ntasks∑
j=1

Uτj

subject to constraints:

(a)
Ntasks∑
j=1

eτj ≤ Eavailable The energy budget is not exceeded.

(b) Uτi =
pτi

Ntasks∑
j=1

pτj

∗
Ntasks∑
j=1

Uτj Utilities are proportional to priorities.

(c) ∀τj : sτj ≥ max fτk∀ekj ∈ E The task dependencies are followed.

Table 4.3: ILP Formulation of the Time Constraint Problem

maximize
Ntasks∑
j=1

Uτj

subject to constraints:

(a)
Ntasks∑
j=1

eτj ≤ Eavailable + E[RateEH] ∗ twait The energy budget is not exceeded.

(b) Uτi =
pτi

Ntasks∑
j=1

pτj

∗
Ntasks∑
j=1

Uτj Utilities are proportional to priorities.

(c) ∀τj : sτj ≥ max fτk∀ekj ∈ E The task dependencies are followed.

(d)
Ntasks∑
j=1

tτj + twait ≤ Tlimit The time limit is met.

Table 4.4: ILP Formulation of the Utility Constraint Problem
minimize ttotal

subject to constraints:

(a)
Ntasks∑
j=1

eτj ≤ Eavailable + E[RateEH] ∗ twait The energy budget is not exceeded.

(b) Uτi =
pτi

Ntasks∑
j=1

pτj

∗
Ntasks∑
j=1

Uτj Utilities are proportional to priorities.

(c) ∀τj : sτj ≥ max fτk∀ekj ∈ E The task dependencies are followed.

(d) ttotal ≥
Ntasks∑
j=1

tτj + twait The total time must be no less than the
task execution time and wait time.

(e) Uτi ≥ Uτspecified foreach Uτspecified ∈ X Utilities are no less than external speci-
fications.

46

To define these problems, integer linear programs (ILPs) are formulated, shown

in Tables 4.2, 4.3, and 4.4 (Table 4.1 defines the variables used). Among other require-

ments, each ILP solution must respect the energy constraints (a), the priority constraints

(b), and the task dependencies (c).

For the energy constraint problem, the goal is to maximize the system utility

given the current energy available in the system. For the time constraint problem, the

goal is to maximize the system utility within a given time limit (d). Optimal solutions

to the energy and time constraint problems are too complex and time-consuming to

be executed on an energy constrained platform; therefore, heuristics are used to solve

the problems in sections 4.2.1 and 4.2.2. For the utility constraint problem, the goal

is to minimize the total execution time (d) while satisfying the utility constraint(s) as

specified by the external request (e). This problem can be solved by determining the

expected execution time and energy consumption of the set of tasks with the provided

utilities. The following sections describe each algorithm, beginning with the energy

constraint algorithm.

4.2.1 Energy Constraint (EC)

To determine the maximum achievable utility within a given energy budget, a

heuristic is presented that quickly determines the utility of tasks using a binary search

method, shown in figure 4.4. The algorithm begins with the priorities (p) for all tasks

and the energy available in the system. First, the search bounds are set such that the most

47

Figure 4.4: Energy Constraint Algorithm

48

important task (highest p) has a utility of either U = 1 or U = 0, denoting the upper and

lower bounds respectively. The upper, lower, and midpoint task utilities are evaluated to

determine how much energy is needed, which is then compared to the energy available

in the energy buffer. Because the possible utility values are numerous, and there may

not exist a set of utilities that consume exactly the energy available, a threshold ε is set

such that the resulting energy consumption must be within ε of the energy available in

the system. This threshold limits the search time for the algorithm and consequently, the

time and energy overhead of the system control as well.

4.2.2 Time Constraint (TC)

In addition to the energy constraint algorithm, a time constraint (TC) algorithm

is presented. Within a given time limit, the controller uses the heuristic shown in figure

4.5 to determine a set of task utilities that satisfies the request. The heuristic consists of

two basic steps: first, satisfy the time limit and second, satisfy the energy constraint.

Step 1: Satisfy the time constraint

The first step in solving this problem uses a binary search method similar to that

used in the energy constraint algorithm in section 4.2.1. The time required for upper,

lower, and midpoint task utilities is compared to the time limit to find a set of task

utilities whose execution times satisfy the time constraint. As with the EC algorithm,

a threshold ε is set such that the resulting execution time must be within ε of the time

limit.

49

Figure 4.5: Time Constraint Algorithm

50

Step 2: Satisfy the energy constraint

After finding a set of task utilities that satisfies the time constraint, the algorithm

compares the amount of required energy with the amount of available energy. If suffi-

cient energy exists, a solution has been found; if not, then the amount of time to wait to

harvest additional energy is determined.

One option to solve this problem would be to try every possible combination

of wait time and execution time and choose the best solution; however, on an energy-

constrained embedded platform, such a high level of computational complexity is unrea-

sonable. Instead, the algorithm estimates the time to wait under the assumption that the

ratio between the current energy and time limit will be proportional to the ratio for a new

energy consumption and time limit. Based on this premise, the wait time is computed

using equation 4.10, and the time limit is altered to account for this time by reducing the

original time limit by the wait time. Then, step 1 of the algorithm is executed again to

determine a new set of utilities that will satisfy the reduced time limit.

twait =
Eneeded

E[RateEH] +
Erequired

Tlimit

(4.10)

TlimitNEW = TlimitOLD − twait (4.11)

51

4.2.3 Utility Constraint (UC)

The goal of the final algorithm, the utility constraint (UC) algorithm, is to deter-

mine the total time and energy needed to execute all tasks at a specified level of utility.

If the energy needed to execute all tasks at the desired utility exceeds the energy avail-

able, the total delay time needed to harvest additional energy, twait, is estimated. If the

energy harvesting rate is not positive, which is likely the case during the night, then no

additional energy can be harvested, and no solution exists. If the energy harvesting rate

is positive, the total time, ttotal, needed to execute the task set is the sum of the total

execution time and the wait time.

ttotal =

Ntasks∑
j=1

tτj + twait (4.12)

The steps for solving this problem are shown in the flow chart in figure 4.6

(assumes a single CPU). Using the application-specific functions from equations 4.2

and 4.3, the controller determines twait and ttotal based on the predicted energy-harvesting

rate, E[RateEH](section 4.1.3).

4.3 Steady State Operation

Steady state operation describes the periodic execution of tasks on a system. In

some systems, steady state operation is defined by the method of duty cycling. Duty

cycling, however, does not provide detailed information on the specifics of a set of tasks

and assumes constant power for all tasks execution. Thus, for the system targeted in this

52

Figure 4.6: Utility Constraint Algorithm

53

thesis, steady state operation defines the periodic execution of a task graph, the utility of

which is determined using the energy constraint algorithm described in section 4.2.1.

As the energy harvesting rate assumed for this system is variable, the amount

and rate of energy harvesting must determine the rate of task execution and the types

of tasks to be executed. The basic intuition behind steady state operation control is the

following: (1) tasks should be executed at a consistent rate when possible and (2) the

utility of tasks should be adapted to fit the energy constraints of the system.

System time is divided into two periods: Tpositive and Tnegative. Tpositive indicates

the time period when energy is being harvested, while Tnegative represents the time period

when energy harvesting is negligible. For the system targeted in this work, a solar-

powered system, Tpositive is equivalent to the span of a day, while Tnegative is the time

during the night. Tpositive may change over time (certainly for solar-powered systems),

and is thus updated based on previous days’ positive time periods.

The execution rate, r, indicates the number of times per period Tpositive that a

set of tasks is executed. Thus, the task graph currently selected will be executed every

tframe time units, where tframe = Tpositive/r,. Because time period lengths and energy

harvesting rates change over time, the execution rate should be altered to maximize

a desired parameter. Possible parameters to optimize include: total utility achieved

in a single period, average utility for each execution, and number of maximum utility

executions per period. For the following algorithm, the number of maximum utility

executions per period is chosen to be maximized based on the needs of the application

(further described in section 5.4), and thus the rate r is adapted based on this metric.

54

Figure 4.7: Steady State Control Flow

55

The flow chart for steady state operation is shown in figure 4.7. Every tframe time

units the energy constraint algorithm is executed to determine the utility at which to

execute tasks.1 As described in section 4.1.2, the energy available during steady state

operation, Eavailable, equals the current energy in the buffer, Ebuffer, minus the steady state

energy threshold, Esteady. Thus, the energy constraint equals Eavailable. After execution,

the achievable utility is compared to the maximum utility of the set of tasks. If the

maximum achievable utility is less than the maximum utility, r is decreased. If the

maximum achievable utility equals the maximum possible utility and leftover energy

exists, then r is increased. The ideal situation occurs when the maximum achievable

utility equals the maximum possible utility, and the energy in the buffer equals the steady

state energy threshold Esteady; in this case, the execution rate is not changed.

4.4 External Trigger State Operation

In contrast to steady state operation, external trigger state operation occurs when

an external device such as another sensor node or an unmanned vehicle initiates a request

to the system. Steady state operation is interrupted, and the system controller responds to

the request. Because the external device does not know the energy status of the system,

the system must be able to adapt to the request according to its own energy availability.

The external device can specify either the desired utility or the maximum time limit, so

the controller uses either the utility constraint or the time constraint algorithm.

1The time constraint algorithm could also be used by setting the time limit equal to the length of a
frame, tframe.

56

Following a significant event, such as an earthquake, fire, or car accident, an

external device may request results from the system indicating a required level of accu-

racy; in this situation, the controller runs the utility constraint algorithm (section 4.2.3).

The trigger specifies a desired utility for a specific task, and the controller then uses the

set of priorities {pτ1 , pτ2 , ..., pτN
} to calculate the remaining task utilities. In a state of

emergency, the execution time of the tasks may not be vital, and thus is not considered

in a utility constraint external request.

In contrast, data mules, such as that described by Sugihara and Gupta [29], must

typically collect data from many nodes, and thus, it may be desirable to designate a time

limit in which results must be reported. When the external device specifies a time limit,

the controller runs the time constraint algorithm (section 4.2.2) to determine a set of

task utilities that satisfies the request. After finding a set of task utilities that satisfies

both the time limit and the energy constraint, the system can inform the external device

of the maximum achievable utility for each task that can be executed in the given time

limit, Tlimit, which includes the actual time spent executing tasks and the time, twait,

spent harvesting additional energy. Estimating these values ahead of time provides the

external device with valuable information, enabling it to, for example, collect data from

other nodes while it waits for a result.

57

4.5 Summary

This chapter presented application-independent methods for energy and task

management in externally-triggered, energy-harvesting sensing systems. First, the sys-

tem was described, which is composed of an energy source, an energy buffer, a predictor,

a controller, a set of tasks, and an external device. Next, three algorithms for balancing

system performance with time and energy constraints were presented. Finally, external

trigger state and steady state operation were described, outlining a method for respond-

ing to external requests and for adapting execution rate based on the energy harvesting

rate. The following chapter will explain in detail the experiments performed to test the

algorithms in external trigger state and steady state operation.

Chapter 4, in part, has been submitted for publication of the material as it may

appear in Networked Sensing Systems, 2009, Steck, Jamie Bradley; Rosing, Tajana

Simunic. The thesis author was the primary investigator and author of this paper. Chap-

ter 4, in part, is currently being prepared for submission for publication of the material.

Steck, Jamie Bradley; Rosing, Tajana Simunic. The thesis author was the primary in-

vestigator and author of this material.

Chapter 5

Results

To test and apply the contributions presented in the previous chapter, the con-

troller and predictor for external trigger state and steady state operation were imple-

mented. Inputs to the simulation include the task graph, task execution characteristics,

energy source data, and storage thresholds. The task graph and application-specific ex-

ecution time functions are defined for a structural health monitoring (SHM) application

using data obtained from hardware measurements and code estimations. The results of

the simulations show that energy neutrality is maintained, while task utility is adapted

according to system and environmental constraints.

The remainder of this chapter contains the application details and simulation

results. First, in section 5.1, the SHM application is described, and the definitions for

the application-specific functions are given. Section 5.2 describes the evaluation setup,

followed by the results from each of the energy and task management algorithms in

section 5.3. Finally, steady state and external trigger state operation are discussed in

58

59

sections 5.4 and 5.5 respectively. The chapter concludes in section 5.6, outlining the

significance of the results.

5.1 Application

Because SHiMmer, described in section 3.5, harvests energy from the environ-

ment and performs numerous tasks related to sensing, processing, and transmitting, this

SHM platform is a perfect application for testing the energy and task management meth-

ods proposed in this thesis. Therefore, the methods described in chapter 4 were imple-

mented for SHiMmer. In order to apply a specific application to the system controller,

a task graph and task execution characteristics need to be defined. First, an example

SHiMmer task graph is created, shown in Figure 5.1. For each task, f (Uτ) is defined in

terms of the data flow, the worst case execution time (WCET), and the power consump-

tion. Table 5.1 shows the execution time and data formulas defined for each task, and

table 5.2 shows the data used.

As described in chapter 3, actuation and acquisition involves the use of piezo-

electric transducers (PZTs) that serve as both actuators and sensors. A path is defined

as the pairing of two PZTs. The SHiMmer platform connects to 16 PZTs and thus, can

evaluate up to 120 paths, as shown in figure 3.3. In the task graph, each of the tasks

act/acq1 − act/acq120 represents one of the 120 possible paths that can be evaluated

to perform actuation and acquisition (act/acq). The utility for an act/acq task can be

increased by evaluating each path multiple times, up to MAXiterations.

60

Figure 5.1: SHM Task Graph

61

Table 5.1: SHM Execution Definitions

Task Purpose Execution Time: f (Uτ) Data Produced: dτ Power: Pτ

act/acq1 − act/acq120 Actuate & Acquire t = (tact + tsense) ∗ Niterations d = Niterations ∗ dpath 3.5 W

(act/acq) where Niterations =
⌈

e4.6∗U−1
MAXiterations

⌉
780 mW

avg1 − avg120 Average t = 0‖t = tavg ∗ (Niterations − 1) d = dact/acq‖d = dpath 680 mW

(avg)

filt1 − filt120 Filter t = 0‖t = tfilt ∗
davg

dpath
d = davg 680 mW

(filt)

fExt1 − fExt120 Extract Feature t = dMAXblocks ∗ Ue d = dMAXblocks ∗ Ue ∗ 680 mW

(fExt) davg

dpath
∗ dblock

dCor Correlate Damage t = dMAXpoi ∗ Ue ∗ d = dMAXpoi ∗ Ue ∗ dpoi 680 mW

(dCor) (tpoi ∗ Npaths + tadd ∗ (Npaths − 1))

trans Transmit t = ddCor ∗ ttransmit/byte + twakeup d = 0 168 mW

(trans) ‖t = 0

Table 5.2: SHM Execution Data

MAXiterations: 10 tact: 0.1 ms tblock: 0.5596 ms dpath: 20 KB

MAXpaths: 120 tacq: 1 ms tpoi: 0.0107 ms dblock: 2 B

MAXpoi: 90 tavg: 4.004 ms ttransmit/byte: 0.071 ms dpoi: 2 B

MAXblocks: 50 tfilt: 1294.6 ms twakeup: 13.2 ms tadd: 0.0004 ms

62

After the data is acquired from the previous tasks, it is processed. Tasks avg, filt,

fExt, and dCor represent the different types of processing that SHiMmer performs as

described in section 3.3 and are executed on a TMS320C2811 Digital Signal Processor

[31]. Averaging, represented by tasks avg1−avg120, reduces the amount of data acquired

by the PZTs by averaging multiple iterations of each path into a single data set. If data

is averaged, then the utility is 0.25 (U = 0.25); if data is not averaged, then the utility is

0.0 (U = 0.0). Filtering (filt1 − filt120) removes noise from the signal using a matching

filter. If data is filtered, then the utility is 0.75 (U = 0.75); if data is not filtered, then

the utility is 0.0 (U = 0.0). Feature extraction, fExt1 − fExt120, divides the signal into

N blocks, up to MAXblocks, and compares each block to a baseline signal. The utility

for feature extraction increases as the number of features evaluated increases. Finally,

task dCor performs damage correlation, combining the features extracted from all paths

to determine if damage exists at a specific point of interest on the structure for up to

MAXpoi.

Task trans, the exit task in the graph, represents the transmitting of data. The

utility of the data transmission affects whether or not the data is transmitted. If the

utility is greater than zero, the data is transmitted; if the utility equals zero, the data is

not transmitted. While this method of utility measure is simple due to the needs of the

application, more complicated utility measurements could be used such as varying the

signal strength, data rate, or amount of data transmitted.

63

5.2 Evaluation Setup

The three constraint algorithms were implemented using the SHM task graph

and execution definitions in the previous section as task input and applied to external

trigger state and steady state operation. The data collected from SHiMmer’s solar panel

and supercapacitor are used as input for the energy source and energy storage buffer.

The energy harvesting circuit used for SHiMmer enables the node to harvest energy

from a 100 cm2 solar cell and store up to 780 J in a 250 F, 2.5 V supercapacitor. The

relationship between the voltage of the solar panel and charging rate for the superca-

pacitor is defined using the results obtained from twenty days of measurement, further

described by Recas et al. [21]. Figure 5.2 shows the actual solar panel voltage, the pre-

dicted voltage obtained by the prediction model, and the predicted voltage using only

the EWMA. As expected, the voltage of the solar panel is high during the day and low

during the night, and the predicted voltage using the prediction model closely tracks the

actual voltage.

5.3 Energy and Task Management Algorithms

While testing each of the three energy and task management algorithms, the

amount of energy available in the buffer, Eavailable, is varied from 100J-400J, depending

on the requirements of the systems and the size of the energy buffer. Unless otherwise

noted, the priorities for all tasks are 1.0. For each algorithm, the results are evaluated

based on the amount of energy in the buffer, the rate of energy harvesting, the priorities,

64

Figure 5.2: Solar Panel Data: Actual, Predicted, and EWMA

and the amount of processing performed.

5.3.1 Energy Constraint (EC) Algorithm

The first algorithm, the energy constraint (EC) algorithm, determines the highest

achievable utility given the amount of energy available in the buffer. In the follow-

ing subsections, the energy constraint algorithm is evaluated under different conditions,

such as varying the amount of energy in the buffer, changing task priorities, and chang-

ing the amount of processing performed.

65

Figure 5.3: EC: Effect of Available Energy on Execution Time and Utility

Energy Harvesting

Because the purpose of the energy constraint algorithm is to obtain results given

only the energy available, no time is spent harvesting additional energy. Therefore, this

first algorithm is not dependent on the energy harvesting rate, only the energy stored in

the buffer. Figure 5.3 shows the results of the energy constraint algorithm for different

amounts of available energy, from 100 to 120 joules, as these amounts are the most

interesting. As the energy available increases, the execution time and the average utility

(normalized to a range from 1 to 200) also increase.

Priority

To test the impact of priority on achievable utility in this SHM application, three

modes of priority combinations are defined, shown in table 5.3. For the first mode (mode

66

Table 5.3: Modes with Various Priority Combinations
Paths 1-40 Paths 41-60 Paths 61-80 Paths 81-120

Mode 1: p = 1.0 p = 1.0 p = 1.0 p = 1.0
Mode 2: p = 1.0 p = 1.0 p = 0.6 p = 0.6
Mode 3: p = 1.0 p = 0.6 p = 0.6 p = 0.1

1), all priorities for all paths are set to 1.0. In the second mode (mode 2), one half of the

tasks for all paths (act/acq, avg, filt, and fExt) are given a priority of 1.0, while the other

half have a priority of 0.6. Finally, in the third mode (mode 3), one third of the tasks

for all paths have a priority of 1.0, on third have 0.6 and the last third have 0.1. In all

modes, the dCor task has a priority of 1.0. Each of these modes were run varying the

available energy from 0 to 140 joules. As seen in figure 5.4, obtaining full utility for all

tasks in mode 1 requires 112 joules. If mode 2 or mode 3 is used, however, full utility

for the more important tasks (those with p = 1.0) can be achieved with less energy, 47%

less energy for mode 2 (at 59 joules) and 64% less for mode 3 (at 40 joules).

Processing

In contrast to typical WSNs, this SHM application should perform complex pro-

cessing on the data, dramatically reducing the amount of data transmitted. To provide

users options on the amount of processing performed, the energy constraint algorithm is

tested using different levels of processing that consume different amounts of energy and

take various lengths of time. The four levels tested are: no processing, averaging only,

averaging and filtering, and all processing. These levels are specific to this application

and are summarized in table 5.4.

67

Figure 5.4: EC: Effect of Priority on Achievable Utility

Figures 5.5 and 5.6 show how execution time and average utility vary depending

on both the energy available and the amount of processing performed. The average

utility shown in figure 5.6 equals the average utility for all tasks with p = 1.0, thus the

maximum average utility differs for the different levels of processing. Due the massive

amounts of data produced by the act/acq task, transmitting raw data (no processing) can

require up to 300 joules and 1700 seconds to achieve full utility. Simply averaging the

multiple path iterations (averaging only) can reduce the energy and time significantly,

as the amount of data per path is reduced from (at worst) 200 KB to 20 KB.

5.3.2 Time Constraint (TC) Algorithm

The second constraint algorithm, the time constraint algorithm, determines the

highest achievable utility given a time limit. In the following subsections, this algorithm

68

Table 5.4: Levels of Processing

Level Description Priority Settings

no processing no processing performed on data;
raw data transmitted

pact/acq, trans = 1.0, pavg, filt, fExt, dCor = 0.0

averaging only multiple iterations for each path
averaged and transmitted

pact/acq, avg, trans = 1.0, pfilt, fExt, dCor = 0.0

averaging and filtering multiple iterations for each path
averaged, filtered, and transmitted

pact/acq, avg, filt, trans = 1.0, pfExt, dCor = 0.0

all processing all processing performed on data;
results transmitted

pact/acq, avg, filt, fExt, dCor, trans = 1.0

Figure 5.5: EC: Effect of Processing on Execution Time

69

Figure 5.6: EC: Effect of Processing on Average Utility

is tested under different conditions, such as varying the rate of energy harvesting, chang-

ing the task priorities, and changing the amount of processing performed, but first, the

algorithm is evaluated with different threshold values.

Because the running time of the time constraint algorithm depends on the gran-

ularity of the utility values, there may be too many values to search for on an energy-

constrained platform. Thus, the heuristic presented in chapter 4 uses a threshold value

ε to calculate the acceptable percentage of deviation from the specified time limit and

constrain the amount of overhead. To determine an appropriate value for ε, the opti-

mal values are compared with the results using several threshold values. The optimal

values are obtained for various time limits using an exhaustive search with the utility

constraint algorithm. Figure 5.7 shows the achievable utility for time limits with thresh-

70

Figure 5.7: TC: Varying the Threshold Value

olds varying from 5% to 0.1%. For some time limits, a very low threshold will achieve

a higher utility, but at the cost of higher processing overhead. For the tests presented in

this section, a threshold of ε = 2% is used to reduce the amount of overhead yet obtain

acceptable results.

Energy Harvesting

The rate of energy harvesting significantly influences the obtainable utility when

insufficient energy is stored in the buffer. To test the effect of the energy harvesting rate,

the time constraint algorithm is tested at different times during the day. The time limit

is varied from 1 minute to 35 minutes at three distinct times of a day: the peak of a

sunny day (RateEH = 0.1022 mV/s), the peak of a cloudy day (RateEH = 0.0340 mV/s),

71

Figure 5.8: TC: Achievable Utility at Different Times of Day

and the middle of the night (RateEH = 0 mV/s). Figure 5.8 shows the impact of energy

harvesting on achievable utility. During a sunny day, energy can be harvested at a high

rate, and thus full utility can be obtained when the time constraint exceeds 8 minutes

and 30 seconds. During a cloudy day, full utility can still be obtained but only if the

time limit is almost 35 minutes. During the night, however, there is no energy to harvest

and thus only a maximum utility of 0.41 can be obtained.

Priority

To test the impact of priority on achievable utility for the time constraint algo-

rithm, the time constraint algorithm is run using the same priority modes described in

table 5.3 with energy available equal to 200 J. The results for the three modes are shown

72

Figure 5.9: TC: Impact of a Task’s Priority on Achievable Utility

in Figure 5.9 where the achievable task utility of the fExt task changes with time limit

and mode. As the time limit in the request is increased, mode 1 requires over 150 sec-

onds to obtain full utilty, while mode 3, for example, takes less than 60 seconds. The

results show that for mode 3, the more important tasks (with p = 1.0) can achieve full

utility, while the less important tasks settle for either U = 0.6 or U = 0.1. Distinguishing

between the importance of types of tasks allows the more important tasks to achieve full

utility at the expense of the other tasks.

Processing

To test the effect of processing with the time constraint algorithm, the same four

processing levels described in table 5.4 are used. The time-constraint algorithm is tested

using these four combinations, assuming the available energy to be 400 joules and the

73

Figure 5.10: TC: Achievable Task Utility for Various Levels of Processing

Figure 5.11: TC: Energy Consumption for Various Levels of Processing

74

energy harvesting rate to be high. Figures 5.10 and 5.11 show the results of these tests.

Regardless of the time limit, the all processing level always obtains the highest utility,

followed by averaging only and averaging and filtering, depending on the time limit.

Performing all processing consumes less than half of the energy that no processing

consumes, emphasizing the benefit of performing on-node data processing. If energy is

extremely limited, however, it may be more beneficial to perform averaging only, as it

consumes the least amount of energy at the cost of lower utility.

5.3.3 Utility Constraint (UC) Algorithm

The utility constraint (UC) algorithm determines the execution time, wait time,

and energy consumption of a set of tasks at a specified utility. Similar to the previ-

ous algorithms, the utility constraint algorithm is also tested while varying the energy

harvesting rate, the task priorities, and the amount of processing performed.

Energy Harvesting

For the first set of tests, the energy harvesting rate is varied to see how the en-

vironmental conditions affect the execution characteristics. The available energy in the

buffer is set to to 100 joules and the priorities for all tasks to 1.0. The utility constraint

algorithm is then executed while varying the desired task utility from 0.01 to 1.00 for the

same three distinct times of day used in section 5.3.2: the peak of a sunny day (RateEH =

0.1022 mV/s), the peak of a cloudy day (RateEH = 0.0340 mV/s), and the middle of the

night (RateEH = 0 mV/s).

75

Figure 5.12: UC: Energy and Time Characteristics During A Sunny Day

Figure 5.13: UC: Energy and Time Characteristics During A Cloudy Day

76

Figure 5.14: UC: Energy and Time Characteristics During During the Night

First, figure 5.12 shows the energy and time required for tasks on a sunny day,

when the energy harvesting rate is high. When the energy required to execute the tasks

at the desired utility exceeds 100 J, there is no longer sufficient energy in the buffer to

satisfy the request. To harvest additional energy, the system must wait for a period of

time. Because the experiments in figure 5.12 occur on a sunny day, this wait time never

exceeds six minutes. In figure 5.13, however, the wait time is significantly increased (to

nearly 35 minutes) due to the reduced energy harvesting rate on this particular cloudy

day. The energy and time needed to execute the tasks is equivalent to the energy and

time on a sunny day, but because the harvesting rate is lower, the completion of the tasks

will require more time. Finally, in figure 5.14 when the energy harvesting rate is very

low, the system cannot harvest any additional energy. Once the desired task utilities pass

0.74, no solution is possible, as there does not exist sufficient energy for task execution

77

(note that this sharp increase in energy consumption is due to the addition of filtering,

the most significant processing available.)

Priority

For this specific application, one method to reduce energy consumption is to

limit the number of PZT pairs that are evaluated. To demonstrate this, the utility con-

straint algorithm is evaluated using task graphs with different combinations of priorities

representing different numbers of paths. The priority for an active path and all its depen-

dent tasks is set to 1.0, and the priority for the an inactive path and its dependent tasks

to 0.0. Tests were then run by increasing the number of active paths from 1 to 120. The

results from these tests shown in Figure 5.15 show how the energy consumption and ex-

ecution time change with an increase in the number of evaluated paths. As expected, the

execution time and energy needed will increase approximately linearly as the number of

paths increases.

Processing

As with the previous algorithms, the UC algorithm is tested with the the various

levels of processing from table 5.4. Figure 5.17 shows the time and energy required of

the levels when the available energy is 400 joules, and the energy harvesting rate is high.

The execution time for all processing is significantly lower than all other levels, due to

the dramatic reduction in the amount of data transmitted (24 MB and over 2800 seconds

for no processing as compared to 180 B and less than 200 seconds for all processing)

78

Figure 5.15: UC: Altering the Number of Active Paths

Figure 5.16: UC: Execution Time for Different Levels of Processing

79

Figure 5.17: UC: Energy Consumption for Different Levels of Processing

and the low data rate of the radio (112.5 Kbps). Unlike execution time, however, the

impact of processing on the energy consumption is not as drastic due to the low energy

consumption of the chosen radio. Even more, the energy benefits of processing do not

occur until the desired utility is high. A specific part of the graph to note is the significant

increase in energy consumption for averaging and filtering. While filtering is the most

complex form of processing (and thus consumes the most time and energy), it does not

actually reduce the amount of data.

5.4 Steady State Operation

Steady state execution defines the periodic execution of a task graph on the sys-

tem. The steady state solution described in section 4.3 uses the energy constraint algo-

80

Table 5.5: Execution Rate Data: Per Day on Average

Execution Rate Utility per Execution Number of Max Utility Executions Total Utility Energy in Buffer
2 0.63 2.05 1.66 656.74 J
5 0.57 3.8 3.39 658.98 J
10 0.44 4.3 5.00 649.46 J
15 0.37 4.05 6.19 646.20 J
50 0.26 2.35 13.54 642.14

100 0.24 1.2 22.57 636.70 J

rithm to maintain steady state energy Esteady. The following sections present the results

showing the effect of the execution rate on achievable performance and the impact of

the energy profile on the execution rate.

In order to determine the effect of the execution rate on the system energy and

task utility, static execution rates ranging from 1 to 100 are tested. Table 5.5 shows

the results for rates of 2, 5, 10, 15, 50, and 100. As the execution rate increase, the

total utility per day (on average) also increases, while the average utility per execution

and the average energy in the buffer decrease. The energy in the buffer, however, still

remains above the threshold, Esteady. The most interesting measurement is the number of

maximum utility executions per day, which actually peaks at 4.55 times per day when

the rate r = 9, shown in figure 5.18.

While the peak number of maximum utility executions occurs at r = 9 for this

application and this specific solar panel data sample, it will certainly differ if another

application is used and when the weather patterns change. Thus, the tests are run with

various initial rates to see how the average rate depends on the starting rate. The results

from figure 5.19 show, however, that the execution rate for differing start rates con-

81

Figure 5.18: The Effect of Execution Rate on Maximum Utility Executions Per Day

verges. Thus, after an initial time period, the starting execution rate does not influence

the steady state operation, as it adapts to the energy profile. Specifically, days 4-9 of the

solar panel data have a lower harvesting rate than days 10-19 (cloudy vs. sunny days)

which is reflected in the increase of the execution rate towards the end of the data evo-

lution. On average, the execution rate on a sunny day increases by 62% as compared to

cloudy days, while the average stored energy only increases by 2%. The average stored

energy remains approximately constant despite the altering weather conditions. As the

weather conditions change, the execution rate is adapted to maintain energy neutrality.

As shown in the tests on the algorithms in the previous section, steady state oper-

ation will vary based on the amount of processing performed. To show how processing

influences the execution rate, the same levels of processing used in the external trigger

state tests are applied to steady state operation. Because averaging only requires the

82

Figure 5.19: Convergence of Execution Rate

least amount of energy, its execution rate is much higher than other levels. Note that the

no processing level is limited to less than four executions per day on the sunniest day.

5.5 External Trigger State Operation

As steady state execution will also involve external requests at times, steady

state operation is supplemented with random external requests (Esteady = 400 J and

Emin = 200 J). Figures 5.21 and 5.22 show that energy neutrality is still maintained as

the execution rate adapts to the energy consumed during external requests. The external

requests in the figure are normalized to the primary axis such that a value of 200 indi-

cates a time constraint request and a value of 400 indicates a utility constraint request.

In figure 5.21, there exists a 0.1% chance of an external request every minute, hence

83

Figure 5.20: Steady State for Levels of Processing

the numerous external requests, while in figure 5.22, there exists a 0.05% chance of an

external request every minute but only in the last six days of the evolution. In the sec-

ond figure, it is clearly evident that the energy remains above Esteady during steady state

operation and above Emin during an external request.

5.6 Summary

This chapter described how the SHiMmer application was adapted to fit the task

and energy model by developing an SHM task graph and defining the execution time

characteristics based on utility. The method of evaluation and the data used for sim-

ulated energy harvesting were outlined. The results for each of the energy and task

management algorithms were presented, highlighting the impact of processing, priority,

84

Figure 5.21: Steady State Evolution with Many Random External Requests

Figure 5.22: Steady State Evolution with Isolated Random External Requests

85

and the energy profile. Finally, results from both steady state operation and external

trigger state were discussed. For steady state operation, the different rates of execution

were compared and shown how the execution rate varies as the energy harvesting rate

changes. For external trigger state operation, random external requests were initiated,

verifying that energy neutrality is maintained while system performance is adapted to

satisfy the system and external request constraints.

Chapter 5, in part, has been submitted for publication of the material as it may

appear in Networked Sensing Systems, 2009, Steck, Jamie Bradley; Rosing, Tajana

Simunic. The thesis author was the primary investigator and author of this paper. Chap-

ter 5, in part, is currently being prepared for submission for publication of the material.

Steck, Jamie Bradley; Rosing, Tajana Simunic. The thesis author was the primary in-

vestigator and author of this material.

Chapter 6

Conclusions

Applications such as structural health monitoring are in need of smart wireless

sensor networks that can be deployed and remain physically untouched for long periods

of time. Energy harvesting offers exciting possibilities for wireless sensor networks,

but requires strict energy and task management in order to maintain energy neutrality

(consuming only as much energy as can be harvested) but also satisfy performance re-

quirements.

This thesis addressed energy and task management for energy harvesting wire-

less sensor networks and applied these methods to a structural health monitoring plat-

form. Chapter 2 summarized relevant research relating to energy harvesting, energy

management, and task assignment. Chapter 3 described structural health monitoring

techniques, technology, and related systems. Chapter 4 defined the energy and task man-

agement problem for a wireless sensing system and presented solutions for steady and

external trigger state operation using three application-independent algorithms. Chapter

86

87

5 then provided results obtained from evaluation of the algorithms and both modes of

operation. This chapter summarizes the contributions of this work and discuss ideas for

future work.

6.1 Contributions

In order to maintain energy neutrality while satisfying performance constraints,

a system software controller was presented that adapts performance based on energy

availability for steady state and external trigger state conditions. Three application-

independent, adaptive energy and task management algorithms were presented. The

energy constraint algorithm determines the maximum achievable utility using only the

current energy available in the system. The time constraint algorithm determines the

maximum achievable utility given a time limit. Finally, the utility constraint algorithm

determines the expected execution time, harvesting time, and energy consumption given

a desired utility.

Steady state operation and external trigger state operation were defined for ex-

ternally triggered energy harvesting sensing systems. Steady state operation adapts the

execution rate based on previous execution results to achieve the highest utility, utilizing

the energy constraint algorithm to maintain energy neutrality. External trigger state op-

eration, on the other hand, uses the time and utility constraint algorithms, to provide an

external device immediate estimates of the total utility, time, and energy characteristics

of a set of tasks.

88

This energy and task management was then applied to SHiMmer, a wireless

platform that combines active sensing and localized processing with energy harvesting

to provide long-lived structural health monitoring. Results from this SHM application

demonstrated the controller’s ability to adapt at runtime and maintain sufficient energy.

Steady state results showed that the execution rate changes with varying weather con-

ditions. On average, the execution rate on a sunny day increases by 62% compared to

the rate on cloudy days. External trigger state results show that processing significantly

affects the efficiency of a structural health monitoring system; specifically, complex pro-

cessing requires 17 times less execution time and 2.5 times less energy than transmitting

raw data.

There are several key benefits to the proposed energy and task management de-

sign. First, any application can use the algorithms by specifying a task graph and task

execution characteristics. Second, task utility can be adapted online at detailed levels

more precise than duty cycles or execution rates. Third, the algorithms ensure that, if

possible, all tasks in the task graph will be scheduled, and a task’s utility will be de-

termined by its relative priority in the system. Finally, as shown in the results, energy

neutrality can be maintained while adapting performance as the energy profile changes.

6.2 Future Work

Managing energy harvesting sensor nodes will continue to be a challenge as

hardware advances and WSN demands expand. Energy harvesting aware software is

89

critical to achieve significant performance and should be integrated into WSN Real Time

Operating Systems, treated as a resource as essential as memory.

Immediate next steps for the specific work in this thesis is to test these methods

on a physical structure in a field test, planned for August of 2009. Additionally, energy

harvesting aware WSN routing methods will be needed to extend this model to a small

network of energy harvesting nodes. In a network of energy harvesting systems, the en-

ergy harvesting rate will vary according to the location and characteristics of the device.

Thus, it is desirable to exploit this discrepancy by distributing the routing burden among

nodes according to energy harvesting rates.

References

[1] Benson, B., Irturk, A., Cho, J., and Kastner, R., 2008: Survey of hardware plat-
forms for an energy efficient implementation of matching pursuits algorithm for
shallow water networks. In WuWNeT ’08: Proceedings of the third ACM in-
ternational workshop on Wireless network testbeds, experimental evaluation and
characterization, 83–86. ACM, New York, NY, USA. ISBN 978-1-60558-185-9.
doi:http://doi.acm.org/10.1145/1410107.1410123.

[2] Farrar, C. R., and Worden, K., 2007: An introduction to structural health monitor-
ing. Philosophical Transactions of the Royal Society A: Physical, Mathematical
and Engineering Sciences, 365, 303–315. doi:10.1098/rsta.2006.1928.

[3] Flynn, E. B., 2008: Personal interview: Damage identification process.

[4] FreeRTOS, 2009: The freertos.org project. http://www.freertos.org/.

[5] Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., and Raghunathan, V., 2006:
Adaptive duty cycling for energy harvesting systems. In ISLPED ’06: Pro-
ceedings of the 2006 international symposium on Low power electronics and
design, 180–185. ACM, New York, NY, USA. ISBN 1-59593-462-6. doi:
http://doi.acm.org/10.1145/1165573.1165616.

[6] Jiang, X., Polastre, J., and Culler, D., 2005: Perpetual environmentally powered
sensor networks. In IPSN ’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, 65. IEEE Press, Piscataway, NJ, USA.
ISBN 0-7803-9202-7.

[7] Johnson, S. G., and Frigo, M., 2007: A modified split-radix fft with fewer arith-
metic operations. Signal Processing, IEEE Transactions on, 55(1), 111–119. ISSN
1053-587X. doi:10.1109/TSP.2006.882087.

[8] Kansal, A., Hsu, J., Srivastava, M., and Raghunathan, V., 2006: Harvesting aware
power management for sensor networks. In DAC ’06: Proceedings of the 43rd
annual conference on Design automation, 651–656. ACM, New York, NY, USA.
ISBN 1-59593-381-6. doi:http://doi.acm.org/10.1145/1146909.1147075.

90

91

[9] Kansal, A., Potter, D., and Srivastava, M. B., 2004: Performance aware task-
ing for environmentally powered sensor networks. SIGMETRICS Perform. Eval.
Rev., 32(1), 223–234. ISSN 0163-5999. doi:http://doi.acm.org/10.1145/1012888.
1005714.

[10] Lynch, J. P., 2007: An overview of wireless structural health monitoring for civil
structures. Philosophical Transactions of the Royal Society A: Physical, Mathe-
matical and Engineering Sciences, 365, 345–372. doi:10.1098/rsta.2006.1932.

[11] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., and Anderson, J., 2002:
Wireless sensor networks for habitat monitoring. In WSNA ’02: Proceedings of
the 1st ACM international workshop on Wireless sensor networks and applications,
88–97. ACM, New York, NY, USA. ISBN 1-58113-589-0. doi:http://doi.acm.org/
10.1145/570738.570751.

[12] Maxstream, 2007: Maxstream XBee OEM RF Module. Available at http://www.
digi.com/products/wireless/point-multipoint/xbee-pro-series1-module.jsp.

[13] Moser, C., Thiele, L., Brunelli, D., and Benini, L., 2007: Adaptive power manage-
ment in energy harvesting systems. In DATE ’07: Proceedings of the conference
on Design, automation and test in Europe, 773–778. EDA Consortium, San Jose,
CA, USA. ISBN 978-3-9810801-2-4.

[14] Moser, C., Thiele, L., Brunelli, D., and Benini, L., 2007: Lazy scheduling for
energy-harvesting sensor nodes. In DIPES ’06: Proceedings of the 5th working
conference on distributed and parallel embedded systems, 125–134. ISBN 978-3-
9810801-2-4.

[15] Moser, C., Thiele, L., Brunelli, D., and Benini, L., 2008: Approximate con-
trol design for solar driven sensor nodes. In HSCC ’08: Proceedings of
the 11th international workshop on Hybrid Systems, 634–637. Springer-Verlag,
Berlin, Heidelberg. ISBN 978-3-540-78928-4. doi:http://dx.doi.org/10.1007/
978-3-540-78929-1 52.

[16] Musiani, D., Lin, K., and Rosing, T. S., 2007: Active sensing platform for wire-
less structural health monitoring. In IPSN ’07: Proceedings of the 6th interna-
tional conference on Information processing in sensor networks, 390–399. ACM,
New York, NY, USA. ISBN 978-1-59593-638-X. doi:http://doi.acm.org/10.1145/
1236360.1236409.

[17] NASA Propulsion Laboratory, California Institute of Technology, 2007: Mars
exploration rover mission: Technology. http://marsrovers.nasa.gov/technology/
bb power.html.

http://www.digi.com/products/wireless/point-multipoint/xbee-pro-series1-module.jsp
http://www.digi.com/products/wireless/point-multipoint/xbee-pro-series1-module.jsp
http://marsrovers.nasa.gov/technology/ bb_power.html
http://marsrovers.nasa.gov/technology/ bb_power.html

92

[18] Pakzad, S. N., Fenves, G. L., Kim, S., and Culler, D. E., 2008: Design and imple-
mentation of scalable wireless sensor network for structural monitoring. Journal
of Infrastructure Systems, 14(1), 89–101.

[19] Park, G., Sohn, H., Farrar, C. R., and Inman, D. J., 2003: Overview of piezoelectric
impedance-based health monitoring and path forward. The Shock and Vibration
Digest, 35(6), 451–463.

[20] Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Welsh, M., and Bon-
ato, P., 2007: Analysis of feature space for monitoring persons with parkinson’s
disease with application to a wireless wearable sensor system. 6290–6293.

[21] Piorno, J. R., Bergonzini, C., Lee, B., and Rosing, T. S., 2009: Management of
solar harvested energy in actuation-based and event-triggered systems. 4th Annual
Energy Harvesting Workshop.

[22] Raghunathan, V., and Chou, P. H., 2006: Design and power management of energy
harvesting embedded systems. In ISLPED ’06: Proceedings of the 2006 interna-
tional symposium on Low power electronics and design, 369–374. ACM, New
York, NY, USA. ISBN 1-59593-462-6. doi:http://doi.acm.org/10.1145/1165573.
1165663.

[23] Ritter, H., Schiller, J., Voigt, T., Dunkels, A., and Alonso, J., 2004: Solar-aware
clustering in wireless sensor networks. In Proceedings of Ninth IEEE Symposium
on Computers and Communications.

[24] Rosenker, M. V., Hersman, D. A. P., Higgins, K. O., Sumwalt, R. L., and Chealan-
der, S. R., 2008: Collapse of i-35w highway bridge, minneapolis, minnesota, au-
gust 1, 2007: Highway accident report ntsb/har-08/03. Technical report, National
Transportation Safety Board.

[25] Rusu, C., Melhem, R., and Mossé, D., 2002: Maximizing the system value while
satisfying time and energy constraints. In RTSS ’02: Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02), 246. IEEE Computer Society, Washing-
ton, DC, USA. ISBN 0-7695-1851-6.

[26] Rusu, C., Melhem, R., and Mossé, D., 2005: Multi-version scheduling in recharge-
able energy-aware real-time systems. J. Embedded Comput., 1(2), 271–283. ISSN
1740-4460.

[27] Simunic, T., 2001: Energy efficient system design and utilization. Ph.D. thesis,
Stanford University, Stanford, CA, USA. Adviser-Micheli,, Giovanni De.

[28] Staszewski, W. J., Lee, B. C., Mallet, L., and Scarpa, F., 2004: Structural health
monitoring using scanning laser vibrometry: I. lamb wave sensing. Smart Material
Structures, 13, 251–260. doi:10.1088/0964-1726/13/2/002.

93

[29] Sugihara, R., and Gupta, R. K., 2008: Improving the data delivery latency in sensor
networks with controlled mobility. In DCOSS ’08: Proceedings of the 4th IEEE
international conference on Distributed Computing in Sensor Systems, 386–399.
Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-69169-3. doi:http://dx.doi.
org/10.1007/978-3-540-69170-9 26.

[30] Taylor, S. G., Farinholt, K. M., Flynn, E. B., Figueiredo, E., Mascarenas, D. L.,
Moro, E. A., Park, G., Todd, M. D., and Farrar, C. R., 2009: A mobile-agent based
wireless sensing network for structural monitoring applications. Measurement Sci-
ence and Technology, 20(4), 045201 (14pp).

[31] Texas Instruments, 2007: TMS320C2811 Data Manual. Available at http://focus.
ti.com/lit/ds/symlink/tms320f2812.pdf.

[32] Tian, Y., Ekici, E., and Ozguner, F., 2005: Energy-constrained task mapping
and scheduling in wireless sensor networks. Mobile Adhoc and Sensor Sys-
tems Conference, 2005. IEEE International Conference on, 8 pp.–218. doi:
10.1109/MAHSS.2005.1542802.

[33] Voigt, T., Ritter, H., and Schiller, J., 2003: Utilizing solar power in wireless sensor
networks. In LCN ’03: Proceedings of the 28th Annual IEEE International Con-
ference on Local Computer Networks, 416. IEEE Computer Society, Washington,
DC, USA. ISBN 0-7695-2037-5.

[34] Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Govindan,
R., and Estrin, D., 2004: A wireless sensor network for structural monitoring. In
SenSys ’04: Proceedings of the 2nd international conference on Embedded net-
worked sensor systems, 13–24. ACM, New York, NY, USA. ISBN 1-58113-879-2.
doi:http://doi.acm.org/10.1145/1031495.1031498.

http://focus.ti.com/lit/ds/symlink/tms320f2812.pdf
http://focus.ti.com/lit/ds/symlink/tms320f2812.pdf

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Chapter 1. Introduction
	Wireless Sensor Networks
	Energy Harvesting
	Structural Health Monitoring
	Thesis Contribution

	Chapter 2. Related Work
	Energy Harvesting
	Task Scheduling in Energy Harvesting WSNs
	Data Collection
	Summary

	Chapter 3. Structural Health Monitoring
	Statistical Pattern Recognition Paradigm
	Piezoelectric Transducers
	Damage Identification
	Current Systems
	SHiMmer
	Summary

	Chapter 4. System Energy and Task Management
	System Description
	Task Model
	Energy Model
	Prediction Model

	Energy and Task Management Algorithms
	Energy Constraint (EC)
	Time Constraint (TC)
	Utility Constraint (UC)

	Steady State Operation
	External Trigger State Operation
	Summary

	Chapter 5. Results
	Application
	Evaluation Setup
	Energy and Task Management Algorithms
	Energy Constraint (EC) Algorithm
	Time Constraint (TC) Algorithm
	Utility Constraint (UC) Algorithm

	Steady State Operation
	External Trigger State Operation
	Summary

	Chapter 6. Conclusions
	Contributions
	Future Work

	References

