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ABSTRACT OF THE DISSERTATION

Thermal Safety and Real-Time Predictability on Heterogeneous Embedded SoC Platforms

by

Seyed Mehdi Hosseini Motlagh

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2020

Prof. Hyoseung Kim, Chairperson

Recent embedded systems are designed with high-performance System-on-Chips

(SoCs) to satisfy the computational needs of complex applications widely used in real life,

such as airplane controllers, autonomous driving automobiles, medical devices, drones, and

hand-held devices. Modern SoCs integrate multi-core CPUs and various types of acceler-

ators including graphics processing units (GPUs), digital signal processing (DSP), video

encoding, and decoding units. The performance gain of such SoCs comes at the cost of

high power consumption, which in turn leads to high heat dissipation. Uncontrolled heat

dissipation is one of the main sources of interference that can adversely affect the reliability

and real-time performance of safety-critical applications. The mechanisms currently avail-

able to protect SoCs from overheating, such as frequency throttling or core shutdown, may

exacerbate the problem as they cause unpredictable delay and deadline misses. Dynamic

changes in ambient temperature further increase the difficulty of solving this problem.

This dissertation addresses the challenges caused by thermal interference in real-

time mixed-criticality systems (MCSs) built with heterogeneous embedded SoC platforms.
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We propose a novel thermal-aware system framework with analytical timing and thermal

models to guarantee safe execution of real-time tasks under the thermal constraints of a

multi-core CPU/GPU integrated SoC. For mixed-criticality tasks, the proposed framework

bounds the heat generation of the system at each criticality level and provides different

levels of assurance against ambient temperature changes. In addition, we propose a data-

driven thermal parameter estimation scheme that is directly applicable to MCSs built with

commercial-off-the-shelf multi-core processors to obtain a precise thermal model without

using special measurement instruments or access to proprietary information. The practical-

ity and effectiveness of our solutions have been evaluated using real SoC platforms and our

contributions will help develop systems with thermal safety and real-time predictability.
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Chapter 1

Introduction

Rising demands for data and computationally-intensive applications such as deep

learning and big-data driven applications entail the request for higher performance pro-

cessors, e.g., multi-core CPUs, Graphics Processor Units (GPUs), and Tensor Processing

Units (TPUs) as well as more aggressive computing technologies such as 3D chips. With

this rapidly increasing power trend, the problem of thermal management in systems is

becoming acute. My research focuses on enabling thermal-aware real-time computing in

next-generation cyber-physical systems (CPS), such as self-driving cars driving across the

country, drones flying over volcanic areas, and medical devices for humans, where the sys-

tems have to timely accomplish their missions even under harsh thermal conditions. This

is an important problem because the two requirements, real-time and thermal, are funda-

mental to the reliable operation of such systems, but hard to be holistically analyzed and

optimized by the current state of the art. Solving this problem will bring significant benefits

like improving system safety and reliability, adding more intelligent features, and reducing
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costs for high-volume products. This dissertation presents novel analytical methodologies

and system software techniques to analyze and safely guarantee both requirements.

One of major factors that plays a role in temperature increase of modern systems-

on-chips (SoCs) is heat generation due to complex computations. There exist two reasons

that directly or indirectly result in temperature increase: 1) the increased number of accel-

erators and CPU cores, and 2) the high power consumption of each subsystems. Nowadays,

different types of accelerators, such as TPUs, FPGAs, DSPs, GPUs, video processing units,

and also multiple heterogeneous CPU cores are integrated into SoCs to satisfy various needs

of complex applications. The power consumption of active units to perform computation

generates heat. There exists heat conduction between these units, which causes temper-

ature increase on other units even when they are idle. Aside from it, the need for high

computation which can inevitably necessitate a high clock frequency and a large number

of transistors further raises the power consumption of each computing unit. The power

consumption is converted into heat, resulting in a significant increase in temperature due

to performing computation on active computing units. Moreover, an increase in temper-

ature has a considerable impact on the growth of leakage current which leads to a rise in

static power consumption. An increase in power consumption levels up the device temper-

ature, thereby resulting in again an increase in power consumption. This detrimental loop

causes“thermal runaway” [6].

Ambient temperature is one of the key factors that affect the cooling process of

mixed-criticality CPS. Designing of cooling packages such as heat sinks and cooling fans can

be costly [90]. There is also an extra challenge in cooling solutions through packaging only

2



to enable thermal safety under various thermal conditions. Active/passive cooling packages

attached to SoCs dissipate the heat generated due to computation. These solutions try to

transfer heat from SoCs to the environment. Fans and heat sinks are an example of active

and passive cooling packages respectively that blow air to chip or maximize the hot surface

area in contact with the cooling medium surrounding it, e.g., transferring heat to ambient

air by heat convection. These mechanisms are only effective when SoCs are exposed to

low-temperature ambient air. In harsh ambient temperature, heat flux is reduced substan-

tially, meaning heat convection to the air becomes little, because the temperature difference

between the operating chip and the air is negligible. Therefore, the harsh ambient temper-

ature reduces the the effectiveness of the cooling process while SoCs still generate heat to

perform computation. This condition can occur frequently in practice which may lead to

burnout of SoC. In addition, for many high-performance embedded systems like medical

implants or smartphones, that require thermal safety, packaging solutions are expensive,

bulky and inapplicable.

To protect the processor chip from thermal damage, a set of policies are defined in

the thermal governor of the OS for different scenarios. When the chip temperature crosses

a trip point, a predefined cooling scenario is performed such as frequency throttling or

shutting down of CPU cores [18, 37, 97]. Such thermal countermeasures, however, lead to

timing unpredictability in real-time mixed-criticality systems (MCS) since the deadlines of

tasks could be unexpectedly violated by reduced processing speed or temporarily unavailable

CPU cores. A single delayed response in the pedestrian detection in a self- driving car can

lead to irreparable harm. A delay in the control system of the Patriot missiles, used to

3



protect Saudi Arabia during the Gulf War led to injuries and enormous economic damage1.

This unwanted performance degradation may also affect the timing predictabil-

ity of integrated accelerators as well. In this dissertation, we focus on integrated GPUs

because the unique characteristics of GPU operations, e.g., kernel execution on the GPU

and interactions between CPU and GPU cores for data transfer, introduce new challenges

to thermal-safety design and timing assurance. For instance, miscellaneous operations for

GPU segments require CPU intervention. The intermittent performance degradation of

CPU cores adds up additional delay for completion of real-time tasks because GPUs are

required to spend extra time for miscellaneous operations while other tasks are waiting for

access to shared GPUs. This delay due to CPU slowdown leads to performance unpre-

dictability of real-time GPU-using tasks on multi-core SoC platforms.

Despite its importance, the thermal parameter estimation of commercial off-the-

shelf (COTS) processors still remains a challenging problem. The practical use of thermally-

safe mechanisms remains largely limited due to the fact that it is extremely difficult to obtain

a precise thermal model of commercial-processors without using special measurement instru-

ments or access to proprietary information, such as the power traces of micro-architectural

units and detailed floorplan maps.

In this dissertation, we focus on challenges arising from the thermal interference

on heterogeneous multi-core SoC platforms. We develop novel frameworks supported by

analytical time and thermal models to bound the maximum operating temperature of CPU

cores with the assurance of performance predictability in mixed-criticality domains. Ad-

ditionally, we propose a data-driven thermal parameter estimation scheme that is directly

1L’Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167.
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applicable to MCSs built with commercial-off-the-shelf multi-core processors to obtain a

precise thermal model without using special measurement instruments or access to propri-

etary information. The main thesis supported by this dissertation is as follows:

Thesis Statement: The timing predictability of real-time tasks in dynamic ther-

mal conditions is achievable on multi-core GPU-integrated SoC platforms by de-

signing a novel thermal-aware system framework with the support of analytical

timing and thermal models.

1.1 Thesis Outline and Contributions

The aim of my PhD work is to test the hypothesis that thermal-aware real-time

computing on heterogeneous multi-core CPU and GPU systems can be achieved by novel

analytical and software support. To do so, my work develops an ensemble framework

for real-time tasks to support various policies under different circumstances while providing

analytical foundations to check both thermal and temporal safety. This dissertation includes

the following several components:

1.1.1 Chapter 2: Thermal-Aware Servers for Real-Time Tasks on Multi-

Core GPU-Integrated Embedded Systems

In Chapter 2, we propose a thermal-aware CPU-GPU framework to handle both

real-time CPU-only and GPU-using tasks. Our framework satisfies thermal-safety under

the given thermal constraint on CPU and GPU cores and offers bounded response time to

real-time tasks. The framework also introduces two novel mechanisms for GPU requests to
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reduce task response time.

Contributions. The contributions of this work are as follows:

• We propose a thermal-aware CPU-GPU server framework for multi-core GPU-integrated

real-time systems. We characterize different timing penalties and present a protocol

for CPU and GPU thermal servers.

• For real-time predictability on a GPU, we propose a GPU server design with a variant

of the sporadic server policy, where the GPU segments of tasks execute with no thermal

violation.

• We propose an enhancement to the waiting queue of the GPU server to mitigate the

pessimism of a priority-based queue.

• We introduce a miscellaneous operation time reservation mechanism for deferrable

and sporadic CPU servers to reduce CPU-GPU handover delay and remote blocking

time.

• We extensively analyze the thermal safety and task schedulability of CPU and GPU

servers with various budget replenishment policies.

1.1.2 Chapter 3: On Dynamic Thermal Conditions in Mixed-Criticality

Systems

The key contribution of our work in Chapter 3 is showing that the problem of

thermal-aware real-time scheduling can be decomposed into thermal schedulability (how

much CPU budget is usable under thermal constraints) and timing schedulability (if tasks
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are schedulable using given budget).

Under harsh ambient temperature, a system may not be able to utilize 100% of

CPU time even if the CPU runs at the minimum possible frequency with active/passive

cooling packages. In such a condition, the only option left to ensure timing and thermal

guarantees of critical tasks is to secure cooling time by suspending less critical tasks. Our

work addresses this problem.

Contributions. The contributions of this work are as follows:

• We show that the problem of thermal-aware real-time scheduling can be decomposed

into thermal schedulability (how much CPU budget is usable under thermal con-

straints) and timing schedulability (if tasks are schedulable using given budget). Our

thermal schedulability achieves the simplicity in timing analysis by ensuring that the

budget is guaranteed to be made available for any execution patterns without violating

thermal constraints.

• We extensively analyze the thermal safety of a multi-core system and bound the

maximum operating temperature that the system can reach. At a specific ambient

temperature level, we characterize the worst-case thermal behavior of a system and

also determine the minimum time for the system to transition from one criticality

level to a lower level.

• We introduce the notion of idle thermal servers that allow bounding the maximum

operating temperature caused by multiple preemptive active servers scheduled dy-

namically on a multi-core processor for a given mixed-criticality taskset.
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1.1.3 Chapter 4: Data-driven Thermal Parameter Estimation for COTS-

based Mixed-criticality Systems

In Chapter 4, we propose a fast and accurate scheme to estimate the thermal

parameters of COTS multi-core processors for real-time MCS. Our scheme requires only a

small number of temperature traces from on-chip thermal sensors which are widely available

in today’s processors. Our scheme also improves the accuracy of thermal parameters through

the ensemble of measurements from different frequency levels and execution patterns.

Contributions. The contributions of this work are as follows:

• We present a thermal estimation scheme that has low computational cost by design.

Given that steady-state profiles are much compact than transient-state profiles, our

scheme first estimates the thermal parameters of a given system using only steady-

state profiles, and then uses transient-state data for calibration purpose.

• We characterize various sources of errors in thermal parameter estimation, and reduce

their negative effects through the multiple refinement stages of our scheme. Our

scheme also enables locating errors in the temperature profiles.

• Our scheme can identify the relative distance between CPU cores and produce an

estimated chip floorplan from temperature profiles. It can also estimate the relative

power consumption for a given workload on each CPU core.

• We present techniques to further improve the accuracy of thermal parameters by ex-

ploiting the ensemble of measurement data obtained at various frequency and work-

load settings.
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Chapter 2

Thermal-Aware Servers for

Real-Time Tasks on Multi-Core

GPU-Integrated Embedded

Systems

The recent trend in real-time applications raises the demand for powerful embed-

ded systems with GPU-CPU integrated systems-on-chips (SoCs). This increased perfor-

mance, however, comes at the cost of power consumption and resulting heat dissipation.

Heat conduction interferes the execution time of tasks running on adjacent CPU and GPU

cores. The violation of thermal constraints causes timing unpredictability to real-time tasks

due transient performance degradation or permanent system failure. In this chapter, we

propose a thermal-aware server framework to safely upper bound the maximum temperature
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of GPU-CPU integrated systems running real-time sporadic tasks. Our framework supports

variants of real-time server policies for CPU and GPU cores to satisfy both thermal and tim-

ing requirements. In addition, the framework incorporates two mechanisms, miscellaneous-

operation-time reservation and pre-ordered scheduling of GPU requests, which significantly

reduce task response time. We present analysis to design thermal-server budget and to check

the schedulability of CPU-only and GPU-using sporadic tasks. The thermal properties of

our framework have been evaluated on a commercial embedded platform. Experimental

results with randomly-generated tasksets demonstrate the performance characteristics of

our framework with different configurations.

2.1 Introduction

High temperature in embedded systems with modern systems-on-chips (SoCs)

causes several major issues. An increase in temperature has a considerable impact in the

growth of leakage current which leads to rise in static power consumption. An increase

in power consumption levels up the device temperature, thereby resulting in again an in-

crease in power consumption. This detrimental loop causes not only rapid battery drain

but also “thermal runaway” [6]. Furthermore, studies show that operating in high temper-

ature reduces the system reliability substantially [87]. For instance, 10°C to 15°C increase

in temperature doubles the probability of failure of the underlying electronic devices [93].

Thermal violation not only reduces the reliability in real-time implantable medical devices,

but also causes physical harm [12]. Therefore, bounding the maximum temperature is an

important issue, especially when real-time requirements have to be satisfied.
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Thermal management on today’s multi-core CPU-GPU integrated platforms with

real-time requirements is a challenging problem. Dynamic Thermal Management (DTM) is

triggered when thermal violation occurs so that it forces frequency throttling or shutdown

of the SoC for cooling purpose. This unwanted performance degradation leads to timing

unpredictability in task execution, and real-time tasks may miss their deadlines. Thermal

violation avoidance in uni-processor systems has been studied extensively in the literature

of real-time systems [12, 95] but it cannot be directly used for multi-core GPU-integrated

devices due to heat conduction between processor units. Dynamic Voltage Frequency Scal-

ing (DVFS) techniques to mitigate the heat and power dissipation of processors also has

been widely studied in the literature [95, 17]. However, aside from a considerable reduction

in system reliability over time due to continuous frequency changes [43, 57, 99], not all

embedded devices support DVFS, especially for integrated GPUs.

Despite the popularity of integrated GPUs in modern multi-core SoCs, state-of-

the-art approaches are incapable of simultaneously addressing thermal management and

real-time schedulability issues. On the one hand, the GPU access segment of a real-time

task has been modeled as a critical section to ensure schedulability [23, 24, 69]. These

approaches, however, are oblivious of thermal constraints so that the system may suffer

from heat dissipation and intermittent performance drops by DTM. On the other hand,

there are previous studies [3, 2] introducing the concept of thermal servers for real-time

uni-processor and multi-core platforms. However, their schemes are not ready to use for

a multi-core SoC with an integrated GPU. The unique characteristics of GPU operations,

e.g., kernel execution on the GPU and interactions between CPU and GPU cores for data
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transfer, introduce new challenges to thermal server design and schedulability analysis.

To the best of our knowledge, there is no prior work that offers both thermal safety and

real-time schedulability in multi-core GPU-integrated embedded systems.

In this chapter, we propose a thermal-aware CPU-GPU framework to handle both

real-time CPU-only and GPU-using tasks. Our framework enhances the notion of ther-

mal servers to satisfy the given thermal constraint on CPU and GPU cores and to offer

bounded response time to real-time tasks. The framework also introduces two mechanisms,

miscellaneous-operation-time reservation and pre-ordered waiting queue for GPU requests,

to reduce task response time. We will show with experimental results that our framework

is effective in satisfying both thermal and temporal requirements.

Contributions. The contributions of this chapter are as follows:

• We propose a thermal-aware CPU-GPU server framework for multi-core GPU-integrated

real-time systems.

We characterize different timing penalties and present a protocol for CPU and GPU

thermal servers.

• For real-time predictability on a GPU, we propose a GPU server design with a variant

of the sporadic server policy, where the GPU segments of tasks execute with no thermal

violation.

• We propose an enhancement to the waiting queue of the GPU server to mitigate the

pessimism of a priority-based queue.

• We introduce a miscellaneous operation time reservation mechanism for deferrable
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and sporadic CPU servers to reduce CPU-GPU handover delay and remote blocking

time.

• We extensively analyze the thermal safety and task schedulability of CPU and GPU

servers with various budget replenishment policies.

2.2 Related Work

Real-time GPU management has been studied to handle GPU requests with the

goal of improving timing predictability [46, 45, 47, 102]. To guarantee the schedulability of

GPU-using real-time tasks, synchronization-based approaches [23, 24, 69] that model GPU

access segments as critical sections have been developed. The work in [48, 49] introduces

a dedicated GPU-serving task as an alternative to the synchronization-based approaches.

While these prior studies have established many fundamental aspects on real-time task

schedulability with GPUs, thermal violation issues have not been considered.

There exist extensive studies on bounding the maximum temperature in real-time

uni-processor systems [12, 59] and non-real-time heterogeneous multi-core systems [84, 71,

78, 70, 36]. In [12], the authors proposed a novel scheme that bounds the maximum tem-

perature by analyzing task execution and cooling phases in uni-processor real-time systems.

Real-time thermal-aware resource management for uni-processor systems has been devel-

oped with the consideration of varying ambient temperature and diverse task-level power

dissipation [59]. For non-real-time heterogeneous systems, Singla et. al [84] proposed a

dynamic thermal and power management algorithm to adjust the frequency of GPU and

CPU as well as number of active cores by computing the power budget. Prakash et al. [71]
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proposed a control-theory based dynamic thermal management technique for mobile games.

Gong et al. [36] presented a thermal model on a real-life heterogeneous mobile platform.

In [70] and [78], the authors proposed a proactive frequency scheduling for heterogeneous

mobile devices to maintain their performance. However, these studies cannot be directly

applied to real-time multi-core GPU-integrated systems where the GPU is shared among

tasks.

The notion of periodic thermal-aware servers was proposed in [2] for uni-processors.

In this work, the optimal server utilization has been proved and the budget replenishment

period is determined by a heuristic algorithm. Similar to the thermal server, the notion

of cool shapers was proposed in [52] to satisfy the maximum temperature constraint by

throttling task execution. The notion of hot tasks was introduced in [41] to partition

lengthy tasks into several chunks to avoid continuous task execution and thermal violation

while maximizing throughput. Although all of these aforementioned studies have brought

valuable contributions, they have been proposed for uni-processor platforms. In contrast,

our framework addresses the temperature bounding problem for real-time tasks with GPU

segments running on modern CPU-GPU integrated SoCs.

Recently, the authors of [20] introduced a novel technique for periodic tasks exe-

cuting on multi-core platform. This technique introduces an Energy Saving (ES) task that

runs with the highest priority and captures the sleeping time of CPU cores. The technique

can be seen as an alternative to a thermal server because the ES task effectively models the

budget-depleted duration of a thermal server. The authors of [3] proposed thermal-isolation

servers that avoid the thermal interference among tasks in temporal and spatial domains
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with thermal composability. These techniques, however, cannot address the challenges of

scheduling GPU-using real-time tasks.

2.3 Background on Thermal Behavior

In this section, we briefly introduce the thermal model used in this chapter. It

depends on power consumption, heat dissipation, and the conductive heat transfer between

adjacent power-consuming resource components, which includes CPU cores, CPU periph-

erals, GPU, caches, and other IPs.

Uni-processor thermal model. With respect to the power function [60, 13], the thermal

model of a uni-processor is modeled as an RC circuit in the literature [13, 80, 85]. According

to the Fourier’s Law [94] and considering t0 = 0, the temperature of a core θ(t) after t time

units operating at a fixed clock frequency is given by:1

θ(t) = α+ (θ(t0)− α)eβt (2.1)

where α > 0 and β < 0 are constants.

Most operating systems in embedded platforms transition the processor to the

sleep state when there is no task execution. Therefore, the power consumption can be

assumed to be negligible in such a case. The thermal function in the sleep state (aka

cooling phase) where the frequency is switched off can be modeled as:

θ(t) = θ(t0)eβt. (2.2)

because in the cooling phase, α = 0.

1Details are available in [20] and [3].
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Heterogeneous multi-core thermal model. With the presence of multiple cores and

other power-consuming resources, there is heat dissipation not only to ambient but also

between nodes. In this chapter, we only consider CPU and GPU cores as power-consuming

nodes because other IPs consume much less power than them, thereby causing negligible

thermal effects.

In such a CPU-GPU integrated system with the lateral thermal conductivity be-

tween processing cores, the temperature of a core depends not only on its current temper-

ature and power consumption, but also on those of adjacent cores. Prior work [27] showed

that the temperature of each core at time t+∆ can be modeled with an acceptable accuracy

as follows:

Θ(t+ ∆) = A× P (t+ ∆) + Γ×Θ(t)

where A is m × m matrix, and Γ, P and Θ are m × 1 matrices, respectively. One can

interpret the thermal model as a function of the current temperature and heat produced

by execution and the thermal conductivity between cores. Hence, according to the thermal

composability characteristics of heat transfer [3] with the initial temperature of θ(t0), the

temperature after t time units is given by:

θi(t0 + t) = α+ (θ(t0)− α)eβt +

m∑
j=1

γijθj(t0 + t). (2.3)

2.4 System Model

In this section, we describe the thermal-aware server as well as the task models

used in this chapter and explain the procedure of a kernel launch on a GPU. Then, we
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characterize the scheduling penalties that arise from the use of a GPU with thermal-aware

servers.

2.4.1 Computing Platform

We consider a temperature-constrained embedded platform equipped with an inte-

grated CPU-GPU SoC. The SoC has multiple CPU cores and one GPU core, each running

at a fixed clock frequency. Note that such SoC design with a single GPU is popular in

today’s embedded processors, such as Samsung Exynos 5422 and NVIDIA TX2. The as-

sumption on the fixed operating frequency is particularly suitable for the GPU as DVFS

capabilities are not widely supported on embedded on-chip GPUs. The thermal behavior of

CPU and GPU cores follows the model described in Section III. For simplicity, we assume

that the amount of temperature generated by other SoC components, such as peripherals

and caches, is either negligible or acceptably small.

2.4.2 Thermal-Aware Servers

We consider one thermal-aware server for each CPU and GPU core.2 Each server

is statically associated with one core and does not migrate to another core at runtime.

However, unlike prior work [3, 2], we do not limit the server to follow only the polling server

policy. We will show in the later section that this flexibility brings significant benefit in the

schedulability of tasks accessing the GPU.

To bound the temperature of each core, its corresponding server vi is modeled

as vi = (Cvi , T
v
i ) where Cvi is the maximum execution budget and T vi is the budget re-

2Running multiple thermal servers on each CPU/GPU core is left for future work.
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plenishment period of vi. For brevity, we will use vg = (Cg, T g) to denote the GPU server

and vc = (Cc, T c) for the CPU server. For budget replenishment policies, we consider

polling [82], deferrable [88], and sporadic servers [86]. Under the polling server policy, the

corresponding server activates periodically and executes ready tasks until its budget is de-

pleted. The budget is fully replenished at the start of the next period. If there is no task

ready, the remaining budget is immediately depleted. In contrast, under the deferrable

server, any unused budget is preserved until the end of the period. Hence, a task can exe-

cute at any time during the server period while the budget is available. The sporadic server

also preserves remaining budget, but replenishes the budget sporadically; only the amount

of budget consumed is replenished after T v time units from the time when that budget is

used. Let Jv denote the task release jitter relative to the server release. The value of Jv

is T v under the polling server policy and T v −Cv under the deferrable and sporadic server

policies [9].

2.4.3 Task Model

This work considers sporadic tasks with implicit deadlines under partitioned fixed-

priority preemptive scheduling, which is widely used in many real-time systems. Each task

τi has been statically allocated to one CPU core (thus to the server of that core) with a

unique priority. Tasks are labeled in an increasing order of priority, i.e., i < j implies τi has

lower priority than τj . Without loss of generality, each task can contain at most one GPU

segment, but it can be easily extended to multiple GPU segments. A task τi is modeled as

τi = ((Ci,1, Ei, Ci,2), Ti, si), where Ci,1 and Ci,2 are the worst-case execution time (WCET)

of the normal execution segments of task τi, and Ei is the worst-case time of the GPU
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Figure 2.1: Task execution with a GPU segment.

access segment. The normal execution segments run entirely on the CPU core and the

GPU segment involves GPU operations. Let Ti denote the the minimum inter-arrival time

of τi and si indicate whether τi has a GPU segment, i.e., si = 1 means a GPU-using task.

In case τi executes only on the CPU, si, Ei and Ci,2 are all zero. Thus, the accumulated

sum of the WCETs of τi is denoted as

Ci = si × (Ci,1 + Ei + Ci,2) + (1− si)× Ci,1.

Furthermore, V (τi) represents the CPU server where τi is assigned. Tasks are considered as

fully compute-intensive and independent from each other during normal segment execution.

The only resource shared among tasks is the GPU and it is modeled as a critical section

protected by a suspension-based mutually-exclusive lock (mutex). Note that this approach

follows the well-established locking-based real-time GPU access schemes [69, 23, 24]. We

will later present how pending GPU requests are queued in our proposed framework.
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2.4.4 GPU Execution Model

The GPU has its own memory region, which is assumed to be sufficient enough

for the tasks under consideration. We do not consider the concurrent execution of GPU

requests from different tasks because of the resulting unpredictability in kernel execution

time [69, 65]. Once a task acquires the GPU lock, its GPU segment is handled through the

following steps (see Fig. 2.1):

1. Data Transfer to the GPU: The task first copies data needed for the GPU compu-

tation, from CPU memory to GPU memory. This can be done by Direct Memory

Access (DMA), which requires minimal CPU intervention. If the GPU uses a unified

memory model, this step can be omitted.

2. Kernel Launch: Kernel launches on the GPU. Meanwhile, the task on the CPU side

self-suspends and waits for the GPU computation to complete.

3. Kernel Notification Signal: The GPU signals the CPU to notify the completion of

kernel execution.

4. Data Transfer to the CPU: The task wakes up and transfers the results from GPU

memory to CPU memory.

It is worth noting that a GPU kernel cannot self-suspend on the GPU in the middle of

execution.3 On the other hand, since there is no CPU intervention during kernel execution,

the task on the CPU side self-suspends to save CPU cycles. As a result, other tasks have

3Although GPU kernel preemption is available on some recent GPU architectures, e.g., Nvidia Pascal [19],
to the best of our knowledge, the self-suspension of a kernel is not supported in any of today’s GPU
architectures.
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a chance to execute or the CPU core sleeps during the kernel execution. For a task τi, the

total time for the above four steps consists of two major parts:

• Miscellaneous operations that require CPU intervention. Let Mi,1 denote the time

for data transfer before the kernel execution and Mi.2 denote that after the kernel

execution.

• Pure GPU kernel operations that do not require any CPU intervention denoted as Ki.

In such aspect, the GPU segment time of a task τi is modeled as Ei = Mi,1 +Ki +Mi,2. As

the GPU is non-suspendable during kernel execution, the GPU server should have enough

budget larger than or equal to Ei. The CPU server only needs to have budget larger than

Mi,1 or Mi,2.

2.4.5 Challenges of Thermal-Aware Servers with an Integrated GPU

Aside from the blocking delays coming from the locking-based GPU access ap-

proach, e.g., local and remote blocking to acquire the GPU lock [69, 23, 24], there are other

new challenges faced by thermal-aware servers in a CPU-GPU integrated system.

• Server budget depletion: Task execution in a server is scheduled with respect to the

available budget. When the server budget is depleted, a task has to wait until the

budget is replenished.

• Mutual budget availability : If a task τi issues a GPU request, both CPU and GPU

servers must have enough budget to handle this request. It is worth noting that server

budget needs for the CPU and GPU servers are different (Mi,1 or Mi,2 vs. Ei).
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• CPU-GPU handover delay : Even if both servers are designed to have enough budget,

each server may have to wait for the other’s budget to be replenished when their

interactions are needed, e.g., data transfer between the CPU and the GPU.

• Back-to-back heat generation: In case of the deferrable server, some tasks can use

up all the budget at the end of the budget replenishment period, and at the very

beginning of the next period, some other tasks can start to consume the replenished

budget. This causes the server to run longer than its budget and generate heat in a

back-to-back manner.

2.5 Framework Design

In this section, we present our proposed framework. We first give a protocol for

CPU and GPU thermal servers, and then explain thermal server design to address the

challenges discussed in the previous section. We lastly describe a miscellaneous operation

time reservation mechanism to trade-off between server budget and GPU waiting time.

2.5.1 Thermal-Aware CPU-GPU Server Protocol

Our framework simultaneously bounds the worst-case blocking time for GPU ac-

cess and the maximum temperature of CPU and GPU cores. The thermal server designed

with our framework isolates the thermal conductive effects of each compute node to other

nodes. To achieve these properties, we establish the following rules in our framework.

Shared GPU Server

1. Pending GPU requests are inserted to a priority queue that orders the requests based
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on the priorities of the corresponding tasks. This rule assures that the GPU request

of a high-priority task is blocked by at most one lower-priority request in the queue.

2. To handle the GPU request of a task τi, there must exist at least Ei budget avail-

able on the GPU server. This rule is due to the preemptive and non-self-suspending

characteristics of the GPU.

3. If there is an insufficient amount of budget to launch a GPU segment, the GPU is

locked until having enough budget for that GPU segment. This rule assures that

starvation does not happen and the critical section of a higher-priority task waits for

just a single critical section of a lower-priority task. With these rules, remote blocking

time can be bounded. Later, we will propose an enhancement to these rules.

CPU

GPU

 τ1((2, 10, 2), 25, 1)

 v1(4,5)

(a)

CPU

GPU

 τ1((2, 10, 2), 25, 1)

 v1(4,5)

Busy wait Busy wait

(b)

Figure 2.2: Example task scheduling with an unlimited GPU server budget and a CPU server

following the polling server policy a) No busy waiting: τ1 finishes at 22. b) Busy waiting: τ1 finishes

at 14.

CPU Core Server

1. Servicing a GPU request boosts the priority of the corresponding task to the highest-

priority level. As a result, the normal segments of higher-priority tasks are blocked
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until the GPU segment completes. If there is not enough budget on the corresponding

CPU server (e.g., Mi,1) or on the GPU server (e.g., Ei), no other task can execute on

the CPU or the GPU.

2. During data transmission to/from the GPU, the CPU server “busy-waits”. The rea-

soning behind this rule is to reduce the total response time of a task. Fig. 2.2

illustrates task scheduling with and with or without this rule on a CPU server using

the polling server policy. As one can see in this example, without this rule, it takes

one additional replenishment period for transferring data to/from the CPU, because

during processing the transferring request on the GPU, the CPU server has no other

workload to execute; hence it deactivates until the beginning of the next replenishment

period.

2.5.2 GPU Server Design

We now discuss budget replenishment policies for the GPU server and their im-

plications. One may consider both the CPU and GPU servers following the polling server

policy. In this case, the CPU-GPU handover delay can be at least three complete replen-

ishment periods of a CPU server. For instance, consider a task holding a GPU lock and

its kernel being executed on the GPU. Once the kernel execution completes, the GPU has

to wait for the task on the CPU to transfer the results and release the lock. It is possible

that at this time, the CPU server budget has been already depleted. Thus, the GPU has

to wait for the next period of the CPU server, and this kind of extra delay happens for

each sub-segment of the CPU segment, i.e., Mi,1, Ki and Mi,2. Moreover, since operations
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Figure 2.3: Example task scheduling with the GPU server under a) the deferrable server policy and

b) the sporadic server policy. For both tasks τ1 and τ2, Ei = 8 and Mi,1 = Mi,2 = 2.

on the GPU are non-preemptive and non-suspendable, the GPU server budget has to be

large enough that at least one entire GPU sub-segment of Mi,1, Ki or Mi,2 can complete

its execution within the same period. However, having a large replenishment period would

exacerbate the response time of GPU segments especially for small kernels.

One may consider busy waiting between GPU sub-segments so as to fill their ex-

ecution gaps because such gaps may deactivate the GPU’s polling server. This approach,

however, not only requires over-provisioning of the GPU budget, but also produces a consid-

erable amount of heat. In the worst case, the extra heat generation due to the busy-waiting

on the GPU server may continue over two periods of the CPU server because the CPU

server with the polling server policy can be deactivated between GPU sub-segments.
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One may suggest the deferrable server policy for the GPU to mitigate the heat

generation issue and to minimize the response time of a GPU segment. This approach,

however leads to the thermal back-to-back execution phenomenon. Fig. 2.3a illustrates an

example of possible drawbacks of the deferrable server chosen for the GPU. The first jobs

of τ1 and τ2 arrive at the latest moments in the first GPU server period, and the second

job of τ1 arrives at the beginning of the second GPU server period. Although the tasks are

schedulable by the given server budgets, it causes burst heat generation by back-to-back

execution, which can potentially lead to thermal violation. In order to avoid this, the budget

of the deferrable server for the GPU has to be halved to avoid thermal violation but it can

drastically lower task schedulability.

In contrast, the sporadic server policy can take the merits of both the polling

server and deferrable server policies. If the sporadic server policy is used for the GPU,

a GPU segment can execute at any time as long as there is enough budget, and back-

to-back heat generation does not occur. Fig. 2.3b illustrates the previous example with

the sporadic server on the GPU. As can be seen, unlike the deferrable server case, the

budget replenishment of the GPU server is one period apart from its consumption time,

thereby preventing potential thermal violation. The sporadic server on the GPU is also

practically effective because the GPU server needs to have a relatively large budget with

a long replenishment period due to its non-preemptive nature whereas the CPU server

typically has a short replenishment period to reduce task response time.

In summary, due to the aforementioned reasons, our framework specifically uses

the sporadic server policy for the GPU, while all the three policies (polling, deferrable, and
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sporadic) are allowed for CPU cores. We also set the budget of the GPU sporadic server to

be at least as large as one complete GPU segment of any task, i.e., max(Ei), because this

can reduce the response time of a GPU segment and remote blocking time. The detailed

analysis on these delays will be presented in Section 2.6.

The thermal server for the GPU is a resource abstraction managed on the CPU

side, similar to other real-time GPU management schemes [69, 48, 49, 23, 24]. One can

implement the GPU thermal server as part of GPU drivers or application-level APIs.

2.5.3 Miscellaneous Operation Time (MOT) Reservation

In order to reduce the CPU-GPU handover delay, we propose an MOT reservation

mechanism. With this mechanism, a small portion of the CPU server budget is reserved

only for miscellaneous operations in a GPU segment, e.g., transferring data to/from the

GPU. The MOT reservation is feasible with the deferrable and sporadic server policies

but not with the polling server policy because the polling server is unable to keep unused

budget by design. Although this MOT reservation reduces the amount of CPU budget for

regular task execution, it guarantees that the GPU does not need to wait for the budget

replenishment of the CPU server during the data transmission phase of a GPU segment.

It can also reduce the remote blocking time of other tasks. This reserved budget for MOT

has to be the largest amount of the CPU intervention time in all GPU requests. The trade

off between the MOT reservation and the reduced budget for regular task execution will be

extensively investigated in the evaluation.

Fig. 2.4 illustrates an example to highlight the benefit of the MOT reservation

mechanism. As one can see in Fig. 2.4a, τ3 has to wait until 10 to transfer its data to the
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Figure 2.4: Data transfer in a GPU request a) without and b) with the MOT reservation mechanism.

GPU because τ1 already has consumed all budget of v2. Similarly, although the result of the

GPU kernel of τ3 is ready at 27, its result begins to be transferred at 30. These delays cause

the remote blocking of τ2 lasts for 22 time units although there exists an available amount

of the server budget on v1. Designating 2 time units as the MOT budget (see Fig. 2.4b)

leads τ3 to transfer its data to the GPU at 7 and finishes its kernel launch at 27; hence τ2

initiates its kernel launch accordingly. Consequently, designating some amount of the server

budget as MOT reservation leads to reduction in the remote blocking of a GPU-using task

from other CPU core.
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2.6 Thermal and Schedulability Analysis

In this section, we present the schedulability analysis of our framework. We first

design our thermal-aware servers for multi-core GPU-integrated platforms to avoid thermal

violation. Then, we analyze task schedulability with and without the MOT reservation

mechanism.

2.6.1 Design of Server Budget

In our framework, task execution is performed within thermal-aware servers. As

discussed, the notion of servers is to isolate each compute node from others in terms of

the thermal aspect. Accordingly, under any circumstance of task execution, the thermal

violation avoidance has to be guaranteed in the server design. The specifications of servers

are independent of their running tasks (except for the design of the MOT reservation),

whereas task schedulability does depend on them. In our proposed framework, introducing

the thermal-aware servers for both the CPU and the GPU makes the physical characteristics

of underlying platforms be transparent of the task schedulability test.

Single-Core Platforms

First, we calculate the “maximum” budget that a server can have while limiting

the temperature not to exceed the given thermal constraint in a single-core platform under

a given replenishment period. In the worst case of a polling server, the server exhausts all

of its budget at the beginning of its period and then sleeps until the beginning of the next

replenishment period. Let twk and tslp denote the active time (i.e., the budget-consuming
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phase) and the sleeping time (i.e., the cooling phase) of a CPU core server, respectively.

Hence, the server period T is

T = twk + tslp. (2.4)

In the steady state of the system, we are interested in bounding the server’s maximum

temperature. According to Eq. 2.1,

α+ (θs − α)eβtwk ≤ θM

where θs and θM are the steady state temperature and the thermal constraint, respectively.

Therefore,

eβtwk ≥ θM − α
θs − α

=⇒ twk ≤
1

β
ln
θM − α
θs − α

. (2.5)

On the other hand, in the cooling phase, according to Eq. 2.2 to respect the steady state,

θMe
βtslp = θs. Hence,

tslp =
1

β
ln

θs
θM

. (2.6)

By substituting Eqs. 2.5 and 2.6 by Eq. 2.4, we have

1

β
ln
θM − α
θs − α

+
1

β
ln

θs
θM
≤ T

θM − α
θs − α

× θs
θM
≤ eβT .

Therefore, the worst-case steady state temperature at the beginning of each period is

θs =
αθMe

βT

θM (eβT − 1) + α
. (2.7)

Accordingly, the maximum budget for the period T is

twk = T − 1

β
ln

θs
θM

. (2.8)
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Consequently, for a given replenishment period, a server vi = (T − 1
β ln θs

θM
, T ) can bound

the maximum temperature to θM .

As one can figure out from the analysis, the maximum budget converges because of

α. This means that after some point, an increase in the replenishment period has no effect

on the maximum feasible budget. As discussed earlier through our framework design, the

budget has to be considered as twk
2 for a deferrable server due to the thermal back-to-back

phenomenon. This phenomenon does not occur in a sporadic server, and it can use the

computed budget as is.

Homogeneous Multi-core Platforms

The worst case for the budget of polling servers on a multi-core CPU happens

when all of them exhaust their budget completely. Therefore, according to Eq. 2.3 for the

composability characteristics of the heat transfer, we have

α+ (θs − α)eβtwk +

m∑
j=1
j 6=i

γi,jθ
j
M ≤ θ

i
M

where θiM is the maximum temperature for the ith node. In the worst case, every core may

reach its maximum temperature at the same time. Hence,

(1 +

m∑
j=1
j 6=i

γi,j)

︸ ︷︷ ︸
λi

[α+ (θs − α)eβtwk ] ≤ θiM .

However, the geographic location of cores on the chip results in different values of the con-

duction coefficients although it remains symmetric (i.e., γi,j = γj,i). Denoting λ = max1≤i≤m λi,

θM is given by θM = λ[α + (θs − α)eβtwk ]. Similar to the single-core analysis given in the
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previous subsection, the steady state temperature is

θs =
α θMλ e

βT

θM
λ (eβT − 1) + α

(2.9)

Therefore, the server budget for each compute node i is

Cc = twk = T − 1

β
ln
θs × λ
θM

. (2.10)

Heterogeneous Multi-Core GPU-Integrated Platforms

Hereby, we will determine the budget of servers in the presence of an integrated

GPU. Similar to the homogeneous multi-core platform, the worst case happens when all

servers exhaust their budgets completely. There is also a GPU segment execution on the

GPU which causes extra heat dissipation. Since the GPU runs at a different frequency and

its architecture is different from the CPU cores, its heat generation parameters differ from

those of the CPU cores. Hence,


θiM = λi[α+ (θs − α)eβtwk ] + γi,g[α

g + (θgs − αg)eβ
gtgwk ]

θgM = αg + (θgs − αg)eβ
gtgwk +

m∑
j=1

γg,j︸ ︷︷ ︸
γg

[α+ (θs − α)eβtwk ]

=⇒


λθiMe

βtslp + γi,gθ
g
Me

βgtgslp = θs

θgMe
βgtgslp + γgθiMe

βtslp = θgs

(2.11)

where the symbols with a superscript g represent the corresponding parameters of the GPU.

Miscellaneous Operation Time Reservation

To reduce the remote locking time, some portion of the CPU server budget can be

reserved for data transferring from/to the GPU that needs CPU intervention. The MOT
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budget has to be large enough to handle the longest data transferring time, therefore

Cc = twk −max
∀τi

(Mi,1,Mi,2) (2.12)

It is noteworthy that acquiring a lock on the GPU happens when there is enough

budget on the GPU server to execute the whole GPU request; hence, no budget reservation

is needed on the GPU side.

2.6.2 Task Schedulability Analysis

The thermal analysis in the previous subsection gives the maximum budget of each

CPU/GPU server that satisfies the thermal constraint of the system. Hereby, we present

the schedulability analysis of a task τi in our framework.

Before introducing our analysis, we review the existing response time test for inde-

pendent tasks with no thermal constraints and no shared GPU under hierarchical schedul-

ing [77], which is

Wn+1
i = Ci +

∑
τh∈V (τi)
h>i

⌈
Wn
i + Jc

Th

⌉
Ch +

⌈
Wn + Cc

T c

⌉
(T c − Cc) (2.13)

where Jc is the jitter of a task running in a server (see Section 2.4) and W 0 = Ci. The

recursion terminates successfully when Wn+1 = Wn and fails when Wn+1 > Ti. This

equation considers the budget depletion of a CPU server. The first term is the amount

of CPU time used by the task τi, the second term captures the back-to-back execution of

each higher-priority task τh, and the third term captures the amount of interference that

the server can generate due to the periodic budget replenishment. However, this equation

cannot be used directly for the thermal constraint problem with a shared GPU.
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Our analysis extends the existing response time test by considering the factors

discussed in Section V: (i) local blocking time, (ii) remote blocking time, (iii) back-to-back

execution due to remote blocking, (iv) mutual budget availability, (v) CPU-GPU handover

delay, (vi) multiple priority inversions, and (vii) CPU and GPU server budget co-depletion.

We take into account the factors (iv) and (v) together in the analysis of the handover delay,

the factor (vi) as part of the local blocking time analysis, and the factor (vii) as part of the

remote blocking time analysis. By considering all these factors, the following recurrence

equation bounds the worst-case response time of a task τi:

Wn+1
i = Ci +Bl

i +Br
i +Hgc

i +

⌈
Wn
i + Cc − si(Hgc

i +Ki)

T c

⌉
(T c − Cc)+

∑
τh∈V (τi)
h>i

⌈
Wn
i + Jc + (Wh − Ch)− si(Hgc

i + Ei)

Th

⌉
Ch (2.14)

where Ci is the worst-case execution time of τi, B
l
i is the local blocking time, Br

i is the

remote blocking time, Hgc
i is the CPU-GPU handover delay. We will later discuss each of

them in details. The recurrence equation terminates when Wn+1
i = Wn

i , and the task τi is

schedulable if its response time does not exceed its implicit deadline (i.e., Wn
i <= Ti).

The second line of the equation captures the delay due to the server budget de-

pletion on the CPU side (an extension of the last term of Eq. 2.13). It is worth noting that

during the pure GPU kernel execution of τi (Ki), no CPU budget is consumed by τi. Any

other tasks can execute on the CPU core if there is a remaining budget. The task τi only

consumes the CPU server budget when it executes normal segments or the miscellaneous

operations (e.g. data copy) of GPU segments. Therefore, Hgc
i and Ki, which already exist

in Wn
i for a GPU-using task τi, are excluded such that only the CPU-consuming parts of

this task is affected by the CPU server budget depletion. Any additional delay due to CPU
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budget replenishments during GPU segment execution will be captured by Hgc
i .

The last line captures the preemption time by the normal execution segments of

higher-priority tasks (an extension of the second term of Eq. 2.13). The fact that a higher-

priority task τh can only preempt the normal execution segments of τi leads to the deduction

of Hgc
i and Ei from Wn

i . There can be at most one additional job of τh that has arrived

during τi’s GPU segment execution and interfere τi’s normal segments. This holds true if

τh is schedulable, i.e., Wh ≤ Th, because other arrivals of τh during τi’s GPU segment will

finish their executions while τi is self-suspended for its kernel execution on the GPU. The

interference from this additional carry-in job of τh is taken into account by modeling it as

a dynamic self-suspending model and adding Wh − Ch to Wn
i [11].

Now, we present the detailed analysis of the delay factors used in our response

time test.

CPU-GPU Handover Delay

It captures an extra delay a task can experience after acquiring the GPU lock

because of the factors (iv) and (v). Fig. 2.5 illustrates this type of delay decomposed into

three parts when the polling server policy is used for a CPU server. 1 When there is not

enough budget available in the GPU server for the execution of a GPU segment, the task

has to wait at most the jitter of the GPU server (T g − Cg). 2 After the GPU budget is

replenished, if the CPU server is inactive, the task has to wait for additional T c time units

for the next period of the CPU server. 3 After the completion of kernel execution on the

GPU, at most T c time units are needed for the CPU server to be activated in order to
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Figure 2.5: The worst-case scenario for CPU-GPU handover delay with a CPU polling server. When

a GPU request with Ei is chosen from the GPU waiting queue for execution, it experiences the delay

highlighted in blue boxes.

transfer the results back from the GPU to the CPU. Hence,

Hgc
i = si(T

g − Cg + 2T c). (2.15)

For a CPU server with the deferrable and sporadic server policies, 2 and 3 change to

the jitter of the CPU server (i.e., T c − Cc) because a GPU segment needs to wait for the

replenishment of its corresponding CPU server’s budget. The handover delay is then given

by

Hgc
i = si[T

g − Cg + 2(T c − Cc)]. (2.16)

Local Blocking

It occurs when a task τi is blocked by the lower-priority task on the same core.

As in the case of MPCP [75, 76], a task can be blocked by each of its lower-priority task

τl’s GPU segment at most once due to the priority boosting of our framework. To obtain a

tight bound, we analyze local blocking time from two different perspectives.
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On the one hand, the worst-case local blocking time of a task τi happens when

each normal execution segment of τi is blocked by the GPU segment of each lower-priority

task τl with the amount of El −Kl = Mi,1 +Mi,2, which is the maximum CPU time used

by the GPU segment of τl. Hence, the total local blocking time of a task τi is

(1 + si)
∑

l<i & τl∈V (τi) & si>0

El −Kl (2.17)

where (1 + si) indicates the number of normal execution segments of τi. It is worth noting

that under the RM policy, the total blocking time can be bounded by just

∑
l<i & τl∈V (τi) & si>0

El −Kl (2.18)

because each task has only one GPU segment and the period of any lower-priority task τl

is larger than that of τi, which leads to only one blocking time from each τl during the job

execution of τi.

On the other hand, the worst-case local blocking time of τi can also be bounded

by the amount of GPU budget available during one period of τi. The reasoning behind

this approach is that lower-priority tasks cannot execute GPU segments more than the

available budget on the GPU. Thus, the maximum total blocking time of τi is bounded by

(1 + si)(d TiT g e+ 1)Cg where “+1” is due to the carry-in effect.

Using these two approaches, the total local blocking time of τi is bounded by

Bl
i = (si + 1) ·min


(⌈

Ti
T g

⌉
+ 1

)
Cg,

∑
l<i
τl∈V (τi)
si>0

El −Kl

 . (2.19)
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Remote Blocking

It occurs when the GPU segment of a task is blocked in the GPU waiting queue

due to other GPU requests. Recall that the GPU segments of tasks are ordered in a priority

queue according to their tasks’ original priorities. The response time of a GPU segment of τi

is given by W ′i = Hgc
i + Ei. The reasoning is that after a task acquires the GPU lock, it has

to wait Hgc
i for the handover delay of data transferring and mutual server synchronization

(Eq. 2.15). There is no other delay than Hgc
i added to the GPU segment length Ei because

our framework sets the GPU budget to be large enough to perform any GPU segment in

one GPU period and boosts the priority of the task executing a GPU segment. Hence, the

remote blocking time of τi is bounded by the following recurrence equation:

Br,n+1
i = max

l<i
si>0

W ′l +
∑
h>i
si>0

(⌈
Br,n
i

Th

⌉
+ 1

)
.W ′h. (2.20)

where the base is Br,0
i = maxl<i

si>0
W ′l . The first term of the equation captures the waiting

time for acquiring the GPU lock due to the currently-running of one GPU segment of a

lower- priority task and the second term represents the waiting time for the GPU segments

of higher-priority tasks. This analysis is pessimistic because it assumes that the GPU budget

is exhausted after the completion of each GPU segment and the GPU segment of the next

task has to wait for the amount of Hgc. It is noteworthy that because of the non-preemptive

GPU resource, the GPU server budget has to be large enough that the GPU segment of

any task is able to execute without interruption which leads to enormous remote blocking

time due to a considerable data handover delay. Let Γg denote the set of GPU-using tasks

in a taskset. For the lowest-priority GPU-using task, |Γg − 1| × (T g − Cg) is the amount of

delay only from the GPU server budget replenishment of higher-priority GPU-using tasks.

38



To mitigate this issue, we will present another design of the waiting queue for GPU requests

in the later part of this section.

2.6.3 Improvement

Miscellaneous Operation Time Reservation Policy

Recall our MOT reservation mechanism presented in Section 2.5.3. When enabled,

it ensures that there is always an enough amount of budget for miscellaneous operations

(e.g. data copy from/to GPU); thus, the GPU does not have to wait until the start of the

next CPU budget replenishment. Hence, the CPU-GPU handover delay with the MOT

mechanism is

Hgc
i = si(T

g − Cg). (2.21)

The improvement in the handover delay has also a profound impact on the remote

blocking delay by reducing the worst-case response time of a GPU segment. However, it is

worth noting that for deferrable CPU servers, their budget needs to be halved as discussed

earlier in Section 2.6.1 to avoid the thermal back-to-back phenomenon.

Remote Blocking Enhancement

To address the problem of enormous remote blocking time due to CPU-GPU han-

dover delay, we propose an alternative approach to the GPU waiting queue. This approach

implements the queue based on a variant of the first-come first-served (FCFS) policy with

a pre-defined bin-packing order. To be more precise, a bin-packing heuristic is employed

to determine the number of bins, where the size of each bin is the GPU budget and the
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length of a GPU segment is the size of an item to be packed. The total number of items in

the bins is |Γg| and the number of bins is related to the waiting time for a GPU segment.

The reason for employing the FCFS policy is to avoid starvation of jobs with large period

because under this policy, jobs with shorter period get serviced only once at any time. If a

small-period job arrives meanwhile, it waits until the rest of waiting jobs get serviced and

after finishing all other jobs, it gets serviced according to its position in the bins. Since

in this approach all tasks have the same amount of waiting time, it leads to a significant

reduction in the waiting time of low-priority GPU-using tasks but a moderate increase in

that of high-priority ones. It is worth reminding that the replenishment period of the GPU

server is typically much larger than that of the CPU server. The remote blocking time for

a GPU-using task τi under the polling server policy for CPU cores is

Br
i = si [(|bins|+ 1)T g + 2(|Γg| − 1)T c] . (2.22)

In this approach, missing activation points of the CPU polling server can still happen in

the transferring time of data from/to the CPU server and due to the FCFS characteristics

of the queue, the total amount is 2(|Γg| − 1)T c. The remote blocking time of τi under the

deferrable and sporadic CPU server policies without the MOT mechanism is

Br
i = si (|bins|+ 1)T g + 2(|Γg| − 1)(T c − Cc). (2.23)

This is because in the worst case, the GPU server waits for the amount of CPU server jitter.

The remote blocking time with the MOT mechanism is

Br
i = si (|bins|+ 1)T g. (2.24)

To this end, our framework takes a hybrid scheduling scheme that chooses one of
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the proposed queue implementations which successfully passes the schedulability analysis.

2.7 Evaluation

This section gives the experimental evaluation of our framework. First, we explain

our implementation on a real platform. Then, we explore the impact of proposed approaches

on task schedulability with randomly-generated tasksets based on practical parameters.

2.7.1 Implementation

We did our experiments on an ODroid-XU4 development board [64] equipped with

a Samsung Exynos5422 SoC. There exist two different CPU clusters of little Cortex-A7 and

big Cortex-A15 cores, where each cluster consists of four homogeneous cores. There exists

an integrated Mali-T628 GPU on the chip which supports OpenCL 1.1. Built-in sensors

with sampling rate of 10 Hz with the precision of 1° C are on each big CPU core and also

the GPU to measure the temperature4. The DTM throttles the frequency of the big CPU

cluster to 900 MHz when one of its cores reaches the pre-defined maximum temperature.

During experiments, the CPU fan is always either turned off or on at its maximum speed

and the CPU is set to run at its maximum frequency.

We stressed the CPU cores of the big cluster and the GPU with different settings

by executing sgemm program of the Mali SDK benchmark [62] to measure the system pa-

rameters used in Section 2.6. We observed that without launching any kernel on the GPU,

because of the heat conduction, the temperature on the GPU rises from 40° C (the ambient

4There are no temperature sensors on little cores since the power consumption and heat generation of
the little cluster is considerably low.
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temperature) to 70° C. However, the GPU has less thermal effect on CPU cores due to the

low heat dissipation. The kernel execution on the GPU in the presence of CPU workloads

raises the CPU temperature by 5-10° C.

Fig. 2.6a illustrates the result of the implementation of the CPU polling server

with the replenishment period of 1 second5 and the maximum temperature bound of 95° C

when the CPU fan is off. As one can see, the CPU temperature oscillates between 78° C to

95° C after a long time of the system operating in the steady state.

Figures 2.6b depicts the server utilization with respect to the maximum tempera-

ture bound. The maximum achievable utilization of the CPU server is only 43% when the

fan is off and almost 95% when the fan is on. The gap in server utilization between these two

cases (fan on/off) decreases as the value of the maximum temperature bound reduces. The

steady state temperatures under different maximum temperature bounds remain almost the

same regardless of whether the fan is on/off.

With our proposed thermal-aware server design, it is possible to bound the op-

erating temperature to any thermal constraint. It is worth noting that the same server

utilization value can give different temperature bounds depending on the value of replenish-

ment period used. Fig. 2.6d shows the temperature bounds at the invariant server utilization

of 30% and the replenishment period in the range of [600, 1600] milliseconds. The length

of 1600 milliseconds is the maximum feasible server replenishment period at the server uti-

lization of 30% that the board can reach when the fan is off. This is because with a larger

period value, the CPU exceeds its maximum temperature bound during the active phase.

5We conducted the experiment with large values of replenishment period because of the coarse granularity
of the sampling rate of the on-board temperature sensors.

42
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Figure 2.6: a) Server design with the given maximum temperature of 95°C when the CPU fan is off.

b) Server utilization w.r.t the given maximum temperature. c) The maximum observed temperature

w.r.t the server replenishment period when the CPU fan is off and CPU utilization is 30%.

With these results, we have shown that it is possible to satisfy the maximum

temperature constraint based on our proposed server design. Next, we will use the measured

parameters in our analysis and discuss its effect in taskset schedulability.

2.7.2 Schedulability Experiments

Task Generation. We randomly generate 10,000 tasksets for each experimental

setting. The base parameters given in Table 2.1 and the measured parameters from the

board are used for the taskset generation and the server design, respectively. It is worth

noting that the GPU parameters are in compliance with the case study of prior work
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[46, 47, 48, 51]. Server budgets are determined according to the maximum temperature

need by applying the equations of Section 2.6.1 and the measured system parameters. The

number of tasks in each taskset is determined based of the uniform distribution in the range

of [8, 20]. Then, the utilization of the taskset is partitioned randomly for these tasks in a

way that no task has the utilization more than the CPU server utilization. The total WCET

of each task (i.e., Ci) is calculated based on the task’s utilization and its randomly-chosen

period. If the task τi is a CPU-only task, the whole Ci is assigned to Ci,1 otherwise Ci is

divided into Ei, Ci,1 and Ci,2, according to the random ratio of the GPU segment length

to the normal WCET. In this phase, if Ei is more than the GPU server budget, another

random ratio is generated. Then, Ei is partitioned randomly into the miscellaneous time

(Mi,1 +Mi,2) and the pure kernel execution time (ki) according to the ratio of miscellaneous

operations given in Table 2.1. The accumulated miscellaneous-operation time is randomly

divided into Mi,1 and Mi,2. Finally, tasks are assigned to CPU cores by using the worst-fit

decreasing (WFD) heuristic for load balancing across cores. When the MOT reservation is

used, the MOT budget is determined by the maximum of Mi,1 and Mi,2 for all tasks.

Table 2.1: Base parameters for taskset generation

Parameters Values

Number of CPU cores 4
Number of tasks [8, 20]

Taskset utilization [0.4, 1.6]
Task period and deadline [30, 500] ms

Percentage of GPU-using tasks [10, 30] %
Ratio of GPU segment len. to normal WCET [2, 3]:1

Ratio of misc. operations in GPU segment
Mi,1+Mi,2

Ei
[10, 20]%

Server Period 10 ms
GPU Period 20 ms

44



Results. Figures 2.7a-b depict the percentage of the schedulable tasksets when

the CPU fan is on or off with different taskset utilization. The CPU sporadic servers

outperform the other CPU server policies as expected because their replenishment bud-

get are as large as the polling server and the remote blocking and CPU-GPU handover

delays are as low as those in the deferrable server. Compared to the polling server, the

deferrable server with MOT yields a higher percentage of schedulable tasksets especially

when taskset utilization is low. Designating some portion of CPU server budget under the

deferrable replenishment policy results in improvement in taskset schedulability. However,

the percentage of schedulable taskset under the deferrable server drops sharply as taskset

utilization increases because of the insufficient amount of server budget (which is just the

half of the polling/sporadic server budget). It is worth noting that when the CPU fan is

off, there is a large gap between the two sporadic servers with and without MOT at low

taskset utilization. This is due to the advantage of the MOT mechanism that also reduces

enhanced remote blocking delay.

Fig. 2.7c shows the effect of the proposed remote blocking enhancement under the

polling policy. As one can see, the remote blocking reduces substantially due to our proposed

remote blocking enhancement by up to 20% especially when there exists less workload in

the system. Fig. 2.7d depicts the impact of the rate of GPU-using tasks on schedulable

taskset rate under the CPU sporadic server policy with and without MOT. As the number

of GPU-using tasks increases, taskset schedulability goes decreases as more tasks contend

for the shared GPU.

Next, we investigate the effect of server periods on the schedulability rate. In
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this experiment, the temperature constraint is fixed to the maximum level and the server

period is varied from 5 to 30 milliseconds (see Fig. 2.7e) under the polling server policy.

As expected, because of the large CPU-GPU handover delay, the percentage of schedulable

tasksets drops significantly as the server replenishment period increases.

2.8 Case Study

We have implemented a prototype of our framework and conducted a case study

on ODroid-XU4. We show that without our framework, a real-time task experiences unex-

pectedly large delay due to the thermal violation, but with our framework, the operating

temperature is safely bounded within a desired range.

In the case study, we used three types of applications: a real-time GPU-using

task, and non-real-time CPU-only and GPU-using tasks. The non-real-time CPU-only

application is run on each of the four big CPU cores with the lowest priority. The non-real-

time GPU-using matrix multiplication task is run on one big CPU core with the medium

priority. This task randomly generates two matrices and performs the matrix multiplication

repetitively using the GPU-accelerated Mali OpenCL library. The size of matrix is set to

512 × 512 in order not to cause unnecessarily long waiting time to the real-time task. On

the other big CPU core, the highway workzone recognition application for autonomous

driving [58] is run as the real-time GPU-using task with the highest priority. This task is

configured to process 8 frames per second and has one GPU segment based on OpenCL. A

video consisting of around 800 frames is given as input to this task. To avoid unexpected

delay in data fetching, video frames are preloaded into memory as a vector during the
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initialization of the task and the loaded frames are repeatedly processed at runtime. After

the initialization, all tasks are signaled to start their execution together and the CPU fan is

turned off during the experiment. Other tasks in the system, including system maintenance

and monitoring processes, are assigned to the little cluster cores. The thermal-aware servers

are implemented based on the polling server policy with the budget replenishment period

of 10 milliseconds.

Two scenarios are used to show the effectiveness of our proposed framework. The

first one is the baseline system with no thermal-aware server. Fig. 2.8a shows the response

time of each frame (job) of the real-time workzone recognition task, and Fig. 2.8b depicts the

temperature measurements during the experiment. As one can see, after processing around

1040 frames, the DTM was triggered and it started throttling the CPU frequency from 2.0

GHz to 900 MHz since the CPU temperature had reached the threshold of 95° C. However,

the frequency throttling did prevent the operating temperature from rising on both the CPU

and the GPU, which caused the OS to power off the big CPU cluster temporarily. This

experiment took less than three minutes. In the second scenario, all tasks execute within the

thermal-aware servers. As illustrated in Fig. 2.8c, the observed response time of each frame

was larger compared to the first scenario due to the budget of servers, but all frames were

processed before the deadline. Fig. 2.8d depicts that it took around 500 seconds to reach

the steady state temperature. Moreover, the operating temperature was tightly bounded

by the thermal threshold in any circumstance. This result shows the thermal safety and

accuracy of our framework in practical settings.

47



2.9 Summary

In this chapter, we proposed a novel thermal-aware framework to bound the max-

imum temperature of CPU cores as well as an integrated GPU while guaranteeing real-time

schedulability. Our framework supports various server policies and provides analytical foun-

dations to check both thermal and temporal safety. Experimental results show that each

CPU server policy provided by our framework is effective in bounding the maximum temper-

ature. We proposed the miscellaneous operation time reservation mechanism for the CPU

servers in order to improve task schedulability by reducing the CPU-GPU handover delay.

We also introduced a remote blocking enhancement technique that employs the bin-packing

strategy to reduce the remote blocking caused by other tasks.
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(a) (b)

(c) (d)

(e)

Figure 2.7: a) and b) The percentage of schedulable tasksets under the given maximum temperature

constraint of 95° C when the CPU fan is off and on, respectively. c) Taskset schedulability results

with and without the remote blocking enhancement under the polling server policy while the CPU

fan is off. d) The percentage of schedulable tasksets w.r.t the ratio of GPU-using tasks.
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Figure 2.8: a) Response time of the real-time workzone recognition task without our framework. b)

Temperature of CPU and GPU without our framework. c) Response time of the real-time task with

our framework d) Temperature of CPU and GPU with our framework.
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Chapter 3

On Dynamic Thermal Conditions

in Mixed-Criticality Systems

The rising demand for powerful embedded systems to support modern complex

real-time applications signifies the on-chip temperature challenges. Heat conduction be-

tween CPU cores interferes in the execution time of tasks running on other cores. The

violation of thermal constraints causes timing unpredictability to real-time tasks due to

transient performance degradation or permanent system failure. Moreover, dynamic ambi-

ent temperature affects the operating temperature on multi-core systems significantly.

In this chapter, we propose a thermal-aware server framework to safely upper-

bound the maximum operating temperature of multi-core mixed-criticality systems. With

the proposed analysis on the impact of ambient temperature, our framework manages mixed-

criticality tasks to satisfy both thermal and timing requirements. We present techniques

to find the maximum ambient temperature for each criticality level to guarantee the safe
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operating temperature bound. We also analyze the minimum time required for a criticality

mode change from one level to another. The thermal properties of our framework have

been evaluated on a commercial embedded platform. A case study with real-world mixed-

critical applications demonstrates the effectiveness of our framework in bounding operating

temperature under dynamic ambient temperature changes.

3.1 Introduction

Ensuring continuous operation with high assurance in the physical environment

remains a significant challenge to cyber-physical systems (CPS). This is particularly im-

portant for safety-critical applications with real-time mixed-criticality components, e.g.,

automotive, aerospace, manufacturing, and defense systems, where even occasional timing

failures of high-criticality components can lead to catastrophic consequences. Various types

of unexpected changes in the physical environment may affect the system behavior and

contribute to the difficulty of this problem.

Ambient temperature is one of the key factors that affect many mixed-criticality

CPS applications. For instance, in automobiles, a report from the National Renewable En-

ergy Laboratory of the US Department of Energy [7] indicates that cabin air temperature

can reach up to and 82◦C in Phoenix, Arizona. The heat generated by the engine worsens

the ambient temperature level of nearby electronic control units [68]. Another example

is a fire-containment drone [91]. Even with a heat protection shield, the drone’s computing

system starts warning when the ambient temperature reaches 35◦C and becomes nonoper-

ational at 40◦C. This also limits the minimum distance from the drone to a fire hazard.
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While dynamic ambient temperature is an important problem, most thermal man-

agement schemes for real-time embedded systems [52, 53, 2, 41, 20, 3] assume fixed, room-

level ambient temperature and focus only on the temperature increase caused by the com-

puting system itself. CPS are expected to run in various physical environments; hence,

the assumption of room temperature made by prior work limits their practical applicabil-

ity. There is recent work [59] considering dynamic ambient temperature but it assumes a

uni-processor single-criticality system.

Under harsh ambient temperature, a system may not be able to utilize 100% of

CPU time even if the CPU runs at the minimum possible frequency with active/passive

cooling packages. The operating temperature of the CPU may still reach the maximum

thermal constraint, resulting in temporary system shutdown or permanent hardware dam-

age. In such a condition, the only option left to ensure timing and thermal guarantees of

more critical tasks is to secure cooling time by suspending less critical tasks. In other words,

although DVFS [30, 61, 70, 78, 101] and cooling packages [15, 22, 33, 34] can help tolerate

high ambient temperature, it is inevitable to consider only partial operations of the system.

In this work, we aim to design a system that offers different levels of assur-

ance against ambient temperature changes. This is different from the well-known Vestal

model [92], which focuses on varying assurance of execution time, but it shares the spirit

of addressing uncertainties in real-time system design. To avoid confusion, we clarify our

mixed-criticality model as follows:

Definition 1 Thermally mixed-criticality systems are the systems that assure ambi-

ent temperature changes and heat dissipation from lower-criticality task execution do not
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adversely affect the real-time schedulability of higher-criticality tasks.

In the thermally mixed-criticality model, ambient temperature plays a key role

in determining the maximum amount of workload that can be executed on the CPU. The

following questions still remain unanswered by the state-of-the-art:

• Up to what ambient temperature is the system fully or partially operational? Specif-

ically, for a given criticality level of a mixed-criticality system, can we find the corre-

sponding critical ambient temperature, under which real-time tasks with that or higher

criticality are guaranteed to meet their deadline at the expense of lower-criticality

tasks?

• Can we take into account the effect of dynamic ambient temperature along with heat

conduction on a modern multi-core processor?

• If the system moves from a hot to a cold region, how long will it take for the system to

cool down and safely resume the operation of low-criticality tasks, without violating

the processor thermal constraint?

This chapter presents a multi-core mixed-criticality scheduling framework with

ambient temperature awareness. In our proposed framework, thermal-aware servers are used

to bound heat generation at each criticality level and the criticality mode change is triggered

by ambient temperature changes. This is the first work to address the aforementioned

limitations and provides analytical guarantees on the timely execution of critical components

in dynamic thermal conditions.

Contributions. The contributions of this chapter are as follows:
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• We show that the problem of thermal-aware real-time scheduling can be decomposed

into thermal schedulability (how much CPU budget is usable under thermal con-

straints) and timing schedulability (if tasks are schedulable using given budget). Our

thermal schedulability achieves the simplicity in timing analysis by ensuring that the

budget is guaranteed to be made available for any execution patterns without violating

thermal constraints.

• We extensively analyze the thermal safety of a multi-core system and bound the

maximum operating temperature that the system can reach. At a specific ambient

temperature level, we characterize the worst-case thermal behavior of a system and

also determine the minimum time for the system to transition from one criticality

level to a lower level.

• We introduce the notion of idle thermal servers that allow bounding the maximum

operating temperature caused by multiple preemptive active servers scheduled dy-

namically on a multi-core processor for a given mixed-criticality taskset.

• We perform a case study on mixed-criticality applications running on an ODROID-

XU4 embedded platform, and evaluate our framework and analysis in different ambi-

ent temperature levels.

3.2 Related Work

There exist extensive studies on bounding the maximum operating temperature in

non-real-time multi-core systems [31, 30, 61, 70, 78, 101], most of which propose adjusting
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CPU clock speed. The authors of [31, 30] proposed a feedback loop that dynamically

controls processor temperature by either adapting CPU utilization or scaling frequency to

satisfy thermal constraints in varying ambient temperature environment. In [70] and [78],

the authors proposed proactive frequency scheduling to improve overall system performance

under different ambient temperatures. Although average-case performance degradation has

been discussed in these papers, they cannot be directly applied to our problem.

The notion of hot and cold tasks has been introduced [15, 41, 59, 53, 44, 101] in

both real-time and non-real-time systems. They propose scheduling algorithms to interleave

hot and cold tasks, adjust the CPU frequency, and force idling time for the CPU to cool

down after running hot tasks. In most of them, the scheduling problem is either to find task

execution order or to reduce the size of lengthy hot tasks [41] in a fixed schedule. However,

DVFS may cause a considerable reduction in system reliability over time [43, 57, 99] and

may be unsupported in some embedded devices.

There exists extensive research on real-time uni-processor systems with stringent

thermal constraints [17, 96, 16, 52, 5, 4, 2, 41, 59, 44]. In uni-processor systems, thermal

dependency between workloads is only temporal. However, in multi-core systems, because

of heat dissipation between cores, there also exists spatial thermal dependency between the

execution of workload on one core and those on other cores. Due to this reason, the work

on uni-processor systems cannot be used safely in multi-core real-time systems.

The notion of thermal servers (either by injecting of idle tasks or using thermal-

aware servers explicitly) have been proposed in the literature of real-time systems for uni-

processors [52, 53, 2, 41] and multi-core platforms [20, 3]. In particular, the authors of [20]
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introduced a novel technique for periodic tasks executing on multi-core platforms. This

technique introduces an Energy Saving (ES) task that runs with the highest priority and

captures the sleeping time of CPU cores. The technique can be seen as an alternative to a

thermal-aware server because the ES task effectively models the budget-depleted duration

of a thermal server. The authors of [3] proposed thermal-isolation servers that avoid the

thermal interference among tasks in temporal and spatial domains with thermal compos-

ability. Despite their achievements in isolating the thermal-aware design from real-time

schedulability analysis, these techniques assume a fixed schedule for idle task or periodic

servers, and are inapplicable to dynamically-scheduled (e.g., priority-based) servers in multi-

core platforms. Since priority-based preemptive servers are widely used in many real-time

systems, such as real-time virtualization [50, 98], the restriction imposed by these prior

thermal servers is a significant limiting factor.

Matrix exponential is a well-known approach to solve the first-order linear system

of differential equation. In [66], the authors proposed a technique based on the numerical

Newton–Raphson method to solve the thermal equations in the steady state for each power

change. Based on this, the work in [73, 100, 54, 14] finds the worst-case peak temperature by

exhaustively searching all possible patterns. Unlike prior work, the unique contribution of

our work is that we solve the temperature equation for oscillating power signals analytically,

by representing them as continuous functions, and analyze the worst-case peak temperature

directly for multi-core platforms. It is worth noting that our work not only proves the worst

case for peak temperature but also reduces computational complexity considerably.

There exists some research focusing on varying ambient temperature in real-time
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systems [59, 41, 96]. However, there is no discussion in these studies about mixed-criticality

systems and the effect of harsh ambient temperature change on the schedulability of critical

tasks.

To the best of our knowledge, there is no prior work on multi-core mixed-criticality

systems with the consideration of the effect of ambient temperature change.

3.3 System Model

3.3.1 Power Model

The total power consumption of CMOS circuits is modeled as the summation of

dynamic and static powers [13], i.e., P (t) = PS(t) + PD(t). Static power PS depends on the

semiconductor technology and the operating temperature caused by current leakage. Hence,

it can be modeled as: PS(t) = k1θ(t)+k2, where k1 and k2 are technology-dependent system

constants, and θ(t) is the operating temperature [60]. Dynamic power PD(t) is the amount

of power consumption due to the processor operating frequency f , modeled as PD = k0f
s,

where s and k0 are system constants that depend on the semiconductor technology.

3.3.2 Thermal-Aware Mixed-Criticality Servers

We consider multiple preemptive thermal-aware servers for each CPU core. Each

server is statically associated with one core and does not migrate to another core at run-

time. A server vi is modeled as vi = (Ci, Ti, Li), where Ci is the maximum execution budget

of the server vi, Ti is its budget replenishment period, and Li is its criticality level. Servers

are ordered in an increasing order of priorities, i.e. i < j implies that a server vi has lower
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priority than a vj . At the criticality level of l, only the servers with criticality level higher

than or equal to l (i.e., Li ≥ l) are eligible to execute.

For budget replenishment policies, we consider polling [82], deferrable [88], and

sporadic servers [86]. Let Ji denote the task release jitter relative to the server release.

The value of Ji is Ti under the polling server policy and Ti − Ci under the deferrable and

sporadic server policies [9].

3.3.3 Task Model

This work considers sporadic tasks with implicit deadlines under partitioned fixed-

priority preemptive scheduling, which is widely used in many practical systems. Each task

τi is statically allocated to one thermal server (thus to the corresponding CPU core of that

server) with a unique priority. In each server, tasks are labeled in an increasing order of

priority, i.e., i < j implies τi has lower priority than τj . There also exist non-real-time

tasks running with the lowest priority level in the server and they execute only if there is no

real-time task ready to execute and the server has remaining budget. A task τi is modeled

as τi = (Ei, Di) where Ei is the worst-case execution time (WCET) of task τi, Di denotes

the minimum inter-arrival time of τi which is implicit deadline of τi. It is worth mentioning

that the simplicity in timing schedulability achieved by our work enables easy adoption of

more complex task models. For instance, the analysis for tasks with critical sections under

hierarchical scheduling [51, 39] is directly applicable to our work since we ensure periodic

resource budget.
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3.3.4 Criticality Model

In this work, there exists a set of m criticality levels L = {l1, l2, . . . , lm}. At criti-

cality mode l, only the servers (and tasks within these servers) with criticality level higher

than or equal to l are eligible to execute. Thus, for each criticality level l, there exists a

subset of servers V l ⊆ V and a subset of taskset Γl ⊆ Γ that execute.

Definition 2 Critical ambient temperature of a criticality level l is the maximum

ambient temperature that the system can execute eligible servers v ∈ V l without violating

the system’s maximum temperature constraint.

Details on how criticality mode changes is given in Sec. 3.4.

3.4 Framework Design

This section presents the overall design-time and run-time aspects of our framework

and how the criticality mode changes. With our framework, all tasks in a system run within

thermal-aware servers. A criticality mode change is triggered by ambient temperature,

which can be obtained from an off-chip temperature sensor. If the criticality mode changes

from a lower criticality level to a higher one, i.e., the critical ambient temperature has been

reached, the framework terminates the lower-criticality servers and their tasks immediately.

This design guarantees that the lower-criticality tasks have no effect on the thermal and

timing schedulability of tasks running in servers with higher criticality levels. The timing

schedulability of tasks refers to the ability to complete their execution by the deadline.

Thermal schedulability is defined as follows.
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Definition 3 Thermal schedulability is to guarantee that under any task execution pat-

terns, the CPU does not exceed the maximum temperature constraint.

When the ambient temperature changes from a higher criticality level to a lower

one, lower-criticality servers and their tasks do not resume immediately. The reasoning

is that it takes time for the CPU to cool down to reach the safe temperature level that

the increase in workload (due to resuming the lower-criticality tasks) will not lead to a

temperature violation. Therefore, in the transition to a lower criticality level, only higher-

criticality servers (and also their tasks) still run, and after reaching the safe temperature,

then lower-criticality servers (and their tasks) resume. Let shifting time denote this delay.

We will later determine this delay as a function of physical characteristics and system

settings.
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Figure 3.1: Criticality mode change diagram

The state diagram of criticality mode changes is illustrated in Fig. 3.1. The criti-

cality mode of the system is determined by the associated servers of the current state (e.g.,
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V l for level l), and the change of the state is triggered by the monitored ambient tem-

perature. If the ambient temperature goes higher than the critical ambient temperature

of the highest criticality mode lm, the system will shutdown. An increase in the ambient

temperature leads the system state to transition to a higher criticality mode immediately.

However, a transition to a lower criticality mode involves a shifting state. Let Si denote

the shifting state from one criticality mode li+1 to its immediate lower mode li, and Mi

represents the state of the criticality mode li. After staying in Si for tmSi time units and

the ambient temperature is still under the safe level, the system state will change to Mi.

In summary, the design-time analysis and the run-time support of our framework

are as follows:

Design-time:

1. Check the timing schedulability of tasks for each criticality.

2. Find the parameters of thermal-aware servers that ensure thermal schedulability for

each criticality.

3. Compute the corresponding critical ambient temperature for each criticality.

4. Compute the shifting time from each criticality level to its immediate lower one.

Run-time:

1. Monitor ambient temperature.

2. If ambient temperature exceeds the critical ambient temperature of the current crit-

icality level li, a) switch to a higher criticality li+1, and b) terminate servers with

criticality less than li+1 immediately.
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3. If ambient temperature decreases below the critical ambient temperature of one lower

criticality level li−1, a) switch to the lower criticality li−1, b) wait for shifting time,

and c) resume servers with criticality li−1.

3.5 Thermal Analysis

In this section, we first develop a generalized thermal model to represent the CPU

temperature as a function of a generic input power signal. We show the relation of workload

and ambient temperature level under the maximum thermal constraint in a steady state.

The shifting time to a lower-criticality level will be discussed. Finally, we prove the worst-

case scenario of task arrivals in invariant ambient temperature at a specific criticality level

in multi-core platforms.

3.5.1 General Thermal Model for Periodic Power Signal

The thermal behavior of the CPU is modeled when a generic periodic power signal

generates heat dissipation, which results in temperature oscillations. The temperature

function of the CPU is analytically extracted based on the ambient temperature, workload,

physical and geometrical properties, and the thermal resistances between the CPU and

surroundings.

A generic power signal is a periodic step function:

P (t) =


PS Sleeping time

PS + PD O.W.

Fig. 3.2 illustrates this power signal function where twk and tslp denote the exe-

cution time and the sleeping time of a periodic workload, u is the CPU utilization (i.e.,
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u = twk
T ), and φ is the release offset.

θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

t0 t t0 t

(a) (b)

P

t

PS(t)

PS(t)+PD(t)

uT+ϕ T+ϕ

twk tslpϕ

Figure 3.2: A generic periodic power signal.

In order to derive a continuous temperature function, here we represent the peri-

odic step function of the power signal as the following Fourier series:

P (t) = PS + PDu+ PO (3.1)

where

PO =

∞∑
k=1

2PD sin (ukπ)

kπ
cos

(
2kπ

T

(
t− uT

2
− φ

))
Note that using this continuous representation of the power signal is advantageous

in deriving a straightforward formula for a temperature equation, compared to iteratively

applying the recursion relation with new initial conditions at every period. First, we define

θ(t) = ΘCPU (t)−Θamb(t) as the temperature difference of the CPU core and the ambi-

ent. Then, the rate of temperature change can be captured by the following differential

equation [3, 20]:

dθ(t)

dt
= Aθ(t) +BP (t) (3.2)

where A and B are scalar values determined based on the system inner thermal resistance

and capacitance. Substituting P (t) from Eq. 3.1, we solve Eq. 3.2 for the CPU temperature.

Assuming the temperature difference at the initial time t0 is θ0, the temperature of the CPU
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can be written as:

θ(t) = θ0e
A(t−t0) − B

A
(PS + PDu)

(
1− eA(t−t0)

)
+

B
(
S(A,PD, u, T, φ, t)− S(A,PD, u, T, φ, t0)eA(t−t0)

) (3.3)

where S is a function defined as:

S(β, P, u, T, φ, t) = −
∞∑
k=1

2PT sin (ukπ)

kπ (T 2β2 + 4k2π2)
×

(
−Tβ cos

(
2kπ

T
(t− ψ)

)
+ 2nπ sin

(
2kπ

T
(t− ψ)

))

with ψ = uT
2 + φ.

The parameters A and B in Eq. 3.3 are the system characteristics which depend on

the thermal resistances, heat capacity, CPU mass, and thermal convection of the ambient. It

is worth mentioning that the thermal response of a system with constant power dissipation

can be derived as a special case of Eq. 3.3 by considering u = 1:

θ(t) = θ0e
A(t−t0) − B

A
(PS + PD)

(
1− eA(t−t0)

)
(3.4)

If t0 = 0, the well-known expression for the constant power dissipation case can

be obtained from Eq. 3.4:

θ(t) = α+ (θ0 − α) eβt (3.5)

where β = A, and α = −B
A (PS + PD).

For any u, the thermal response of the system with a constant power signal reaches

the steady state. From Eq. 3.4:

θs(t) = α = −B
A

(PS + PD) . (3.6)
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For the case where the CPU utilization is not 100%, the temperature still oscillates

in the steady state, but the oscillation stays within a certain range given by the minimum

and the maximum steady-state temperatures (θL and θM ). We can derive the steady state

thermal response from Eq. 3.3:

θs(t) = −B
A

(PS + PDu) +BS(A,PD, u, T, φ, t) (3.7)

where S(A,PD, u, T, φ, t) represents the oscillation. Based on this general expressions, we

will give details on the thermal behavior of multiple CPU cores under transient and steady

conditions in Sec. 3.5.2.

Workload, ambient, and maximum temperature relations

In the steady state condition, the relation between workload, ambient temperature

Θamb, and the maximum operating temperature ΘM can be determined based on the model

developed above. The temperature difference θM can be written as:

θM = ΘM −Θamb = −B
A

(
PS + PD

1− eAuT

1− eAT

)
(3.8)

Therefore, if ΘM is used as a thermal constraint, the maximum ambient temper-

ature for a given utilization u is expressed as follows:

Θamb = ΘM +
B

A

(
PS + PD

1− eAuT

1− eAT

)
(3.9)

Also, another useful expression can be derived for the workload based on the

constraint maximum temperature, ambient temperature, and the power signal:

u =
1

AT
ln

(
1 +

A

B

ΘM −Θamb + (B/A)PS
PD

(
1− eAT

))
(3.10)
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Time shifting and transient analysis

We derive average steady-state temperature by removing the oscillations from the

above equations. This is especially useful for transient phase analysis. From Eq. 3.3, the

following can be derived:

θave(t) = θ0e
A(t−t0) − B

A
(PS + PDu)

(
1− eA(t−t0)

)
−BS(A,PD, u, T, φ, t0)eA(t−t0) (3.11)

θave(t) can be approximated by taking the first few terms of the series for S(A,PD, u, T, φ, t0).

It can be seen from Eq. 3.11 that the plateau of θave in the steady state is −B
A (PS + PDu).

Based on the expression of the θave(t), shifting time can be calculated which is

defined as the time it takes for the system to reach a new steady-state condition when

system parameters are changed. We calculate the shifting time that the CPUs take to

reach to 99% of the new steady-state condition from an initial temperature difference of θ0.

Assuming that Sk is the value of S(t0) taking the first k terms, we have:

tshift =
1

A
ln

(∣∣∣∣∣ 0.01BA (PS + PDu)

θ0 + B
A (PS + PDu) +BSk

∣∣∣∣∣
)

(3.12)

θM

θL

tshift

-B(PS+PDu)/A

twk

tslp

θ(t)

θave(t)

θs(t)

Temperature

time

Figure 3.3: Current, steady state, and average temperature profiles.

Fig. 3.3 illustrates temperature profile θ(t), oscillating steady state temperature

θs(t), and average temperature θave(t).
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3.5.2 General Thermal Model for Multi-Core Platforms

Similar to the single-core case, a general thermal model can be developed for a

multi-core platform with a periodic input power signal. In this subsection, we represent

the power signal as a continuous function and show its benefit in simplifying the final

solution. For a multi-core platform with n cores, we can have n eigenvalues that define the

thermal response of the system. Therefore, we use matrix notations to solve the differential

equations. After performing a thermal analysis, the rate of CPUs’ temperature change can

be denoted as:

dθ(t)

dt
= Aθ(t) + BP(t) (3.13)

where A, an n × n matrix, and B, a diagonal n × n matrix, are determined by the inner

thermal resistance and capacitance of the system. θ is an n × 1 matrix of the CPU cores’

temperature difference, and P(t) is the n×1 matrix of CPU cores’ power signal functions. If

θ0 is the initial temperature difference matrix at t0, the solution of Eq. 3.13 can be written

as:

θ(t) = e(t−t0)Aθ0 +

∫ t

t0

e(t−s)ABP(s)ds (3.14)

The first part is the homogeneous solution which is the thermal response due to the initial

temperature difference from the ambient. The second part is the non-homogeneous solution

caused by the input power signal. The temperature rise due to a power signal is independent

of the initial condition. e(t−t0)A is the matrix exponential of A. For a platform with n CPU

cores, we denote the eigenvalues as β1, β2, ..., and βn with β1 ≥ β2 ≥ ... ≥ βn. To solve

Eq. 3.14, we first show that the solution of power signals can be obtained as the sum of the

solutions of each signal.
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Theorem 1 (Superposition) Thermal response due to any combinations of power signals

is equivalent to the sum of thermal responses caused by each of those power signals.

Proof.

Assume that θ1 and θ2 are the thermal responses caused by executions P1(t) and

P2(t). Also, θ3 is the thermal response caused by P3(t) = P1(t) + P2(t). From Eq. 13:

dθ1(t)

dt
= Aθ1(t) + BP1(t), and

dθ2(t)

dt
= Aθ2(t) + BP2(t).

By adding these two differential equations, we have:

d

dt
(θ1(t) + θ2(t)) = A (θ1(t) + θ2(t)) + B (P1(t) + P2(t))

This is equivalent to the differential equation of θ3:

dθ3(t)

dt
= Aθ3(t) + BP3(t) = Aθ3(t) + B (P1(t) + P2(t))

Therefore, θ3(t) = θ1(t) + θ2(t). Let V denote an n× n matrix of eigenvectors

of A where column i is the ith eigenvector. Also, D is a diagonal n × n matrix in which

the diagonal entries are the eigenvalues of A. The solutions of the non-homogeneous part

in Eq. 3.14 can be written as:∫ t

t0

e(t−s)ABP(s)ds =

∫ t

t0

e(t−s)AB (P∞ + Po(s)) ds

=

∫ t

t0

e(t−s)ABP∞ds+

∫ t

t0

e(t−s)ABPo(s)ds

(3.15)

where P∞ and Po(s) are the constant and oscillating part of the power signal matrix,

respectively.

P∞ = [Pj
∞]n×1 = [PS j + PDj

uj ]n×1
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Po = [Poj ] =

[ ∞∑
k=1

2PDj

kπ
sin (ujkπ) cos

(
2kπ

Tj
(s− ψj)

)]
n×1

with ψj =
ujTj

2 + φj . Since P∞ is constant,

∫ t

t0

e(t−s)ABP∞ds = −A−1
(
I− e(t−t0)A

)
BP∞ (3.16)

For the second integral we have:∫ t

t0

e(t−s)ABPo(s)ds = VetD
∫ t

t0

e−sDV−1BPo(s)ds

= VetD.

[
n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)

]
n×1

(3.17)

Similar to the single core case, we can use S in Eq. 3.3 but in a matrix form. We

define the matrix S as:

S(t) = [Sij(t)]n×n =
[
S(βi, PDj , uj , Tj , φj , t)

]
n×n

We have
∫
e−βjsPoi(s)ds = e−βjsSji(s). Therefore:

[
n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)ds

]
n×1

=

[
n∑
i=1

e−βjtV −1
ji BiiSji(t)− e

−βjt0V −1
ji BiiSji(t0)

]
n×1

To write this in a matrix notation, we define B′ = diag(B) an n × 1 matrix

containing the diagonal entries of B such that B′j = Bjj . Then,[
n∑
i=1

e−βjtV −1
ji BiiSji(t)− e

−βjt0V −1
ji BiiSji(t0)

]
n×1

= e−tD
(
V−1 ◦ S(t)

)
B′ − e−t0D

(
V−1 ◦ S(t0)

)
B′

where V−1 ◦ S(t) is the Hadamard product of matrices V−1 and S(t), which is a matrix of

the same dimension of n× n where each element ij is the product of counterpart elements
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ij of V−1 and S(t):
(
V−1 ◦ S(t)

)
ij

= V −1
ij Sij(t). Substituting this in Eq. 3.17 gives:

VetD.

[
n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)

]
n×1

= V
(
V−1 ◦ S(t)− e(t−t0)D

(
V−1 ◦ S(t0)

))
B′

(3.18)

Substituting Eq. 3.16 and Eq. 3.18 in Eq. 3.15 results in a general solution for the thermal

response of a n-core CPU platform with distinct input power signals to each core:

θ(t) =e(t−t0)Aθ0 −A−1
(
I− e(t−t0)A

)
BP∞+

V
(
V−1 ◦ S(t)− e(t−t0)D

(
V−1 ◦ S(t0)

))
B′

(3.19)

This expression of θ(t), which contains simple matrix operations, can be easily

used to compute the general solution for the transient temperature profile of multi-core

CPUs.

3.5.3 Worst-Case Execution Scenarios

It is important to know the workload execution patterns which cause the peak

heat dissipation. In this section, based on the model developed in the previous sections, we

explore and discuss the worst-case scenarios for workload execution.

Consecutive workload execution

First, we prove that the time to reach the maximum temperature is minimized if

all workloads execute consecutively. Suppose that for any arbitrary execution of workloads

in a period of T , the CPU executes some workload for t1, sleeps for t2, and then wakes up

and executes for t3 time units, and these working-sleeping switches occur n times. For the

CPU idling time, Eq. 3.5 changes to θ(t) = θ0 e
βt if the static power is ignored (i.e., α = 0).
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Hence, the temperature change during a period is:

θt0 = θL

θt1 = α+ (θt0 − α) ∗ eβt1

θt2 = θt1 ∗ eβt2

...

θtn = θtn−1 ∗ eβtn

where
∑
ti = T for all n > 1 and ti > 0.

In the steady state, the temperature of the beginning and the end of each period

is equal. Therefore, considering θtn = θL,

θL = α
eβ(t1+t2+···+tn−1+tn) − eβ(t2+···+tn−1+tn) + · · · − eβtn

eβT − 1

where twk =
∑

i=1, i=i+2 ti is the execution time and tslp =
∑

i=2, i=i+2 ti is the idle time,

respectively. We prove that the amount of total execution time is minimized when there is

only one execution time chunk. In other words, the worst-case thermal scenario happens

when all workloads execute consecutively.

For clarification, suppose the following two scenarios for a given period under the

maximum temperature constraint:

• All workloads execute consecutively to reach the maximum temperature for twk time

units; then, the CPU sleeps until the beginning of the next period for tslp time units

(Fig. 3.4a).
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• A portion of workloads executes for t1 time units, then the CPU sleeps for t2 time units,

and the rest of the workloads run until the CPU reaches the maximum temperature

at t1 + t2 + t3; afterwards the CPU sleeps for t4 time units (Fig. 3.4b).

wkt slptL


L


M


(a)

1t 3t2t 4t'L


M


'L


(b)

Figure 3.4: Temperature change in one period when the CPU operates a) for twk time units b) for

t1 and t3 time units.

The following shows that the budget of a thermal server should be bounded based

on the first scenario.

Theorem 2 The amount of waking time to reach the maximum temperature constraint is

minimized when all workloads execute consecutively.

Proof. We are interested to prove that tw ≤ t1 + t3. To prove the statement, we find

the relation of the minimum steady state temperature in each scenario, individually. To

calculate the budget for the first scenario, we first calculate the minimum steady-state

temperature which is

θL =
eβ tslp

(
α− α eβ twk

)
1− eβ twk eβ tslp

.

Accordingly, the maximum temperature in the steady state is
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θM = α− eβ twk

(
α+

eβ tslp
(
α− α eβ twk

)
eβ twk eβ tslp − 1

)
= α

eβ twk − 1

eβ T − 1
.

For the second scenario, the maximum temperature is reached after t1 + t2 + t3

time units. Therefore,

θM = α
eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) − 1

eβT − 1

It is worth noting that although the minimum steady-state temperature can be

different (θL vs. θL′), in both scenarios the given maximum temperature is the same. Hence,

θM = α
eβ twk − 1

eβ T − 1
= α

eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) − 1

eβT − 1
.

Therefore, we have eβ twk = eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3). Now we want to prove that for

any value of t1, t2 and t3, t1 + t3 ≥ tw.

Contradiction: Suppose the hypothesis is not correct. Hence,

t1 + t3 < tw −→ β (t1 + t3) > β tw −→ eβ (t1+t3) ≥ eβ twk

eβ (t1+t3) ≥ eβ twk = eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) ⇐⇒

eβ t1 ≥ eβ(t1+t2) − eβ(t2) + 1⇐⇒ eβ t1 − 1 ≥ eβ(t1+t2) − eβ(t2)

⇐⇒ eβ t1 − 1 ≥ eβ(t2)(eβ(t1) − 1)⇐⇒ eβ(t2) ≥ 1

since β < 0 and t2 > 0.

Corollary 2.1 The maximum temperature reduces when the period and waking time are

halved, since it is the special condition where t1 = t3 and t2 = t4.
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Server budget calculation under polling server budget replenishment policy.

Now we calculate the “maximum” budget that a server can have while limiting the operating

temperature not to exceed the given thermal constraint in a single-core platform. The worst

case for the polling server happens when it exhausts all of its replenishment budget at the

beginning of its period and then it sleeps until the beginning of the next replenishment

period. For a server period T ,

T = twk + tslp. (3.20)

In the steady state of the system, we are interested in bounding the server’s max-

imum temperature. According to Eq. 3.5, α + (θL − α)eβtwk ≤ θM . By calculating the

minimum temperature at the end of the period and substituting it in this formula, the

maximum budget for a period T is given by:

twk <=
1

β
ln
θM (eβT − 1) + α

α
. (3.21)

3.5.4 Thermal Back-to-Back Execution

Suppose that the CPU workload runs at the end of a period and the workload of

the next period execute at the beginning of the period. It causes burst heat generation by

back-to-back execution, which can potentially lead to thermal violation. It is noteworthy

that this case has been shown in Corollary 2.1. The worst-case occurrence is when this

phenomenon happens repetitively in the steady state.

Server budget calculation under deferrable server budget replenishment policy.
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Hereby, the maximum replenishment budget for the deferrable server is determined con-

sidering this phenomenon. One can model it as a periodic workload with doubled waking

(2twk) and sleeping (2tslp) times, and determine the maximum waking time.

Theorem 3 The maximum waking time in thermal back-to-back execution is

twk = 1
2β ln θM (e2βT−1)+α

α .

Proof. Considering the period of workload as twice of the previous example, we have

2twk + 2tslp = 2T. The maximum temperature is reached after 2twk time units. So,

θM = α+ (θL − α)e2β twk . Similarly to Eq. 21, we have twk = 1
2β ln θM−α

θL−α . Since the mini-

mum temperature in the steady state is reached after 2tslp, θMe2β tslp = θL which leads to

tslp = 1
2β ln θL

θM
. Hence,

tslp + twk = T =⇒ 1

2β
ln
θM − α
θL − α

+
1

2β
ln
θL
θM

= T.

Therefore, the minimum temperature in the steady state is θL = αθM e2β T

θM (e2β T−1)+α
. By substi-

tuting the value of θL in twk, the maximum waking time for the period T is obtained.

Corollary 3.1 The maximum achievable utilization of a server under the maximum tem-

perature constraint θM is θM
α .

Proof. Since the maximum utilization is obtained when the period converges to 0, the

maximum utilization is

lim
T→0

u = lim
T→0

1
2β θM2βe2βT

θM (e2βT − 1) + α
=
θM
α
.

The same approach applies to the polling servers.
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Unlike the claim in [73, 100] which states that the worst-case peak temperature

occurs when the system warms up by applying a periodic pattern to be in steady state

following by a burst workload, we will show that by employing thermal-aware servers for

mixed-criticality tasks, this will never happen.

Theorem 4 The maximum temperature of a CPU for any workload execution pattern in

the “steady-state” condition is less than the periodic back-to-back execution pattern.

Proof.

Figure 3.5: Workload execution pattern in the steady state.

To prove that, we follow up on the two scenarios illustrated in Fig. 3.5. With-

out loss of generality, it is assumed that the system has been already warmed up. The

green line in Fig. 3.5 shows that back-to-back execution pattern continues in the steady-

state phase. The orange line depicts the worst-case burst workload that can be executed

(according to the Theorem 2 where all of the replenished budget is exhausted at the begin-

ning of the period). Let θ1 and θ2 represent the maximum temperature of burst execution

and normal back-to-back execution, respectively. Hence, θ1 = α+ θM eT β − α eβ tw and
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θ2 = α+ θM e2T β − α e2β tw . Let ∆θ denote the temperature difference of these scenarios.

Therefore,

∆θ = θ2 − θ1 = θM e2T β − θM eT β + α eβ tw − α e2β tw .

By considering u = θM
α and substituting the maximum waking time determined from The-

orem 3, we show that ∆θ > 0 which means

ue2β T − e
2β 1

2β
ln
θM (e2βT−1)+α

α + e
β 1

2β
ln
θM (e2βT−1)+α

α − ueβ T > 0.

For any value of u ∈ [0, 1], since (u− 1)(1 + eβ T )2 < 0, then we have

u+ ue2β T + 2eβ T < 1 + 2ueβ T + e2β T .

By multiplying u in the inequality, we have

u2 + 1− 2u+ u2e2β T − 2(u− 1)ueβ T < ue2β T − u+ 1

which leads to u− 1− ueβ T > −( θM e2 β T−θM+α
α )

1
2 . Therefore,

ue2β T − θMe2β T − θM + α

α
+ (

θMe2β T − θM + α

α
)

1
2

− ueβ T > 0.

3.5.5 Peak Temperature Analysis on Multi-Core Platforms

Now, we extend our analysis to multi-core platforms where each CPU core consists

only of one thermal-aware server. We will show that the minimum replenishment budget of

polling servers on multi-core CPU happens when all of them exhaust their budget completely

at the same time. Afterwards, the maximum available server budget will be determined.
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Theorem 5 The minimum value of waking time for a maximum temperature constraint is

when the server on each core exhausts all its budget at once, simultaneously.

Proof. Assume we have a dual-core CPU with the same physical characteristics and sur-

rounding conditions. Both cores have the same periodic step power signal but with a phase

difference of φ. For simplicity we assume PS is zero and P = PD. The input power of the

first core P1(t) starts at t = t0 while the input power of the second core P2(t) starts with

a phase change at t = t0 + φ. We consider two cases: for case I, the phase change is zero

(φ = 0), and for case II it is positive (φ > 0). The schematic of power signal for the two

cases is depicted in Fig.3.6. The temperature profiles of in-phase and out-of-phase cases are

compared in Fig.3.7.

P

uT+ϕ T+ϕϕ

Case I: in-phase

P

uT T

P

uT T

Core 1

Core 2

P

uT T

Core 1

Core 2

0

0 0

0

(a) (b)
Case II: out-of-phase

Figure 3.6: Power signal of the cores for (a) case I: in-phase, and (b) case II: out-of-phase.

Lemma. In a multi-core system, if the power signal of each core varies with time

in the way described above, the maximum change rate magnitude of temperature is when

the powers are in-phase (φ = 0).

For a dual-core CPU. According to the developed model, temperatures of the two
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Case II: out-of-phase
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Figure 3.7: Temperature profiles of in-phase and out-of-phase cases for a (a) two-core and (b) three-

core system. (Blue lines represent the temperature of the cores in in-phase and other colors represent

temperature of the cores in out-of-phase states.)

cores between t0 and t when the power P1 and P2 are constant are as follows:

θ =
1

2
eβ1(t−t0)

 θ01 + θ02

θ01 + θ02

+
1

2
eβ2(t−t0)

 θ01 − θ02

θ02 − θ01

+

B1

2β1

(
eβ1(t−t0) − 1

) P1 + P2

P1 + P2

+
B1

2β2

(
eβ2(t−t0) − 1

) P1 − P2

P2 − P1



θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase
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(Δθ2)out-of-phase
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Figure 3.8: Comparison of temperature (a) increase and (b) decrease between in-phase and out-of-

phase cases.

80



Assume that core 1 and 2 start from initial temperatures of θ01 and θ02 at time

t0 and get to the final temperatures of θ1 and θ2 at time t as shown in Fig.3.8 . We want

to show that |∆θin−phase| > |∆θout−of−phase| for any time slot between t0 and t where the

power remains constant. We calculate the derivative of temperature for the two cases. When

there is a power for the in-phase case (P 6= 0), the temperate change rate is positive. For

in-phase case P1 + P2 = 2P and P1 − P2 = 0. For the out-of-phase case, P1 + P2 = P and

P1 − P2 = −P because P1 = 0 and P2 = P or vice versa. We have: (I represents in-phase

and II represents out-of-phase)

(
dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1P

2

 eβ1(t−t0) + eβ2(t−t0)

eβ1(t−t0) − eβ2(t−t0)


Since β1 > β2 for both cores and B1 and P are positive, then

(
dθ
dt

)
I
≥
(
dθ
dt

)
II

.

Same conclusion can be drawn if P1 = P and P2 = 0. We can conclude that ∆θin−phase ≥

∆θout−of−phase based on the fact that if f ≥ g in [a, b], and f and g are integrable in [a, b],

then
b
∫
a
fdx ≥

b
∫
a
gdx. If the power in the in-phase case is zero (P1 +P2 = 0 and P1−P2 = 0),

the temperature change rate is negative, and for P1 = 0 and P2 = P we have:

(
dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1P

2

 −eβ1(t−t0) + eβ2(t−t0)

−eβ1(t−t0) − eβ2(t−t0)


Since β1 > β2 for both cores

(
dθ
dt

)
I
≤
(
dθ
dt

)
II

. Same conclusion can be drawn

if P1 = P and P2 = 0. Therefore, in case of an increase in temperature, the in-phase

state has the highest temperature change rate, and in case of a decrease in temperature,

the in-phase state has the lowest temperature change rate. In conclusion, |∆θin−phase| ≥

|∆θout−of−phase|.
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For a multi-core CPU. For a multi-core system when temperature is increasing,

the difference between the temperature derivatives of the in-phase (I) and out-of-phase (II)

cases between t0 and t when the power signal does not change is as follows:

(
dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1

n
eβ1(t−t0) (n− k1)P



1

1

...

1


n×1

−B1

k2
eβ2(t−t0)



m21P

m22P

...

m2nP


n×1

− . . .− B1

kn
eβn(t−t0)



mn1P

mn2P

...

mnnP


n×1

ki, i = 2, .., n are integers which satisfy 1 ≤ ki ≤ n, i = 2, .., n. For k1 we have

1 ≤ k1 < n since there is at least one core which is idle when powers are in out-of-phase.

mij can change based on how many cores are active and we have mij < ki. Since n > ki,

the first term is positive, and since β1 � β2, ..., βn and all βs are negative, the other terms

decrease exponentially to zero and can be neglected compared to the first term. Therefore,(
dθ
dt

)
I
≥
(
dθ
dt

)
II

. It can be shown in the same way that when there is no power in the

in-phase case, the temperature is decreasing and
(
dθ
dt

)
I
≤
(
dθ
dt

)
II

.

Lemma. For the described power signals, the maximum temperature for in-phase

case is larger than that of the either core for the out-of-phase case (θM ≥ θ
′
M ).

First, let’s point out that θave = −A−1BP∞ is the same for both cases in the steady state.

Therefore, θM +θL = θ
′
M +θ

′
L. Assume that θM < θ

′
M , then θL > θ

′
L. Assume that the time
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it takes for the in-phase case temperature to get from θL to θM is tw and the time it takes

to get from θM to θL is ts. Assume these times for the out-of-phase case is t′w to get from

θ′L to θ′M and t′s to get from θ′M to θ′L. If θM < θ
′
M , and θL > θ

′
L, then tw would be smaller

than t′w because the temperature increase rate is largest for the in-phase case. At the same

time, ts < t
′
s since temperature decrease rate is largest for the in-phase case. Therefore,

tw + ts < t′w + t′s. But the periods for the two cases are the same tw + ts = t′w + t′s.

Experimental Example To support our claim, we measure the temperature of big cores

on the Exynos 5422 SoC [26] using IR camera FLIR A325sc [29] with the sampling rate of

60 frames per second. Four periodic computationally-intensive workloads are ran on four

big cores of the board. In all cases, the CPU frequency is set to 1.4 GHz, and each workload

executes every 10 seconds with the utilization of 40%. Let φ(i) denote the delay of starting

time of a workload execution on core i. Table 3.1 shows the configurations of each case.

Table 3.1: Descriptions of workload executions on big cores.

Name description workloads
delay settings
(seconds)

Case 1 all workloads execute at the same time φ(1) = φ(2) = 0

φ(3) = φ(4) = 0

Case 2 workloads on two cores begin after those of other cores φ(1) = φ(2) = 0

φ(3) = φ(4) = 4

Case 3 workloads on two cores begin 1 second before finishing

those of on other cores

φ(1) = φ(2) = 0

φ(3) = φ(4) = 3

Case 4 workloads on each core execute with a 2-second overlap φ(1) = 0 φ(2) = 2

φ(3) = 4 φ(4) = 6

Fig. 3.9 shows our observations of the maximum temperature of the SoC for the

described cases in the steady state. As one can see, in Case 1 where all workloads execute

synchronously, the maximum temperature of the chip reaches its highest value and its
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minimum temperature is the lowest among all cases. On contrary, in Case 4 where workloads

of different cores have the least overlap, the maximum temperature of the chip fluctuates

the least of other cases and it is close to the average temperature in the steady state. In

Case 2 where there is no overlap between executions of two pairs of workloads, the rate of

temperature rise is lower than the Case 3 where there is 1 second overlap within all workload

executions.

Figure 3.9: The maximum temperature of big cores in the Exynos 5422 captured by FLIR A325sc

IR camera in the operating frequency of 1.4 GHz without heat sink.

3.6 Multiple Server Analysis

In this section, we extend our analysis for multiple servers running on the multi-

core CPU at each criticality level. We are interested to see if there are enough sleeping

slacks between active times of servers to cool down the CPU. The cooling time must be

large enough such that the CPU does not exceed the maximum temperature constraint under

any circumstance. Hence, we should check if the amount of the sleeping time required for

cooling is guaranteed for a given period of time.
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We propose an idle thermal server technique in this regard. Unlike regular servers,

the idle server does not execute; instead, its budget represents the amount of time that the

CPU core needs to be idle in the cooling phase. The reasoning behind this technique is

to simplify the modeling of the resulting idle time from the execution of multiple regular

servers as a single budget parameter. Hence, the idle server’s budget can be determined

such that the maximum CPU operating temperature caused by heat dissipation during the

idle server’s inactive time is the same as or higher than that of running regular servers under

any task execution pattern. If such an idle server is schedulable, one can conclude that the

given taskset is thermally schedulable. The thermal effect of multiple servers is analyzed by

the complement signal of periodic idle-server execution, the worst-case behavior of which

has been proved by Theorems 1-5.

After analytically finding the relation between the budget and period of the idle

server, we check its schedulability.

Since the idle server does not actually exist on the CPU, it is considered as the

lowest-priority server in the schedulability test. In our proposed framework, the CPU is not

forced to sleep so that the proposed idle server has no effect on the timing schedulability of

regular running servers.

The idle server utilization corresponds to the time during which all regular servers

are deactivated. Based on this, we investigate the feasibility of the idle server with its

minimum possible period within a valid range. In this work, we focus on designing homo-

geneous idle servers, i.e., all idle servers on different CPU cores share the same parameters

at each criticality level. It is worth mentioning that this does not mean that sleeping time
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in different cores must happen at the same time. Finding the different idle server settings

for each CPU core is beyond the scope of this chapter.

Idle server design First, we compute the total utilization of the CPU core c at the

criticality level l by ulc =
∑
∀i P(vi)=c∧vi∈V l

Ci
Ti

, where P(vi) is the CPU core assigned to vi.

The maximum per-core CPU utilization is then ulmax = max∀c u
l
c. Due to the homogeneity

of idle servers on all cores, ulmax is considered as the utilization of one core so that each

core is supposed to be idle at least 1 − ulmax. As a result, we are looking for a server that

can be schedulable with the amount of utilization of at least 1−ulmax. Let ulidle denote this

value. According to Theorem 3, the period of the idle server T lidle can be modeled as:

T lidle ≤
ln(1 + α e

1−ulidle+
1
2β −1

θM
)

2β
. (3.22)

It is worth noting that the period is determined based on the back-to-back execution under

in presence of multiple servers for both polling and deferrable budget replenishment policies

since servers can preempt each other and sleeping time does not happen in a contiguous

manner. T lidle is an increasing function in terms of utilization. As one can figure out from

Eq. 3.22, an increase in the workload on the CPU core (hence resulting in a decrease in

ulidle) leads to a decrease in T lidle. In other words, under heavier workload, the CPU has

to sleep more frequently but in a shorter duration, to satisfy the maximum temperature

constraint.

Thermal schedulability Hereby, we present our proposed thermal schedulability test for

a specific utilization of idle servers. The worst-case response time of each idle server of each
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core at each criticality level can be obtained as follows

Rn+1,l
idle,c = ulidle × T lidle +

∑
∀i P(vi)=c∧vi∈V l

⌈
Rn,lidle,c
Ti

⌉
Ci (3.23)

where Rn+1,l
idle,c denotes the worst-case response time of the idle server on the core c at the

criticality level l. As shown in Eq. 3.23, the idle server of each core can be preempted by

all active servers at l. The only unknown parameter in above test is the idle server settings.

Next, we discuss the optimal valid range of idle server’s setting range to reduce the number

of tests for each criticality level.

3 4
2

1
valid range

iC
l
idleu

l
idleT

max1 lu
Figure 3.10: Search space for the idle server settings.

Optimal server setting range As discussed in Eq. 3.22, the period of the idle server is

an increasing function in terms of its utilization. Fig. 3.10 plots the period with respect to

utilization of the idle server. The area of the plot is divided to four regions. We discuss that

only the highlighted area needs to be searched for finding the valid settings of idle servers.

• region 1 : In this region, the CPU violates the maximum temperature constraint

according to Eq. 3.22

• region 2 : The utilization of idle server has to be less than 1 − ulmax. Choosing a
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setting in this region causes the system to be unschedulabe at this criticality level.

• region 3 : Since idle servers have the lowest priority, they cannot preempt other

servers. According Eq. 3.23, in the worst case all servers preempt the idle servers.

• region 4 : Valid settings can be found in this region, but it is unnecessary to search

the entire of this region because there exists a valid setting with period of T ′, a solution

is valid on the highlighted range with the same utilization value.

Therefore, the only period of Tidle =
ln(1+α e

1−uidle+
1
2β −1

θM
)

2β within the optimal range

of utilization, uidle, needs to be checked. One may try to insert Tidle into Eq. 3.23 and assign

Tidle to Rn+1,l
idle,c to find a single optimum point. However, because of the ceiling operation in

Eq. 3.23, finding the optimum uidle would need an exhaustive search.

After finding the idle server settings, the critical ambient temperature for each

criticality level is computed by using Eq. 3.9 with u = 1− ulidle. The shifting time from

criticality level l + 1 to l can be determined by applying Eq. 3.12.

Timing schedulability Due to our separate thermal schedulability analysis, we are able

to use the existing response time test developed for independent tasks with no thermal

constraints under hierarchical scheduling [77]:

Wn+1,l
i = Ei +

∑
τh∈Vl(τi)
h>i

⌈
Wn,l
i + Ji + (W l

h − Eh)

Dh

⌉
Eh +

⌈
Wn,l + Cj

Tj

⌉
(Tj − Cj) (3.24)

where Wn,l
i is the worst-case response time of τi at criticality level l, Vl(τi) is the server of

τi, Jj is the jitter of a task running in a server vj (see Sec 3.3), and W 0,l
i = Ei.
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3.7 Evaluation

This section gives the experimental evaluation of our framework. First, we show

the model validation by measuring the physical system parameters on a real platform.

After the analysis of server characteristics in different ambient temperatures, we present

our discussion with a case study.

3.7.1 Experimental Platform

The experimental platform is an ODroid-XU4 development board [64] equipped

with a Samsung Exynos5422 SoC. There exist two different CPU clusters of little Cortex-A7

and big Cortex-A15 cores, where each cluster consists of four homogeneous cores. Built-in

sensors with the sampling rate of 10 Hz with the precision of 1C are on each big CPU core

to measure the chip temperature. Note that there are no temperature sensors on little cores

since the power consumption and heat generation of the little cluster is considerably low.

The DTM throttles the frequency of the big CPU cluster to 900 MHz when one of its cores

reaches the pre-defined maximum temperature constraint of 95C. During experiments, the

CPU fan is turned off and the CPU is set to run at 1400 MHz.

3.7.2 Model Validation

According to Eq. 3.3 and 3.19, the characteristic matrices A and B can be deter-

mined by a utilization test at different CPU frequencies. A zero utilization (idle) at different

ambient temperatures can reveal the range of the static and consequently the dynamic dis-

sipation. After finding the thermal parameters of the system and model calibration, the
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analytical model is validated with the experimental results. For this purpose the CPU tem-

perature is recorded at 90% utilization with a period of 1 s in Θamb of 23C. Then utilization

is decreased to 30% and the CPU is cooled down until reaching a steady state. Afterwards,

the CPU working at 30% is placed in the furnace with Θamb of 42C. The CPU temperature

is recorded until the steady state. The same conditions are simulated using the developed

model. Fig. 3.11 compares the CPU temperature recorded in the experiment at different

stages of workloads and ambient temperature with the predicted values by the model. It

can be seen that there is a good agreement between the model and the experimental results.

Figure 3.11: Comparison of the experimental results and the model prediction for CPU temperature

at different workloads and ambient temperatures.

3.7.3 Workload, Period, and Ambient Temperature Relations

We investigate the effect of ambient temperature, server period, and utilization us-

ing Eq. 3.9 and Eq. 3.10. Assuming the temperature threshold of Θm = 95C, the maximum

allowable utilization is plotted in Fig. 3.12a against period and ambient temperatures. It

can be seen that for all considered periods, when the ambient temperature is increased from
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23C, the maximum workload decreases almost linearly with the ambient temperature. At

higher ambient temperatures lower workloads can be used until the ambient temperature

of 69C where even an idle CPU usage will result in a working temperature equal to the

threshold temperature. To better see the effect of period, the maximum workload is plotted

against period at different ambient temperatures in Fig. 3.12b. The period has been changed

from 10 ms to 30 s. It can be seen that the maximum workload decreases by increasing the

value of the period in an almost linear manner. This has been discussed and confirmed in

Theorem 2. Moreover, it can be concluded that the effect of ambient temperature on the

maximum allowable workload is more prominent than the effect of period.
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Figure 3.12: a) Utilization versus period and ambient temperature. b) Utilization versus period at

different ambient temperatures.

3.7.4 Shifting Time Analysis

As mentioned before, any change in the working parameters of the system may

cause a transient thermal behavior and change the steady state conditions. Here, we discuss

the effects of changing workload and also ambient temperature on the thermal response
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of the CPU cores. In Fig. 3.13a. shifting times are plotted against the final ambient

temperature at different workloads assuming the initial ambient temperature is 23C or 50C.

It can be seen that at higher workloads it takes less time for the CPU to reach the steady

state when ambient temperature is changed from Θambi to Θambf . Also, at all workloads,

it takes more time for the CPU to reach the final ambient temperature Θambf if it starts

from a lower initial ambient temperature Θambi . Furthermore, for all utilizations, the time

it takes for the CPU to reach the steady state when the ambient temperature goes up by

∆Θ is almost equal to the time it takes when it goes down by the same amount.

In Fig. 3.13b. shifting times are plotted against the final workload uf for different

initial workloads ui. It can be seen that it takes more time to reach the steady state of

final uf when starting from a lower workload ui. Also, opposite to the case of ambient

temperature, if ui < uf , it takes less time to reach the steady state when shifting from ui

to uf (heating), compared to when shifting from uf to ui (cooling).

3.7.5 Case Study

We emulate the mixed-criticality Flight Management System (FMS) application [3,

35] which comprises two criticality levels of H and L. The parameters of the executing real-

time tasks are given in [3]. In our experiment, there exist one high-criticality and one

low-criticality server on each CPU core. The budget replenishment period of each thermal-

aware server is considered 50 ms under the deferrable budget replenishment policy. The

budget for high-criticality and low-criticality servers are 15 ms and 27 ms, respectively.

Tasks are assigned to CPU cores by using the worst-fit decreasing (WFD) heuristic for
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Figure 3.13: Shifting time a) from initial ambient temperature to different final ambient temperatures

at various workloads, b) from different initial workloads to different final workloads at an ambient

temperature of 23C.

load balancing across cores and are scheduled by the Rate Monotonic (RM) policy. Since

the amount of the workload in low-criticality level is insignificant to reach the maximum

temperature, non-real-time tasks are also assigned to low-criticality servers with the lowest

priority level.

Critical ambient temperatures have been determined by Eq. 3.9: 24C for the low-

criticality and 40C for the high-criticality level. As shown in Fig. 3.14, the experiment has

been performed in the furnace. Nordic Semiconductor Thingy:52™ IoT sensor development

kit [89] is used to capture the ambient temperature with the sampling rate of 10 Hz.

Fig. 3.15 shows the experimental and model results for a case study with period of

50 ms. In step I, the CPU is idling for 1800 s, and then in step II, workload with u = 95% is

applied at Θamb = 24C. The system is left to work with u = 95% until it reaches steady state

conditions and keeps working for about 10000 s. The CPU temperature reaches to a value
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Figure 3.14: Experimental environment using furnace.

around 89C. Afterwards, in step III, the CPU is placed in the furnace with Θamb = 40C

and the workload is changed to 30% at the same time. The temperature increases to 92C

and remains steady for about 4000 s. The CPU is then taken out of the furnace and left

to work with u = 30% for a fast cooling. Finally, in step IV, the workload is set to 95%

at ambient temperature Θamb = 24C. It can be seen that the developed model matches the

experimental results with a good accuracy. The time step in the model is more accurate than

the actual temperature sensor and temperature variations for each period can be captured

by the developed model. Temperature curve from 6000 s to 6002 s is zoomed for a better

comparison of the variations.

3.8 Summary

In this chapter, we proposed a novel mixed-criticality thermal-aware server frame-

work to bound the maximum temperature of CPU cores in the presence of dynamic am-

bient temperature. In this framework, the server schedule is flexible – fully preemptive

and priority-based. We investigated the thermal feasibility by analyzing the amount of
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Figure 3.15: Experimental and model results for a case study with a period of 50 ms at two ambient

temperatures and workloads.

slack between execution of preemptive thermal servers with the notion of idle servers. We

presented a mechanism to optimally search the maximum ambient temperature for every

criticality level. We provided analytical foundations to check thermal safety while temporal

safety is guaranteed. Experimental results show that our proposed framework is effective

in bounding the maximum temperature at every criticality level.
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Chapter 4

Data-driven Thermal Parameter

Estimation for COTS-based

Mixed-criticality Systems

Thermal awareness is increasingly important for mixed-criticality systems deployed

in harsh environments. As high chip temperature can cause frequency throttling or shut-

down of processor cores at an unexpected time, many real-time scheduling techniques have

been developed to ensure continuous, fail-safe operation of safety-critical tasks with strin-

gent timing constraints. However, their practical use remains largely limited due to the fact

that it is extremely difficult to obtain a precise thermal model of commercial processors

without using special measurement instruments or access to proprietary information, such

as the power traces of micro-architectural units and detailed floorplan maps.

In this chapter, we propose a data-driven thermal parameter estimation scheme
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that is directly applicable to commercial off-the-shelf multi-core processors used in real-time

mixed-criticality systems. By using a small number of thermal profiles obtained from on-chip

temperature sensors, our scheme can predict and bound the processor operating temperature

under dynamic real-time workloads at various CPU frequencies and ambient conditions.

The thermal model derived from our scheme is fast to converge and robust against different

sources of errors. Our scheme is non-intrusive, meaning that it does not require changes to

the software code or the hardware packaging of the target system. Furthermore, our scheme

can estimate the relative power consumption of the processor for given workload and clock

frequency level. We evaluate the effectiveness of our scheme on a multi-core ARM platform.

4.1 Introduction

One of the major concerns in recent embedded systems is the high heat dissi-

pation caused by complex applications running on high-performance multi-core systems-

on-chips (SoCs). Ambient temperature in the physical environment is another key factor

that increases chip operating temperature. The high temperature also increases power con-

sumption [6], reduces the chip reliability [87, 93], and leads to chip burnout. Due to these

reasons, many of today’s operating systems (OSs) monitor the chip operating temperature

using on-chip temperature sensors to check if it is within the safe thermal constraint.

To protect the processor chip from thermal damage, a set of policies are defined in

the thermal governor of the OS for different scenarios. When the chip temperature crosses a

trip point, a predefined cooling scenario is performed such as frequency throttling or shutting

down of CPU cores [18, 37, 97]. Such thermal countermeasures, however, lead to timing
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unpredictability in real-time mixed-criticality systems (MCS) since the deadlines of tasks

could be unexpectedly violated by reduced processing speed or temporarily unavailable

CPU cores. Extensive studies have been have been conducted to prevent the negative

impact of such performance disruption, including the techniques based on Dynamic Voltage

Frequency Scaling (DVFS) [30, 61, 70, 78, 101] and forced sleeping during the execution

of hot applications [15, 41, 59, 53, 44, 101]. Moreover, offline analysis has been proposed

to guarantee the thermal safety of real-time tasks by bounding the maximum operating

temperature in the steady [38, 39] and transient states [66] of a given system. They all

assume to have a priori knowledge of precise thermal models for temperature prediction,

resource management, and task scheduling, and need accurate simulation tools or extra

equipment for validation. Therefore, obtaining thermal parameters of a given system is the

fundamental requirement to substantiate these techniques in practice.

Despite its importance, the thermal parameter estimation of commercial off-the-

shelf (COTS) processors still remains a challenging problem. Existing numerical simulation

tools like HotSpot [42] can construct a compact thermal model for modern VLSI devices by

using the resistance-capacitance (RC) thermal network to capture the transient temperature

and generate the heatmap at each time instant. However, they are not directly applicable to

modern COTS multi-core processors because the information required by these tools, such

as power traces of micro-architectural units, detailed floorplan maps, and cooling package,

is proprietary and not publicly available. An exhaustive search approach for approximating

this information through reverse engineering is time-consuming and prone to unacceptably

high inaccuracies, especially for transient temperature estimation.
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The latest work [72, 74] partially addresses these issues by calibrating thermal

parameters without power traces and detailed floorplans. However, it is not applicable

to MCS where execution patterns are dynamic due to preemptive, priority-driven, work-

conserving task schedulers [38, 39, 66, 3, 20]. Similar to HotSpot, it uses a time-driven

prediction model where the temperature is calculated for each time instant under static

workloads. This makes the model not only very slow but also inflexible to capture the

correct operating temperature when multiple real-time tasks with different periodicity are

concurrently scheduled.

In this chapter, we propose a fast and accurate scheme to estimate the thermal

parameters of COTS multi-core processors for real-time MCS. Our scheme requires only a

small number of temperature traces from on-chip thermal sensors which are widely available

in today’s processors. Our scheme also improves the accuracy of thermal parameters through

the ensemble of measurements from different frequency levels and execution patterns.

Contributions. The contributions of this chapter are as follows:

• We present a thermal estimation scheme that has low computational cost by design.

Given that steady-state profiles are much compact than transient-state profiles, our

scheme first estimates the thermal parameters of a given system using only steady-

state profiles, and then uses transient-state data for calibration purpose.

• We characterize various sources of errors in thermal parameter estimation, and reduce

their negative effects through the multiple refinement stages of our scheme. Our

scheme also enables locating errors in the temperature profiles.

• Our scheme can identify the relative distance between CPU cores and produce an
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estimated chip floorplan from temperature profiles. It can also estimate the relative

power consumption for a given workload on each CPU core.

• We present techniques to further improve the accuracy of thermal parameters by ex-

ploiting the ensemble of measurement data obtained at various frequency and work-

load settings.

• The effectiveness and accuracy of our proposed scheme is demonstrated with extensive

experimental results on a real ARM embedded platform.

4.2 Related Work

There exist well-known numerical tools to estimate the chip operating temperature.

For instance, HotSpot solves the system of differential equations using the fourth-order

Runge-Kutta numerical method through very fine-granularity iterations. The authors of

[36, 56] constructed the thermal model with the measured power and temperature trace

of each subsystem on a real mobile platform. Power Blurring [103] calculates temperature

distributions using a matrix convolution technique, in contrast to the finite-element analysis

(FEA) used in other simulation tools like HotSpot. To use these tools in practice, one needs

to obtain the detailed information of the target device including power traces and floorplans

or to arrange special measurement equipment such as a high-precision IR camera.

The authors of [72, 74] proposed a calibration-based method to predict thermal

behavior by using an impulse response model. They assume that the power consumption of

each application task remains unchanged during execution. Similar to [21, 3], they employed

the Generalized-Pencil-Of-Function (GPOF) [40] to calculate the impulse response of each
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application from utilization and temperature traces. In their work, the thermal effects due

to conduction between CPU cores are represented as impulse responses. However, if an

application task is preempted by another task or getting suspended, the impulse function

has to switch. This spatio-temporal thermal dependency cannot be captured in their model

for preemptively-scheduled tasks on the same CPU core or concurrently-executing tasks on

other CPU cores. Due to this reason, despite all the other benefits provided, the applica-

bility of their approach to real-time mixed-criticality systems is limited. In this chapter,

we present a thermal model based on matrix exponential, which overcomes the aforemen-

tioned limitations of prior work and allows estimating the key thermal parameters that

represent the characteristics of the semiconductor technology independent of the specificity

of applications.

4.3 System Model

We consider a homogeneous multi-core processor where each CPU core uses the

same microarchitecture. Each core is assumed to have a dedicated temperature sensor that

is accessible by the OS at runtime. This assumption can be easily met in many commercial

processors such as Intel Core i7 and Samsung Exynos products. Reflecting reality, it is

assumed that the following information is not available to use: the chip floorplan, the exact

locations of on-chip temperature sensors, and the power traces of the processor.

In the rest of this section, we introduce the power and temperature model used in

this chapter.
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4.3.1 Power Model

The total power consumption of CMOS circuits at time t is modeled as the sum-

mation of dynamic and static powers [13], i.e., P (t) = PS(t) + PD(t). Static power PS

depends on the semiconductor technology and the operating temperature caused by current

leakage. Hence, it can be modeled as: PS(t) = k1θ(t) + k2, where k1 and k2 are technology-

dependent system constants, and θ(t) is the operating temperature [60]. Dynamic power

PD(t) is the amount of power consumption due to the processor operating frequency f at

time t, modeled as PD(t) = k0f(t)s, where s and k0 are the system constants that depend

on the semiconductor technology.

4.3.2 Temperature Model

We consider the temperature model widely used in real-time mixed-criticality sys-

tems [3, 20], which follows the well-known linear time-invariant (LTI) model. Hence, the

temperature model for a multi-core CPU with n cores is given by the following equation:

[θ′(t)]n×1 = An×n [θ(t)]n×1 + Bn×n [P(t)]n×1 (4.1)

where θ(t) is the n × 1 matrix of the CPU core operating temperatures relative to the

ambient temperature, and P(t) is the power consumption of all cores at time t. A is an

invariant n×n matrix and it is based on the characteristics of the semiconductor technology.

It quantifies the effect of the conduction between adjacent cores, the convection among all

cores, and the difference between ambient and operating temperature.

B is the diagonal n × n matrix and it captures the effect of power consumption

on the temperature of each core. For homogeneous multi-core CPUs, since the total power
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of CPU cores are the same (either PS or PS + PD), the matrix B can be represented as

b × I, where I is the n × n identity matrix. Similar to A, the values of b are invariant to

the changes in static or dynamic power consumption.

Hence, the problem will be estimating the values of the matrices A and B (= b×I)

without any prior knowledge or direct measurement of CPU power consumption. We will

discuss that it is impossible to estimate the value of b without having any knowledge of

CPU power consumption; instead, we estimate B × P which matters in calculating the

temperature in the LTI model.

4.3.3 Problem Description

Given a multi-core CPU equipped with on-chip temperature sensors, construct an

accurate and fast thermal RC model by the estimation of A and B×P of the CPU, exclu-

sively from a limited number of temperature profiles without requiring a priori knowledge

of the floorplan, cooling package, and power traces.

4.4 Limitations and Errors

Before continuing our discussion, we must address some limitations to thermal

parameter estimation on real-life platforms. Identifying these potential sources of error

is critical to our data analysis and comprehension. It allows us to address the noise and

limitations of our profile data set by preprocessing raw data and improve the accuracy of

thermal parameters through the ensemble of measurements from different frequency levels

and workload settings.
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4.4.1 Built-in Sensors

The largest sources of error in the raw data are the built-in temperature sensors.

Sensor Locations

The data sampled from the CPU’s built-in temperature sensors is sensitive to the

physical location of the sensors within CPU cores. For example, the thermal sensor for

one CPU core may be located near its primary source of heat dissipation (i.e., hotspot)

while the thermal sensor for another CPU core may be located further away from the

CPU’s hotspot. In addition to the proximity of the thermal sensor to the CPU’s hotspot,

the physical location of the hotspot may vary depending on the type of workload. Thus,

distinct thermal footprints of various applications may not be precisely captured by a single

built-in sensor.

Sensor Sampling Frequency

In CPUs for embedded systems, the sampling rate of temperature sensors is, gen-

erally, very low. This limitation causes inaccuracies in raw data. For instance, the ODroid

XU4 board maintains a 10Hz sampling rate for the thermal sensors. If the utilization pat-

tern of a prospective application changes in less than 100 ms, e.g., real-time control tasks

activated every 30 ms, the thermal footprint cannot be captured with the built-in sensors.

Sampling Precision

The data from on-chip CMOS temperature sensors is subject to quantization.

This generates another source of error because the accuracy of temperature measurements
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is reduced to the granularity of quantization. Hence, the data needs to be processed before

and after the estimating procedure to ensure the correctness of our results. For instance, if

the sampling precision of all CPU core temperature sensors is 1° C, then according to the

superposition law in thermal modeling [38], the magnitude of total temperature error for a

quad-core processor can reach up to 4° C.

Sensor Response Function

Due to differences in the construction and architecture of on-chip thermal sen-

sors, their response time may vary. Hence, the sensor data may not represent the actual

temperature if the CPU utilization changes in a relatively short time interval. Over time,

if there is no fluctuation in CPU utilization, the sensor data will converge to the actual

CPU core temperature. Therefore, we can assume that this type of error only affects the

transient-state data while the steady-state data is unaffected.

4.4.2 Ambient Temperature

Temperature is a relative value to the ambient temperature in our thermal model.

Although it is assumed that the ambient temperature would remain invariant during pro-

filing, in reality, it may change even in a room or a thermal furnace.

Varying Ambient Temperature

The ambient temperature in room can change slightly, or even several degrees

given circumstances that are difficult to regulate such as poorly insulated walls, drastic

changes in the outside temperature, and even heat dissipated from idle electrical outlets.
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This change can affect the operating temperature of the CPU. Therefore, the fluctuation of

the ambient temperature while profiling can introduce noise into the raw data. This type

of noise impacts the relative operating temperature.

Varying Air Convection

Heat convection may also introduce noise into our data sets (thermal profiles).

Forced air convection caused by air conditioning, active cooling package of the CPU or even

people just moving around the board can all contribute to fluctuations in the CPU core’s

heat dissipation. This type of noise will directly affect the heat transfer from the CPU cores

to the ambient air, hence the values of diagonal elements of the matrix A change.

4.4.3 Thermal Interference

Heat dissipation due to miscellaneous tasks can impact the accuracy of the data

set. Even though one expects the operating temperature of CPU cores to approach the

ambient temperature when the CPU cores are disabled (e.g., by using the CPU hotplug

mechanism in Linux), the operating temperature is much higher than this level.

OS Tasks

There are some essential OS service tasks that cannot be terminated while profiling

thermal data. Some of them even have predefined CPU affinity, thereby affecting the

observed thermal behavior of target CPU cores.
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Cache Coherent Interconnect (CCI)

Under cache consistency policies, CCI which is near to the CPU cores, generates

some heat during task execution which causes an increase in the operating temperature of

the CPU cores.

Workload on Intellectual Property (IP) Blocks

Running tasks on IP blocks such as integrated GPUs, video encoders/decoders,

and digital signal processors (DSP), can significantly affect the overall heat dissipation.

Additionally the static power consumed while IPs are idle can also cause non-trivial heat

dissipation. If there is no change in the utilization status of IPs, we can consider the amount

of heat dissipation from those IPs as a constant quantity in thermal modeling. Nevertheless,

this type of the noise can continuously or temporarily affect the profiling of thermal data.

4.5 Proposed Scheme

In this section, we introduce our scheme for estimating the thermal parameters of

a given multi-core processor. The entire workflow of the proposed scheme is illustrated in

Fig. 4.1. The very first step is profiling steady-state temperature data for a set of designed

workloads. Then, the scheme removes noise from the raw data set ( 2 ), and performs the

floorplan estimation ( 3 ). By using the estimated floorplan template and the collected

steady-state data, the value of the matrix A is estimated in terms of the power parameters

( 4 ). The parameters B × P are then estimated by analyzing a subset of the transient-

state data at the final stage ( 5 ). One of the reasons that we propose dividing analysis
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Figure 4.1: Parameter Estimation Scheme

into the steady-state and the transient-state stages ( 4 and 5 ) is to cope with the various

types of errors that may be introduced during temperature profiling. If one tries to tackle

this problem by using both data at the same time, errors in the transient-state data can

adversely affect the characterization of the system in steady state because the transient-

state data has a much larger number of data points than the steady-state data. Moreover,

our proposed scheme has a low computational cost as it requires processing only a few data

points in the steady-state stage to obtain the thermal characteristics of the system.

4.5.1 Thermal Analysis and Steady-State Profiling

The proposed scheme primarily uses the state-state data for thermal parameter

estimation since it is more robust to measurement errors than the transient-state data but

still contains the required information about semiconductor technology and power consump-

tion. Hence, before introducing the detailed stages of our scheme, we analyze the thermal

model and provide the reasoning behind the steady-state profiling.

Our goal is to estimate the thermal parameters related to the steady-state data.

After solving the first order equation of Eq. 4.1, we have
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θ(t) = θchip + e(t−t0)Aθ0 +

∫ t

t0

e(t−s)ABP(s)ds (4.2)

where [θchip]n×1 is the total heat dissipation caused by IP blocks on the chip and idle power

of the CPU cores. We assume that all IPs generate a constant amount of heat. This term

captures the heat conduction between all parts of the chip and the CPU. When the CPU

cores are idle for a very long time, θchip can be captured. It is worth noting that due to

the location CPU cores and their sensors on the floorplan, the steady-state temperature

of idle CPU cores are different. The second term is the homogeneous solution which is

the thermal response due to the initial temperature difference from the ambient. The third

term is the non-homogeneous solution caused by the input power signal.

The total power is the function of temperature at any time instant t because the

other factors such as frequency remain invariant during task execution. For homogeneous

multi-core CPUs, the power for each core is PS(t) when CPU is idle, and PS(t) + PD(t)

when the CPU executes some workload in which all cores are fully utilized. Hence, Eq. 4.2

can be written as:

θ(t) = θchip + e(t−t0)Aθ0 −A−1 (I− eAt )BP. (4.3)

In the steady state, the second term disappears because the steady-state operating

temperature depends only on the power consumption (third term) and it is unaffected by

initial temperature θ0. Suppose θ∞ represents the operating temperature in the steady

state, then:

θ∞ = lim
t→∞

θ(t) = θchip −A−1BP. (4.4)
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We are interested in finding the value of matrices A and BP. It is worth noting

that the only control parameter is the power signal. It means that for each profiling proce-

dure, it is possible to execute workload on any subset of CPU cores or hot-unplug them but

the actual value of the power remains unknown. Let [Yi]n×1 denote the operating tempera-

ture of the CPU cores when the i-th core is fully-utilized and Y0 represent the temperature

of the CPU when all CPU cores are idle. Furthermore, let [Y]n×n = [Y1Y2 . . .Yn]T be

the matrix of temperature profiles of the CPU in the steady state. For instance, yi,j in the

row i and column j of Y is the temperature of the j-th CPU core when tasks are executing

only on the i-th CPU core. Hence, according to Eq. 4.4,

Y − [Y0Y0...Y0]Tn×n = PD (−A−1B). (4.5)

We solve the equation to find the value of A. Therefore,

A = −PD b (Y − [Y0Y0...Y0]T )−1. (4.6)

By denoting Ã = (Y − [Y0Y0...Y0]T )−1 and γ = b PD, we have

A = −γÃ. (4.7)

Therefore, by estimating Ã and γ, we can determine the value of A. Ã can be determined

by profile without any knowledge of power consumption. The value of γ cannot be de-

termined by the information from the steady-state profiles even with temperature profiles

encompassing various CPU frequencies.

As shown in Eq. 4.7, we only need n + 1 profiles to estimate the value of Ã, i.e.,

one profile measured when all cores are off, and n profiles when each core is fully utilized

one at a time. However, because of errors and limitations discussed in Section 4.4, there
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may be a considerable amount of noises in estimating the value of Ã. If the profiles are

noiseless, Ã will be a symmetric matrix with positive values on diagonal and non-positive

values on non-diagonal elements. Zeros at ãi,j represent that there is no heat conduction

between core i and j. It is noteworthy that a non-symmetric Ã caused by noisy data sets

can lead to imaginary eigenvectors which is impossible in practice. We will later propose

several methods to address different types of noises. Moreover, we will extend our analysis

to reach a more precise Ã by infusing more data profiles. By using those techniques, it is not

necessary to have the exact CPU core combinations of Yi for profiling purposes, but still

possible to benefit from multiple auxiliary data obtained from the same core configuration.

One interesting property of A and Ã is that both have the same eigenvectors.

Additionally the eigenvalues of A are −γ times the eigenvalues of Ã. We will use these

properties to find the value of γ later and justify why it is infeasible to estimate the value

of power consumption from thermal profiling.

4.5.2 Noise Reduction and Anomaly Detection

Compensating for various sources of errors in the steady-state data is critical to

accurately estimate the system thermal parameters. In this section, we will discuss two

low-cost noise reduction and detection procedures for the steady-state data.

Pre-processing for Noise Reduction

The most challenging sources of errors in the steady-state data are the built-in CPU

core temperature sensors and the uncontrollable fluctuations in the ambient temperature.

Heat dissipation due to all types of task interference can be captured in θchip. We will
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show in the evaluation section that this amount is almost invariant for any given operating

frequency. Therefore, we focus our discussion on other types of errors. The accuracy of the

steady-state data is crucial to calibrating thermal parameters with transient-state data in

the later stage of our scheme. It is also important for estimating the relative locations of

CPU cores on the floorplan since they depend on the accuracy of this stage.

The errors that could be found in transient-state data, such as due to the sam-

pling frequency and response time of built-in sensors, do not occur in steady-state data

because the steady-state temperature converges to a certain level and remains invariant.

To overcome the limitation of sampling precision, we pre-process the steady-state temper-

ature data by taking a moving average. Although the temperature should remain invariant

throughout the steady state, the limitation introduced by sensor data quantization may

cause fluctuations. Suppose that the precision of built-in temperature sensor is 1° C and

the actual steady-state core temperature is 55.1° C. The data will usually reflect a sensor

reading of 55° C. However, on less frequent occasions, the data may reflect a sensor read-

ing of 56° C. Aside from the precision concern, some transient noises such as varying air

convection, temporary OS tasks, or variant ambient temperature can also be added up in

the steady state. To alleviate the effects of the limitation of sensed data precision and also

transient noises, one can apply a low-pass filter such as the moving average in an arbitrary

time window on the steady-state data before constructing the observation matrix Y.

Post-processing for Anomaly Detection

As we discussed in Sec. 4.5.1, our scheme needs steady-state temperature profiles

which are obtained when only one of the CPU cores is fully utilized at a time. If there are
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more profiled data, it is possible to detect if there is any persistent error in the temperature

profiles. For instance, if the ambient temperature in one profile is different from that in

other profiles, it can be detected and rectified. Our post-processing error detection tests if

the observed data Yi are consistent with other auxiliary profiles that are obtained when

more than one CPU core is fully utilized. If any error is found from the observed data Yi,

the corresponding column of Y will be rectified with the correct value.

We now present the details. Let [XZ ] denote the steady-state temperature of CPU

cores and Z = z1z2 . . . zn is the predicate that shows the status of CPU cores in the profile

test where zi ∈ {0, 1} represents whether the i-th CPU core is busy (zi = 1) or not (zi = 0).

We are interested to test primary observed data Yi by using auxiliary data Xs to detect the

prospective error in Y . According to the thermal superposition theorem [38],

XZ =
n∑
i=1

zi × (Yi −Y0) + Y0 (4.8)

Suppose that the available tests for a hypothetical 3-core CPU are Yi for i ∈ [1, 3]

and the auxiliary test X101. Hence, X101 = Y1 + Y3 − Y0. In the idle condition where

there is no errors in the data, the equation much hold. Let’s suppose there is an error

data in one of them. We are interested to detect or correct it. By adding an error term

ε to the equation, we have X101 = Y1 + Y3 − Y0 + ε1,3. If there is no error in data,

one can assume that ε1,3 = [0, 0, 0]T . If there is an error in one of the tests, it can be

detectable but not correctable. Now suppose that there is another test X011 available,

hence X011 = Y2 + Y3 −Y0 + ε2,3.

Now in this case, it is possible to detect not only the presence of error but also the

location of error in the profiles. In our example,
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I) if ε1,3 = ε2,3 = 0, there is no single error in the steady state values of any of Y1,

Y2 or Y3.

II) if ε1,3 = 0 but ε2,3 6= 0, there is error in either Y2 or X011.

III) if ε1,3 6= 0 but ε2,3 = 0, there is error in either X101 or Y1.

IV) if ε1,3 6= 0 and also ε2,3 6= 0, there is error in the steady state values of Y3.

In order to detect and correct the error, we design a test in an n-hypercube format.

Each corner of the hypercube represents one measurement setting Z, and there is only a

one-bit difference in the Z values of two neighboring corners. In this way, it is possible to

examine the correctness of each test with its neighbors. It is also possible to spot the error

with a sufficient number of tests.

We explain the procedure by making an example. Fig. 4.2a illustrates the auxiliary

test X011. The blue side shows the verification of the Y1 and Y2. If all the data are

consistent, one can conclude that there is no single error in Y1 and Y2. If there is an error

in one data an additional test is needed that we will explain later.

X000 = Y0
X001 = Y1

X010 = Y2

X100 = Y3

X011

(a)

X000 = Y0
X001 = Y1

X010 = Y2

X100 = Y3

X101

(b)

X000 =Y0
X001 = Y1

X010 = Y2

X100 = Y3

X011

X101

X111

(c)

Figure 4.2: a) Auxiliary test for detect one error in either Y1 or Y2. b) Auxiliary test for detect

one error in either Y1 or Y3. c) Second-tier testing of auxiliary tests.
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The green side in Fig. 4.2b shows the verification for Y1 and Y3. If there is no

single error, the data on this side is also consistent.

Now suppose that both sides are inconsistent, then it is easy to say that the data

of Y1 is faulty because we assume that there is only one error in observation profiles and

the edge of (Y0,Y1) is the intersection of both sides. Since Y0 is zero base and not faulty,

Y1 is noisy.

We now discuss the case III where ε1,3 6= 0 and ε2,3 = 0. To locate the error in

the data, we use the auxiliary test that make a side with two of suspicious tests (the yellow

side in Fig. 4.2c). In this case, we consider X111 that can make a side with X001, X011 and

X101. If the data of this side is consistent, the error will belong to Y1, otherwise to the test

X101.

By employing the same technique, it is easily possible to extend the proposed

method for two errors in the tests by adding another tier to test the auxiliary tests with

each other. Additionally, it is possible to conclude that there exists a single error or two

errors in the data. It is important to mention that in this chapter, it is assumed that errors

in the two tests cannot conceal each other.

4.5.3 Floorplan Estimation

Hereby, we introduce a breadth-first-search (BFS) algorithm to estimate the to-

pography of the CPU cores in the chip. Later, we use this information to calibrate the

thermal term b PD in the temperature model by using the transient-state data. One of the

steps to refine the thermal parameters of a chip is to estimate the parameters complying

with the floorplan. We present a mechanism to estimate the relative location of the CPU
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cores on a given chip.

The intuition behind our proposed algorithm is that the amount of heat dissipation

from a heat source to a closer object is more than that to a farther object. Therefore, we

expect that the temperature increase due to heat conduction of adjacent CPU cores is more

than that of non-adjacent CPU cores. We introduce a fully-connected weighted graph where

the edge weight represents the temperature increase of a CPU core when its neighboring

cores are fully utilized. For instance, suppose there is a quad-core CPU where each core

is labeled as Ci with i ∈ [1, 4]. The fully-connected graph of this CPU is illustrated in

Fig. 4.3. The weight of each edge, wi,j , represents the temperature increase of a core Cj

when another core Ci is fully utilized (i.e., yi,j − y0
i ). It is worth noting that wi,j 6= wj,i

not only because of noise but also due to the location of the built-in temperature sensor

relative to the hotspot of each CPU core, although the amount of heat dissipation from

each homogeneous core is ideally the same.

C1 C2

C3 C4

20 20

19 20

17161717

18

18

13

13

14

14

18

17

Figure 4.3: Example of adjacency graph of a quad-core CPU.

We are interested in the relative temperature increase of core Ci when it is fully

utilized compared to when another core Cj is fully-utilized. Hence, we have w′i,j = yi,i − yi,j .

We also remove self-loops from the graph for simplicity. After this, the graph of Fig. 4.3 is
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reduced to a graph where all weights are positive. Next, we convert the bi-directed graph

to a uni-directed graph by taking maximum of the edges in the different direction (i,e.,

min{w′i,j , w′j,i}) as shown in Fig. 4.4. It is noteworthy that one can use average, minimum

or any reduction operation for this stage. As shown in Fig. 4.4, the temperature increase of

CPU core C4 when the CPU core C1 is fully utilized is because of heat conduction of CPU

cores C2 and C3. In other words, the CPU core C4 is heated up because of transitive heat

transfer from C1 to both C2 and C3 and then heat transfer occurs from these CPU cores to

the CPU core C4. Therefore, there is only transitive heat conductivity between the CPU

core C1 and the core C4.

C1 C2

C3 C4

32

min 2, 2 = 2

6

6

2

Figure 4.4: Example of adjacency graph of a quad-core CPU.

By using this graph and also the aforementioned intuition, we estimate the location

of the CPU cores on the floorplan. To do this end, we begin from one arbitrary core (let’s

say C1) and find the minimum value of all weights connected to its corresponding node in

the graph. In this example, the maximum weight is 2 for both CPU cores C2 and C3. Next,

we find the maximum weight of CPU cores C2 and C3 from the unvisited node list, one at

a time. We continue this step until all nodes are visited. If some of the visited CPU cores

have the same value (within some error margin), they are connected. In this example, the

error margin is 1 so the cores are connected as illustrated in Fig. 4.5. It is shown that the
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core C4 (or at least its built-in temperature sensor) is closer to the core C3 than C2.

C1

C2
C3

C4

Figure 4.5: Final adjacency graph of a quad-core CPU.

Furthermore, if the temperature profiles of on-chip IPs such as an integrated GPU

are available, the same approach can be applied to locate the corresponding IP by using

the temperature increase when each CPU core is fully-utilized. In this way, there is only

one edge from each CPU core Ci to the IP.

4.5.4 Thermal Parameter Estimation with Steady-State Data

We propose a method to calibrate the thermal parameters based on the floorplan

estimation discussed in the previous section. The thermal parameter estimation without

considering the floorplan may not be applicable in practice.1 Some important properties of

A according to heat transfer are as follows:

• A is a symmetric matrix.

• The elements on diagonal of A are positive.

• The zero values of non-diagonal elements represent a pair of corresponding CPU cores

are not adjacent.

1This is because Y can be inaccurate and the properties of A may be violated if the floorplan is not
considered.
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• All non-zero values of non-diagonal elements are negative.

These properties of A guarantees that there exist n real eigenvalues and a set of n eigenvec-

tors, one for each eigenvalue, that are mutually orthogonal. This stage estimates the values

of thermal parameters in way that it not only complies with the floorplan but also reduces

the effect of noisy data observed data in A.

The matrix Ã is constructed according to the estimated floorplan. If there is no

thermal interference between two cores Ci and Cj in the estimated floorplan, the corre-

sponding value in the matrix, i.e., ãi,j , is zero. A single value can be used for all adjacent

CPU cores in the matrix Ã as they share the same heat dissipation increase value. The

gradient descent algorithm will then estimate the non-zero values. For the quad-core CPU

exemplified in the previous section, there exist 4 zeros in the matrix Ã because each CPU

core has only 2 adjacent CPU cores. The number of distinct non-zero values in ˜[A] are

six in total because four different values are on the diagonal of Ã and two distinct values

are used for the other non-zero elements. It is worth noting that, depending on the user’s

accuracy demand, more distinct non-zero values may be used. For the explained example,

the matrix Ã will be

Ã =



a1 a5 a5 0

a5 a2 0 a6

a5 0 a3 a5

0 a6 a5 a4


.

We propose a gradient descent algorithm to find the parameters according the estimated

floorplan. For the calibration of the parameters, Ã is compared with the inverse of Y,

which means that Ã follows the estimated floorplan template and its inverse must be close
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to the temperature profiles. We propose the cost function as follows

argmin
ai

i ∈ [1, r]

||Ã−1 − Y ||2F (4.9)

where r is the number of unknown parameters. The sign of each parameter has to be

carefully considered in the implementation, taking into account the properties of A discussed

before (e.g., diagonal elements should be positive and the rest be non-positive).

4.5.5 Thermal Parameter Estimation with Transient-State Data

In this section, we discuss how to estimate the matrix B for homogeneous multi-

core platforms. As we mentioned in Sec. 4.3.2, it is impossible to determine γ from the

steady-state observations, hence, we must process the transient-state data.

As discussed in the steady-state section, if the power remains the same, the tem-

perature equation will become Eq. 4.3. To estimate the value of A, we only need γ which

is commensurate to the power consumption. Substituting Eq.4.7 in Eq. 4.3, we have:

θ(t) = θchip + e(t−t0)−γÃθ0 + (γÃ)
−1

(I− eAt )bIP. (4.10)

Suppose that V and Λ are the eigenvectors and eigenvalues of Ã, respectively.

Therefore, e(t−t0)−γÃ can be represented as V e(t−t0)−γΛ V−1. From our proposed steady-

state scheme, V and λ are determined. We can estimate the value of γ from the transient-

state data of a singular observation. To better calibrate γ, multiple profiles may also be

considered. Hence,

θ(t) = θchip + e−(t−t0)γÃθ0 + Ã−1 (I− eA(t−t0) )H (4.11)
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where H is an n × 1 input signal whose i-th element is hi ∈ {0, 1}. It is noteworthy that

hi = 1 when i-th core is fully utilized. By substituting the eigenvalues and eigenvectors,

the equation can be represented as

θ(t) = θchip + V e−(t−t0)γΛ V −1θ0+

Ã−1 (I−V e−(t−t0)γΛ V−1 )H.

(4.12)

The only missing part in the temperature model is γ which can be estimated by

curve fitting on transient-state temperature. The values of Pd(t), θchip and Ã change at

different frequency levels but the values of Λ, V and b remain invariant against frequency

change. Although the value of bγ can be estimated and is embedded in the temperature

data, it is not possible to estimate the value of power even with temperature information

at different frequency levels.

Since γ is a scalar value, we observed that curve fitting on only a few cores can

provide good results. The simplest test for estimating the value of γ is when all cores are

cooling down. In this case the third term is eliminated and the temperature equation for

the ith core can be reduced to

θi(t) = θichip +
∑
λj∈Λ

vi,jyi,je
−(t−t0)γλjθi0 (4.13)

where vi,j and yi,j are the elements of the ith row and the jth column in the matrices V

and V −1, respectively.
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4.6 Accuracy Enhancement

In this section, we extend our proposed scheme to improve accuracy using addi-

tional steady-state data from different core settings and extra data observed at different

frequencies.

4.6.1 Use of Steady-State Data Ensembles

We discuss how to use the ensemble of extra observations at one frequency level

to obtain a more accurate thermal observation profile. As discussed in the previous section,

our method requires n+1 observed steady-state temperature profiles for a n-core system to

construct the matrix Y: one profile when all cores are idle and n profiles when each of CPU

core is only fully-utilized. Now, we extend our analysis to answer the following questions:

• Is it possible to collect different CPU core usage settings (other than the aforemen-

tioned n+ 1 observed data) to construct Y?

• Is it possible to have a more precise Y if there exist multiple instantiations from an

identical setting and use all of them?

• Is it possible to construct Y with more than n+ 1 steady-state data?

We are interested in generalizing the construction of Y to include any possible

thermal traces of fully-utilized CPU core combinations and the ensemble of more thermal

traces. It is noteworthy that if there is no noise in the observed data and also data is not

quantized, no extra data or multiple instantiations are needed due to superposition law in

Eq. 4.8.
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Now, suppose we have m profiles such that n ≤ m ≤ 2n− 1 and each profiling was

done under a different CPU core setting Zi. Based on that, we can construct the predicate

matrix [D]m×n = [Z1Z2 . . .Zm]T from the auxiliary profiles in U = [Xz1Xz2 . . . Xzm ]T . The

matrix Y is then generated as follows

Y = ((D×DT )−1 ×D×UT )−1. (4.14)

Because of the inversion in the equation, the equation works when the number of

the profiles is more than the number of CPU cores. It also works when there exist enough

orthogonal profiles, meaning that there is at least one profile for each CPU core where the

core is idle. The matrix Ã is then calculated as explained in Sec. 4.5.4.

4.6.2 Use of Multi-Frequency Data Ensembles

We now discuss how to obtain a more accurate A by using additional data collected

at multiple frequency levels. As explained in Sec. 4.3.2, the thermal parameter A is de-

pendent on the semiconductor technology and remains invariant against frequency changes.

Therefore, it would be logical to assume that having observed temperature profiles from

different frequency levels would lead to an identical A. However, due to the term γ in

Eq. 4.7, Ã is proportional to the power consumption and the clock frequency of CPU cores.

Based on this, we extend our scheme to answer the following questions:

• Is it possible to have an identical A from different Y s which are collected at different

frequency levels?

• Is it possible to estimate the power consumption with respect to different frequency
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levels?

To answer these questions, we propose a thermal parameter estimation approach

based on multi-frequency data ensembles. Let Yi denote the temperature profile matrix

constructed from the data when the CPU frequency is fi, and γi denote its power effect

on temperature at the frequency fi. Unlike the method presented in Sec. 4.5.4 which esti-

mates the parameters in Ã, we will calculate a Ã1, which is the base at f1. Additionally,

we consider γ1 = 1 and estimate γi
γ1
,∀i > 1. In such case, tracking the values of γ over

different frequency levels gives the power consumption of CPU cores proportional to the

γ1 of the base frequency level f1, and all Ys share the same thermal parameter A. Using

the same procedure as in Sec. 4.5.5 allows estimating the value of γ1; hence, all γs can be

estimated. It is noteworthy that, even in this case, the actual value of the power consump-

tion cannot be computed, but the relative power consumption at different frequency levels

can be obtained. Therefore, one can see the effect of power consumption embedded in the

temperature profiles.

We change the cost model of Eq. 4.9 to

argmin
aj

j ∈ [1, r]
γi
γ1

i ∈ [1, |f |]

|f |∑
1

||Ã1
−1 − γi

γ1
Yi||2F (4.15)

The problem is estimating the values of Ã1 and also γi
γ1

. One can expect that

fi > fj leads to γi < γj due to dynamic power increase and this can be considered as a

constraint in the implementation.
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4.7 Evaluation

This section describes the experimental evaluation of our scheme. We explain our

implementation on a real embedded platform. We show the results of our proposed method

to find the thermal parameters from steady-state temperature data. We also explore the

effect of our approaches in the error correction of estimated thermal parameters. Further-

more, we validate our method of finding the location of CPU core on the floorplan. We also

show the results of our parameter-based power estimation model and compare it with data

collected from on-chip power sensors.

4.7.1 Platform

We performed our experiments on an ODroid-XU4 development board [64] equipped

with a Samsung Exynos5422 SoC based on the ARM big.LITTLE heterogeneous computing

architecture. The Exynos CPU package contains two different quad-core CPU clusters of

little Cortex-A7 and big Cortex-A15 cores. Built-in temperature sensors with a sampling

rate of 10 Hz and precision of 1° C are available for each big CPU core as well as the GPU

to measure the operating temperature2. The DTM throttles the frequency of the entire

big CPU cluster to 900 MHz when one of its cores exceeds the hardware-defined maximum

temperature threshold of 95° C. There is no active or passive cooling mechanism enabled

on the CPU. The big CPU cluster frequency can be dynamically adjusted within the range

of [0.2, 2.0] GHz. However, for each experiment, it was pinned at a fixed frequency in the

range of [0.7, 1.4] GHz to avoid thermal violations that occur when all CPU cores run fully-

2There is no temperature sensor for little cores since the power consumption and heat dissipation of the
little cluster is substantially lower than that of the big cluster.
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utilized beyond 1.4 GHz. Moreover, as the frequency increases, the data incurs a higher

magnitude noise compared to the noise observed when operating at lower frequencies. It

is worth noting that frequency changes between tests affect all homogeneous cores on the

CPU, ensuring that each core in the cluster maintains the same frequency. Also, during

each experiment, ambient temperature is regulated at 21° C.

4.7.2 Thermal Parameter Estimation with Steady-State Data

Idle Steady-State Temperature

First, we measure the temperature of CPU cores at different frequencies and de-

termine the steady state temperature when all big CPU cores are idle. As we show in

Fig. 4.6a, the temperatures of the big CPU cores during the idle state changes with CPU

frequency for two possible reasons: i) some parts of big CPU package such as CCI, big CPU

controlling unit, cache memory and its peripherals still operate at their designated frequen-

cies and cause heat dissipation, and ii) other IPs on the SoC may operate with big CPU

frequency. This temperature increase can also be caused by chip leakage power-induced

heat dissipation.

Dynamic Temperature

Fig. 4.6b depicts the relative temperature increase of each CPU core at different

frequency levels when that core is fully-utilized. There is a slight difference in the temper-

ature increase between the CPU cores despite identical workloads and micro-architectures.

Although there is noise related to the precision of on-chip thermal sensors, this difference
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Figure 4.6: (a) Idle steady-state temperature of each core at different frequency levels. (b) Temper-

ature increase of CPU cores due to computation.

Table 4.1: Descriptions of steady-state traces on big cores.

Case name Descriptions Traces (decimal) # of traces

CA1 one-core experiments Z1, Z2, Z4, Z8 4

CA3 three-core experiments Z7, Z11, Z13, Z14 4

CA2 two-core experiments Z3, Z5, Z6, Z9, Z10, Z12 6

CA1, 3 one-core & three-core experi-

ments

Z1, Z2, Z4, Z7, Z8, Z11, Z13, Z14 8

CA1, 2 one-core & two-core experi-

ments

Z1, Z2, Z3, Z4, Z5, Z6, Z8, Z9, Z10, Z12 10

CA1, 2, 3, 4 all experiments Z1, Z2, . . . , Z15 15

is mainly due to a variation in the location of those sensors on the CPU cores.

4.7.3 Noise Detection and Steady-State Data Ensembles

We evaluate our scheme in improving the accuracy of thermal parameter estimation

by using the ensemble of steady-state profiles from multiple frequency levels. We apply the

superposition theorem as in Eq. 4.8 to estimate the steady-state temperature of CPU cores

when different subsets of them are fully-utilized. We use the data collected from a subset
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Figure 4.7: The error of steady-state temperature of CPU cores by using different cases in construc-

tion of Y .

of all possible combinations of CPU cores at the fixed clock frequency of 1.4 GHz.3 The

details on the subsets used to construct the matrix Y are given in Table 4.1. Some cases

contain the least number of orthogonal profiles (i.e., 4 profiles) while others contain more

profiles. The case CA1, 2, 3, 4 includes all profiles to construct the matrix Y. The name of

each case indicates the number of fully-utilized CPU cores. For instance, CA1, 2 includes

four profiles of one CPU core and six profiles of two cores.

Fig. 4.7 depicts the error in steady-state temperature of each CPU core under dif-

ferent utilization scenarios (Y from Eq. 4.14). As shown in the figure, using more profiles

helps reduce the effect of noise in constructing Y. The proposed anomaly detection mecha-

3Note that the total number of possible core combinations is 24 in a quad-core system and the total

number of selecting a subset of the combinations is 224 .
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nism presented in Sec. 4.5.2 was applied to the profiles and excluded the outliers from being

considered for Y. For instance, applying this mechanism detected an anomaly in the profile

Z6 by comparing it with the other profiles. Hence, while constructing Y, we were able to

find out that the anomaly was not because of an error in the other profiles but rather due

to the error in Z6.

The mean square errors (MSE) of the temperature model for all CPU cores under

all different settings are shown in Fig. 4.8. The x axis is sorted in ascending order in terms

of the number of profiles used during the construction of Y. Some spikes in the results, e.g.,

the yellow line at CA1, 2, are due to that additional traces contained noisy data. However,

the error generally decreases as more profiles are used for the construction of Y. This trend

indicates that our proposed approach to considering data ensembles can reduce the negative

impact of noisy data and improve the accuracy of thermal parameter estimation.
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Figure 4.9: Temperature increase when a)core 1 2)core 2 3)core 3 4)core 4 operates fully-utilized

4.7.4 Floorplan Estimation

We validate our proposed floorplan estimation method on the Exynos5422 SoC.

The temperature increase of each CPU core when only one CPU core is fully-utilized at a

time is depicted in Fig. 4.9.

We draw the proposed adjacency graph according to data of 1.4 GHz. Fig-

ures 4.10a-c show the steps to construct the final adjacency graph for the Exynos5422.

As we observe in Fig. 4.10d, the cores C3 and C4 have greater spatial proximity than cores

C3 and C2. Although the physical layout of the cores on the CPU package is bi-symmetrical,

the primary reason for the asymmetrical layout shown in Fig. 4.10d is that the location of

the built-in temperature sensors on each processor may vary between cores. Additionally
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Figure 4.10: Floorplan estimation of Exynos5422 based on data of 1.4 GHz. (a) The fully-connected

graph from the temperature increase data, (b) Graph reduction stage (c) The CPU affinity graph, (d)

Estimation of GPU location relative to CPU location, and (e) The actual Exynos5422 floorplan [36].

the L2 cache memory and peripheral controllers may have an effect on the modeled spatial

proximity between the core pairs of C1, C2 and C3, C4 . Using the same approach and GPU

temperature data, we are also able to locate the embedded GPU by profiling the heat con-

duction between each CPU cores and the GPU. Fig. 4.10d depicts the estimated location

of the embedded GPU in the Exynos5422. The floorplan estimation is validated with the

data reported in [36]4.

We construct the template of the matrix A to be compatible with the estimated

floorplan. The matrix Ã at 1.4 GHz is then computed by using the steady-state data of

CA1, 2, 3, 4 at different frequency levels:

4The CPU core labeling in [36] is different from the labels in the driver and it is verified with infra-red
imaging captured by an FLIR A325sc IR camera [29].
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Figure 4.11: Power data of CPU cores in Exynos5422. (a) Total power of the big cluster with built-in

sensors, (b) The leakage power data; the relative power estimates with different frequency ranges

used, (c) Comparison between the estimated relative power consumption and the normalized actual

power data from built-in power sensors for CA1, and (d) Comparison for CA1, 2, 3, 4.

Ã =



0.2961 −0.1324 0 −0.1194

−0.1324 0.3017 −0.1579 0

0 −0.1579 0.3088 −0.1269

−0.1194 0 −0.1269 0.2798


.

4.7.5 Relative Power Estimation

The relative power consumption of each CPU core can be estimated while estimat-

ing Ã, as explained in Sec. 4.6.2. Fig. 4.11 illustrates the estimated power consumption.
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The results are obtained using profiles from different frequency ranges. As depicted in the

figure, the estimated relative power closely follows the actual data collected from the built-in

power sensors of the XU3 board that is equipped with the same Exynos5422 SoC.

4.7.6 Temperature Prediction

We estimate the parameter γ1 as the base parameter for the clock frequency 1.4

GHz in our experiments. Based on this, the absolute value of other γs can be determined.

As discussed in Sec. 4.5.5, we use the transient-state trace when all CPU cores are cooling

down.

After estimating the values of γs, we apply our model to predict the operating

temperature of CPU cores in two different scenarios. Figures 4.12a-d show the CPU tem-

peratures when only two CPU cores are fully utilized and Figures 4.12e-h show that when

all CPU cores are fully utilized. In each sub-figure, “data” means the CPU operating tem-

perature measured from a real platform and “mdl” means the temperature predicted by

our model. As shown, there are some differences in transient-state temperature values,

especially at the earlier part of the experiments. The difference is relatively small when

the frequency is low. On the other hand, in steady state, the temperature predicted by

the model is very close to the real one and the difference is less than 1.25° C in all cases.

Since the steady-state temperature is the metric to test the thermal safety of the system,

we expect that our proposed scheme can be effectively used in the thermal-aware design of

COTS-based mixed-criticality systems.
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4.8 Summary

In this chapter, we proposed a novel, rapid, and accurate scheme to estimate the

thermal parameters of COTS multi-core processors for real-time mixed-criticality systems.

By decomposing our estimation scheme into steady-state and transient-state stages, we

substantially reduce the number of transient-state profiles needed to estimate the system’s

thermal parameters. We presented methods to improve the accuracy of our scheme by

utilizing additional temperature profiles in the parameter estimation. Our proposed scheme

is fast to converge and has a low computational cost for the prediction of chip operating

temperature. Hence, it can be even used in an event-driven manner, e.g., at the arrival

and the departure of each job of periodic real-time tasks, with negligible memory and

computational overhead. We derived the thermal characteristics of a multi-core processor

which remain unchanged across different frequency levels. We also showed the effectiveness

of our scheme in extracting the relative power consumption information from temperature

profiles.
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(a) core 1 (b) core 2

(c) core 3 (d) core 4

(e) core 1 (f) core 2

(g) core 3 (h) core 4

Figure 4.12: The CPU temperature from sensor data and the model when a-d) two cores are fully-

utilized Z10 e-h) all cores are fully-utilized Z15.
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Chapter 5

Conclusions

This dissertation shows that the timing predictability of real-time tasks in dynamic

thermal conditions is achievable on multi-core GPU-integrated SoC platforms by designing

a novel thermal-aware system framework with the support of analytical timing and thermal

models.

We discussed challenges arising from the thermal interference on heterogeneous

multi-core SoC platforms. In Chapter 2, we focused on bounding the temperature increase

due to heat conduction among CPU cores as well as integrated computational accelerators

like GPUs. We proposed a thermal-aware CPU-GPU framework to handle both real-time

CPU-only and GPU-using tasks by designing thermal-aware servers that bound the maxi-

mum operating temperature of SoCs with the assurance of performance predictability. In

Chapter 3, we introduced a novel multi-core mixed-criticality scheduling framework with

ambient temperature awareness to bound heat generation at each criticality level and to trig-

ger the criticality mode change by ambient temperature changes. We tackled the thermal-
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aware real-time scheduling challenges in dynamic environment conditions by decomposing

the analysis into thermal schedulability and timing schedulability. We introduced the notion

of idle thermal servers that allow bounding the maximum operating temperature in MCS

in way that the temperature increase due to heat dissipation during an inactive time of idle

servers is not less than that of running preemptive servers under any task execution pattern.

In Chapter 4, we presented our work on the estimation of processor thermal parameters to

obtain a precise thermal model without using special measurement instruments or access to

proprietary information. We showed that even a small number of temperature traces from

on-chip thermal sensors is sufficient to achieve an accurate thermal parameter estimation.

Not only can our framework detect anomalies in thermal profiles, but increases accuracy

using multi-frequency data ensembles and takes into account extra observations made at

one or a subset of frequency levels.

5.1 Future Work

There are possible extensions and improvements to the work presented in this

dissertation. The following suggests several future research directions that can be built

upon our work.

5.1.1 Timing Assurance and Thermal Safety on SoC Platforms

By considering task allocation to CPU and GPU cores, the schedulability of real-

time tasks with a given temperature constraint can be further increased. We believe that

it is possible to develop an offline mapping algorithm to increase the schedulability of a
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taskset by determining whether a task executes on the CPU or the GPU according to the

system parameters and its execution timing model.

In our task model, tasks may or may not include concurrent segment which exe-

cutes on GPU. When there is a GPU segment request, the corresponding task issues a GPU

access request. However, it is possible to design an online algorithm to determine if concur-

rent task segment executes on GPU or CPU. In this way, some jobs of a task can execute

only on CPU while the rest executing on the integrated GPU. We believe this technique can

reduce the maximum peak temperature of embedded systems and also increase the timing

schedulability of tasksets.

The miscellaneous operations contains a single data transfer to/from GPUs. How-

ever, in practice, for improving performance or overcoming the resource limit of GPUs,

data can be divided into several chunks and transmitted to GPUs so that data copy and

kernel execution can be overlapped. We believe that updating the GPU execution model

and revisiting some of our proposed protocols will enable this feature and the practical

applicability of our proposed framework will also increase.

The thermal behavior of GPU-using tasks may depend significantly on the type of

resources used by their kernels. For instance, a GPU kernel frequently accessing local mem-

ory may generate much less heat than those using global memory or being computationally-

intensive. A potential direction to this issue would be developing an analytical model based

on the thermal footprint of real-time applications to bound the maximum peak temperature

with acceptable margins.
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5.1.2 Dynamic Ambient Temperature-Aware Framework

In our proposed thermal-schedulability analysis for multiple real-time tasks on

multi-core SoCs, identical idle servers are assumed for all CPU cores at each criticality

level. This assumption can affect the thermal schedulability of a real-time taskset. We

believe that extending our analysis to allow different idle server settings per CPU core can

improve the range of ambient temperature supported by mixed-criticality levels. Besides,

developing our analysis to capture the effect of cooling packages and forced heat convection

can be a challenging issue.

In our proposed framework, a criticality mode change is triggered by ambient

temperature which is different from the well-known Vestal model [92], which focuses on

varying assurance of execution timing. It is intriguing to extend our framework such that

changes in both ambient temperature and execution time of tasks trigger the criticality

mode of MCS.

5.1.3 Thermal Parameter Estimation Scheme

We believe that our proposed scheme can be extended to capture the thermal

footprint of different tasks on heterogeneous SoCs by using a minimum number of profiles.

We also believe that the idea of further development of the analysis to capture the effect of

cooling packages and forced heat convection lead to the estimation of operating temperature

of SoCs in various CPU cooling conditions at runtime. Additionally, statistical approaches

to construct the adjacency matrix of the location of CPU cores and IPs can be a potential

intriguing extension.
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The robustness of our proposed estimation scheme against noise in the thermal

profiles has not been discussed through mathematical analysis. To be more precise, although

our proposed method estimates the thermal parameters of SoCs with acceptable margins,

we did not quantify the degree of noise or errors in the estimation with respect to the

amount of data used. Given that it is essential to assess the trustworthy of each thermal

profile, we consider this as interesting future work.
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