UC Berkeley

UC Berkeley Previously Published Works

Title

Relative Roles of Energy and Momentum Fluxes in the Tropical Response to Extratropical Thermal Forcing

Permalink

https://escholarship.org/uc/item/14p6877f

Journal

Journal of Climate, 34(10)

ISSN

0894-8755

Authors

Hwang, Yen-Ting Tseng, Hung-Yi Li, Kuan-Chen <u>et al.</u>

Publication Date

2021-05-01

DOI

10.1175/jcli-d-20-0151.1

Peer reviewed

2	
3	Relative roles of energy and momentum fluxes in the
4	tropical response to extratropical thermal forcing
5	Yen-Ting Hwang ^{1*} , Hung-Yi Tseng ¹ , Kuan-Chen Li ^{1,2} , Sarah M. Kang ³ , Yung-Jen
6	Chen ¹ , and John C. H. Chiang ⁴ ,
7	¹ Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
8	² Central Weather Bureau, Taipei, Taiwan
9	³ School of Urban and Environmental Engineering, Ulsan National Institute of Science
10	and Technology, Ulsan, Korea
11	⁴ Department of Geography, University of California, Berkeley, CA, U.S.A.
12	
13	*corresponding author: <u>ythwang@ntu.edu.tw</u>

1

Early Online Release: This preliminary version has been accepted for publication in *Journal of Climate*, may be fully cited, and has been assigned DOI 10.1175/JCLI-D-20-0151.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

1

14 Abstract

15	This study investigates the transient responses of atmospheric energy and momentum
16	fluxes to a time-invariant extratropical thermal heating in an atmospheric model
17	coupled to an aquaplanet mixed layer ocean with the goal of understanding the
18	mechanisms and time-scales governing the extratropical-to-tropical connection. Two
19	distinct stages are observed in the teleconnection: (1) A decrease in the meridional
20	temperature gradient in midlatitudes leads to a rapid weakening of the eddy
21	momentum flux and a slight reduction of the Hadley cell strength in the forced
22	hemisphere. (2) The subtropical trades in the forced hemisphere decrease and reduce
23	evaporation. The resulting change to sea surface temperature leads to the development
24	of a cross-equatorial Hadley cell, and the Intertropical Convergence Zone shifts to
25	the warmer hemisphere. The Hadley cell weakening in the first stage is related to
26	decreased eddy momentum flux divergence, and the response time-scale is
27	independent of the mixed layer depth. In contrast, the time taken for the development
28	of the cross-equatorial cell in the latter stage increase as the mixed layer depth
29	increases. Once developed, the deep tropical cross-equatorial cell response is an order
30	of magnitude stronger than the initial subtropical response and dominates the

2

31	anomalous circulation. The analysis combines the momentum and energetic
32	perspectives on this extratropical-to-tropical teleconnection and moreover shows that
33	the subtropical circulation changes associated with the momentum budget occur with
34	a time-scale that is distinct from the deep tropical response determined by the thermal
35	inertia of the tropical ocean.

1. Introduction

37	Forcings in the extratropics have been observed to influence the location of
38	tropical precipitation in modeling studies, paleo records, and 20 th -century climate (e.g.
39	Kang et al. 2008, Chiang and Bitz 2005, Broccoli et al. 2006). The energetic and the
40	momentum perspectives offer two alternative approaches for studying the extratropical
41	influence on Hadley circulation (Chiang and Friedman 2012, Schneider et al. 2014,
42	Donohoe and Voigt 2017, Kang et al. 2018, Schneider and Bordoni 2008; Bordoni and
43	Schneider 2010), but these approaches have been kept largely separate from each other
44	in previous studies. Our goal is to combine both approaches to evaluating the transient
45	circulation responses to an idealized perpetual extratropical thermal forcing in order to
46	build towards a mechanistic understanding of tropical circulation responses to
47	extratropical forcings.
48	The underlying principle of the energetic framework is that the Hadley
49	circulation alters in such a way as to accommodate the interhemispheric transfer of
50	atmospheric energy as demanded by the extratropical forcing (Kang et al. 2008).
51	Moist static energy (MSE, $m = C_pT + gz + Lq$) in the upper troposphere is slightly
52	larger than the near-surface atmosphere because the gravitational potential energy 4

53 (gz) in the upper troposphere is much greater than in the near-surface atmosphere, 54 more than compensating the larger specific heat $(C_p T)$ and latent heat (Lq) in the low-55 level atmosphere. Also, eddy contribution to meridional energy transport in the 56 tropics is usually negligible. Therefore, the total atmospheric MSE transport in tropics 57 tends to have the opposite direction as the mass transport in the lower branch of the Hadley cell. Kang et al. (2009) define the moist stability, $\Delta m \equiv \frac{F}{v_2}$, where $F = \langle \overline{mv} \rangle$ 58 59 is the vertically integrated zonal-mean meridional atmospheric energy transport and v_2 is the mass transport of the lower branch of the Hadley circulation. With this 60 61 convention, the sign of Δm is positive when energy is transported in the direction of 62 the low level flow. Hence the gross moist stability in the tropics is negative. Since the 63 variation in gross moist stability, the amount of energy transported per unit mass 64 transport, is usually small (Kang et al. 2009, Hill et al. 2015), the changes of energy 65 transport are accomplished via Hadley cell adjustments. An interhemispheric contrast 66 in the energy source tends to induce an anomalous cross-equatorial streamfunction, 67 with the upper branch transporting the gravitational potential energy towards the 68 hemisphere being cooled and the lower branch transporting mass and moisture 69 towards the hemisphere being warmed. The Intertropical Convergence Zone (ITCZ) is

70	expected to lie near the "energy flux equator", where the atmospheric meridional
71	energy flux changes sign (Kang et al. 2008; Schneider et al. 2014; Kang 2020).
72	This framework has been usefully applied to interpret the tropical precipitation
73	responses to various extratropical forcings, such as imposed sea ice or ice sheet (Chiang
74	and Bitz 2005; Cvijanovic and Chiang 2013), anthropogenic aerosol emission
75	(Yoshimori and Broccoli 2009; Hwang et al. 2013), freshwater hosing in North Atlantic
76	(Zhang and Delworth 2005; Broccoli et al. 2006), excessive insolation related to cloud
77	biases in the Southern Ocean (Hwang and Frierson 2013), and forcing atmospheric
78	models with energy flux at the surface (q-flux) (Broccoli et al. 2006; Kang et al. 2009).
79	Another perspective points to the importance of the interaction between Hadley
80	circulation and eddies from a momentum perspective (Becker et al. 1997; Kim and Lee
81	2001; Walker and Schneider 2006; Schneider and Bordoni 2008; Bordoni and
82	Schneider 2010). The underlying idea is that variations in midlatitude eddies result in
83	momentum flux convergence changes in the subtropics that are compensated by
84	changes to the tropical overturning circulation. Starting with the Reynolds-averaging
85	inviscid momentum equation, assuming steady-state, and neglecting vertical advection
86	and vertical eddy terms, one can obtain an approximate balance equation between eddy

6

87 momentum flux divergence (\overline{S}), zonal-mean meridional advection of planetary vorticity

88 $(f \cdot \bar{v})$, and relative vorticity $(\bar{\zeta} \cdot \bar{v})$ in the upper troposphere:

89
$$(f + \bar{\zeta})\bar{v} = f(1 - Ro)\bar{v} \approx \frac{1}{a\cos^2\vartheta}\frac{\partial}{\partial\vartheta}\left(\cos^2\vartheta \overline{u'v'}\right) \equiv \bar{S}$$
 (1.1)

90 where overbars $\overline{}$ indicate time mean and zonal mean. The equation suggests that the 91 eddies play a dominant contribution to the momentum budget if the Rossby number 92 ($Ro = -\overline{\zeta}/f$) is small.

93	The influence of eddy momentum flux $(\overline{u'v'})$ on the strength of Hadley cell and
94	monsoon circulation has been reported in the statistical analyses of interannual
95	variability (Caballero 2007; Walker and Schneider 2006), the inter-model spread of
96	general circulation model (GCM) biases (Caballero 2008), and a series of idealized
97	GCM experiment with changing the latitude of maximum radiative-equilibrium surface
98	temperature (Schneider and Bordoni 2008; Bordoni and Schneider 2010).
99	The energetic and momentum perspectives offer independent explanations for the
100	extratropical influence on Hadley circulation (Chiang and Friedman 2012; Kang 2020).
101	Given a hemispheric asymmetric extratropical forcing, the energetic perspective
102	predicts an anomalous cross-equatorial response in the deep tropics, shifting the Hadley

Accepted for publication in Journal of Climate. DOP10:1175/JCE1020-0154:491/21/21 12:31 PM UTC

103	cell center and displacing the ITCZ. In contrast, the momentum perspective highlights
104	the balance between the Hadley cell strength and eddy momentum flux divergence in
105	the subtropics, where the Rossby number is small and vertical advection of momentum
106	flux is negligible. In order for this perspective to apply to the entire tropics, Schneider
107	(2006) used Eq.1.1 to classify different regimes of the Hadley circulation: a
108	momentum-conserving regime that responds directly to thermal forcing (Lindzen and
109	Hou 1988) and a small Rossby number regime that the circulation strength is largely
110	determined by eddies (Walker and Schneider 2006). The transition of the two regimes
111	has been used to interpret an abrupt development of a cross-equatorial monsoonal cell
112	(Schneider and Bordoni 2008; Bordoni and Schneider 2010).
113	Our goal is to deduce mechanisms for the Hadley circulation responses to
114	extratropical forcings. There are two aspects that makes our study unique: first, we
115	combine the analysis of both the energetic and momentum budgets in the same
116	experimental setting, and second we analyze the transient situation in order to
117	determine cause and effect, keeping in mind that budgets provide only diagnostic
118	relationships. Previous studies that investigated transient responses to extratropical
110	

120	transport (e.g. Dong and Sutton 2002, Chiang and Bitz 2005, Chiang et al. 2008,
121	Cvijanovic and Chiang 2012, Woelfle et al. 2015). On the other hand, previous studies
122	that evaluated momentum budget (e.g. Caballero 2007, Schneider and Bordoni 2008;
123	Bordoni and Schneider 2010) report statistical relationships between Hadley cell
124	strength and eddy momentum flux divergence, but in such cases the causal relationship
125	can only be assumed. Merlis et al. (2012) investigated both the angular momentum
126	balance and energy balance in simulations with varying orbital precession and found
127	the Hadley circulation responses to be energetically constrained. However, similar to
128	studies focusing on the seasonal cycle, the radiative forcings are not confined to
129	extratropics in their experiments.
130	We also modify the mixed layer depth in our simulations to examine what sets the
131	time-scale of the teleconnection. Previous studies using an energetic approach reported
132	a 1~2 year response time for wind-evaporation-sea surface temperature (SST) feedback
133	to induce significant tropical SST and circulation changes in simulations with realistic
134	mixed layer depth, and it has been assumed that the time-scale arises from the thermal
135	inertia of the mixed layer (e.g. Dong and Sutton 2002, Chiang and Bitz 2005, Chiang
136	et al. 2008, Cvijanovic and Chiang 2012, Woelfle et al. 2015). This assumption

137	however discounts a potential contribution from extratropical atmospheric circulation
138	changes independent of the mixed layer. By varying the mixed-layer depth and
139	changing the time-scale of the teleconnection, we provide an experimental situation
140	that further reveals the relative roles of energy and momentum to the teleconnection.
141	Because of the very small signal to noise ratio of the initial tropical circulation
142	responses to extratropical thermal forcing, we decide to simplify the experimental setup
143	by using an aquaplanet without seasonality. The setup and the detailed calculations
144	provided in section 2 allows us to cleanly diagnose the transient evolution without the
145	complication of the seasonal cycle or the influence of stationary eddies. We explore the
146	equilibrium and the transient responses in both the energetic and momentum
147	frameworks in section 3. We find that the tropical circulation responses exhibit two
148	distinct stages: (1) an initial subtropical response that occurs rapidly and can be
149	interpreted via the momentum perspective and (2) a deep tropical circulation
150	adjustment that is strongly dependent on mixed layer depth and are consistent with the
151	energetic perspective. A mechanism for the initial stage triggering the deep tropical
152	circulation adjustments is proposed. In section 4, we summarize our findings and

10

- 153 discuss the necessity for constructing a model hierarchy to systematically understand
- 154 the mechanisms with various time-scales.

155 **2. Methods**

156 **2.1 Model setup**

157 We use an aquaplanet version of Geophysical Fluid Dynamics Laboratory (GFDL) 158 Atmospheric Model 2.1 (AM2.1; Anderson et al. 2004; Delworth et al. 2006) coupled 159 with a motionless mixed layer ocean that allows thermodynamic atmosphere-ocean 160 interactions. The horizontal resolution of the model is 2° latitude $\times 2.5^{\circ}$ longitude, and the vertical resolution of the model is 24 levels. There is no seasonal cycle, a fixed 161 surface albedo (i.e. no sea ice or snow feedback), and steady insolation is applied, 162 163 varying only with latitude so that it provides the present-day Earth's annual mean 164 insolation at all times. The insolation is computed based on an obliquity of 23.5 degrees.

165 2.2 Experimental design

A set of experiments is performed with prescribed extratropical thermal forcing and varying mixed layer depth. The extratropical thermal forcing is applied between 50°S and 80°S by directly adding a source of heat into the oceanic mixed layer energy budget equation, as specified analytically in Eq. 2.1 below and Figure 1a. Unlike Kang et al. (2008) and Kang et al. (2009), we only prescribe forcing in one hemisphere, allowing

171 us to track the evolution of heating originated from one location. This forcing is 172 representative of ocean heat uptake or ocean heat release in a changing climate, or 173 changes in other components that would affect net radiation at the surface, such as sea

174 ice, aerosol, and clouds. The equation of the imposed heating, denoted H, is

175
$$\begin{cases} H = -A \sin\left(\frac{\phi + 50^{\circ}}{30^{\circ}}\pi\right) & \text{For } -80^{\circ} < \phi < -50^{\circ}, \\ H = 0 & \text{otherwise,} \end{cases}$$
(2.1)

176 where A sets the maximum strength of the forcing (W m⁻²) and \emptyset is latitude in degrees. To obtain significant transient responses with limited ensemble members, we 177 select a relatively large value of A, 60 W m⁻², so that a total of 2.12PW is added to the 178 179 mixed layer. The imposed hemispherically asymmetric forcing is about half of the range of the earth's seasonal cycle. Indeed, the single cross-equatorial cell in the 180 181 equilibrium response (Figure 1c) implies our findings may offer insights for 182 understanding seasonal cycle transition, while not changing insolation in the tropics 183 directly and focusing on the extratropical influence. The strong forcing, however, does raise the question of relevance of our results to climate change signals, the latter which 184 185 tends to be a lot smaller in magnitude. We have performed other cases with A being 30 W m⁻² or 10 W m⁻², and the equilibrium responses are qualitatively similar, albeit 186 187 smaller in magnitude.

13

188	To investigate the role of SST in setting the response time-scales, we perform cases
189	with 50m (MLD50), 100m (MLD100), and 200m (MLD200) mixed layer depth. Since
190	the magnitudes of the initial midlatitude temperature and wind responses depend on
191	mixed layer depth, we set the same mixed layer depth in the forced region to 200m in
192	all experiments and only alter the mixed layer depth elsewhere. The unrealistically deep
193	mixed layer depths (i.e. 200m) outside the forced region allow us to cleanly separate
194	the processes solely related to atmospheric dynamics and those involving air-sea
195	interactions. We have additionally performed a case with observed zonal mean annual
196	mean mixed layer depth, which amounts to about 35m in the tropics ($25^{\circ}S \sim 25^{\circ}N$). The
197	proposed two-stage responses can be also found in the case with observed mixed layer
198	depth, with the response time-scales being similar to the case with 50m mixed layer
199	depth.
200	The control case with 50m mixed layer depth and no prescribed forcing is run for 36
201	years. The 60 ensemble members of MLD200 cases are run for 3 years and 5 of them
202	are extended to 48 years, reaching equilibrium around year 10. The MLD100/50
203	experiments are also ran for 3 years, but only 30 ensemble members are run.

2.3 Indices

205 The Southern Hemisphere Hadley cell index (φ_{SH}) is defined to be the averaged 206 mass streamfunction between 15°S~25°S at 700hPa, measuring the strength of the 207 extreme of the Hadley circulation in the Southern Hemisphere. The cross-equatorial 208 Hadley cell index (φ_{EQ}) is calculated by averaging the mass streamfunction between 209 5°S~5°N at 700hPa. The altitude 700hPa is chosen because the maximum of mass 210 streamfunction appears in this altitude in the control climate.

The ITCZ is generally co-located with the ascending branch of Hadley circulation and is thus tightly linked with cross-equatorial circulation. Following Adam et al. (2016a), the location of ITCZ is calculated as

214
$$\phi_{ITCZ} = \frac{\int_{\phi_1}^{\phi_2} \phi[\cos(\phi)P(\phi)]^N d\phi}{\int_{\phi_1}^{\phi_2} [\cos(\phi)P(\phi)]^N d\phi}, \quad (2.2)$$

215 where N=10, $\phi_1 = 20^{\circ}$ S, $\phi_1 = 20^{\circ}$ N, and P represents the zonal mean precipitation

216 at the latitude \emptyset .

Another index that is representative of the behavior of Hadley circulation is the energy flux equator, the latitude where the vertical column integrated zonal mean energy transport $\langle \overline{vm} \rangle$ vanishes (Kang et al. 2018).

220	Previous studies suggested that the boundary layer cross-equatorial flow, as well
221	as the anomalous cross-equatorial Hadley cell, are driven by cross-equatorial SST
222	gradients (Lindzen and Nigam 1987; Chang et al. 2000; Chiang and Bitz 2005;
223	Cvijanovic and Chiang 2013). Here we define the interhemispheric asymmetric SST
224	index (Δ_{SST}) as the SST difference between EQ~10°S and EQ~10°N to measure the
225	interhemispheric SST asymmetry in the deep tropical region.

To investigate eddy activity responses to the imposed forcing, we calculate

227 Eliassen-Palm flux (E-P flux) in log-pressure and spherical coordinates (as in

228 Andrews 1987):

229
$$\mathbf{F}^{\phi} \equiv \rho_R \cos \phi \left[\bar{u}_z \frac{\overline{v'\theta'}}{\bar{\theta}_z} - \overline{u'v'} \right]$$

230
$$\mathbf{F}^{z} \equiv \rho_{R} \cos \phi \left[\left\{ f - \frac{(\overline{u} \cos \phi)_{\phi}}{a \cos \phi} \right\} \frac{\overline{v' \theta'}}{\overline{\theta}_{z}} - \overline{u' w'} \right]$$
(2.3)

231 Here, ϕ is latitude and $z = -H \ln(p/p_R)$, where H=7.5km, p is pressure and p_R is

232 a reference pressure. The overbar denotes zonal mean and time mean. $\rho_R =$

233 $\rho_0 \exp(-Z/H)$ where ρ_0 is a constant. *f* is the Coriolis coefficient and subscripts ϕ , z

234 denote partial derivatives.

235 **3. Results**

236 **3.1 Equilibrium responses**

237 We first present the equilibrium responses, calculated by averaging the last 30 238 years of each simulation. For all figures in this paper, only signals that are statistically 239 significant are shown. The anomalous warming is most apparent at the heating location 240 and extends to the tropics, shifting ITCZ southward (Figures 1b and 1d). The imposed 241 heating decreases the meridional temperature gradient of the southern subtropics and 242 weakens the subtropical jet in the Southern Hemisphere (defined as the latitude of the 243 zonal wind maximum of the entire tropics, which is located around 200 hpa) (Figure 1c). In the Northern Hemisphere, surface temperature decreases slightly in the 244 245 subtropics and is nearly unchanged in extratropics. The northern subtropical jet is 246 strengthened. The temperature, precipitation, and circulation responses in Figure 1 are 247 nearly identical in the cases with different mixed layer depth. Increasing mixed layer depth has little influence on the equilibrium responses, consistent with Kang et al. 248 249 (2008). In the next two sections, we take MLD200 case as an example to demonstrate 250 the equilibrium responses in the momentum and the energetics perspectives.

251 **3.1.1 Equilibrium responses in the momentum perspective**

and 40°S (blue shading in Figure 2a, see also the climatological E-P flux in Figure 1c), where the eddy driven jets located (defined as the latitudes of maximum zonal wind at 850hPa). In the subtropics, the eddy stress, the horizontal eddy momentum flux divergence ($S \equiv \frac{1}{a \cos^2 \vartheta} \frac{\partial}{\partial \vartheta} (\cos^2 \vartheta \overline{u'v'})$), is balanced by meridional advection of absolute vorticity in the upper branch of the Hadley cell, with the poleward flows in the upper branches collocated with positive S (Figure 2a; refer to Eq.1.1 for the momentum balance).

260 The steady-state responses of circulation and momentum fluxes in our 261 experiments are consistent with previous studies demonstrating the influence of eddies 262 on Hadley cell via varying insolation (Bordoni and Schneider 2008; Schneider and Bordoni 2008; Bordoni and Schneider 2010), interannual variability (Caballero 2007), 263 or on the spread of GCMs' climatological biases (Caballero 2008). In subtropics, the 264 variations in eddy stress are accompanied by variations in Hadley cell strength. When 265 imposing heating in the southern extratropics, eddy stress and Hadley cells weaken in 266 the southern tropics and strengthen in the northern tropics (compare Figures 2a and 2b 267

268 or see Figure 2c for anomalies).

3.1.2 Equilibrium responses in the energetics perspective

270	Driven by the uneven distribution of insolation, the atmosphere transports energy
271	poleward in both hemispheres in the control case (black line in Figure 3a). In
272	extratropics, eddies transport both DSE and moisture poleward. In most of the tropics,
273	the mean meridional overturning circulation plays the main role of transporting energy
274	away from ITCZ, with the poleward DSE transport in the upper troposphere
275	outweighing the equatorward moisture transport near the surface (red and blue lines in
276	Figure 3a).
277	The equilibrium responses of energy fluxes in Figures 3b and 3c are consistent with
278	previous modeling studies with various extratropical forcings (Kang et al. 2008; Kang
279	et al. 2009; Swann et al. 2011; Hwang et al. 2013; Chiang and Friedman 2012;
280	Schneider et al. 2014) and can be understood via the energetic framework. In a stable
281	atmosphere, the total atmospheric energy transport (or MSE transport) is in the same
282	direction as the DSE transport but in the opposite direction to moisture transport.
283	Responding to the imposed heating in the Southern Hemisphere, the Hadley cell
284	transports excessive energy to the Northern Hemisphere. Both the energy flux equator
285	and the ITCZ shift southward (Figures 1d and 3b).

286 **3.2 Transient responses**

287	Figure 4 shows the evolution of SST and circulation in all three experiments
288	during the first three years after imposing the time-invariant extratropical forcing. To
289	allow a direct comparison with the steady-state responses in Figure 1, time slices of
290	year 9 of the experiments when the system approaches equilibrium are plotted in the
291	same format (in the right columns). The propagation speed of the anomalous warming
292	depends on latitudes, with the subtropical region (~ 20° S) warming faster than the
293	surrounded latitudes. The dependency of propagation speed on latitudes suggests
294	atmospheric circulation (instead of diffusive processes) playing a critical role in the
295	teleconnection between the tropics and extratropics. Two distinct stages of the tropical
296	meridional mass streamfunction responses are observed - a weakening centering at
297	around 20°S occurring at around month 4 for all three experiments and an anomalous
298	cross-equatorial cell develops later. We define the start time of the first stage as the day
299	when the change of the strength of the southern cell ($\delta \varphi_{SH}$) becomes detectable ¹ . The

¹ Follow Deser et al. 2012, we evaluate when the ensemble mean anomalies of the targeted index first become detectable at the 95% significant level, using a 2-sided Student's t-test, where the spread is computed using the individual simulation anomalies from all ensemble members and each ensemble member's indices are assumed to be independent. A 15-day running mean is applied when plotting the

300	day of the anomalous cross-equatorial cell ($\delta \varphi_{EQ}$) first becomes significant marks the
301	start time of Stage 2. As shown in Figure 5, the time-scale for observing statistically
302	significant weakening of the southern cell (Stage 1) is independent of mixed layer depth,
303	whereas the time-scale for developing a statistically significant anomalous cross-
304	equatorial cell (Stage 2) increases with mixed layer depth. Once developed, the
305	anomalous cross-equatorial cell strengthens throughout the simulations and dominate
306	the equilibrium responses.
307	In the following two sections, we take the MLD200 case as an example to
308	demonstrate that the two distinct stages of the tropical circulation responses are driven
309	by different mechanisms. The southern subtropical responses in the first stage can be
310	interpreted by the momentum perspective, and the deep tropical responses in the second
311	stage are mostly consistent with the energetic perspective.
312	3.2.1 Transient responses from the momentum perspective
313	Figure 6a shows the time series of anomalous eddy momentum divergence (i.e. eddy
314	stress, δS) and the product of Coriolis parameter and anomalous upper-level

time series of individual ensemble members (in Figures 6 and 7). The smoothing has little influence on the start time quantified here.

315	meridional wind $(\delta f \bar{v})$. Poleward of 15 degrees, where local Rossby number (Ro=
316	$-\bar{\zeta}/f$) is smaller than 0.4, variations of eddy momentum flux divergence (δS) are
317	mostly balanced by anomalous zonal-mean meridional advection of planetary
318	vorticity ($\delta f \bar{v}$) (see Eq. 1.1). For example, at Stage 1, anomalous positive eddy stress
319	(red color centering around 45°S) is balanced by anomalously positive planetary
320	vorticity advection ($\delta f \bar{v}$, solid contours), and anomalous negative eddy stress (blue
321	color centering around 25°S) is balanced by anomalously negative planetary vorticity
322	advection ($\delta f \bar{v}$, dashed contours). The Coriolis parameter f is negative in Southern
323	Hemisphere, so anomalously negative planetary vorticity advection (i.e., negative
324	$\delta f \bar{v}$) in southern subtropics is consistent with reduced northerly in the upper level and
325	the weakened (more positive) southern Hadley cell (Figure 6b). After entering Stage 2
326	and throughout the whole simulation, any variation of Hadley cell strength
327	(demonstrated as $\delta f \bar{v}$ in the Figure 6a) poleward of 15 degrees is always
328	accompanied by a variation of eddy stress ($\overline{\delta S}$) with the same sign.
329	The momentum balance does not indicate a causal relationship. Through imposing
330	idealized forcing confined in the extratropics and investigating the transient evolutions
331	of the responses in experiments with varying mixed layer depth, we attribute the initial

332	weakening of southern Hadley cell (φ_{SH}) in Stage 1 to reduced eddy momentum flux
333	divergence (\bar{S}) in the subtropics. The imposed surface heating at 50°~80°S could lead
334	to a reduction of \bar{S} in the southern subtropics via a baroclinic and a barotropic process
335	(See Shaw et al. 2020 and the Appendix for more detailed description of the two
336	processes). Further analyses show the baroclinic process dominates: Both the stability
337	near the surface and the meridional temperature gradient decrease at the equatorward
338	side of the imposed heating, reducing eddy heat flux in the climatological baroclinic
339	zone (around 45 $^{\circ}$ S). Associated with the reduction of eddy source, poleward eddy
340	momentum flux and its divergence (\bar{S}) in the subtropics also decrease (Figure A1).
341	Although the equilibrium responses of momentum fluxes in subtropics discussed in
342	Section 3.1.1 fulfill the momentum balance between Hadley cell strength (φ_{SH}) and
343	eddy stress (\overline{S}), our investigation of the transient evolutions suggests the equilibrium
344	responses are distinct from Stage 1 eddy-momentum driven response in terms of
345	latitudinal positions and strengths (compare the equilibrium responses on the right
346	column to the Stage 1 responses on the left in Figure 6). Moreover, there is a noticeable
347	recovery stage in between. We defer the interpretations of the recovery stage, which

involve interactions among SST, eddy stress (\overline{S}), and Hadley cell strength, to the end of section 3.2.3.

Note that the signal to noise ratios of these eddy-driven responses are small. After 350 351 applying a 15-day running mean to remove high frequency internal variability in individual ensemble members, the spread of anomalous eddy stress ($\overline{\delta S}$) across 352 ensemble members still reaches 1.3×10^{-5} m/s², which is larger than the y-axis in 353 354 Figure 6c. The spread of anomalous southern Hadley cell strength among ensemble 355 members is also much larger compared with the change in ensemble mean. While we 356 are able to demonstrate the existence of Stage 1 using 60 ensemble members, 357 identifying the time-scale of Stage 1 is not possible for individual ensemble members. 358 It remains an open question as to how the eddy-driven mechanism discussed above plays a role in individual realizations. When accessing the spread across the ensemble 359 members, there is a statistically significant positive correlation (R=0.6) between 360 anomalous eddy stress ($\overline{\delta S}$) and anomalous Hadley cell strength ($\delta \varphi_{SH}$) at the time the 361 362 ensemble-mean responses entering Stage 1, indicating the two factors dominating the momentum balance at this stage. 363

364 **3.2.2 Transient responses from the energetic perspective**

365	For the MLD200 case, there is no significant change in energy transport and meridional
366	mass streamfunction in the deep tropics before month 13. The development of the cross-
367	equatorial cell at the 2nd stage is tightly linked with the anomalous interhemispheric
368	SST gradient in the tropics ($\delta \Delta_{SST}$). When the anomalous interhemispheric SST
369	gradient in the tropics ($\delta \Delta_{SST}$) becomes significant (at month 13), the anomalous mass
370	streamfunction develops and the energy flux equator shifts southward (Figures 7b and
371	7c). There is an approximate 3-month lag between the cross-equatorial cell and the shift
372	of the energy flux equator. Further analysis shows a close linkage between the energy
373	flux equator, the cross-equatorial MSE transport, and the ITCZ. The three variables all
374	lag the anomalous mass streamfunction ($\delta \varphi_{EQ}$) by three months for the MLD200
375	setting (quantitative analyses not shown, but precipitation and energy flux equator
376	responses are plotted in Figures 7a and 7d). Once they all become statistically
377	significant, the southward shift of the energy flux equator and the anomalous cross-
378	equatorial cell are consistent with the energetics framework.
379	Our transient analysis suggests that it is only when the southern tropical SST heats
380	sufficiently and the ITCZ shifts that the extratropical energy supply can be exported to
381	the other hemisphere across the equator (Cvijanovic and Chiang 2012). With a deeper

382	mixed layer, it takes longer for the SSTs to adjust, causing Stage 2 responses to emerge
383	with a larger lag (Figure 5). The SST gradients drive the anomalous cross-equatorial
384	cell, and the MSE transport adjust accordingly. Wei and Bordoni (2018) and Wei and
385	Bordoni (2020) also emphasize a crucial role of SST gradient, reporting the migration
386	of ITCZ lagging the variation of energy flux equator during the climatological seasonal
387	cycle. In our Stage 2 responses, both the changes in cross-equatorial cell and the
388	meridional mean circulation component of the cross-equatorial MSE transport occur at
389	the time when the anomalous interhemispheric SST gradient ($\delta \Delta_{SST}$) become
390	statistically significant. The 3-month lag between the energy flux equator and the
391	anomalous interhemispheric SST gradient is explained by the eddy component of the
392	MSE transport ² .

393 Note that the signal-to-noise ratio of the anomalous cross-equatorial streamfunction in

394 Stage 2 is larger than that of the anomalous southern cell strength in Stage 1 (Figure

² The eddy component dominates the meridional MSE transport right around the ITCZ region in AM2, which differs from observation. The lead-lag relationship reported here could be a result of this model bias, therefore, we only emphasize the key role of SST gradient in determining the response time-scale of the cross-equatorial cell. Echoing the take-home message in Wei and Bordoni (2018), one needs to be caution when applying the energetic framework to interpret the responses in shorter time-scales. The transient evolution of the cross-equatorial cell could be different from the transient evolution of the MSE transport.

395	6b). While the time-scale of developing a cross-equatorial cell cannot be accurately
396	quantified in a single ensemble, the characteristics of the anomalous cross-equatorial
397	cell are detectable for all ensemble members. There is a statistically significant positive
398	correlation (R=0.8) between the anomalous interhemispheric asymmetric SST index
399	$(\delta \Delta_{SST})$ and the strength of anomalous cross-equatorial cell $\delta \varphi_{EQ}$ at the time the
400	ensemble mean response entering Stage 2, supporting the crucial role of SST gradient.
401	The anomalous interhemispheric SST gradient ($\delta \Delta_{SST}$), the strength of anomalous
402	cross-equatorial Hadley cell ($\delta \varphi_{EQ}$), and the cross-equatorial MSE transport all
403	strengthen with a constant rate before approaching the new equilibrium state (not
404	shown). The equilibrium state in the right columns in Figure 7 could simply be
405	interpreted as a fully developed response of Stage 2.
406	3.2.3 Connecting the two stages: the role of wind-evaporation-SST feedback
407	In this section, we discuss how the weakening of southern Hadley cell in Stage 1
408	may lead to the cross-equatorial cell in Stage 2 via the wind-evaporation-SST feedback.
409	Through careful inspection of the transient evolution (Figure 7) and comparison
410	among the three experiments of different mixed layer depth (Figure 5), the time-scale
411	for developing the cross-equatorial cell appears to be tightly linked with the 27

412 interhemispheric SST gradient. Following Xie et al. (2010), Jia and Wu (2013), and
413 Hwang et al. (2017), we combine the mixed layer energy budget and the linearized
414 version of the aerodynamic bulk formula of latent heat flux

415
$$\rho c_p H \frac{\partial T}{\partial t} = \delta SW + \delta LW + \delta LH_{wind} + \delta LH_{SST} + \delta LH_{RH} + \delta LH_{dT} + \delta SH$$

416 to analyze the surface energy budget in Southern Hemisphere subtropics to explore factors influencing SST. ρ is the density of seawater, c_p is the specific heat of 417 418 seawater, H is mixed layer depth, T is the mixed layer temperature (equal to the SST), 419 and the symbols δ on the right-hand side denote anomalies, calculated as the 420 difference of the heating experiment (at the month of interest) and the control experiment. δSW is anomalous net downward shortwave radiation, δLW is 421 422 anomalous net downward longwave radiation, δSH is anomalous sensible heat flux, 423 δLH_{wind} , δLH_{SST} , δLH_{RH} , and δLH_{dT} respectively are anomalous latent heat flux 424 associated with changes in surface wind speed, SST, relative humidity, and the stability of the boundary layer (the difference between surface temperature and 2m air 425 426 temperature).

427 Figure 8a suggests that changes in latent heat flux related to changes in wind speed

428 (δLH_{wind}) is the main factor contributing to the heating tendency in southern tropics. 28

429	This role of wind speed suggests a link between the momentum-driven Stage 1 and the
430	energetic related Stage 2. We hypothesize that weakening of eddy stress \bar{S} in Stage 1
431	could lead to the cross-equatorial Hadley cell through the following four steps,
432	illustrated in Figure 9: (1) The reduction of \overline{S} at the edge of the southern cell is
433	balanced by the reduced planetary vorticity advection due to reduced poleward flow at
434	the upper branch. (2) To satisfy momentum balance in the subtropics, the reduction of
435	\bar{S} aloft must be balanced by the reduction of friction at the surface, requiring weakened
436	surface easterlies. Consistently, by mass continuity, the meridional component of
437	surface wind weakens with the weaker poleward flow in the upper branch. The
438	weakened southeasterly surface wind results in decreasing evaporation. (3) Reduced
439	evaporation at the surface leads to increasing SST in the southern tropics, driving the
440	cross-equatorial Hadley cell. (4) As the cross-equatorial Hadley cell strengthens, the
441	upper branch transports energy northward. The cross-equatorial Hadley cell also leads
442	to a subtle increase in surface wind speed and evaporation in the northern tropics, which
443	further enhances the interhemispheric SST gradient and the cross-equatorial Hadley
444	cell. In this view, the anomalous eddy stress ($\delta \bar{S}$) in the upper troposphere, anomalous
445	Hadley cell in southern subtropics, and reduced evaporation are connected, supporting

the hypothesis linking the momentum and the energetic perspective via the wind-evaporation-SST feedback.

448	The large ensemble spreads in Figure 8a and Figure 6b question if the linkage
449	between Stage 1 and Stage 2 described above explains the transition in individual
450	ensemble members. While we cannot exclude the possibility of other mechanisms
451	triggering the development of the cross-equatorial cell in individual ensemble members
452	an evaluation across the ensemble members supports our hypothesis. At the start time
453	of Stage 2 defined from the ensemble mean, 56 out of 60 ensemble members simulate
454	the anomalous cross-equatorial cell in the deep tropics. Among these 56 ensemble
455	members, all but 2 exhibit an anomalously weak southern Hadley cell and surface wind
456	speed in the southern subtropics The two exceptions that do not exhibit weakening of
457	the southern Hadley cell despite having developed a cross equatorial Hadley cell
458	anomaly had previously exhibited an extended period with a weakened southern Hadley
459	cell. This suggest that while it is difficult to pinpoint the onset of stage 1 in and
460	individual integration, it appears that if the Southern Hadley cell weakens over some
461	suitable integration period, it may be enough to initiate stage 2.

30

Accepted for publication in Journal of Climate. DOPTO: 1975/JCE1020-0151:41/21/21 12:31 PM UTC

462	A closer examination reveals that, before the anomalous cross-equatorial cell fully
463	develops and the southern Hadley cell almost diminishes, there is an intermediate stage
464	that the eddy stress (\bar{S}) and the Hadley cell in the southern subtropics recover in the
465	ensemble mean time series (see Figure 6, as described in Section 3.2.1). We suspect
466	this intermediate stage can be explained by the feedback among the SST gradient, the
467	eddy stress, and the Hadley cell strength in the subtropics. The wind-evaporation-SST
468	feedback discussed in the previous paragraph is strongest at around 25°S. As a result,
469	SST in the region warms more rapidly than other latitudes, leading to an increasing
470	meridional SST gradient on the polar side and decreasing meridional SST gradient on
471	the equatorward side (Figure 4). The increasing SST gradient on the polar side is
472	accompanied by increasing eddy heat and momentum fluxes (not shown), the eddy
473	stress (\overline{S}) and the southern Hadley cell thus re-strengthen (Figures 6b and 6c). The re-
474	strengthening reduces the wind-evaporation-SST feedback and the anomalously
475	positive meridional SST gradient eventually diminishes. The duration of the recovery
476	stage increases with the mixed layer depth (Figure 4), supporting the role of SST.

31

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

477 **4. Summary and Discussion**

478	The atmospheric circulation responses to extratropical thermal forcing are
479	investigated using GFDL AM2.1 coupled to a mixed layer ocean, through an analysis
480	of the transient responses to an abrupt imposition of the forcing. Our result suggests
481	two distinct stages of the response (as demonstrated in Figure 10).
482	(a) Stage 1: Hadley cell in the forced hemisphere weakens
483	Surface temperature in the forced region increases after the surface heating in the
484	Southern Hemisphere high latitudes is imposed. The imposed high latitude heating
485	decreases meridional temperature gradient and boundary-layer stability in midlatitudes
486	and subtropics, leading to a reduction of both eddy heat flux and momentum flux
487	(Figure 10c). The southern cell thus weakens to balance the reduction of eddy
488	momentum flux divergence in the subtropics (Figure 10a). The anomalous Hadley
489	circulation is limited to the Southern Hemisphere in this stage, and there is very little
490	change in tropical SST and precipitation (Figure 10g). While the idea of extratropical
491	eddy influencing the strength of Hadley cell is not new, the causal relationship is clearer
492	in our simulations compared with previous studies. For studies investigating seasonal
493	cycles (i.e. Bordoni and Schneider 2010), the insolation in the tropics varies, therefore, 32

494	it is difficult to identify the root cause for variation of local Rossby number and thus
495	the abrupt transition of the monsoon circulations. Similarly, the positive correlation
496	between Hadley cell strength and eddy stress demonstrated in Caballero (2008) among
497	a group of global climate models does not indicate a causal relationship. In our
498	simulations, the imposed extratropical forcing is the root cause of all of the responses.
499	In addition, the time-scale for Stage 1 responses is independent of mixed layer depth
500	(Figure 5), supporting the interpretation that this stage being controlled by atmospheric
501	momentum flux changes.

(b) Stage 2: cross-equatorial Hadley cell responses

502

503 The reduction of eddy momentum flux divergence in Stage 1 also leads to 504 decreasing easterly trades at the surface (Figure 10e), reducing evaporation and 505 resulting in warmer SST in the SH subtropics. Once the anomalous warming propagates 506 to deep tropics and the inter-hemispheric temperature gradient becomes significant, an anomalous cross-equatorial cell develops and the tropical precipitation shifts southward 507 508 (Figures 10b, 10f, 10h). The cross-equatorial cell is confined in the deep tropics, where 509 angular momentum is nearly constant. Once developed, the anomalous cross-equatorial 510 cell is an order of magnitude stronger than the anomalous Hadley circulation in Stage

511	1. The larger signal-to-noise ratio in the second stage may explain why the energetic
512	framework has more support in the literature than the momentum perspective. The
513	equilibrium responses are qualitatively similar to the responses in Stage 2. The
514	momentum balance of the equilibrium responses can be explained by the momentum
515	advection of the cross-equatorial Hadley cell – the Hadley cell and the eddy stress
516	weaken in southern tropics and strengthen in northern tropics. The response time-scale
517	of the anomalous cross-equatorial cell is roughly proportional to mixed layer depth
518	(Figure 5), suggesting the critical roles of air-sea interactions and boundary layer
519	processes in triggering the cross-equatorial cell. The necessity of using the
520	thermodynamic perspective to explain the anomalous Hadley cell strength in the deep
521	tropics is consistent with Singh et al. 2017. Through comparing two idealized
522	simulations with and without large-scale eddies, they suggested the upper layer eddy
523	momentum flux may affect boundary layer entropy (and thus the strength of Hadley
524	cell) by inducing a low-level frictional flow that reduces the ability of the Hadley cell
525	to transport heat poleward.

526 The particular model configuration employed in our study was key to revealing the

527 complex transient evolutions of the extratropical-to-tropical teleconnection. This is

528	unlike the tropical-to-extratropical teleconnection, whose pathway and time-scale
529	could be understood via anomalous stationary planetary wave propagation generated
530	from Rossby wave sources resulting from convective changes in the tropical Pacific
531	(Wallace and Gutzler 1981; Hoskins and Karoly 1981). Once developed, the planetary
532	scale stationary wave patterns are steady, unless there are variations in background
533	wind. The two-stage transient evolution of the tropical responses to extratropical
534	thermal forcings reported in our study might be less relevant for a single tropical
535	weather event triggered by extratropical perturbation. They could be, however, crucial
536	for understanding the decadal variabilities or the transient evolution of
537	anthropogenically forced climate change in the tropics. For transient climate
538	responses, i.e. 1% increase CO ₂ or standard RCP forcing scenarios, it is likely that
539	mechanisms with various time-scales all playing a role in shaping the forced
540	responses.
541	Our experimental setup and a large number of ensemble members allow us to
542	reveal the two-stage mechanisms operating in the inter-annual time-scale that are not
543	represented in simplified models with fixed SST (or relaxing toward an equilibrium
544	SST), while isolating the roles of stationary waves and ocean dynamics. A more careful
545	and systematic evaluation of the magnitudes and time-scales of various mechanisms
-----	--
546	through a hierarchy of numerical models of the atmosphere-ocean-land system is
547	important to obtain a full picture understanding of extratropical influences on tropical
548	climate. Some open questions that can be addressed using models with different
549	complexity include:
550	(1) The influence of seasonality: Eddies are stronger in the winter hemisphere.
551	However, the influence of eddy momentum flux may be more apparent for the
552	weak summer Hadley cell in the subtropics, where the Rossby number is small
553	and the Hadley cell is closer to an eddy-driven regime (Eq. 1.1; Kang and Lu
554	2012). It is yet to be explored how would the time-scales for the two stages vary
555	in simulations with seasonally varying insolation.
556	(2) The influence of zonal asymmetry: In our zonally symmetric aquaplanet model,
557	the surface boundary is covered by a uniform mixed layer ocean. The eddy-
558	mean flow interactions may be damped by the large thermal inertia of the mixed
559	layer ocean, as the mean circulation is strongly constrained by SST. In a more
560	realistic configuration, the small heat capacity of landmasses and the shallow
561	mixed layer depth in the eastern oceanic basins may allow stronger feedback

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

562	between eddy momentum flux and regional mean circulations, which then
563	strengthen the responses in the momentum-driven stage (Stage 1). In addition,
564	including zonal asymmetry also induces zonal variations of storm tracks and
565	eddy momentum flux, allowing eddies to affect local Hadley cell. The wind-
566	evaporation-SST mechanism may be more concentrated in the eastern basins,
567	where the climatological trades are more organized and the mixed layer depth
568	is shallower, altering the time-scale of the tropical responses.
569 (3) The influence of dynamical ocean: We have not considered the role of the
570	dynamical ocean, which is reported to damp the tropical atmospheric
571	circulation responses in many recent studies (Deser et al. 2015; Kay et al. 2016;
572	Tomas et al. 2016; Hawcroft et al. 2017; Kang et al. 2018). While we do not
573	expect changes in ocean dynamics playing critical roles for Stage 1 responses,
574	the time-scale of the cross-equatorial Hadley cell response may be affected by
575	the damping mechanism of Ekman transport (Schneider 2014, Green and
576	Marshall 2017, Kang et al. 2018). Through investigating responses in long
577	simulations (more than 50 years) in fully coupled models, Wang et al. (2018),
578	Lin (2020), and Kang et al. (2020) further suggest a hemispherically symmetric

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

- 579 Hadley cell response emerge as some oceanic processes affect SST along the
- 580 cold tongue, potentially overwhelming the Stage 2 cross-equatorial cell
- 581 responses in decadal time-scales.

582 Acknowledgments

583	We sincerely thank Prof. LinHo for his encouragements and constructive inputs.
584	YTH, HYT, YJC were supported by Ministry of Science and Technology of Taiwan
585	(MOST 109-2636-M-002-011- and MOST 106-2923-M-002-007-MY2). S.M.K. was
586	supported by Basic Science Research Program through the National Research
587	Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future
588	Planning (2019R1F1A1063392). Outputs from our AM2 simulations and figure codes

589 are publicly available at <u>https://doi.org/10.6084/m9.figshare.12978476</u>

590 Appendix

591 Changes in wave activities

- 592 Section 3.2.1 explains changes in eddy momentum flux divergence $(\delta \bar{S})$ in the
- 593 subtropics via E-P flux. Here, we investigate factors contributing to variations in E-P

594 flux.

- 595 The initial warming in the forced region weakens the climatological pattern of eddy
- 596 heat and momentum flux, as indicated by the downward pointing arrows in
- 597 midlatitudes and equatorward pointing arrows in subtropics. The weakening could be
- 598 observed soon after imposing the forcing (before the occurrence of Stage 1) and is
- 599 amplified throughout the simulations.

600 **a.** The baroclinic mechanism – a reduction of wave source

- Based on Eq.2.3, the horizontal heat flux $(\overline{\nu'\theta'})$, the stability $(\overline{\theta_z})$, and the vertical
- 602 eddy momentum flux $\overline{v'w'}$ can all influence the vertical component of E-P flux. The
- 603 Imposed heating reduces the temperature gradient (blue contours in Figure A1(e)) and
- thus leads to the weakening of poleward eddy heat flux (red contours in Figure
- 605 A1(e)). Also, the imposed heating propagates horizontally and vertically, increasing
- temperature at around 750hpa more than those near the surface. The lower

Accepted for publication in Journal of Climate. DOPTO: 1975/JCLI De20-0154.01/21/21 12:31 PM UTC

607	tropospheric stability between 30°S~60°S increases (blue contours in Figure A1(f)).
608	Both reducing horizontal heat flux and increasing stability contribute positivity to the
609	reduction of the vertical component of E-P flux. The contribution from vertical eddy
610	momentum flux is an order of magnitude smaller (not shown). We hypothesize that
611	the reduction of baroclinicity on the equatorward side of the forcing reduces the wave
612	source near the surface and thus decreases the momentum flux aloft. The reduction of
613	wave sources and the associated momentum flux changes are consistent with those in
614	global warming simulations, although the initial triggers differ (Frierson 2008; Lorenz
615	and DeWeaver 2014).
616	b. The barotropic mechanism – eddy mean flow interactions
616 617	b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence
616 617 618	 b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence at the edge of the Hadley cell is the barotropic eddy-mean flow interaction mechanism
616 617 618 619	 b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence at the edge of the Hadley cell is the barotropic eddy-mean flow interaction mechanism (Chen et al. 2008; Lu et al. 2008). As shown in Figure A2, we do not find it to be the
616617618619620	b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence at the edge of the Hadley cell is the barotropic eddy-mean flow interaction mechanism (Chen et al. 2008; Lu et al. 2008). As shown in Figure A2, we do not find it to be the key mechanism leading to the reduction of eddy momentum flux divergence (\bar{S}) in
 616 617 618 619 620 621 	b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence at the edge of the Hadley cell is the barotropic eddy-mean flow interaction mechanism (Chen et al. 2008; Lu et al. 2008). As shown in Figure A2, we do not find it to be the key mechanism leading to the reduction of eddy momentum flux divergence (\bar{S}) in the subtropics. As reviewed by Shaw (2020), the mechanism is as follow: The
 616 617 618 619 620 621 622 	b. The barotropic mechanism – eddy mean flow interactions Another possible explanation for the weakening of eddy momentum flux divergence at the edge of the Hadley cell is the barotropic eddy-mean flow interaction mechanism (Chen et al. 2008; Lu et al. 2008). As shown in Figure A2, we do not find it to be the key mechanism leading to the reduction of eddy momentum flux divergence (\bar{S}) in the subtropics. As reviewed by Shaw (2020), the mechanism is as follow: The imposed warming modifies the meridional temperature gradient in the baroclinic

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0154:49.1/21/21 12:31 PM UTC

624	phase speed is expected to change, which shifts the critical latitudes (where
625	background zonal mean zonal wind equals eddy phase speed) and affects eddy
626	momentum flux divergence (\overline{S}). While imposing heating does lead to decreasing
627	temperature gradient and reducing zonal mean zonal wind in midlatitudes in our
628	simulation, the eddy phase speed does not change significantly. The limited influence
629	of the background wind on the eddy phase speed is likely due to the baroclinic zone
630	being more equatorward (around 40° S) than the regions with strong background wind
631	speed change (50°S~60°S). The zonal mean zonal wind changes in the subtropics are
632	also small in Stage 1. The largest contribution of anomalous eddy momentum flux
633	appears to arise from eddies with the phase speeds that are similar to that contribute to
634	most of the eddy momentum flux in the control case, implying changes in eddy
635	momentum flux may be originated from changes in eddy sources described in the
636	baroclinic mechanism.

Accepted for publication in Journal of Climate. DOPTO: 1975/JCE1020-0151:41/21/21 12:31 PM UTC

637 **References**

638	Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and Interannual Variations of
639	the Energy Flux Equator and ITCZ. Part I: Zonally Averaged ITCZ Position.
640	Journal of Climate, 29 , 3219-3230.
641	Andrews, D. G., 1987: On the interpretation of the Eliassen-Palm flux
642	divergence. Quarterly Journal of the Royal Meteorological Society, 113(475),
643	323-338.
644	Becker, E., G. Schmitz, and R. GeprÄGs, 1997: The feedback of midlatitude waves
645	onto the Hadley cell in a simple general circulation model. <i>Tellus A</i> , 49 , 182-199.
646	Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of
647	the tropical overturning circulation. Nature Geoscience, 1, 515-519.
648	——, 2010: Regime Transitions of Steady and Time-Dependent Hadley Circulations:
649	Comparison of Axisymmetric and Eddy-Permitting Simulations. Journal of the
650	Atmospheric Sciences, 67.
651	Broccoli, A., K. Dahl, and S. Ronald, 2006: Response of the ITCZ to Northern
652	Hemisphere cooling. Geophysical Research Letters - GEOPHYS RES LETT, 33.

- 653 Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength.
- 654 *Geophysical Research Letters*, **34**.
- 655 —, 2008: Hadley cell bias in climate models linked to extratropical eddy stress.
- 656 *Geophysical Research Letters*, **35**.
- 657 Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The Effect of Local Sea Surface
- 658 Temperatures on Atmospheric Circulation over the Tropical Atlantic Sector.
- 659 *Journal of Climate*, **13**, 2195-2216.
- 660 Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of
- 661 surface westerlies: Interannual variability and global warming trend. *Journal of*
- 662 *Climate*, 21(22), 5942-5959.
- 663 Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine
- 664 Intertropical Convergence Zone. *Climate Dynamics*, **25**, 477-496.
- 665 Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical Cooling, Interhemispheric
- 666 Thermal Gradients, and Tropical Climate Change. Annual Review of Earth and
- 667 *Planetary Sciences*, **40**, 383-412.

668	Chiang, J. C. H., W. Cheng, and C. M. Bitz, 2008: Fast teleconnections to the tropical
669	Atlantic sector from Atlantic thermohaline adjustment. Geophysical Research
670	Letters, 35.
671	Cvijanovic, I., and J. C. H. Chiang, 2013: Global energy budget changes to high latitude
672	North Atlantic cooling and the tropical ITCZ response. Climate Dynamics, 40,
673	1435-1452.
674	Delworth, T. L., and Coauthors, 2006: GFDL's CM2 Global Coupled Climate Models.
675	Part I: Formulation and Simulation Characteristics. Journal of Climate, 19, 643-
676	674.
677	Deser, C., R. A. Tomas, and L. Sun, 2015: The Role of Ocean–Atmosphere Coupling
678	in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss. Journal of
679	<i>Climate</i> , 28 , 2168-2186.
680	Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change
681	projections: the role of internal variability. Climate Dynamics, 38, 527-546.
682	Dong, BW., and R. T. Sutton, 2002: Adjustment of the coupled ocean-atmosphere
683	system to a sudden change in the Thermohaline Circulation. Geophysical
684	Research Letters, 29 , 18-11-18-14.
	45

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

685	Donohoe, A., and A. Voigt, 2017: Why Future Shifts in Tropical Precipitation Will
686	Likely Be Small: Patterns and Mechanisms. 115-137.
687	Frierson, D. M., 2008: Midlatitude static stability in simple and comprehensive
688	general circulation models. Journal of the atmospheric sciences, 65(3), 1049-1062.
689	Green, B., & J. Marshall, 2017: Coupling of trade winds with ocean circulation damps
690	ITCZ shifts. Journal of Climate, 30(12), 4395-4411.
691	Hawcroft, M., J. M. Haywood, M. Collins, A. Jones, A. C. Jones, and G. Stephens,
692	2017: Southern Ocean albedo, inter-hemispheric energy transports and the double
693	ITCZ: global impacts of biases in a coupled model. Climate Dynamics, 48, 2279-
694	2295.
695	Hill, S. A., Ming, Y., & I. M. Held, 2015: Mechanisms of forced tropical meridional
696	energy flux change. Journal of Climate, 28(5), 1725-1742.
697	Hoskins, B. J., and D. J. Karoly, 1981: The Steady Linear Response of a Spherical
698	Atmosphere to Thermal and Orographic Forcing. Journal of the Atmospheric
699	Sciences, 38, 1179-1196.

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

700	Hwang, YT., and D. M. W. Frierson, 2013: Link between the double-Intertropical
701	Convergence Zone problem and cloud biases over the Southern Ocean.
702	Proceedings of the National Academy of Sciences, 110 , 4935.
703	Hwang, YT., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol
704	and the southward shift of tropical precipitation in the late 20th century.
705	Geophysical Research Letters, 40, 2845-2850.
706	Hwang, YT., SP. Xie, C. Deser, and S. M. Kang, 2017: Connecting tropical climate
707	change with Southern Ocean heat uptake. Geophysical Research Letters, 44, 9449-
708	9457.
709	Jia, F., and L. Wu, 2013: A Study of Response of the Equatorial Pacific SST to
710	Doubled-CO2Forcing in the Coupled CAM-1.5-Layer Reduced-Gravity Ocean
711	Model. Journal of Physical Oceanography, 43, 1288-1300.
712	Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The Tropical Response to
713	Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative
714	Feedbacks and Convective Parameterization. Journal of the Atmospheric Sciences,
715	66 , 2812-2827.

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

716	Kang, S. M., Y. Shin, and SP. Xie, 2018: Extratropical forcing and tropical rainfall
717	distribution: energetics framework and ocean Ekman advection. npj Climate and
718	Atmospheric Science, 1, 20172.

- 719 Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The Response of the
- 720 ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with
- 721 a GCM. *Journal of Climate*, **21**, 3521-3532.
- 722 Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming:
- 723 Winter versus summer. *Journal of Climate*, **25**, 8387-8393.
- 724 Kang, S. M., 2020: Extratropical Influence on the Tropical Rainfall Distribution.
- 725 *Current Climate Change Reports*, **6**, 24-36.
- 726 Kang, S. M., S.-P. Xie, Y. Shin, H. Kim, Y.-T. Hwang, M. F. Stuecker, B. Xiang, M.
- 727 Hawcroft: Walker Circulation Response to Extratropical Radiative Forcing.
- 728 *Science Advances*, in revision
- 729 Kay, J. E., C. Wall, V. Yettella, B. Medeiros, C. Hannay, P. Caldwell, and C. Bitz, 2016:
- 730 Global Climate Impacts of Fixing the Southern Ocean Shortwave Radiation Bias
- in the Community Earth System Model (CESM). Journal of Climate, 29, 4617-
- 4636.

Accepted for publication in Journal of Climate. DOPTO: 1975/JCLI DE20-0151:01/21/21 12:31 PM UTC

733	Kim, Hk., and S. Lee, 2001: Hadley Cell Dynamics in a Primitive Equation Model.
734	Part II: Nonaxisymmetric Flow. Journal of the Atmospheric Sciences, 58, 2859-
735	2871.
736	Lin, YC., 2020: The fast and slow components of the tropical Pacific climate response
737	to extratropical forcings in a fully coupled model, National Taiwan University,
738	master thesis
739	Lindzen, R. S., and S. Nigam, 1987: On the Role of Sea Surface Temperature Gradients
740	in Forcing Low-Level Winds and Convergence in the Tropics. Journal of the
741	Atmospheric Sciences, 44, 2418-2436.
742	Lindzen, R. S., and A. V. Hou, 1988: Hadley Circulations for Zonally Averaged
743	Heating Centered off the Equator. Journal of the Atmospheric Sciences, 45, 2416-
744	2427.

- Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response
- to global warming in the IPCC scenario integrations. Journal of Geophysical
- 747 *Research: Atmospheres*, *112*(D10).

748	Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric
749	circulation to El Niño versus global warming. Journal of Climate, 21(22), 5835-
750	5851.

- 751 Schneider, Tapio, 2006: The general circulation of the atmosphere. *Annual Review of*752 *Earth and Planetary Sciences* 34.
- 753 Schneider, T., and S. Bordoni, 2008: Eddy-Mediated Regime Transitions in the
- 754 Seasonal Cycle of a Hadley Circulation and Implications for Monsoon Dynamics.
- 755 *Journal of the Atmospheric Sciences*, **65**, 915-934.
- 756 Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the
- 757 intertropical convergence zone. *Nature*, **513**, 45-53.
- 758 Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-
- 159 latitude circulation. *Current Climate Change Reports*, 5(4), 345-357.
- 760 Swann, A., I. Fung, and J. Chiang, 2011: Mid-latitude afforestation shifts general
- 761 circulation and tropical precipitation. Proceedings of the National Academy of
- *Sciences of the United States of America*, **109**, 712-716.

763	The, G. G. A. M. D. T., and Coauthors, 2004: The New GFDL Global Atmosphere and
764	Land Model AM2–LM2 Evaluation with Prescribed SST Simulations. Journal of
765	<i>Climate</i> , 17 , 4641-4673.
766	Tomas, R. A., C. Deser, and L. Sun, 2016: The Role of Ocean Heat Transport in the
767	Global Climate Response to Projected Arctic Sea Ice Loss. Journal of Climate, 29,
768	6841-6859.
769	Walker, C. C., and T. Schneider, 2006: Eddy Influences on Hadley Circulations:
770	Simulations with an Idealized GCM. Journal of the Atmospheric Sciences, 63,
771	3333-3350.

- Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the Geopotential Height
- Field during the Northern Hemisphere Winter. *Monthly Weather Review*, 109,
 774 784-812.
- Wang, K., Deser, C., Sun, L., & R. A. Tomas, 2018: Fast response of the tropics to an
- abrupt loss of Arctic sea ice via ocean dynamics. Geophysical Research
- 777 *Letters*, *45*(9), 4264-4272.

778	Wei, HH., and S. Bordoni, 2018: Energetic Constraints on the ITCZ Position in
779	Idealized Simulations With a Seasonal Cycle. Journal of Advances in Modeling
780	Earth Systems.
781	Wei, H. H., & S. Bordoni, 2020: Energetic Constraints on the ITCZ position in the
782	Observed Seasonal Cycle from MERRA-2 Reanalysis. Geophysical Research
783	Letters, e2020GL088506.
784	Woelfle, M. D., C. S. Bretherton, and D. M. W. Frierson, 2015: Time scales of response
785	to antisymmetric surface fluxes in an aquaplanet GCM. Geophysical Research
786	Letters, 42 , 2555-2562.
787	Xie, SP., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global
788	Warming Pattern Formation: Sea Surface Temperature and Rainfall. Journal of
789	<i>Climate</i> , 23 , 966-986.
790	Yoshimori, M., and A. J. Broccoli, 2009: On the link between Hadley circulation
791	changes and radiative feedback processes. Geophysical Research Letters, 36.
792	Zhang, R., and T. L. Delworth, 2005: Simulated Tropical Response to a Substantial
793	Weakening of the Atlantic Thermohaline Circulation. Journal of Climate, 18,
794	1853-1860.
795	52

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

796 Figure Caption List

797 Figure 1. Equilibrium responses of surface temperature, precipitation, and **atmospheric circulations.** (a) Latitudinal distribution of imposed forcing H (W/m^2) . 798 799 (b) The zonal mean SST in all heating cases. (c) Anomalous zonal wind (shaded, m/s), anomalous meridional mass streamfunction (green contours, $CI = 10^{11}$ kg/s) in 800 801 equilibrium in MLD200 case, and climatological zonal wind (black contours, CI = 15 802 m/s, zero contour omitted and negative dashed), and climatological E-P fluxes (vectors, m^2/s^2). (d) Same as (b), but for precipitation. 803 Figure 2. Equilibrium responses of circulation and momentum fluxes. Zonal 804 805 mean of S (shaded, m/s^2) and mass streamfunction (green contours, with CI = 10^{11} kg/s, solid for positive and dashed for negative contour, and grey contours for 806 807 zero) (a) in the control case, (b) in the MLD200 case, and (c) the anomalies (the 808 MLD200 case minus control). S in the control case are plotted as black contours (with $CI = 10^{-5} \text{ m/s}^2$ zero contour omitted and negative dashed) in (c) for reference. 809 810 Figure 3. Equilibrium responses of energy transports. Northward atmospheric 811 energy transports (PW) (a) in the control case, (b) in the MLD200 case, and (c) 812 anomalies (the MLD200 case minus control), with total MSE transport in black,

Accepted for publication on y Journal of Climate. DOPT 0: 1175/JCLI DE20-0154.01/21/21 12:31 PM UTC

813 contribution from DSE in red, contribution from moisture in blue. Note that in the

814 range of y axes are different between (a)(b) and (c).

815 Figure 4. Time series of zonal mean meridional mass streamfunction and SST.

- 816 Anomalous zonal mean meridional mass streamfunction at 700hPa (shaded, kg/s) and
- 817 SST (grey contours, CI = 0.3 °C, zero contour omitted and negative dashed) in cases
- 818 with (a) 200MLD, (b) 100MLD, and (c) 50 MLD. The vertical grey solid lines mark
- the start times of Stage 1 and 2. The horizontal red lines indicate the northern edge of
- 820 imposed forcing. The right column shows the near-equilibrium responses.
- Figure. 5. The start time of Stage 1 & 2. The start time of Stage 1 (cross) and 2
- 822 (asterisk) in MLD 200/100/50 cases.

823 Figure 6. Time series of Stage 1-associated responses in MLD200 case.

824 Anomalous zonal mean (a) daily S (shaded, m/s^2) and daily fv (blue contours with CI

 $825 = 5 \times 10^{-6} \text{ 1/s}^2$, zero contour omitted and negative dashed) in the upper atmosphere

- 826 (above 700hPa), (b) daily Southern Hemisphere Hadley cell (φ_{SH} , kg/s), (c) daily S
- above 700hPa and between 15° S~ 25° S (m/s²), and (d) daily surface wind speed
- 828 between 15°S~25°S (m/s). The vertical solid lines mark the start times of Stage 1 and
- 829 2. The right column shows the near-equilibrium responses. In (a), the horizontal red

Accepted for publication in Journal of Climate. DOPTO: 1975/JCLI De20-0151. PL 12:31 PM UTC

Accepted for publication on y Journal of Climate. DOPT 0: 1175/JCLI DE20-0154.01/21/21 12:31 PM UTC

847	Figure 8. WES feedback. (a) Mixed layer energy budget attribution in sourthern
848	tropical region (between the equator and the southern edge of the Hadley cell in the
849	SH, 27°S) during Stage 1 period. The errorbars mark the one standard deviation
850	departure from the ensemble mean of each variable. Anomalous (b) surface latent heat
851	flux due to wind change (W/m ²) and (c) surface shortwave flux (W/m ²) in SH tropical
852	region. The vertical dashed lines in (b) and (c) mark the start times of Stage 1 and 2,
853	respectively. The right column shows the near-equilibrium responses. The thick black
854	lines in (b)~(c) indicate the ensemble mean, with each ensemble in light grey.
855	Figure 9. Schematic diagram of the two-stage response. The upper panel shows the
856	anomalous mass stream function at 700 hPa (shaded, power of 10 kg/s), anomalous S
857	over 700hPa (light blue contours, $CI = 10^{-6} \text{ m/s}^2$), and northward DSE transport
858	anomaly (brown contours, $CI = 0.5$ PW). The lower panel shows the latent heat
859	anomaly due to wind change (shaded, W/m^2), SST anomaly (yellow contours, CI =
860	0.3K), and northward moisture transport anomaly (brown contours, energy equivalent,
861	CI = 0.5 PW, zero and positive are omitted). The blue and orange contours in vertical
862	panels show the anomalous mass streamfunction in two stages respectively (CI =
863	$3x10^9$ (left) and 2.4x10 ¹⁰ (right) kg/s).

56

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

864	Figure 10. Two-stage responses of the MLD200 case. (a) Anomalous zonal wind
865	(shaded, m/s), anomalous meridional mass stream function (green contours, with CI =
866	3×10^9 kg/s, zero contour omitted and negative dashed), and local absolute angular
867	momentum (grey contours, with CI = $\omega a^2/10$, ω is the angular speed, and a is the
868	radius of the Earth), (c) anomalous S (shaded, m/s^2) and E-P flux (vector, m^2/s^2), (e)
869	anomalous zonal mean zonal wind (m/s, plotted in blue) and meridional wind (m/s,
870	plotted in red), climatological zonal mean zonal wind (m/s, plotted in light blue) and
871	meridional wind (m/s, plotted in light red), and (g) anomalous zonal mean
872	precipitation (mm/day, plotted in blue) and surface temperature (°C, plotted in red) in
873	Stage 1. $(b)(d)(f)(h)$ are same as $(a)(c)(e)(g)$, but for Stage 2. The CI of green contours
874	in (b) is 1.2×10^{10} kg/s, which is much larger than that in (a). The Stage 1 responses
875	refer to the differences between the average of the time period between the two start
876	dates of Stage 1 and 2 and the climatology. The Stage 2 responses are defined as the
877	differences between the average of the first year after the start date of Stage 2 and the
878	average of the time period between the two start dates of Stage 1 and 2.
879	Figure A1. Responses of E-P flux and its divergence. Climatological E-P flux
880	(arrows), divergence of E-P flux (shading, m/s ²), vertical gradient of potential

Accepted for publication in Journal of Climate. DOPTO: 175/JCLI De20-0151:01/21/21 12:31 PM UTC

881 temperature (blue contours, K/m, with IC = 0.001, zero contour bolded and negative 882 dashed), (a) eddy heat flux (red contours in left panel, Km/s, with IC = 2) and (b) meridional gradient of potential temperature (red contours, K/m, with IC = 40). 883 884 Anomalous E-P flux, divergence of E-P flux, vertical gradient of potential 885 temperature (blue contours, K/m, with IC = 0.0001), (c) eddy heat flux (red contours 886 in left panel, Km/s, with IC = 1) and (d) meridional gradient of potential temperature 887 (red contours, K/m, with IC = 1). (e)-(h) as in (c)-(d) but (e)-(f) in Stage 1 and (g)-(h) 888 in Stage 2. 889 Figure A2. Responses of zonal wind and eddy momentum flux. Zonally average 890 zonal wind at 300hPa divided by $\cos\theta$ (heavy lines, m/s, solid line is climatology and 891 dashed line is ensemble mean of the MLD200 heating case), climatological (shading, m^2/s^2) and anomalous (contours, with CI = 0.05 m^2/s^2 , zero contour omitted and 892 negative dashed) eddy momentum flux in Stage 1 at 300hPa. The hatching denotes 893 the significance at 95% confidence level. 894

Figure 1. Equilibrium responses of surface temperature, precipitation, and

atmospheric circulations. (a) Latitudinal distribution of imposed forcing H (W/m²).

(b) The zonal mean SST in all heating cases. (c) Anomalous zonal wind (shaded,

m/s), anomalous meridional mass streamfunction (green contours, $CI = 10^{11}$ kg/s) in

equilibrium in MLD200 case, and climatological zonal wind (black contours, CI = 15

m/s, zero contour omitted and negative dashed), and climatological E-P fluxes

(vectors, m^2/s^2). (d) Same as (b), but for precipitation.

Figure 2. Equilibrium responses of circulation and momentum fluxes. Zonal

mean of *S* (shaded, m/s²) and mass streamfunction (green contours, with CI = 10^{11} kg/s, solid for positive and dashed for negative contour, and grey contours for zero) (a) in the control case, (b) in the MLD200 case, and (c) the anomalies (the MLD200 case minus control). *S* in the control case are plotted as black contours (with CI = 10^{-5} m/s² zero contour omitted and negative dashed) in (c) for reference.

Figure 3. Equilibrium responses of energy transports. Northward atmospheric

energy transports (PW) (a) in the control case, (b) in the MLD200 case, and (c) anomalies (the MLD200 case minus control), with total MSE transport in black, contribution from DSE in red, contribution from moisture in blue. Note that in the range of y axes are different between (a)(b) and (c).

Figure 4. Time series of zonal mean meridional mass streamfunction and SST.

Anomalous zonal mean meridional mass streamfunction at 700hPa (shaded, kg/s) and SST (grey contours, CI = 0.3 °C, zero contour omitted and negative dashed) in cases with (a) 200MLD, (b) 100MLD, and (c) 50 MLD. The vertical grey solid lines mark the start times of Stage 1 and 2. The horizontal red lines indicate the northern edge of imposed forcing. The right column shows the near-equilibrium responses.

Figure. 5. The start time of Stage 1 & 2. The start time of Stage 1 (cross) and 2

(asterisk) in MLD 200/100/50 cases.

Figure 6. Time series of Stage 1-associated responses in MLD200 case.

Anomalous zonal mean (a) daily *S* (shaded, m/s²) and daily fv (blue contours with CI = $5x10^{-6} 1/s^2$, zero contour omitted and negative dashed) in the upper atmosphere (above 700hPa), (b) daily Southern Hemisphere Hadley cell (φ_{SH} , kg/s), (c) daily *S* above 700hPa and between $15^{\circ}S\sim25^{\circ}S$ (m/s²), and (d) daily surface wind speed between $15^{\circ}S\sim25^{\circ}S$ (m/s). The vertical solid lines mark the start times of Stage 1 and 2. The right column shows the near-equilibrium responses. In (a), the horizontal red

line indicates the northern edge of imposed forcing and the horizontal grey lines mark the latitude of 0.4 local Rossby number. The thick black lines in (b)~(d) indicate the ensemble mean, with each ensemble in grey. Note that in (c), the range of y axes are different between the left and right panel. The time series are smoothed by 15-day running mean to remove high frequency internal variability.

Figure 7. Time series of Stage 2-associated responses in MLD200 case.

Anomalous zonal mean (a) northward MSE transport (shaded, PW), SST (grey contours with CI = 0.3 °C, zero contour omitted and negative dashed), and anomalous precipitation (contour = 1, 2, 4, 8, 16 mm/day, positive purple and negative green), (b) daily cross-equatorial Hadley cell index (φ_{EQ} , (kg/s), (c) daily interhemispheric asymmetric SST index (Δ_{SST} , °C), and (d) energy flux equator (EFE, °). The vertical solid lines mark the start times of Stage 1 and 2. The right column shows the nearequilibrium responses. The horizontal red line in (a) indicates the northern edge of imposed forcing. The thick black lines in (b)~(d) indicate the ensemble mean, with each ensemble in light grey. Note that in (b)~(d), the range of y axes are different between the left and right panels. The time series of daily data are smoothed by 15-day running mean to remove high frequency internal variability.

Figure 8. WES feedback. (a) Mixed layer energy budget attribution in sourthern tropical region (between the equator and the southern edge of the Hadley cell in the SH, 27°S) during Stage 1 period. The errorbars mark the one standard deviation departure from the ensemble mean of each variable. Anomalous (b) surface latent heat flux due to wind change (W/m²) and (c) surface shortwave flux (W/m²) in SH tropical region. The vertical dashed lines in (b) and (c) mark the start times of Stage 1 and 2, respectively. The right column shows the near-equilibrium responses. The thick black lines in (b)~(c) indicate the ensemble mean, with each ensemble in light grey.

Figure 9. Schematic diagram of the two-stage response. The upper panel shows the anomalous mass stream function at 700 hPa (shaded, power of 10 kg/s), anomalous *S* over 700hPa (light blue contours, $CI = 10^{-6} \text{ m/s}^2$), and northward DSE transport anomaly (brown contours, CI = 0.5 PW). The lower panel shows the latent heat anomaly due to wind change (shaded, W/m²), SST anomaly (yellow contours, CI = 0.3K), and northward moisture transport anomaly (brown contours, energy equivalent, CI = 0.5 PW, zero and positive are omitted). The blue and orange contours in vertical panels show the anomalous mass streamfunction in two stages respectively (CI =

 $3x10^9$ (left) and $2.4x10^{10}$ (right) kg/s).

Figure 10. Two-stage responses of the MLD200 case. (a) Anomalous zonal wind

(shaded, m/s), anomalous meridional mass stream function (green contours, with CI = 3×10^9 kg/s, zero contour omitted and negative dashed), and local absolute angular momentum (grey contours, with CI = $\omega a^2/10$, ω is the angular speed, and a is the radius of the Earth), (c) anomalous S (shaded, m/s²) and E-P flux (vector, m²/s²), (e) anomalous zonal mean zonal wind (m/s, plotted in blue) and meridional wind (m/s, plotted in light blue) and meridional wind (m/s, plotted in light red), and (g) anomalous zonal mean

precipitation (mm/day, plotted in blue) and surface temperature ($^{\circ}$ C, plotted in red) in Stage 1. (b)(d)(f)(h) are same as (a)(c)(e)(g), but for Stage 2. The CI of green contours in (b) is 1.2×10^{10} kg/s, which is much larger than that in (a). The Stage 1 responses refer to the differences between the average of the time period between the two start dates of Stage 1 and 2 and the climatology. The Stage 2 responses are defined as the differences between the average of the first year after the start date of Stage 2 and the average of the time period between the two start dates of Stage 1 and 2.

Figure A1. Responses of E-P flux and its divergence. Climatological E-P flux

(arrows), divergence of E-P flux (shading, m/s^2), vertical gradient of potential temperature (blue contours, K/m, with IC = 0.001, zero contour bolded and negative dashed), (a) eddy heat flux (red contours in left panel, Km/s, with IC = 2) and (b) meridional gradient of potential temperature (red contours, K/m, with IC = 40).

Anomalous E-P flux, divergence of E-P flux, vertical gradient of potential temperature (blue contours, K/m, with IC = 0.0001), (c) eddy heat flux (red contours in left panel, Km/s, with IC = 1) and (d) meridional gradient of potential temperature (red contours, K/m, with IC = 1). (e)-(h) as in (c)-(d) but (e)-(f) in Stage 1 and (g)-(h) in Stage 2.

Figure A2. Responses of zonal wind and eddy momentum flux. Zonally average

zonal wind at 300hPa divided by $\cos\theta$ (heavy lines, m/s, solid line is climatology and dashed line is ensemble mean of the MLD200 heating case), climatological (shading, m^2/s^2) and anomalous (contours, with CI = 0.05 m^2/s^2 , zero contour omitted and negative dashed) eddy momentum flux in Stage 1 at 300hPa. The hatching denotes the significance at 95% confidence level.