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Topological transitions during grain growth on a finite element mesh

Erdem Ere and Jeremy K. Masorﬂ
Department of Materials Science and Engineering,
University of California at Davis, Davis, CA 95616, USA

The topological transitions that occur to the grain boundary network during grain growth in a
material with uniform grain boundary energies are believed to be known. The same is not true for
more realistic materials, since more general grain boundary energies in principle allow many more
viable grain boundary configurations. A simulation of grain growth in such a material therefore
requires a procedure to enumerate all possible topological transitions and select the most energet-
ically favorable one. Such a procedure is developed and implemented here for a microstructure
represented by a volumetric finite element mesh. As a specific example, all possible transitions for
a typical configuration with five grains around a junction point are enumerated, and some excep-
tional transitions are found to be energetically similar to the conventional ones even for a uniform
boundary energy. A general discrete formulation to calculate grain boundary velocities is used to
simulate grain growth for an example microstructure. The method is implemented as a C++ library
based on SCOREC, an open source massively parallelizable library for finite element simulations

with adaptive meshing.

I. INTRODUCTION

One of the overarching goals of integrated computa-
tional materials engineering (ICME) [I is to accurately
predict microstructure and property evolution during
thermomechanical processing. At a minimum this would
require a simulation incorporating crystal plasticity and
grain boundary motion, and ideally interactions involv-
ing multiple phases and additional material physics.
Such simulations would benefit from recent advances in
three-dimensional microscopy [2], and specifically three-
dimensional X-ray diffraction microscopy (3DXRD) that
enables non-destructive three-dimensional imaging of
millimeter-sized samples [3[4]. These could both provide
initial conditions for and allow verification of the output
of predictive simulations of microstructure evolution.

Historically, one major difficulty with simulations of
microstructure evolution has been the use of unrealis-
tic grain boundary energy (GBE) functions. Such func-
tions are difficult to determine experimentally due to the
number of independent variables, but Morawiec recently
suggested a procedure to estimate the GBE from distri-
butions of grain boundary angles around triple junctions
[5]. Saylor et al. subsequently used a related technique
to estimate the GBE from EBSD analysis of the surface
of aluminum samples [6] [7]. While explicit functions for
the grain boundary energy are not yet widely available
(with a few exceptions [8,9]), this will likely change in the
near future. When that happens, a code for microstruc-
ture evolution that is able to make full use of them would
ideally already be available.

Existing simulations of microstructure evolution in-
clude Monte Carlo (MC) Potts, cellular automata (CA),
phase field (PF) and front tracking models. The Monte
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Carlo Potts [10], [I1] and cellular automata [12HI4] meth-
ods are popular partly because of their low computa-
tional complexity and ease of implementation, but suffer
from two relevant shortcomings. First, the underlying
voxel lattice introduces an artificial anisotropy that can
be difficult to eliminate [15} [16], and a predictive model
requires kinetics relatively independent of any underly-
ing grid. The second limiting property of MC Potts and
CA models is the difficulty of connecting the model with
physical units of measure. Zhang et al. scaled quantities
defining characteristic time, length and energy but ob-
served that the grid size affected the bulk energy driving
force [I7]. Mason established spatial and temporal di-
mensions in a CA model using the Turnbull relation and
a uniform grain boundary energy, but the technique is
not easily generalized to other situations [16].

The phase field method is an implicit boundary ap-
proach that was initially developed to study phase transi-
tions [I8], and can be modified to include small deforma-
tions and mildly anisotropic interface energies [19]. One
drawback is the high memory and computational demand
associated with representing grains by continuous fields,
since numerical instabilities associated with steep gradi-
ents limit the time step. Modern implementations often
use sparse data structures [20H22] and adaptive meshing
[23] to address this issue. Still, finite deformations and
arbitrary boundary energies that can depend on the grain
boundary plane pose difficulties. Moreover, the use of dif-
fuse boundaries can complicate the study of topological
aspects of the grain boundary network and can introduce
subtle numerical errors. Jin et al. compared the accuracy
of level set and phase field methods coupled with the
Finite Element Method (FEM) in representing the mo-
tion of triple lines during isotropic and anisotropic grain
growth [24]. They observed that under proper grid and
time refinement, both methods performed similarly for
the isotropic case. For anisotropic grain growth though
they observed 14.2% error in triple junction velocity for
the level set method and as much as 68.7% error for the
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PF method. Some recent functional methods allow for
anisotropic grain boundary properties [25], but modeling
of finite mechanical deformation is still not addressed.

Early front tracking methods had the advantage of con-
centrating computational resources just on the bound-
aries, and were often used to study mean curvature flow
[26] 27]. FEM-based approaches are a natural extension
of these that can support additional physics, e.g., bound-
ary energies can be explicitly defined, and volumetric
meshes allow for crystal plasticity [28]. However, FEM-
based methods introduce additional challenges with scal-
ability and require explicit handling of the topology and
mesh. The complexity of the latter has encouraged
use of an MC Potts, CA or PF method in conjunction
with a FEM solver. These hybrid schemes use an im-
plicit boundary representation to model grain growth,
and transfer the resulting microstructure to the FEM to
model deformation. Sequential evolution is achieved by
transferring the microstructure back and forth [29H3T].
This does not resolve accuracy concerns though, since
transferring the solution potentially introduces informa-
tion loss and increases computational complexity.

Of the purely FEM-based approaches, Kuprat de-
veloped a three-dimensional adaptation of the gradient
weighted moving finite element (GWFE) method and im-
plemented GRAIN3D, a serial finite element framework
for microstructure modeling of grain growth [32]. The
code had an element regularization scheme to improve
the quality of low-quality elements, handled changes in
the microstructure as boundaries evolved, and supported
volumetric physics. While the initial implementation
only supported constant grain boundary energies, more
general energies were investigated by Gruber et al. [33].
There are two main concerns with using this for general
purpose simulations of microstructure evolution though.
First, Kuprat implemented the topological transitions by
switching the last remaining set of elements of a col-
lapsing boundary segment or volume to the appropri-
ate neighboring volumes [32]. This is not necessarily
physical, and the relabeling can cause a substantial and
artificial perturbation of the boundaries. Although the
likely changes to the overall evolution are limited for an
isotropic grain boundary energy, this could substantially
affect microstructure trajectory for the anisotropic case.
Second, the existing implementation of the implicit finite
element solver is serial. This prohibits simulating mi-
crostructures on physically relevant scales, such as the 1
mm? cylindrical copper sample imaged using 3DXRD by
Li et al. [4].

Using a surface mesh representation, Syha and Wey-
gand studied the effects of an anisotropic grain bound-
ary energy [34]. They proposed to decompose topological
transitions into simpler sequential operations and used a
force-based criteria to select changes to the grain bound-
ary network. While this could accommodate anisotropic
grain boundary energies, decomposing a topological tran-
sition into a sequence of simpler ones could alter the
eventual trajectory of microstructure evolution. More-

over, the implementation is not volumetric and therefore
cannot support volumetric physics.

Lazar et al. studied ideal grain growth by using a sur-
face mesh representation, a fixed set of topological tran-
sitions applicable for uniform grain boundary energy, and
evolving the microstructure with a discretized formula-
tion satisfying the MacPherson-Srolovitz relation [35],[36].
Although this approach provided insight into ideal grain
growth, it is not applicable to general microstructure evo-
lution for two reasons. First, the boundary evolution for-
mulation assumes that the microstructure is composed
of quadruple points and triple junctions at all times ex-
cept for the moments where transitions occur. While
this is generally applicable for ideal grain growth, it does
not hold for experimental microstructures. For instance,
highly twinned microstructures often contain junction
lines joining four grain boundaries, and accommodat-
ing such configurations would require implementing more
general topological transitions. Second, the implemen-
tation doesn’t support volumetric physics, and is only
intended to model ideal grain growth.

A FEM code to be used for ICME would ideally be
able to handle substantial volumes of material since many
grains are required to accurately reflect variations in the
local deformation response and to model stochastic pro-
cesses like recrystallization. Tucker et al. studied con-
vergence of large scale crack propagation simulations as
a function of the number of grains and mesh refinement
in microstructures with abnormal grains [37]. They ob-
served that the overall damage response was not signif-
icantly affected by mesh resolution, but that more than
200 grains were required in the sample microstructure for
the convergence of the local response. This shows that
a scalable framework is necessary to accurately capture
the local response during deformation.

To summarize, existing implementations of FEM-
based grain growth codes are limited in several respects.
First, they are generally serial, prohibiting large scale
simulations [32] 34, 35]. Second, topological transitions
are achieved by merging mesh entities with one of the
neighboring grains [32], by sequentially splitting points
[34], or selecting from a restricted set of operations [35],
all of which could substantially change the trajectory of
the microstructure evolution. That is, a general FEM
framework to study grain growth and deformation at
physically relevant scales does not appear to exist.

The main contributions of this paper are four-fold.
First, a method for finding all possible topological transi-
tions that can occur around junction points during grain
growth is proposed. Second, operations on the simpli-
cial mesh have been developed to modify the mesh cor-
responding to these topological transitions. Third, a cri-
teria based on the rate of energy dissipation is used to
compare different topological transitions, providing an
unambiguous selection criterion. Fourth, a discrete for-
mulation to simulate grain boundary motion has been
implemented that allows for effectively arbitrary grain
boundary properties [38]. The formulation is explicit and
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FIG. 1: (a) The rectangular prism example is comprised of
seven grains. A central rectangular grain is surrounded by six
grains, with examples of a volume, surface, and line outlined
in red. (b) A finite element representation of this microstruc-
ture where tetrahedra, triangles, edges and vertices are used
to discretize volumes, surfaces, lines and points. Examples of
a tetrahedron, triangle and edge are outlined in red.

solves for the motion of each vertex individually, reduc-
ing the computational load greatly compared to the weak
formulation of the FEM at the cost of increased error.
A CH+ library called VDLIB implements all these op-
erations. VDLIB interfaces with SCOREC, a massively
parallel mesh management library with local adaptive re-
meshing [39, [40]. The intention is to provide the founda-
tions for large scale simulations of microstructure evolu-
tion within the framework of ICME.

II. MICROSTRUCTURE REPRESENTATION

Our intention is to simulate the evolution of a mi-
crostructure at a scale that resolves the grain structure.
It will be useful in the following to introduce specific
terminology to identify the various microstructure com-
ponents. A grain will be called a volume, a boundary a
surface, a boundary junction line a line, and a boundary
junction point a point. A microstructure where each of
these components is outlined in red is shown in Figure
[[a] The volumes, surfaces, lines, and points composing
the microstructure formally comprise a stratified space,
and for that reason the microstructure components will
occasionally be referred to as d-strata where d is the di-
mension of the stratum. The connectivity of the topolog-
ical components of the microstructure is defined by the
adjacencies of d-strata and (d — 1)-strata; that is, a vol-
ume is bounded by surfaces, surfaces by lines, and lines
by points.

A point is required to bound at least three lines (Fig-
ure , a line at least three surfaces (Figure , and
a surface at least two volumes. One can show that any
topological component not satisfying these relationships
is spurious in the sense that it can be removed by merging
the adjacent components of the next higher dimension.
There are no constraints imposed on the number of adja-
cent components of the next lower dimension; this allows
e.g., a small spherical volume to be embedded in the mid-
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FIG. 2: Examples indicating adjacency rules. (a) A point
should bound at least three lines. This point bounds three
lines, two conical volumes on the left and right, and two vol-
umes above and below the page. (b) A line should bound
at least three surfaces. (c) A surface separating a top and a
bottom volume and ball embedded in the surface. The line
of intersection has no bounding points. (d) A sphere inside
another volume, with a surface that has no bounding lines.

dle of a surface (Figure 2d), or a ball to be embedded in
the interior of a volume (Figure 2d).

III. OPERATIONS ON THE
MICROSTRUCTURE

During the course of grain growth, grain boundaries
move to reduce the energy of the microstructure. Oc-
casionally a surface or volume will shrink to a point or
will expand from a point to participate in the subsequent
evolution; such events are called topological transitions.
From the standpoint of the finite element mesh the cor-
responding operations are either collapses, where disap-
pearing boundary segments or volumes are removed, or
insertions, where new boundary segments are introduced
to allow the microstructure evolution to continue.

A. Stratum collapses

The average grain size increases during grain growth,
meaning components of the grain boundary network
should generally vanish. The criterion for this topolog-
ical transition in practice is that the length of a line,
area of a surface, or volume of a grain is shrinking and
passes below a threshold tied to the overall scale of the
microstructure. The collapse is effected by merging all
of the bounding points and adjusting the adjacency lists
of the surrounding components as appropriate. Exam-
ples of this operation are shown in Figure [3] with several
specifics of the algorithm given in Section [[I] of the sup-
plementary material (SM).

B. Stratum insertions

Often the configuration resulting from a stratum col-
lapse is unstable and the energy could be lowered by split-
ting the point to insert a line or a surface. There are usu-
ally many such possible insertions, and the identification
of the most likely one necessarily involves enumerating
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FIG. 3: The cases of collapse shown on the rectangular prism
example. (a) The initial microstructure. (b) Line collapse.
(c) Surface collapse. (d) Volume collapse.
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FIG. 4: (a) Consider the point at the bottom left corner of the
central volume. (b) The neighborhood of the point shows the
relationships with the surrounding surfaces and volumes. (c)
The volumes in an exploded view. (d) The adjacency graph
showing the volumes as squares and the surfaces as disks. In
this figure, volumes and squares are the same color.

these possibilities. This analysis can be performed using
the adjacency graph of surfaces and volumes. The ad-
jacency graph is constructed by placing a node for each
volume and surface and an edge between adjacent vol-
umes and surfaces. The steps involved are shown in Fig-
ure [4] for a particular point. Formally, for non-periodic
microstructures, there is a volume surrounding the sim-
ulation cell that is connected to the surfaces bounding
the simulation cell. For the purpose of enumerating the
possible insertions, this is treated similarly to the vol-
umes within the simulation cell, with the specifics given
in Section [VIIT of the SM.

1. Line insertions

Every possible line insertion corresponds to a circuit on
the associated adjacency graph with one example shown
in Figure f| This configuration frequently occurs for
isotropic grain boundary energies, e.g., when a triple line
collapses and two quadruple points are merged. The cir-
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FIG. 5: A line insertion corresponds to a circuit on the ad-
jacency graph. (a) A five grain configuration and a circuit
going around the point. (b) Every surface punctured by the
circuit is extended by adding the inserted line to their adja-
cency lists. (c) The adjacency graph around the point. Edges
along the circuit are dashed.

cuit shown in Figure [5a] passes through the front, left and
right volumes, and every surface that is punctured by the
circuit is adjacent to the inserted line. The circuit in Fig-
ure |pa) precisely corresponds to the circuit in Figure
and enumerating all possible line insertions is equivalent
to enumerating all circuits on the adjacency graph. Al-
gorithms to identify the circuits on a graph are available
in the literature [41, 42]. Not all possible circuits need to
be considered though; if removing the nodes and edges of
the circuit from the adjacency graph leaves only a single
connected component, then the line insertion would cre-
ate a spurious line and point that would subsequently be
removed. The resulting algorithm is described in detail
in Section [[ITl of the SM.

2. Surface insertions

Around a point a surface can only be inserted between
two disconnected volumes. Given a pair of such volumes,
the inserted surface is connected to the surrounding sur-
faces by some set of inserted lines. Each line corresponds
to a path that starts on one of the disconnected vol-
umes and ends on the other, as in Figure [fa] A set of
such paths completely specifies the topology around the
inserted surface. Every surface punctured by a path is
adjacent to the corresponding inserted line, as in Figure
[6Bl The set of all possible surface insertions can be found
by constructing all possible sets of non-intersecting paths
between the nodes of the adjacency graph corresponding
to the disconnected volumes. These paths can be found
using a standard depth first search algorithm on the adja-
cency graph. Unlike line insertions, paths along surfaces
that share a common edge are still acceptable, as the
newly inserted line will bound the inserted surface and
will be topologically different from any preexisting line.
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FIG. 6: A surface insertion corresponds to a set of paths on
the adjacency graph. (a) A five grain configuration, showing
a set of three non-intersecting paths connecting the discon-
nected (top and bottom) volumes. (b) A surface is inserted
between the disconnected volumes with one bounding line for
each path. Each line is added to the adjacency lists of the sur-
faces punctured by the corresponding path. (c¢) The adjacency
graph around the point. The color of punctured surfaces and
edges on the graph match on (a) and (c).
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FIG. 7: Topological transitions not considered here. (a) Two
lines bounding the same surface meet to form a new point.
(b) Two bounding surfaces of a volume meet to form a new
point. (c) The cross section of a cylindrical volume is reduced
to a point.

The resulting algorithm is described in detail in Section
[V of the SM.

C. Other considerations

The algorithms described in this section are conjec-
tured to result in sets of topological transitions that
include all those that occur during grain growth for
a generic initial condition, even with anisotropic grain
boundary energies. A generic initial condition is one for
which the type of topological transition shown in Figure
[7 does not occur. That is, the only allowed topologi-
cal transitions are those for which the length of a line,
the area of a surface, or the volume of a grain passes
through zero. This is not believed to be a serious con-
straint though, since the topological transitions in Fig-

FIG. 8: A point connected to two spherical grains, and two
grains above and below the page. The neighborhood of the
point is outlined by a dashed line. The surface in the page is
represented twice in the neighborhood of the point.

ure [7] are not expected to occur during grain growth in a
generic physical system.

There are some situations where the adjacency graph
of the strata does not accurately reflect the topology
around a point. For example, a single point could ap-
pear on the boundary of a surface more than once, as in
Figure This is the reason that the adjacency graph
is constructed from the microstructure components in a
small neighborhood of the point. This can allow spurious
insertions (in the sense of Section[[)) that are nevertheless
required by the physical system, and any spurious strata
can easily be removed after the topological transition is
complete. The detection algorithm for spurious strata
is provided in Section [V] of the SM. The construction of
a small neighborhood necessarily involves the mesh, and
will be considered further in Section [V.Cl

IV. OPERATIONS ON THE MESH

Since the SCOREC library does not natively support
changes to the topology of the finite element mesh, a
set of fundamental and localized operations are proposed
and implemented. Given that the microstructure is rep-
resented by means of a finite element mesh, the individ-
ual microstructure components are comprised of sets of
simplicial mesh elements. These mesh elements will be
referred to as tetrahedra, triangles, edges, and vertices,
or occasionally as d-simplices when that is simpler. The
distinction between the topological and geometric com-
ponents of the microstructure is reinforced in Figure [T}

Applying the stratum collapse and insertion operations
described in Section [[II] on a simplicial finite element
mesh requires some mesh modifications, both to prepare
the mesh for these changes and to execute them. The
two basic operations are lens collapse and lens expan-
sion, associated with stratum collapse and insertion, re-
spectively. The lens split is an additional operation used
to prepare the mesh around a stratum before stratum col-
lapse or in the neighborhood of a point before stratum
insertion. While the actual collapse and insertion opera-
tions are more complex than those described below, the
underlying approach is the same.

Remembering that the set of volumes, faces, lines and



FIG. 9: Lens collapse operation. Left, the lens composed of
tetrahedra and triangles bounded by the collapsing dashed
edge. Right, the disc obtained by collapsing the lens.

points and their connections compromise a topological
structure called a stratified space, microstructural com-
ponents will be called strata in this section, i.e., a volume
will be called a 3-stratum, a surface will be called a 2-
stratum, a line will be called a 1-stratum, and a point
will be called a 0-stratum. For brevity, S¢ will denote a
d-stratum and S¢ more specifically the ith d-stratum.

A. Stratum collapse

An S¢ with d > 0 is represented by a collection of
e-dimensional mesh entities with e = 0,1,...,d. Col-
lapsing an S¢ is equivalent to collapsing its constituents
onto a single vertex. This can be further simplified to col-
lapsing all edges within the S% and its bounding strata,
giving the central idea of stratum collapse. For simplicity,
this section describes the procedure for a single collaps-
ing edge. This is extended in Section [VII] of the SM to
stratum collapses involving multiple collapsing edges.

On a simplicial mesh, an edge bounds a collection of
tetrahedra and triangles forming a lens around that edge.
As shown in Figure [J] the entities that are bounded by
the collapsing edge will also collapse and need to be
removed. For each collapsing triangle, the other two
bounding edges form a merging couple. For each collaps-
ing tetrahedron, the two triangles that are not collapsing
form a merging couple. After the collapse, a new en-
tity is generated for each merging couple. Such an entity
belongs to the lower dimensional stratum of the merging
couple, assuming the merging entities belong to the same
or adjacent strata.

During the stratum collapse, three issues could arise
that would invalidate the mesh. First, stratum collapse
could cause an additional topological transition if any of
the merging entities do not belong to the same or adja-
cent strata. Applying the edge split operation shown in
Figure [10| to one of the edges of the problematic couple
resolves this situation. Second, it is possible that two
d-dimensional entities could unintentionally merge. This
could occur even if they do not belong to the the collaps-
ing lens, but requires that they share d — 1 vertices and
that the remaining vertex of each be a distinct merg-
ing vertex as in Figure The edge split procedure
can also resolve this by isolating the collapsing entity, as
shown in Figure A third issue that would invalidate
the mesh is inversion of one of the surrounding entities

FIG. 10: Edge split operation during preconditioning. The
thicker edges in red and blue belong to strata S¢ and S5,
respectively. If S¢ and S5 are not the same and one doesn’t
bound the other, collapse of the dashed vertical edge is not al-
lowed. Splitting the red edge and all entities that are bounded
by that edge into two creates new entities which by construc-
tion either belong to S or strata bounded by Sy

N

(a) (b) (c)

FIG. 11: The effect of preconditioning for an S* collapse on a
two-dimensional mesh. (a) Collapsing the blue S* and moving
the vertices to the blue node would invert the red triangle
and merge it with the purple triangle. The resulting triangle
is shown in dashed lines. (b) The splitting procedure resolves
this problem, but yields the red triangle that could invert
during collapse. (c) Relaxation allows the S* to be collapsed
without inverting any elements.

during a collapse. This could occur if the initial and fi-
nal positions of a merging vertex lie on distinct sides of
the plane containing the opposite triangle of an adjacent
tetrahedron.

The three-dimensional equivalent of the precondition-
ing operation in Figure is applied to edges that are
adjacent to a single merging vertex to avoid all three sit-
uations. First, the midpoints of all edges emanating from
the merging vertices are collected to compute their con-
vex hull, and the emanating edges are split where they
intersect the convex hull. This resolves the first two is-
sues and yields a hull of triangles surrounding the collaps-
ing stratum. While it is still possible for a surrounding
tetrahedron to invert during the collapse, a relaxation
procedure analogous to that in Figure and described
in Section [VI)of the SM is applied to vertices on the hull
to avoid such an event. After preconditioning, the stra-
tum memberships of the new entities associated with the



merging entities are found. A new entity belongs to the
lowest dimensional stratum that owns one of the merg-
ing entities; the preconditioning certifies that there is a
single stratum of the lowest dimension.

During the course of microstructure evolution, the cri-
terion for collapsing a stratum is decided at the mesh
level with a two step algorithm. First, the diameter of
a stratum is approximated as that of an edge, square or
cube with the same length, area or volume, respectively.
If the diameter of a S¢ is smaller than a threshold, then
the time rate of change of the total length, area, or vol-
ume of the collapsing stratum is calculated using the ve-
locities associated with the bounding vertices. If this is
negative, then the stratum is collapsed.

B. Stratum insertion

As described in Section the insertion of a S' or
52 around a central S initially involves finding circuits
or paths in the adjacency graph of surfaces and volumes.
For this to work on the mesh level, there should be at
least one internal edge in each of the surrounding S? and
§3. This is ensured by two operations. First, a lens ex-
pansion is applied to each connected set of tetrahedra be-
longing to the same S3. The S? triangles bounding such
a set and adjacent to the SO form a disc that can be ex-
panded. The expansion forms a new vertex, a new edge
and a set of new triangles and tetrahedra correspond-
ing to the disc triangles, all belonging to the specified
3. Second, if there are any sets of connected triangles
belonging to a S? that consist of a single triangle, the
edge opposite the S is split. Next, the split operation is
applied to the edges bounded by the central vertex be-
longing to the S°. The vertices created by these split
operations are positioned on a sphere centered at the S°
vertex location. The radius p of the sphere is smaller than
the distance to the closest triangle opposite the central
vertex in any surrounding tetrahedron.

Preconditioning achieves three things. First, it en-
sures that corresponding sets of triangles and edges can
be found for each circuit associated with a S! insertion
and each path associated with a S? insertion. These sets
of triangles and edges form disc- or fin-like structures.
Second, it forms a convex cavity of triangles, preventing
element inversion after the insertion. Third, it reduces
the size disparity of the surrounding triangles and the
associated bias in the numerical scheme for vertex veloc-
ities.

Stratum insertion requires expansion of a disc/fin, cre-
ation of triangles and tetrahedra with the same stratum
membership as the edges and triangles on the disc/fin,
and creation of edges and triangles belonging to the new
strata. In the case of a S' insertion, a new S° vertex and
a new S! vertex to be positioned at the interior of the
new line are created. The disc associated with the circuit
is used to create three discs, one for the old S° vertex,
one for the new S! vertex, and one for the new S° vertex
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FIG. 12: Steps of spurious line insertion. (a) A point, con-
nected to two volumes top and bottom, and two grains above
and below the page. (b) Insertion of the spurious line, adja-
cent to two surfaces both separating the same volumes. (c)
The spurious line is removed and the two surfaces are merged.

such that the disc entities belong to the same strata as in
the initial disc. Two new S! edges are created to connect
the S! vertex to the bounding S° vertices. The volume
between the discs and around the new S! edges is filled
by triangles and tetrahedra corresponding to edges and
triangles on the discs. In the case of a S? insertion, the
entities bounded by the new S? entities need to be gener-
ated. A triangle belonging to the new S? is generated for
each new S' edge, and a new tetrahedron belonging to
the adjoining S is generated for each new S2. When in-
serting strata on a SY on the boundary of the simulation,
the algorithm skips the creation of entities for the exte-
rior S2. The final step of the insertion is the relaxation
described in Section [Vl

C. Spurious stratum detection and insertion

If an inserted stratum has fewer than the minimum
number of higher-dimensional adjacencies, it is spurious
and is removed by merging the higher-dimensional adja-
cencies. An example is given in Figure[I2} This operation
is sometimes necessary, e.g., when a SV is connected to
multiple disjoint sets of triangles belonging to the same
52 or disjoint sets of tetrahedra belonging to the same S3.
In this situation, the global connectivity of the stratifica-
tion is not representative of the possible local insertions
around the vertex. A local stratification of disjoint sets
of entities belonging to the same stratum is generated,
and the set of all possible insertions is found with the
same circuit and path detection method as in the generic
case.

V. BOUNDARY EVOLUTION AND ENERGY
CRITERIA

When inserting a new stratum, it is important that
the geometry of the stratum maximizes the energy dis-
sipation rate as the stratum expands. This is especially
important when there is more than one possible stable in-
sertion, as shown in Figure Even for a constant grain
boundary energy, inaccurate calculations of the geometry
could change the selected insertion and drastically alter
the evolution of the system.
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FIG. 13: The choice of insertion can change the overall tra-
jectory of the system. (a) A two-dimensional degenerate con-
figuration with four grains could transition to either (b) or

(c) since they are energetically equivalent. For (d), (e) and
(f) both lower the energy, but (e) more so.

The calculation of the geometry of an inserted stratum
begins by isolating the mesh around the old S° vertex and
applying the relaxation algorithm shown in Figure [T4] for
a digon insertion. The bold black lines in Figure rep-
resent the fins of triangles on the paths. A new digon is
inserted by expanding the two selected fins, changing the
topology as shown in Figure [I4b] The projection sphere
of radius r is represented by the black dot-dashed circle
and the inner (one for each S and S? vertex) and outer
bounding spheres are represented by red dashed circles.
The vertices are then allowed to move according to the
equations of motion (Figure until a minimum en-
ergy is reached or one of the moving vertices intersects
an inner or outer bounding sphere. If one of the inner
spheres is intersected, the insertion is discarded. If the
outer sphere is intersected, the inserted stratum is scaled
to be contained within the projection sphere. The steps
in Figure and [I4d] are repeated until both the en-
ergy at the intersection and the energy after the scaling
converge to the final and initial energies £y and F;.

Since the thermodynamically-driven system follows a
gradient flow of the energy, the physical system will tran-
sition to the state with the the highest energy dissipation
rate. After the process converges, the energy dissipation
rate is calculated for the expanding insertions at the sin-
gular configuration where all the new vertices are posi-
tioned at the old vertex position. Assuming the contri-
butions of the newly generated strata to the forces acting
on the vertices are vanishingly small in this configuration,
the dissipation rate of initial expansion is given by

W=-> F-

where F; and v; are the force acting on and the velocity of
vertex ¢ and the sum is over all newly inserted bounding
vertices.

Our energy dissipation rate criterion is similar to the

depinning force which Shya and Weygand use to repeat-
edly split a node by edge insertions [34]. The difference
is that our approach instead compares all possible single
stratum insertions at once using the energy dissipation
rate criterion, presumably more closely following the evo-
lution of the physical system. Moreover, the relaxation
algorithm discards insertions that do not expand, allow-
ing for stable high valency junctions that could form, e.g.,
at intersecting deformation twins in TWIP steels.

VI. MODIFIED MACPHERSON-SROLOVITZ
RELATION

All numerical approaches should be benchmarked
against experimental or analytical results. One bench-
mark for polycrystalline microstructures evolving un-
der constant grain boundary energy is the MacPherson-
Srolovitz relation [36], the three-dimensional extension
of the von Neumann-Mullins relation [43] [44]. For a con-
stant grain boundary energy, this relation should be sat-
isfied by each grain at every moment in time except for
when a topological transition occurs.

The MacPherson-Srolovitz [36] relation governing the
rates of change of volumes is given by:

dv (D)
dt

= 21y [L(D) - éM(D)] , (1)

where p is the constant grain boundary mobility, ~ is
the constant grain boundary energy, £(D) is the mean
width which measures the the total mean curvature of
grain D, and M(D) is the total length of the triple lines
of grain D. Lazar et al. describe a discretized form of
the MacPherson-Srolovitz relation that can be used to
calculate the rate of volume change for grains composed
of discretized linear elements [35]. For this case, £(D)
and M(D) reduce to

1
[:(D) = % Zeiai,

M(D)=>"1;,

where e; is the length of the ith boundary edge, «; is the
exterior angle around the ith boundary edge with respect
to the grain D, and [; is the length of the jth triple line
edge.

The coefficient of M(D) is related to the equilibrium
exterior angle of 7/3. For periodic boundary conditions
and when all junctions are composed of triple junctions
and quadruple points, this is the expected exterior an-
gle everywhere. As will be further discussed in Section
[VII though, when using an exterior boundary or allowing
higher valency junctions due to the discretized mesh, the
MS relation needs to be modified to include more general
exterior angle conditions. Eq. is reformulated as



FIG. 14: The steps of mesh level insertion and reorientation for a digon insertion. (a) Fins of triangles along paths, shown in
bold black. (b) Insertion of the new digon, where S' edges are shown as green lines and S? edges are shown as blue lines. (c)
The vertices are allowed to move until one of the ending criteria is reached. (d) The digon is scaled to be within the projection

sphere, and relaxation continues until the energies converge.

VD) ypreo)-N D), @

N(D) = Zﬂjlj, (3)

where 3; is the equilibrium exterior angle around the jth
junction line edge. This is determined from the geometric
relation

(m = Bj)n =¢;

where 7 is the number of grains and &; is the total interior
angle available for all grains around the jth junction line
edge. For a stable interior S', & = 2w, n = 3, §; =
7/3 and Eq. reduces to Eq. (1)). Assuming a cubic
simulation cell, the stable configuration for a S' on a
simulation cell edge has n =1, §; = 7/2 and B; = 7/2,
the stable configuration for a S* on a simulation cell face
has n =2, §; = m and f; = w/2. It is possible to have
unstable junctions with n larger than that for the stable
configurations.

VII. RESULTS AND DISCUSSION

We consider some example configurations to enumer-
ate the possible insertions, and show the effect of local
geometry on the selection criterion and the inserted stra-
tum shape. Then we demonstrate the importance of enu-
merating all possible insertions with a relatively simple
microstructure that could lead to transitions not often
considered in previous FEM-based methods. Finally, we
show the evolution of a trial microstructure as a demon-
stration of the capabilities of our implementation.

To verify that all insertions are considered, consider
the five grain configuration previously described in Fig-
ure All possible insertions can be found by apply-
ing the circuit and path detection algorithms, and these

are shown in Figure (grouped by their symmetries).
There are four classes of S! insertions and three classes
of S? insertions. The volume removal and trigon inser-
tion are generally handled by all grain growth codes, but
the other insertions are usually not since a S* collapse
is always followed by a trigon insertion for a uniform
boundary energy. Digons can also be inserted, with the
two types shown in Figure [T5

To be specific, there is one volume removal, three petal
removal type-Is, six petal removal type-IIs, and six mixed
removals possible, all of which are found by circuit anal-
ysis. There are three type-I, six type-II digon, and one
trigon insertions possible, as well. Note that digon in-
sertion type-I and type-II use paths that can be con-
structed by decomposing the circuits of petal removal
type-1 or mixed removal, respectively. When discussing
the energy dissipation rates, it will be shown that these
additional operations could be relevant depending on the
grain boundary energy function.

Depending on the geometry of the boundaries, each in-
sertion has a different energy dissipation rate associated
with the subsequent evolution. The energy dissipation
rate criterion states that the insertion with the highest
positive dissipation rate is the one that will be realized.
To test this criterion, a mesh was generated for the con-
figuration in Figure If the geometry is such that the
three S's on top and three S's on the bottom are sepa-
rated by the tetrahedral angle, a degenerate configuration
is created where any insertion results in an unstable con-
figuration with increased energy. If the angles between
the S's are instead larger than the tetrahedral angle, a
trigon insertion is favored. Conversely, if the angles be-
tween the S's are smaller than the tetrahedral angle, a
volume removal is favored.

The changes in energy for each insertion are shown
in Figure The energies in Figure are calculated
with the new vertices on the outer projection sphere. For
the compressed case where trigon insertion is favored, it
is significant that the digon insertion is also energy de-
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FIG. 15: All possible insertions for the canonical configuration, classified by symmetry groups. Observe that digon insertions
are obtained by decomposing circuits containing disconnected 3-stratum couples into two paths connecting the couples and
using these to insert a 2-stratum. Digon insertion type-I is related to petal removal type-I and digon insertion type-II is related

to mixed removal.
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FIG. 16:

the configuration when the S' angles in (c) are tetrahedral angles.
(b) The dissipation rates for the expanding insertions at the singular

and the green pentagons show the compressed case.

(b) (c)

(a) The variation in energy change of insertion with changing configuration. Blue triangles show the energies for

Red squares denote the energies for the stretched case,

configuration, where the volume removal and the trigon insertion are energetically favorable for the stretched and compressed

cases, respectively.

creasing and the petal removal type-I is nearly energy
neutral. The dissipation rates associated with the ex-
panding insertions are compared in Figure to select
the most energetically favorable insertion.

In the current scheme the inserted triangles apply lower
forces than the surrounding triangles due to the dis-
cretized equations of motion, and there is a small bias
towards trigon insertions in the degenerate configuration
as is visible in Figure The bias depends on the se-
lection of the ratio of the radii of the inner and outer
spheres in Figure[I4] By increasing the ratio, smaller ra-
dius insertions are discarded, effectively creating a range
of d around the value corresponding to the degenerate
case where no insertion is valid. However that can also
make high aspect ratio S? insertions hit the inner sphere
and be discarded until their aspect ratio lowers on the
consecutive time steps.

Whereas the vertical stretch changes which insertion is
energetically favored, lateral stretches change the energy-

(a) (b) (c)

FIG. 17: The effect of orthogonal stretching on the trigon
shape. (b) Starting configuration, where dihedral angles be-
tween surfaces separating the surrounding S® are equal. (a)-
(c) After stretching (compressing) the configuration in the
lateral direction, running the relaxation yields a laterally
stretched (compressed) S2.

minimizing shape of the inserted stratum and are re-
flected in the relaxation scheme. Without this, insertions
of equilateral S? could increase the energy artificially and



(a) (b)

FIG. 18: Simulation of a microstructure composed of 100
grains under isotropic grain boundary energy. (a) Initial con-
figuration. (b) The number of grains is about one half of the
starting number.
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FIG. 19: The rates of volume change for example grains as cal-
culated by the modified MacPherson-Srolovitz (MS) relation,
and first-order approximation using the equations of motion
(EoM).

cause a physical insertion to be overlooked. Relaxation
mitigates the problem, and as shown in Figure [I7] the
shape of the inserted S? changes depending on the ge-
ometry.

Finally, we simulate the evolution of some artificial
microstructures generated using Neper [45]. These mi-
crostructures are not periodic, and their evolution re-
quires imposing a local volume preservation constraint
on the exterior vertices. This relaxes the connectivity
constraint on grain surfaces on the exterior, and requires
some additional operations described in Section [VIII| of
the SM.

To demonstrate the capabilities of VDLIB, a trial mi-
crostructure composed of 100 grains is generated as a
Voronoi tesselation using Neper [45]. The simulation cell
is a cube with unit edge length. The mesh is adaptively
refined, with a target edge length set to a fraction of the
median edge length of cubes with equivalent volumes to
the grains. In addition, the S' are required to contain
at least two edges to provide sufficient degrees of free-
dom. The microstructure is evolved using equations of
motion by Mason [38] with unit surface drag coefficient
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and grain boundary energy. The volume constraint is
implemented by the method described in Section [VIII of
the SM. The time iteration is implemented by a second
order Runge-Kutta scheme with the time step at each
iteration given by min(tiny/20, taxed), Where tin, is the
shortest time step to invert any element and fgyxeq is the
maximum fixed time step of 5.0 x 107°. One iteration
loop involves nine sub-iterations of the equations of mo-
tion, checking for and implementing collapses, followed
by checking for and implementing insertions. Some snap-
shots from the resulting system evolution are shown in
Figure [1§

The modified MacPherson-Srolovitz relation in Sec-
tion [VI can be used to calculate the rate of volume
change for grains composed of discretized linear elements.
The resulting actual rates of volume change for a se-
lect number of grains and the predictions of the mod-
ified MacPherson-Srolovitz relation are given in Figure
[[91 The initial discrepancy is mainly due to the devi-
ation from the equilibrium angle conditions in the ini-
tial condition. The discrepancy falls as the initial mi-
crostructure evolves and the angles around the junction
lines approach the equilibrium values. Topological tran-
sitions can also cause temporary deviations (e.g., grain 78
around ¢ = 0.003 in Figure which decrease in time.
Despite using linear elements and an explicit time inte-
gration scheme, there is overall good agreement with the
MacPherson-Srolovitz relation.

VIII. CONCLUSION

A computational framework with an explicit grain
boundary representation is proposed to predict grain
growth for anisotropic grain boundary energies and mo-
bilities. This establishes the foundations of a massively
parallelizable general-purpose framework to model mi-
crostructure evolution during, e.g., high-temperature and
finite-strain processes. There does not appear to be any
other software with these capabilities, that uses an ex-
plicit boundary representation, and that supports general
changes to the grain boundary network.

Predictive simulations of microstructure evolution dur-
ing thermomechanical processing require the ability to
represent features such as stable quadruple junction lines
in low stacking-fault energy metals. This in turn requires
the ability to handle anisotropic properties and more gen-
eral topologies than usually assumed in the literature.
Moreover, the mesh should be partitioned across multi-
ple processing units to reach physically relevant scales,
and the equations of motion should be local to keep the
computational cost linearly proportional to the number
of grains. The discrete equations of motion proposed by
Mason [38] can accommodate anisotropic grain boundary
energies and drag coefficients. They are local and scal-
able, and have been implemented to describe the bound-
ary motion.

A generic method to enumerate the singular transitions



is proposed and implemented. An energy-based insertion
selection criterion is proposed and implemented. The
method can utilize models for anisotropic energies, and
once experimental grain boundary energy functions are
available, the framework will be used to simulate grain
growth under these conditions. Finally, the work is done
in the context of a massively parallelizable finite element
based library that can support volumetric physics.
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(b) (c) (d) (e)

FIG. S1: A representation of how the circuit Q; divides nodes into disjoint graphs H f;j and H. ;’;j , which are connected over S*.
(a) The initial microstructure consisting of six grains. (b) Removal of the red dashed circuit @} going through (T)op, (B)ack,
(L)eft, (F)ront and (R)ight grains leaves two disjoint graphs. Hi” consists of the S connecting the grains T-F and T-L. Hy’
consists of the b(O)ttom grain, the S? bounding grain O in the neighborhood of S?, and the S? connecting the grains R-B. (c)
At the microstructure level, it is easy to see how the components of H}” are connected by S's. (d) The final configuration after
the insertion with the associated S* colored red. (e) G}, where Q; is shown superposed and the dotted blue edges correspond

to S% — §% — §3 components of Q; The nodes of the two subgraphs of G can be seen to be connected by solid edges.

Supplemental Materials: Topological transitions during grain growth on a finite
element mesh

I. NOTATION

For brevity, let S? be the set of d-dimensional strata and S¢ the ith d-stratum. |A| is the number of elements in
the set A, A°(S{) is the collection of S¢ adjacent to S, and A%(S{) the jth S¢ adjacent to Sf. Af<(S{) are the
f-dimensional strata adjacent to the e-dimensional adjacencies of S¢. gf is a newly inserted stratum.

The adjacency graph of S? and S? in the neighborhood of a O-stratum S? will be used to enumerate the possible
changes to the local microstructure. Let the adjacency graph around S? be G;, and have nodes corresponding to the
set A%(S?) U A3(S?) and edges for each incidence of an S? and S3. Similarly, G} is the adjacency graph with nodes
corresponding to the set A1(SY) U A2(SY) and edges for each incidence of an S! and S2. Paths and circuits on G; will
be used to find possible S? and S* insertions around SY, where a path is a sequence of non-repeating nodes connected
by edges and a circuit is a path that begins and ends at the same node.

Let Q° be the set of circuits on G; and Q;- be the jth such circuit. Removing the circuit Q;- from the graph leaves
two disjoint graphs of nodes which will be denoted as Hy” and Hy’. The H,” could be disconnected over G;, but
the corresponding strata around S? can always be connected through shared S!, as shown in Figure If one of the
H,” is empty, that implies that the circuit Q} is associated with an existing S* and should be discarded.

Let P%* be the set of paths between S]?? and S} in the vicinity of S, and Pli;j’]c be the Ith such path. Let §2(P%7F)
be the set of sets of paths between Sf’ and S, where every set contains at least two paths and none of the paths in

the same set intersect. If [ is the index for this set, then subgraph H%/*i is the mth connected component remaining
when the [th set of paths with the end points S? and S} is subtracted from G;.

The mesh is composed of simplicial finite elements, including the 0-dimensional vertices, 1-dimensional edges, 2-
dimensional triangles and 3-dimensional tetrahedra. An n-dimensional simplicial element belongs to the stratum of
lowest dimension in which it is contained, i.e., a vertex may belong to an S° S, S2, or S3, an edge may belong
to an S, S2, or S3, etc. Similar to the notation for strata, we denote the ith member of the set of d-dimensional
simplicial entities as A¢ and use the adjacency operator A°() in the same way to obtain the set of adjacent mesh
entities of dimension e. Additionally, the stratum membership of a simplicial entity is indicated as A¢ € S5, or Ad
belongs to S7. The set of e-dimensional simplicial entities belonging to S¢ is obtained by the membership operator

Me(S%). S(AY) is the stratum that owns the simplicial entity A¢?. A sample microstructure showing the simplicial
entities outlined in red is provided in Figure



II. STRATUM COLLAPSE

Given a stratum S;i to collapse and a final point S 0. recursively collapse the bounding lower dimensional strata and
then remove S¢. If SY is not specified, it is always possible to pick the first bounding S° (otherwise there are no S°
remaining after collapse). Update the adjacency lists of the surrounding strata.

Algorithm 1 Collapse (5%, 59 := ()
Implement changes in the stratification when collapsing SE.

if d =0 then

return R
if S =0 then > Assign S if not specified.

if A°(S¢) # 0 then
50 = A9(s9)
if d =1 then > Replace the merging S° with S0,
for Sj € AV°(S}) do
for S) € A°(S}) do
if S) € A°(S}) then
AUAFO(ST)) = 8°
if [A%(S])| =2 and AY(Sj) = A9(Sj) = S° then > If S° is repeated remove one.
A%(S}) = {5°)
else > Collapse the bounding strata.
for 5§ € A*'(S¢) do
Collapse (S, 50)
if d < 3 then > Remove the collapsing strata.
for S;Hl € AT(S%) do
A(SET) = ALY\ {58)

IIT. 1-STRATUM INSERTION

Given a candidate SY and a circuit Q;- on G; insert the new stratum S* corresponding to Q; Add the new strata S°
and S to the stratification and set the S° adjacencies of S as {S?, 5°}. Update the adjacency lists of the surrounding
strata.

Algorithm 2 S* insertion (57, Q%).

Implement changes in the stratification when inserting S* using Q;
Create new strata S*, S°.

A°(Sh) = {89, 5%} > Adjacency of S

for S} € Q! do > Add S' to A*(S?), for S% on Q.
AN(SE) = AN(SE) U {S"}

for S? € HY7 do > Replace S? with S°.

for S} € A'(S?) do
if 57 € A°(S]) then
A°(S]) = A%(SH) U {8} \ {7}

IV. 2-STRATUM INSERTION

Given a candidate S? and a set of paths §2;(P%7¥) on G, insert the corresponding new stratum 52, Add the new
strata 2, SO for m = 1 : |§2;(P%k)| — 1, and S}, for m = 1 : |[§2;(P%/*)| to the stratification. Set the (d — 1)-

dimensional adjacency lists of the new strata S? and S} for m = 1 : |§2;(P%"*)|. Update the adjacency lists of the
surrounding strata.



Algorithm 3 S? insertion (§2;(P%7F)).
Implement changes in the stratification when inserting a 52 using pl(Pi;j’k).
Create new stratum S52.

Create new strata S5, for m == 1: |§,(P"F)] — 1. > In addition to S5.
Create new strata S, for m == 1: |§2,(P%7F)|.

A%(S3) = A%(S3) U {S?} > Add 5% to A%(S3).
A2(53) == A%(SHu{SH} > Add S? to A%(S}).
AY(5?) == {51, 85,..., 8L} with m == |§9,(PF)] > Set the adjacency of S2.
A°(SH) = {S?, 57} > Set the adjacencies of S*.

for m :=2: |§,(P%*)| - 1 do
A%(Sp,) = {Sh—1, Sm}
A°(S}) = {80, 1,87} with m = |§2,(P"7%)| i
for Piik ¢ @I(P‘J’“) do > Add S to the adjacency lists of the S? on path P4/*,
for S2 € Pi9* do _
AY(SZ) = AN(S2) U {Sm}
for m =2 |pl(P”k)| do > For S! adjacent to S? € H3/*! replace the SO with S9,.
for 2 € Hi/%! do
for S; € A'(S?) do
if S) € A°(S}) then
A°(Sp) = A"(Sp) U{Sm-1 1\{S7}

V. CHECK SPURIOUS STRATA

Spurious stratum insertions can occur for a S' insertion if there are two S? on the circuit that bound the same 53,
or for a S? insertion between two components of the same S3. An example configuration leading to such an event is
shown in Figure [§] of the main text.

Algorithm 4 Check spurious (S¢).

1

Compare the upper adjacencies of (Sfl) to check if it is spurious.

if d=0o0or d=1 then > Higher adjacency rule for valid S° and S*.
return |A%(SH)] < 3

else
if d =2 and |A9T1(S?)| = 2 then > If S bounds the same S®, it is spurious.

return AYT(S?) = AT (SE)
return FALSE

VI. RELAXATION DURING COLLAPSE

The preconditioning operation relaxes the positions of the surrounding vertices to prevent inversions of the sur-
rounding tetrahedra during a collapse. More specifically, the vertices connected to the collapsing strata by an edge
form a hull. Positions of the vertices on the hull are found such that the surrounding tetrahedra do not invert during
collapse of the stratum by a conjugate gradient search to minimize the positive definite potential ¢. This is defined as

o= ¢i

i€ A0

1
b = . In Z exp [—wV;(0)/Vi] +1p,
ABEA3(AY)

where AY is the set of vertices on the hull, v is the position vector of all vertices, V; is the volume of jth tetrahedron,

and w is a weight for scaling the exponent. w is defined as 80m, where V; is the total starting volume of all

tetrahedra surrounding the hull vertices, and V,, = min(V;). In practice € is 2.22507 x 10729 10'° times the smallest
representable double. Using the algorithm shown in Figure the volumes are updated until V;, > vy, where vy, is
the desired volume ratio of the surrounding tetrahedra at the collapsed configuration defined as vy, = (V, +¢) x 1075



Va0 = min(V;)

Vo = min(Vj;)
Vi = min(abs(V;))
Y

_ Vi
w = 80 abs(V,)) +

vih = (Vi +€) x 107°

Vi

abs(V,) +¢

Reset the conjugate
gradient

V0 = min(V})

w = 80

V., < 0and
abs(V,) < abs(V;,,0/10
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FIG. S2: The flow chart for the calculation of the volumes and the update of the parameters w, v, required for the conjugate
gradient descent calculations.

where V,,, = min(abs(V})). After each time the positions of the hull vertices are updated, V,, and V,,, (but not w or

vp) are updated. If the smallest volume V;, is smaller than twice the starting most negative volume V,, o, or V,, < 0

and abs(V,,) < abs(V,,0/10), w is updated and the conjugate gradient is reinitialized to increase the convergence rate.
The negative of the gradient of the potential is given by

~Vip = —Vi¢; — Z Vidj,

AV€AO1(A?)

= . exp(—wdy) <
Vi =2 [Zl o T

where k,1 € A*(AY) and A = Vi (9)/V;. The form of —V;¢; is the same but k,I € A*(A?) N A*(A9). Tt is possible
that due to the starting geometry a non-inverting configuration with a minimum volume of v;;, cannot be found. The
relaxation continues until either a non-inverting configuration is found or the limit for number of iterations is reached.

VII. GENERALIZED COLLAPSE OF MULTIPLE LENSES

The generalized stratum collapse follows the same procedure described in Section [[VA] for lens collapse, i.e., the
main steps are preconditioning the mesh, finding the stratum memberships of the remaining entities, destroying old
entities, and regenerating the entities using the last remaining vertex. When there is more than one edge in the
collapsing stratum, it is possible that some merging entities form sets rather than couples to form a new entity.
Furthermore, an entity can be a merging or a collapsing entity in different lenses, in which case all merging entities
in the associated set will collapse as shown in Figure Similar to lens collapse, for each set of merging entities



FIG. S3: The generalized lens collapse corresponding to the triangle (0, 1,2). Merging entities form sets rather than couples
and an entity might be merging in one lens and collapsing in another, and will collapse during the stratum collapse. The lens
corresponding to edge (a) (0,1), (b) (1,2), (c) (0,2). In the lenses corresponding to edges (0,2) and (1,2) the triangle (0,1, a)
is merging, but since the triangle is collapsing in the lens of edge (0, 1), it is collapsing. Edges (0,a), (1,a), and (2,a) form a
merging set. (d) The final configuration after the collapse.
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FIG. S4: Exterior S° insertions require additional exterior S? and S* in the adjacency graph. (a) The red, blue and green S®
at the corner of the simulation cell, having two, two, and one surface SZ, respectively. (b) The adjacency graph obtained by
including a node for the exterior S* which doesn’t allow any new surface S? insertion. (c) Instead of a single exterior S%, 52
and S? are included in the adjacency graph for each surface S' and S?, respectively. (d) The augmented adjacency graph in
(c) can be used to detect surface S? insertions, e.g., a trigon insertion using the dashed, dotted and dash-dotted paths between
the exterior and the red grain. (e) The corresponding change in the microstructure.

a new entity will be regenerated by replacing the merging vertex with the final vertex and using the new stratum
membership.

VIII. USING AN EXTERIOR SHELL FOR VOLUME PRESERVATION

Evolving down the gradient of surface energy, a non-periodic mesh will not preserve volume without additional
constraints. Volume preservation is achieved by creating a stratification composed of the simulation cell corners,
edges and surfaces. These strata are called 0-, 1-, and 2-shells, respectively. The shells are determined at the start
of the simulation. In this section, surface strata will indicate strata on the simulation cell boundary. Each S° is first
tested to identify those on the simulation cell corners, edges or surfaces, and ones on the corners are attached to
0-shells. Next, the S' on the simulation cell boundaries are tested to identify those on the simulation cell edges by a
depth first search, and ones on the edges are attached to 1-shells. The 2-shells are constructed similarly. During the
simulation the motions of the vertices on these shells are projected onto the corresponding shell to preserve the total
volume.

Any newly inserted strata during stratum insertions around exterior S° are associated with the appropriate shells.
Since the exterior can be multiply connected to the volumes touching the exterior surface, one artificial exterior S3
is created for each disconnected mesh component of the surface S2, as shown in Figure The paths and circuits
detected on this augmented adjacency graph contain multiplicities as there is actually a single exterior S3. These
are removed by replacing all artificial strata on the paths and circuits with the only exterior S* and only allowing
uninterrupted segments of the artificial strata on a single circuit or path.

Finally, computing the convex hull for collapses of strata touching the exterior shell requires that the positions of
vertices belonging to the collapsing stratum be added to the set of points.
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FIG. S5: To demonstrate the capabilities of the method, a configuration formed by six grains meeting at the center of a cube is
generated. The possible classes of insertions are more numerous than in Figure Some examples are shown denoted by the
number of 2-strata on the Hy” /Q%/H5”, though this is not a complete descriptor (e.g., there are three 3/6/3 type insertions).
In addition to these, digon, trigon and tetragon insertions between each three disconnected S* couples are possible.
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FIG. S6: The variation of energy with changing dihedral angle configuration. The degenerate configuration is when the outer
dimensions correspond to a cube. Red squares denote the case of the cube stretched in one direction and green pentagons
denote the compressed case.

IX. SIX GRAIN CONFIGURATION

As a further demonstration of the insertion detection, a more complicated configuration with six grains is generated
and some of the possible S' insertions are shown in Figure This list is not exhaustive, but demonstrates the
capability of the detection algorithm. In addition to these, digon, trigon, and rectangle S? insertions are possible.
Similar to Figure the dependence of the energy change for different insertions on the dihedral angle is shown in

Figure [S6
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