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Abstract
Tensor network quantum machine learning (QML) models are promising applications on near-term quantum hardware.
While decoherence of qubits is expected to decrease the performance of QML models, it is unclear to what extent the
diminished performance can be compensated for by adding ancillas to the models and accordingly increasing the virtual bond
dimension of the models. We investigate here the competition between decoherence and adding ancillas on the classification
performance of two models, with an analysis of the decoherence effect from the perspective of regression. We present
numerical evidence that the fully decohered unitary tree tensor network (TTN) with two ancillas performs at least as well as
the non-decohered unitary TTN, suggesting that it is beneficial to add at least two ancillas to the unitary TTN regardless of
the amount of decoherence may be consequently introduced.

Keywords Tensor networks · Decoherence · Quantum machine learning

1 Introduction

Tensor networks (TNs) are compact data structures engi-
neered to efficiently approximate certain classes of quantum
states used in the study of quantum many-body systems.
Many tensor network topologies are designed to repre-
sent the low-energy states of physically realistic systems
by capturing certain entanglement entropy and correlation
scalings of the state generated by the network (Evenbly
and Vidal 2011; Eisert 2013; Convy et al. 2022; Lu et al.
2021). Some tensor networks allow for interpretations of
coarse-grained states at increasing levels of the network as
a renormalization group or scale transformation that retains
information necessary to understand the physics on longer
length scales (Evenbly and Vidal 2009; Bridgeman and
Chubb 2017). This motivates the usage of such networks to
perform discriminative tasks, in a manner similar to clas-
sical machine learning (ML) using neural networks with
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layers like convolution and pooling that perform sequential
feature abstraction to reduce the dimension and to obtain a
hierarchical representation of the data (Levine et al. 2018;
Cohen and Shashua 2016). In addition to applying TNs such
as the tree tensor network (TTN) (Shi et al. 2006) and the
multiscale entanglement renormalization ansatz (MERA)
(Vidal 2007) for quantum-inspired tensor network ML algo-
rithms (Stoudenmire 2018; Reyes and Stoudenmire 2021;
Wall and D’Aguanno 2021), there have been efforts to vari-
ationally train the generic unitary nodes in TNs to perform
quantum machine learning (QML) on data-encoded qubits.
The unitary TTN (Grant et al. 2018; Huggins et al. 2019)
and MERA (Grant et al. 2018; Cong et al. 2019) have
been explored for this purpose mindful of feasible imple-
mentations, such as normalized input states, on a quantum
computer.

Tensor network QML models are linear classifiers on
a feature space whose dimension grows exponentially in
the number of data qubits and where the feature map is
non-linear. Such models employ fully parametrized unitary
tensor nodes that form a rich subset of larger unitaries
with respect to all input and output qubits upon tensor
contractions. They provide circuit variational ansatze more
general than those with common parametrized gate sets
(Mitarai et al. 2018; Benedetti et al. 2019; Havlı́ček et al.
2019), although their compilations into hardware-dependent
native gates are more costly because of the need to compile
generic unitaries.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-022-00095-9&domain=pdf
mailto: haoran.liao@berkeley.edu
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In this work, we focus on discriminative QML. We
investigate and numerically quantify the competing effect
between decoherence and increasing bond dimension of
two common tensor network QML models, namely the
unitary TTN and the MERA. By removing the off-diagonal
elements, i.e., the coherence, from the density matrix
of a quantum state, we reduce its representation down
to a classical probability distribution over a given basis.
The evolution through the unitary matrices at every layer
of the model, together with the full dephasing of the
density matrix at input and output, then becomes successive
Bayesian updates of classical probability distributions, thus
removing the quantumness of the model. This process
can occur between any two layers of the unitary TTN or
the MERA, and should in principle reduce the amount
of information or representative flexibility available to the
classification algorithm. However, as we add and increase
the number of ancillas and accordingly increase the virtual
bond dimension of the tensor networks, this diminished
expressiveness may be compensated by the increased
dimension of the classical probability distributions and
their conditionals, manifested in the increasing number of
diagonals intermediate within the network, as well as by the
increased sized of the stochastic matrices encapsulated by
the corresponding Bayesian networks in the fully dephased
limit. The possibility that an increased bond dimension
fully compensates for the decoherence of the network
would indicate that the role of coherence in QML is not
essential and it offers no unique advantage, whereas a partial
compensation provides insights into the trade-off between
adding ancillas and increasing the level of decoherence
in affecting the network performance, and therefore offers
guidance in determining the number of noisy ancillas to be
included in NISQ-era (Preskill 2018) implementations.

The remainder of the paper is structured as follows.
Section 2 explains two tensor network QML models,
the unitary TTN and the MERA. Section 3 reviews the
dephasing effect on quantum states and shows its effect on
the models from the perspective of regression. In Section 4,
we explain the scheme in which ancillas are added to the
networks and the growth of the virtual bond dimensions of
the networks. Section 5 summarizes related work to unify
fully-dephased tensor networks into probabilistic graphical
models. In Section 6, we numerically experiment on natural
images to show the competing effect between decoherence
and adding ancillas while accordingly increasing the virtual
bond dimension of the network. Section 7 summarizes
and discusses the conclusions. In Appendix B, a formal
mathematical treatment to connect the fully dephased tensor
networks to classical Bayesian networks is presented.

2 Preliminaries

2.1 Tensor network QMLmodels

2.1.1 Unitary TTN

Unitary TTN is a classically tractable realization of tensor
network QML models, with a topology that can be
interpreted as a local coarse-graining transformation that
keeps the most relevant degrees of freedom, in a sense that
the information contained within each subtree is separated
from those contained outside of the subtree. We focus on
1D binary trees. A generic binary TTN consists of log(m)

layers of nodes where m is the number of input features,
plus a layer of data qubits appended to the leaf level of
the tree. A diagram of the unitary TTN is shown in Fig. 1
(left). Every node in a unitary TTN is forced to be a unitary
matrix with respect to its input and output Hilbert spaces.
Each unitary tensor entangles a pair of inputs from the
previous layer. At each layer, one of the two output qubits
is unobserved and also not further operated on, while the
other output qubit is evolved by a node at the next layer.
If the classification is binary, at the output of the last
layer, namely the root node, only one qubit is measured.
Accumulation of measurement statistics then reveals the
confidence in predicting the binary labels associated with
the measurement basis. After variationally learning the
weights in the unitary nodes, we recover a quantum channel
such that the information contained in the output qubits of
each layer can be viewed as a coarse-grained representation
of that in the input qubits, which sequentially extracts useful
features of the data encoded in the data qubits. A dephased
unitary TTN has local dephasing channels inserted between
any two layers of the network, as depicted in Fig. 1 (right).

2.1.2 MERA

In tensor network QML, the MERA topology overcomes the
drawback of local coarse-graining in unitary TTN by adding
disentanglers U , which are unitaries, to connect neighboring
subtrees. Its subsequent decimation of the Hilbert space by a
MERA is achieved by isometries V that obey the isometric
condition only in the reverse coarse-graining direction, i.e.,
V †V = I ′ but V V † �= I . From the perspective of
discriminative QML, these unitaries correlate information
from states in neighboring subtrees. We thus refer to these
unitaries as entanglers.

By the design of MERA (Vidal 2007), the adjoint of
an isometry, namely an isometry viewed in the coarse-
graining direction in QML, can be naively achieved by
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Fig. 1 Left: A unitary TTN on
eight input features encoded in
the density matrices ρin’s
forming the data layer, where the
basis state � is measured at the
output of the root node. Right:
Dephasing the unitary TTN is to
insert dephasing channels with a
dephasing rate p, assumed to be
uniform across all, into the
network between every layer

measuring one of the two output qubits in the computational
basis and post-selecting runs with measurements yielding
|0〉. However, this way of decimating the Hilbert space
is generally prohibitive, given the vanishing probability of
sampling a bit string of all output qubits with most of them
in |0〉. Hence, operationally an isometry is replaced by a
unitary node, half of whose output qubits are partially traced
over, which is the same as a unitary node in the TTN. The
MERA can now be understood as a unitary TTN with extra
entanglers inserted before every tree layer except the root
layer, such that they entangle states in neighboring subtrees,
as shown in Fig. 2 (left). Its dephased version is similar to
the dephased unitary TTN, as depicted in Fig. 2 (right).

3 Dephasing

3.1 Dephasing qubits after unitary evolution

A dephasing channel with a rate p ∈ (0, 1] on a
qubit is obtained by tracing out the environment after the
environment scatters off of the qubit with some probability
p. We denote the dephasing channel on a qubit with a
dephasing rate p as E , such that

E[ρ] =
(

1 − 1

2
p

)
ρ + 1

2
pσ3ρσ3

=
∑
ij

(1 − p)1−δij 〈i|ρ|j〉|i〉〈j |

=
∑
ij

(1 − p)1−δij ρij |i〉〈j |, (1)

where the summation goes from 0 to 1 for every index
hereafter unless specified otherwise, whose effect is to
damp the off-diagonal entries of the density matrix by (1 −

p). The operator-sum representation of E[ρ] can be written
as with the two Kraus operators,1

K0 =
√

1 − p

2
I, K1 =

√
p

2
σ3, (2)

defined such that E[ρ] = ∑
i KiρK

†
i and

∑
i K

†
i Ki = I .

Assuming local dephasing on each qubit, the dephasing
channel on the density matrix ρ of m qubits, entangled or
not, is given by

E[ρ] =
∑

i1,...,im

(
m⊗

n=1

Kin

)
ρ

(
m⊗

n=1

K
†
in

)
. (3)

If we allow a generic unitary U to act on E[ρ] for a single
qubit, we have the purity of the resultant state given by

Tr

[(
UE[ρ]U†

)2
]

= Tr

[((
1 − p

2

)
ρ + p

2
σ3ρσ3

)2
]

= Tr
(
ρ2

)
− 4pρ2

01

(
1 − p

2

)
≤ Tr

(
ρ2

)
, (4)

where we used Eq. 1 in the first line. Therefore, in a
given basis, successive applications of a dephasing channel
and generic unitary evolution decrease the purity of any
input quantum state, until the state becomes maximally
mixed.2 Successively applying the dephasing channel alone
decreases the purity of the state until it becomes fully
decohered, namely diagonal in its density operator in a given
basis. It is thus a process in which quantum information of
the input is irreversibly and gradually (for p < 1) lost to the
environment until the state becomes completely describable
by a discrete classical probability distribution.

1A more commonly used, but less computationally efficient in terms
of Eq. 3, representation uses three Kraus operators: K0 = √

1 − pI

and K1/2 =
√

p

2 (I ± σ3) such that E[ρ] = ∑2
i=0 KiρK

†
i and∑2

i=0 K
†
i Ki = I .

2Unitary evolution on the d-dimensional maximally mixed states,
which are the only rotationally invariant states, does not produce
coherence.
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Fig. 2 Left: A MERA on eight
input features encoded in the
ρin’s forming the data layer,
where the basis state � is
measured at the output of the
root node. Right: Dephasing the
MERA is to insert dephasing
channels with a dephasing rate
p, assumed to be uniform across
all, into the network between
every layer

3.2 Dephasing product-state encoded input qubits

When inputting data into a tensor network, it is common
to featurize each sample into a product state, or a rank-one
tensor. The density matrix of such a state with m features
is given by ρ = ⊗m

n=1 |f (n)〉〈f (n)| = ⊗m
n=1 ρ(n), where

|f (n)〉 is a state of dimension d that encodes the nth feature.
Assuming local dephasing on each data qubit, it is expected
that the product state density matrix after dephasing is the
product state of the dephased component density matrix,
i.e., E[ρ] = (

⊗m
n=1 E (n))[⊗m

n=1 ρ(n)] = ⊗N
n=1 E (n)[ρ(n)].

In the context of our tensor network classifier, the effect
of dephasing can be seen by considering just a single
feature. If we normalize this feature such that its value
is x(n) ∈ [0, 1], then we can utilize the commonly used
qubit encoding (Stoudenmire and Schwab 2016; Larose and
Coyle 2020; Liao et al. 2021) to encode this classical feature
into a qubit as

|f (n)〉 =
[

sin
(

π
2 x(n)

)
cos

(
π
2 x(n)

)
]

, (5)

respectively. A notable property of these encodings is that
the elements of |f (n)〉 are always positive, so there is a one-
to-one mapping between |〈i(n)|f (n)〉|2 and 〈i(n)|f (n)〉 for all
i(n). This means that every element of ρ(n) = |f (n)〉f (n) ≡
ρ can be written as a function of probabilities λ

(n)
0 ≡ λ0 and

λ
(n)
1 ≡ λ1, where

ρ00 = λ0, ρ01 = ρ10 = √
λ0λ1, ρ11 = λ1. (6)

Using Eq. B3, we get

λ′
0 = |U00|2λ0 + |U01|2λ1 + 2

√
λ0λ1
(U00U01) (7)

λ′
1 = |U11|2λ1 + |U10|2λ0 + 2

√
λ0λ1
(U10U11), (8)

where it is clear that the new probabilities λ′
i are non-linear

functions of the old probabilities λj . Specifically, there is
a dependence on

√
λ0λ1. Such non-linear functions cannot

be generated by a stochastic matrix acting on diag(ρ(n)),

since the off-diagonal
√

λ0λ1 terms will be set to zero. By
fully dephasing the input state before acting the unitary, the
fully dephased output is less expressive in the sense that we
lose the regressor

√
λ0λ1. But knowing the relative phase of

the encoding, this lost regressor does not contain any extra
information than the regressors λ0 and λ1, so in that sense,
the information content of the encoding is unaffected by the
dephasing.

3.3 Impact on regressors by dephasing

To understand the dephasing effect on the linear regression
induced by the unitary TTN network topology, it is
illuminating to study the evolution of TrA(UE[ρ]U†) which
is undertaken by a unitary node acting on a pair of dephased
input qubits followed by a partial tracing over one of the
output qubits. The diagonals of the output density matrix
before partial tracing, i.e., the diagonals of UE[ρ]U†, are

ρ′
ii = |Ui0|2ρ00 + |Ui1|2ρ11 + |Ui2|2ρ22 + |Ui3|2ρ33

+2(1 − p)
[
(Ui1U

∗
i0ρ10) + 
(Ui2U

∗
i0ρ20)

+
(Ui3U
∗
i1ρ31) + 
(Ui3U

∗
i2ρ32)

]
+2(1 − p)2 [
(Ui3U

∗
i0ρ30) + 
(Ui2U

∗
i1ρ21)

]
, (9)

for i ∈ {0, 1, 2, 3}, where every diagonal term is a linear
regression on all elements of input ρ with regression
coefficients set by the unitary matrix elements Uik, k ∈
{0, 1, 2, 3}. We note that terms such as the 
(Ui1U

∗
i0ρ10) =

Ui0U
∗
i1ρ01 + Ui1U

∗
i0ρ10 are each composed of two

regressors. In particular, the dephasing suppresses some of
the regressors by a factor of (1 − p) or (1 − p)2. Since the
norm of each element in U and U† is upper bounded by
one, the norm of the regression coefficients is suppressed
by these factors induced by dephasing. The suppression is
stronger by a factor of (1 − p)2 for regressors that are
anti-diagonals of the input density matrix, i.e., ρ30 and
ρ21. While the regression described above is to obtain the
diagonals of the output density matrix, the regression to
obtain off-diagonals of the output density matrix has a
similar pattern of suppression of certain regressors.
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This suppression of regression coefficients is carried over
to the reduced density matrix, which can be written as

Tr2(ρ
′) =

[
ρ′

00 + ρ′
11 ρ′

02 + ρ′
13

ρ′
20 + ρ′

31 ρ′
22 + ρ′

33

]
. (10)

When the input pair of qubits ρ is a product state of two
data qubits, we have

ρ = ρ(1)⊗ρ(2) ≡
[

λ0
√

λ0λ1√
λ0λ1 λ1

]
⊗

[
μ0

√
μ0μ1√

μ0μ1 μ1

]
,

(11)

where the λ’s and μ’s are defined like Eq. 6 for the two
data qubits ρ(1) and ρ(2). Substituting Eqs. 11 into 9 and
10, we see that all regressors containing

√
μ0μ1 or

√
λ0λ1

are suppressed by a factor of (1 − p) after the first-layer
unitary, while the regressor

√
λ0λ1μ0μ1 is suppressed by

a factor of (1 − p)2. The output density matrix elements
then become the regressors for regressions performed by
subsequent upper layers, as follows.

For unitary TTN without ancillas, Eqs. 9 and 10 are
carried over to the output of every layer of the network,
since there is no entanglement in the input pair of qubits.
However, at the upper layers, the regression onto the output
density matrix element has regressors already composed of
terms that were suppressed in previous layers, as described
above for ρ → ρ′. Viewing the regressors at the input of
the last layer, the suppression on most of them by some
power of (1 − p) resembles the concept of regularization
in regressions but does not involve a penalty term on the
coefficient norm in the loss function.

In cases where there can be entanglement in each of the
input qubits, such as the intermediate layers in a MERA or
in a unitary TTN with ancillas, the pattern of suppressing
certain regressors is similar, where the coherence of the
input is suppressed by some power of (1 − p). In particular,
the regressors on the anti-diagonals are most strongly
suppressed by a factor of (1 − p)m where m is the number
of input qubits.

3.4 Fully dephased unitary tensor networks

When the network is fully dephased at every layer, all of
the off-diagonal regressors are removed. Each diagonal term
of the output density matrix then becomes a regression on
only the diagonals of the input density matrix. In Appendix
B2, we show that in this situation, each node of the unitary
tensor network Uij reduces to a unitary-stochastic matrix
Mij ≡ |Uij |2. When the output of the unitary node is
partially traced over, the overall operation is equivalent to
a singly stochastic matrix SiBj ≡ ∑

iA
|UiAiBj |2, where iA

enumerates the traced-over part of the system. The tensor
network QML model then reduces to a classical Bayesian

network (see Appendix A) with the joint probability
factorization Eq. B8 presented in Appendices B3 and B4.

4 Adding ancillas and increasing the virtual
bond dimension

The Stinespring’s dilation theorem (Kretschmann et al.
2008; Watrous 2018) states that any quantum channel or
completely positive and trace-preserving (CPTP) map � :
B(HA) → B(HB)3 over finite-dimensional Hilbert spaces
HA and HB is equivalent to a unitary operation on a
higher dimensional Hilbert space HB ⊗ HE , where HE

is also finite-dimensional, followed by a partial tracing
over HE . A motivating example demonstrating directly
that ancillas are necessary to allow the evolution of fully
dephased input induced by a generic unitary to be as
expressive as that induced by a singly stochastic matrix is
presented in Appendix C. In particular, the dimension of the
ancillary system HE can be chosen such that dim(HE) ≤
dim(HA) dim(HB) for any �4 (Kretschmann et al. 2008).
In terms of qubits, the theorem implies that there need
to be at least 2no ancilla qubits to achieve an arbitrary
quantum channel between ni input qubits and no output
qubits. This is because the total combined number of ni

input qubits and na ancilla qubits should equal the total
combined number of no output qubits and the qubits that
are traced out as environment degrees of freedom. Using
Stinespring’s dilation theorem, we can show 2ni+na−no ≤
2ni 2no which leads to na ≤ 2no.

In the scheme of adding ancillas per node in a unitary
TTN, every node requires then in principle at least two
ancilla qubits to achieve an arbitrary quantum channel,
because there are two input qubits coming from the previous
layer and one output qubit passing to the next layer.

However, in practice, we have found it more expressive
to instead add ancillas to the data qubits and to trace out
half of all output qubits per node before contracting with
the node at the next layer. We call this the ancilla-per-
data-qubit scheme. This scheme is able to achieve superior
classification performance in the numerical experiment
tasks that we conducted compared to the ancilla-per-unitary-
node scheme described above (see details in Appendix F),
despite the fact that the two schemes share the same number
of trainable parameters when adding the same number of
ancillas. A diagram of this ancilla scheme is shown in
Fig. 3. This scheme effectively increases the virtual bond

3We denote the convex set of positive-semidefinite linear operators
with unit trace, namely the set of density operators, on a complex
Hilbert space H (thus Hermitian and bounded) as B(H).
4In the Stinespring’s representation of such a CPTP map �, there
exists an isometry V : B(HA) → B(HB ⊗ HE) such that �(ρ) =
TrE(VρV †), ∀ρ ∈ B(HA).
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Fig. 3 Adding one ancilla qubit, initialized to a fixed basis state,
per data qubit to a unitary TTN classifying four features, with a
corresponding virtual bond dimension increased to four. Only one
output qubit is measured in the basis state � regardless of the number
of ancillas added per data qubit. We always decimate the Hilbert space
by half between consecutive layers of unitary nodes

dimension of the network, which means that the network
can represent a larger subset of unitaries on all input qubits.

Although the ancilla-per-data-qubit scheme achieves
superior classification performance, it never produces
arbitrary quantum channels at each node. To see this, for any
unitary node in the first layer, the number of input qubits is
ni = 2, that of ancillas is na = nik = 2k where k ∈ Z

is the number of ancillas per data qubit, and that of output
qubits passing to the next layer is no = 1 + k such that
na < 2no, ∀a ∈ Z. As a result, the channels achievable
via the first layer of unitaries constitute only a subset of
all possible channels between its input and output density
matrices. For any unitary node in subsequent layers, there
are no longer any ancillas, whereas there is at least one
output qubit observed or operated on later. Consequently,
the channels achievable via each layer of unitaries then also
constitute only a subset of all possible channels between its
input and output density matrices.

5 Related work

Dephasing or decoherence was used to connect probabilistic
graphical models and TNs by Miller et al. (2021). Robeva
et al. showed that the data defining a discrete undirected
graphical model (UGM) is equivalent to that defining a
tensor network with non-negative nodes (Robeva and Seigal
2019). The Born machine (BM) (Glasser et al. 2019; Miller
et al. 2021) is a more general probabilistic model built from
TNs that arise naturally from the probabilistic interpretation
of quantum mechanics. The locally purified state (LPS)
(Glasser et al. 2019) adds to the BM some purification edges
each of which partially traces over a node, and represents
the most general family of quantum-inspired probabilistic

models. The decohered Born Machine (DBM) (Miller et al.
2021) adds to a subset of the virtual bonds in BM some
decoherence edges that fully dephase the underlying density
matrices. A fully-DBM, i.e., a BM all of whose virtual
bonds are decohered, can be viewed as a discrete UGM
(Miller et al. 2021). Any DBM can be viewed as an LPS, and
vice versa (Miller et al. 2021). A summary of the relative
expressiveness of these families of probabilistic models is
given in Appendix D.

The unitary TTN and the MERA, dephased or not, are
DBMs or equivalently LPSs. Each partial tracing in them
is represented by a purification edge, while each dephasing
channel acting on the input of a unitary node in them can
be viewed as a larger unitary node contracting with some
environment node and the input node, before tracing out
the environment degree of freedoms using a purification
edge. Each of the tensor networks produces a normalized
joint probability once the data nodes are specified with
normalized quantum states and the readout node is specified
with a basis state. Fully dephasing every virtual bond in
the network gives rise to a fully DBM, which can be also
viewed as a discrete UGM in the dual graphical picture.
We describe in Appendix B3 that, by directly taking into
account the effect of the partial tracing or the purification,
the fully dephased networks can also be viewed as Bayesian
networks via some directed acyclic graphs (DAGs).

6 Numerical experiments

To demonstrate the competing effect between dephasing
and adding ancillas while accordingly increasing the bond
dimension of the network, we train the unitary TTN to
perform binary classification on grouped classes on three
datasets of different levels of difficulty.5 Recall that ni , na ,
and no respectively denote the number of input data qubits,
ancillas, and output qubits, of every unitary node in the first
layer of the TN. We employ TTNs with ni = 2, na ∈
{0, ni, 2ni, 3ni}, and no = 1/2(ni + na) for every unitary
node in the first layer, and with virtual bond dimensions
equal 1/2(ni + na). We also employ MERAs with ni = 2,
na ∈ {0, ni}, and no = 1/2(ni + na) for every unitary node
in the first layer, and with virtual bond dimensions equal
1/2(ni+na). The root node in either network has one output
qubit measured for a binary prediction.

We vary both the dephasing probability p in dephasing
every layer of the network, and the number of ancillas,
which results in a varying bond dimension of the TTN.
In the fully dephased limit, the unitary TTN essentially

5https://github.com/HaoranLiao/dephased ttn mera.git. Example ima-
ges of the three datasets are shown in Appendix G.

https://github.com/HaoranLiao/dephased_ttn_mera.git
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becomes a Bayesian network that computes a classical joint
probability distribution (see Appendix B).

In each dataset, we use a training set of 50040 samples
of 8 × 8-compressed images and a validation dataset of
9960 samples, and we employ the qubit encoding given
in Eq. 5. The performance is evaluated by classifying
another 10000 testing samples. The unitarity of each node
is enforced by parametrizing a Hermitian matrix H and
letting U = eiH . In all of our cases where the model
can be efficiently simulated,6 they can be optimized with
analytic gradients using the Adam optimizer (Kingma and
Adam 2015) with respect to a categorical cross-entropy
loss function, with backpropagations through the dephasing
channels. Values of the hyperparameters employed in the
optimizer (learning rate) and for initializion of the unitaries
(standard deviations) are tabulated in Appendix G. The
ResNet-18 model (He et al. 2016), serving as a benchmark
of the state-of-the-art classical image recognition model,
is adapted to and trained/tested on the same compressed,
grayscale images.

For the first 8×8-compressed, grayscale MNIST (LeCun
et al. 2010) dataset, and the second 8 × 8-compressed,
grayscale KMNIST (Clanuwat et al. 2018) dataset, we
group all even-labeled original classes into one class and
group all odd-labeled original classes into another, and
perform binary classification on them. For the third 8 × 8-
compressed, grayscale Fashion-MNIST (Xiao et al. 2017)
dataset, we group 0,2,3,6,9-labeled original classes into one
class and the rest into another. The binary classification
performance on each of the three datasets as a function of
dephasing probability p and the number of ancillas is shown
for the unitary TTN in Fig. 4. Due to high computational
costs, we simulate a three-ancilla network with p values
equal to 0 and 1 only. This suffices to reveal the performance
trends in both the non-decohered unitary tensor network and
the corresponding Bayesian network.

There are two interesting observations to make on the
results in Fig. 4. First, the classification performance is
very sensitive to small decoherence and decreases the most
rapidly in the small p regime, especially in networks with
at least one ancilla added. Further dephasing the network
does not decrease the performance significantly, and in
some cases, it does not further decrease the performance
at all. A similar observation is made for the MERA (see
Fig. 6). Second, in the strongly dephased regime where the
ancillas are very noisy, adding such noisy ancillas helps
the network regain performance relative to that of the non-

6If the model cannot be efficiently simulated, stochastic approxima-
tions such as the simultaneous perturbation stochastic approximation
(SPSA) with momentum algorithm (Huggins et al. 2019) can be used
for training.

dephased no-ancilla network. On all three datasets, the
performance regained after adding two ancillas across all
dephasing probabilities is comparable to the performance
with the no-ancilla non-dephased network. This suggests
that in implementing such unitary TTNs in the NISQ era
with noisy ancillas, it is favorable to add at least two
ancillas to the network and to accordingly expand the bond
dimension of the unitary TTN to at least eight, regardless of
the decoherence this may introduce.

However, due to the high computational costs with more
than three ancillas added to the network, our experiments
do not provide sufficient information about whether the
corresponding Bayesian network in the fully dephased limit
will ever reach the same level of classification performance
as the non-dephased unitary TTN by increasing the number
of ancillas. Despite this, we note that in the KMNIST and
Fashion-MNIST datasets, the rate of improvement of the
Bayesian network as more ancillas are added is diminishing.

Figure 4 shows that when classifying the Fashion-
MNIST dataset, adding three ancillas in the non-decohered
network leads to a slightly worse performance than
just adding two ancillas. This may be attributed to
the degradation problem in optimizing complex models,
which is well-known in the context of classical neural
networks (He et al. 2016). For neural networks, this is
manifested by a performance drop in both training and
testing as more layers are added, and is distinguished from
overfitting where only the testing accuracy drops. In the
current unitary TTN calculations, the eight-qubit unitaries
that arise in the three-ancilla setting are significantly harder
to optimize than the six-qubit unitaries that arise in the two-
qubit setting. The optimization was unable to adequately
learn the eight-qubit unitaries and thus there is a small drop
in performance seen on increasing the ancilla count from
two to three.

Dephasing the data layer is special compared to
dephasing other internal layers within the network, since
the coherence in each of the product-state data qubits has
not been mixed to form the next-layer features. Since the
coherences are non-linear functions of the diagonals of
ρ, given the linear nature of tensor networks, it is not
possible to reproduce the coherence in the data qubits in
subsequent layers once the input qubits are fully dephased.
To examine to what extent the observed performance
decrement may be attributed to decoherence within the
network as opposed to decoherence of the data qubits, we
perform the same numerical experiment on the Fashion-
MNIST dataset but keep the input qubits coherent without
any dephasing. The result, shown in Fig. 5, indicates that
the decoherence of the virtual bonds in the unitary TTN
alone is a significant source causing the classification
performance to decrease, accounting for more than half of
the performance decrement.



    7 Page 8 of 16 QuantumMachine Intelligence             (2023) 5:7 

Fig. 4 Average testing accuracy over five runs with random batch-
ing and random initialization as a function of dephasing probability
p when binary-classifying 8 × 8 compressed MNIST, KMNIST, or
Fashion-MNIST images. In each image dataset, we group the original
ten classes into two, with the grouping shown in the titles. Every layer

of the unitary TTN, including the data layer, is locally dephased with
a probability p. Each curve represents the results from the network
with a certain number of ancillas added per data qubit, with the error
bars showing one standard error. The dotted reference line shows the
accuracy of the non-dephased network without any ancilla

7 Discussion

In this paper, we investigated the competition between
dephasing tensor network QML models and adding ancillas
to the networks, in an effort to investigate the advantage of
coherence in QML and to provide guidance in determining
the number of noisy ancillas to be included in NISQ-
era implementations of these models. On the one hand,
as we increase the dephasing probability p of every
layer of the network, every regressor associated with
each layer of unitary nodes will have certain terms in it
damped by some power of (1 − p). The damping cannot
be offset by the regression coefficients which are given
in terms of the elements of the unitary matrices. The
effect of this damping of the regressors under dephasing
decreases the classification accuracy of the QML model.
When the network is fully dephased, these regressors are
eliminated, and the tensor network QML model becomes a

classical Bayesian network that is completely describable
by classical probabilities and stochastic matrices. On the
other hand, as we increase the number of input ancillas
and accordingly increase the virtual bond dimensions of the
tensor network, we allow the network to represent a larger
subset of unitaries between the input and output qubits.
As a result, the performance of the network improves,
as demonstrated by adding up to two ancillas and a
corresponding increment of the virtual bond dimension
to eight in our numerical experiments. This improvement
applies to all decoherence probabilities. We also find that
adding more than two ancillas gives either diminishing
or no improvement (Fig. 4). The numerical experiments
are insufficient to show whether the performance of the
corresponding Bayesian network can match that of the non-
decohered network as more than three ancillas are added,
although we did find that in the KMNIST and Fashion-
MNIST datasets the rate of improvement of the Bayesian
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Fig. 5 Average testing accuracy over five runs as a function of
dephasing probability p when classifying 8 × 8 compressed Fashion-
MNIST images. Each curve represents the results from the network
with a certain number of ancillas added per data qubit. The circles
(triangles) show the performance of the unitary TTN when every layer
including (except) the data layer is locally dephased with a probability
p. The dotted reference line shows the accuracy of the non-dephased
network without any ancillas

network as more ancillas are added is diminishing. It
remains an open question where coherence provides any
quantum advantage in QML.

Most importantly, we find that the performance of the
two-ancilla Bayesian network, namely the fully dephased
network, is comparable to that of the corresponding non-
decohered unitary TTN with no ancilla, suggesting that
when implementing the unitary TTN, it is favorable to add
at least two arbitrarily noisy ancillas and to accordingly
increase the virtual bond dimension to at least eight.

We also observe that the performance of both the unitary
TTN and the MERA decreases most rapidly in the small

Fig. 6 Average testing accuracy over ten runs with random batching
and initialization as a function of dephasing probability p in dephasing
a 1D MERA structured tensor network to classify the eight principle
components of non-compressed MNIST images. Ancillas are added
per data qubit. The dotted reference line shows the accuracy of the
non-dephased network without any ancilla

decoherence regime. With ancillas added, the performance
decreases and quickly levels off at around p = 0.2 for
the unitary TTN. The MERA with one ancilla added also
exhibits this level-off performance after around p = 0.4.
However, without any ancilla added, neither the unitary
TTN nor the MERA shows a level-off performance and their
performance decreases all the way until the networks are
fully dephased. This contrast is an interesting phenomenon
to be studied in the future.

We note that the ancilla scheme discussed in Section 4
and the theoretical analysis of the fully decohered network
presented in Appendix B are also relevant to other
variational quantum ansatz states beyond tensor network
QML models. For example, the analysis applies to non-
linear QML models consisting of generic unitaries, such as
those incorporating operations conditioned on mid-circuit
measurement results of some of the qubits (Cong et al.
2019). They may behave similarly under the competition
between decoherence and adding ancillas, and it is an
interesting problem for future investigation.

Appendix A. Discrete Bayesian networks

Let a set of vertices and an edge set of ordered pairs
of vertices form a directed graph G = (V , E), and let
X = {Xv}, ∀v ∈ V be a set of discrete random variables
indexed by the vertices. Let pa(v) or Xpa(v) denote the set of
parent vertices/variables each of which has an edge directed
towards v. A directed edge represents some conditional
probability of the variable on its parent. We say that X

is a discrete Bayesian network (a.k.a. belief network) with
respect to G if G is acyclic, namely, it is a directed
acyclic graph (DAG), or equivalently if the joint probability
mass function of X can be written as a product of the
individual probability mass functions conditioned on their
parent variables, i.e., P(X) = ∏

v∈V P (Xv|Xpa(v)).

Appendix B. Fully dephased unitary tensor
networks

B.1 Fully dephasing qubits after unitary evolution

To fully dephase a quantum state, we simply choose a
basis to represent the density matrix and then set all off-
diagonal elements of the matrix to zero, leaving the diagonal
elements unchanged. If we represent the fully dephasing
(p = 1) superoperator as D, then

D[ρ] =
∑

i

〈i|ρ|i〉|i〉〈i| =
∑

i

ρii |i〉〈i|. (B1)
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For convenience, we adopt the notation λi ≡ ρii , where
the λi can be identified as probabilities from some discrete
distribution. If we allow a generic unitary U to act on ρ

before it is fully dephased, then we have

D
[
UρU†

]
=

∑
i

〈i|UρU†|i〉|i〉〈i|

=
∑
ijk

ρjk〈i|U |j〉〈k|U†|i〉|i〉〈i|, (B2)

so that the new probabilities λ′
i encoded in the fully

dephased state are given by

λ′
i = D

[
UρU†

]
ii

=
∑
jk

ρjk〈i|U |j〉〈k|U†|i〉

=
∑
jk

ρjkUijU
∗
ik (B3)

From Eq. B3, we can see that each probability is a function
of the entire density matrix, along with the elements of U . If
ρ is assumed to be fully dephased already, then ρjk = λj δjk

and therefore

λ′
i =

∑
jk

λj δjkUijU
∗
ik =

∑
j

λj |Uij |2 =
∑
j

Mijλj . (B4)

By the unitarity of U , Mij ≡ |Uij |2 is doubly stochas-
tic, i.e., and

∑
j Mij =

, which maps the old probabilities λ to
new probabilities λ′ that are normalized, i.e.,

∑
i λ′

i =∑
ij Mijλj = . Such dou-

bly stochastic matrices M that correspond to some unitaries
are called unitary-stochastic matrices. For N ≤ 2, all N ×N

doubly stochastic matrices are also unitary-stochastic. But
unitary-stochastic matrices form a proper subset of doubly
stochastic matrices for N ≥ 37 (Zyczkowski et al. 2003;
Tanner 2001).

B.2 Fully dephasing a reduced density matrix after
unitary evolution

In some tensor networks such as the TTN, the effective size
of the feature space is reduced by tracing over some of the

7The dimension of the parameter space for N × N unitary-stochastic
matrices is (N − 1)2 as for doubly stochastic matrices. The parameter
space covered by unitary-stochastic matrices is, however, in general,
smaller than that covered by doubly stochastic matrices (Tanner 2001).

degrees of freedom after each layer. The combined effects
of the unitary layer and partial trace produce a quantum
channel, whose output is then fully dephased. If we partition
the Hilbert space of an input density matrix ρ into parts A

and B, then the outputs λ′
iB

after tracing over part A are
given by

λ′
iB

=
[
TrA

(
D

[
UρU†

])]
iB iB

=
⎡
⎣ ∑

iAiB jk

TrA
(
ρjk〈iAiB |U |j〉〈k|U†|iAiB 〉|iA〉〈iA||iB 〉〈iB |

)⎤
⎦

iB iB

=
∑
iAjk

ρjk〈iAiB |U |j〉〈k|U†|iAiB 〉Tr (|iA〉〈iA|)

=
∑
jk

ρjk

∑
iA

UiAiBjU
∗
iAiBk . (B5)

We can again see that the output diagonals depend on all
elements of ρ and U . If ρ is already fully dephased, then we
have

λ′
iB

=
∑
jk

λj δjk

∑
iA

UiAiBjU
∗
iAiBk

=
∑
j

λj

∑
iA

|UiAiBj |2 =
∑
j

SiBjλj , (B6)

where SiBj ≡ ∑
iA

|UiAiBj |2 is a rectangular singly
stochastic matrix with respect to index iB only, i.e.,

. It again maps the old
probabilities λ to new probabilities λ′ which are normalized,
i.e., . We remark
that the output index iB runs from 1 to dim(B), while the
input index j runs from 1 to dim(A) · dim(B), and the
Bayesian update by this singly stochastic matrix applies
only in the coarse-graining direction.

B.3 Fully dephasing the unitary TTN

Dephasing a unitary TTN is to apply local dephasing
channels on each pair of output bonds before contracting
with the node at the next layer, as shown in Fig. 1 (right).
In terms of the underlying density matrix, the dephasing
channel is to apply Eq. 3 to the bonds, each of which
may represent a higher-dimensional state if there are ancilla
qubits added as discussed in Section 4. We note that
assuming local dephasing, there is no need to dephase
before partially tracing out some generally entangled qubits
out of the unitary TTN node, say tracing over part A of the
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Fig. 7 Left: Fully dephasing a unitary TTN, where the third-order
copy tensor 	3 is defined as 	3 = ∑

i e⊗3
i with ei the qubit basis

state (see Appendix E). Right: The dual graphical picture of the fully-
dephased unitary TTN as a Bayesian network via a directed acyclic

graph (DAG). The transition matrices conditioning on each pair of
input vectors are rectangular singly stochastic matrices S’s reduced
from some unitary-stochastic matrices

output system AB, since there exists a UAE on ρAB ⊗ ρE

by the definition of dephasing such that

TrA (EA [ρAB ]) = TrA
[
TrE

(
UAEρAB ⊗ ρEU

†
AE

)]
= TrA(ρAB). (B7)

A diagram of the dephased unitary TTN is shown in Fig. 1
(right).

As shown in Appendix B2, fully decohering after
partially tracing out every composite node of a unitary
TTN leads to a TTN composed of nodes each of which
is a rectangular singly stochastic matrix S (reduced
from a unitary-stochastic matrix), acting on a vector of
the diagonals of a density matrix, that only preserves
the normalization in the coarsed-graining direction. The
fully-dephased TTN then exhibits a chain of conditional
probabilities and can be interpreted as successive Bayesian
updates across layers. A diagram using the third-order copy
tensors (see Appendix E) to fully dephase the unitary TTN
is shown in Fig. 7 (left), and the dual graphical picture as a
Bayesian network is depicted in Fig. 7 (right).

Formally, a fully dephased unitary TTN can be viewed as
a discrete Bayesian network via a DAG with input quantum
states as parent variables. In other words, the Bayesian
network provides a dual graphical formulation of the fully
dephased unitary TTN, with the graph edges functioning
as the tensor nodes while the graph vertices acting as the
virtual bonds (Robeva and Seigal 2019; Miller et al. 2021).
The graph vertices in the Bayesian network, which is dual
to the virtual bonds in the TTN composed of stochastic
matrices, represent vector variables λ(k,j) ≡ diag

(
ρ(k,j)

)
,

where k and j denotes the j -indexed vertices at the kth
layer of the network with 0 indexing the layer with parent
variables, and ρ is the corresponding density matrix in

the dual tensor network picture. We use the shorthand
λ(k) ≡ {λ(k,0), . . . , λ(k,nk)} to group all nk vertices at the
kth layer into a set. The output vertex of the Bayesian
network stands for a readout variable � specifying the basis
state of the measurement. The Bayesian network then yields
a joint probability once the parent variables are specified
with normalized quantum states, i.e., the joint probability
represented by the network can be written in the following
factorized form

P
(
λ(0) . . . , λ(log(m)), �

)

= P
(
�|λ(log(m))

) log(m)∏
k=1

P
(
λ(k)|λ(k−1)

)
P

(
λ(0)

)
, (B8)

where m ≡ n0 is the number of vertices at the data layer.
P(λ(k)|λ(k−1)) is the conditional probability represented
by the edges between the (k − 1)th and kth layer of the
Bayesian network, or equivalently by the rectangular singly
stochastic matrices at the kth layer of the dual tensor
network. P(�|λ(log(m))) is the conditional probability of
obtaining the basis vector �.

When, for instance, the unitary TTN is fully dephased
to become a Bayesian network, both schemes of adding
ancillas, as described in Section 4, give rise to networks that
share the same form of factorized conditional probabilities
as shown in Eq. B8. The difference between the two
schemes lies in that adding ancillas per node leads to λk,j

fixed at two dimensional ∀k, j , whereas adding ancillas per
data qubit allows λk,j ’s dimension to grow with the number
of ancillas ∀k ∈ {1, . . . , log(m)}, ∀j , since increasing
virtual bond dimension increases the number of diagonals.
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B.4 Fully dephasing theMERA

Similar to the fully dephased unitary TTN, the fully
dephased MERA is shown in Fig. 8 (left), whose dual
graphical formulation as a Bayesian network is shown in
Fig. 8 (right), such that the joint probability yielded by the
network upon specifying the input quantum states as the
parent variables has the same factorized form as Eq. B8. An
entangler with fully dephased input and output transforms
to a unitary-stochastic matrix M , and the partially traced-
over unitary, serving as the “isometry,” with fully dephased
input and output transforms to a singly stochastic matrix S

(reduced from a unitary-stochastic matrix) with respect to
the coarse-graining direction. We note that the dimension of
the vector variables dual to the output bonds of entanlgers
in the tensor network picture is twice as large as other
variables, since they represent correlated variables outputted
by the unitary-stochastic matrices. Each of the two outgoing
directed edges from these variables can be interpreted as a
conditional probability conditioning on half of the support
of these discrete variables.

Appendix C. Ancillas are required to achieve
evolution by singly stochastic matrices

Ancillas are necessary to allow the evolution of fully
dephased input induced by a generic unitary to be as
expressive as that induced by general singly stochastic
matrices. Consider a singly stochastic matrix[

1 1 1 1
0 0 0 0

]
, (C1)

which maps an input state in {|00〉, |01〉, |10〉, |11〉} to
|0〉. Note that this is naturally a mapping between fully
dephased input and fully dephased output. But this mapping
cannot be achieved by acting a unitary on the data qubit
alone. To achieve that, we need to unitarily evolve a

combined system including at least one ancilla. After
tracing out the ancilla, it is possible to leave the data qubit
in |0〉. Namely, {|00〉, |01〉, |10〉, |11〉} → |0〉 ⊗ |0〉E or
{|00〉, |01〉, |10〉, |11〉} → |0〉 ⊗ |1〉E is achievable by a
unitary on the combined system. Note that this is also a
mapping between fully dephased input and fully dephased
output naturally. Therefore, considering generic unitary
evolution such as contracting with a node in the unitary
TTN, it is necessary to include ancillas to achieve what can
be mapped by a singly stochastic matrix between the fully
dephased input and fully dephased output.

Appendix D. Probabilistic graphical models
and tensor networks

Table 1 The relative expressiveness, defined as the probability
distributions a model can produce with the same number of
parameters, among the discrete graphical model (UGM), the tensor
network (TN) with non-negative nodes, the Born machine (BM), the
decohered Born machine (DBM), and the locally purified state (LPS)

Relative expressiveness Ref.

Discrete UGM = non-negative TN (Robeva and Seigal 2019)

Fully DBM = discrete UGM (Miller et al. 2021)

LPS > BM (Glasser et al. 2019)

LPS = DBM > BM (Miller et al. 2021)

It was shown by Robeva and Seigal (2019) in Theorem
2.1 that the data defining a discrete undirected graphical
model (UGM) is equivalent to that defining a tensor network
(TN) with non-negative nodes, but with dual graphical
notations that interchange the roles of nodes and edges.
Hence, we have discrete UGM=non-negative TN, where
= represents that the two classes of model can produce

Fig. 8 Left: Fully dephasing a
MERA. Right: Equivalently, the
dual graphical picture of the
fully dephased unitary TTN as a
Bayesian network via a DAG,
since the fully dephased MERA
is a tensor network composed of
unitary-stochastic matrices M’s
and rectangular singly stochastic
matrices S’s with respect to the
coarse-graining direction, with
input being the diagonals of the
encoded qubits
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the same probability distribution using the same number of
parameters, i.e., they are equally expressive.

The Born machine (BM) (Glasser et al. 2019; Miller et al.
2021), which models a probability mass function as the
absolute value squared of a complex function, is a family of
more general probabilistic models built from TNs that arise
naturally from the probabilistic interpretation of quantum
mechanics. The locally purified state (LPS), first discussed
by Glasser et al. (2019) and generalized by Miller et al.
(2021), adds to each node in a BM a purification edge,
allowing it to represent the most general family of quantum-
inspired probabilistic models. Glasser et al. (2019) showed
that LPS is more expressive than BM, i.e., LPS>BM.

The decohered Born Machine (DBM) was introduced
by Miller et al. (2021), which adds to a subset of the
virtual bonds BM decoherence edges that fully dephase the
underlying density matrices. A BM all of whose virtual
bonds are decohered is called a fully DBM. Miller et al.
(2021) showed that fully decohering a BM gives rise to a
discrete UGM, and conversely any subgraph of a discrete
UGM can be viewed as the fully decohered version of some
BM. Hence, we have fully DBM=discrete UGM.

Theorems 3 and 4 by Miller et al. (2021) showed that
LPS=DBM, since each purification edge joining a pair of
LPS cores can be expressed as a larger network of copy
tensors, and each decoherence edge of a DBM can be
absorbed into nearby pair of tensors and form a purification
edge. Following this view of LPS=DBM and the fact that
LPS>BM, one arrives at DBM>BM, which can also be
understood as BM being a special case of DBM with an
empty set of decohered edges added.

A summary of the relative expressiveness is given in
Table 1.

Appendix E. Copy tensors

A copy tensor of order n is defined to be 	n = ∑
i e⊗n

i

where ei is the ith basis vector, whose conventional tensor
diagram is given as a solid dot with n bonds (Biamonte
and Bergholm 2017). An order-one copy tensor contraction
can be viewed as a marginalization, while an order-three

Fig. 9 Left: using a third-order copy tensor contracting with a basis
state vector results in an outer product of the basis vector, which can
be thought of as conditioning on the same basis state upon contraction
with two nodes. Right: Obtaining the diagonals of a density matrix, or
a matrix in general, can be done by contracting the matrix with two
third-order copy tensors and contracting one bond of each of the copy
tensors together

copy tensor can be used to denote conditioning on the
same vector, as shown in Fig. 9. The contraction of
two third-order copy tensors with a density matrix and
with themselves while leaving two bonds uncontracted
conveniently reproduces (B1), in which the basis vector
is the basis state |i〉, as taking the diagonals of a matrix.
Therefore, it is useful to denote a dephasing channel with a
dephasing rate p = 1, as shown in Fig. 9.

Appendix F. Comparing the two ancilla
schemes in the unitary TTN

Table 2 Average testing accuracies over five trials between adding two
ancillas per unitary node and adding one ancilla per data qubit, when
the dephasing rate p = 0 or p = 1, in the same classification task

Per unitary node Per data qubit

p = 0 0.938 ± 0.001 0.972 ± 0.001

p = 1 0.912 ± 0.002 0.940 ± 0.002

As shown in Table 2, adding one ancilla per data qubit
and accordingly doubling the virtual bond dimension yields
superior performance to adding two ancillas per unitary
node, in the task of classifying 1902 8 × 8-compressed
MNIST images each showing a digit 3 or 5. Both ancilla-
added unitary TTNs are trained on 5000 samples using
the Adam optimizer and validated on 2000 samples. The
two ancilla schemes share the same number of trainable
parameters.

Appendix G. Datasets and hyperparameters
for the numerical experiments

Samples from the three datasets used here are illustrated
in Fig. 10. Compression of the images to dimension 8 ×
8 allows tractable computation and optimization when
ancillas are added to the tensor network QML models. Each
pixel of an image is featurized through Eq. 5. The three
datasets have different levels of difficulty in terms of binary
classification of grouped classes, with the MNIST dataset
being the easiest one while the Fashion-MNIST dataset
being the most challenging.

For each dataset, the numbers of training validation, and
testing samples are 50040, 9960, and 10000, respectively.
The batch size used for training each model is 250. We
find that initializing the Hermitian matrices around zero, or
equivalently the unitaries around the identity, yields better
model performance. We use random normal distributions to
initialize the entries (both the real and imaginary parts) of
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Fig. 10 Example images of each original class in the three datasets, with the class label shown above each example. In each dataset, the classes in
the top row are grouped into one and the classes in the bottom row are grouped into another for binary classification

Table 3 Standard deviations (std) of the initial values of the Hermitian matrices defining the TTN unitary matrices, and learning rates (lr) for the
experiments of Fig. 4 classifying each of the three datasets with unitary TTNs for which all qubits are subject to local dephasing

(std, lr) p=0.0 0.1 0.2 0.4 0.6 0.8 1.0

(a) Compressed MNIST

0 Anc. (0.05, 0.005) (0.05, 0.005) (0.08, 0.005) (0.1, 0.005) (0.2, 0.005) (0.3, 0.005) (0.5, 0.005)

1 Anc. (0.07, 0.005) (0.05, 0.005) (0.08, 0.005) (0.09, 0.005) (0.1, 0.015) (0.1, 0.015) (0.1, 0.015)

2 Anc. (0.05, 0.005) (0.05, 0.005) (0.04, 0.005) (0.03, 0.005) (0.03, 0.005) (0.02, 0.005) (0.01, 0.005)

3 Anc. (0.05, 0.005) − − − − − (0.01, 0.015)

(b) Compressed KMNIST

0 Anc. (0.03, 0.005) (0.03, 0.005) (0.02, 0.005) (0.01, 0.005) (0.05, 0.005) (0.01, 0.005) (0.005, 0.005)

1 Anc. (0.03, 0.005) (0.03, 0.005) (0.05, 0.005) (0.1, 0.005) (0.15, 0.005) (0.2, 0.005) (0.3, 0.005)

2 Anc. (0.05, 0.005) (0.05, 0.005) (0.03, 0.005) (0.01, 0.005) (0.007, 0.005) (0.007, 0.005) (0.005, 0.005)

3 Anc. (0.05, 0.005) − − − − − (0.01, 0.015)

(c) Compressed Fashion-MNIST

0 Anc. (0.05, 0.005) (0.05, 0.005) (0.1, 0.005) (0.2, 0.005) (0.3, 0.015) (0.4, 0.015) (0.5, 0.015)

1 Anc. (0.5, 0.005) (0.5, 0.005) (0.3, 0.005) (0.1, 0.005) (0.05, 0.015) (0.01, 0.015) (0.005, 0.015)

2 Anc. (0.005, 0.005) (0.005, 0.005) (0.005, 0.005) (0.005, 0.005) (0.005, 0.015) (0.005, 0.015) (0.005, 0.015)

3 Anc. (0.005, 0.005) − − − − − (0.05, 0.015)
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Table 4 Standard deviations (std) of the initial values of the Hermitian
matrices defining the TTN unitary matrices, and learning rates (lr) for
the experiments of Fig. 5 classifying the compressed Fashion-MNIST

dataset with unitary TTNs for which all qubits are subject to local
dephasing

(std, lr) p=0.0 0.1 0.2 0.4 0.6 0.8 1.0

0 Anc. (0.05, 0.005) (0.05, 0.005) (0.05, 0.005) (0.04, 0.005) (0.04, 0.005) (0.03, 0.005) (0.03, 0.005)

1 Anc. (0.5, 0.005) (0.5, 0.005) (0.4, 0.005) (0.3, 0.005) (0.2, 0.005) (0.2, 0.005) (0.1, 0.005)

2 Anc. (0.005, 0.005) (0.005, 0.005) (0.01, 0.005) (0.03, 0.005) (0.05, 0.005) (0.06, 0.005) (0.07, 0.005)

3 Anc. (0.005, 0.005) − − − − − (0.05, 0.015)

Table 5 Standard deviations (std) of the initial values of the Her-
mitian matrices defining the MERA unitary matrices, and learning
rates (lr) for the experiments of Fig. 6 classifying the eight principle

components of non-compressed MNIST images with 1D MERAs with
all qubits subject to local dephasing

(std, lr) p=0.0 0.1 0.2 0.4 0.6 0.8 1.0

0 Anc. (0.5, 0.005) (0.4, 0.005) (0.3, 0.005) (0.2, 0.005) (0.1, 0.005) (0.07, 0.005) (0.07, 0.005)

1 Anc. (0.3, 0.025) (0.3, 0.025) (0.3, 0.025) (0.4, 0.025) (0.4, 0.025) (0.5, 0.025) (0.5, 0.025)

the Hermitian matrices, with means set to 0 and standard
deviation values tabulated below. Table 3 corresponds to
the experiments in Fig. 4, Table 4 corresponds to the
experiments in Fig. 5, and Table 5 corresponds to the
experiment in Fig. 6. The learning rates of the Adam
optimizer are also tabulated respectively below. For each
experiment, both the initialization standard deviation and
learning rate are tuned with the help of Ray Tune (Liaw et al.
2018).

Acknowledgements We would like to thank William J. Huggins for
his insights into the problem and helpful discussions. We also thank the
Google Cloud Research Credits program for providing cloud hardware
for our numerical experiments.

Author contribution H.L. wrote the manuscript text, prepared the
figures, and contributed to most of the numerical experiments and part
of the theoretical analysis. I.C. contributed to part of the theoretical
analysis and numerical experiments. Z.Y contributed to part of the
numerical experiments. K.B.W. contributed to part of the theoretical
analysis and to the writing of the manuscript. All authors have
reviewed the manuscript.

Funding This material is based upon work supported by the UC
Noyce Initiative and the US Department of Energy, Office of Science,
National Quantum Information Science Research Centers, Quantum
Systems Accelerator.

Availability of data andmaterials The source codes of both the unitary
TTN and the MERA discriminative QML models, as well as the
datasets for the numerical experiments, are available at https://github.
com/HaoranLiao/dephased ttn mera.git.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Benedetti M, Lloyd E, Sack S, Fiorentini M (2019) Parameterized
quantum circuits as machine learning models. Quantum Sci
Technol 4:043001. ISSN 2058-9565, https://doi.org/10.1088
%2F2058-9565%2Fab4eb5

Biamonte J, Bergholm V (2017) Tensor networks in a nutshell.
arXiv:1708.00006

Bridgeman JC, Chubb CT (2017) Hand-waving and interpretive dance:
an introductory course on tensor networks. J Phys A: Math
Theor 50. ISSN 17518121, https://iopscience.iop.org/article/10.
1088/1751-8121/aa6dc3/meta

Clanuwat T, Bober-Irizar M, Kitamoto A, Lamb A, Yamamoto K,
Ha D (2018) Deep learning for classical Japanese literature.
arXiv:1812.01718

Cohen N, Shashua A (2016) Convolutional rectifier networks as
generalized tensor decompositions. In: Proceedings of ICML,
pp 955–963. http://proceedings.mlr.press/v48/cohenb16.pdf

Cong I, Choi S, Lukin MD (2019) Quantum convolutional neu-
ral networks. Nat Phys 15:1273–1278. https://doi.org/10.1038/
s41567-019-0648-8

Convy I, Huggins WJ, Liao H, Whaley KB (2022) Mutual information
scaling for tensor network machine learning. Mach Learn

https://github.com/HaoranLiao/dephased_ttn_mera.git
https://github.com/HaoranLiao/dephased_ttn_mera.git
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088%2F2058-9565%2Fab4eb5
https://doi.org/10.1088%2F2058-9565%2Fab4eb5
http://arxiv.org/abs/1708.00006
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3/meta
https://iopscience.iop.org/article/10.1088/1751-8121/aa6dc3/meta
http://arxiv.org/abs/1812.01718
http://proceedings.mlr.press/v48/cohenb16.pdf
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1038/s41567-019-0648-8


    7 Page 16 of 16 QuantumMachine Intelligence             (2023) 5:7 

Sci Technol 3:015017. https://doi.org/10.1088%2F2632-2153
%2Fac44a9

Eisert J (2013) Entanglement and tensor network states. In: Pavarini
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