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Abstract

Statistical timing analysis is based on a priori knowledge of

process variations. The lack of such a priori knowledge of

process variations prevents accurate statistical timing analysis

and has been largely blamed for foundry confidentiality pol-

icy. In this paper, we show that a significant part of process

variations are specific to the design, and can only be achieved

based on production chip performance variabilities. We adopt

the homogeneous isotropic random field model for intra-die

random variations, apply fast Fourier transform (FFT) to simu-

late a homogeneous isotropic random field, obtain corners for

Monte Carlo SPICE simulation of timing critical paths in a

VLSI circuit, and apply regression to match production chip

performance variability. Our experimental results based on a

timing critical path in an industry design with 70nm Berkeley

Predictive Technology Models reveal constant mean, increased

standard deviation, and decreased skewness of a signal prop-

agation path delay as spatial correlation increases. Our pro-

posed spatial correlation extraction technique can be applied

in a chip tapeout process, where process variations extracted

from an early tapeout help to improve statistical timing anal-

ysis accuracy and guide engineering change order for subse-

quent tapeouts.

1 Introduction

VLSI designs experience increased variabilities as technology

scales. Reduced layout feature sizes lead to increased geomet-

ric, lithography, chemical, and dopant variabilities in the manu-

facturing process, which result in increased circuit performance

variability. Such circuit performance variability is increasingly

significant in the latest technologies, and has be to captured by

statistical timing analysis for parametric yield estimation.

Statistical timing analysis needs a priori knowledge of pro-

cess variabilities, e.g., in terms of standard deviations and cor-

relations of various process parameters. The lack of such a

priori knowledge of process variabilities has formed a fun-

damental gap to achieve accurate parametric yield estimation.

This has been largely blamed for foundry confidentiality pol-

icy. However, in this paper, we show that a significant part of

process parameter variabilities differ for each design, and can

be achieved only after a VLSI design is manufactured and mea-

sured. Extracting process variabilities can be achieved based on

production chip performance variability, even without access

to foundry confidentiality data. Of particular interest is spatial

correlation extraction, which is vitally important to achieve ac-

curate statistical timing analysis [13], and can only be extracted

based on production chip performance variability as we present

as follows.

Test chips and test structures help foundry process develop-

ment and provide design guidelines in SPICE models, technol-

ogy file parameters, and design rules. However, they provide

only limited capability for production monitoring and yield

analysis [12]. This is because process parameters in a test chip

may not have the same variabilities as in the production chip.

Most interconnects in a test chip look nothing like in a produc-

tion chip. Lateral layout feature dimensions, e.g., wire width

and transistor channel length, are given by lithography process

and affected by nearby features [3]. Vertical layout feature di-

mensions, e.g., wire thickness and gate oxide thickness, are

given by chemical mechanical polishing (CMP) process and

depend on local layout density [14]. As a result, accurate pro-

duction monitoring and yield analysis can only be achieved via

production chip based process variation extraction.

Process parameter spatial correlation has received increased

attention recently. A conventional technique partitions the lay-

out plane by a grid, assuming perfect correlation for all random

variables (e.g., transistor threshold voltage or channel length)

in the same grid cell, and computes a correlation matrix for

the grid cells [1]. The number of correlated random variables

can be further reduced by (1) clustering the grid cells into per-

fect correlation circles [11], (2) applying principle component

analysis (PCA) [1, 16], or (3) applying Kahuna-Loève expan-

sion [2]. These techniques are based on a discrete random field

(represented by the grid cells). A continuous (homogeneous

isotropic) random field is the simplest model for intra-die vari-

ation (consisting of a single parameter), which greatly facil-

itates spatial correlation extraction, with reasonable accuracy

(a homogeneous isotropic random field has a constant mean

and a spatial correlation which depends only on distance) [20].

However, in [20], spatial correlations are extracted based on
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direct measurement at sampling sites across a chip, which is

unlikely to be available in a production chip. To the best of our

knowledge, no practical spatial correlation extraction method

is available, except a recent publication [10] which proposes to

refine spatial correlation bounds by rejection sampling based

on statistical static timing analysis (SSTA) results.

In this paper, we model process parameter variations across

a chip in homogeneous isotropic random fields, and propose

a spatial correlation extraction technique based on produc-

tion chip performance statistics. We simulate a homogeneous

isotropic random field by fast Fourier transform (FFT), gen-

erate corners for Monte Carlo SPICE simulation, and apply re-

gression to match production chip performance variability. Our

proposed technique can be applied to a chip tapeout process,

where process variation extraction based on an early tapeout

improves statistical timing analysis accuracy and guides engi-

neering change order for subsequent tapeouts.

We organize the rest of the paper as follows. We briefly in-

troduce process variations in Section 2, and give our problem

formulation in Section 3. We present our proposed spatial cor-

relation extraction technique in Section 4, and give our experi-

mental results in Section 5 before we conclude in Section 6.

2 Background

Variabilities in various VLSI manufacturing processes, e.g.,

lithography, chemical mechanical polishing (CMP), chemical

vapor deposition (CVD), ion implantation, etc., give rise to dif-

ferent physical process parameter variations, including:

1. lateral layout feature dimension variations, such as (1)

transistor channel length, and (2) metal wire width vari-

ations, which are given by lithography processes,

2. vertical layout feature dimension variations, such as (1)

transistor gate oxide thickness, and (2) metal wire thick-

ness variations, which are given by mechanical polishing

(CMP) processes, and

3. ion implantation dopant fluctuation and chemical vapor

deposition (CVD) variation, which affect (1) transistor

threshold voltage and (2) via resistance, respectively.

Such physical process variations result in electrical parameter

and performance variations in a VLSI circuit. Based on the

scales of the variation components, these variations are decom-

posed into (1) inter-die variations, (2) systematic intra-die vari-

ations, and (3) residual intra-die random variations [18].

1. Inter-die variations are generally caused by additional

equipment nonuniformity and other physical effects such

as thermal gradients and loading phenomena, and are

slowly varying and smooth at a large scale. They are in-

dependent on the chip under manufacturing, and can be

filtered out from the production chip performance mea-

surement by averaging over the dies [18].

2. Intra-die variations are often caused by layout and to-

pography interaction with the process, such as pattern

planarization in chemical mechanical polishing (CMP),

and lithography effects in determining transistor channel

lengths and metal line widths. Lithography [3] and CMP

[14] simulations provide accurate prediction of systematic

intra-die variations.

3. The residual intra-die random variations can be filtered

to have zero means. Their autocorrelation functions ap-

proximately depend only on the distance between the two

components on a chip [4, 13, 15, 20].

Among the variation components, VLSI performance vari-

ation is mainly affected by spatial correlation between com-

ponents on a chip [13], including (1) the slow varying inter-

die variations and (3) the residual intra-die random variations,

since (2) the systematic intra-die variations are given by layout

features in local areas, hence are uncorrelated and their effects

on a signal propagation path delay largely cancel each other.

3 Problem Formulation

In this paper, we study the problem of process variation extrac-

tion. We show that any accurate process variation extraction

can only be achieved based on production ship performance

variabilities. Of particular interest is spatial correlation extrac-

tion, which is critical in achieving accurate statistical timing

analysis, and can only be achieved by extracting intra-die ran-

dom variations, given lithograph and CMP simulation results

for systematic variations. We formulate our problem as fol-

lows.

Problem 1 (Production Chip Process Variation Extraction)

Given

1. a (SPICE netlist) circuit,

2. (SPICE transistor) performance models, and

3. (critical path delay) performance variabilities from pro-

duction chip measurement,

find dominant parameter variations in the performance models

such that minimum mismatch is achieved between the model

prediction and the production chip performance variability

measurement.

Given systematic variation prediction results (e.g., by lithog-

raphy and CMP simulations and correspondent parasitics ex-

traction which translate geometries to electrical parameters),

we model the residual random variations by homogeneous

isotropic random fields, and apply regression to extract spa-

tial correlations of the random fields which best fit the produc-

tion chip performance variability measurement. For the most

accurate statistical performance analysis, we simulate homo-

geneous isotropic random fields to generate corners, and ap-

ply Monte Carlo SPICE simulation for the timing critical paths
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in the design. For efficiency, we establish functional relation-

ships between performance variations and process parameter

spatial correlations, and apply regression based on the estab-

lished functional relationships. Algorithm 1 summarizes our

proposed process variation extraction method.

Algorithm 1: Process Variation Extraction via Performance
Variations

Input: VLSI circuit, SPICE models, performance variations
Output: Dominant process parameter spatial correlations

1. Select dominant process parameter variations to extract
2. Predict systematic variations
3. For each set of process parameter spatial correlations
3. Simulate homogeneous isotropic random fields
4. Perform Monte Carlo SPICE simulation
5. Find functional relationships between perf. var. and spatial corr.
7. Perform regression
8. Find best fit process parameter spatial correlations

4 Modeling and Extraction of Spatial

Correlations

4.1 Homogeneous Isotropic Random Field

We model intra-die random variations by homogeneous

isotropic random fields [20], i.e., they have identical means at

every location on the chip, and their spatial correlations depend

only on the distance between the two locations. Most intra-

die random variations closely resemble homogeneous isotropic

random fields, e.g., transistor channel doping concentration

fluctuation results from ion implantation atmosphere pressure

variation and has identical means and zero spatial correlations

across a chip. Furthermore, we can enhance the accuracy of a

homogeneous isotropic random field model as follows.

1. We can separate systematic intra-die variations and inter-

die variations such that the remaining intra-die random

variations have identical (zero) means over the layout

plane. This is because systematic variation prediction

includes a minimum deviation regression process which

tunes model parameters and achieves mean variation pre-

dictions.

2. We can scale the vertical and horizontal dimensions to re-

move any orientation preference which may be present in

a manufacturing process, e.g., lens aberration takes place

only in the stepper scan direction (which, however, is not

significant, and only leads to within 5% transistor channel

length variation [6]).

A homogeneous isotropic random field model for intra-die

random variations achieves not only accuracy but also effi-

ciency in spatial correlation extraction. We present the formal

definition of a homogeneous isotropic random field as follows.

Definition 1 A random function ξ(x)(x ∈ Rn) is a homoge-

neous isotropic random field if E[ξ(x)] = const (e.g. 0),

E[ξ2(x)] < ∞, and its autocovariance function E[ξ(x)ξ(y)] =
Rξξ(r) depends only on the distance r = |x− y| between the

two locations x and y [17].1

A homogeneous isotropic random field has specific autoco-

variance functions, e.g., as follows [20]:

Rξξ(r) = e−αr (1)

where α is a parameter that regulates the decaying rate of the

correlation function with respect to distance r.

The simplicity of this model (with a single parameter a)

greatly facilitates spatial correlation extraction. We adopt this

spatial correlation function for homogeneous isotropic random

field extraction in this paper, while our method is independent

on the spatial correlation function that we adopt, any other pos-

sible spatial correlation functions can also be applied or found

by regression techniques [20].

4.2 Fast Fourier Transform Based Simulation

We simulate the random fields of process parameters to gener-

ate corners for Monte Carlo SPICE simulation.

A homogeneous isotropic random field ξ(x) is completely

described by its autocovariance function Rξξ(r) or its autospec-

tral density function Gξξ(ω), which form a Fourier transform

pair [19]:

Rξξ(r) =

Z

R
eiωrGξξ(ω)dω

Gξξ(ω) =

Z

R
e−iωrRξξ(r)dr (2)

where ω = 2πλ−1 is frequency, λ−1 is wavenumber, λ is wave-

length. For a real-valued random field, Gξξ(ω) = Gξξ(−ω), we

denote the one-sided spectral density function as Sξξ(ω).
Let ωu be the upper cutoff frequency, above which the values

of the frequency spectrum are insignificant for practical pur-

poses. We divide the interval [0,ωu] into N equal parts, each

having length ∆ω = ωu/N. To apply the FFT in the simula-

tions, we choose ωk such that for any k ≥ 1, ωk+1 −ωk = ∆ω.

Let (r,ϕ) be the polar coordinates in a 2-D random field. The

simulation result ξ′(r,ϕ) is given in the form of Riemann inte-

gral sum as follows [7].

ξ′(r,ϕ) =
√

2π∆ω
L

∑
l=−L

N

∑
k=1

√

ωkSξξ(ωk)Jl(ωkr)

(cos(lϕ)ηlk1 + sin(lϕ)ηlk2) (3)

where Jl(.) is Bessel function of l-th order, ηlkm,m = 1,2 are

independent Gaussian random variables with zero mean and

unit variance.

The algorithm for simulating a homogeneous isotropic ran-

dom field using FFT consists of two steps as follow.

1A random field’s autocovariance function E[ξ(x)ξ(y)] = Rξξ(r) is equiva-

lent to its spatial correlation function E[∆ξ(x)∆ξ(y)] if E[ξ(x)] = 0.
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1. Define two arrays for 1 ≤ k ≤ N and −L ≤ l ≤ L:

alk =
√

2π∆ωωkSξξ(ωk)ηlk1

blk =
√

2π∆ωωkSξξ(ωk)ηlk2 (4)

2. Calculate approximated random field value at any location

(r,ϕ):

ε′(r,ϕ) =
L

∑
l=−L

N

∑
k=1

Jl(ωkr)(cos(lϕ)alk + sin(lϕ)blk) (5)

We have Sξξ(ω) as follows by substituting (1) into (2).

Sξξ(ω) =
Z ∞

0
e−(α+iω)rdr =

1

α+ iω
(6)

The simulated random field is isotropic and asymptotically

homogeneous (as L → ∞) Gaussian with zero mean and unit

standard deviation. A similar homogeneous isotropic random

field simulation method is available in [7].

4.3 Regression

Having the corners generated by simulating the random fields

of process parameters, we can apply Monte Carlo SPICE sim-

ulation and find the mean square mismatch between our model

and the measured data. The tentative random fields are then

perturbed to minimize the mean square mismatch.

For example, we can formulate the regression problem for

spatial correlation decaying rate extraction as follows.

Problem 2 (Spatial Correlation Decaying Rate Extraction)

Given

1. a group of timing path {pi},

2. statistical moments {mi} (standard deviations, skewness,

etc.) and/or correlations of signal propagation delays

{di} of timing paths {pi} from production chip measure-

ment,

3. a set of dominant process parameter variations {vi} in

homogeneous isotropic random fields with their autoco-

variance functions in the form of Rξξ(r) = e−αr,

4. functional relationships between spatial correlation de-

caying rates {αi} and the measured path delay statisti-

cal moments {mi} which are obtained by homogeneous

isotropic random field simulation and SPICE simulation,

find the spatial correlation decaying rates {αi} which best fit

the process parameter variations {vi}.

For efficiency, we establish functional relationships between

path delay statistical moments and process parameter spatial

correlation decaying rates, such that we do not need to ap-

ply Monte Carlo SPICE simulation during regression. For a

straightforward implementation, we adopt a greedy steepest

descent algorithm for nonlinear optimization. More power-

ful methods, e.g., Levenbert-Marquis algorithm for least mean

square regression, can be applied for improved efficiency and

solution quality.

5 Experiment

We validate our proposed spatial correlation extraction method

in the following experiments.

Assuming we are given inter-die variations and systematic

intra-die variations (which are predictable by lithography and

CMP simulations and correctable by OPC and dummy fill in-

sertion techniques, and their effects usually cancel each other

without the presence of correlation), we simulate the effect of

spatial correlation on timing critical path delay as follows.

1. We perform timing analysis by Synopsis PrimeTime and

find a timing critical path.

2. We find the locations of the cell instances in the timing

critical path, simulate a homogeneous isotropic random

field according to an assumed spatial correlation delaying

rate α, and find the variations for each cell instance in the

critical path.

3. We modify the netlist and the device models for the cell

instances in the timing critical path, and perform SPICE

simulation for the critical path delay statistical distribu-

tion.

We study signal propagation delay variation of a timing crit-

ical path of 30 combinational logic gates in an industry design

of 109,000 components. The logic gates in the path include

inverters, buffers, NAND, OR, XOR, and AOI gates, which

are placed in a 165.2µm× 554.4µm layout region. We sim-

ulate homogeneous isotropic random fields for gate channel

length Lgate, transistor threshold voltage Vth, and interconnect

width wint variations,2 and perform SPICE simulation for the

gates based on 70nm technology Berkeley Predictive Technol-

ogy Models (BPTM). The interconnects are obtained from par-

asitics extraction results in SPEF files.

We assume near zero spatial correlation for the transistor

threshold voltage Vth variation (which results from ion implan-

tation) by setting a large spatial correlation decaying rate α = 1.

The spatial correlation decaying rate α ranges from 1, 0.1, to

0.01 for gate length Lgate and interconnect width wint , such that

cell instances several hundreds or thousands µm apart would

have virtually no correlation. We have a 1µm cutoff wave-

length λu = 1µm, and partition the correlation frequency spec-

trum [0,ωu] into 100 equal parts N = 100. We compute Bessel

functions of order ranging from −50 to 50, i.e., L = 50. The

simulated homogeneous isotropic random fields have an ap-

proximately unit standard deviation σ = 1. We scale the sim-

ulated random field according to different standard deviations

of the parameters, e.g., gate length Lgate and interconnect width

wint have 3σ = 15%, transistor threshold voltage has 3σ = 30%.

Fig. 1 gives probability density functions (pdf’s) for the criti-

cal path delay with different spatial correlation decaying rate α.

Each pdf is achieved by SPICE simulation based on 1000 sam-

ples of random field variation corners. Table 1 gives the means

2A more detailed analysis of process parameter variations would separate

PMOS and NMOS transistor channel lengths and threshold voltages, and in-

terconnect widths on different routing layers.
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Figure 1: Probability density function (pdf) of a critical path

delay with spatial correlation decaying rate α = 1,0.1, or 0.01

for gate channel length Lgate and interconnect width wint varia-

tions, and α = 1 for transistor threshold voltage Vth variations.

Table 1: The means µ, the standard deviations σ, and the skew-

ness γ1 of a critical path delay of 30 combinational logic gates

in a 109,000 component industry design with 70nm Berkeley

Predictive Technology Models.

α 1 0.5 0.1 0.05 0.01

µ (ns) 2.92 2.92 2.92 2.92 2.92

σ (ps) 49.90 56.49 76.27 87.05 92.45

γ1 0.18 0.19 0.16 0.13 0.12

and the standard deviations of the critical path delay variations

for different spatial correlations. We have the following obser-

vations.

The mean critical path delay is constant for different spatial

correlation decaying rate α, while the standard deviation of the

critical path delay increases as the spatial correlation decaying

rate decreases. A decreased spatial correlation decaying rate

gives increased spatial correlation. The two extreme cases α =
∞ and α = 0 corresponds to zero and 100% spatial correlation,

respectively. In the presence of zero spatial correlation, delay

variations for the components in a timing path would cancel

each other and result in smaller path delay deviation. A larger

spatial correlation results in a larger path delay variation.

The critical path delays have a positive skewness γ1, i.e.,

their distributions have a longer right tail than a left tail. The

skewness γ1 of the critical path delay decreases as the spatial

correlation decaying rate decreases, i.e., an increased spatial

correlation results in an increasingly symmetric path delay dis-

tribution.

We observe constant mean, increased standard deviation

and decreased skewness of a signal propagation path delay for

a decreased spatial correlation decaying rate. Delay variations

for other signal propagation paths are similar, i.e., the absolute

locations and the orientations of the gates in the paths do not af-

fect random variations in a homogeneous isotropic field, while
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Figure 2: Path delay standard deviation σ (ps) approximated as

a quadratic function of spatial correlation decaying rate α.

the scale of the distances between the gates in a timing path

can be translated to the scale of the spatial correlation decay-

ing rate α, i.e., placing the gates in a path closer to each other is

equivalent to scaling down α, which implies a larger path delay

variation.

For efficiency, we find approximated functional relation-

ships between path delay deviations and spatial correlation de-

caying rates, e.g., by least mean square regression based on

SPICE simulation results for sampled spatial correlation de-

caying rates. For example, we approximate the standard devi-

ation for the path delay of 30 combinational logic gates in our

experiment as follows (Fig. 2).

σ = 61.86α2 −102.5α+ 90.85 (7)

where α is the spatial correlation decaying rate for gate channel

length Lgate and interconnect width wint (α = 0 for transistor

threshold voltage Vth).

Based on the functional relationships between path delay de-

viations and spatial correlation decaying rates, we can apply

regression techniques and find process parameter spatial corre-

lation decaying rates which best fit the path delay distributions

obtained from production chip performance measurement. The

achieved spatial correlations can then be taken into account

in statistical performance analysis for improved accuracy, and

guide statistical physical design optimization techniques, e.g.,

placement and gate sizing, in a successive chip tapeout process.

The proposed spatial correlation extraction technique is quite

efficient. It takes 0.61s to simulate a homogeneous isotropic

random field and generate a set of corners for 30 locations, and

2.05s for SPICE simulation to conduct transient analysis across

a 5000ps time frame with 1ps time step, on an i686 Linus sys-

tem with a 2.8GHz processor and 512MB memory. Finding an

approximated quadratic function for path delay standard devi-

ation σ of spatial correlation decaying rate α takes linear time

of the number of samples. The runtime of regression for best

fit spatial correlation decaying rates α is given by the number

of path delays and the number of process parameter variations,

which can be bounded for accuracy-efficiency tradeoff.
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6 Conclusion

Spatial correlation is critical to VLSI timing critical path de-

lay variation. We propose spatial correlation extraction based

on production chip performance statistics. We adopt the ho-

mogeneous isotropic random field model for the on-chip vari-

ations, and propose a fast Fourier transform (FFT) based ran-

dom field simulation technique to generate variation corners for

Monte Carlo SPICE simulation of a timing critical path delay.

We apply our proposed technique to a timing critical path in

an industry design with 70nm Berkeley Predictive Technology

Model, and observe constant mean, increased standard devia-

tion and decreased skewness of the path delay variation. We

propose to apply regression techniques to match a production

chip performance statistics, and extract spatial correlations for

more accurate statistical timing analysis and subsequent sta-

tistical physical design optimization, e.g., in a successive chip

tapeout process.
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