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Abstract

The Epistemology of the Infinite

by

Patrick James Ryan

Doctor of Philosophy in Philosophy

University of California, Berkeley

Professor Paolo Mancosu, Co-chair

Associate Professor Shamik Dasgupta, Co-chair

The great mathematician, physicist, and philosopher, Hermann Weyl, once called mathemat-
ics the “science of the infinite.” This is a fitting title: contemporary mathematics—especially
Cantorian set theory—provides us with marvelous ways of taming and clarifying the infinite.
Nonetheless, I believe that the epistemic significance of mathematical infinity remains poorly
understood. This dissertation investigates the role of the infinite in three diverse areas of
study: number theory, cosmology, and probability theory. A discovery that emerges from my
work is that the epistemic role of the infinite varies, often in surprising ways, across different
domains of knowledge.

My first chapter examines the role of mathematical infinity in number theory. It is reason-
able to think that theorems concerning finite patterns and structures in the natural numbers
are particularly “simple” or “elementary.” Indeed, such statements are comprehensible to a
wide range of investigators, regardless of their mathematical training. One might then expect
proofs of these theorems to be similarly comprehensible. However, many proofs, especially
those that utilize only finitary methods, are exceedingly difficult to understand. Conse-
quently, one finds that finitary theorems are often re-proved using infinitary techniques. My
claim is that this is because infinitary proofs are often explanatory, while finitary proofs
are not. This chapter analyzes why this is the case. Along the way, I investigate other
questions of long-standing interest in the philosophy of mathematics, e.g., the role of pu-
rity/impurity ascriptions and nature of the content of a theorem. In particular, I diagnose
the explanatory potential of the infinite by articulating a new construal of content. This
new construal both saves intuitive epistemic ascriptions made in mathematical practice and
explains the unexpected role of the infinite in providing explanatory proofs of finitary state-
ments. Thus, in number theory, my claim is that the infinite often plays an explanatory role.
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My second chapter turns to the role of the infinite in cosmology. It investigates a question
much discussed by philosophers and physicists alike: is the spatial extent of the universe
finite or infinite? Contemporary cosmological research has indicated that one of the essen-
tial determinants of the extent of the universe is the topology we ascribe to space. Topology
is a global property, which may suggest that it is not testable through local observation.
Nonetheless, some cosmologists have indicated that it may be empirically detected, thereby
providing an answer to the question of spatial extent. I argue that, in fact, the epistemic sta-
tus of the topology of space is extremely subtle and not well captured by any of the categories
commonly employed by philosophers of science. In particular, I argue that topological prop-
erties are neither empirical nor a priori (even in suitably weakened senses). Furthermore, I
claim that we should prefer topological properties that generate finite universe models (con-
sistent with our best data) in order to avoid extremely thorny issues concerning the physics
of an infinite universe. I argue for such a preference on the grounds of the simplicity and
explanatory power of finite universe models. Thus, in cosmology, my claim is that the finite
often plays an explanatory and simplifying role.

My third chapter investigates several paradoxes that arise in the foundations of infinitary
probability theory: the Label Invariance Paradox, God’s Lottery, and Bertrand’s Paradox. I
argue that these have been poorly understood because they do not expressly concern prob-
ability theory, but rather our intuitions about—and formal techniques for dealing with—
infinite sets. The paradoxes in question are, in fact, symptoms of our complete reliance
upon Cantorian cardinality and its associated criterion of sameness of “size.” That is, two
sets have the same cardinality if and only if the elements of the sets can be placed in 1-1 cor-
respondence. When applied to infinite sets, this criterion produces counterintuitive verdicts.
For instance, given a fair lottery on the natural numbers, we expect that the probability
of drawing an even number is 1/2, and likewise for drawing an odd number. However, one
can construct “relabellings” of the naturals such that the probability of drawing an even
number remains 1/2, while the probability for drawing an odd number becomes 1/4. I argue
that, ultimately, it is the coarseness of Cantorian cardinality that generates the probabilistic
paradoxes. I then propose that finer-grained measures of infinite sets from mathematical
logic and number theory can help to dissolve the paradoxes in question. Thus, in probabil-
ity theory, we find that particular kinds of infinitary techniques effectively systematize our
theory, while others lead to paradox.
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But as in landlessness alone resides the highest truth, shoreless, indefinite as
God—so, better it is to perish in that howling infinite, than to be ingloriously
dashed upon the lee, even if that were safety!

–Moby-Dick, Chapter 23, The Lee Shore.

“Infinity!” Törless had often heard the word in mathematics lessons. It had
never meant anything in particular to him. The term kept on recurring;
somebody had once invented it, and since then it had become possible to
calculate with it as surely as with anything real and solid. It was whatever it
stood for in the calculation; and beyond that Törless had never sought to
understand it. But now it flashed through him, with startling clarity, that there
was something terribly disturbing about this word. It seemed to him like a
concept that had been tamed and with which he himself had been daily going
through his little circus tricks; and now all of a sudden it had broken loose.
Something surpassing all comprehension, something wild and annihilating, that
once had been put to sleep by some ingenious operation, had suddenly leapt
awake and was there again in all its terrifying strength. There, in the sky, it
was standing over him, alive and threatening and sneering. At last he shut his
eyes, the sight of it was such anguish to him.

–Die Verwirrungen des Zöglings Törleß (The Confusions of Young Törless).
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B The Metamathematics of Szemerédi’s Theorem and Ergodic Theory . . . . . 195
C Reverse Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

iii



C.1 First-Order Arithmetic and PRA . . . . . . . . . . . . . . . . . . . . 197
C.2 Second-Order Arithmetic and Its Subsystems . . . . . . . . . . . . . 198

D Inflationary Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
E Alpha-Theory and Numerosities . . . . . . . . . . . . . . . . . . . . . . . . . 210

E.1 Properties of Counting Systems . . . . . . . . . . . . . . . . . . . . . 210
E.2 The Axioms of Alpha-Calculus Theory . . . . . . . . . . . . . . . . . 210
E.3 Labelled Sets and Alpha-Limits . . . . . . . . . . . . . . . . . . . . . 210
E.4 Qualified Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

F Kolmogorov’s Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
G Non-Archimedean Probability (NAP) Axioms . . . . . . . . . . . . . . . . . 215
H Translation of §5 of Bertrand’s Calcul des Probabilités . . . . . . . . . . . . . 217

iv



Acknowledgments

I would like to thank, first and foremost, my advisor, Paolo Mancosu. Paolo’s intellectual
influence should be apparent from the first words of the dissertation. From the start of my
time at Berkeley, Paolo showed me new ways to think philosophically about mathematics,
logic, and their histories. He also made clear to me the incredible amount of thought, schol-
arship, and effort that must go into worthwhile research. I have tried, though perhaps have
not always succeeded, to do justice to his insights in what follows. Besides this, he has been
a constant source of patience, support, and encouragement over the course of some truly
difficult years. He has my deepest gratitude.

I must also thank Shamik Dasgupta for graciously joining this project in media res. Shamik
often helped me to consider my work in a new light, which is an invaluable part of the philo-
sophical process. I have also benefitted from his requests for further clarity in presentation
and high-level argumentation. (This should be evident in the selections of the dissertation
that have been published.) Finally, Shamik got me excited about Reichenbach and Poincaré,
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1 General Introduction

This dissertation consists of three studies unified by both their methodology and subject
matter. Let me begin with a description of the former, since the question of what “philo-
sophical methodology” is and how it differs from that of other disciplines has long been a
starting point of philosophical reflection. In what follows, I attempt to practice what might
be called “historically and scientifically informed philosophy.” By this I mean a type of
philosophy that is attentive to three things: (i) the ideas and approaches of philosophers,
mathematicians, and scientists of the past;1 (ii) contemporary technical developments in the
sciences;2 (iii) how scientific practitioners employ these technical aspects. My methodological
approach proceeds from the conviction that engagement with these three areas3 is crucial to
worthwhile philosophical research in general. Indeed, I think that this becomes particularly
clear in the philosophical study of mathematics and the sciences.

If one only examines contemporary mathematical and scientific theories, viz., independent
of their histories and foundational assumptions, it is easy to miss interesting conceptual
difficulties that are no longer explicitly addressed. Contemporary theories have a much
“smoother” look to them because choices were made in order to deal with a particular
problem (or to set it aside entirely). Furthermore, it is often the case that philosophers were
involved in this process and that their views directly impacted the work of practitioners.
Understanding the dynamics of this process both elucidates new philosophical connections
and serves as an effective antidote against the thought that canonical philosophical questions
no longer have force.

On the other hand, in order to engage fruitfully with mathematics and the sciences, one
must also have some level of technical proficiency. This allows one to exclude questions that
are ill-formed, for certainly there are such. It also allows one to appreciate the significance
of a particular result, postulate, etc. in the contemporary scientific edifice, and thus suggests
promising lines of future research. I attempt to follow this general methodology, and thereby
blend the histories of philosophy, mathematics, and the sciences with a close engagement
with the technical features of contemporary research.

As for my subject matter, it is the philosophy of mathematics, broadly construed to
include excursions into logic, physics, and probability. More precisely, I consider the role
played by infinity in shaping our scientific theories and various epistemological questions
that arise from the use of infinitary techniques. Infinity is, of course, a perennial source

1Aristotle, Kant, Poincaré, Reichenbach, and Weyl loom particularly large.
2Throughout the introduction, I use “science” very broadly to include not only the natural sciences but

also mathematics and logic. Recent work in number theory, reverse mathematics, cosmology, and probability
will feature below.

3Or, at least one of them, depending on the nature of one’s work.
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of both mathematical and philosophical reflection. I have tried to examine it from less
typical perspectives. Many discussions of infinity focus on either canonical “paradoxes of
the infinite,”4 such as Zeno’s and Russell’s, or developments in Cantorian set theory (or
both). This is not unjustified: paradoxes serve as a gadfly to philosophy5 and Cantor’s
theory of ordinals and cardinals is perhaps the most significant mathematical advance in
our understanding of the infinite. Nonetheless, the study of infinity is the domain of neither
clever manipulators of paradox nor set theorists alone. Infinity permeates the mathematical
and scientific landscape, and thus much of human activity and thought.

There is, however, something puzzling about this state of affairs: it would seem that a
famously abstract, difficult, and even indeterminate concept is used to formulate theories
about more concrete phenomena. Why is this? What accounts for this “[...] theoretical
shaping of the world that presses so far beyond the given” ([Weyl, 2012], 28)? Whence the
seeming “mysterious effectiveness of the infinite”?6 These questions serve as motivation for
the following investigations.

It is now worth pausing to ask what is meant by “the infinite.” Indeed, one cannot give
an univocal definition of the concept, for this is part of its interest, but we can at least
provide some disambiguation.7 One helpful distinction is that between a non-mathematical
and mathematical sense of “infinite.” In its non-mathematical usage, “infinite” means “un-
limited,” “endless,” “immeasurably great in some respect.” In this sense, we might call God
or various of God’s attributes “infinite.” One will also see this non-mathematical sense of
the infinite applied to space, time, and the universe, but oftentimes this is superseded by
further mathematical descriptions.8 In its mathematical usage, “infinite” means “having a
determinate measure that is not finite.” For instance, according to Cantor’s theory of infinite
cardinals, the “size” of the set of natural numbers is |N| = ℵ0, the smallest infinite cardinal.

A second distinction, formulated in Aristotle’s early and epoch-making investigations into
infinity, is that between the “potential” and the “actual” infinite.9 The potential infinite
arises from the indefinite iteration of a process, e.g., the indefinite division of a finite spatial
magnitude. As Aristotle says, “In general, the infinite is in virtue of one thing’s constantly
being taken after another; each thing taken is finite, but it is always one followed by another”
(Physics, III.6, 206a27-29). On the other hand, the “actual” infinite would result if such a
process could be completed “in a flash,” resulting in, say, infinitely many actual divisions of
a spatial magnitude. Aristotle himself rejects the notion of the actual infinite.10 Note that
Aristotle is working under the auspices of our mathematical notion insofar as he considers
the application of infinity to quantifiable magnitudes. Indeed, in contemporary mathematics
(and philosophy), his distinction remains very much alive.11

In the history of infinity, even these few distinctions intersect one another in interesting

4A classic introduction to the infinite, [Moore, 2019], frames most of his discussion in terms of paradoxes.
5Indeed, I have been unable to resist it. See Chapter 3.
6To paraphrase the title of E. Wigner’s famous paper, [Wigner, 1960], concerning the role of mathematics

in the natural sciences.
7For further discussion, see [Moore, 2019], [Easwaran et al., 2023], and the references therein.
8Consider my discussion in Chapter 2.
9See Physics, III.4-8. I quote from [Hussey, 1983].

10As far as I know, there is only one commentator who disagrees with this general statement: see
[Rosen, 2021].

11For discussion, see, e.g., [Linnebo and Shapiro, 2018].
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and complicated ways. I cannot do justice to that story here. Nonetheless, we are now able
to narrow our focus somewhat. In what follows, I will be concerned with a strictly mathe-
matical sense of infinity. However, even internal to mathematics, we witness a proliferation
of techniques for understanding and measuring the infinite. Indeed, in the two millennia fol-
lowing Aristotle, most philosophers, scientists, and mathematicians considered the potential
infinite to be the only notion suitable for scientific purposes.12 A significant change occurred
in the late 19th century as a result of Cantor’s groundbreaking mathematical work. His
development of transfinite set theory showed that sound mathematical sense could be made
of the “actual” infinite.13 Of course, Cantor’s theory was not immediately accepted; far
from it. The famous foundational dispute between the “schools” of logicism, intuitionism,
formalism, and predicativism soon followed, and this was, at its heart, a dispute over the
nature of infinity in mathematics.14

As the dust from this dispute began to settle, in part due to the axiomatization of set
theory provided by Zermelo and Fraenkel (Zermelo-Fraenkel set theory with Choice; ZFC),
concerns about infinity were allayed (or, perhaps, swept under the carpet). However, many
questions about the infinite remain. As we shall see, these questions are of great import
for the philosophy of mathematics and quickly become intertwined with other philosophical
concerns. Given these complicated dependencies, each chapter is not necessarily organized
with infinitary concerns foregrounded. However, the motivation and common thread of all
chapters resides in the infinite. Here is a small sample of the questions that arise below:
What do we gain by proving results about the finite using infinitary resources? What is
lost? Can such infinitary proofs be explanatory? If so, why? What is the role of infinity in
cosmology? Should it be avoided? What is its connection to other mathematical properties
of spacetime? What is the role of infinity in probabilistic reasoning? Should we prefer
one criterion for “measuring” infinite quantities over another depending upon our scientific
context?

What conclusions can be drawn from such an investigation? Following the methodology
sketched above, I did not try to force my studies onto a Procrustean bed but rather allowed
myself to be led by the phenomena. The different contexts and ways of thinking about the
infinite found below are complex and variegated, and my conclusions reflect this complexity.
Nonetheless, I hope to provide my reader with new ways of thinking about the epistemic
import of the infinite in mathematized theories. If nothing else, my aim was to map out
discrete regions in which infinitary considerations play a central role, viz., number theory,
cosmology, and probability theory, and to see whether interesting continuities or discontinu-
ities arise. Ultimately, we find a good deal of discontinuity. In my number-theoretic case,
we find that the infinite plays an explanatory role, mediated by (suitably understood) vari-
eties of simplicity and unification. On the other hand, in relativistic cosmology, the infinite
produces many difficulties, and thus in the cases I analyze the finite plays an explanatory
and simplifying role. Finally, in probability theory, particular kinds of infinitary techniques
effectively systematize our intuitions, while others lead to paradox. Let me now conclude

12For a philosophical and historical discussion of some important episodes concerning the infinite in the
17th century, see [Mancosu, 1996].

13For a discussion of the historical and mathematical developments, see [Ferreirós, 1999].
14For reflections on this by two intellectual giants of the time, see [Weyl, 2012] and [Gentzen, 1969]. See

also the essays in [van Heijenoort, 1967] and [Mancosu, 1998].
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with a chapter-by-chapter summary of these findings.

Chapter 2: I argue for an association between impurity and explanatory power in con-
temporary mathematics. Roughly, a proof of a theorem is said to be “impure” if it utilizes
concepts intuitively “foreign” or “extraneous” to those present in the theorem itself, e.g.,
the use of infinitary resources in the proof of a finitary theorem. This proposal cuts against
a long tradition of philosophers and mathematicians alike (e.g., Aristotle, Bolzano, Hartry
Field) who have argued that purity and explanatory power go hand-in-hand. Indeed, an
association between impurity and explanatory power is rather surprising. If an explanation
is to provide the “reason-why” a theorem is true, it is plausible to think that an appeal
to different conceptual resources could subtly modify the question we are trying to answer
or could cause us to lose essential data for answering the question. However, I show that,
provided various conditions hold, these worries are not apropros. My argument proceeds
by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and
various of its proofs (Chapter 2.3). In particular, I show that it is only by appealing to
impure resources, especially those utilizing infinitary techniques, that we obtain an explana-
tory proof of Szemerédi’s theorem. I begin to account for the explanatory power of impurity
by articulating a new construal of the content of a mathematical statement, which I call
structural content. I argue that the availability of shared structural content both saves in-
tuitive epistemic distinctions made in mathematical practice and simultaneously explicates
the intervention of surprising and explanatorily rich resources (Chapter 2.4).

I then proceed to substantiate and explicate the claim that impurity plays an explanatory
role. That is, though the above demonstrates how it is possible that impurity produces an
explanatory proof (via the presence of shared structural content), it does not show, in detail,
how this actually occurs. My primary contention is that impurity helps to generate varieties
of simplicity and unification, and these render the proof explanatory (Chapter 2.5 and 2.7).
In particular, following a famous distinction made by Aristotle, I claim that impurity makes
the “reason-why” (to dioti) a theorem is true particularly explicit and helps us recognize the
“reason-why” qua “reason-why.” This occurs because infinitary resources help to clear away
complicated finitary dependencies that obfuscate the reason-why and its role in the proof of
the theorem. This “information management” via infinity in turn helps to produce highly
linear and comprehensible proof structures.

Finally, I provide a reassessment of what has come to be known as Gödel’s Doctrine (Chapter
2.6). In the formulation and proof of his famous Incompleteness Theorems, Gödel had shown
the existence of finitary statements that required infinitary resources to prove them, viz., the
Gödel sentence, G. This led him to postulate that “the unlimited transfinite iteration of the
powerset operation is necessary to account for finitary mathematics” (Gödel’s Doctrine).
Indeed, this claim garnered further support over the course of the 20th century because of
the production of various other finitary “independence” results (e.g., Paris-Harrington the-
orem, Goodstein’s theorem). Nonetheless, proof-theoretic work by Solomon Feferman and
others showed that these finitary results could be proved using much weaker systems, e.g.,
predicatively justifiable systems, thereby challenging Gödel’s Doctrine. I argue that, though
these technical results are unimpeachable, their philosophical significance is overstated. In
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particular, though “strong” infinitary systems may not be necessary for proving these fini-
tary independence results, I argue that such systems are necessary for the production of
maximally comprehensible and explanatory proofs. I believe that this then accounts for the
fact that mathematicians continue to use “strong” infinitary resources even if these are not
strictly necessary. Speaking more broadly, the exclusive focus on axiomatic strength and
proof-theoretic necessity has neglected interesting lines of research that are helpful for pro-
ducing an epistemology of mathematics adequate to how mathematics is actually practiced.

Chapter 3: I begin by considering the fact that modern cosmology faces a radical under-
determination problem. In particular, there are very many cosmological models (models of
General Relativity) compatible with our best (and best possible) observational data. At first
blush, this may be quite unsurprising given that cosmology deals with physics at extremely
large scales. A rather more surprising fact is that, even under strong hypotheses about the
global structure of space (the Cosmological Principle), this underdetermination persists; in
particular, spatial topology remains observationally underdetermined (Chapter 3.3 and 3.4).
Is there any way to break this topological underdetermination? I survey recent work in
observational cosmology that has aimed to provide definitive answers on this front and con-
clude that the prospects for empirically determining the topology of space are not promising
(Chapter 3.5). Nonetheless, I argue that we can muster reasons to prefer various topological
properties over others. In particular, I favor the adoption of multiply connected universe
models on grounds of (i) simplicity, (ii) Machian considerations, and (iii) explanatory power
(Chapter 3.6, 3.7, 3.8). Crucially, we are able to appeal to such grounds because multiply
connected topologies open up the possibility of finite universe models (consistent with our
best data), which in turn avoid thorny issues concerning the postulation of an actually infi-
nite universe.

In light of the above underdetermination, I then consider the puzzling epistemic status
of global properties of spacetime, e.g., the topology of space. Indeed, if spatial topology
is always underdetermined by observational data, and some ascription of spatial topology
is required for the cogency of modern cosmology, what are we to say of it? A natural
suggestion is that the topology of space is conventional. After examining work by Poincaré
and Reichenbach, I conclude that, though there is a sense in which calling spatial topology
“conventional” is correct, conventionality of any stripe does not fully capture its epistemic
status (Chapter 3.9). This is because of the foundational role of spatial topology in our
cosmological theorizing: it would appear that the topology of space makes possible the
application of fundamental physical concepts and subsidiary physical laws. Thus, I turn to
Michael Friedman’s work on the relativized or constitutive a priori and argue that spatial
topology is a component of the constitutive a priori apparatus of General Relativity (Chapter
3.10). I then discuss how this examination of the epistemic status of spatial topology brings
to light various unclarities in philosophical accounts of conventionalism and the constitutive
a priori. Finally, I conclude by claiming some fusion of these views is required to account
for our case. Thus, the epistemic status of spatial topology is extremely subtle and escapes
classification by categories commonly employed by philosophers of science.
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Chapter 4: I consider several famous paradoxes that arise in infinitary probability theory:
the Label Invariance paradox, God’s Lottery, and Bertrand’s paradox (Chapter 4.3, 4.4). I
argue that these paradoxes have been poorly understood by philosophers, mathematicians,
and physicists alike because they are not expressly about probability theory. Rather, they
concern our intuitions about—and techniques for measuring—infinite sets. I claim that the
paradoxes arise for two related reasons. First, they are produced by a conflict between our
intuitions concerning finite sets and attempts to generalize these intuitions to the infinite
case. When such generalizations occur, only particular intuitions can be preserved, while
others must be jettisoned. Second, the dominant generalization thus far has been the notion
of Cantorian cardinality and its associated criterion of sameness of “size.” That is, two
sets have the same cardinality if and only if the elements of the sets can be placed in 1-1
correspondence (Cantor’s Principle; CP). I argue that it is, ultimately, the coarseness
of CP that produces the probabilistic paradoxes and that finer-grained measures of infinite
sets, preserving more delicate part-whole and frequency intuitions, will help to dissolve and
diagnose the paradoxes in question. Thus, I provide a unified framework in which to think
about these seemingly distinction “probabilistic” paradoxes and suggest how they might be
resolved.

Finally, I use this examination to consider our current theories of “infinite counting,” i.e.,
the techniques we possess for “measuring” infinite sets. In particular, I consider the recently
developed theory of numerosities, which provides a way to formalize a Part-Whole (PW)
intuition when measuring the “size” of an infinite set (Chapter 4.2). That is, numerosities
validate the following intuition for infinite sets: if A is a proper subset of B, then the size of
A should be strictly less than the size of B (PW). A general theme that emerges from this
investigation is that there is an inextricable indeterminacy to our theories of infinite counting.
I offer some reflections on this and ultimately conclude that, in particular contexts, this
indeterminacy offers a flexibility that allows us to preserve properties suited to the context
in question.
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2 Szemerédi’s Theorem: An Exploration of Impurity, Content,

Infinity, and Mathematical Explanation

2.1 Introduction and Argument Outline

This study discusses some aspects of mathematical explanation through a detailed analysis
of an important result: Szemerédi’s theorem and various of its proofs.1 By mathematical
explanation I mean explanation internal to mathematics in which mathematical facts are
used to explain other mathematical facts; moreover, I here analyze a “local” conception of
mathematical explanation insofar as explanatory power is construed as a property of proofs.2

The details of the proofs I consider become quite advanced, so I should like to provide a
less technical introduction for a general philosophical audience. I do, however, encourage my
readers to work through as much of the technical material as possible; the initial statements
of the relevant theorems and my summary sections would be helpful places to start.3

The main thesis of this chapter is that impurity is not just a central aspect of con-
temporary mathematics, for that is an obvious descriptive claim, but also a central aspect
of mathematical explanation.4 That is, I argue impure methods play a distinctive role in
generating explanatory proofs. In defending this claim, I hope to present a synthesis of
ideas from philosophy, mathematical practice, and mathematical logic/foundations in or-
der to contribute to a more sophisticated and nuanced philosophy of mathematics. Such
a wedding of disciplines is required to do justice to the complexity of my subject matter,
viz., mathematics and its philosophical implications. Indeed, it seems unhealthy and intel-
lectually restrictive for there to be distinct “traditions” in the philosophy of mathematics,
focusing on either foundations or practice, respectively. Those interested in mathematical
practice (what Kitcher, now long ago, called the “maverick tradition”) should utilize the

0Content from Sections 1-4 of this chapter first appeared in The Review of Symbolic Logic. c©, the author,
2021. Please cite the published version: “Szemerédi’s Theorem: An Exploration of Impurity, Explanation,
and Content.” The Review of Symbolic Logic. 16(3): 700-739 (2023). https://www.doi.org/10.1017/

S1755020321000538.
1See Section 2.2 for criteria of selection. In particular, I consider the combinatorial and ergodic proofs of

Szemerédi’s theorem.
2See the Stanford Encyclopedia of Philosophy article by Mancosu for a discussion of both exter-

nal and internal mathematical explanations as well as the local versus global conception of explanation
([Mancosu, 2018]).

3Section 2.3 (Szemerédi’s theorem) up to the beginning of Section 2.3.1; Section 2.3.2 (Outline of Proof)
and Theorem 2.3.12 (Furstenberg Multiple Recurrence); Section 2.3.3 (Preliminary Mathematical and Philo-
sophical Remarks); Theorem 2.3.37 (Furstenberg Structure Theorem); Section 2.3.4 (Summary). It would
also be worthwhile for readers to familiarize themselves with the formal systems defined in Appendix C.

4See immediately below for explications of “impurity” and “mathematical explanation.”
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logical and foundational results at their disposal, and, conversely, the mathematical logician
should be attentive to the interesting epistemic features of mathematical practice. Finally,
neither group should focus solely on the ontological and epistemological problems raised in
Benacerraf’s famous set of articles [Benacerraf, 1965] and [Benacerraf, 1973], which have for
over fifty years so dominated the landscape of philosophy of mathematics. Indeed, the hope
is that close attention paid to both mathematical practice and foundations will shed new
light on the (genuinely important) concerns raised in these classic discussions. Similar points
have been stressed by both Feferman, at least implicitly, and very explicitly by Mancosu.5

Before precisifying my main thesis, a few remarks about the method and scope of this
study are in order. First, it is not my aim to enter into a discussion of even a small fraction of
the literature on explanation. Instead, I concentrate on a positive proposal: the possibility
and utility of explanations via impure techniques. Second, those desirous of a “rational
reconstruction” of mathematical explanation will not find it here. I am not sanguine about
the prospects for any “theory” of explanation. Explanation, even when restricted to the
mathematical context, is an expansive concept, and it is far from clear that there is a
singular phenomenon up for analysis.6 As such, I find it incredibly artificial to lay down a
priori desiderata, constituting some purported explication of explanation. This runs7 the
risk of becoming quite divorced from the actual mathematics. Rather, it seems much better
to proceed from the bottom up by comparing results and techniques that may be classified
in some relatively unobjectionable (though perhaps milquetoast) way as explanatory. Once
we have such a starting point, we can further examine how these results were proven and
hopefully find interesting confluences of conceptual resources that will help to enrich our
understanding of what explanation may look like.

My starting point is an ancient one. In Posterior Analytics, A.13, Aristotle distinguishes
between demonstrations “of the fact” ( ὅτι; lit.“the that”) and demonstrations “of the rea-
soned fact” ( διότι; lit.“the why”). That is, in mathematics8 we have proofs that show that
a theorem is true and proofs that show why a theorem is true. This is, then, more or less
the distinction between non-explanatory, though perfectly cogent, proofs and explanatory
proofs. Such a distinction9 helps to make good sense of mathematics as it is actually prac-
ticed, especially the fact that theorems, from the most elementary to the most complex, are

5The methodological points made here are, by now, old hat, but they are still important to state at
the outset. For a very helpful and detailed analysis of the various traditions in 20th century philosophy of
mathematics, see the Introduction of [Mancosu, 2008b].

6Some recent papers concerned primarily with Indispensability Arguments make the point that the prac-
tice of providing explanations is quite internally disunified and that we must be content with “explanatory
mini-projects.” See [Baker, 2016].

7And has run; see the unificationist approaches of Friedman and Kitcher below.
8Aristotle considers not only mathematics but axiomatized sciences in general. I say “axiomatized”

because, even though Aristotle employs examples from Greek sciences that were not axiomatized, e.g.,
astronomy, the theory of explanation provided in the Posterior Analytics proceeds from indemonstrable
axioms and scientific first principles, or, ἀρχαί. Indeed, explaining the inconsistency between this theory
and Aristotle’s own method has long been a classic problem in Aristotle scholarship. See, for instance,
[Barnes, 1969].

9I employ the distinction independent of Aristotle’s many conditions on when a syllogism counts as a
demonstration, e.g., the premises of such a syllogism are immediate, better known than the conclusion, etc.
See An. Post., A.2, 71b20 for the statement of these conditions.
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often proved multiple times and in various ways.10 Explanatory proofs are supposed to gen-
erate some understanding11 of the result being proved, while non-explanatory proofs merely
give one warrant for the truth of the theorem; explanatory proofs provide “the why,” while
non-explanatory proofs merely provide “the that.” In this paper, the relevant why-question
that an explanatory proof should answer will be: Why does a particular pattern occur in
sufficiently dense sets of positive integers? The answer turns out to involve a high-level
mathematical fact that allows us to exhaustively characterize each set. However, this fact
only becomes evident when we appeal to impure techniques. More precisely, how this fact
materializes and interacts with other elements of proof becomes perspicuous only in the im-
pure setting. Thus, in order to classify a proof as explanatory, it is not quite sufficient to
answer the why-question latent in some theorem: one must also show how the answer to the
“why” manifests itself.

Let me now introduce what is meant by purity (resp., impurity) in mathematical prac-
tice.12 Mathematicians commonly describe a proof of a theorem as “pure” if it uses only
what is “intrinsic” or “close” to the theorem. On the other hand, a proof is impure if it
draws on what is “extrinsic,” “distant,” or “foreign” to the theorem.13 Much recent work
has been done to tease out what, precisely, mathematicians might mean when making purity
ascriptions, in large part because there is a great deal of evidence that purity is a highly
valued epistemic virtue in mathematical practice. This amounts to making more precise the
distance measure implicit in statements about purity. One construal of this measure is that
of “elemental closeness:” a proof draws only on what is simpler or more elementary14 than
the theorem. Another is that of “topical closeness:” a proof draws only on what belongs to
the content of the theorem or what the theorem is about. Each metric then induces a purity
constraint in a straightforward way.15

There are intuitive reasons to believe that any such purity constraint yields epistemic
dividends, thus accounting for the importance of purity in the history of mathematics.16 For
instance, an elementally pure proof might, “make the most efficient use of the information
at the disposal of a given investigator,” while a topically pure proof might give one better
warrant to believe that the intended statement has been proved, rather than some different,
albeit closely related, one ([Arana, 2017], 208). However, surprisingly little has been said
about the relationship between explanation and purity in the contemporary literature.17

10Some examples that immediately spring to mind: the Pythagorean theorem, the Riemann-Roch theorem,
the Prime Number theorem, and, of course, the theorem considered in this paper.

11By this, I mean something like the conditions of explanation (whatever these may be) logically precede
those of understanding.

12For a more detailed treatment, see, for instance: [Detlefsen, 2008], [Detlefsen and Arana, 2011],
[Arana and Mancosu, 2012], [Arana, 2017], [Arana, 2019].

13A simple and intuitive example of impurity would be Descartes’ wedding of geometry and algebra in
analytic geometry.

14Of course, it is then incumbent on one to make precise what is meant by “elementary.” Mutatis mutandis
for topical purity and content.

15This suffices for now, but see the end of Section 2.4 where I indicate that the generation of a purity
constraint is not so obvious.

16Although I consider the mathematical case here, the basic philosophical question is quite general: in order
to get an explanation of some phenomenon should one appeal to foreign or endemic conceptual resources?
Some appropriate combination thereof?

17This is not the case when one considers historical texts. Bolzano argued convincingly for the antithesis
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Some recent work has taken this up, but only very casually and in passing.18 Though it may
be the case that considerations of purity are distinct from explanation,19 it is quite natural to
think that pure proofs would be paradigmatically explanatory (though, of course, I resist this
natural thought as any sort of meaningful generalization). For instance, if one thinks of an
explanation as an answer to a why-question, then an appeal to topical purity would appear
to facilitate an explanatory proof by ensuring that one is answering the intended question.
However, the case I consider in this paper is one in which radically impure techniques, i.e.,
techniques both elementally and topically impure, provide an explanatory proof.

It is worth mentioning remarks made in a more classical vein by Hartry Field in order to
motivate the main thesis of this paper. As is well known, Field is a staunch nominalist and
has provided the most systematic attempt to eliminate mathematical entities from scientific
explanations.20 Interestingly, he believes that one should want to be an eliminativist on
grounds independent of anti-platonism:

For even on the assumption that mathematical entities exist, there is a prima
facie oddity in thinking that they enter crucially into explanations of what is
going on in the non-platonic realm of matter. It seems to me that the most
satisfying explanations are usually ‘intrinsic’ ones that don’t invoke entities that
are causally irrelevant to what is being explained. ‘Extrinsic’ explanations are
acceptable [...] but it is natural to think that for any good extrinsic explanation
there is an intrinsic explanation that underlies it. [...] I regard the acceptance
of an extrinsic explanation as ultimate as at least somewhat odd ([Field, 1989],
18-19).

I hasten to note that Field is considering a rather different context: the use of mathematics
in explanations of physical phenomena. In that case, the purported oddity of extrinsic
explanations is plausible given that most (platonist and anti-platonist alike) would agree
that mathematical entities do not (or could not) participate in the spatio-temporal causal

of my claim, i.e., that only by appealing to pure techniques can one get an explanation. See his proof of the
Intermediate Value Theorem performed without appeal to “geometric” considerations in “Rein analytischer
Beweis...” Bolzano’s claim descends in large part from a consequence of Aristotle’s theory of demonstration,
namely that “[...] it is not possible to prove something by crossing from another genus, e.g., something
geometrical by means of arithmetic” ( οὐκ ἄρα ἔστιν ἐξ ἄλλου γένους μεταβάντα δεῖξαι, οἷον τὸ γεωμετρικὸν

ἀριθμητικῇ; translation my own; An. Post. A.7, 75a38). I remark below in Section 2.4 on the relationship
between my views and Aristotle’s. In any case, returning to Bolzano, the great success of the rigorous
development of analysis in the 19th century lends considerable weight to the association of purity and
explanation. For more concerning Bolzano and mathematical explanation see, for instance, [Kitcher, 1975],
[Mancosu, 1999], and [Betti, 2010]. Interestingly, when we pass to mathematics in the 20th century, there is
much less emphasis on purity as providing explanations, even though it is still an important epistemic virtue.
There seems to be an inextricably historical dimension to the relationship between purity and explanation.
Perhaps once the “local foundations” for a subdomain of mathematics are given, i.e., the basic concepts
are made sufficiently precise, inconsistencies are removed, etc., purity becomes much less important? But
perhaps in providing the “local foundations” purity is essential?

18See, for instance, [Lange, 2017].
19Namely, purity can stand as a genuine epistemic virtue without appeal to explanation. See a brief

discussion in [Lange, 2017], pp. 292-3. Here Lange makes clear that he believes purity and explanation are
quite distinct.

20See [Field, 1980].
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nexus. Thus, his claim that “...the role of mathematical entities, in our explanations of the
physical world, is very different from the role of physical entities in the same explanations” is a
potentially reasonable one (19). Nonetheless, one might well wonder if there is something odd
about extrinsic explanations in general, i.e., independent of a causal construal of explanation.
Should we think that there is always an intrinsic explanation in the offing, i.e., an explanation
appealing only to concepts endemic or “close” to the explanandum? In particular, is it odd
to think that we might have mathematical explanations of mathematical facts that make
essential appeal to impure considerations? Should we think that any such impure explanation
has a “better” pure explanation underlying it? Field does not offer any arguments for this
general preference, and, obviously, I wish to resist such a move. Nonetheless, it is worth
thinking about whether there is an intuitive strangeness to extrinsic (impure) explanations,
especially in light of the advantages of pure proofs alluded to above. Part of my task in
this chapter is to provide criteria for impure explanations that might allay such concerns21

and to show that sometimes one must appeal to impure techniques in order to generate an
explanatory proof.22 I also indicate this connection because I tend to think considerations of
impurity/purity have much more affinity with a suitably general notion of extrinsic/intrinsic
explanation than has been acknowledged.

Another important strand of this study is an exploration of the relationship between in-
finitary and finitary mathematics23 and the consequences of such a relationship for an account
of mathematical explanation. This relates quite naturally to the forgoing remarks about im-
purity and explanation: one way of providing an (elementally) impure proof of a finitary
theorem is to prove it using infinitary techniques. Furthermore, the fact that infinitary con-
cepts have direct relevance for finitary results is a metamathematically and philosophically
fascinating phenomenon that warrants further investigation.24 Looking ahead: Szemerédi’s
theorem is a strictly finitary, combinatorial result that involves the additive structure of sub-
sets of the natural numbers. Strikingly, as we shall see, Szemerédi’s theorem is equivalent to
an infinitary result, and one of its impure proofs (ergodic) makes essential use of a transfinite
construction. One moral that I draw from all this is that, somewhat astonishingly, partic-
ular results involving the finite and infinite are explained by the same fact (the ubiquitous
“dichotomy between structure and randomness”). Another is that, though we may not re-
quire particular (oftentimes infinitary) mathematical resources to prove a theorem, fixating
merely on what one can get away with proof-theoretically obscures the explanatory role of
such resources. I believe that one should consider these infinitary and impure resources in
some sense necessary if they are the best means of providing an explanatory proof of a given
theorem.25

A crucial question at this point is the following: how precisely does impurity lead to
explanation? I claim that the answer is two-fold. Impurity leads to:

1. greater simplicity in proofs, where simplicity is construed as “conceptual speed-up”
(Section 2.5);

21See, in particular, Section 2.4 on mathematical content.
22Viz., in order to get an explanation of Szemerédi’s theorem, one must turn to the impure (ergodic) proof

instead of the pure (combinatorial) one.
23See Section 2.2 for an explication of the finitary-infinitary distinction.
24See [Avigad, 2009] for a related metamathematical investigation.
25See my discussion in Section 2.6.
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2. unification (of various sorts to be made precise) (Section 2.7).

It has long been claimed that impure techniques are “simpler” than pure ones; recent work
by Arana26 has shown that when one interprets “simplicity” as the proof-theoretic measure
of proof length the association is equivocal. However, I demonstrate that a sort of simplicity
is achieved by the impure proof of Szemerédi’s theorem insofar as the global structure of the
proof is made conceptually clearer.27 I then consider how one should ontologically interpret
the mathematical entities essential to an explanatory proof and suggest that they might
support a restricted form of platonism via an indispensability argument.28

Concerning unification: there is a distinguished tradition in the philosophy of science
literature wherein explanation is understood as theoretical unification. The locus classicus
is Michael Friedman’s [Friedman, 1974], although similar views can be found both in Kant
and “unofficially” in the Hempelian deductive-nomological model. Friedman’s central insight
is that any successful account of explanation must be both “objective” and describe how
explanation relates to understanding.29 He believes that explanation as unification meets
both criteria because unification, i.e., the subsumption of disparate phenomena under more
general regularities or laws, reduces the number of facts an investigator must take as brute,
thereby generating greater understanding of the world:

[...]this is the essence of scientific explanation—science increases our understand-
ing of the world by reducing the total number of independent phenomena that we
have to accept as ultimate or given. A world with fewer independent phenomena
is, others things equal, more comprehensible than one with more ([Friedman, 1974],
15).

Friedman’s formal model for quantitatively measuring such a reduction was shown by Philip
Kitcher to suffer from serious difficulties.30 Nonetheless, his central insight has been incred-
ibly influential. Kitcher himself agrees with Friedman’s basic idea that explanation should
be understood as theoretical unification and argues at length for this thesis in a number
of works.31 Kitcher believes that one virtue of such an account is that it can be applied
uniformly to the sciences and mathematics unlike, for instance, causal theories of expla-
nation which are inapplicable to purely mathematical contexts. Unfortunately, his model,
despite its greater philosophical sophistication, has been shown to generate verdicts of ex-
planatoriness contrary to mathematical practice.32 One of the lessons to take away from this
literature is that any “rational reconstruction” of explanation, especially via the construction

26See [Arana, 2017].
27It is important to note that one usually has to appeal to “soft” measures to make sense of epistemic

virtues in mathematics. This will come up later when I consider unificatory models of explanation: it seems
that these cannot capture important aspects of mathematical practice when they merely quantify syntactic
criteria.

28See Section 2.6 below.
29In general, I agree that we should have both these criteria. However, Friedman’s conception of objectivity

is somewhat myopic and should be expanded.
30See [Kitcher, 1976].
31See [Kitcher, 1981], [Kitcher, 1984], [Kitcher, 1989].
32See the case study from real algebraic geometry in [Hafner and Mancosu, 2008].
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of a quasi-formal model in which one is counting syntactic features of theories, is unlikely to
succeed.33

Still, the idea that unification has something to do with explanation is intuitive and
quite embedded in scientific and mathematical practice. For instance, even in the case study
considered in [Hafner and Mancosu, 2008], mathematicians insist upon a sort of unificationist
approach. Clearly then, unification (much less explanation!) must be said in many ways.
In [Morrison, 2000] Margaret Morrison takes up the task of determining what is meant
by “unification” in the natural sciences and shows, quite convincingly, that unification and
explanation often come apart. I utilize some distinctions found in her excellent discussion and
show that the same conclusion cannot be drawn in the purely mathematical case. Indeed, the
impure (specifically, ergodic) proof of Szemerédi’s theorem can be understood as unificatory
and yet reveals the “reason why” the result holds. There is, then, a significant disanalogy
between explanatory mechanisms in the sciences and mathematics. Thus, I argue that
Kitcher is partially correct: we can often understand unification as an aspect of explanation
in mathematics, but, it would seem, this is less often the case in the natural sciences.

This conclusion must, however, be defended from the mathematical analogue of Morri-
son’s critique of unification in the sciences. One of her main points is that the mathematical
apparatus of a scientific theory is often responsible for the unification of the theory, but this
fails to actually explain why a particular event/phenomenon occurs. This is because, more
often than not, one must investigate the causal behavior of a physical system to provide
an explanation, and this information is not encoded by the mathematics of the theory. Ini-
tially, one might think that such an issue cannot arise internal to mathematics: there are
no causal mechanisms at work. Nonetheless, it is quite reasonable to think that passing
to a more abstract, infinitary, unificatory mathematical setting will result in a loss of data
germane to the original context. This is certainly the case,34 but, crucially, I show that the
relevant explanatory data is preserved in a detour through the infinitary and impure set-
ting. Another way to put this point is that the explanatory content of Szemerédi’s theorem
is not lost when one proves the theorem via impure techniques. This requires an analysis
of mathematical content, i.e., the topic or subject matter of a particular theorem, which I
undertake in Section 2.4. I consider a few proposals for what might count as the content of
a theorem and attempt to excavate an “intermediate” notion of content that is both faithful
to mathematical practice and allows one to account for surprising interventions of impure
techniques. Finally, I argue that there must be some content shared by the theorem to be
proved and the impure techniques utilized. If this were not the case, then the mathematical
analogue of Morrison’s thesis would be entirely applicable.

With this (rather long) schematic of my argument in place, let me now turn to the result
itself and provide some criteria of selection that, hopefully, will bolster confidence in the
philosophical conclusions I have outlined.

33I provide a brief survey of some of this material in Section 2.7.
34For example, in the case of Szemerédi’s theorem, when one passes to the impure (infinitary and er-

godic) setting, one loses the ability to compute effective bounds. This loss of information is a quite general
phenomenon.
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2.2 Criteria of Selection

Before providing my criteria of selection, let me define the distinction between finitary and
infinitary mathematics. Boiled down to a slogan, finitary mathematics can be understood
to mean the “theory of finite sets.” More precisely, we have the following result:35

Theorem 2.2.1. First-order Peano arithmetic (PA) is equivalent to ZF−, i.e., Zermelo-
Fraenkel set theory without the Axiom of Infinity and with the negation of the Axiom of
Infinity. Here “equivalent” means that PA and ZF− are mutually interpretable (and thus
equiconsistent).

The interpretation of PA in ZF− is quite easy to see: interpret 0 as ∅ and the successor
function as x 7→ x ∪ {x}. The converse is more surprising but can be done by coding finite
sets with natural numbers. In particular, defining the membership relation ∈ on the natural
numbers as

n ∈ m iff the nth digit in the binary representation of m is 1 (2.2.1)

interprets ZF− (this interpretation is due to Ackermann36). On the other hand, one can
understand infinitary mathematics to mean the “theory of infinite sets.” This distinction can
take on new contours in different contexts, e.g., finitary mathematics in Hilbert’s Program
is weaker than what I am calling finitary here.37 When appearing in the mathematical wild,
rather than in more precise logical contexts, finitary mathematics employs notions like: the
cardinality of finite sets (of course), upper and lower bounds of such sets, and measures
of bounded sets. Infinitary mathematics then employs notions like: sequences, measurable
sets and functions, general measurability and integrability, convergence, and compactness.
This battery of concepts should suffice to make clear when and why a result is called either
finitary or infinitary below.38

I consider a case study in which infinitary and impure techniques are used to prove
results with explicit combinatorial, finitary content: Szemerédi’s theorem39 on arithmetic
progressions and a special case of this, van der Waerden’s theorem. The former admits
of an ergodic proof40 ([Furstenberg, 1977], [Furstenberg et al., 1982]), the latter of a topo-

35See the recent paper by Kaye and Wong [Kaye and Wong, 2007] in which they investigate this result
and locate some imprecision in the folklore. They indicate that the commonly cited relationship between PA
and set theory is what I have given in Theorem 2.2.1; however, in order to show that the interpretations are
inverses of one another (bi-interpretability) one must carefully axiomatize ZF. This is interesting, but does
not affect the substance of the distinction made here.

36For instance, 55 serves as the code for the finite set {0, 1, 2, 4, 5} since 25 + 24 + 22 + 21 + 20 = 55.
37Once more, see Appendix C for a brief discussion of Hilbert’s Program and how various formal systems

may relate to it.
38For a nice reflection on finitary vs. infinitary mathematics in analysis, see the blog post by Terry Tao

here.
39There is a recent, albeit brief, discussion of this theorem in the philosophy of mathematical practice

literature. See [Arana, 2015]. The main purpose of that paper is to disambiguate various notions of “depth”
in mathematical practice taking Szemerédi’s theorem as example. Thus, though there is little overlap in
content, I take Arana’s paper as a nice companion piece that buttresses my selection of the theorem as
worthy of philosophical attention.

40As well as a Fourier analytic and hypergraph proof.
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logical proof ([Furstenberg and Weiss, 1978]), and both have explicit combinatorial proofs41

([Szemerédi, 1975], [van der Waerden, 1928], respectively).
Let me now provide some criteria of selection. First, I consider results that do not

require42 infinitary and impure techniques to prove them. This sets them apart from, e.g., the
Paris-Harrington theorem, Goodstein’s theorem, and Friedman’s finitary version of Kruskal’s
theorem, which I may consider at another time. In attempting to elucidate the explanatory
dividends of infinitary and impure methods in mathematics, it is crucial that I examine
results that admit of multiple varieties of proof. This allows for a fruitful comparison of
techniques, a comparison that (I hope) inclines one think that infinitary and impure methods,
though not “required” per se, are very much an essential part of mathematical practice and
explanation.

Second, these are results for which there is at least some methodological commentary
by leading mathematicians.43 This is of service, as I am of the mind that a successful
epistemology of mathematics should be broadly consonant with mathematical practice (at
least if we take ourselves to be explicating mathematics as an epistemic enterprise, rather
than some philosophical abstraction). Thus, if my philosophical analysis has some support
in the mathematical literature, I take this to be an advantage of my approach over those
more revisionary.

Third, both results I consider have also been subjected to metamathematical analysis.
Van der Waerden’s theorem and its topological proof have been examined proof-theoretically
by Girard ([Girard, 1987], 4A, 7E). Jeremy Avigad and Henry Towsner have attempted a
similar analysis of the ergodic proof of Szemerédi’s theorem, though given its greater complex-
ity this analysis is in much earlier stages ([Avigad, 2009], [Towsner, 2008]). Both analyses
are descendants of Kreisel’s “unwinding” program, the aim of which is to extract the con-
structive content of prima facie non-constructive proofs. In fact, they are perhaps the only
clearly successful mathematical applications of this program.44 The metamathematical data
available will allow us to make some of our observations more precise, e.g., as I discuss below,
the stage of the ergodic proof of Szemerédi’s theorem where crucial explanatory work is done
turns out to involve axiomatically strong mathematics.45 It would be very interesting to see

41In addition to the usually cited [van der Waerden, 1928], please see the excellent [van der Waerden, 1998]
for a less terse discussion.

42Indeed, it is likely the case that once much proof-theoretic work has been done, most mathematics does
not require the full strength of infinitary techniques. We should be careful not to confuse this descriptive
claim with a normative one that mathematics ought to be this way. Though we can “get away with”
proving many theorems from a relatively restricted mathematical universe, a great deal is lost when this is
done. See [Feferman, 1964] and [Avigad, 2003] for eloquent articulations of similar views. An interesting
question to which I would like to provide a partial answer is: what exactly is lost when we perform proof-
theoretic ontological and epistemological reductions? E.g., I am somewhat skeptical of Avigad’s strategy
in [Avigad, 2009] to provide a purely constructive, finitary proof of the ergodic version of Szemerédi’s theorem
that is as perspicuous as the ergodic proof. Even if an explicit combinatorial version of Furstenberg’s proof
can be given, I posit that explanatory value will be lost.

43For instance, I utilize a number of papers by Terry Tao. I am quite indebted to Tao’s excellent exposition
of many of the following results.

44See [Feferman, 1996]. Another example worth mentioning is Dirichlet’s Theorem on Arithmetic Progres-
sions; see [Avigad, 2003], pp. 267-269. Finally, refer to [Kohlenbach, 2008] for a contemporary discussion of
“unwinding” and “proof-mining” techniques in mathematics.

45See [Towsner, 2008] and [Avigad, 2009]. For a brief discussion of these and related formal systems, see
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if this phenomenon is more widespread. In particular, one lesson of the reverse mathemat-
ical program is that surprisingly diverse mathematical results cluster around various levels
of the reverse mathematical hierarchy. I am interested in whether we could find explanatory
clusters in the hierarchy, i.e., whether the resources needed to provide explanatory proofs of
diverse theorems accumulate at particular levels of axiomatic strength.

Finally, at least the initial presentation of these results should be relatively comprehen-
sible to many readers, given that the original theorems are “number-theoretic” (about the
behavior of certain sets of natural numbers or integers) and may be stated in finitary terms.
Though the infinitary methods I survey require a good deal more mathematical background,
I hope to make the important points about them tolerably clear for the working philoso-
pher.46 It should also be remarked that the apparently elementary nature of these theorems
does not at all impugn their centrality or depth.47 To my mind, many philosophical analyses
of mathematics are unsatisfying or fail outright because they choose examples that have no
obvious mathematical significance; this should then lead one to doubt the significance of
the philosophical conclusions drawn. That is, if one is attempting to provide a philosophy
of mathematics, the examples analyzed should be of acknowledged mathematical import.48

Van der Waerden’s and Szemerédi’s theorems, on the other hand, have been loci of work
in number theory and combinatorics for almost a century, and, as we shall see, gave rise to
entirely new sub-fields of mathematics. Finally, the conceptual approaches used to prove
these theorems have shown astonishing applicability in the solution of other, long-standing
questions, e.g., whether the prime numbers contain arbitrarily long arithmetic progressions.49

Indeed, the full significance of these theorems is far from understood.

2.3 Szemerédi’s Theorem

Let us begin with a crucial definition:

Definition 2.3.1. (Arithmetic Progression) For k, r ≥ 1, a k-length arithmetic progression,
written as a, a+ r, . . . , a+ (k− 1)r, is a sequence of k integers such that each element of the
progression differs from its predecessor by precisely r. We call a the base point and r the
radius of the arithmetic progression.

Example 2.3.2. The set of numbers {1, . . . , 9} is an extremely trivial example of an arith-
metic progression. We have a = 1, r = 1, and k = 9.

Appendices B and C.
46See my recommendations above (fn. 3) for the “theoretical minimum.”
47Again, see [Arana, 2015].
48This is not to say that simpler cases are of no use; indeed, in his [Lange, 2017], Marc Lange considers

nothing beyond the reach of an undergraduate in mathematics and in so doing assembles an important
collection of phenomenological data. However, at some point, philosophers have to engage with the “em-
barrassment of riches” offered by contemporary mathematics ([Mancosu, 2008a]). I think the philosophical
gains will be similarly rich, and I hope that this case study inclines my reader to think this as well.

49Answered affirmatively by Ben Green and Terry Tao in [Green and Tao, 2008]. This result is now
known as the Green-Tao theorem. As they note, it is very interesting that their entirely finitary argument is
conceptually closer to techniques in infinitary ergodic theory than it is to techniques in quantitative analysis.
Indeed, they rely upon methods akin to those employed in the ergodic proof of Szemerédi’s theorem. This
indicates the importance and depth of these methods.
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An arithmetic progression of interest to computational mathematicians is one of the longest
known arithmetic progression of primes:50

Example 2.3.3. Take a = 56211383760397, r = 44546738095860 and k = 0, 1, . . . , 22 for
an arithmetic progression of primes given by 56211383760397 + 44546738095860k.

Note that oftentimes we deal with arbitrarily long arithmetic progressions, where this is
commonly taken to mean finite arithmetic progressions of arbitrary length, i.e., without the
specification of some k.

In 1975 Szemerédi proved the following remarkable theorem, providing an answer to a long-
standing conjecture of Turán and Erdős:51

Theorem 2.3.4 (Szemerédi; infinitary). Let A be a subset of the integers Z with positive
upper density, i.e.,

δ(A) := lim sup
N→∞

|A ∩ [−N,N ]|
2N + 1

> 0. (2.3.1)

Then A contains arbitrarily long arithmetic progressions.

This is equivalent via a routine compactness argument to the strictly finitary statement:

Theorem 2.3.5 (Szemerédi; finitary). For every k ≥ 1 and real number 0 < δ ≤ 1, there
is an integer N(k, δ) ≥ 1 such that for every N ≥ N(k, δ), every set A ⊂ {1, . . . , N} of
cardinality |A| ≥ δN contains at least one arithmetic sequence of length k.

Szemerédi’s theorem is striking given its extreme generality. We lay down no conditions
on the set A under consideration, except that it is quite large, and discover that any such
A necessarily has a particular structure. Indeed, this is the sort of result that seems to call
out for explanation, namely, an account of why the theorem holds. Discovering “the why” of
Szemerédi’s theorem turns out to be a difficult affair. Szemerédi’s original proof was entirely
combinatorial and finitary; indeed, it is paradigmatic of what one might call a “pure” proof.
It is, however, incredibly intricate and has been judged, even by the very best professional
mathematicians working in this field, as “remarkably subtle” ([Tao, 2006]). Indeed, it is quite
rare, except in the most difficult and involved of proofs, to include a schematic diagram
outlining the proof steps, but this is just what Szemerédi does in [Szemerédi, 1975] (see
Appendix A).

Our aim will be to understand the strategy of the ergodic proof of Szemerédi’s theorem
and in so doing call attention to questions significant for an epistemology of mathematics,
especially questions concerning the nature of mathematical content, mathematical explana-
tion, and the role of infinitary reasoning. These questions will then be analyzed further in
the strictly philosophical sections below. I will also attempt to provide some of the main

50Note that the result of Green-Tao in [Green and Tao, 2008] is non-constructive and thus merely proves
the existence of arbitrarily long arithmetic progressions of primes.

51Both Szemerédi’s theorem and the Green-Tao theorem on primes are special cases of the most general
(and still open) Erdős-Turan conjecture for arithmetic progressions: Suppose that A = {a1 < a2 < . . .} is an
infinite sequence of integers such that

∑
1/ai =∞. Then A contains arbitrarily long arithmetic progressions.
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steps of the combinatorial argument to give a flavor of how it works, but only after the
ergodic proof of the theorem. Indeed, I want to suggest that this way is best for generating
any sort of understanding of why the theorem holds.

At the broadest level of analysis, the ergodic proof of Szemerédi’s theorem consists of two
main stages: (i) the proof of an equivalence between the original combinatorial statement of
the theorem (Theorem(s) 2.3.4 and 2.3.5) and an ergodic analogue (Theorem 2.3.12; corre-
spondence stage); (ii) the proof of the ergodic analogue via a “structure” theorem (Theorem
2.3.37; structure stage). I would like to note at the outset that the pure (combinatorial)
proof of Szemerédi’s theorem in [Szemerédi, 1975] also appeals to its own structure theorem
(a combinatorial one; see Lemma 2.5.3 and Lemma A.1), but obviously bypasses the detour
through ergodic theory. This detour is explanatorily significant primarily because the er-
godic structure theorem is much conceptually cleaner than its combinatorial analogue and
generates significant simplification of the entire proof. As a result, we are able to see why
Szemerédi’s theorem holds. All this will emerge in the discussion below. Let us now turn to
the first stage of the ergodic proof, the correspondence stage, which, though less crucial for
my analysis of mathematical explanation, is epistemologically significant in its own right.

2.3.1 Introduction to Correspondence Principles via van der Waerden’s Theo-

rem

Prima facie ergodic theory and combinatorics are quite unrelated to one another: the for-
mer involves the study of measure-preserving dynamical systems (infinitary and sometimes
highly uncomputable objects), while the latter involves studying various properties of finite
structures. Remarkably, Furstenberg, et al. demonstrated techniques by which one might
understand and prove a combinatorial theorem in a dynamical setting. Techniques that
“convert” a theorem from conceptual setting X to conceptual setting Y are known generally
as correspondence principles. I believe correspondence principles have much to do with the
uniqueness of mathematical epistemology and are worthy of careful philosophical study. In
particular, these function somewhat like bridge laws/principles familiar from the philosoph-
ical literature. These “mathematical” bridge laws are important for my purposes because
they facilitate the move from one theorem stated in a particular context to another statement
in a different context equivalent over some stronger mathematical theory; this then allows
for an expansion of explanatory resources for proof. Let me provide some examples and give
a flavor of how these principles function.

Ultimately, we will be concerned with Furstenberg Correspondence; this is the first step
in the ergodic proof of Szemerédi’s theorem wherein combinatorial, finitary content of the
above theorem is converted to a problem about recurrence patterns in dynamical systems.
Before analyzing this correspondence principle, I will examine a simpler case: namely, the
correspondence (Theorem 2.3.10) involved in van der Waerden’s theorem, which is a special
case of Szemerédi’s theorem. This should help us to understand the more complicated case
later on. Let’s lay out the basic definitions we will need to make sense of these correspondence
principles.

Definition 2.3.6 (Dynamical System). A dynamical system is a pair (X,T ) where X is a
set (or abstract space) and T : X → X is an invertible map operating on the elements of X.
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By T nx we understand T applied n times to some x ∈ X. Intuitively, we study the evolution
of X as it is transformed by T over time.

For example, we might consider the finite system (X,T ) where X is a finite set and T a
permutation of the elements of X. Similarly, we might understand a dynamical system as
the action of a group G on a set X. Thus far, at this level of abstraction, little interesting can
be said. However, applying a little more structure to dynamical systems will yield surprising
results. Specializing some (X,T ) to the case where X is a compact metric space and T a
homeomorphism52 will provide a proof of the following:

Theorem 2.3.7 (van der Waerden). For any finite coloring of the integers, there are arbi-
trarily long arithmetic progressions.

Like Szemerédi’s theorem, this too is equivalent to a strictly finitary theorem:

Theorem 2.3.8 (van der Waerden; finitary). Let k,m ≥ 1. Then any m-coloring of N
contains a monochromatic progression of length k.

Furstenberg showed that this could be understood in the setting of a topological dynam-
ical system insofar as it is equivalent to the following recurrence theorem:

Theorem 2.3.9 (Multiple Recurrence in Open Covers). Let (X,T ) be a topological dynam-
ical system, i.e., X is a compact metric space and T : X → X is a homeomorphism.53 Let
(Uα)α∈A be an open cover of X. Then there is some Uα such that for every k ≥ 1, we have
Uα ∩ T nUα ∩ · · · ∩ T (k−1)nUα 6= ∅ for some n > 0.

Theorem 2.3.10 (Combinatorial-Topological Correspondence Principle). van der Waer-
den’s theorem on arithmetic progressions and Multiple Recurrence in Open Covers are equiv-
alent.

I will prove neither van der Waerden’s theorem nor Multiple Recurrence nor the attendant
correspondence principle here. One reason for this is that the explanatory gains of “going
infinitary and impure” in this case are less striking (though not absent) than for Szemerédi’s
theorem, and so I am inclined to skimp on the details. In particular, the combinatorial
and topological proof strategies are very similar. Nonetheless, the simpler case of van der
Waerden’s theorem is still quite instructive, so let us examine the basic steps in the proof.

The combinatorial proof of van der Waerden’s theorem essentially proceeds by double
induction on k and m. For an excellent and careful build-up to the general argument,
see [Katz and Reimann, 2018]. Tao’s paper presents the proof via a “color focusing” strategy,
which I find a bit clearer, though the essential ideas are the same.54

In any case, the strategy of the topological proof of van der Waerden’s theorem is analo-
gous to the combinatorial proof: it proves Multiple Recurrence on a simple sort of topological

52A homeomorphism is a map f : X → Y between topological spaces that is bijective, continuous, and
has a continuous inverse.

53One may write X merely as a topological space and T as merely a continuous map, though it makes
only a small difference in the proof.

54One might immediately wonder whether proofs by induction are explanatory or not. Indeed, this is
a rather natural question and quite a lot of literature addresses it. See the many references provided in
[Mancosu, 2018].
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dynamical system55 and then proceeds by double induction. However, there are some im-
portant epistemic advantages of the topological setting. Indeed, Tao makes the explicit
comparison:

By invoking this correspondence principle [that between combinatorics and topo-
logical dynamics] one leaves the realm of number theory and enters the infinitary
realm of abstract topology. However, a key advantage of doing this is that we
can now manipulate a new object, namely the compact topological space X.
Indeed, the proof proceeds by first proving the claim for a particularly simple
class of such X, the minimal spaces X, and then extending to general X. This
strategy can of course also be applied directly on the integers, without appeal to
the correspondence principle, but it becomes somewhat less intuitive when doing
so...([Tao, 2007], 150-1).

The idea seems to be the following: “moving infinitary” allows us to abstract from many
features of the combinatorial proof that render this proof difficult to understand, e.g., the
need to keep track of many different parameters at once, while retaining the features that
show why the result is true. Indeed, we see that topological spaces X encode at least some of
the relevant finite coloring information expressed in van der Waerden’s theorem. Tao gives us
a nice and very simple example of this: if the coloring considered is such that one never sees a
red integer immediately after a blue integer, this fact will be picked up by the ambient topo-
logical space X, i.e., X is disjoint from the set of points {(xn), n ∈ Z : x0 is blue, x1 is red}.
I think this gets to the heart of what is fascinating about mathematics: we are able to move
from concepts of type X to a prima facie different set of concepts Y and find that various
results about these are in fact equivalent to results involving only type X. How can we make
sense of this? Certainly some information is lost in the transition from combinatorics to
topology, but nothing essential to the theorem we seek to prove: in both settings we can
show that, with minimal assumptions on the ambient set or space, some pattern will always
occur, viz., an arithmetic progression or recurrence in a dynamical system.

There are, then, several things we should notice. First, the notion of a correspondence
principle requires further analysis and should be related to questions of “mathematical con-
tent,” namely what are the various combinatorial theorems really about given that they
are shown to be equivalent to seemingly foreign statements about dynamical systems? On
an intuitive reading of mathematical content, subsets of Z are neither topological nor er-
godic; however, are other, potentially more useful notions of content available (Section 2.4)?
Second, what are the actual epistemic advantages of moving to a more “abstract” setting?
In the case of van der Warden’s theorem, the explanatory gains are not so clear given the
similarity of the combinatorial and topological proofs; however, in the Szemerédi case, the
similarities between proofs becomes much less explicit and the infinitary, ergodic setting is
much conceptually cleaner than the finitary, combinatorial setting. I consider this at greater
length in the section on impurity, simplicity, and explanation (Section 2.5).

Before moving on, let me provide a general schema for how proofs via correspondence

55An important difference between the dynamical proofs of van der Waerden’s and Szemerédi’s theorems
is that in the latter case the “simple sort” of system we wish to consider does not exhaust the field of
candidates. This is one way to see why van der Waerden is a special case of Szemerédi’s.
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principles are to work. This will help focus the arguments of the next section, which grow
more complex.

1. Take a theorem of type X for which we may have a proof utilizing concepts and
techniques endemic to type X, e.g., van der Waerden’s and Szemerédi’s theorems with
their combinatorial proofs.

2. Find (or construct) a statement of type Y which seems to mirror the desired result of
type X. This will then be the theorem to be proven.

3. Prove that there is an equivalence between the two theorems of types X and Y , i.e., a
correspondence principle.

4. Prove theorem of type Y with resources endemic to type Y , thereby proving the theo-
rem of type X.

With this preliminary information in hand, let me now explicitly turn to the ergodic
proof of Szemerédi’s theorem.

2.3.2 Ergodic Proof of Szemerédi’s Theorem

Outline of the Proof

Here I provide a sketch of the ergodic proof.56 This should be sufficient for most readers
and will contain the main conceptual moves that I will discuss in my philosophical analysis.
We begin with the correspondence stage of the proof: we have a problem about arithmetic
progressions in the integers and wish to convert it to an ergodic setting. The basic idea here
is that we can identify subsets A ⊂ Z with subsets of the ambient set or space X in the
dynamical system. Similarly, we can identify functions on the integers with functions on the
dynamical system. After this is done, rather surprisingly, the task of finding an arithmetic
progression in some A ⊂ Z is in fact equivalent to finding an arithmetic progression in the
subset of X identified with A. Let me try to make this a bit more precise (though saving
definitions for the following section). We can show, for our dynamical system57 (X,T ), that
there is a probability measure µ on X such that µ(E) = µ(T nE) for all n ∈ Z and measurable
sets E ⊂ X with E of positive measure. Then, the existence of some k length arithmetic
progression in A ⊂ Z (the assertion of Szemerédi’s theorem) is equivalent to the existence of
some x ∈ X such that a recurrence pattern x, T nx, . . . , T (k−1)nx is in E.

In particular, we can show that

lim inf
N→∞

1

N

N−1∑
n=0

µ
(
E ∩ T nE ∩ · · · ∩ T (k−1)nE

)
> 0 (2.3.2)

56See the expository paper [Zhao, ] for a very helpful and detailed analysis of the ergodic proof. I have
benefitted a great deal from reading this.

57To be specified as a measure-preserving system.
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for µ(E) > 0. This implies the recurrence claim above, i.e., x, T nx, . . . , T (k−1)nx is in E,
since it shows that the intersection of sets E ∩ T nE ∩ · · ·T (k−1)nE is non-empty for some
n. This concludes the correspondence principle stage of the proof. As I tried to draw out
above, this is already quite remarkable. We have an equivalence between two results in two
entirely different domains of mathematics and, furthermore, one domain deals with explicitly
computational entities, while the other deals with highly abstract and infinitary entities. In
addition to the questions I raised above, this move might also lead us to propose that some
variety of unification is occurring. We see that the more abstract dynamical setting provides
us with a conceptual framework to understand recurrence properties of various maps T ,
but also a specific kind of structure on the integers. Understanding precisely what kind of
unification this is requires some work. However, this suggests the possibility that unification
and explanation in mathematics might go together very often, unlike, for instance, in the
case of the physical sciences.58

The second stage of the proof involves showing 2.3.2 holds. I believe this is where the
ergodic proof yields great explanatory dividends. Let me first outline the situation we find
ourselves in when trying to prove 2.3.2. In short, any proof of 2.3.2 requires decomposing the
system under consideration into a structured component and a random component, which,
by the Correspondence Stage of the proof, is equivalent to decomposing any A ⊂ Z into
a structured set and a random set. Tao presents the situation with usual adeptness as a
“fundamental dichotomy between structure and randomness.” He continues,

the reason for the truth of Szemerédi’s theorem is very different in the cases when
A is random, and when A is structured. These two cases can then be combined
to handle the case when A is (or contains) a large (pseudo-)random subset of
a structured set. Each of the proofs of Szemerédi’s theorem59 now hinge on a
structure theorem which, very roughly speaking, asserts that every set of positive
density is a large pseudo-random60 subset of a structured set ([Tao, 2006], 583).

I will have more to say about the usage of structure theorems below. Returning to the
proof sketch, it turns out that in the ergodic setting the requisite structure theorem and the
dichotomy between structure and randomness are particularly explicit. This fact and the
simplification it effects in proving Szemerédi’s theorem renders the ergodic proof explanatory.
Let’s sketch how the structure theorem is applied in the ergodic setting.

The dichotomy presents itself as that between the periodicity of E under transformation
T (structured) or the mixing of E under transformation T (random). If E is periodic,
then this simply means T lE = E for some l > 0. Establishing 2.3.2 is then trivial as the
summand will be µ(E) whenever n is a multiple of l. Even in the less well-behaved case

58See my remarks in the Introduction and Section 2.7.
59Of which, at the moment, (and not including generalizations) there are four: (i) combinatorial, (ii)

ergodic, (iii) Fourier analytic, (iv) hypergraph.
60Just as with “random” and “structured,” one must make explicit what is meant by “pseudo-random”

in a particular context. Very generally, we can say that a pseudo-random set of integers resembles a
random set of integers with similar density in terms of particular arithmetic statistics. For instance, in
[Green and Tao, 2008], Green and Tao construct a superset of the primes (the “almost primes”), which is
pseudorandom in the sense that it satisfies a “linear forms condition” and a “correlation condition.” These
conditions correspond very closely to the ergodic notion of weak-mixing (defined below).
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of near-periodicity, we can show 2.3.2 in a very similar fashion. When all E for a space X
are near-periodic, then we say the dynamical system is compact. On the other hand, we get
the random scenario when E has a “mixing” property. Intuitively, this can be thought of as
follows: if E is some event in the probability space X, then T “mixes” the space randomly
such that all events {E, T 1E, T 2E, . . .} are independent of one another. This yields 2.3.2
trivially as then each recurrence pattern is just µ(E)k. Similar to the structured case, even
when we relax the mixing to the case of “weak mixing,” i.e., for sufficiently large intervals
of time, E and T nE become uncorrelated,61 2.3.2 can be proven. When all E in X have
this weak-mixing property, we say that the system is a weak mixing system. In either the
compact or weak mixing cases, we can prove our desired result. I discuss this in greater
detail below.

However, not all systems are either compact or weak-mixing.62 Nonetheless, provided that
X is not completely weak-mixing (i.e., totally random), we can always find some structured
component Y of X, which will itself give rise to a compact system. We can then analyze
the map from X → Y , called an extension map, which itself has structured or random
behavior. If X → Y is a weak-mixing or compact extension, then, even if X is neither of
these, we can project the problem down to Y . However, like systems, not all extensions
are either weak-mixing or compact. If X → Y is some such intermediate case, then we can
find some intermediate extension X → Y1 → Y such that Y1 → Y is a compact extension.
We can then pass to Y and show 2.3.2 holds. Thus, we must show that if 2.3.2 holds in
Y1 it holds in X. This process can be continued (transfinitely) by constructing a tower
X → Yα → · · · → Y1 → Y where each step Yn+1 → Yn is a compact extension and X → Yα
is weak-mixing. We can then lift property 2.3.2 from Y all the way up the tower to X itself.
This is the essence of the Furstenberg Structure Theorem (Theorem 2.3.37).

Thus, the ergodic approach to Szemerédi’s theorem yields a highly perspicuous proof
structure, which, in every case considered, will us tell why a system (and thus subset of
integers) has the recurrence pattern (arithmetic progressions) it does:63

1. Correspondence Principle Stage

(a) Convert Szemerédi’s theorem to a theorem about recurrence in a measure-preserving
system, i.e., Furstenberg Multiple Recurrence (Theorem 2.3.12 below).

(b) Prove that these theorems are equivalent.

2. Structure Theorem Stage

(a) Prove Furstenberg Multiple Recurrence.

(b) This must be done for any measure-preserving system for arbitrary k.

(c) Classify each system as either structured (compact), random (weak-mixing), or
neither. If the system is structured or random, we are done.

61Informally: knowing the initial state is no guide to the final state.
62This differs from the topological proof of van der Waerden’s theorem where all spaces under consideration

will either be minimal or not.
63Note, however, that the ergodic proof is not a proof by cases; I discuss this further below. See Section

2.3.4.
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(d) If the system is neither, we can construct a tower via the Furstenberg Struc-
ture Theorem, and eventually reduce to either the compact or weak mixing case.
Q.E.D.

Furstenberg Correspondence

Let me now spell out in greater mathematical detail how the Correspondence Principle
stage of the proof is to work. Again, we claim that Szemerédi’s theorem is equivalent to a
recurrence theorem on measure-preserving systems (Furstenberg correspondence principle).
To that end, define:

Definition 2.3.11. A measure-preserving system is a quadruple (X,B, µ, T ) where X is a
set (or abstract space), B is a σ-algebra of subsets of X, µ : B → [0, 1] is a probability
measure, namely, µ is additive and µ(X) = 1, and T : X → X is a measurable transformation
such that µ(T−1(E)) = µ(E) for all E ∈ B.

Then we have

Theorem 2.3.12 (Furstenberg Multiple Recurrence). Let (X,B, µ, T ) be a measure-preserving
system. Then for any E ∈ B of positive measure and any k ≥ 1, there exists some n > 0
such that

lim inf
n→∞

1

N

N−1∑
n=0

µ(E ∩ T nE ∩ · · · ∩ T (k−1)nE) > 0. (2.3.3)

We now show that Furstenberg Multiple Recurrence is in fact equivalent to Szemerédi’s
theorem, thus establishing our desired correspondence principle. There are many ways to go
about this; the most natural is to exploit a correspondence between sets in the system and
sets in the integers.

First, we identify sets E in the measure-preserving system with sets A in the integers
and likewise functions f on the system and functions F on the integers. Take E ∈ B and
some x ∈ X. We then define the recurrence set Ax,E ⊂ Z as

Ax,E := {n ∈ Z : T nx ∈ E} . (2.3.4)

Likewise, given some function f : X → R on (X,B, µ, T ) and x ∈ X, we define an associated
sequence Fx,f : Z→ R as

Fx,f (n) := f(T nx). (2.3.5)

Now we show that some set in the measure-preserving system will yield a recurrence set
Ax,E of positive upper density, as in the combinatorial version of Szemerédi’s theorem.

Lemma 2.3.13. Let (X,B, µ, T ) be a measure-preserving system, let E ∈ B be of positive
measure. Then there is some set F of positive measure such that the recurrence set Ax,E has
positive upper density for all x ∈ F .

Now we can show the equivalence we desire.
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Theorem 2.3.14 (Furstenberg Correspondence). The Furstenberg Multiple Recurrence the-
orem and Szemerédi’s theorem are equivalent.

Proof. Szemerédi ⇒ FMR: Take the set of all k-term arithmetic progressions in Z and
call it Ak. Let Xa be the set of points x ∈ X such that T ajx ∈ E for each j = 1, 2, . . . k.
Then let

Xk :=
⋃
a∈Ak

Xa (2.3.6)

which is the set of all points x ∈ X such that our recurrence set Ax,E := {n ∈ Z : T nx ∈ E}
contains some arithmetic progression.

Now we use set F constructed in the above Lemma. By Szemerédi’s theorem, Ax,E contains
a k-term arithmetic progression for all x ∈ F . Hence, F ⊂ Xk and µ(Xk) ≥ µ(F ) > 0. Ak

is countable and so µ(Xa) > 0 for any arithmetic progression a ∈ Ak. Thus,

T lXa ⊂ E ∩ T nE ∩ · · · ∩ T (k−1)nE (2.3.7)

for some l ∈ Z and n > 0. But T is measure-preserving and Xa has positive measure, so
T lXa must be also. Thus, we have Furstenberg Multiple Recurrence.

FMR ⇒ Szemerédi: The idea here is to apply Furstenberg recurrence to a rather uncon-
ventional dynamical system. This will then yield a number-theoretic result. One can think
about this as starting with a set in the integers and generating its dynamical analogue to
which FMR is then applied. We proceed by explicitly constructing a T -invariant measure
µ such that µ(E) > 0 where E is some subset of our unconventional dynamical system (X,T ).

This proof follows [Tao, 2007] closely. Suppose for contradiction that Szemerédi’s theorem
does not hold. Then there is some k ≥ 1 and some A ⊂ Z without an arithmetic progression
of length k and some sequence Ni of integers such that lim infi→∞

|A∩[−Ni,Ni]|
2Ni+1

> 0.

Now let us construct our unconventional dynamical system. Let Λ be some finite set and
form Ω := ΛZ, i.e., the set of all sequences with entries from Λ. Let X be any closed T -
invariant subset of Ω, where T is the shift-map, i.e., for some x ∈ Ω, Tx(n) 7→ Tx(n − 1).
Then (X,T ) is the dynamical system we desire. In particular, we can identify any subset of
Z with elements of X := {0, 1}Z.

Now for each i indexing Ni, we consider the random set Ai := A+xi where xi is a randomly
chosen integer from [−Ni, Ni]. We can then think of Ai as a random variable taking values
in X which, on the σ-algebra B of X, we identify with a probability measure µi on X.
In essence, we have now constructed our measure-preserving system to which FMR can be
applied. Using properties of X (separable compact Hausdorff space) we get that the µi for
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each random variable weakly converge to some probability measure µ, i.e.,

lim
i→∞

∫
X

f dµi =

∫
X

f dµ (2.3.8)

for any continuous f on X. Now let E ∈ B be given by E :=
{

(xn)n∈Z ∈ {0, 1}Z : xn = 1
}

.

E is both open and closed so

lim
i→∞

µi(E) = µ(E). (2.3.9)

Finally, given the way in which we constructed Ai and E,

µi(E) =
|A ∩ [−Ni, Ni]|

2Ni + 1
(2.3.10)

and this is of positive measure. Since we selected T to be the shift-map, i.e., T (xn)n∈Z :=
(xn−1)n∈Z, we have that limi→∞ µi(TE)−µi(E) = 0. Thus, in general, for any finite boolean
combination of E and its shifts, we have that µ is T -invariant.

By hypothesis, A contains no arithmetic progressions of length k, so after taking limits,

µ(E ∩ T nE ∩ · · · ∩ T (k−1)nE) = 0, (2.3.11)

for any n > 0. But this contradicts FMR. Thus, Szemerédi’s theorem holds.

2.3.3 Proof of Furstenberg Multiple Recurrence via the Furstenberg Structure

Theorem

Preliminary Mathematical and Philosophical Remarks

Now consider the Structure Theorem stage of proof that provides the reason why Szemerédi’s
theorem holds. But what, precisely, do I mean by this? Recall that, on the number-theoretic
version of Szemerédi’s theorem, we consider arbitrary subsets A ⊂ Z and show that they
contain arbitrarily long arithmetic progressions. Unsurprisingly, given the lack of explicit
constraints on A, one can find such arithmetic progressions in various subsets for very dif-
ferent reasons.64 For example, consider some random subset A of Z, where this means each
integer n in A has an independent probability of δ with 0 < δ < 1. It is now quite simple
to show that A in fact has infinitely many arithmetic progressions of length k because any
such progression will have a probability of δk of lying in A.65 On the other hand, were we
to consider some “structured” set, we would get the same answer for an entirely different
reason. For example, consider the Bohr set

{
n ∈ Z : ||nα||R /Z ≤ δ

}
with δ as above, α ∈ R,

and || · || yielding the distance between the argument and the nearest integer. For any α,

64See [Tao, 2006] for an extended discussion.
65Take arbitrary k-length arithmetic progression a, a+r, . . . , a(k−1)r. Each term contributes an indepen-

dent probability of δ and we have k terms, thus the total probability of finding the arithmetic progression is
δk.
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each αn can be made arbitrarily close to n and so each n is correlated with periods of α.
The sequence of such periods will then just be the arithmetic progression we seek.66

As I will sketch in greater detail below, the ergodic situation precisely mirrors the number-
theoretic situation. Namely, we will obtain Furstenberg Multiple Recurrence in an arbitrary
measure preserving system because systems exhibit either sufficient randomness (weak mix-
ing) or sufficient structure (compactness). In the weak mixing case, on average, the events
T nE, T 2nE, . . . , T (k−1)nE are uncorrelated such that the measure of E is approximately
µ(E)k fairly often (thus satisfying 2.3.2). As in the random number-theoretic case, since
the systems under consideration are sufficiently mixing (random), sooner or later we will
find the desired recurrence property by sheer luck. We will also find the recurrence property
in sufficiently structured systems (compact) because these systems will have events T nE
recur at regular intervals, i.e., the intersection of E and T nE over k-many iterations of T n

will be non-empty. Again, this is analogous to the number-theoretic case described above:
sufficient structure in the original set (or system) will guarantee the existence of the desired
arithmetic progression (or recurrence property).

The moral here is that we can find arbitrarily long arithmetic progressions in random
sets, structured sets, and various sets in between; however, the reason we can do this always
turns upon the classification of the set itself. This would seem to dash any hopes of a
general reason for a result like Szemerédi’s theorem; namely, the proof of the theorem would
have to amount to checking the existence of an arithmetic progression for each A, given
some classification of A. Such a task seems hopeless and I daresay would not produce an
explanation of why the theorem is true. One could not then even state the theorem as such;
rather, we would have some conjunction of independent theorems, each showing that some
set Ai has an arbitrarily long arithmetic progression given the classification of set Ai. In
order to avoid this situation, one would hope for a result that would allow us to group prima
facie very different subsets A into one class that shares some feature F , which in turn allows
us to understand why arithmetic progressions occur in each A. And this is just what the
Furstenberg Structure Theorem provides for the ergodic equivalent of Szemerédi’s theorem.
Indeed, it should be noted that every proof of Szemerédi’s theorem (combinatorial, ergodic,
Fourier analytic, hypergraph) makes essential use of some structure theorem that asserts
every set of positive density is or contains a large (pseudo-)random subset of a structured
set. Thus, the reason why we can always find the desired arithmetic progressions for any large
subset A ⊂ Z is that every subset can be decomposed into components that we know how to
handle, thereby obviating the need to classify each A and check for arithmetic progressions.

One might, at this point, complain that I have ignored essential details about the subsets
A under consideration. One might think that the real reason why some A has the arithmetic
progressions it does is because of the kind of set A is, e.g., highly structured, highly random,
etc., and that the kind of high-level structural result I am gesturing at abstracts from these
details. The way to actually explain why a particular set has the arithmetic progressions it
does requires a careful analysis of that set in particular. There may be something to this
complaint; indeed, I think this may be the mathematical analogue to Morrison’s contention
that techniques of unification invariably abstract from “mechanisms” of physical systems

66[Tao, 2006] gives many other examples, but I choose this one because it is entirely analogous to the
example of a structured system I consider below, the Circle Rotation system.
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which explain the behavior of the system. I will consider this in greater detail below (Section
2.7). However, though this kind of criticism may be fairly levelled at particular high-level
structural results, it does not really hold here. As we shall see, the Furstenberg Structure
Theorem gives an exhaustive means of characterizing each system (and so set) without, as
it were, digging into the nitty gritty details of the particular system or set. When we apply
the structure theorem to a particular system, even though the system might lie anywhere
along the spectrum of structure and randomness, we will be able to classify the system
precisely. This classification does rely on our understanding the two ends of spectrum, i.e.,
why a random system and why a highly structured system will have the recurrence pattern.
However, this is the only requisite contribution of “lower-level” or, if I can be allowed the
expression, “mechanistic” content. Once we know how to deal with the extremes and have
the structure theorem in hand, the actual classifications of the various systems (sets) do
not really matter and certainly do not contribute to the explanation of why Szemerédi’s
theorem holds. We bypass examining each particular system because each system will have
the pattern it does in virtue of the same reasons that compact and weak mixing systems
have this pattern; however, the only reason we can assert this is because of the Furstenberg
Structure Theorem. Let me now turn to this.

Introducing the Structure Theorem

There is an enormous amount of detail involved in explicitly proving the Furstenberg Struc-
ture Theorem and thus Furstenberg Multiple Recurrence (and thus, by Furstenberg Corre-
spondence, Szemerédi’s theorem). I cannot enter into all these details here, nor would it
be terribly helpful for the philosophical aims of this paper.67 [Furstenberg, 1977] contains
Furstenberg’s original ergodic proof of Szemerédi’s theorem, though the proof strategy is less
clear-cut than the 1979 and 1982 papers, precisely because the original proof does not make
essential use of the (full) Furstenberg Structure Theorem. [Furstenberg and Katznelson, 1979]
and [Furstenberg et al., 1982] do so and, in fact, prove an even stronger result. I primarily
follow [Furstenberg et al., 1982] in my presentation below. I have also referred to the very
helpful expository article by Zhao [Zhao, ].

It is convenient to state Furstenberg Multiple Recurrence (Theorem 2.3.12) in terms of
functions. Namely, we are interested in showing that the following property holds for every
measure-preserving system:

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f T nf T 2nf T (k−1)nf dµ > 0, (2.3.12)

for f ∈ L∞(X), f ≥ 0, f not a.e. zero. The formulation of (2.3.2; Theorem 2.3.12) and
2.3.12 are in fact equivalent because one can set f = χE, i.e., f is simply the indicator
function of some set E of positive measure in the σ-algebra B of the measure-preserving
system, and because, if

∫
X
f dµ > 0, we have the bound f ≥ cχE for some c > 0. Following

67See [Furstenberg, 1977], [Furstenberg and Katznelson, 1979], and [Furstenberg et al., 1982] for full de-
tails. [Tao, 2007] is also elucidating, but he does not offer explicit proofs; rather, he provides motivation
for various crucial moves involved in proving the Structure Theorem. Bryna Kra’s lecture notes are also
excellent and I have made use of these. See [Kra, 2007].
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the literature, we say that any measure preserving system that satisfies 2.3.12 and thus
Furstenberg Multiple Recurrence is SZ (for “Szemerédi”).

We seek to prove that all measure-preserving systems are SZ, and thus, by Furstenberg
Correspondence, that Szemerédi’s theorem holds. We proceed by examining the various kinds
of measure-preserving systems and ask whether each kind is SZ. It is trivial to prove this for
any measure-preserving system when k = 1, 2. The case of k = 3, in combinatorial dress,
is known as Roth’s theorem and was established in 1953 by K.F. Roth. I will not consider
these cases here, but rather the general claim for arbitrary k over all measure-preserving
systems.68

This in turn can be done by considering in more detail the “dichotomy between structure
and randomness.” I examine two kinds of measure-preserving systems: compact (structured)
and weak mixing (random), which can be proven to be SZ in a relatively straightforward
fashion. The ultimate point will be that these extremes do not exhaust the field of candidate
measure-preserving systems. This is unlike van der Waerden’s theorem, in which there is
only one kind of structured topological system, the minimal systems, and transferring the
desired recurrence property from minimal systems to arbitrary topological systems is trivial
using Zorn’s lemma. Because of the additional complexity of the ergodic case, we require the
Furstenberg Structure Theorem, the key to proving Furstenberg Multiple Recurrence and
Szemerédi’s theorem.

The strategy for the remainder of this section is as follows: Show that all compact and
all weak mixing systems are SZ. Then, show that any system X is either weak mixing or
has a nontrivial compact component. Next, show that this property is preserved under all
compact extensions, weak mixing extensions, and limits between components. Finally, show
that any measure preserving system can be decomposed into a transfinite sequence of factors
(intuitively, subsystems of the original system) such that the “base” factor is trivial (and
compact), each extension is either compact or weak mixing, and thus that any measure
preserving system is SZ. This last step is the content of the Furstenberg Structure Theorem.

Weak Mixing and Compact Systems

I attempted to describe above, in an intuitive fashion, why weak mixing (random) and
compact (structured) systems will be SZ. Let me now formulate these types of systems in a
bit more detail.

Definition 2.3.15. We say that a system (X,B, µ, T ) is mixing if the following condition
holds:

lim
n→∞

µ(T nE1 ∩ E2) = µ(E1)µ(E2) (2.3.13)

for all E1, E2 ∈ B. In essence, this tells us that for sufficiently large n, the probability of
being in E2 at time t0 and in E1 at time tn is the product of the individual probabilities.
Namely, over sufficiently large periods of time, events are uncorrelated. Thus, a mixing

68It is interesting to note that Szemerédi proved the (combinatorial) case of k = 4 in 1969. Proving the
theorem for arbitrary k then took six years, an indication of its great difficulty.

29



system is a highly random system in the sense that events on the probability space are
uncorrelated.

As noted in the proof outline, any mixing system will trivially satisfy Furstenberg Multiple
Recurrence. Consider then the weaker randomness condition:

Definition 2.3.16. We say that a system is weak mixing if the following condition holds:

lim
N→∞

1

N

N−1∑
n=0

|µ(T nE1 ∩ E2)− µ(E1)µ(E2)| = 0 (2.3.14)

for all E1, E2 ∈ B.

Weak mixing may be formulated in the following ways (at least):

Proposition 2.3.17. Let (X,B, µ, T ) be a system. Then the following are equivalent:

1. The system is weak mixing;

2. There is a set S ⊂ N of density zero such that, for all E1, E2,

µ(T nE1 ∩ E2)→ µ(E1)µ(E2), (2.3.15)

as n→∞ and n /∈ S.

3. The system (X ×X,B ×B, µ× µ, T × T ) is ergodic, where ergodicity is the property
that all T -invariant sets of a system, i.e., all E ∈ B with TE = E, have measure 0 or
1.

Consider the following example of a weak mixing system.

Example 2.3.18. (Bernoulli System) We can construct a weak mixing measure preserving
system from the previously mentioned “unconventional” dynamical system called a Bernoulli
system. Consider the space X of all sequences {xn}n∈Z taking values in some finite set, say
Γ := {1, . . . , r}. We can then formulate the σ-algebra B for X by letting B be the minimal
σ-algebra for which each evaluation x 7→ xn is measurable. The probability measure µ on B
will then just be the product measure

µ(xi1 = j1, xi2 = j2, . . . , xin = jn) = pj1 · · · pjn (2.3.16)

where we equip the finite set Γ with a probability distribution p1, . . . , pr. The measure
preserving transformation T is just the shift transformation from above.

Proposition 2.3.19. Let (X,B, µ, T ) be the Bernoulli System. Then

lim
n→∞

µ(E0 ∩ T nE1 ∩ T 2nE2 ∩ · · · ∩ T (k−1)nEk−1)→ µ(E0)µ(E1) · · ·µ(Ek−1). (2.3.17)

Proof. (Sketch) It suffices to prove this for any E ′ ∈ B that takes its values on a finite
fixed set of terms. These are dense in B, and so any measurable E can be approximated

30



arbitrarily closely to some E ′. Thus, we can obtain the proposition from considering any
such E ′ simply by taking limits. But the proposition is then quite trivial, since, as n→∞,
the terms defining each E0, T

nE1, etc. will be disjoint, and so the events in the probability
space are all independent. Thus, the measure of the intersection of all such events is just
the product of the measure of the events.

Thus, the system will be SZ since

lim
n→∞

µ(E0 ∩ T nE1 ∩ T 2nE2 ∩ · · · ∩ T (k−1)nEk−1) = µ(E)k > 0. (2.3.18)

In fact, this is true for all weak mixing systems.

Theorem 2.3.20. If a measure preserving system (X,B, µ, T ) is weak mixing, then it is
SZ.

Proof. See [Furstenberg et al., 1982], Section 3. The theorem follows from a number of
classical results in analysis, but the central insight is the same as in the example above: for
weak mixing systems µ(

⋂k−1
j=0 T

jnA) is approximately µ(A)k for most n.

Consider next an example of a highly structured system. Analogous to the “extreme” ran-
domness exhibited by a mixing system, an “extreme” case of structure is exhibited by a
periodic system, i.e., the case where T is periodic such that T nA = A. Obviously, this will
be SZ. Let us then weaken periodicity to “almost periodicity.” This is easily grasped by
examining the following example.

Example 2.3.21. (Circle Rotation) Consider (X,B, µ, T ) where X is the circle R /Z with
σ-algebra B, uniform probability measure µ (here Lebesgue measure), and the shift/rotation
transformation T : x 7→ x + a with a ∈ R. There are two ways in which this system might
evolve under the action of T : (i) a rational; (ii) a irrational. If a is rational, then we get the
trivial periodic case. If irrational, T will be “almost periodic,” in the sense that T n can be
made arbitrarily close to the identity transformation, since any na can be made arbitrarily
close to any integer.69 Thus, the transformation in question will also preserve the structure
of the system as the transformation is either periodic or almost periodic.

More precisely, we can prove that the Circle Rotation system is SZ.

Proposition 2.3.22. Let (X,B, µ, T ) be the Circle Rotation system. This system satisfies
Furstenberg Multiple Recurrence, i.e., for any E ∈ B, we have

lim inf
N→∞

1

N

N−1∑
n=0

µ(E ∩ T nE ∩ T 2nE ∩ · · · ∩ T (k−1)nE) > 0. (2.3.19)

Proof. Let E ∈ B with µ(E) > 0. Since
∫
E
χE(x + y)dµ(x) is a continuous function of y,

for every ε > 0 there is a δ > 0 such that

µ(E ∩ (E − y) ∩ (E − 2y) ∩ · · · (E − (k − 1)y)) > µ(E)− ε (2.3.20)

69Compare to the example of the Bohr set given in Section 2.3.3.
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whenever |y| < δ. Select ε = 1
2
µ(E). Then

µ(E ∩ T nE ∩ T 2nE ∩ · · · ∩ T (k−1)nE) = µ(E ∩ (E + na) ∩ (E + 2na) ∩ · · · ∩ (E + (k − 1)na))

> µ(E)− ε =
1

2
µ(E) > 0.

Just as the Bernoulli system was an instance of the general class of weak mixing systems,
the Circle Rotation system is an instance of compact systems. We find that all compact
systems also satisfy Furstenberg Multiple Recurrence. It is here that the move from the set
formulation to the function formulation in 2.3.12 becomes convenient.

Definition 2.3.23. A system (X,B, µ, T ) is compact if for every f ∈ L2(X,B, µ) the
closure in L2(X,B, µ) of the orbit {f, Tf, T 2f, . . . , T nf, . . .} is compact. The closure and
compactness in question occur in the norm topology of L2(X,B, µ).

More intuitively, this means that any such orbit is totally bounded; namely, given ε > 0,
there is an n such that every T jf is ε away from {f, Tf, T 2f, . . . , T nf, . . .} in the L2(X,B, µ)
norm.

Compact systems are “structured” in the sense that each application of T to some E ∈ B
will return sufficiently close to E, and so each iteration of T will overlap somewhat, thereby
satisfying Furstenberg Multiple Recurrence. That is

Theorem 2.3.24. If (X,B, µ, T ) is compact, then for any f ∈ L∞(X,B, µ), f ≥ 0, f not
a.e. 0, we have

lim inf
N→∞

1

N

N−1∑
n=0

∫
X

f T nf T 2nf · · ·T (k−1)nf dµ > 0. (2.3.21)

That is, every compact system is SZ.

Proof. Again, see [Furstenberg et al., 1982], Section 4. The proof more or less comes down
to the fact that, for any f ∈ L∞(X,B, µ) such that T nf approximates f ,∫

X

f T nf T 2nf · · ·T (k−1)nf dµ ≈
∫
X

fk dµ > 0. (2.3.22)

Dealing With Other Cases: Factors and the Structure Theorem

As I have indicated repeatedly, the compact (structured) systems and weak mixing (random)
systems do not exhaust all cases for which we must prove Furstenberg Multiple Recurrence.
We require, then, some way to analyze the other types of systems. Somewhat miraculously, if
we consider these two extremes of structured and random systems, we can prove Furstenberg
Multiple Recurrence for some “component” of an arbitrary system. Finally, by constructing
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the tower of extensions mentioned above, we can prove that successively larger factors are
SZ until we arrive at the arbitrary system under consideration also being SZ. This completes
the proof.

Let me begin by defining “components” or factors of systems:

Definition 2.3.25. For some measure preserving system (X,B, µ, T ), a factor is a T -
invariant sub-algebra of B. That is, some σ-algebra B′ ⊆ B such that TE, T−1E ∈ B′ for
any E ∈ B′. More generally, we call a factor a subsystem X ′ := (X,B′, µ, T ). A factor will
be trivial if the measure of any E ∈ B′ is either 0 or 1. It will be compact if X ′ is itself a
compact measure preserving system.

This definition is a special case of the following more general definition:

Definition 2.3.26. (Extensions) Let X := (X,B, µ, T ) and Y := (Y,C , ν, S) be measure
preserving systems. An extension map or factor map π : X → Y is a measure preserving
map, i.e., for any C ∈ C , then π−1(C) ∈ B and µ(π−1(C)) = ν(C), that is also shift
compatible, i.e., π ◦ T = S ◦ π. For any extension map X → Y , we say Y is a factor
of X, and X is an extension of Y . Certainly, when we have some factor (X,B′, µ, T ) of
(X,B, µ, T ) where B′ ⊆ B, then π : (X,B, µ, T )→ (X,B′, µ, T ) is measure preserving and
shift compatible.

One can then show the following:

Theorem 2.3.27 (Koopman-von Neumann Dichotomy Theorem). For some measure pre-
serving system (X,B, µ, T ), exactly one of the following holds: either the system is weak
mixing or the system has a nontrivial compact factor.

This then allows us to apply either Theorem 2.3.20 or Theorem 2.3.24 to some factor of
an arbitrary system. Let me now sketch the proof of the Dichotomy Theorem; I do this in
greater detail than much of the above because this theorem is the simplest example of the
absolutely crucial “dichotomy between structure and randomness.”

Proof. Assume first that (X,B, µ, T ) is weak mixing. Then we wish to prove that this system
has no nontrivial compact factor. This reduces to showing (i) that there are no (nonconstant)
f ∈ L2(X,B, µ) with an orbit of compact closure, i.e., {T nf}n∈N ⊂ L2(X,B, µ). From the
compactness of the orbit closure, we can find a finite subset {T n1f, T n2f, . . . , T nkf} ⊂ {T nf}
such that ||T nif − T njf || ≥ ε for any ε > 0. We can extend this such that, for any n,
{T n+n1f, T n+n2f, . . . , T n+nrf} also has the property ||T n+nif − T n+njf || ≥ ε and has the
same cardinality of the initial finite subset. Thus, for any j, ||T n+njf − f || < ε. Therefore,
for any ε > 0, any subset S ⊂ N of positive lower density, and n ∈ S, we have ||f−T nf || < ε
in the L2(X,B, µ)-norm.

Further, the definition of weak mixing gives, for any f, g ∈ L2(X,B, µ) and δ > 0∣∣∣∣∫ f T ng dµ−
∫
f dµ

∫
g dµ

∣∣∣∣ < δ (2.3.23)
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for n a member of a set of density 0. Indeed,∣∣∣∣∣
∫
f T nf dµ−

(∫
f dµ

)2
∣∣∣∣∣ < δ (2.3.24)

for such a set. Then, for some such n∣∣∣∣∣
∫
f 2 dµ−

(∫
f dµ

)2
∣∣∣∣∣ < δ + ε||f ||L2(X,B,µ). (2.3.25)

But ε, δ were arbitrary, so ∫
f 2 dµ =

(∫
f dµ

)2

, (2.3.26)

which for real-valued f tells us that f is constant a.e. This finishes (i).

Now assume that (X,B, µ, T ) is not weak mixing. Recall Proposition 2.3.17 above: from
the equivalence of the conditions that (X,B, µ, T ) is weak mixing and that (X × X,B ×
B, µ×µ, T ×T ) is ergodic, it follows that there is a nontrivial invariant function on X ×X.
Furthermore, there is a nonconstant almost periodic70 function f ∈ L2(X,B, µ, T ). This is
because there is always such a function f when T × T is not ergodic, i.e., when the system
is not weak mixing. Using these facts, we can always construct a non-trivial compact factor
of a weak mixing system. See ([Furstenberg et al., 1982], 540) for this construction. This
completes the proof of the Dichotomy Theorem.

We are now in striking distance of proving Furstenberg Multiple Recurrence and thus
Szemerédi’s theorem. Our situation is the following: if we have a weak mixing system
(X,B, µ, T ), we are done by Theorem 2.3.20. If we have a system that is not weak mixing,
then we know by the Dichotomy theorem that it will possess a nontrivial compact factor.
This factor then satisfies Furstenberg Multiple Recurrence by Theorem 2.3.24. Of course,
what we now need is a way to “fill in” whether Furstenberg Multiple Recurrence (Theorem
2.3.12) holds for the other factors of a given system; that is, we seek some way to generalize
the Dichotomy theorem.

To that end, we “relativize” the properties of compactness and weak mixing systems to
the action of T on the various factors (more precisely: the action of T on the sub-σ-algebras
of factors). That is, we speak of a factor X ′′ of a system X being either relatively weak
mixing or relatively compact with respect to some other factor X ′ where the σ-algebra B′

of X ′ is contained in the σ-algebra B′′ of X ′′. Ordering the factors of a system by inclusion,
we show that if Furstenberg Multiple Recurrence holds for the elements in the σ-algebra of
a smaller factor, then it will hold for larger factors. Finally, if there is some proper factor B′

of the system (X,B, µ, T ) such that the system is not relatively weak mixing with respect
to the proper factor, then there is another factor B′′ that is relatively compact with respect

70That is, the orbit closure of f {Tnf} ⊂ L2(X,B, µ, T ) is compact.
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to B′. Thus, analogous to the Dichotomy theorem, we can prove that factors are either
relatively compact or relatively weak mixing with respect to one another. More precisely

Theorem 2.3.28. If an arbitrary measure preserving system (X,B, µ, T ) is not weak mixing
relative to a proper T -invariant factor of the system B′, then there is a T -invariant factor
B′′ such that B′ ( B′′ ⊂ B and (X,B′′, µ, T ) is compact relative to (X,B′, µ, T ).

One might also formulate this in terms of extension maps:

Theorem 2.3.29. Let π : X → Y be an extension. If X → Y is not weak mixing then there
exists a non-trivial compact extension X ′ → Y such that X → X ′ → Y .

The details of the “relativization” process are terribly germane for us, but here is a quick
overview. We saw above that one way of characterizing the weak mixing property is in
terms of the “product” system X ×X being ergodic. We can then characterize weak mixing
extensions (i.e., factors that are weak mixing with respect to another factor) by looking at
a variety of relative product, called a fiber product.

Definition 2.3.30. (Fiber Product) Take measure preserving systemsX := (X,B, µ, T ) and
Y := (Y,C , ν, S) and consider two extensions π : X → Y and π′ : X ′ = (X ′,B′, µ′, T ′)→ Y .
Then the fiber product of X and X ′ relative to Y is X ×Y X ′ = (X ×Y X ′,B ×Y B′, µ×Y
µ′, T ×Y T ′). The underlying space is X ×Y X ′, the set theoretic fiber product, which is
defined as

X ×Y X ′ := {(x, x′) ∈ X ×X ′ : π(x) = π′(x′) ∈ Y } =
⋃
y∈Y

π−1(y)× (π′)−1(y) ⊂ X ×X ′.

The σ-algebra B×Y B′ is the restriction of B×B′ from X ×X ′ to X ×Y X ′. The measure
µ ×Y µ′ is given by its disintegration as (µ ×Y µ′)y = µy × µ′y for y ∈ Y , supported on
π−1(y)× (π′)−1(y). Finally, the action T × T ′ is given by T × T ′(x, x′) = (Tx, Tx′).

Definition 2.3.31. (Relatively Weak Mixing/Weak Mixing Extension) LetX := (X,B, µ, T )
be a measure preserving system and let Y := (Y,C , ν, S) be a factor. Then we say that X
is weak mixing relative to Y , or, equivalently, that X → Y is a weak mixing extension if
X ×Y X is ergodic, i.e., the fiber product of X and X relative to Y (by Proposition 2.3.17
above).

Lemma 2.3.32. (SZ lifts through weak mixing extensions) Let X → Y be a weak mixing
extension. If Y is SZ, then X is SZ.

Equivalently, in Furstenberg’s original formulation

Lemma 2.3.33. Let (X,B, µ, T ) be a relatively weak mixing extension of (Y,C , ν, S). If
the action of S on C is SZ, then so is the action of T on B, and thus both systems are SZ.

Proof. See [Furstenberg et al., 1982], Theorem 8.4 and preceding lemmas.

We now formulate the analogous definition and lemmas in the compact case.
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Definition 2.3.34. (Relatively Compact/Compact Extension) An extension X → Y of
measure preserving systems is compact if the set of almost periodic functions in L2(X,B, µ)
is dense in L2(X,B, µ). A function f ∈ L2(X,µ, T ) is said to be almost periodic relative to
factor Y if for every δ > 0 there are functions g1, . . . , gn ∈ L2(X,B, µ) such that for every
j ∈ Z

inf
1≤s≤n

||T jf − gs||L2(µy) < δ (2.3.27)

for almost all y ∈ Y , where µy is the measure on the fiber π−1(y) ⊂ X.

Lemma 2.3.35. (SZ property lifts through compact extensions) Let X → Y be a compact
extension. If Y is SZ, then X is SZ.

Again, in Furstenberg’s formulation

Lemma 2.3.36. Let (X,B, µ, T ) be a compact extension of (Y,C , ν, S). If the action of S
on C is SZ, then so is the action of T on B.

Proof. Proving that the property SZ lifts through compact extensions is quite complicated.
See [Furstenberg et al., 1982], Theorem 9.1 for the full proof.

We are now in position to prove Theorem(s) 2.3.28 and 2.3.29. Once we have done this, we
are essentially done. Let me summarize. We have seen that SZ holds for all weak mixing and
compact systems and that, by the Dichotomy Theorem, any measure preserving system is
either weak mixing or contains a nontrivial compact factor. We now know that the property
SZ lifts through weak mixing and compact extensions. Thus, by proving Theorem(s) 2.3.28
and 2.3.29, we will “relativize” the dichotomy to extensions, and so, no matter what measure
preserving system presents itself, we know that it will be SZ! Consider the tower of factors,
descending from the “full” system X:

X → Yn → · · · → Y2 → Y1 → Y0 (2.3.28)

If X is weak mixing, we are done, since weak mixing systems are SZ. If not, then it
has a nontrivial compact factor, say Y0, which is also SZ. But we then know that for each
compact Yn → Yn−1, the property SZ at the bottom of the tower lifts. If at some point we
reach X → Yn which is not compact, then by the relativized dichotomy theorem, it must be
a weak mixing extension. But Yn is SZ, since Yn−1 was and SZ lifts through weak mixing
extensions too. Thus, X will also be SZ.

What if we never reach this stopping point? This too does not pose a problem, since we
can keep extending the intermediate factors of X into the transfinite,71 and so, again, X will
be SZ. Thus, we finally have

Theorem 2.3.37 (Furstenberg-Zimmer Structure Theorem). Let (X,B, µ, T ) be any mea-
sure preserving system. Then there is an ordinal α and a transfinite increasing sequence of
factors (Bβ)β≤α such that:

71Indeed, it has been explicitly shown that the last (commonly called “maximal distal”) factor in the tower
can extend arbitrarily far into the countable ordinals. See [Beleznay and Foreman, 1996].
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1. B0 is trivial (i.e., {∅, X});

2. For each successor ordinal β+1 < α, (X,Bβ+1, µ, T ) is compact relative to (X,Bβ, µ, T );

3. For each limit ordinal λ ≤ α, Bλ =
⋃
β<λ Bβ;

4. (X,B, µ, T ) is weak mixing relative to (X,Bα, µ, T ).

Finally, since we deal with limit ordinals in the Structure Theorem, we require that SZ is
preserved through limiting stages. To that end:

Proposition 2.3.38. Let (B)β∈B be a totally ordered chain of factors of arbitrary measure
preserving system X, and let X be the limit of (B)β∈B. Then, provided each Bβ is SZ, X
is also.

This completes the ergodic proof of Szemerédi’s Theorem.

2.3.4 Summary

We began with Szemerédi’s theorem on the integers: any sufficiently dense A ⊂ Z will contain
arbitrarily long arithmetic progressions (Theorem 2.3.4). This fact will always turn upon the
classification of A. In particular, it is easy to see why A has arithmetic progressions when A
is either highly structured or highly random. The difficulty is that A may not be either, and
so any proof of the theorem requires checking the existence of arithmetic progressions for
each A. One might then appeal to the Szemerédi Regularity Lemma (Lemma(s) 2.5.3 and
A.1) in order to provide a structural result that classifies all subsets under consideration;
however, this lemma does not show in a perspicuous way how such a classification occurs
(see my remarks in Section 2.5).

Turn then to the ergodic approach. Szemerédi’s theorem is equivalent to Furstenberg
Multiple Recurrence (Theorem 2.3.12), a theorem which asserts the existence of a particular
recurrence pattern in any measure preserving system. We are then in a situation entirely like
the number-theoretic one above: it is easy to show that highly random (mixing, weak mixing)
and highly structured (compact) systems exhibit this recurrence pattern (Theorem(s) 2.3.20
and 2.3.24, respectively). However, there are many other ways a system might be, and so
we seem resigned to scattered results about particular systems.

Luckily, any measure preserving system can be decomposed into structured and random
pieces we know how to handle. The Koopman-von Neumann Dichotomy Theorem asserts
that a system is either weak mixing or has a nontrivial compact factor (Theorem 2.3.27).
This dichotomy can then be relativized to maps between factors of a system, i.e., each
extension of a factor will be either weak mixing or compact (Theorem(s) 2.3.28 and 2.3.29).
Therefore, there exists a tower of extensions

X → Yα → . . .→ Y2 → Y1 → Y0, (2.3.29)

indexed by ordinals, where each step is either weak mixing or compact (Furstenberg Structure
Theorem; Theorem 2.3.37). We also know that the recurrence property we desire lifts through
weak mixing extensions, compact extensions, and limits (Lemma 2.3.32 and Lemma 2.3.35
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and Proposition 2.3.38). Thus, via transfinite induction, we can show the recurrence property
lifts all the way to X. X was an arbitrarily chosen measure preserving system, and so
Furstenberg Multiple Recurrence holds (Theorem 2.3.12), and thus Szemerédi’s theorem
(Theorem 2.3.4) holds.

Before entering into the strictly philosophical analysis, I would like to note that, in a very
straightforward sense, the ergodic proof of Szemerédi’s theorem is explanatory. In short, if
one were to ask, “Why does that particular pattern occur in measure preserving systems,”
this proof gives an entirely perspicuous means of answering the question, i.e., “Because
(i) any such system can be analyzed exhaustively into two cases and (ii) we know how to
analyze each case.” Taking this unobjectionable, but perhaps not terribly helpful account of
explanation on board, let us now see what this case of mathematical explanation involves.
First, we can certainly say that explanatory work is being done by impure techniques; after
analyzing Szemerédi’s Regularity Lemma and its role in the combinatorial proof I would like
to claim further that the ergodic setting is the proper one for providing an explanation.

2.4 Conceptual Convergences and Mathematical Content

Before demonstrating how impurity leads to explanation, let me turn to an investigation of
mathematical content. I proceed in this fashion because the latter will help to deepen our
understanding of the former; in particular, a sufficiently fine-grained analysis of the content
of a theorem will help us to see how it is possible that impure techniques do not necessarily
result in a loss of data required for an explanatory proof. Such an investigation will also
yield philosophical dividends of its own.

The Furstenberg Correspondence Principle (Theorem 2.3.14) and the ergodic proof of
Szemerédi’s theorem immediately raise questions about mathematical content:72 what, pre-
cisely, is Szemerédi’s theorem about? What does it mean and how are we to understand
it?73 How do we account for such surprising convergences of mathematical domains, which,
as Rota claims,74 constitute the “essence” of mathematics? One straightforward—though
perhaps unintuitive—answer might involve saying that particular number-theoretic facts,

72See [Martin, 1998] for a brief, but helpful, discussion of the relationship between mathematical evidence
and the content of mathematical propositions.

73Wittgenstein raises this question in his Remarks on the Foundations of Mathematics. I suppose I am in
broad agreement with his claim that: “[T]he understanding of a mathematical proposition is not guaranteed
by its verbal form, as is the case with most non-mathematical propositions” ([Wittgenstein, 1978], 147).
Unfortunately, the way in which he elaborates on this is hardly serviceable. He proposes that the sense of
a mathematical statement is gotten from its proof. But how can this be? How can one even set out to
prove a statement that has no initial sense? This embroils us in a sort of Meno problem, the only escape
from which requires that we know something initially. I propose that this will be the “intuitive content”
of a mathematical statement. See my discussion of [Arana and Mancosu, 2012] below for an explication of
intuitive content.

74As he says, “The mystery as well as the glory of mathematics lies not so much in the fact that abstract
theories turn out to be useful in solving problems but in the fact that—wonder of wonders—a theory meant
for one type of problem is often the only way of solving problems of entirely different kinds, problems for
which the theory was not intended. These coincidences occur so frequently that they must belong to the
essence of mathematics. No philosophy of mathematics shall be excused from explaining such occurrences”
([Rota, 1997], 114).
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viz., Szemerédi’s theorem, are ergodic in nature.75 That is, one might suppose that facts
about integers and natural numbers have “hidden” or “implicit” infinitary and ergodic con-
tent. This kind of suggestion has an impressive pedigree. Bourbaki claims something in this
vicinity,76 though I take the ultimate point to be more subtle:

Where the superficial observer sees only two, or several, quite distinct theories,
lending one another ‘unexpected support’ through the intervention of a mathe-
matician of genius, the axiomatic method teaches us to look for the deep-lying
reasons for such a discovery, to find the common ideas of these theories, buried
under the accumulation of details properly belonging to each of them, to bring
these ideas forward and out them in their proper light ([Bourbaki, 1950], 223).

Should we then accept our intuitive, “first glance” characterization of Szemerédi’s theorem
as number-theoretic, properly belonging to a domain of mathematics genuinely distinct from
ergodic theory, or, once the various proofs of the theorem have come to light, should we
expect that such intuitive boundaries are not the final word on the matter?

This question might seem more pressing in cases where the theorem under consideration
only has, as of yet, a proof that utilizes intuitively “foreign” or “extraneous” elements (the
classic example being Fermat’s Last Theorem77) or in cases where a sentence is unprovable
in the system in which it is stated (e.g., Gödel sentences and the Paris-Harrington sentence
are unprovable in PA even though they are truths expressible in LPA). In order to prove
these, a detour through the infinite and the impure is unavoidable. However, Bourbaki had
less exotic cases78 in mind, and the question of content remains an interesting one even when
we have both impure and pure proofs at our disposal (as with Szemerédi’s theorem). This
is because, at the very least, the detour through the impure is left quite unaccounted for: it
occurs in spite of the fact that a pure proof is available, thereby suggesting there is more to
the theorem than initially meets the eye. Thus, I would like to outline two proposals:

1. There is a notion of mathematical content that will help to account for prima facie
surprising convergences of mathematical domains.

2. This new notion of content will help us to understand the relationship between impure
techniques of proof and explanation.

Let us begin, then, by characterizing the notion of mathematical content in greater detail.

2.4.1 Intuitive and Formal Mathematical Content

A natural starting point is the analysis of mathematical content by Arana and Mancosu in
[Arana and Mancosu, 2012]. Here they draw an important distinction between “informal”

75Or, if considering van der Waerden’s theorem, topological in nature.
76In [Detlefsen and Arana, 2011], Detlefsen and Arana interpret the above quote (along with McLarty) as

claiming that, e.g., particular arithmetical statements have topological content. Incidentally, the discussion of
[Detlefsen and Arana, 2011] involves another result due to Furstenberg: his topological proof of the infinitude
of primes.

77See my brief discussion of this in Section 2.6.
78Indeed, in [Bourbaki, 1950], the focus is on very central mathematical concepts (groups, topologies).

One might think that Gödel sentences and the like are rather more pathological.
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or “intuitive” content and “formal” or “axiomatic” content. Loosely, the former notion
amounts to what someone with a casual acquaintance with mathematics would understand
by some statement. For instance, Szemerédi’s theorem is about a particular kind of regular-
ity in sufficiently dense subsets of the integers (infinitary formulation) or in sufficiently large
subsets of the natural numbers (finitary formulation). On the other hand, the formal notion
of content amounts to the “inferential role of [a] statement within an axiomatic system”
([Arana and Mancosu, 2012], 327). This distinction is drawn in the context of their discus-
sion of Desargues’ theorem. One of the primary questions under investigation is whether the
spatial proof of this (ostensibly) planar result is to be judged as impure (following Hilbert)
or pure (following Michael Hallett) in light of metamathematical data from Hilbert’s Grund-
lagen der Geometrie. In particular, Arana and Mancosu are concerned with articulating
a notion of mathematical content that “...can support an adequate account of talk of pu-
rity in mathematical practice” ([Arana and Mancosu, 2012], 324). They conclude that only
intuitive content is able do this work. I take no issue with this conclusion; indeed, my as-
sertion that the ergodic proof of Szemerédi’s theorem is impure relies upon the availability
and cogency of intuitive content. However, it is worth considering whether we might utilize
other, more nuanced, articulations of mathematical content in cases that warrant them. The
theorem considered here is one such case: intuitive content cannot help us make sense of why
it is that the ergodic setting is adept at modeling (and even clarifying) the combinatorial
proof of Szemerédi’s theorem. I outline a third kind of content below that I believe is up to
the task; however, before turning to this positive proposal, let me explicate and offer some
reflections on the less familiar notion of formal content.

Arana and Mancosu consider Michael Hallett’s claim79 that the spatial proof of the
planar Desargues’ theorem is pure because the theorem itself has “tacit spatial content.”
This notion of “tacit” or “hidden” content descends from Isaacson’s influential discussion
of “hidden higher-order concepts” in [Isaacson, 1996]. The main thesis of this essay is that
some mathematical truths expressible in arithmetic, e.g., Gödel sentences, contain “hidden
higher-order concepts,” and thus first-order Peano arithmetic (PA) is actually complete with
respect to genuinely arithmetical sentences. By higher-order,80 Isaacson means:

[T]he standard usage for quantification over sets of individuals in distinction to
first-order quantification over the individuals themselves. But I also mean to
include in this phrase something of the notion of the infinitary, in the sense of
presupposing an infinite totality [...] ([Isaacson, 1996], 210).

According to Isaacson, these higher-order concepts are implicit in arithmetical proposi-
tions via the coding of various syntactic properties and relations by properties and relations
of the natural numbers (as in Gödel’s proof of the Incompleteness Theorems). Put more
precisely, a Gödel sentence G can be shown in PA to be equivalent to a sentence expressing
(by coding) a metamathematical property of PA, e.g., Con(PA). This metamathematical
property is unprovable in PA, but can be proven using higher-order (in the sense above)
concepts. Thus, the equivalence reveals the implicit higher-order content of G.

79See [Hallett, 2008].
80See the beginning of Section 2.2 for my explication of the the finitary-infinitary distinction which maps

quite closely on to Isaacson’s own.
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Isaacson does not say anything further about the exact nature of the implicit higher-order
content of G, but presumably this is gotten from the arithmetical coding of transfinite ordi-
nals required for the proof of Con(PA). In particular, we know that a finitistically acceptable
theory (e.g., PRA) augmented with a principle expressing (by coding) transfinite induction
along a well-ordering of the ordinals up to a particular ordinal, ε0, proves Con(PA).81 This
principle must, then, provide the content of Con(PA) (and thus of G) that is higher-order
and non-arithmetical; however, the exact nature of this content is not so straightforward
given that, for example, Gentzen’s proof of Con(PA) does not explicitly rely upon transfinite
ordinals. Rather, it relies upon induction along a well-ordering of ordinal notations (coded
by natural numbers), and this well-ordering is isomorphic to the well-ordering of transfinite
ordinals up to ε0. Nonetheless, the idea seems to be that the use of this additional machinery
in developing ordinal notations suffices to impart infinitary higher-order content to G. This
is because of Isaacson’s understanding of what counts as a genuinely arithmetical truth:

[A] truth expressed in the (first-order) language of arithmetic is arithmetical just
in case [(i)] its truth is directly perceivable on the basis of our (higher-order)
articulation of our grasp of the structure of the natural numbers or [(ii)] di-
rectly perceivable from truths in the language of arithmetic which are themselves
arithmetical ([Isaacson, 1996], 217).

Thus, for Isaacson, there is an innocuous sort of higher-order content (given by (i)), the use of
which does not render truths expressible in LPA non-arithmetical. For instance, if we come to
perceive the truth of some ϕ expressible in LPA from our understanding of Dedekind’s second-
order, categorical characterization of the natural numbers, then ϕ is still arithmetical. On the
other hand, the Gödel sentence G, although expressible in LPA, is rendered non-arithmetical
because: (a) it is equivalent to a sentence ψ expressible in LPA that encodes Con(PA); (b)
the proof of Con(PA) requires induction on the well-ordering of ordinal notations for ordinals
< ε0. The question of G’s higher-order content thus reduces to that of whether this inductive
principle can be justified arithmetically. Isaacson claims that it is “reasonably evident”
that G is not arithmetical,82 and so the answer to this question is “no.” I am inclined
to agree with his analysis; however, I am not sure that the reasons supporting it are so
straightforward. First, we would need to show that there is no arithmetical means by which
the well-foundedness of the ordering of the codes of the ordinals < ε0 could be understood.
I find it plausible that this could be arithmetically justified for sufficiently small transfinite
ordinals, perhaps, e.g., ω+ ω, ω+ ω+ ω, . . . , ω · ω. However, for the purposes of obtaining a
proof of Con(PA), we must be able to perceive arithmetically the truth of induction along the
well-ordering of codes of ordinals up to ε0, and this is a much more imposing requirement.83

The nature of the structure of this well-ordering seems sufficiently complicated to render it
higher-order and thus non-arithmetical. I take it that something along these lines is what
Isaacson means by the implicit higher-order content of G.

81The ordinal ε0 is the limit ordinal of the increasing sequence ω < ωω < ωω
ω

< · · · . Also, note that the
ordinals < ε0 must be written in a particular way, i.e., Cantor normal form.

82At least, in the sense of (i), since it is possible that new proofs will emerge that proceed from “recognizably
arithmetical” truths.

83It is clear that the innocuous higher-order content (Dedekind’s categorical characterization of the natural
numbers) cannot justify the resources needed to perceive the truth of Con(PA). That is, there is no way to
proceed from Dedekind’s characterization to TIPR(ε0).
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According to Arana and Mancosu, the case of Desargues’ theorem is analogous to that of
the Gödel sentence because it can serve as a spatial incidence axiom in Hilbert’s axiomatic
system of the Grundlagen, i.e., the planar Desargues’ theorem can play the same inferential
role as an explicitly spatial mathematical proposition.84 They summarize the situation in
the following way:

[I]n both cases, we have sentences whose ordinary understanding indicates that it
has content of one type (e.g., arithmetical or planar), but that an analysis of the
sentences’ inferential roles reveals that these sentences have tacit content of an-
other type (e.g., infinitary or spatial, respectively) ([Arana and Mancosu, 2012],
333).

Our question, then, is: can Szemerédi’s theorem be understood in the same way?
There are some similarities between our case study and the phenomenon of hidden content

at work in Gödel sentences and Desargues’ theorem. Our ordinary or intuitive understand-
ing of Szemerédi’s theorem indicates that it has finitary, combinatorial content; however, it
is equivalent to an ostensibly infinitary result (Furstenberg Multiple Recurrence), and its
ergodic proof makes essential use of a transfinite construction (the tower of extensions in
the Furstenberg Structure Theorem). This initial assessment of the situation suggests that
the notion of formal content may be of use in explicating this surprising confluence of math-
ematical resources. However, closer examination reveals that formal content is not really
available to us. Let us write the formal content of the Gödel sentence G as:

FG := {ψ : `PA G↔ ψ} . (2.4.1)

That is, the formal content of G is the class of statements such that each statement is
provably equivalent to G in PA. Thus, as it should be, some ψ expressing by coding Con(PA)
is included in the formal content of G. However, when we think of formal content in the
above fashion, there is a rather restricted set of circumstances in which this will make sense,
viz., when we have an independence result. In the case of G, while we can prove G ↔ ψ
in PA, we cannot prove the property that ψ expresses, i.e., Con(PA), in PA by Gödel’s
Second Incompleteness Theorem. Thus, we have the requisite independence. In the case of
Szemerédi’s theorem, we could try to write its formal content as:

FSZ := {ψ : `ZFC SZ↔ ψ} . (2.4.2)

Letting some ψ := Furstenberg Multiple Recurrence we would register the “hidden” infini-
tary ergodic content of Szemerédi’s theorem. However, Furstenberg Multiple Recurrence is
not independent of ZFC, the system in which we prove the equivalence. This has the effect of
saying that Szemerédi’s theorem and Furstenberg Multiple Recurrence have the same formal
content; indeed, all theorems of ZFC would then have the same formal content, rendering
this notion entirely trivial.

Another way of seeing the unavailability of formal content in our case is via the absence of
a coding phenomenon. According to Isaacson,“The relationship of coding constitutes a rigid

84See [Arana and Mancosu, 2012], Section 4 for more details.
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link between the arithmetical and the higher-order truths, which pulls the ostensibly arith-
metical truth up into the higher-order” ([Isaacson, 1996], 221). There is no such mechanism
at work in the Furstenberg Correspondence Principle.85 Rather, as I have shown above, we
have an identification of sets and functions in the combinatorial and ergodic contexts, along
with a clever choice of “unconventional” dynamical system that effects this identification.86

This should be thought of as a “modeling” of the combinatorial phenomenon in the ergodic
setting, rather than indicating the presence of coded or “hidden” content.87

Of course, these considerations need not rule out the possibility of using formal content
to explicate Furstenberg Correspondence in the future. This would depend upon a reverse
mathematical analysis of both Szemerédi’s theorem and Furstenberg Multiple Recurrence
and the existence of an independence result. That is, we would need to show that some
system T proves Szemerédi’s theorem and its equivalence with Furstenberg Multiple Corre-
spondence but not Multiple Correspondence itself. It is very likely that Szemerédi’s theorem
can be proved in RCA0 and perhaps even weaker systems, although this would require some
rather tedious work to verify.88 Furthermore, the metamathematical analysis of the infini-
tary content of Furstenberg Correspondence in [Avigad, 2009], Section 5, indicates that it is
reinterpretable in computational or combinatorial terms. Thus, given this metamathemati-
cal data, it would appear that the independence result required for formal content to make
sense is unlikely to materialize.

It should be noted that, even though the Correspondence Stage of the ergodic proof
may be computationally reinterpretable, this is not true of the Structure Theorem Stage
of the proof. Indeed, significant infinitary and nonconstructive content enters the scene
when one builds extensions X → Yα → · · · → Y1 → Y . This is because Theorem 2.3.27
(The Dichotomy Theorem of Koopman and von Neumann) and its relativized version, The-
orem 2.3.28, rely upon understanding the limiting behavior of various dynamical systems,
and it turns out that this limiting behavior is in general not computable.89 The degree of
nonconstructivity then increases given the transfinite iteration in the Furstenberg Structure
Theorem (Theorem 2.3.37). This is quite interesting in its own right, since I claim that this
part of the proof generates many of the explanatory advantages of the ergodic setting. And
this is because the use of quite strong infinitary techniques most cleanly and explicitly draws
out the structural feature that gives the reason for the truth of Szemerédi’s theorem. In
short, the most radically nonconstructive, infinitary content is found in the stage of proof
that does the explaining. It would be an interesting exercise to see if such an analysis can
be given for other results.90

Finally, it is worth considering whether a looser notion of hidden higher-order content

85Arana and Mancosu note that there is no explicit coding in the case of Desargues’ theorem either, but
surmise that it is given by the “...algebra of segments permitted by Desargues’ theorem in the presence of
axioms I 1-2, II, and III, or more directly the alleged spatial content it inherits from its stereometrical proof”
([Arana and Mancosu, 2012], 333).

86See my brief discussion after Theorem 2.3.12 above.
87One might also say that we adopt a new sort of perspective on the combinatorial results by considering

them qua ergodic (in a sense to be made precise). I return to this idea in the final section when I discuss the
Szemerédi Regularity Lemma (Theorem 2.5.3) and the Furstenberg Structure Theorem (Theorem 2.3.37).

88See my discussion in Section 2.5.
89See [Avigad et al., 2010] and [Avigad and Simic, 2006].
90See my remarks in Section C.

43



might be of interest. This would then no longer involve Arana and Mancosu’s gloss of hidden
higher-order content as formal content, and thus the need for an independence result would
no longer be present. Isaacson himself suggests something along these lines when dealing
with “in principle” provability. That is, there might be cases where a theorem is provable
in PA, but this proof would be “infeasibly long” and thus “the higher-order perspective
is essential for actual conviction as to the truth of an arithmetically expressed sentence”
([Isaacson, 1996], 221). I am rather sympathetic to the idea that various statements in
some LT could be said to have higher-order content in light of the unsurveyability of their
proofs91 in the system T. Indeed, this kind of thought is closely related to my claims in
Section 2.6 that, even if infinitary resources are not proof-theoretically required, they are
still in some sense necessary for intelligible mathematics (or, in Isaacson’s words, necessary
for “actual conviction”). It is implausible that Szemerédi’s theorem has hidden higher-order
content in this sense: its proof is very difficult, but by no means unsurveyable. However, the
other example considered in Section 2.6 is Fermat’s Last Theorem (FLT), and this seems a
good candidate for an ascription of “loose” higher-order content. Few seem to doubt that
it is “in principle” provable in PA; however, actually producing and understanding such a
proof appears to be nearly impossible. It is then reasonable to ascribe some sort of hidden
higher-order content to FLT.

2.4.2 A Further Refinement of Mathematical Content

Thus, though the notion of formal content (and looser versions of it) may be useful in par-
ticular circumstances, it cannot help us to understand the case at hand. Should we then
evaluate Szemerédi’s theorem in terms of intuitive content alone? Unfortunately, as I have
indicated, this coarse articulation of content fails to capture crucial data about the theorem,
data that would be desirable to have for philosophical discussions relating content, purity,
explanation, mathematical evidence, and likely other topics. In particular, we should like to
say something about the relationship between the combinatorial and ergodic settings in light
of both the equivalence between Szemerédi’s theorem and Furstenberg Multiple Correspon-
dence and the epistemic dividends generated by the ergodic proof. I find it quite reasonable
that this connection be captured in our understanding of the content of Szemerédi’s theo-
rem. In short, then, intuitive content is not sufficiently fine-grained to capture mathematical
information of interest, while formal content is unavailable to us and, even if it were, is ne-
glectful of important epistemic distinctions.92 Is there then another, “intermediate” notion
of content that might make sense of the ergodic proof of Szemerédi’s theorem? I believe that
there is and attempt to use the somewhat sketchy suggestions of Bourbaki to develop this

91Isaacson notes that this looser notion of higher-order content would not affect his thesis that PA is
complete with respect to genuinely arithmetical truths because any expansion in the class of statements
possessing higher-order content would be accompanied by a narrowing of the domain of the arithmetically
true.

92For instance, Arana and Mancosu reject formal content as useful in making purity ascriptions because
it has the following consequences: (i) The very question of content cannot be articulated using only formal
content (as I have noted at the outset); (ii) Someone without beliefs concerning space could not understand
Desargues’ theorem; (iii) Purity ascriptions would be entirely trivial as every theorem would have a pure
proof; (iv) The content of statements would be radically contextualized, e.g., it would depend entirely upon
the axiomatic context.
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idea. Call this third sort of content structural content93 to mirror the “deep-lying reasons”
indicated in the above quotation by Bourbaki.

Bourbaki describes the “axiomatic method” as a “systematic study of the relations ex-
isting between different mathematical theories” which takes as its central concept that of
the mathematical structure ([Bourbaki, 1950], 222). Consider Bourbaki’s description of a
mathematical structure:

The common character of the different concepts designated by this generic name
[mathematical structure], is that they can be applied to sets of elements whose
nature has not been specified; to define a structure, one takes as given one or
several relations, into which the elements enter [...]; then one postulates that the
given relation, or relations, satisfy certain conditions (which are explicitly stated
and which are the axioms of the structure under consideration) (ibid., 226).

I propose that the structural content of a theorem is the instantiation of a particular
fundamental mathematical structure by the entities intuitively involved in the theorem. Let
me fix intuitions with a simple example: the realization that (R,+) is a particular instance
of a group structure94 contributes additional content to a theorem involving addition on
the reals. This content cannot be what we are calling intuitive: it seems doubtful that a
mathematical novice proving a theorem about (R,+) that is not explicitly group-theoretic
would grasp the group axioms. Nor would a theorem involving (R,+) gain a contribution of
strictly formal content from the realization that (R,+) is the instantiation of a fundamental
structure; the understanding that (R,+) is a group does not involve seeing that it can serve as
an axiom in a system, but rather the understanding that (R,+) satisfies particular axioms.
Furthermore, this realization will induce a relational fact about the particular entity in
question, (R,+), and other groups, i.e., the fact that they all instantiate the group structure.
This fact contributes content that is of a much more global character than intuitive content,
while not being merely inferential. We might then fruitfully compare various instances of
group structures once we realize that they can all be identified as such.

Bourbaki is careful to note that this description of the mathematical universe via struc-
tures is “...schematic, and idealized as well as frozen” and is to be understood as a “supple
and fertile research instrument” (ibid., 229; 231). As such, it is open to revision, and, in
particular “[the] definition of structures is not sufficiently general” (ibid., 226, fn). I want
to suggest that we can proceed by taking a mathematical structure to be a somewhat more
flexible notion than a concept defined by explicit axioms. Of course, once we broaden the
notion of mathematical structure to include more than explicit axiomatizations, some fur-
ther attempt at characterization must be made. A natural suggestion is that we appeal to
compositional facts about mathematical objects: for some object X in (conceptual) domain
D write

X can be identified asY ∼ Z (2.4.3)

93I had also proposed the rather more clumsy, “Bourbakiste content,” since the word “structure” has so
many associations. However, I opted for the more elegant term in the end.

94Where this structure is defined by the group axioms: closure, associativity, existence of identity and
inverse.
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for more restricted objects Y, Z in the same domain under appropriate relation ∼ (this may
be a cross product, direct product, set-theoretic union, etc.). It is not difficult to find such
results, especially in algebraic contexts. Indeed, there are vast swathes of mathematics con-
cerned with “structure theorems”: structure theory of countable Abelian groups, structure
theory of semisimple Lie algebras, etc. I mention these other examples to convince my reader
that the compositional facts I advert to are deeply embedded in mathematical practice, and,
as such, provide a reasonable starting point for my intermediate notion of content.95

Strikingly, these compositional facts are not restricted to algebraic contexts. We have
seen that subsets of integers of positive density can be decomposed in such a fashion by
appeal to a Structure Theorem, which expresses the dichotomy between structure and ran-
domness.96 Thus, according to my content proposal, Szemerédi’s theorem, simply by virtue
of the fact that it involves sufficiently dense subsets of Z, has as part of its content the
dichotomy between structure and randomness. Even though the theorem is not obviously
about this dichotomy, as an intuitive reading or the “verbal form” of the mathematical
proposition97 would suggest, I believe we should consider the instantiation of this dichotomy
to be included in its content. However, and here is the crucial point, this structural fact
about how the objects in question may be decomposed need not be (and is not) endemic
to the integers or the naturals alone. One can similarly see the dichotomy at work in the
ergodic setting: measure-preserving systems also exhibit this structural fact as expressed by
the Furstenberg Structure Theorem. We might think of the different mathematical objects
in question (sets of integers, measure-preserving systems) as multiple realizations of this
same high-level structural fact.98 Thus, by appealing to structural content, we allow that
intuitively different mathematical domains retain some degree of conceptual independence,
facilitating various practical distinctions like purity ascriptions, but gain a principled way to
talk about surprising confluences of such domains. Both the ergodic and number-theoretic
settings exhibit the structural dichotomy in question, i.e., they both encode the same sort
of information (the confluence), but each context obviously involves different objects that
serve to made the dichotomy precise in different ways (the independence).

A little more explicitly: the proofs of Szemerédi’s theorem (TC ; Theorem 2.3.4) and
Furstenberg Multiple Recurrence (TE; Theorem 2.3.12) rely on their respective Structure
Theorems, the Szemerédi Regularity Lemma (SC ; Theorem 2.5.3), and the Furstenberg-
Zimmer Structure Theorem (SE; Theorem 2.3.37). Thus, we have a class of theorems T , of
which TC , TE are members, defined by the fact that all theorems in the class rely on Structure
Theorems (theorems showing how a particular entity can be decomposed into a structured

95I do not claim such structural results function in the same way as the dichotomy between structure
and randomness in Szemerédi’s theorem. Such a claim would inevitably involve a careful analysis of par-
ticular algebraic structure theorems. It is worth noting in this connection that a particular result in the
structure theory of Abelian groups (Ulm’s theorem) has been shown to require the strength of Π1

1-CA0. See
[Simpson, 1999] for details. It is possible, pending further mathematical research, that the ergodic proof
of Szemerédi’s theorem in which the full strength of the Furstenberg Structure Theorem is used, will also
require Π1

1-CA0. See Appendix B for discussion.
96See Tao’s quote in Section 2.3.2.
97See Wittgenstein’s remark in fn. 73.
98This idea is common in the philosophy of science literature. Multiple realizability is, more or less, the

idea that there can be heterogeneous “realizers” of “upper-level” properties and generalizations. That is,
these generalizations characterize the same behavior in physically distinct systems.
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and random part) for their proof. The presence of these Structure Theorems in these proofs
then indicates that there is a general structural fact in the offing, i.e., the dichotomy between
structure and randomness. And so, we have found an incredibly important higher level
property of the theorems in T , a property that is not captured by the intuitive content of
the theorem. Crucially, the fact that TC , TE ∈ T allows us to make sense of the surprising
intervention of the Furstenberg Structure Theorem in the proof of Szemerédi’s theorem and
makes the ergodic context suitable to prove a number theoretic result. This is because the
objects manipulated in each context (subsets of integers and measure-preserving systems)
can be decomposed into structured and random components.99 The fundamental dichotomy
between structure and randomness allows us to make sense of the confluence of these prima
facie very different domains, and, as we shall see, its clear expression in the ergodic context
renders the ergodic proof of Szemerédi’s theorem explanatory.

Before closing this section, let me respond to a natural objection. One might think
that in offering this notion of structural content I have tried to have my cake and eat
it too. I have tried to provide a notion of content that retains intuitive ascriptions of
purity/impurity while also explicating the intervention of impure resources. This has been
done, more or less, by carving out a genus of mathematical results, a sort of mathematical
natural kind if you will, under which both Szemerédi’s theorem and Furstenberg Multiple
Recurrence100 fall. However, one might think that this then requires saying that the ergodic
proof of Szemerédi’s theorem is pure. This objection would be analogous to that leveled
by Arana and Mancosu against proponents of formal content:101 privileging formal content
“...threatens to trivialize purity, in making it the case that every theorem has a pure proof,
when the content of that theorem is fully understood” ([Arana and Mancosu, 2012], 336).
Similarly, one might say that every theorem has a pure proof once investigators have dug
“deep enough” and uncovered the requisite structural similarities. Another way of putting
this point would be to appeal to the topical content of a theorem and observe the purity
metric it induces. For example, under my construal of structural content, both Szemerédi’s
theorem and Furstenberg Multiple Recurrence are topically close insofar as both subsets of
integers and measure-preserving systems instantiate the dichotomy between structure and
randomness. This topical closeness then indicates that the ergodic resources used to prove
Szemerédi’s theorem do not involve an appeal to impure techniques.

In response, I am inclined to restrict the ways in which the topical content of a theorem
induces a purity constraint.102 If we are interested in philosophically explicating mathemat-
ics as practiced, then the purity constraints we delineate should map closely onto the activity

99Of course, here we do not have axioms defining a structure which particular entities instantiate. Nonethe-
less, at least in the case under consideration, both “structure” and “randomness” can be made perfectly
precise in each context, viz., combinatorial and ergodic.
100As well as the analogous results in Fourier analysis and hypergraph theory and special cases of all these

theorems. Thus, this is quite a robust genus.
101This easily translates into Aristotelian terms as well. We have not in fact “crossed genera” when we

utilize structural content. See fn. 17 above.
102Thus, my claim concerning purity in the Introduction should be modified; the distance metric given by

the topical content of a theorem does not necessarily generate a purity constraint in a “straightforward” way.
One might, on the other hand, simply say that structural content is a distinct notion of content from the
topical kind, but this seems quite counter-intuitive to me. I believe it is correct to say that both Szemerédi’s
theorem and Furstenberg Multiple Recurrence are, in some sense, about the dichotomy in question.
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of mathematicians. There is a good deal of evidence that, when speaking of a “pure” proof,
mathematicians are operating with an intuitive notion of content. Thus, intuitive content is
what philosophers should appeal to in making claims about the purity or impurity of proofs.
Nonetheless, I believe the arguments provided above support the existence of structural con-
tent. Structural content is intelligibly part of what a theorem is about precisely because the
entities intuitively involved in the theorem instantiate particular structural features. How-
ever, we should block the move from the presence of structural content to a structural purity
constraint because the notion of purity generated is not acknowledged by the mathematical
community and, like formal content, would trivialize ascriptions of purity made in practice.
A structural purity constraint would simply be an idle postulation.

Furthermore, from a strictly conceptual perspective (independent of a methodological
interest to generate philosophical theses consonant with mathematical practice), structural
content enjoys a crucial advantage over formal content: it is able to coexist with intuitive
content. If both notions were not simultaneously available to us, then we would be in no
better a position than the proponent of formal content. Structural content, however, keeps
the original mathematical concepts in view, whereas formal content ignores these concepts
altogether by privileging the axiomatic role of a statement as the determinant of the state-
ments’s content. Indeed, the ascription of structural content requires that we recognize the
intuitive content of a theorem, for it is the entities intuitively recognized that instantiate the
structural features of interest. We must initially acknowledge that two domains of mathemat-
ics are ostensibly unrelated but interact in surprising ways. Only then can we acknowledge
and begin to uncover the “deep-lying reasons” for this interaction, reasons which are not
about only one domain or the other but rather encompass both. Thus, we can retain a
purity constraint generated by intuitive content: ergodic theory and combinatorics involve
intuitively different concepts and movement between these domains should be considered an
instance of impurity. However, these domains fall within a larger structural genus, which
elucidates an important commonality between them without obliterating their intuitive dif-
ferences (as is done by formal content). We can then comprehend the possibility of these
domains interacting in an intelligible way given their membership in a common genus.

2.4.3 Summary

Let me summarize the dialectic thus far. The equivalence of Szemerédi’s theorem and
Furstenberg Multiple Recurrence is surprising and may suggest that Szemerédi’s theorem
has hidden higher-order content: in this case, hidden infinitary and ergodic content. That is,
in some sense, Szemerédi’s theorem is about both subsets of integers and infinitary measure-
preserving systems. In order to better understand this, I examined Arana and Mancosu’s
discussion of intuitive and formal content. We saw that the notion of formal content opera-
tive in other discussions of hidden higher-order content is unavailable to us and agreed with
the argument of [Arana and Mancosu, 2012] that intuitive content is essential for making
purity ascriptions. Nonetheless, intuitive content fails to explicate the relationship between
combinatorics and ergodic theory in the ergodic proof of Szemerédi’s theorem.

Thus, I have tried to excavate a third kind of mathematical content: structural content.
The ultimate point of this third kind is that it occupies the middle ground between intuitive
and formal. Intuitive content is important and useful in mathematical practice, yet it does
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not help us to make sense of surprising convergences of mathematical results; formal content
is useful only in very restricted contexts and may trivialize important epistemic distinctions.
Structural content, on the other hand, is more fine-grained than intuitive content but still
occurs within mathematical practice. I have described it as the instantiation of particu-
lar structural facts by intuitively recognized entities that induce higher-level dependencies
between theorems, linking them in a conceptual nexus that crosses over intuitively distinct
domains. Of course, unrestricted appeal to any property shared by various theorems (e.g., all
theorems involving prime p = 5) will not be useful; this may be a case of “gerrymandering”
mathematical properties. I have tried to avoid such an issue by suggesting an important
class of compositional properties. In our case, it is clear that both Szemerédi’s theorem and
Furstenberg Multiple Recurrence require Structure theorems in their respective proofs, i.e.,
the instantiation of the dichotomy between structure and randomness is apparent. Thus,
the ascription of structural content is reasonable.

Though I have argued for my notion of content via a particular case (albeit a very robust
one), I believe that the account may be generalized. Of course, this will require similar
analyses of theorems proved via intuitively impure techniques. I will not undertake this here
but would like to mention an exemplary case consistent with my philosophical discussion: the
complex analytic (impure) and arithmetical (pure) proofs of the Prime Number Theorem.103

The Prime Number Theorem (PNT) asserts that π(x) ∼ x/ log(x) as x → ∞ where π(x)
counts the number of primes p ≤ x. This was independently proved by Hadamard and de la
Vallée Poussin in 1896 via appeal to complex function theory.104 Indeed, they showed that
the PNT is in fact equivalent to the non-existence of zeroes of the Riemann zeta function
ζ(s) in complex variable s = σ+ it for Re(s) = 1. It was long thought that an “ ‘elementary’
proof of the PNT, not depending on analytical ideas remote from the problem itself,” would
be desirable ([Ingham, 2008], 651). This was achieved, again independently, by Selberg and
Erdős whose analyses were entirely elementary and arithmetical. Many of the details are
not germane to our discussion here; however, it is crucial to note the following structural
similarity between the complex-analytic and arithmetical proofs as brought out by Ingham’s
incisive review of the Selberg and Erdős papers. Ingham extracts four analytical properties
of f := −ζ ′/ζ which “embody the essential analytical fact on which previous proofs of the
PNT [impure, complex-analytic ones] have been based.” He goes on to note that

What Selberg and Erdős do is to deduce the PNT directly from the arithmetical
counterparts of (i), (iii), (iv), without the explicit intervention of the analytical
fact. In principle this opens up the possibility of a new approach, in which the old
logical arrangement is reversed and the analytical properties of ζ(s) are deduced
from the arithmetical properties of the sequence of primes ([Ingham, 2008], 654,
emphasis my own).

Arana reads this as indicating the presence of implicit complex-analytic content in ex-
plicitly arithmetical statements ([Arana, 2019]). My position should, by now, be quite pre-
dictable. What we have instead is the instantiation of higher-level structural properties by
analytic functions and prime numbers, respectively. Selberg and Erdős eliminate essential

103This has been extensively analyzed by Arana. See, for instance, [Arana, 2019].
104See [Hadamard, 1896] and [de la Vallée Poussin, 1896].
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appeal to strictly complex-analytic content and pass to these structural features. Thus, we
need not relinquish the intuitive impurity of the complex-analytic proof of PNT by appeal
to mysterious “hidden” content; we have instead the presence of structural content.105

Finally, this discussion of content will play a role in the following sections concerning
explanation. The basic point is quite simple: the use of more abstract, infinitary, and
impure techniques may not always preserve data relevant to providing an explanatory proof
of a theorem. This is the mathematical analogue of Morrison’s worry106 about mathematized
scientific theories and might incline one to think that pure proofs are more explanatory than
impure ones. I believe that my notion of structural content provides one reason to think
that this worry may not always be apposite. If one can show that particular structural facts
crucial to the proof of a theorem T in context X also occur in context Y , then it is entirely
reasonable to think that a proof of T in context Y will be a candidate explanatory proof.
As I discuss in the following sections, this is precisely what happens in the ergodic proof
of Szemerédi’s theorem. We see the instantiation of the dichotomy between structure and
randomness in both the number-theoretic and ergodic contexts, but because of the greater
conceptual clarity in the ergodic context, which occurs in part because the infinitary nature
of the objects smooths out many inessential details, the impure proof is explanatory, while
the pure proof is not.

2.5 Impurity, Simplicity, and Explanation

2.5.1 Introduction

In this section, I consider the rather widespread claim that impure proofs are often simpler
than pure proofs.107 There has been some very nice recent work by Arana on this topic
([Arana, 2017]). The central idea of this paper is that various impure techniques do not
univocally simplify proofs, where “simplification” is identified with the common complexity-
theoretic metric of proof length. It is perhaps unsurprising that impure considerations do not
yield this kind of simplification; however, is it plausible to say that some sort of simplification
occurs? And if so, what kind? I will argue that the ergodic proof is simpler than the
combinatorial proof of Szemerédi’s theorem under a suitable construal of simplicity and
that this is one way to understand the explanatory power of impure techniques. Part of
my analysis of this claim will involve a brief examination of the combinatorial Structure
Theorem (Szemerédi’s Regularity Lemma; Lemma 2.5.3) and its role in the combinatorial
proof, thus fulfilling the “comparison of techniques” promissory note from the introduction.

2.5.2 Does Impurity Yield Simplicity as Proof Length?

Let me provide a summary of the argument in [Arana, 2017]. After considering historical
evidence for the claim that impure techniques generate simplicity, Arana notes that there

105This is not to say that the presence of these higher-level structural facts is not mysterious in itself.
106See both the Introduction and Section 2.7 below.
107See [Arana, 2017] for historical and contemporary evidence for the claim’s pervasiveness.
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are at least two kinds of simplicity at work.108 The first is verificational simplicity : this
measures the “...simplicity of determining whether a given proof is a proof at all; thus it
measures the simplicity of confirming the validity of the deductions of a given proof” (ibid.,
4). The second is inventional simplicity : this measures “the simplicity of discovering a proof
of a given statement” (ibid., 4). His investigation focuses on the former and thus seeks to
evaluate the claim that impure proofs are generally simpler to verify than pure proofs of the
same statement.

As noted above, Arana evaluates the verificational simplicity of impure proof by appeal to
proof-theoretic techniques.109 In particular, the length of a proof in a formal theory is taken
to be the measure of verificational simplicity. Consider a base theory T with conservative
extensions. An extension T′ of T is conservative over T iff for every sentence ϕ ∈ LT such that
`T′ ϕ we have `T ϕ. The basic idea is then to compare the length of proofs of ϕ in T with
those of ϕ in T′. We take Primitive Recursive Arithmetic (PRA) as our base theory. This is
gotten from first-order Peano Arithmetic (Z1; PA) by adding symbols and defining equations
for all primitive recursive functions and restricting induction to quantifier-free formulas.

Following a classificatory scheme of Ignjatović110 we have conservative extensions of PRA
of two different types: arithmetical and conceptual. Arithmetical extensions typically add
more induction. For example, one can obtain IΣ1 as an arithmetical extension of PRA by
restricting the induction schema of PA to Σ0

1-formulas rather than quantifier-free formulas.111

On the other hand, conceptual extensions add elements of an ostensibly different conceptual
type: sets and set-theoretic principles. The reverse mathematical subsystems of second-
order arithmetic mentioned above would then count as such conceptual extensions of PRA.
In particular, Arana considers the following chain of extensions

PRA ⊂ RCA0 ⊂ WKL0 ⊂ WKL+
0 . (2.5.1)

Now that we have our base theory and its conservative extensions fixed, we must ascertain
whether these extensions generate impure proofs of theorems of PRA. Arana argues that
conceptual extensions are topically impure112 insofar as PRA utilizes facts only about natural
numbers and makes no appeal to set-theoretic resources. The most important thing to
note here is that, though PRA does use functions, these can be understood algorithmically
and thus independently of set-theoretic formulations.113 He also argues that arithmetical
extensions are impure, but elementally so, as arithmetical extensions add induction principles
stronger than the quantifier-free induction of PRA.

108These were first discussed in [Detlefsen, 1990].
109The reader should, once more, refer to Section C for formal definitions and brief discussions of the

systems and results employed in this section.
110See [Caldon and Ignjatovic, 2005].
111See [Arana, 2017], p. 214 for more details concerning IΣ1.
112See the introduction to this chapter for the distinction between topical and elemental impurity.
113See [Arana, 2017] for an extended defense of the impurity of conceptual extensions. In particular, one

might argue that proofs of an IΣ1-theorem in RCA0 are topically impure. However, unlike PRA and its
conceptual extensions, IΣ1 and RCA0 are mutually interpretable. Thus, it may be reasonable to conclude
that the deployment of set-theoretic resources to prove IΣ1-theorems in RCA0 is “a mirage.” However, is
the mutual interpretability of theorems ϕ and ψ tantamount to their having the same meaning? This is a
controversial semantic thesis that renders constraints of mathematical practice otiose, thereby impairing our
ability to understand mathematics, and thus should be rejected.
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Finally, Arana appeals to “speed up” results for conservative extensions of PRA. Here I go
into slightly more detail following [Caldon and Ignjatovic, 2005]. For some proof p, we write
the total length of the proof as `(p), which counts the total number of symbol occurrences
in p. Define

2nm = 22. .
.
2n︸ ︷︷ ︸

m

, (2.5.2)

i.e., a stack of m twos with the final two having exponent n. A function f has Kalmár
elementary growth if there is a natural number m such that f(x) is eventually majorized
by 2xm. A function has roughly super-exponential growth rate if it does not have a Kalmár
elementary growth rate, but rather, for some polynomial P (x) in natural coefficients, f(x) is
dominated by P (2xx). Finally, f(x) has polynomial growth rate if it is eventually dominated
by a polynomial P (x) in natural coefficients.

Definition 2.5.1. Let T′ and T be two theories such that T ⊂ T′ and let Γ be a subset of
theorems of T. Then

1. T′ has roughly super-exponential speed-up over T with respect to Γ if there is a sequence
of formulas {γi}i∈ω in Γ such that if pTn and pT

′
n are the shortest proofs of ϕn in T and

T′ respectively, then:

(a) No function f with Kalmár elementary growth rate satisfies `(pTn) < f(`(pT
′

n )) for
all n;

(b) There is a function f with a roughly super-exponential growth rate such that the
inequality holds for all n.

2. T′ has at most polynomial speed-up over T if there is a polynomial P (x) in natural
coefficients such that for any theorem ϕ of T we have: if pT and pT

′
are the shortest

proofs of ϕ in T and T′ respectively, then `(pTn) < P (`(pT
′

n )) for all n.

Note that roughly super-exponential speed-up results in a significant shortening of proofs.
Thus, if any of the conservative extensions has a roughly super-exponential speed-up over
PRA, it is reasonable to conclude that, for that extension, impurity and simplicity are indeed
associated. On the other hand, two procedures are usually determined to belong to the same
efficiency class if, for the same input, the number of steps needed to execute one procedure
is less than or equal to the value of a polynomial evaluated at the number of steps in the
other procedure. Thus, polynomial speed-up does not generate a significant shortening of
proofs.

[Caldon and Ignjatovic, 2005] shows that IΣ1 has roughly super-exponential speed-up
over PRA with respect to Π0

1 theorems of PRA, and so elementally impure proofs in IΣ1 do
effect simplification. Given the mutual interpretability of RCA0 and IΣ1, RCA0 has at most
polynomial speed-up over IΣ1. Finally, with respect to Π1

1-theorems, WKL0 has at most
polynomial speed-up over RCA0 and similarly for WKL+

0 over WKL0. Thus, conceptually
impure proofs in RCA0,WKL0, and WKL+

0 do not produce any further significant simplifi-
cation. From these findings, it is reasonable to conclude that, at best, the association of
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impurity and simplicity is equivocal, at least insofar as we agree with Arana’s arguments for
the impurity of arithmetical and conceptual extensions and the identification of simplicity
with proof-length.

Attempting such formal analyses is oftentimes a helping starting point for philosophical
reflection, but I think we should be unsurprised by the fact that a relatively coarse formal
measure does not perfectly map onto distinctions made in mathematical practice. Mathe-
maticians rarely think about purely syntactic criteria like proof length. Indeed, if this were
what they commonly meant when adverting to simplicity, it would be easy enough for them
to say this, rather than making less precise claims about elegance or clarity or naturality.
Philosophers and logicians are certainly live to this point. For example, Avigad writes

[proof length] has something to do with explaining how infinitary methods can
make a proof simpler and more comprehensible. But the advantages of working
in a conservative extension seem to have as much to do with the perspicuity
and naturality of the notions involved, and using the number of symbols in an
uninterpreted derivation as the sole measure of complexity is unlikely to provide
useful insight ([Avigad, 2003], 276n18).

But perhaps there are other candidate notions of simplicity up for analysis? And perhaps
these might support the consistent association of impurity and simplicity in mathematical
practice? Indeed, Caldon and Ignjatović remark

...in the above considerations, the speed-up is measured only in terms of lengths
of proofs: this does not rule out a “conceptual speed-up,” i.e., a formulation of
the proof which uses concepts that make the proof easier to grasp, even if there
is no speed-up in terms of length of formal proofs ([Caldon and Ignjatovic, 2005],
781).

These remarks are interesting and suggestive, but certainly in need of further clarification.
In particular, there seems to be a local-global ambiguity at work; one might think that:
(i) individual concepts formulated in an extension are clearer (local); or (ii) particular seg-
ments of the proof are made clearer in virtue of these concepts; or (iii) the entire proof is
made clearer because of the way that the concepts in the extension interact (global). In
the following section, I interpret Szemerédi’s theorem in light of these remarks and argue
that something like (iii) occurs in the ergodic proof.114 Thus, I provide an interesting and
important example in which impurity yields simplicity construed as “conceptual speed-up.”
Finally, I argue that the simplicity achieved by the impure proof also generates explanatory
power.

2.5.3 Does Impurity Yield Simplicity as Conceptual Speed-up?

Arana’s examination of the relationship between impurity and simplicity in a formal, proof-
theoretic context has its advantages: for example, we can say that the move from PRA to IΣ1

(elemental impurity) produces some speed-up; however, proofs in conservative conceptual

114Both the remarks by Avigad and Caldon and Ignjatović appeal to the perspicuity of concepts formulated
in conservative extensions. We do not have conservativity in our case (see below).
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extensions of PRA (topical impurity) do not shorten proofs any further. On the other hand,
this method “...may distort the phenomena being measured,” and/or, as I noted above,
may simply fail to correspond to distinctions that interest us. And this may occur because,
once we formalize theorems of ordinary mathematics in, say, PRA, the information we wish
to analyze is not faithfully represented.115 As such, it seems to me that an evaluation
of the relationship between impurity and simplicity is more fruitfully performed internal
to “ordinary” mathematical practice. However, before doing this, let us see if anything
interesting can be extracted from a formal analysis of Szemerédi’s theorem.

Unfortunately, little appears to be known definitively about its strength.116 It has been
shown, via a method of Shelah, that van der Waerden’s theorem (a special case of Szemerédi’s
theorem) is provable117 in RCA0. Thus, it seems natural to ask whether Szemerédi is provable
in, say, ACA0, or, more optimistically, in RCA0. If one examines Szemerédi’s original proof
in [Szemerédi, 1975], one will see that it should be formalizable in RCA0 as it has elementary
bounds and the argument is entirely combinatorial. Furthermore, utilizing bounds by Gowers
in [Gowers, 2001], it is likely that this can be gotten down to EFA. I hasten to note that these
statements should be understood as “confident claims” based upon an examination of the
bounds and resources in the arguments. However, in order to provide rigorous justification,
one would have to encode carefully all definitions involved in the language of second-order
arithmetic, which I have not done.118

Thus, given that the weakest natural subsystem of Z2 in which Szemerédi’s theorem can
be proven is not known, we do not have a base theory from which to begin a formal analysis
in Arana’s sense. But let us see what can be done if we assume RCA0 as our base theory. It is
known that the Furstenberg Structure Theorem, the key to the ergodic proof of Szemerédi’s
theorem, can be formalized in Π1

1-CA0. It is also conjectured that the reversal holds (over
ACA0).

119 Thus, we would be interested in the following conceptual extension

RCA0 ⊂ Π1
1-CA0 . (2.5.3)

More cautiously, the paper [Avigad and Towsner, 2010] shows that Furstenberg’s original
proof in [Furstenberg, 1977] requires the strength of ACA0 (over RCA0) where we prove
Furstenberg Multiple Recurrence (Theorem 2.3.12) for each k via the Furstenberg Structure
Theorem (Theorem 2.3.37). We require slightly more than ACA0 if we are proving Fursten-
berg Multiple Recurrence for all k. Thus, we would then be interested in the conceptual

115It is also the case that metamathematical results required to facilitate such an analysis may not be
available.
116See Simpson’s survey article [Simpson, ]. I would find it surprising, if the strength of Szemerédi’s original

proof had been established, that this was not mentioned in, e.g., [Avigad, 2009], which deals with the theorem
directly.
117Shelah shows that the Hales-Jewett theorem implies van der Waerden’s theorem. Then he shows that the

Hales-Jewett function has primitive recursive upper bounds, and thus the van der Waerden function does.
See [Shelah, 1988]. Recently, it has been shown by Matet in [Matet, 2007] that something much weaker than
RCA0 is needed: merely super-exponential function arithmetic.
118See Appendix B for further discussion.
119The equivalence of the Structure Theorem with Π1

1-CA0 over ACA0 was claimed in [Avigad, 2009], but
now Avigad is not confident in this claim. Again, see Appendix B.
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extension

RCA0 ⊂ ACA0, (2.5.4)

or perhaps RCA0 ⊂ ACA0
+. It seems entirely possible that as we move to subsystems of

Z2 stronger than those considered in [Arana, 2017] and [Caldon and Ignjatovic, 2005], i.e.,
stronger than RCA0, WKL0, and WKL+

0 , we might get a significant speed-up (better than
polynomial) and thus a significant shortening of proof length.

However, we also need a conservativity result in order to apply Arana’s analysis. That is,
we wish to find conservative extensions of RCA0 that offer more than polynomial speed-up
(and where these extensions add set-existence principles, i.e., are “conceptual” extensions).
Preliminary results by Yokoyama in [Yokoyama, 2010] suggest that what we are after will not
materialize; in particular, he proves the existence of a maximal Π1

2-axiomatizable120 concep-
tual extension of RCA0 and conjectures that no such extension offers more than polynomial
speed-up. As Arana notes, all known methods of producing conservative extensions of RCA0

rely upon the Π1
2-axiomatizability of the extension. Thus, if Yokoyama is able to prove his

conjecture (as of yet, this has not been done) or if no new methods for producing conservative
extensions of RCA0 are found, then we should not expect any significant speed-up results
for conceptual extensions of RCA0.

121 To summarize: a number of technical results would
have to fall very precisely in place for an analysis of simplicity in terms of proof-length to
apply to Szemerédi’s theorem, and, even if this were to happen, I have already noted that
the dividends may be of questionable philosophical value.

In any case, let me turn to the details of our case study to see if these can yield fur-
ther insight into the relationship between impurity and simplicity. Like Arana, I am here
interested in verificational simplicity, i.e., the simplicity of confirming the deductions of a
given proof. The impurity in question is, again, both elemental and topical: the resources
of the ergodic proof are both more computationally complex than the combinatorial theo-
rem in question (elemental) and involve intuitively different concepts (topical). The topical
impurity proceeds from my argument in the above section. I claimed that, despite the sur-
prising equivalence of Szemerédi’s theorem and the ergodic Furstenberg Multiple Recurrence,
we should retain a notion of intuitive content, which can then be supplemented by struc-
tural content. Thus, our question is whether the radical impurity of the ergodic proof of
Szemerédi’s theorem is verificationally simpler than the combinatorial proof insofar as the
impure proof yields conceptual speed-up.

Before an explicit comparison of techniques, consider again the local-global ambiguity in
Caldon and Ignjatović’s discussion of conceptual speed-up. Prima facie, if one is thinking
locally in terms of particular concepts, it appears obvious that some impure techniques
are not simpler than pure ones. Take the case at hand: the basic objects122 of study in
Szemerédi’s theorem are sufficiently dense sets of integers (or even just subsets of N). This
seems entirely comprehensible to a mathematical novice; one needs only to understand the
integers as the counting numbers along with their additive inverses (and zero). We then have

120Note that both WKL0 and WKL+
0 are Π1

2-axiomatizable.
121This might change if new methods were found of producing conservative extensions of RCA0 not relying

on Π1
2-axiomatizability.

122I use “object” here as a term of art; it is not intended to convey any sort of ontological commitment.
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the only slightly more difficult notion of density, which is a particular measure of the size of
an infinite set relative to an ambient set. On the other hand, the basic objects of the ergodic
proof are measure preserving systems (X,B, µ, T ). Such an object is straightforwardly
more complex: there are more distinct entities comprising the system (a set, a σ-algebra, a
measure, a measure-preserving transformation), whereas in the combinatorial case there are
merely numbers. Furthermore, the entities of a measure-preserving system are less familiar to
those without a more advanced mathematical education (even though they can be intuitively
understood). Thus, we should not think that simplicity as conceptual speed-up occurs at
the local level. However, to move from this point to the claim that, globally, an impure
proof is more complex is to commit a compositional fallacy. It is entirely possible that the
way in which the less familiar objects interact in the proof is more perspicuous than the
interaction of the more familiar objects. Let me now demonstrate that this is the case in a
(brief) comparison of the combinatorial and ergodic proofs of Szemerédi’s theorem.

2.5.4 Comparison of Techniques

The fundamental point of this comparison can—once more—be profitably understood through
Aristotle’s Posterior Analytics. In Post. An. A.2, Aristotle gives an explication of scientific
knowledge123 as follows:

We think that we have scientific knowledge of each thing without qualification,
and not in the sophistical manner accidentally, whenever we think that we know
the cause on account of which the object is, that it is the explanation [or cause]
of that [object], and that it is not possible for this [the object] to be otherwise.124

(translation my own; 71b9-12)

Accordingly, there are three obvious ways125 in which we might fail to have scientific knowl-
edge (or understanding) of some fact X: (i) by getting the cause/explanation126 of X wrong,
e.g., thinking it is Z instead of Y ; (ii) by knowing the explanation Y of X, but failing to
register it qua explanation127; (iii) by thinking that X is not necessary. Remaining agnostic
concerning this last condition, my claim is that the pure proof of Szemerédi’s theorem fails to
generate understanding, i.e., is not explanatory, because (ii) occurs. We have at our disposal
the crucial structural fact that provides the reason why for the theorem, but it is not recog-
nized as such in the pure proof. This is because the role of this structural fact is lost amid

123“Scientific knowledge” translates epistēmē ( ἐπιστήμη). It is translated by some as “understanding”.
See, for instance, [Barnes, 1993].
124The Greek of [Ross and Minio-Paluello, 1964] reads: ᾿Επίστασθαι δὲ οἰόμεθ᾿ ἕκαστον ἁπλῶς, ἀλλὰ μὴ

τόν σοφιστικὸν τρόπον τὸν κατὰ συμβεβηκός, ὅταν τήν τ᾿ αἰτίαν οἰώμεθα γινώσκειν δι᾿ ἥν τὸ πρᾶγμά

ἐστιν, ὅτι ἐκείνου αἰτία ἐστί, καὶ μὴ ἐνδέχεσθαι τοῦτ᾿ ἄλλως ἔχειν.
125Note that Aristotle’s gloss on scientific knowledge here precedes (and prepares the way for) his theory

of demonstration, which provides further conditions that guarantee an Aristotelian syllogism can produce
scientific knowledge. I do not wish to enter into a discussion of these further conditions and merely wish
to point out that Aristotle’s discussion of knowledge early on in the Posterior Analytics remains quite
instructive.
126Translating αἰτία.
127See his famous discussion of the syllogisms involving the non-twinkling and nearness of the planets in

Post. An. A.13.
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the welter of delicate combinatorial manipulations required to carry out the proof. Namely,
and somewhat ironically, our efforts to establish the truth of the theorem in this manner
obscure the reason for the truth. On the other hand, the impure ergodic proof effects a sort
of global conceptual simplification and renders the explanatory structural fact evident. This
simplification occurs in part because of the infinitary nature of the ergodic objects; it leads
to an explanatory proof because structural content128 is shared between the combinatorial
and ergodic domains, which ensures we do not lose the putative reason why. Thus, we see
that the relationship between impurity, explanation, and simplicity is quite complicated: the
(topical) impurity has to be sufficiently constrained, i.e., it must be an appropriate setting
in which to prove the original result, but if this is the case, then various other aspects of the
impurity (e.g., its infinitary aspects) serve to generate significant conceptual advantages. It
may be significant that both varieties of impurity (elemental and topical) are present in this
case. It would be interesting to see if my association of impurity with explanatory power
holds when only one variety is present.

I will now try to give a sense for the conceptual obstructions present in the pure proof of
Szemerédi’s theorem and how these are overcome in the ergodic proof.129 It will be helpful
to consider remarks on the matter by Tao:

Szemerédi’s original proof of this theorem is a remarkably intricate piece of com-
binatorial reasoning. Most proofs of theorems in mathematics—even long and
difficult ones—generally come with a reasonably compact “high-level” overview,
in which the proof is (conceptually, at least) broken down into simpler pieces.
There may well be technical difficulties in formulating and then proving each of
the component pieces, and then in fitting the pieces together, but usually the “big
picture” is reasonably clear. [...] In contrast, the pieces of Szemerédi’s proof are
highly interlocking, particularly with regard to all the epsilon-type parameters
involved; it takes quite a bit of notational setup and foundational lemmas before
the key steps of the proof can even be stated, let alone proved (Blog post here;
emphasis my own).

He goes on to note:

Many years ago I tried to present the proof [of Szemerédi’s original paper], but
I was unable to find much of a simplification, and my exposition is probably not
that much clearer than the original text. Even the use of nonstandard analysis,
which is often helpful in cleaning up armies of epsilons, turns out to be a bit
tricky to apply here. (In typical applications of nonstandard analysis, one can
get by with a single nonstandard universe, constructed as an ultrapower of the
standard universe; but to correctly model all the epsilons occuring in Szemerédi’s
argument, one needs to repeatedly perform the ultrapower construction to ob-
tain a (finite) sequence of increasingly nonstandard (and increasingly saturated)
universes, each one containing unbounded quantities that are far larger than any

128Again, the dichotomy between structure and randomness encoded in the respective Structure Theorems.
129I claim no originality in my presentation. Indeed, I have adhered closely to Tao’s own presentation of

these obstructions here. I have tried to map what he says there onto the original theorems, facts, lemmas,
etc. in [Szemerédi, 1975].
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quantity that appears in the preceding universe [...] This sequence of universes
does end up concealing all the epsilons, but it is not so clear that this is a net
gain in clarity for the proof.

Given the first quote, it may be a fool’s errand to try to indicate, even in outline, the
main steps of Szemerédi’s theorem, but I would like to provide my reader with some further
evidence for my claims. The second quote is interesting for a few reasons. One is that
the pure proof, after nearly 50 years, still has no significant (combinatorial) simplification.
This is something of a rarity and again indicates the great complexity of the theorem.130

Another is that other infinitary techniques (non-standard universes) have not provided any
real simplification of the proof. I would like to suggest (tentatively) that this gives us further
warrant for thinking the ergodic setting is the correct or appropriate infinitary setting for
proving Szemerédi’s theorem in an explanatory fashion.

Let us now take a look at some of the key ingredients of the pure proof of Szemerédi’s
theorem. Consider first the combinatorial Structure Theorem, i.e., the Szemerédi Regular-
ity Lemma (see Lemma A.1 for the original statement). Here I present a more modern
formulation. Begin with the definition:

Definition 2.5.2. (ε-regularity) Let G = (V,E) be a graph with A,B sets of vertices in V .
Let

e(A,B) := | {(a, b) ∈ A×B : {a, b} ∈ E} |,

i.e., the number of (a, b) such that ab is an edge of the graph. Then the density of A,B is

d(A,B) := e(A,B)
|A||B| .

Finally, we call the pair A,B ε-regular if

|d(A′, B′)− d(A,B)| ≤ ε

for all subsets A′ ⊂ A and B′ ⊂ B such that |A′| ≥ ε|A| and |B′| ≥ ε|B|.

The crucial idea of this definition is that a pair (A,B) is regular if it resembles a random
graph with edge-probability d. We then have:

Lemma 2.5.3. (Szemerédi Regularity Lemma; modern version) Let G = (V,E) be a graph,
and let ε > 0. Then there is a positive integer K0 such that, for any graph G, V can be
partitioned into sets V1 ∪ · · · ∪ VK with K ≤ K0, with sizes differing by at most 1, such that
all but at most εK2 of the pairs (Vi, Vj) (1 ≤ i ≤ j ≤ K) are ε-regular.

Thus, this asserts, roughly, that every graph can be decomposed into a few pieces, all of
which resemble a random graph.131 Random graphs of given edge density d are generally
much easier to handle than all graphs of edge density d. Thus, we can carry over results

130For instance, it is interesting that the Green-Tao theorem, which uses Szemerédi’s theorem as one of its
main steps, has already been significantly simplified by Conlon, Fox, and Zhao.
131More precisely, the “pieces” are the ε-regular pairs and these behave like random bipartite graphs. A

bipartite graph is a graph G = (V,E) such that we can partition V = V1 ∪ V2, V1 ∩ V2 = ∅, and E ⊆ V1 × V2
such that every e ∈ E has one endpoint in V1 and the other in V2.
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that are trivial for random graphs to all graphs. This is a structural result very much like
the Furstenberg Structure Theorem.132 Recall in this case it was easy to see why recurrence
patterns hold in random (weak mixing) and structured (periodic) systems. Because of the
Furstenberg Structure Theorem, we then know that any measure-preserving system will be
broken down into components we can handle easily and thus prove the general recurrence
result.

So much for the combinatorial structure theorem. The other key ingredients of Sze-
merédi’s proof are van der Waerden’s theorem (Theorem(s) 2.3.7 and 2.3.8) and a very
tricky analysis of the densities of sets A ⊂ Z along what are typically called generalized
arithmetic progressions. This analysis amounts roughly to the following: we are interested
in finding some arithmetic progression P1 := a, a + r, . . . , a + (k − 1)r (rank 1, k length
arithmetic progression) in every sufficiently dense A ⊂ Z. Importantly, one can construct an
arithmetic progression of arbitrary rank. So, for example, a rank 2 arithmetic progression
will be of the form P2 := P1, P1 + r2, . . . , P1 + (k2 − 1)r2, i.e., an arithmetic progression of
arithmetic progressions P1 of rank 1. Szemerédi’s basic strategy is to construct a massive
arithmetic progression of high rank D containing many elements of A ⊂ Z and then winnow
down this huge generalized arithmetic progression until one arrives at a rank 1 arithmetic
progression containing only elements of A. Note that Lemma 5, Lemma 6, and Fact 12 of
[Szemerédi, 1975] involve generalized arithmetic progressions in this way.133

Let me attempt to describe how this winnowing process works. In order to terminate
the process at a k length rank D = 1 arithmetic progression with all elements in A, we
must choose our generalized arithmetic progression to be of suitable rank. This turns out
to be quite large: 2k + 1 (I remark on this below). The next step is to locate a generalized
arithmetic progression of rank 2k + 1 that is “saturated” by elements of A.134 More or
less, this amounts to the fact that each rank D − 1 arithmetic progression comprising our
massive generalized arithmetic progression has an “almost maximal” number of elements of
A. Once this is done, we hope to find a family of arithmetic progressions of rank D−1 inside
the generalized arithmetic progression of rank D, which has sufficiently nice arithmetical
properties in order to invoke a weak mixing assumption. This assumption is applied to sets
Ai := {a ∈ PD−1 : a+ irD ∈ A} with i = 0, . . . , kD − 1. As noted above, weak mixing is
tantamount to saying that Ai behaves like a random set of integers. Explicitly, this weak
mixing assumption looks like

|Ai ∩ E| ≈ δσ|PD−1| (2.5.5)

where PD := PD−1, PD−1 + rD, . . . , PD−1 + (kD− 1)rD, E is an arbitrary subset of PD−1 with
density approximately σ and δ is the density of Ai in PD−1 with i = 0, . . . , kD − 1. We must
now justify and significantly strengthen this weak mixing assumption. This is done via a
sort of double counting argument and invokes both van der Waerden’s theorem and, most
importantly, the Szemerédi Regularity Lemma. In essence, one must justify the weak mixing
assumption for a very large number of subsets Ej; in particular, the number of Ej for which

132See Theorem 2.3.37 above.
133Note that there is a slight error in Szemerédi’s diagram included in the appendix. We should have
L6 → F12, i.e., Lemma 6 implies Fact 12, not the other way round.
134See [Szemerédi, 1975], p. 208, for the technical definition of saturated.
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the weak mixing assumption holds cannot be much smaller than the length of the arithmetic
progression being used to establish the assumption (in this case length kD − 1). This is
precisely the role of the Regularity Lemma: it allows us to show that sufficiently many of the
Ej have this weak mixing (random) behavior. This induces a condition like the above.135 We
then wish to apply this strong weak mixing condition to the family of generalized arithmetic
progressions of rank D − 1 sitting in the original generalized arithmetic progression of rank
D. This can only be done if the family is structured in a very precise way.

Even after all this has been done there is a very significant obstruction. We wish to apply
the analogous weak mixing condition to appropriate index i = 0, . . . , kD−1, but getting this
to hold for all i simultaneously is exceedingly difficult. Furthermore, Tao describes it as a
“Tower of Hanoi” situation wherein once the condition is gotten to apply to some i, there is
no guarantee that it holds for previous values of i. This partially accounts for the huge rank
D = 2k + 1 of the generalized arithmetic progression as we must constantly move back and
forth between indices to get the correct behavior of the progressions and subsets such that
we eventually find a rank 1 arithmetic progression with all elements in our original A.

A few remarks are now in order. First, this outline is the coarsest exegesis of the most
basic steps of the proof and abstracts away from many details of Tao’s own outline, which
itself gives only the “slightest hint” as to how everything fits together. One should note
especially that many details have been left imprecise (mere approximation ≈ rather than
providing explicit error terms, adverting to “nice” properties of order, etc.). This should
be contrasted to the outline of the ergodic proof provided in Section 2.3.2, which, I hope,
leaves one much less in the dark as the main moves of the proof can be stated with much
less set up. Second, especially given the issues of moving back and forth between indices
(the Tower of Hanoi), the combinatorial proof of Szemerédi’s theorem is highly non-linear.
Again, contrast to the ergodic proof, which, though complex component-wise, can be set
forth in a linear fashion. The non-linearity and linearity respectively are perfectly objective
features of the proofs and, at the “global” level of overall proof structure, the linear ergodic
proof is much more perspicuous than the non-linear combinatorial one.

Third, this kind of simplification of the overall proof structure can then be said to generate
explanatory power. An explanation, taken to be a syntactic or semantic object (an argument
of some sort), should prima facie be of an asymmetric character.136 We proceed from the
explanans to the explanandum and not vice versa. To do so would be to deny the possibility of
explanation whatsoever. Having our proof structured in a linear way makes this explanatory
asymmetry apparent: once we have proved the Correspondence Principle (Theorem 2.3.14),
the ergodic proof essentially reduces to relativizing the Koopman-von Neumann Dichotomy
Theorem (Theorem 2.3.27) to obtain the Furstenberg Structure Theorem (Theorem 2.3.37).
Once this theorem has been gotten, we proceed directly from it to the Correspondence
Principle to Szemerédi’s theorem (Theorem 2.3.4). On the other hand, even though the
Regularity Lemma (Lemma 2.5.3) can licitly be said to be the reason why Szemerédi’s
theorem holds, how it interacts with the other features of the combinatorial proof is quite
opaque. In particular, justifying why we need the weak mixing assumptions (especially in its

135See Lemma 4 and Lemma 5 in [Szemerédi, 1975].
136I take it that since we here are talking of proofs, i.e., a kind of argument, we can say that we are

interested in finding the subset of proofs that are explanations.
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strongest form) and thus why we need the Regularity Lemma is a much more difficult task
than justifying why we need the Furstenberg Structure Theorem. Furthermore, even once
we have used the Regularity Lemma to obtain our desired weak mixing property, actually
getting this property to hold for various indices is very difficult. Given this opacity, the pure
combinatorial proof fails to yield any sort of understanding as to why Szemerédi’s theorem
is true, and thus fails to be explanatory. I would like to stress that I do not think this is a
strictly pragmatic or epistemic feature of the situation. Rather, it is because of an objective
feature of the pure proof that one fails to understand the result: we are not able to locate
the structural and explanatory fact qua explanation internal to the nexus of reasoning that
constitutes the proof.137 As I stated in the introduction, in order to have a truly explanatory
proof, one must see both the putative reason why and how this reason interacts with other
aspects of the proof. This further requirement allows one to register the explanation qua
explanation, and this only happens in the impure proof.

2.5.5 Summary

Thus, I believe this analysis supports the following chain of inferences: Impurity ⇒ Sim-
plicity ⇒ Explanatory Power. The impure ergodic proof of Szemerédi’s theorem generates
simplicity construed as “conceptual speed-up.” This conceptual speed-up does not occur at
a “local” level: as I have noted the concepts involved in the ergodic proof are, taken on their
own, more difficult to understand. However, once we pass to the “global” level of overall
proof structure, the way in which the ergodic concepts interact does generate a significant
simplification of the proof, in particular, a more direct and linear one. This occurs in large
part because of the infinitary nature of the ergodic entities. We are, for example, able to work
with the behavior of measure-preserving systems in the limit, which significantly reduces the
difficulties of ascertaining error terms and delicate density calculations required in the com-
binatorial setting. This is all well and good, but why would one expect this simplification
to lead to an explanatory proof? Indeed, would it not be the case that crucial explanatory
data would be lost? This is where we can invoke the structural content shared by Fursten-
berg Multiple Recurrence and Szemerédi’s theorem. Both belong to the mathematical genus
defined by the “dichotomy between structure and randomness,” and so both theorems are
about this dichotomy in some sense. Furthermore, this structural fact is the reason why each
theorem holds: decomposing either A ⊂ Z or arbitrary measure-preserving system X into
structured and random pieces allows one to find the desired arithmetic progression or recur-
rence pattern. Thus, the crucial explanatory fact is present in both the combinatorial and
ergodic domains. However, the combinatorial proof, given its many computational detours,
does not show that this structural fact is the reason why. Not so in the ergodic setting: the
advantages of the impure and infinitary setting can be exploited to bring the structural fact
to light.

137That is, option (ii) from the beginning of Section 2.5.4 occurs.
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2.6 The Necessity of Infinity and A Bridge to Platonism

My analysis of the explanatory power of the ergodic proof of Szemerédi’s theorem can be
put into fruitful dialogue with Feferman’s discussion of the purported “necessity” of the
infinite in [Feferman, 1987]. After examining the main points of this paper, I will draw
some epistemological and metaphysical conclusions about the impure and infinitary entities
that have featured in the above discussion. I argue that particular infinitary resources are in
some sense necessary138 and that these resources might be understood platonistically (contra
Feferman) via a form of indispensability argument.

2.6.1 In What Sense is Infinity Necessary?

Feferman calls Gödel’s Doctrine the claim that

the “true reason” for the incompleteness phenomena is that “the formation of
ever higher types can be continued into the transfinite,” both in systems explicitly
using types and systems of set theory such as ZF for which the (cumulative) type
structure is implicit in the axioms ([Feferman, 1987], 190; quoting [Gödel, 1931],
fn. 48a).

Informally, this means that, given some system S0 whose axioms are thought to be true, we
adjoin an extension S1 that decides previously undecidable propositions of S0; however, the
incompleteness simply reappears in the form of undecidable propositions of S1, requiring the
addition of yet another extension, S2, etc. Specifying Gödel’s general claim to the case where
the “undecidable propositions” are of finitary character, Gödel’s Doctrine can be glossed as:
“...the unlimited transfinite iteration of the power-set operation is necessary to account
for finitary mathematics” ([Feferman, 1987], 190). Feferman also considers a formulation
of Gödel’s Doctrine in terms of systems of set theory; however, this formulation does not
directly concern us here, and so I will focus upon that in terms of finitary propositions and
the powerset.

As is well known, Con(PA) is a Π0
1 statement not provable in PA. In order to prove it,

one provides an extension of PA involving higher-order quantification, full induction, and a
comprehension principle (Π1

1-CA, though Feferman shows ∆1
1-CA suffices139). This extension

allows one to formulate a definition of formal truth for PA and then prove the statement
expressing that “every statement provable in PA is true.” A fortiori this establishes Con(PA),
since, for the formal truth predicate TrPA(·), we have

¬TrPA(p⊥q)→ Con(PA). (2.6.1)

Thus, the adjunction of higher-order principles allows us to prove statements with explicit,
finitary content, viz., Con(PA). Of course, we must be careful to distinguish between poten-
tially innocuous higher-order principles140 and those that rely upon the full powerset. It is

138Viz., necessary for maximally intelligible mathematics.
139See Section C for definitions and brief discussions of many of the technical terms employed in this

section. Feferman’s proof sketch occurs on pp. 191-192 of [Feferman, 1987]. Actually, even less than ∆1
1-CA

is required since ACA ` Con(PA), but Feferman does not consider this here.
140Recall that an analogous point occurred in my discussion of Isaacson’s notion of higher-order content.
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this latter sort that principally concerns Feferman:

Gödel’s doctrine can be challenged when it is read as asserting that the platonist
view of the determinateness of the power set operation and its iteration through
all the ordinals is necessary for the derivation of previously undecidable but true
Π0

1 statements ([Feferman, 1987], 193).

Thus, he thinks we proceed from (i) platonism to (ii) the “determinateness” or meaningful-
ness of the powerset to (iii) the requisite comprehension principles that allow for the proof
of finitary results. Note that, in showing the proof of Con(PA) requires only ∆1

1-CA, Fefer-
man has already undermined Gödel’s Doctrine and its attendant platonism. This is because
∆1

1-CA only requires a small fragment of the powerset of the naturals and consequently does
not require platonism to justify belief in the determinateness of the full powerset. Indeed,
[Feferman and Sieg, 1981] shows that ∆1

1-CA is predicatively justifiable.141 There is, how-
ever, one conceptual worry present here: it is not entirely obvious why Feferman associates
the meaningfulness of the full powerset with platonism alone. It is conceivable that other
philosophical positions could justify, say, mathematics utilizing impredicative comprehen-
sion principles or even much more.142 This association is, however, crucial to the integrity
of Feferman’s argument since he seeks to undermine Gödel’s Doctrine given his discomfort
with platonism as the “medieval metaphysics of mathematics” (following Weyl).

In any case, he provides a few interesting ways in which one might reinterpret the “true
reason” for the incompleteness phenomena, none of which requires the adjunction of higher
types and, in particular, the transfinite iteration of the powerset operation. Given that, in the
example outlined above, we require a formal truth predicate to deduce Con(PA), Feferman
suggests that the crux of the issue is the inexpressibility of a formal truth predicate of some
language L in L itself. Modulo the one issue mentioned above, I find much of this argument
compelling, and so I take Feferman to have successfully undermined the necessity claim in
Gödel’s doctrine: our understanding of independence/incompleteness phenomena does not
require the transfinite iteration of the powerset operation.

Feferman then considers a fascinating family of theorems that might cause trouble for this
conclusion. These theorems, e.g., Paris-Harrington, Goodstein’s, finite Kruskal’s, are “fini-
tary independence results,” resembling “naturally occurring” combinatorial results relevant
to everyday mathematical concerns.143 For instance, both the Paris-Harrington theorem and
Goodstein’s theorem are independent of PA and thus independent of ACA0; more pressing
for Feferman, finite Kruskal’s theorem is independent of ATR0. This latter result might offer
weak support for Gödel’s doctrine insofar as it requires Π1

1-CA0 for its proof (or appears to
do so). Feferman notes

Now (the [Gödelian] argument) continues, this system [Π1
1-CA0] is justified only

if one assumes that the powerset P(N) exists as a fixed definite totality. Hence,
according to this line of argument, it is necessary to make platonistic assump-
tions concerning the existence of uncountable totalities in order to derive finite

141For a brief discussion of this fact, see [Feferman, 1998b].
142For instance, consider Maddy’s mathematical naturalism.
143One might challenge their relevance, of course. Feferman himself does so, citing a “nagging feeling that

the statements still have a ‘cooked-up’ look” ([Feferman, 1987], 201).
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combinatorial truths Pfin [finite Kruskal’s theorem and an extended version due
to Friedman]...In other words, according to this line of thought, at least the
first stage of the Cantorian transfinite is necessary for everyday combinatorial
mathematics ([Feferman, 1987], 200).

Taking the necessity in question to be “necessary for proving,” Feferman has two rejoinders
to this reworked Gödelian argument from the finitary independence results. The first is
that we require only the 1-consistency144 of the impredicative comprehension principle, not
the principle itself, in order to prove the finitary statements in question. And, as Brouwer
stressed to Hilbert, consistency alone does not yield truth. Second, one might appeal to
proof-theoretic reductions of subsystems of Z2 to constructive theories. Informally, we say
that a system T1 is proof-theoretically reducible to another system T2 with respect to some
class of formulas Φ when every proof π1 of T1 ending in formula ϕ ∈ Φ can be effectively
transformed into a proof π2 of T2 (also ending in ϕ). Furthermore, this transformation can be
formalized entirely in T2; it should be apparent that a proof-theoretic reduction immediately
implies conservativity (over the relevant class of formulas). The basic idea is that, if we can
proof-theoretically reduce the impredicative theory Π1

1-CA0 to some weak theory, which is
itself justified without appeal to P(N), then the use of Π1

1-CA0 in the finitary independence
results is anodyne.145 The results contained in [Buchholz et al., 1981] provide examples of
such reductions in terms of “iterated inductive definitions.” In particular, it is shown that
Π1

1-CA0 is (finitarily) reducible to IDi
<ω :=

⋃
n<ω IDi

n with respect to Π0
2 formulas. Here

IDi
<ω is a constructive (i.e., intuitionistic, indicated by the i superscript) system of inductive

definitions iterated < ω times (indicated by the < ω subscript). To fix intuitions, let me
briefly define the simplest theory of iterated inductive definitions, ID1, first introduced by
Kreisel.146 Note that this theory is not intuitionistic.

Example 2.6.1. ID1 is an axiomatic theory consisting of the axioms of PA with additional
predicates P defined in the following way. Take some arithmetical formula ϕ(P, x) where P
has only “positive occurrences” in ϕ. The positivity condition means that P always occurs
without negations when we write everything in negation-normal form. This ensures that
we get “new information” only from “previously given information” or “from below.” This
is quite important as Feferman relies on this kind of intuitive gloss in defending iterated
inductive systems as especially perspicuous. Given the positivity constraint, we can then
define a monotonic operator:147

Γϕ : P(N)→P(N), Γϕ(X) = {x ∈ N : ϕ(X, x)} . (2.6.2)

The monotonicity of Γϕ is sufficient to show that there is a smallest fixed point, IΓϕ :=

144We define 1-consistency as: for some theory T and any primitive recursive ϕ, we cannot have both (i)
T ` ∃xϕ(x) and (ii) T ` ¬ϕ(0),¬ϕ(1), . . ..
145It would then presumably join the good company of ∆1

1-CA, even though Π1
1-CA0 is indeed fully impred-

icative.
146I have benefitted from sections of the Preface and Chapter 1 of [Buchholz et al., 1981] by Feferman in

trying to absorb this information.
147We can also formulate iterated inductive systems in terms of very concrete sets of rules; this formulation

is in fact equivalent (in a particular sense) to the operator formulation. See [Buchholz et al., 1981], pp.
19-20.
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⋂
{X : Γϕ(X) ⊆ X}. The new predicates P for ID1 are then just such smallest fixed points

associated to each formula ϕ. We complete the construction of ID1 by adding the following
axioms:

1. ∀x(ϕ(P, x)→ P (x));

2. ∀x(ϕ(ψP , x)→ ψ(x))→ ∀x(P (x)→ ψ(x)),

for each ψ and where ψP means that we replace atomic formulas P with ψ.

Given the availability of the proof-theoretic reduction of Π1
1-CA0 to IDi

<ω, Feferman be-
lieves we can dispense with the problematic impredicative principles. Indeed, in light of this
reduction, we are supposed to be in a very epistemically secure place for two reasons. First,
we utilize only intuitionistic logic in IDi

<ω and thus no appeal to the “completed infinite.”
Second, IDi

<ω employs only countable sets generated from very concrete, previously obtained,
information. Thus, we are to conclude that

[...] the above reductions demonstrate [that] the classical systems in question
[viz, Π1

1-CA0 and various extensions] have an alternative constructive justification
which does not require anything like belief in a pre-existing totality of subsets of
N ([Feferman, 1987], 201).

Once more, I find this compelling (and the results incredibly striking). However, Fefer-
man’s arguments only retain their force under the assumption that the infinite is required for
provability. But is infinitary reasoning necessary in a no less important sense for the provision
of perspicuous and explanatory proofs?148 My analysis of the ergodic proof of Szemerédi’s
theorem is intended to support an affirmative answer to this question. Though it is indeed
the case that Szemerédi’s theorem does not require anything, provability-wise, beyond fini-
tary combinatorial reasoning, restricting ourselves to this alone damages our understanding
of the result.

Let us now examine the metamathematics of the ergodic proof(s) of Szemerédi’s theorem.
The axiomatic strength of these proofs will be determined by the strength of the Furstenberg
Structure Theorem (Theorem 2.3.37) and whether the full power of the theorem is required.
There is a rather complicated story here. It was originally claimed that the Structure theorem
is equivalent over ACA0 to Π1

1-CA0 (Theorem 5.3 of [Avigad, 2009]).149 However, a few years
later, it was noted in [Montalbán, 2011] that Avigad and Towsner were comfortable asserting
only the formalizability of the Structure Theorem in Π1

1-CA0. The reversal, i.e., that the
Structure Theorem + ACA0 implies Π1

1-CA0 was—and remains—open. It is not ruled out
that this reversal holds, but it would seem to require some delicate work to prove.150 With
these facts in mind, let us assess the status of Furstenberg’s proofs. The crucial question
is this: how far into the countable ordinals need the tower of factors of measure-preserving
X extend? That is, need it extend arbitrarily far and thus require the full Furstenberg
Structure Theorem? It is well-know that the original proof in [Furstenberg, 1977] did not;

148Indeed, one might think that the very intelligibility of a good deal of mathematics requires the infinite.
149I first wrote this section under the presumption that this equivalence was solid; however, after discovering

[Montalbán, 2011] and corresponding with Jeremy Avigad, I have had to rely on more cautious claims.
150See Appendix B for further discussion.
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on the other hand, the presentation in [Furstenberg et al., 1982] does appear to use the full
Structure Theorem. Nonetheless, it has been shown in [Avigad and Towsner, 2010] that the
tower need only extend to the ωω

ω
th level. The upshot of all this is that, when the Structure

Theorem is used to prove Furstenberg Multiple Recurrence for all k, the proof goes slightly
beyond the strength of ACA0, and so is weakly infinitary.

Thus, the ergodic proof(s) in both [Furstenberg, 1977] and [Furstenberg et al., 1982] are
then in principle much weaker than they appear because they do not require the full Fursten-
berg Structure Theorem. But this raises an interesting question: why didn’t Furstenberg
et. al. in [Furstenberg et al., 1982] simply avoid using this much power? As Avigad noted in
personal correspondence, “I am sure they knew that it was possible. It would have changed
the presentation only slightly: they could throw away the limit argument for the SZ property
and the appeal to transfinite induction, and then they only needed to modify one of their
calculations slightly.” Thus, the answer is, probably, that they did not care to do so: the
Structure Theorem is an incredibly interesting result and provides understanding as to why
the ergodic analogue of Szemerédi’s theorem holds. Why then dispense with it or try to
whittle away at its logical strength if it provides a perspicuous proof?

I believe the following morals can be drawn. Even though the ergodic proofs are not as
axiomatically strong as they appear, they are still much stronger than Szemerédi’s original
proof. We should emphasize the relative distance, which is nicely precisified by reverse math-
ematical analysis: Szemerédi’s combinatorial proof is axiomatically weak but also incredibly
difficult to understand.151 On the other hand, Furstenberg’s proof(s), especially that of
[Furstenberg et al., 1982], takes us from RCA0 (possibly even EFA) to just beyond ACA0 and
thus into the realm of the infinitary. In so doing, we get a perspicuous high-level proof of
Szemerédi’s theorem that emphasizes crucial structural features of the mathematics. Is this
a consequence of the increase in axiomatic strength? I think the answer is yes but with some
reservations; a full analysis of this point would require an independent discussion, and so I
leave it at that for now.

In any case, the most perspicuous version of the ergodic proof152 appears to use the full
strength of the Structure Theorem, even though this is not strictly necessary for the proof.
The clear expression of this structural result, effected by first examining the limiting behavior
of measure-preserving systems, is a crucial ingredient of the ergodic proof of Szemerédi’s
theorem, and, I have claimed, it is the putative “reason why” the theorem holds. This high-
powered result is, of course, not the only aspect of the ergodic proof that effects simplification
and explanatory dividends over the combinatorial one, but it is the most important. It
should, then, be considered necessary in the requisite sense.

Such an “explanationist” argument for the necessity of the transfinite also gains purchase
against Feferman’s second rejoinder. Even though it is proof-theoretically possible to pro-
vide constructive justification for Π1

1-CA0 (and other subsystems), in order to counter my
argument it would be incumbent on Feferman to show that a constructive reduction of the
infinitary elements of the ergodic proof generates an equally perspicuous and explanatory
proof. I will not claim that this cannot be done, but I find it incredibly unlikely. One might
surmise this is what Avigad attempts to do in [Avigad, 2009]. Here, in joint work with

151See Appendix B for further discussion.
152That of [Furstenberg et al., 1982].
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Henry Towsner, Avigad provides a “metamathematical explanation” as to why the Fursten-
berg Structure Theorem (in particular, the Furstenberg tower constructed in the theorem)
can be used to “prove a finitary combinatorial statement with explicit computational con-
tent.” In particular, they sketch a strategy designed to show that the entire ergodic proof
can be carried out in ID1

153 and that this proof in ID1 can be interpreted constructively (via
a modification of Gödel’s Dialectica interpretation). The ultimate goal is “to obtain a per-
spicuous new proof of Szemerédi’s theorem, one that will clarify the combinatorial essence
of the Furstenberg approach...” ([Avigad, 2009], 74). However, this is a goal different from
giving an explanatory proof of Szemerédi’s theorem simpliciter : it is designed to clarify the
surprising infinitary intervention but not to demonstrate the reason why Szemerédi’s theo-
rem is true or even show why the ergodic setting is so helpful here.154 Thus, Avigad and
Towsner’s aim, while very interesting, is somewhat orthogonal to my own. It would become
much less so if a new proof was produced by their strategy that clarified the structural fea-
tures underlying the theorem in a new way. But, again, I find this unlikely. My pessimism
is warranted, in part, by the fact that no real simplifications of Szemerédi’s original proof
have been produced despite attempts by Tao and others. I would like to say that the ergodic
setting is, in some sense, the “right” setting for proving Szemerédi’s theorem: it yields the
most significant epistemic advantages.155

Thus, one might offer an “explanationist” argument for Gödel’s doctrine. That is, one
might argue for the acceptance of stronger and stronger formal systems because they are
necessary for producing explanatory proofs.156 However, is this acceptance to be dictated
solely by mathematical need as, say, a mathematical naturalist would have it? I do not find
such a position terribly convincing,157 so some qualifications are in order. First, if one is
convinced by my argument via the ergodic proof, it has, at the very best, only bought us
Π1

1-CA0. Though this is the strongest of the five most commonly studied subsystems of Z2 and
avowedly impredicative, it is a far cry from anything like the addition of very strong “higher
types,” e.g., the large cardinal axioms advocated by Gödel. Szemerédi’s theorem might offer
compelling reason (that is, more than invoking mere mathematical need) to accept the first
stage of the transfinite because the theorem is itself eminently comprehensible: it involves
assertions about the additive structure of natural numbers. However, it is not clear to me
that the addition of something like large cardinal axioms, especially “large” large cardinals,
can begin from such an epistemically distinguished starting point. Thus, I should want to
say that the most philosophically significant explanationist arguments for Gödel’s doctrine
should begin, as Gödel himself does, from a restricted class of results we seek to explain,
e.g., strictly finitary statements, and these might not take us very far into the infinite (see,

153See Example 2.6.1 above.
154This is what I have tried to do in Section 2.4.
155Furthermore, in personal correspondence, Avigad has noted that his project with Towsner encountered

serious obstructions, and so the desired results, i.e., producing a proof in ID1 and then applying Dialectica,
are not forthcoming.
156More or less a way of “extrinsically” justifying strong axioms as Maddy seeks to do in [Maddy, 1998]

and her later work. However, I find the whole mathematical naturalist project too quietistic. The following
restrictions are intended to add some philosophical thrust behind extrinsic justification.
157I will not defend this view in detail here. On the whole, naturalism appears unstable as one cannot

cleanly distinguish philosophical and mathematical concerns, so it does not make sense to appeal solely to
mathematical need.
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however, my reflections in the following section).
Interestingly, and somewhat surprisingly, this explanationist argument for infinitary

mathematics has roots in Feferman’s early work, viz., [Feferman, 1964]. Here Feferman
(once more) seeks to undermine the “Cantorian” or “Platonistic” conception of sets in favor
of some suitable interpretation of the “predicative” conception. Gödel is (once more) taken
to task as the representative par excellance of platonism. In so doing, Feferman considers
Gödel’s argument that a platonistic construal of sets is “as legitimate” as the assumption
of physical entities in developing an adequate theory of sense perception. Feferman says of
Gödel’s argument:

The actual development of mathematics strongly supports one interpretation of
this argument. Abstraction and generalization are constantly pursued as the
means to reach really satisfactory explanations which account for scattered in-
dividual results. In particular, extensive developments in algebra and analysis
seem necessary to give us real insight into the behavior of natural numbers.
Thus we are able to realize certain results, whose instances can be finitisti-
cally checked, only by a detour via objects (such as ideals, analytic functions)
which are much more “abstract” than those with which we are finally concerned
([Feferman, 1964], 3; emphases my own).

This remark is an excellent distillation of many of my points in this section and has served as
an important influence on this chapter.158 However, despite this initial assessment, Feferman
converges on the views found in the later [Feferman, 1987] as he continues:

The [above] argument is less forceful when it is read as justifying some particular
conceptions and assumptions, namely those of impredicative set theory, as for-
mally necessary to infer the arithmetical data of mathematics ([Feferman, 1964],
3).

Perhaps, then, whatever differences I have with Feferman are a matter of degree and not
of kind.159 His primary aim in [Feferman, 1964] was to show that much of mathematical
practice is predicatively justified, while simultaneously acknowledging the explanatory sig-
nificance of infinitary mathematics. My own aim is to carefully analyze this explanatory
significance, while acknowledging the interest and success of Feferman’s predicative pro-
gram. Indeed, I find it hard to imagine, even though the talk of explanation does not feature
in [Feferman, 1987], that Feferman would fail to recognize the explanatory import of the
infinitary and ergodic techniques discussed above.

158This quote has not escaped Mancosu’s attention. See [Mancosu, 2008a], p. 139 and Section 2.6.2 below.
A remark that I believe may be interpreted along similar lines (as I mention at the end of Section 2.4.1) is
made in [Isaacson, 1996]: “...there can be cases where the higher-order [infinitary] perspective is essential
for actual conviction as to the truth of arithmetically expressed sentences” and, in a formal, proof-theoretic
sense, “[t]he higher-order perspective can be essential, then, for shortening an otherwise unsurveyable proof”
(221).
159Although when I come to ontological considerations, our positions will diverge significantly.

68



Another Case to Consider: Fermat’s Last Theorem

Is it possible to justify principles even stronger than Π1
1-CA0 via the strategy outlined above?

Can we find a theorem that, on its own, appears epistemically significant insofar as it is intu-
itively number-theoretic, making appeal to nothing beyond natural numbers, while requiring
strong infinitary resources for an explanatory proof? A natural candidate160 is Fermat’s Last
Theorem (FLT): for any positive integer n > 2, there are no positive integers x, y, z satisfying
xn + yn = zn. Famously, this was postulated by Pierre Fermat as a marginal annotation to
Diophantus’ Arithmetica and remained unproven until Wiles’s monumental result of 1995.161

The only proof of FLT thus far remains Wiles’s and demands vast prerequisites. Indeed,
there is an entire book of over 500 pages designed as prolegomena to Wiles’s proof.162 Thus,
FLT is an example of a number-theoretic result requiring significant resources to prove it.
Some natural questions for a logician or philosopher of mathematics are: what is the precise
nature of these resources? Do we require all of them to prove FLT? Can the proof be reduced
in some way? Can we make explicit its foundational assumptions?

A paper by Colin McLarty provides a summary of what is known about answers to these
questions ([McLarty, 2010]). In particular, he asks whether the proof goes beyond ZFC or
whether it requires, say, only PA.163 The crux of the issue involves the use of Grothendieck
universes : we say that an uncountable transitive set U is a Grothendieck universe (or simply
universe) if:

1. for all x ∈ U , P(x) ∈ U ;

2. for all x ∈ U and functions f : x→ U ,
⋃
i∈x f(i) ∈ U .

That is, for every set x in U , the powerset of x is in U , and, for every function from an element
x of U to U , the range of this function is also in U . These amount to a strengthening of
the familiar powerset and replacement axioms of ZFC, and so the use of a universe U goes
beyond ZFC alone. In fact, it is a theorem due to N.H. Williams164 that U is a Grothendieck
universe iff, for some strongly inaccessible cardinal α, U = Vα (the collection of all sets of
rank α).

Thus, our question then becomes: does the proof of FLT necessarily involve universes?
In what sense are universes necessary? It is worth quoting McLarty at length here:

For [Grothendieck] [large cardinals and thus universes] were merely legitimate
means to something else. He wanted to organize explicit calculational arithmetic

160Indeed, Feferman remarks that various undecidability and incompleteness results of interest to math-
ematical logicians may not “...have any relevance to the classic unsettled problems that have challenged
generations of number theorists. [...] How much different it would be if one showed that Fermat’s ‘Last
Theorem’ FLT is not provable in PA, or even more strikingly, in ZFC–and thus demonstrated why it’s so
difficult to prove FLT (if true)!” ([Feferman, 1987], 196).
161Which itself built upon some of the most profound mathematical techniques of the 20th century in

number theory and algebraic geometry, e.g., the Taniyama-Shimura-Weil conjecture (restricted to the case
of semistable elliptic curves).
162See [Cornell et al., 2000].
163Or, if Harvey Friedman is correct, even weaker systems like Elementary Arithmetic (EA). See

[Avigad, 2003] for a nice discussion of Friedman’s conjecture.
164See [Williams, 1969].
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into a geometric conceptual order. He found ways to do this in cohomology and
used them to produce calculations which had eluded a decade of top mathe-
maticians pursuing the Weil conjectures. He thereby produced the basis of most
current algebraic geometry and not only the parts bearing on arithmetic. His
cohomology rests on universes but weaker foundations also suffice at the loss of
some of the desired conceptual order ([McLarty, 2010], 360-1, emphasis my own).

There are many technical details that McLarty, to his credit, tries to address quite carefully.
I will briefly mention some of the main points for the sake of completeness.165 First, it
has long been known by algebraic geometers (McLarty cites Deligne in particular), that
universes may always be eliminated for ZFC alone. However, this is never done in the “great
cohomological proofs” because of the epistemic gains of using universes. I return to this point
below. Second, McLarty mentions work by Angus Macintyre166 attempting to show that the
Modularity Theorem167 is expressible as a Π0

1 statement of PA and can be proved in PA.
Much of this involves replacing various analytical and topological structures (as completions
of Z or Q) with finite approximations in PA. As one might expect, even in its early stages,
this work renders the already long and difficult proof of FLT even longer and more difficult.
McLarty remarks that

For the foreseeable future it is likely that any proofs of FLT to be found in
weak theories of arithmetic will be discovered in the first place, and will be
comprehensible after they are discovered, only by applying metatheorems to some
shorter known proof using stronger logic. In this context [Wiles’s proof] counts
as a short proof ([McLarty, 2010], 364).

Thus, the case of FLT is similar to that of Szemerédi’s theorem: in both we have theo-
rems with explicit finitary content whose proofs appeal to infinitary techniques, and these
techniques provide some sort of epistemic gain. However, are the philosophical conclusions to
be drawn from each case the same? Perhaps not, as there are some important disanalogies.
First, there is only one proof of FLT and it uses Grothendieck universes as a matter of fact.
Szemerédi’s theorem, on the other hand, has multiple proofs; in particular, its combinatorial
proof makes no appeal to infinitary techniques. Second, the appeal to universes in the proof
of FLT catapults us into the higher infinite (equivalent to the existence of a strongly inac-
cessible cardinal), whereas the use of Π1

1-CA0 in the ergodic proof of Szemerédi’s theorem is
a mere first step into impredicativity. Can my explanationist argument for Gödel’s doctrine
buy much stronger set-theoretical principles than I first claimed? And is the case of FLT
more convincing because the only proof we now possess makes appeal to universes (even
though, in principle, this can be weakened)? I must confess that I am not entirely sure of
the answers to these questions. McLarty argues, along with many preeminent mathemati-
cians, that Grothendieck universes provide a “ ‘systematic means’ of presenting and proving
results” and stresses the “practical value of Grothendieck’s high level organization...” (363;

165If uninterested, one may skip to the next paragraph.
166See [Macintyre, 2011].
167This was proved in 2001 by Breuil, Conrad, Diamond, and Taylor. Wiles’s proof of FLT uses a restricted

version of this theorem (merely a conjecture in 1995), which implies FLT.
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372). Obviously, this is all true. But from a philosophical perspective is appeal to the prac-
tical value of universes in the proof of FLT168 sufficient to say that they are necessary in
any sense? It seems to me that the organizational power adverted to in the proof of FLT is
thinner than the explanatory power afforded by ergodic techniques in Szemerédi’s theorem.
In particular, it is entirely possible that, though universes might yield a sort of “simplic-
ity” in virtue of their structuring of the proof of FLT, this simplicity need not produce an
explanatory proof generative of understanding. I think, then, that one would have to care-
fully analyze what happens in the proof of FLT when universes are exchanged for something
weaker, say, ZFC. It may be that this seriously damages the conceptual flow of the proof; it
may not. In any case, pending such an analysis, I would be hesitant to claim that the same
conclusions concerning Szemerédi’s theorem hold for FLT, viz., that the infinitary resources,
at least those going beyond ZFC, are necessary in any sense.

I have proposed an argument for a weakened version of Gödel’s doctrine and have sug-
gested that we apply such an argument to an epistemically distinguished class of state-
ments:169 more or less, those involving assertions about the natural numbers alone. Let me
remark upon both (i) the weakening and (ii) the class of statements from which I start.

Regarding (i): the argument is weakened because the necessity in question is not “neces-
sary for proof,” but rather “necessary for explanation.” I do not take this to be significantly
weaker: it would seem that one wants their mathematical theories to be maximally intelligi-
ble or generative of understanding almost as much as one wants proofs of theorems. Proofs
without intelligibility are not worth terribly much.170 Regarding (ii): my overall argument
looks as though it might advocate for a metaphilosophical view in the vicinity of mathe-
matical naturalism. That is, it may look friendly to Maddy’s assertion that, “the grounds
on which to criticize and/or justify mathematical methods are to be found in mathematical
practice itself; the practice need not answer to, nor can it look for support from, any exter-
nal standard” ([Maddy, 1998], 136). I find many features of this view troubling.171 Thus, in
order to block wholesale appeal to “whatever mathematics (including set theory) needs,” I
have started from strictly number-theoretic statements, taken to be epistemically privileged
in some way.172 What do we need to prove these in an explanatory fashion? More than we
might have initially thought: Π1

1-CA0 and perhaps even the existence of strongly inaccessible
cardinals. It would be interesting to see if this argument could be extended even further,
but this will have to be done elsewhere.

168Of course, in this paper I have only considered individual theorems and their proofs. I have not considered
the construction of mathematical theories. It may be (and is probably) the case that the incredible fruitfulness
of Grothendieck’s cohomological techniques and the attendant use of universes is sufficient to argue for the
necessity of universes on a larger scale. However, this is an incredibly complicated affair and cannot be
addressed here.
169As Gödel himself did, though he did not stress this point.
170Indeed, consider the recent issues surrounding Mochizuki’s supposed proof of the abc Conjecture.
171See fn. 157 above.
172Here are some well-worn, though to my mind convincing, reasons for thinking so: (1) they have deter-

minate truth values; (2) their axioms are relatively self-evident; (3) we have some geometric intuition about
them; (4) statements about the natural numbers are the minimal, non-trivial mathematics we need to get
our mathematical theories off the ground.

71



2.6.2 Explanationist Indispensability Arguments

Let me return to Feferman’s starting point: platonism as the “medieval metaphysics” of
mathematics. My explanationist argument for Gödel’s doctrine has so far been strictly
epistemological.173 If one is convinced by it, then I have provided grounds for something
like the rational acceptance of infinitary mathematics up to the strength of Π1

1-CA0 and
perhaps strongly inaccessible cardinals. Here, unfortunately, the fact that we do not have the
equivalence of the Furstenberg Structure Theorem with Π1

1-CA0 over ACA0 becomes crucial.
The epistemic claims above are not so affected; however, if we think that mathematical
platonism only enters the picture when the full powerset P(N) is involved, then we must
be dealing with Π1

1-CA0 for this to be true. Thus, the following discussion must be taken
as conditional upon the truth of Avigad’s claims in [Avigad, 2009], which have not yet been
established. Of course, these worries do not affect the discussion of FLT.

We might frame the situation in terms of Kitcher’s scheme from [Kitcher, 1984]: begin
with a mathematical practice, (L,M,Q,R, S), a quintuple of our mathematical language,
metamathematics, questions, reasonings, and statements of a restricted nature. Then, we
can proceed to an expanded practice, (L′,M ′, Q′, R′, S ′), without epistemic debt by adjoining
the mathematical and metamathematical resources needed to explanatorily prove theorems
in the original class of statements S. However, it is then reasonable to ask about the referents
of the new terms in L′ and M ′ (from which the new statements in Q′, R′, and S ′ are partially
constructed). Can our epistemological picture be grounded in a convincing metaphysics? I
would like to suggest that, contra Feferman, one can provide an argument for (restricted)
mathematical platonism via an “explanationist” indispensability argument.174

This form of argument would be analogous to one now familiar in the literature175 from
[Baker, 2005]. He takes as his starting point the classical Quine-Putnam (QP) indispens-
ability argument for platonism. This runs as follows:

1. Mathematical entities are indispensable for our best scientific theories;

2. We ought to believe our best scientific theories;

3. Therefore, we ought to be committed to the entities these theories quantify over, in-
cluding mathematical entities.

This argument has been the subject of much discussion, but one feature is especially relevant
here: its holistic conception of scientific theories. That is, ontological commitment is deter-
mined by all existentially quantified sentences entailed by the theories. One might find this
unsatisfying as holism is neglectful of the different roles that particular posits play internal
to the theory. Thus, Baker develops a variety of indispensability argument that does not rely
on holism.176 He proposes that we ought to be committed only to those entities that play an
explanatory role in a given theory. Such a move is suggested by the fact that, in order for

173And thus my disagreement with Feferman has been relatively minimal. This now changes.
174This possibility was, to my knowledge, first raised by Mancosu in [Mancosu, 2008a]. He suggests that

the argument quoted above from [Feferman, 1964], p. 3 is “...something in the vicinity of an indispensability
argument” ([Mancosu, 2008a], 140).
175Suggestions in a similar vein can also be found in the much earlier article by Steiner [Steiner, 1978].
176Picking up on a debate between Melia and Colyvan. See the references provided in [Baker, 2005].

72



any debate about indispensability to get started, one must endorse some version of inference
to the best explanation (IBE). Given that Baker is concerned with external applications of
mathematics, i.e., mathematics applied to natural science, he must establish that there are
genuine mathematical explanations of physical facts. Much of [Baker, 2005] is concerned
with doing just this via a case study from evolutionary biology. The case study involves
the life cycles of the “periodic” cicada, which are invariably prime.177 Baker claims that a
number-theoretic result, i.e., that prime periods minimize intersection relative to non-prime
periods, is essential to the explanation that periodic cicadas have life cycles of only thirteen
and seventeen years. In short, this mathematical result tells us why it is that prime periods
are “evolutionarily advantageous”: minimization of intersections helps the periodic cicadas
avoid predators and deleterious interbreeding with other insects.

Thus, an “explanationist” indispensability argument takes the following form:

1. There are genuine mathematical explanations of physical facts;

2. We ought to be committed to the existence of explanatory entities;

3. Therefore, we ought to be committed to the existence of the mathematical entities
posited in the mathematical explanation of the physical fact in question.

Though such an indispensability argument seems an improvement over the “holistic”
QP version, there are many questions to be asked.178 However, in order not to lose focus,
let me move on to the positive proposal. It is important to note that, up until now, all
versions of the indispensability argument argue from physical phenomena to mathematical
platonism. Broadly speaking, these arguments address those who are realists about scientific
or naturalistic entities, but are not necessarily mathematical realists. Then, by dint of either
holism or explanatory power, the mathematical entities are shown to be on an ontological par
with the scientific entities, thus establishing platonism. One might wonder why this form of
argument, in particular, that of the explanationist indispensability argument, has not been
applied internal to mathematics itself.179 Perhaps an obvious first answer is that doing so
would be question begging: as Leng says, “[...] in the context of an argument for realism
about mathematics, it [an explanationist indispensability argument] is question begging. For
we also assume here that genuine explanations must have a true explanandum, and when
the explanandum is mathematical, its truth will also be in question” ([Leng, 2005], 174).

As Mancosu notes, this worry reflects

[...] the general use to which indispensability arguments have been put. The main
goal is to provide an argument for platonism in mathematics but no attention is
truly given to the different kind of mathematical entities we are postulating. From
this point of view the existence of the natural numbers is on par with the existence
of a Mahlo cardinal or of a differentiable manifold. It is, however, reasonable to
ask whether mathematical explanations can be used not as arguments for realism
in mathematics tout court but rather as specific arguments for realism about
certain mathematical entities ([Mancosu, 2008a], 139).

177Thirteen or seventeen years depending on geographical location.
178See Leng’s fictionalist rejoinder in [Leng, 2005]. See also the volume [Leibowitz and Sinclair, 2016].
179This point is raised in [Leng, 2005].
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The suggestion, then, is that we may apply an explanationist indispensability argument inter-
nal to mathematics provided that we are not arguing for mathematical realism simpliciter.
Rather, the idea would be to argue from a restricted realist position, say, realism about
the natural numbers, to a more expansive realism encompassing the mathematical entities
needed to prove results about the naturals in an explanatory fashion. This would defeat the
circularity complaint. Furthermore, as Mancosu mentions, one would also have to address a
realist innocent of particular foundational commitments. This is because some foundational
positions (e.g., constructivism, predicativism) might immediately deem the theoretical posits
in the argument illicit. I do not think the latter restriction is too severe; however, one might
worry about finding realists about N who are not dyed-in-the-wool realists simpliciter. I
briefly discuss this below.

Explicitly, then, such an argument would look like:

1. We are committed to the existence of a restricted domain of mathematical entities,
say, N;

2. There are genuine mathematical explanations of facts about N;

3. We ought to be committed to the existence of explanatory entities;

4. Therefore, we ought to be committed to the existence of the explanatory entities posited
in the mathematical explanations of the facts about N.

Of course, one would now like particular cases to validate this line of argumentation. But I
have already provided two examples of number-theoretic facts that require vastly different
mathematical entities to prove them in an explanatory fashion: Szemerédi’s theorem and
(perhaps) Fermat’s Last Theorem. Thus, if one is a realist about the naturals, one should also
be a realist about the explanatory entities involved in the Furstenberg proof of Szemerédi’s
theorem via the above indispensability argument.180

An immediate unclarity arises: what, exactly, are the explanatory entities? This question
arises because we have dropped the commitment to Quinean holism; once this is done, we
must more carefully delineate those mathematical posits that are “essential” to the explana-
tion.181 I have tried to demonstrate in the above sections that ascertaining what constitutes
an explanatory proof is no easy matter. In the Szemerédi case, we have the Furstenberg
Structure Theorem, which gives the reason why Szemerédi’s theorem is true. However, this
is not the only mathematical result that contributes to the explanatory power of the ergodic
proof: many other considerations come into play. Thus, I think one could adopt either a
conservative or permissive interpretation of the above indispensability argument. The con-
servative, if pressed, would probably have to say that only the entities serving as referents
for terms in the putative reason why (e.g., the Furstenberg Structure Theorem) merit on-
tological commitment. On the other hand, the permissive interpretation would accept the
existence of all entities serving as referents in the proof of the explanandum (Szemerédi’s

180And perhaps a realist about Grothendieck universes. I will discuss only the Szemerédi case in what
follows as I have done the requisite work to show that its ergodic proof is indeed explanatory.
181This issue arises in Baker’s case study as well. Should we be ontologically committed to only the primes

13 and 17? All primes? All resources needed to prove the theorem about primes invoked?
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theorem). It is possible that these positions may not come apart all that much. For example,
if one is a conservative, the Szemerédi case has bought you the Structure Theorem. This in-
volves quite a bit of ergodic theory (e.g., arbitrary measure-preserving systems, transfinitely
many compact factors). It then seems reasonable to iterate the indispensability argument:
what further resources does one need to prove facts about measure-preserving systems in
an explanatory fashion? About compact factors of measure-preserving systems? This can
be extended ad infinitum, and it is entirely possible that vast swathes of the contemporary
mathematical landscape could be recovered for the platonist. The permissive theorist could
also do the same; the difference would be that they would recover more mathematics more
quickly than the conservative.

I doubt there is any clean way to adjudicate between these two interpretations (and,
again, it may not matter much in the end), but favoring one or the other will depend upon
a careful analysis of the putative explanandum. In other cases, the “reason why” may be
much less perspicuous than in the ergodic proof of Szemerédi’s theorem, and so a conservative
interpretation may not be available. On the other hand, a permissive interpretation might
feel unnecessary; however, in order to block wholesale commitment to all entities featuring
in an explanatory proof of the putative explanandum much unpacking of the proof will be
necessary. In the case of FLT, for instance, one would have to exchange the use of universes
for merely ZFC (or even PA) to see whether universes are essential for the proof to be
explanatory (if it is such). I say all this to indicate that there is unlikely to be any a priori
desiderata that will tell us how to interpret the indispensability argument.

Let me close by mentioning two further issues. The first involves, once more, a ques-
tion about content. Let us assume that the Furstenberg Structure Theorem is equivalent to
Π1

1-CA0 (over ACA0). Obviously, these statements, though equivalent over a weak subsys-
tem, are very different: the first involves ergodic terms; the latter is simply a set-existence
principle. The question is: should we also be ontologically committed to the set-existence
principle given that it is equivalent to an explanatorily indispensable theorem? This opens
up a Pandora’s box of further issues about mathematical content; in particular, is the set-
existence principle part of the content of the Structure Theorem? If so, what kind of content?
Do answers to these questions depend on translations between sets and “ordinary” math-
ematics? What guarantees that the translation of the Structure Theorem into the formal
language of second-order arithmetic preserves properties we are interested in? I cannot take
these up here, but I find them interesting questions.182 My initial response to the question
about commitment to the set-existence principle would be broadly Dedekindean in style:
just as Dedekind stressed that we should not identify real numbers (or rational numbers)
with Dedekind cuts, we should not identify the Structure Theorem with the set-existence
principle. Thus, perhaps we should not be ontologically committed to the bare set existence
principle. However, the highly uncomputable nature of the tower of extensions involved
in the Structure Theorem is actually very important for the explanatory power of the er-
godic proof. The fact that we can study measure-preserving systems in the limit eliminates
the need to deal with much combinatorial manipulation that muddies our understanding of
the pure proof of Szemerédi’s theorem. This was one upshot of my discussion of impurity,
simplicity, and explanatory power in Section 2.5. Thus, at least for the case at hand, we

182See Chapter 3 of [Eastaugh, 2015] for a (somewhat) related discussion.
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should be ontologically committed to both the Structure Theorem and the bare set-existence
principle as the latter encodes the complexity required to explanatorily prove Szemerédi’s
theorem. Again, as is true for the conservative-permissive construal of the indispensability
argument, judgments like this will depend upon a careful analysis of the results in question.

Second, the above indispensability argument is, by design, not an argument for math-
ematical realism simpliciter. We have addressed “number-theoretic platonists” in order to
avoid circularity. Thus, one would like an argument for a realist construal of N. This is
certainly no easy task, but seems a more reasonable one than attempting to argue for a
platonist construal of all of mathematics at once. For instance, a convincing argument for
the reality of N might be provided via appeal to our geometric or visual apprehension of
the natural number structure or perhaps via a linguistic argument from the recursivity of
natural language. Or, if one is sanguine about the prospects of a neo-Fregean justification
of arithmetic, appeal to Frege’s Theorem: Hume’s Principle183 + Second-Order Logic +
Suitable Definitions ` PA2 (second-order Peano arithmetic). The success of this strategy
will, of course, depend on a justification of Hume’s Principle and, for those skeptical of the
power of full second-order logic, may involve restrictions on its comprehension scheme. In
any case, by addressing a number-theoretic platonist, we have a more accessible stepping
stone to mathematical realism simpliciter.

2.7 Impurity, Unification, and Explanation

2.7.1 Introduction

Finally, I aim to demonstrate that intuitively impure resources generate explanatory proofs
via unification. That is, at least in some cases, we have the following chain of inferences:
Impurity ⇒ Unification ⇒ Explanatory Power. I take it that, by now, the impurity present
is clear, and so I will focus on making the second inference precise. As mentioned in the
introduction to this chapter, the idea that explanation can be analyzed through unification
has been pervasive and influential in the literature on scientific explanation. And, despite
the failure of formal models of unification proposed by Friedman and Kitcher, it would seem
that unification has something to do with explanation in mathematics.184 In the case study
from [Hafner and Mancosu, 2008], where it is shown that Kitcher’s model fails to make sense
of mathematical practice,185 Hafner and Mancosu note

There is a certain irony in this [failure] since Brumfiel [the mathematician in
question] champions a kind of unification of real algebraic geometry by insisting
on proofs that exhibit a ‘natural’ explanatory uniformity. Yet, despite its focus

183Where Hume’s Principle is a second-order abstraction principle of the form: ∀X,Y (N(X) = N(Y ) ↔
∃bijection f : X → Y ), where X,Y are second-order entities, and N(·) is the “number of” or “cardinality”
operator that lowers the type of second-order entities to first-order entities.
184Lange also takes up this in Ch. 8 of [Lange, 2017]. Surprisingly, he makes little use of the literature I cite

here (and has little interest, it would seem, in impurity). Thus, I take my work here to be an examination
of the same question, but from a different perspective.
185In particular, Kitcher’s model ranks a decision procedure as most unificatory (and thus most explana-

tory). Brumfiel unequivocally rejects this proof procedure as explanatory, preferring instead a non-elementary
method applicable to all real closed fields.
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on unification Kitcher’s account of explanation apparently does not have the
resources to provide insight into the controversy over the ‘right’ proof methods
or at least enhance our understanding of Brumfiel’s motivations (170).

Despite taking great pains to improve Friedman’s more brute unificatory model which focuses
on the mere reduction of independent phenomena, Kitcher falls prey to the same, apparently
mistaken, intuition that explanatory power and unification can be analyzed by quantitative
comparisons alone. Instead, as the case study from real algebraic geometry makes clear,
adjudicating between proof methods depends on various qualitative comparisons. Hafner
and Mancosu conclude

[...] even under the assumption that an account of explanation as unification
is, in principle, on the right track, Kitcher’s model doesn’t tell the whole story
yet. In general there is more to explanation than unification in Kitcher’s sense,
a more fine-grained analysis of different types of unification seems to be needed
(170-1).

Thus, one of my aims is to understand what unification might mean in practice.186 To that
end, I turn to Margaret Morrison’s book, Unifying Scientific Theories ([Morrison, 2000]),
which is explicitly engaged with this question in the sciences. I believe that various distinc-
tions made there can be carried over to the mathematical case and that these distinctions
will help to further the debate concerning unification and mathematical explanation. I ulti-
mately conclude that, although unification (suitably understood) may not be associated with
explanation in the sciences (as Morrison argues), the same cannot be said for mathematics.
Indeed, this deepens the irony present in Kitcher’s work. One of his goals in providing a
theory of explanation as unification was to elucidate systematic continuities between the
sciences and mathematics; however, one upshot of my discussion is that there may in fact
be systematic discontinuities.

I also examine Morrison’s diagnosis of why explanation and unification often come apart
in the sciences (what I have been calling “Morrison’s thesis”). One might worry that this
issue, like her typology of unification, easily carries over to mathematics. I show that, at
least in the case of Szemerédi’s theorem (as well as in the case of theorems included in
the genus of results dependent upon the structure-randomness dichotomy), this does not
hold. In particular, my account of structural content is serves as a preventative against the
mathematical analogue of Morrison’s thesis. This is likely too strong a condition to impose,
i.e., requiring shared structural content may block genuine cases in which unification yields
explanatory power. Nonetheless, this condition serves as a helpful starting point in analyzing
how impurity, unification, and explanation may be associated.

2.7.2 Morrison’s Thesis

In Unifying Scientific Theories, Morrison shows quite convincingly that explanation and
unification come apart in the natural sciences. Through a careful consideration of detailed
case studies from both biology and physics, Morrison concludes that the mathematical tech-
niques that facilitate unification in the sciences are not those techniques that actually explain

186This is analogous to my discussion of simplicity.
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why a particular phenomenon occurs. Morrison argues that the latter inevitably involve the
“machinery” or “mechanisms” of a system, i.e., the system’s causal behavior, and the math-
ematical apparatus abstracts from these details (Morrison’s thesis).

This understanding of the relationship (or lack thereof) between explanation and unifi-
cation proceeds from an analysis of the unity of theories in the sciences. The point is to
“provide an analysis of how [unity] is achieved and how it functions” (1). We find very
quickly that unification/unity is said in many ways and is a much more complicated notion
than has been appreciated in the philosophy of science literature. One especially salient
aspect of theoretical unity is the following:

[...] truly unified theories display a particular feature in virtue of which the
phenomena are joined together, enabling diverse phenomena to be combined into
a single theoretical framework. It is this combining of phenomena through a
particular parameter in the theoretical structure that constitutes an important
part of the unifying process, a process that is represented in the mathematical
framework of the theory [...] I want to argue that in true cases of unification we
have a mechanism or parameter represented in the theory that fulfills the role of
a necessary condition required for seeing the connection among phenomena (32).

For example, in the third chapter, Morrison argues that a theoretical parameter called the
displacement current is a necessary condition for Maxwell’s field equations. This is because
it enables us to make sense of the notion of a quantum of electricity crossing some boundary
without which we could not formulate the notion of a field. These field equations in turn
show that both electromagnetic and optical processes are the results of waves travelling
through space, and thus Maxwell’s theory is an instance of a unificatory theory. However,
genuine “theoretical understanding” was absent from this formulation:

[Maxwell’s theory] provides very accurate descriptions of the behavior of optical
and electromagnetic processes using the field equations, yet there was no expla-
nation of just what the field consisted in or how these waves could be propagated
through space (107).

I am in general agreement with Morrison’s account. Indeed, precisely because the math-
ematics present in scientific theories often serves to represent physical phenomena, it is
quite natural that these mathematical structures should fail to capture all the information
sufficient for explanation.187 An important question for us is: does the same sort of repre-
sentational gap occur internal to mathematics? This is certainly a very difficult question
and relates to my concerns about ontological commitment in indispensability arguments.188

For instance, when translating an ergodic result into the formal language of second-order
arithmetic some information is levelled out. However, for the purposes of this discussion, we
need only consider a narrower question: do the techniques that enable unification internal
to mathematics cause the loss of explanatory data?

That is, I would like to examine whether Morrison’s thesis about unification and ex-
planation holds in the mathematical setting. My claim is that it does not (or at least not

187I don’t mean to be glib here. Surely, this is a very complex question, but I find myself relatively on
board with most of Morrison’s account.
188See the first issue raised at the end of Section 2.6.2.
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uniformly) and that the ergodic proof of Szemerédi’s theorem will help us to see why. First,
a few preliminary remarks: given that we are concerned solely with mathematics, we will
not be able to avail ourselves of the same conceptual explications. Certainly, we cannot
claim that explanation in mathematics has anything to do with causal mechanisms. It is
still worth asking, though, whether the “lower-level” content (i.e., the explicit, combinato-
rial data involved in the pure proof of Szemerédi’s theorem), which we abstract away when
passing to the ergodic setting, plays a role analogous to these physical processes. One might
put this in the following somewhat hand-wavy fashion: how much does the “lower-level”
content of the proof of a theorem contribute to the reason why the theorem is true? For
example, in Szemerédi’s theorem, is it essential to know, explicitly for each A ⊂ Z under
consideration (resp. system in Furstenberg Multiple Recurrence), that it has a particular
classification (structured, random, somewhere in between) in order to see why the theorem
holds? Or can we pass to a more abstract context in which we lose this information but
retain an explanatory proof? Finally, what does any of this have to do with unification?
Hopefully, I can provide some answers to these questions, at least in a restricted setting.

2.7.3 What Do We Mean By Unification and What Kinds Generate Explana-

tory Proofs?

First, since I propose that unification can be analyzed as a special case of explanation
in mathematics, let me briefly classify what is meant by unification. After doing so, I
will demonstrate why the unification I have in mind serves to provide an explanation of
Szemerédi’s theorem. As Morrison does in the scientific case, it is possible to understand
unity as a property belonging to theories, where theories are taken in a “näıve” or intuitive
sense. For instance, just as she takes Newtonian mechanics and Maxwellian electromagnetism
to be theories, I take combinatorics and ergodic theory in the same way.189 However, in the
mathematical case, we might also consider unity to be a property of particular theorems: a
theorem may serve to unify because it collects many cases into a single classificatory result.
Both unity as a property of theories or, more loosely, frameworks, and as a property of
theorems will feature in our discussion.

How, exactly, are we to understand the properties in question? Morrison offers a helpful
distinction:

I distinguish two different types of unity: reductive unity, where two phenomena
are identified as being of the same kind (electromagnetic and optical processes),
and synthetic unity, which involves the integration of two separate processes
under one theory (the unification of electromagnetism and the weak force) (5).

The reductive type of unity is the one most familiar from the literature.190 Indeed, the idea
that explanation and unification go together in the sciences proceeds from the following in-

189There are many questions concerning this intuitive reading of what a theory is: most basically, how does
one circumscribe the content of such theories, especially given the inter-theoretic penetration with which I
am concerned in this paper? I have addressed this to some extent in Section 2.4: I believe that we should
avail ourselves of an “intuitive” reading of the content of theories (as with theorems), but be aware of the
fact that there are high-level relational properties shared by intuitively distinct theories.
190See [Friedman, 1974].

79



sight: unification serves to reduce the number of brute facts we must countenance. The fewer
the brute facts, the more comprehensible the world becomes, thereby increasing our under-
standing of the world. Finally, if we think there is no explanation without understanding,
the identification of reductive unification and explanation seems quite natural. For exam-
ple, Friedman claims that Newtonian mechanics served to effect this kind of unification by
showing us that the laws of both celestial and terrestrial phenomena could be derived from
Newton’s laws.191 We move from two distinct sets of phenomena to one, and thus increase
our understanding of the world.

Synthetic unity, on the other hand, is evident in Maxwell’s development of the electro-
magnetic field via his field equations.192 The electromagnetic field does not reduce electricity
and magnetism to one force, but rather shows the relationships between the two: “where
a varying electric field exists, there is also a varying magnetic field induced at right angles,
and vice versa” (107). This different understanding of unification is particularly interest-
ing because it “calls into question the traditional relationship between unified theories and
theoretical reduction,” which is taken to hold between reductive unity and explanation (as
in [Friedman, 1974]). I find this very helpful as I do not think that unification construed as
mere quantitative reduction can get us very far. Let me then try to give a more nuanced ac-
count of unification, inspired by Morrison, in the mathematical context utilizing the ergodic
proof of Szemerédi’s theorem.

Here is a high-level overview of what we have seen: Szemerédi’s theorem (Theorem 2.3.4)
concerns the existence of arithmetic progressions in sufficiently dense subsets of the inte-
gers. This theorem can be proved by pure means, i.e., using techniques that intuitively
belong to combinatorics and do not appeal to infinitary methods. This proof is quite subtle
and ultimately turns on a Structure Theorem (Szemerédi Regularity Lemma; Lemma 2.5.3,
Lemma A.1), i.e., a result that allows us to classify the behavior of the subsets and deduce
the existence of arithmetic progressions. On the other hand, we can show that Szemerédi’s
theorem is equivalent to a result in ergodic theory, Furstenberg Multiple Recurrence (The-
orem 2.3.12). Our strategy is then to prove Multiple Recurrence: this proof also turns on
a Structure Theorem (Furstenberg Structure Theorem; Theorem 2.3.37), which plays a role
similar to the Regularity Lemma in an ergodic context. In brief, it allows us to decompose
any measure-preserving system into structured and random parts and then deduce the pres-
ence of recurrence properties. Thus, via our detour through ergodic theory and infinitary
techniques, we get another proof of Szemerédi’s theorem.

How, then, do we understand the unification, if it is such, taking place via this detour?
We have two theorems TC (combinatorial; Szemerédi’s theorem) and TE (ergodic; Fursten-
berg Multiple Recurrence), which we can now say both belong to a class of theorems T .
This T contains all “Recurrence Theorems,” i.e., those theorems about the existence of
various recurrence properties of various objects (sets of integers, topological spaces, measure
preserving systems) in different contexts.193 Another way of classifying T is to say that it
is the class of theorems that all essentially involve a Structure Theorem, i.e., a theorem that

191Though this analysis is somewhat questionable. I believe that the distinction between reductive and
synthetic unity is not always so clear-cut.
192Morrison also considers how Maxwell’s field equations might be construed as reductive insofar as optical

phenomena were reduced to electromagnetic phenomena.
193Van der Waerden’s theorem (Theorem 2.3.7) and its topological analogue would also be members of T .
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shows us how to decompose the various objects in question into a structured and random
part (because the recurrence property asserted by each theorem in T can only be proven
by appeal to a Structure Theorem). One way to understand this situation TC , TE ∈ T is
reductively : we have shown two prima facie very different theorems to be equivalent, and
thus they belong to T trivially. I believe this explicit equivalence renders the reductive
type of unity especially evident in our case. Nonetheless, it is not the mere reduction of
two phenomena to one that generates understanding here but rather the comparative po-
tential of the two contexts (combinatorial and ergodic) subsumed under one framework. If
we simply reduce TC to TE we have not really gained any insight into why TC is true in the
combinatorial setting; the reduction ignores that setting. Perhaps if we had no other means
of proving TC , then we could claim the reduction is what drives the explanation, but that is
not what occurs.

We can also consider this situation as an instance of synthetic unification: we have
two different theorems, each of which may be independently proved via its own Structure
Theorem. However, these theorems also belong to one mathematical genus, that delineated
by their shared structural content, i.e., the entities intuitively involved in both theorems
instantiate the dichotomy between structure and randomness (see Section 2.4.2). If we
consider TC and TE under a single framework (a framework of structure theorems), then
we get illuminating inter-theoretic comparisons. Though it did not happen this way, we
might imagine that Szemerédi was not able to provide a pure, combinatorial proof of this
theorem, in particular because he did not see the exact role the Regularity Lemma was to
play. Instead, imagine Furstenberg first showed that Szemerédi’s theorem was equivalent
to Furstenberg Multiple Recurrence (which one may do without having an explicit proof of
either). Then, because the Furstenberg Structure Theorem exhibits the crucial dichotomy
between structure and randomness in a particularly explicit way, one might import this
insight to the Regularity Lemma and achieve a better understanding as to why Szemerédi’s
theorem is true.194 The foregoing case study was, in a way, an exercise in this fictional
scenario: I have tried to show that the ergodic proof generates understanding in a way that
the combinatorial proof does not and proceeded from the impure, ergodic proof to the pure,
combinatorial one.195

Thus, the unification here is Janus-faced. It seems entirely plausible to think of it as
both reductive and synthetic. We have that Szemerédi’s theorem and Furstenberg Multiple
Recurrence are equivalent, and thus we collapse two theorems to be proved into one, which
is then proved via the Furstenberg Structure Theorem.196 However, the synthetic variety
of unification is also present: precisely because we have two theorems which depend on
Structure Theorems, we are able to avail ourselves of inter-theoretic relationships. And now
we come to my ultimate claim: these inter-theoretic connections are explanatory in the case

194However, the inter-theoretic comparison may not provide a clear way forward in actually proving Sze-
merédi’s theorem.
195As in Section 2.4, the Prime Number Theorem (PNT) supports my case here. I briefly described how

the pure proof of the PNT, though undoubtedly ingenious, took as its starting point the analytic properties
crucial to the impure proof and deduced arithmetical analogues. This might also be thought of as an instance
of synthetic unification.
196Of course, one could also proceed from Szemerédi Regularity to Szemerédi’s theorem to Furstenberg

Multiple Recurrence, but not in an explanatory fashion.
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at hand. Thus, the synthetic unification achieved, i.e., seeing that TC and TE are intuitively
independent, and yet explicable by one overarching framework, drives the explanation of TC .

There are further distinctions to be made. I have been considering explanatory power in
a “local” context, i.e., explanatory power is a property of particular proofs. One might also
consider explanatory power to be a property of larger theoretical frameworks. Similarly, one
can consider unification as a property either of proofs or of wider theoretical contexts. This
distinction, obviously, does not arise for Morrison: she does not deal with local, circumscribed
proof contexts. I find it likely that there are complicated relationships between local-global
distinctions: for instance even though one theory may be explanatory on the whole, particular
proofs using its theoretical apparatus may fail to be explanatory. It may also be the case
that, though one has a “local” unity, one fails to get an explanatory proof. The story of the
dynamics of these different distinctions is undoubtedly a long one to tell. Let me see what
can be done with our case.

Internal to both the combinatorial and ergodic proofs we have a “local” sort of unity.
This is precisely what the Structure Theorems, in their respective contexts, do. For instance,
the Furstenberg Structure Theorem allows us to take any measure-preserving system and,
in a flash, as it were, decompose it into structured (compact) and random (weak-mixing)
components. Similarly, the Szemerédi Regularity Lemma allows us to take any A ⊂ Z and
break it up into structured (periodic) and random subsets.197 Furthermore, because we
know that the relevant patterns are present in structured and random components (of both
sets of integers and measure-preserving systems), we get proofs of Szemerédi’s theorem and
Furstenberg Multiple Recurrence. Thus, “local” unity in this case, i.e., unity internal to a
particular proof, is precisely Morrison’s reductive unity. Instead of having to consider, say,
all the different subsets of a particular A, we need only consider a representative sufficiently
dense A. Thus, we need not dig into the “lower-level” content of each particular entity
to understand its behavior. We do, however, need to understand why the extreme cases
(structured and random) exhibit the patterns in question; however, this is a very modest
contribution of “lower-level” content, of a different order of magnitude than what Morrison
believes is essential for any explanation in the sciences, viz., the causal behavior of entire
physical systems. In any event, we have a two-fold reductive unity present in the Szemerédi
case, at both a local and global level. Reductive unity can thus occur at different levels of
theoretical inquiry in mathematics.

The following kinds of unity are then present in our case study:

1. Local Reductive Unity (internal to particular proofs; many cases collected under one
classification);

2. Global Reductive Unity (equivalence of different theorems; two results reduced to one);

3. Global Synthetic Unity (both Szemerédi’s theorem and Furstenberg Multiple Recur-
rence, irrespective of their equivalence, may be understood as belonging to the frame-
work of Structure Theorems).

The question now remains: which of these or which combination results in an explanatory
proof? I believe that, in our case, both Local Reductive Unity and Global Reductive Unity

197See Section 2.3.3.

82



serve as necessary, but not sufficient, conditions on an explanatory proof. It is the Local
Reductive Unity that allows us to pass from what would be a horrifying proof by cases (e.g.,
consider each sufficiently dense A, look at its behavior, ascertain the presence of arithmetic
progressions) to a genuinely comprehensible proof. But this alone does not guarantee that
the proof is explanatory. I have been claiming that the pure proof of Szemerédi’s theorem
fails to be explanatory despite the presence of a combinatorial Structure Theorem. And this
is because the delicate computations necessary for this proof obfuscate the role of the Struc-
ture Theorem as the putative “reason why.” This is where the impurity becomes essential.
The equivalence of Szemerédi’s theorem and Furstenberg Multiple Recurrence facilitates the
explicit intervention of ergodic and infinitary techniques to prove Szemerédi’s theorem. How-
ever, as noted above, this equivalence on its own offers no real insight into why Szemerédi’s
theorem is true. Thus, the unification produced by impure techniques that generates an
explanatory proof is Global Synthetic Unity. Once we understand that both Szemerédi’s
theorem and Furstenberg Multiple Recurrence depend on Structure Theorems, the ergodic
context sheds light on Szemerédi’s theorem.198 And this is because the decomposition of
measure-preserving systems is particularly explicit and clean (in virtue of the infinitary na-
ture of the ergodic context), so the role of the Furstenberg Structure Theorem as the “reason
why” is easily recognizable. Thus, the Global Synthetic Unity is what primarily drives the
explanatory gains.

This analysis is particularly interesting because the interaction of different kinds of unity
is a marriage of the unificatory techniques of Friedman and Kitcher (along with Morrison’s
precisification). As Morrison notes, Friedman emphasizes reductive unity: we simply need to
minimize the numbers of facts we take as brute. Kitcher, on the other hand, focuses on expla-
nation as a global phenomenon: we wish to minimize the number of argument patterns that
generate the most conclusions. Indeed, he says, “Understanding the phenomena is not simply
a matter of reducing the ‘fundamental incomprehensibilities’ but of seeing connections, com-
mon patterns, in what initially appeared to be different situations” ([Kitcher, 1989], 432).
This recognition of common patterns has been absolutely crucial to my discussion, viz., the
presence of the dichotomy between structure and randomness in both combinatorics and
ergodic theory. However, unlike Kitcher, I have not tried to force this insight into the Pro-
crustean bed of quantitative comparisons. Rather, it is more fruitful to consider a stratified
picture:

1. Local Reductive Unity brings us from a mere conjunction of results (possibly trans-
finitely many) to a comprehensible classification;

2. This may not generate an explanatory proof if, for various reasons, the context is not
suitable, e.g., combinatorial;

3. Global Reductive Unity serves as a bridge between the original context and a new,
explanatorily appropriate context;

198Indeed, it seems possible to me that, even in the absence of an explicit equivalence, we could still say that
the shared framework of Structure Theorems could generate explanatory dividends. This would, however,
require that we move to a more global setting: the impurity in question could not be the presence of impure
techniques in a particular proof, but rather something like a “hybrid” theory.
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4. Global Synthetic Unity allows for the comparison of contexts that might shed fur-
ther light on the original theorem, where the choice of appropriate contexts might be
determined by the presence of structural content.

5. It is this Global Synthetic Unity that ultimately leads to an explanatory proof.

Indeed, Tao himself emphasizes the importance of this last kind of unity, saying, in a
rather tantalizing fashion:

These theorems [structure theorems] have remarkably varied contexts—measure
theory, ergodic theory, graph theory, hypergraph theory, probability theory, in-
formation theory, and Fourier analysis—and can be either qualitative (infinitary)
or quantitative (finitary) in nature. However, their proofs tend to share a num-
ber of common features, and thus serve as a kind of “Rosetta Stone” connecting
these various fields ([Tao, 2006], 584).

Thus, it seems there is much more interesting work, both philosophical and mathematical,
to be done.

To close, let me address an important disanalogy between my account and Morrison’s. As
we saw above, she claims that examples of true unification in the sciences involve a theoretical
parameter representing the unification. Is there such a parameter in the case I am describing?
Is such a parameter ever possible in mathematics? I am somewhat doubtful. For example, in
Maxwell’s theory of electromagnetic and optical processes, we are able to characterize such
processes using eight field equations.199 These field equations are then constitutive of the
theory of classical electromagnetism (and so the classical limit of quantum electrodynamics).
As Morrison makes clear, the theoretical parameter that serves as a necessary condition
for these equations (and thus for unification) is that of the displacement current. Perhaps
somewhat surprisingly, we rarely, if ever, have sets of equations that constitute what might be
called a mathematical theory.200 There are no such constitutive equations for combinatorics,
nor for ergodic theory. Certainly there are central concepts, definitions, and results, but
these play a more ambiguous role. Of course, we do have axioms of both a local and global
sort, viz., those that characterize particular concepts and those that serve a foundational
role. But in passing to formalized axioms we lose the intuitive content of the concepts we
were originally interested in. And so it does not seem that we could ever come to identify
a theoretical parameter of the sort Morrison means. Nonetheless, we can still identify the
conceptual boundaries that engender unification in mathematics. In the above case, we saw
that we can understand both TC and TE as members of T because all theorems in this
class depend upon Structure theorems classifying the behavior of the mathematical entities
in question as either structured or random. This dependence property might be considered
a sort of “theoretical parameter,” but we must take this in a looser sense than Morrison
does. At the very least, what we do have is a classificatory property, i.e., the property that

199As Morrison writes them at least. See [Morrison, 2000], p. 87.
200For example, one might suggest the Cauchy-Riemann differential equations. These provide necessary and

sufficient conditions for characterizing a complex-valued function as holomorphic (complex-differentiable).
But this is merely the characterization of a concept central to a particular domain of mathematics (complex
analysis), but a far cry from characterizing the domain itself.
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allows us to understand that some variety of unification is occurring, which also serves as an
explanatory property, i.e., the reason why the theorems we survey hold. And this seems to
me a rather surprising result.

2.8 Concluding Remarks

Let me now bring together some of the conceptual strands. The general philosophical moral
of this study is that impure methods often play a distinctively explanatory role in proving
theorems, in particular, by facilitating greater simplicity and unification. Of course, each of
these terms (impurity, simplicity, unification) must be suitably understood.

The impurity I have considered is radical insofar as it is both elemental and topical:
ergodic techniques are both infinitary (and thereby more complex) and intuitively different
in kind from the combinatorial techniques utilized in the pure proof of Szemerédi’s theorem.
Both the elemental and topical impurity play a role in generating explanatory power. How-
ever, the topical impurity must be sufficiently constrained. Indeed, though ergodic theory
and combinatorics should be granted their intuitive differences, they may not be so different
in light of their shared content. I have argued that Szemerédi’s theorem and Furstenberg
Multiple Recurrence should be understood as having shared structural content because the
entities involved in both theorems instantiate the dichotomy between structure and random-
ness (registered by their dependence upon Structure Theorems). It is this shared content
that undergirds the move from impurity to simplicity and from simplicity to explanatory
power. The presence of this content allows for the highly infinitary Furstenberg Structure
Theorem to abstract from the interlocking epsilon computations present in the Szemerédi
Regularity Lemma, thus simplifying the proof of Szemerédi’s theorem, without losing the
reason why the theorem holds. To summarize the dialectic:

Impurity [constrained topical + elemental]⇒
Simplicity [conceptual speed-up/overall proof structure]⇒
Local Explanatory Power [proof-based].

Similarly, we are licensed in moving from impurity to unification to explanatory power. In
virtue of the fact that essential explanatory data is not lost (the shared structural content),
the unificatory mechanisms at work are able to serve an explanatory function, i.e., both
Szemerédi’s theorem and Furstenberg Multiple Recurrence can be understood as part of a
framework of Structure Theorems. Again, to summarize:

Impurity [constrained topical + elemental]⇒
Unification [Global Synthetic]⇒
Local Explanatory Power [proof based].

Finally, I have noted that there may be other forms of unification that serve to make the
Global Synthetic Unity possible. These should not, however, be thought of as playing a
distinctively explanatory role.

I find it instructive to think of all this in terms of conceptual “distance.” Obviously, the
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conceptual distance in question will depend upon our analysis of the content of a theorem
(thus motivating my decision to place the discussion of content first). If we cleave to an
intuitive notion of content, then, in the case at hand, it seems we travel very far to prove
the theorem: ergodic theory is indeed conceptually far from operations on natural numbers.
However, perhaps this distance is only “surface level”: once we have excavated, e.g., struc-
tural content, the theorems may not be so “far away” after all. Thus, the mathematical
universe may be clustered in interesting ways, and ostensibly unrelated domains might have
deep conceptual connections only discoverable by, to quote Bourbaki, “higher and frequently
difficult stage[s] of abstraction.” And thus, explanation, while not being local in the sense
of requiring a purity constraint, as Aristotle and Bolzano would have it, cannot be radically
global; there must be some shared content between domains in order for one to explain the
other.201

Finally, I have deliberately avoided many—now canonical—questions about the status of
explanation; in particular, whether it is an “ontic” or “epistemic” notion. I have treated it as
lying on the side of knowledge: having an explanatory proof is a distinguished form of math-
ematical knowledge that generates understanding of why the proof holds. However, despite
this avowedly epistemic language (e.g., understanding), this does not necessarily commit me
to any sort of internalism or “irrealism” about explanation. Namely, I need not say that
the relation that obtains between the statement of a theorem and its explanatory fact fails
to be supported by some other objective, mind-independent relation between mathematical
entities. Let me offer a few reflections on this.

I take it that much support for an ontic or realist construal of explanation proceeds from
the following line of thought. Some proposition C serves as the explanans of explanandum
proposition E in virtue of the fact that there is some determinate objective reality in which
facts c and e stand in some appropriate relation r. The fact that c and e (represented by C
and E) stand in relation r provides the content of explanatory realism. The question now,
of course, is: what could the objective relation r be? The explanatory realist quite plausibly
suggests causation. Thus, one might think that any flavor of explanatory realism requires
a causal realism to support it202 (lacking any other plausible relation r). Unfortunately, in
the mathematical case, we cannot specify r to be causation.203 Does this require that we be
committed to a notion of explanation in mathematics that is wholly internal, wholly about
the way in which concepts formulated by inquirers hook up to one another?

It is not at all apparent that the answer is “yes.” One might attempt a heavy-duty
metaphysical defense of grounding, thus providing another candidate relation. On the other
hand, we might begin, as I have done, from a careful examination of particular mathematical
phenomena and see what we can glean from this. In working through the details of Sze-

201[Lange, 2017] makes a point that might be construed along these lines: he argues that an explanatory
proof must involve what is “salient” in a particular theorem. Unfortunately, he analyzes salience in a
phenomenological fashion (what “jumps out” at us from a theorem). This risks trivializing explanation
as something ephemeral and entirely subjective. Furthermore, as I have argued, the content of a theorem
relevant for an explanatory proof may not be available up front, but rather requires a good deal of careful
work to discover.
202This is one of the main points of [Kim, 1988].
203At least as we now understand it. Aristotle’s notion of “formal cause” could serve us well here. Indeed,

Posterior Analytics, from which I have drawn much inspiration, considers, it would seem, only formal causes.
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merédi’s theorem, I am struck by, for lack of a better phrase, the “givenness” of it all. We
are presented with two prima facie completely different domains which, in the final analysis,
share robust structural connections. In attempting an ergodic proof of Szemerédi’s theorem,
we find a “naturally occurring” result in ergodic theory that allows us to write a proof that
generates a much clearer sense of why the theorem is true. We have not artificially con-
structed a different mathematical apparatus to solve this problem. We have not projected
any sort of desire to find structure in randomness; this simply falls out of the analysis (recall
Tao’s remarks about the presence of Structure Theorems as a mysterious “Rosetta Stone”).
Of course, one might claim that the structural confluences we do find were constructed long
ago, and we are merely reconnecting conceptual relationships laid down by other inquirers.
This may be the case; however, I find it to be entirely contrary to the phenomena and thus
quite implausible. It may also be the case that platonism strikes us, along with Weyl and
Feferman, as a “medieval metaphysics of mathematics” and elicits discomfort. But it may
be correct, and if mathematics does not yield to more palatable philosophical reductions, so
much the worse for these reductions.
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3 Cosmic Topology, Conventionality, and the Constitutive A Pri-

ori

3.1 Introduction

A great deal of philosophical attention has been paid to the epistemology of physical ge-
ometry. This attention is certainly warranted as problems in physical geometry provide an
especially illuminating case study of the relationship between evidence and theory, science
and mathematics, and the philosophical presuppositions underlying all these.1 Nonetheless,
I believe that the mathematical and scientific developments of the past half century indicate
that it is not the geometrical features of space and time that are most philosophically in-
teresting but rather the topological features. Here I am using “topology” somewhat loosely
as is commonly done in the cosmological literature.2 That is, I am concerned with qual-
itative properties, e.g., shape, connectedness, causal structure, of an antecedently defined
topological manifold.

Geometry is, ultimately, concerned with local and quantitative notions of distance or mea-
surement. This suggests that an intelligible—if somewhat complex—story can be told as to
how spatial geometrical facts relate to observers via the mediation of a properly constructed
physical theory. On the other hand, topology is concerned with global and qualitative proper-
ties.3 The role of topological properties in our physical theories and the relationship between
these properties and scientific enquirers is, consequently, much more puzzling than in the
case of geometrical properties. How is it possible for us to make claims about the structure
of space as a whole, especially if claims about local properties of distance and measurement

0Content from Sections 1-8 of this chapter first appeared in the European Journal for Philosophy of
Science. c©, the author, 2024. Please cite the published version: “Cosmic topology, underdetermination,
and spatial infinity.” European Journal for Philosophy of Science. 14:17 1-28 (2024). https://doi.org/

10.1007/s13194-024-00576-7.
1For classic philosophical treatments of these topics see, e.g., [Sklar, 1974] and [Torretti, 1978]. See also

[Gray and Ferreirós, 2021].
2See, e.g., [Geroch, 1967], [Ellis, 1971], [Geroch and Horowitz, 1979], [Luminet and Lachièze-Rey, 1995].
3The distinction between global/topological and local/geometrical features of space was, to my knowledge,

first made in Riemann’s, “Über die Hypothesen, welche der Geometrie zu Grunde liegen” (Concerning the
Hypotheses on which Geometry is Based). See [Riemann, 2017] for the German text and [Riemann, 2004]
for an English translation. Thus, this distinction is a relatively recent one that may not have been accepted
by Riemann’s predecessors. In this brilliant (though somewhat cryptic) address, Riemann attempts to show
that we should consider Euclidean space to be a special case of the more general class of “n-fold extended
quantities,” i.e., the modern concept of a Riemannian manifold. Once we do this, we see that there is
an explosion of mathematical options that may be used to characterize space. In particular, there are
unbounded, finite spaces, e.g., the Riemannian hypersphere. This was Einstein’s preferred model for the
spacetime manifold when he first developed the foundations of general relativity.
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are already fraught with difficulties and confusions (as witnessed by the long dialectic con-
cerning these between mathematicians, physicists, and philosophers)? What, then, is the
epistemic status of global topological properties?4

Let us briefly consider a few examples of topological properties. First, we can classify
a space5 as having a boundary or not, i.e., having an “edge” or not. For instance, neither
infinite Euclidean space nor the surface of a finite sphere has a boundary. Second, a space
may be simply or multiply connected : informally, in a simply connected space,6 any closed
loop can be contracted to a point. On the other hand, in a multiply connected space, the
presence of a “hole” (or many “holes”) causes such a contraction to fail. For instance,
Euclidean space is simply connected while a torus is multiply connected.

Topological properties, unlike geometrical ones, do not suggest any obvious connection to
sensory experience or to our cognitive faculties; in particular, it would seem that they cannot
be measured or detected in any direct way. Indeed, think for a moment about what it would
be like to live in a space with a “hole.” You cannot directly perceive the “hole” because this
would require living in a higher dimension and viewing the space “from the outside.” But
certainly your experience on this space will be different from, say, that of someone living in
infinite Euclidean space? Perhaps, but determining how your experience might differ is no
easy matter.

Furthermore, topological properties are not mere mathematical abstractions to be skimmed
from the surface of respectable empirical theories; our best theory of gravity, viz., general
relativity, requires, for its cogency, that space and spacetime have determinate topological
properties. If one accepts general relativity, then one must accept that spacetime is (at
the very least) well-modeled by the mathematical structure of a topological manifold.7 One
then asks: does this manifold have a boundary or not? Is it simply connected or multiply
connected? Thus, given that these topological features are fundamental components of our
best scientific theory of spacetime, the question of their epistemic status, especially in light
of their “global” nature, is philosophically pressing.

This chapter addresses two questions involving the topology of space. The first concerns
underdetermination and the role of epistemic virtues in relativistic cosmology. It is well-
known that cosmology faces an underdetermination problem: there are many cosmological
models compatible with our best observational data.8 At first blush, this may be quite
unsurprising given that cosmology deals with physics at extremely large scales. A rather
more surprising fact is that, even under strong hypotheses about the global structure of
space (the Cosmological Principle), this underdetermination persists. In particular, we are
still unable to ascertain the global topology of space.

Is there any way to break this topological underdetermination? After discussing the

4See [Manchak, 2009], [Manchak, 2011], [Manchak, 2013] for related discussions. See also the masterful
survey [Ellis, 2007].

5When I say “space” here, I mean an abstract topological space. We are not yet in the realm of physics.
6More formally: a topological space X is said to be simply connected if it is path connected and the

fundamental group π1(X,x0) (relative to base point x0) is trivial, i.e., π1(X,x0) reduces to the identity
element. Note that the fundamental group does not depend on the choice of base point. My informal gloss
should suffice for most of the discussion.

7It will be made clear below why I am considering the topology of space and not spacetime.
8For discussion of underdetermination in cosmology and related issues see [Beisbart, 2009],

[Manchak, 2009], [Smeenk, 2013], [Butterfield, 2014].
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mathematical background for relativistic cosmology and the general problem of underdeter-
mination (Section(s) 3.2, 3.3, 3.4), I survey recent work in observational cosmology that has
aimed to provide definitive answers on this front and conclude that the prospects for em-
pirically determining spatial topology are not promising (Section 3.5). However, a familiar
point in the philosophical literature is that underdetermination by data may not be so wor-
risome.9 This is because one may be able to find significant epistemic reasons for preferring
one theory (or model) over another.

As such, I argue that we can muster epistemic reasons to prefer various topologies over
others. In particular, I argue that we should prefer cosmological models with multiply con-
nected topologies on grounds of simplicity, Machian considerations, and explanatory power
(Sections 3.6, 3.7, 3.8). We are able to ascribe such features to multiply connected models
because they generate spatially finite universe models, which in turn avoid extremely thorny
issues concerning the postulation of an actually infinite universe. Thus, though a purely
observational underdetermination remains, we can avoid a more robust underdetermination,
viz., one in which all epistemic reasons underdetermine the choice of topology.

The second question, already mentioned above, concerns the epistemic status of spa-
tial topology. What are we to say about the topology of space in light of the topological
underdetermination? A natural suggestion, especially given the long and lively dialectic
concerning the conventionality of spatial geometry, is that the topology is “conventional.”
Using the mathematically simpler and better known geometrical conventionalism of Poincaré
as a springboard, I provide a few arguments for the conventionality of spatial topology and
assess how this conventionality is to be understood. However, conventionality of any stripe
does not fully capture the epistemic status of the topology of space. This is because of its
foundational role in our cosmological theorizing. It would appear that there is a sense in
which spatial topology makes possible the application of fundamental physical concepts and
subsidiary physical laws. Thus, I turn to Michael Friedman’s work on the “relativized” or
“constitutive” a priori to make sense of this predicament. Nonetheless, Friedman’s account
cannot do this in a straightforward fashion; rather, we require a new epistemic category,
involving a fusion of conventionalism and the relativized a priori, to capture the epistemic
status of spatial topology.

3.2 Fundamentals of Spacetime Structure

I begin by rehearsing some of the basic details of relativistic cosmology. Speaking circum-
spectly, we can say that cosmology is the study of the large scale structure of the universe.
By “universe,” we might mean either everything that exists in the physical sense or that
which comprises everything that exists physically. Both of these notions are useful and can
be understood rigorously. Namely, we can think of the universe as the spacetime in which
everything is contained together with the distribution of matter and energy in this spacetime.
I am primarily interested in the former, though details about the latter will become relevant
later.

Given that gravitation is the dominant force at large scales, we must consider our best
extant theory of gravity: Einstein’s theory of general relativity. Thus, ultimately, cosmol-

9For nice discussions, see [Laudan, 1990],[Earman, 1993]
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ogy is concerned with finding models of general relativity that are consistent with our data
concerning the spacetime structure and energy distribution of the universe at large scales.10

In terms of the standard formalism, we say that a model of general relativity11 is a triple
(M, gab, Tab), where M is a connected four-dimensional real smooth manifold without bound-
ary of variable curvature,12 gab is a metric tensor (field) of type (0,2),13 and Tab is the
energy-momentum tensor (field). The metric gab characterizes the geometric properties, e.g.,
curvature and geodesics, of M at a given point, p ∈M. Finally, Tab characterizes the energy
distribution of M and is described by suitable equations of state relating its components,
again at a particular point, p ∈M.

We must now understand how these elements of models of general relativity interact.
In particular, we seek a field equation relating the metric gab, characterizing geometry, and
the energy-momentum tensor Tab, characterizing energy distribution. This relationship is
expressed as:

Rab −
1

2
Rgab + Λgab = κ0Tab, (3.2.1)

which is now known as Einstein’s Equation.14 More precisely, the left-hand side characterizes
the curvature of M at a point p given the specification of gab.

Technically, Equation 3.2.1 expresses ten non-linear partial differential equations of im-
mense mathematical complexity. In order to obtain “exact solutions” that can be studied
both mathematically and physically, one must lay down plausible simplifying assumptions
that accord with observational data. I turn to these assumptions in a moment; however,
before complicating matters, we can already express a general sort of cosmological underde-
termination.

3.3 Underdetermination and the Cosmological Principle

In providing a model of general relativity, we provide a particular kind of ambient manifold
structure and a metric and energy distribution solving Einstein’s Equation. How do we go
about doing so? Certainly, we wish such a model to match our observations at a given point
in spacetime. The hope is that our observational data can narrow down a unique model (or
unique class of models).

It should be noted that by “unique” we really mean “unique up to isometry.” That is, we

10This distinction between model and theory is slippery and usage varies, but my meaning should be
reasonably clear in what follows. See [Butterfield, 2014], 58-9.

11I will drop Tab later, but it is helpful here in describing the Einstein Equation.
12See [Ellis and Hawking, 1973] and [Wald, 1984] for details.
13More precisely, gab is a smooth, non-degenerate, pseudo-Riemannian metric of spacetime/Lorentz signa-

ture (–, +,+,+).
14Here Rab is the Ricci tensor, gab is the metric tensor, R is the Ricci curvature scalar, Λ is the Cosmological

Constant, κ0 = 8πG/c4 is the Einstein gravitational constant, and Tab is the energy-momentum tensor. Λ
was originally included in the field equations by Einstein to achieve a static cosmological model (among
other things). Today it is invoked as a dark energy candidate to explain the observed acceleration of the
expansion of the universe. See [Earman, 2001] for a nice discussion of Λ.
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say that two models (M, gab, Tab), (M′, g′ab, T
′
ab) are isometric if there is a diffeomorphism15 ϕ :

M→M′ such that ϕ∗(gab) = g′ab.
16 This easily descends to the local case of open sets on the

manifolds. The crucial point is that two isometric manifolds (resp. open sets of manifolds)
do not constitute distinct physical possibilities because they cannot be distinguished using
observations. This is so because the isometry preserves the metric structure across manifolds
and thus preserves solutions to Einstein’s Equation.

We can now state the conditions required for isolating a unique model/class of models
for general relativity. According to general relativity, anything we observe at a spacetime
point p (for some p ∈ M in some model) must be causally related to p; however, signals
cannot propagate faster than the speed of light. Thus, the events with which we can have
causal contact sit either on or within a particular region of spacetime bounded by the paths
of light that arrive at p. We denote this region by J−(p) and call it the past lightcone at p or
simply the observable universe at p.17 For reasons of mathematical convenience, we follow
[Manchak, 2009] and work primarily with the interior of J−(p), denoted by I−(p).18 Let us
write I−(p0) for our observable universe.

Thus, if we are to pick out a unique class of models compatible with our observations at
p0,19 we require:

Condition 3.3.1. Up to isometries, there is a unique model (M, gab, Tab) that has a point
q ∈M such that I−(p0) and I−(q) are isometric.20

Unfortunately, it is well known that the uniqueness condition cannot be satisfied. There
are various ways to see this, but perhaps the slickest is by appeal to recent results by
Manchak.21 In particular, Manchak shows that virtually any model (M, gab) (subject to a
few reasonable constraints22) will be observationally indistinguishable23 from another model
(M′, g′ab) that is not isometric to (M, gab). Consequently, an ideal observer at p ∈ M who
knows all metrical data about I−(p) can know very little about the global structure of
their spacetime, since there will be many spacetimes possessing markedly different global
properties that contain regions isometric to I−(p).

Thus, it would appear we are in very bad shape when we try to provide a unique model of
general relativity that matches our observational data. And thus we are confronted with a se-
vere underdetermination of models by data. What’s worse, by the above results of Manchak,

15A smooth, bijective map with smooth inverse.
16See [Wald, 1984], [Manchak, 2009].
17Also, technically, J−(p) must sit to the future of the time of decoupling.
18The I−(p)s are mathematically simpler because they are open sets, as opposed to the J−(p)s which are

closed. See [Cinti and Fano, 2021] for a brief discussion of the physical significance of this restriction.
19When I write p0 and I−(p0) in Condition 3.3.1, I am not quantifying over points in different models.

These notions simply serve as shorthand for our observable universe from an arbitrarily selected spacetime
point p0.

20Here I simply follow the requirement given in [Beisbart, 2009]. It is a natural and widely acknowledged
one. See also [Butterfield, 2014].

21See [Manchak, 2009]. His results make rigorous ideas found in [Malament, 1977].
22In particular, well-behaved causal structure.
23Manchak defines two models of general relativity (M, gab), (M′, g′ab) to be observationally indistin-

guishable iff for all p ∈ M, there is some p′ ∈ M′ such that I−(p) and I−(p′) are isometric. See
[Cinti and Fano, 2021] for alternative notions of observational indistinguishability.
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this almost always appears to be the case. However, the severity of this underdetermination
can be greatly reduced by restricting the models of general relativity considered. Appeal is
usually made to the following:

Principle 3.3.2. (Cosmological Principle) On average, at large scales, the universe is spa-
tially homogeneous and isotropic around every point.24

Thus expressed, the Cosmological Principle is essentially an a priori prescription imposed
on all possible models of general relativity. Once imposed, it has the effect of restricting our
attention to a particularly well-behaved class of models, the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) models. There are many intricate arguments, drawing on a wide variety of
considerations (some empirical), for the Cosmological Principle.25 These arguments are of
great philosophical interest, for the Cosmological Principle, if acceptable, would significantly
reduce the underdetermination. I will, however, simply assume the Cosmological Principle
here. The reason for this is that, even under the strong hypothesis of the Cosmological
Principle, the model underdetermination persists when we consider topological properties
of our spacetime manifold M. Indeed, somewhat astonishingly, for each metric solution
of Einstein’s Equation internal to the class of FLRW models, there may be infinitely many
compatible topologies. I will now discuss these models and the relevant topological properties
in greater detail.

3.4 FLRW Models and Topology

The Cosmological Principle amounts to the imposition of spatial26 symmetry constraints. In
particular, spatial homogeneity means, roughly, that every point in space at a given time
“looks the same,” and spatial isotropy means that there are no preferred spatial directions.
We represent the spacetime manifold, M, as the product of a three dimensional spatial
manifold and a temporal continuum, i.e., M := M3 × R. The spatial manifold can then be
thought of as a “stack” of surfaces, each indexed by a particular cosmic time. The metrical
structure of these FLRW models is particularly tractable, and, crucially for our discussion,
the spatial sections have constant curvature with values k = ±1, 0, respectively.

Once more, the essential point is that, even with all these simplifications, we have said
nothing about the topology of M3. Until quite recently, it has been assumed in the cosmo-

24As expressed in [Wald, 1984], 92-3. Also, before imposing the Cosmological Principle, one must assume
that space and time can be “split,” i.e., the entire spacetime manifold, M, can be written as M3×R, otherwise
we could not make sense of imposing only spatial symmetry constraints. A strong—but common—assumption
that guarantees this is called global hyperbolicity. This condition amounts to claiming we can determine the
evolution of spacetime from our information about a spatial hypersurface, Σ, at a given time. More precisely,
Geroch showed that a spacetime is globally hyperbolic iff it admits a Cauchy surface (see [Geroch, 1970]).
This means that a globally hyperbolic spacetime admits a hypersurface, Σ, whose domain of dependence,
D(Σ), is the entire spacetime manifold. That is, from the physical “information” given by Σ, one can deduce
the evolution of the entire spacetime manifold.

25See [Ellis, 2007], Section 4, [Beisbart, 2009], [Smeenk, 2013], [Butterfield, 2014].
26This is crucial. We do not have spatiotemporal symmetries. Metrical structure is only preserved on

spatial hypersurfaces of M but not throughout M. The only exception among FLRW models is the de
Sitter universe, which neglects ordinary matter. The de Sitter universe satisfies the “perfect” Cosmological
Principle that imposes homogeneity and isotropy throughout space and time.
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logical literature that the topology of M3 is simply connected. Once more, informally, in a
simply connected space, any loop through a point x0 can be continuously deformed into any
other closed loop through x0.27 However, neither observational data nor the FLRW models
themselves dictate such a choice. It is entirely possible that the spatial sections are multiply
connected, i.e., there is a “hole” (or many “holes”) that renders such a continuous deforma-
tion impossible.28 For instance, a hypertorus29 is multiply connected, while Euclidean space
is simply connected.30

Let us consider the possible simply connected models (SCMs). There will then be three
candidates for the spatial section M3: the 3-sphere (S3), Euclidean 3-space (R3), and the
3-hyperboloid (H3). These correspond, respectively, to the three possibilities for constant
curvature and will be equipped with their respective classical geometries, viz., spherical, Eu-
clidean, and hyperbolic. The possible SCMs along with their central mathematical properties
are summarized in Table 1 below.

Table 1: Mathematical Properties of SCMs
Spatial Section Geometry Curvature Topology Extent of Universe

S3 Spherical k > 0 SC Finite
R3 Euclidean k = 0 SC Infinite
H3 Hyperbolic k < 0 SC Infinite

When we deal with SCMs, note that the determinant of the spatial extent of the universe is
the curvature of M3 alone.

Let us now turn to multiply connected models (MCMs). The effect of a multiply con-
nected topology for M3 is equivalent to considering a particular simply connected space
(the universal covering space, denoted by M̃3) tiled with particular polyhedra (fundamental
polyhedra).31 This tiling of the covering space is achieved by the action of a group Γ on the
covering space. Since we only deal with constant curvature models, we need only consider
three universal covering spaces S3,R3,H3 under the action of such a Γ. In order to get a mul-
tiply connected topology, we form a quotient manifold M̃3/Γ, which is gotten by identifying

points equivalent under the action of Γ on the covering space M̃3, where M̃3 which is one of
the three constant curvature SCMs. For example, R3 /Γ ∼= T 3, the hypertorus, where Γ con-
sists of discrete translations identifying faces of the fundamental polyhedra (parallelepipeds)
tiling R3.

To summarize, we can re-write Table 1 above with the choice of multiply connected
topology. See Table 2 below.

27More formally: a topological space X is said to be simply connected if it is path connected and the
fundamental group π1(X,x0) reduces to the identity element.

28More formally: X is multiply connected if it has a non-trivial fundamental group.
29T 3 = S1 × S1 × S1. See below.
30For foundational texts on alternative topologies for space see [Ellis, 1971],

[Luminet and Lachièze-Rey, 1995], [Luminet, 2015].
31See [Wolf, 1967], [Ellis, 1971], [Luminet and Lachièze-Rey, 1995], [McCabe, 2004] for further mathemat-

ical details.

94



Table 2: Mathematical Properties of MCMs
Spatial Section Geometry Curvature Topology Extent of Universe
M3 = S3/Γ Spherical k > 0 MC Finite
M3 = R3 /Γ Euclidean k = 0 MC Infinite or Finite
M3 = H3/Γ Hyperbolic k < 0 MC Infinite or Finite

This will not affect the geometry of each case, so, e.g., geometrically R3 and the hypertorus
T 3 are the same, and so will be observationally indistinguishable, provided the topology
cannot be empirically determined. However, the topology change will affect the possible size
of the universe, e.g., T 3 is finite, while R3 is infinite.

Thus, we see that the effect of considering MCMs (in addition to SCMs) produces an
explosion of new FLRW models of general relativity consistent with our best data.32 Once
more, this is the case even under the very strong assumption of the Cosmological Principle.
Is there, then, any means of breaking the underdetermination of models? In recent years,
there has been active research in the field of cosmic topology whereby cosmologists have
attempted to empirically ascertain the global topology of space. I will now briefly review
the most promising aspects of this research.

3.5 Recent Cosmological Research on Spatial Topology

Now that we have motivated the study of different spatial topologies and indicated the
various options available, let us examine some recent cosmological research concerning the
possibility of “empirically” verifying MCMs. I merely provide a summary in this section and
invite my reader to consult the references provided.

First, we need to get clearer on what is meant by “empirical verification” in the context
of large-scale cosmological research. It seems to me that when most cosmologists talk of
“empirical verification” they are using the phrase in a rather broad sense that includes a
pretty unrestricted appeal to inference to the best explanation. The particular point at issue
is this: certainly, we cannot observe the topology of the universe in any direct way; how-
ever, we can help ourselves to downstream observational consequences of particular spatial
topologies. For instance, one of the preferred methods for detecting spatial topology relies
on examining particular configurations in Cosmic Microwave Background (CMB). Particu-
lar configurations are consistent with particular topologies; thus, the observation of CMB is
taken as justification for the claim that the universe has a particular spatial topology. My
methodology in this paper is to take as many hypotheses commonly employed by working
cosmologists on board, e.g., the Cosmological Principle; thus, I do not object to this usage of
“empirical verification” nor to the use of inference to the best explanation, though, of course,
there are many philosophical questions about this sort of reasoning.33 I simply wished to
say that it is a rather generous usage, and we should should be aware of it. Indeed, there
are even further issues which arise given the reliance of such observations on massive (but
still too small) data sets and complex methods of data collection. I will flag some of these
issues below.

32In particular, we see that spatial extent is no longer exclusively determined by the curvature of space as
in SCMs.

33See [Lipton, 2004] for an authoritative discussion.
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3.5.1 The Observable Universe

Before engaging in any empirical investigation, we must ask: what is the putative domain
from which our data might be drawn? How is this domain delineated? It turns out that in
asking these questions yet another important distinction arises, namely, that between the
the observable and non-observable universe. And, what’s worse, this distinction does not
map perfectly onto the finite versus infinite universe models.

There are two observational limits of particular import. First, the observational data of
cosmology is electromagnetic radiation from various times and places in the evolution of the
universe. However, this data is only available from the time of decoupling, i.e., when the
universe became transparent to radiation (before decoupling, matter and radiation could not
be distinguished). Any information about the universe present before the time of decoupling
is thereby inaccessible to us.34 Second, a finite time has elapsed between the present and
the time of decoupling, and light has traveled a finite distance in that time. Since no signal
can travel to us faster than the speed of light, it is the case that data about entities beyond
this finite distance is inaccessible. A natural consequence of these observational barriers is
that knowledge of the universe as a whole is beyond our grasp. Certainly, we can (and do)
theorize about it, but we must be careful to acknowledge that we do not have observational
or causal access to it.

There are then three possible combinations of infinite versus finite universe size with
observable versus non-observable data (since “infinite + observable” makes little sense):

1. The whole universe is infinite as in, e.g., the SCMs with k = 0 or k = −1 (see Table
1 above). In this case, the observable universe is an infinitesimal patch of the whole
universe. Here neither topological features of space nor the size of the universe will be
empirically testable.

2. The whole universe is finite but exceeds the observable universe. If the difference
between the whole and observable universe is “too large,” then, as in (1), both topology
and extent are not empirically determinable properties. However, there might be cases
where the actual universe is not too large, and, if very favorable circumstances obtain,
this could be empirically determinable.35

3. The whole universe is a small universe, i.e., the observable exhausts the actual. Both
topology and size would be, in principle, empirically determinable.

In this section, we are concerned with (3), i.e., particular universe models in which it
makes sense to talk about observationally determining both topology and size of the universe.

3.5.2 Three Detection Techniques

The basic idea underlying all recent attempts at determining the spatial topology of the
universe is the following. If we live in a universe that enjoys a multiply connected topology,

34And this data would be marvelous to have. For instance, many physicists postulate a time of quantum
inflation (before decoupling) in order to account for the large-scale isotropy of the universe. This is, however,
merely a postulate and cannot be verified by canons of scientific experiment.

35See [Fabre et al., 2013].
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then space can be represented via a universal covering space tiled by a fundamental do-
main. That is, an MCM is topologically equivalent to an SCM subject to particular periodic
boundary conditions. The immediate physical effect of this periodicity is that sources of
radiation will produce multiple images (because there will be multiple shortest paths along
which light travels) occurring at particular points in a lattice, which is in turn consistent
with a particular multiply-connected topology. All recent work has attempted to exploit this
fact in some way. For instance, Figure 3.1 below represents the universal covering space of
the two-torus, T 2, i.e., a two-dimensional MCM:36

Figure 3.1: Universal Covering Space of T 2

The shaded region is the fundamental polygon, subject to periodic boundary conditions,
S is a source of radiation, O is an observer. S propagates light to O along the “intuitive”
geodesic (ray SO). However, this light would also scatter in infinitely many directions, “wrap
around” the universe, and generate the appearance of infinitely many “apparent” or “ghost”
images {S1, . . . , S8, . . .}. All recent work has attempted to exploit a higher-dimensional
version of this representation in some way. Figure 3.2 below represents the case of T 3 viewed
from a “corner” of real space with Earth closest to us:37

Figure 3.2: Universal Covering Space of T 3

36Image from [Luminet, 2015].
37Image generated using the Curved Spaces package by Jeff Weeks.
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Let us now turn to the possible methods for empirically determining spatial topology.

Straightforward Observation. An initial attempt to ascertain whether the topology of
the universe is trivial or not consists in identifying multiple images of particular celestial
objects, e.g., galaxies, at regular intervals. The basic idea is to see if such objects lie in a
regular lattice consistent with a particular topology. There are, however, immediate diffi-
culties with this method: (i) images are viewed from different directions, at different angles;
(ii) quality of images may obscure similarities and differences; (iii) even if one can identify
two images as those of the same object, these images may correspond to different periods in
the object’s evolution, and so the images may not be “genuine” multiple images of the same
(i.e., spatially and temporally) object. The upshot of all these problems is that direct obser-
vational data of distant celestial objects is not sufficiently reliable to determine the topology.
(Also, note that I say this approach is “direct”, but, of course, the observations are mediated
by very complicated technology, viz., extremely powerful telescopes, which introduces yet
another level of complexity.)

Cosmic Crystallography. This technique utilizes statistical methods that avoid, at least
in part, the difficulties of the straightforward observational approach.38 In particular, there
is no direct dependence on visually recognizing the morphology of sources of radiation. The
basic idea behind the technique of cosmic crystallography is to collect as many galaxy images
as possible and attempt to discern particular statistical properties over the distribution of
these images. The main obstacle here is that the available data sets are far too meager to pro-
vide any convincing evidence of multiply-connected topologies. There are also some rather
complicated dependencies that indicate this method may only be applicable to manifolds
with a particular geometry. In short, as of now, there are serious uncertainties regarding
this technique. Despite these difficulties, statistical analyses of cosmic images (cosmic crys-
tallography) is one of the better techniques available for determining cosmic topology.

Circles in the Sky. Let us conclude with the most promising technique, the so-called
“circles in the sky” method. It is also the most complicated method on offer.39 Here is an
extremely coarse sketch of what is involved.

According to the standard Big Bang theory, the universe is generated from an extremely
hot, dense energetic plasma. This plasma is entirely opaque to light because photons will
scatter off of hot charged particles. As the universe expands, the plasma cools sufficiently
to permit radiation to pass through it (experimental evidence postulates that this point of
cooling or “decoupling” occurs about 300,000 years into the universe’s life). Note that this
cooling happens very quickly, but it is not instantaneous and introduces some difficulties
into the following method.

In any case, the ancient scattered radiation has by this time cooled to be observable in
the microwave spectrum and is called Cosmic Microwave Background (CMB). CMB carries

38See [Lehoucq et al., 1996] for an early survey of these techniques and [Rebouças and Gomero, 2004] for
a more recent assessment.

39See [Cornish et al., 1998] for the original paper on this technique. [Levin, 2002],
[Rebouças and Gomero, 2004], [Cornish et al., 2004], [Luminet, 2015] also provide further details and
discussion.
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coveted data about the very beginning of the universe and, as it turns out, might be useful
in detecting non-trivial cosmic topologies. If we imagine the initial state of the universe as
a “point,” then CMB would have scattered in every direction from this point to reach us
now, forming a “sphere” of radiation processing from the center of the sphere. This sphere
of radiation is called the “surface of last scattering” (SLS).

The question that concerns us here is: how can the SLS be used to detect cosmic topology?
If the universe has a non-trivial topology, then, as we have seen, it can be represented as its
covering space tiled by fundamental polyhedra. Each “copy” of the observer (that is, each
analogous point in each fundamental polyhedron) in each polyhedron will come associated
with its own SLS; provided that the diameter of the fundamental polyhedron does not exceed
that of the diameter of the SLS, then the SLS spheres will intersect, generating a “circle”
of CMB radiation. Since there will be an observer and their “copy,” these intersections will
come in pairs viewed in different directions. The presence of pairs of circles in CMB radiation
will then be a sign of non-trivial topology. See the image below for the circles method applied
to the 2-torus with fundamental polygon a square.40 Note that this method will help to deal
with issues of “genuine” multiple image identification, because a genuine multiple image in
this case will have an SLS of identical temperature fluctuations and the same radius. Thus,
this appears to be a very powerful method for detecting cosmic topology.

One very important advantage of “circles in the sky” over cosmic crystallography is that
it will apply to all non-trivial topology models, and the model can be directly reconstructed
from the radius, number, and distribution of the circles. This circumvents the issues in
cosmic crystallography where various models could not be disambiguated. However, there
are still observational issues involved in the circles method. In particular, the velocity and
density of the SLS can become obscured, thus affecting the accurate detection of circles (e.g.,
the gravitational pull of coalescing galaxies could be a potential obstruction).

3.5.3 Evaluation of Empirical Techniques

Have traces of “small” MCMs been found by the above method? Unfortunately, the results
thus far are not promising, though they have been fiercely debated. It seems that many

40Image from [Luminet, 2015].
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of the favored “small” MCMs have been ruled out: no matching circles have been found
for hypertori nor for other important models. However, the results employed to rule out
these models do not apply to all MCMs; in particular [Aurich et al., 2004] has claimed to
have found some evidence for a multiply connected hyperbolic model called the Picard Horn.
The Picard Horn is particularly interesting because, though one direction of its fundamental
polyhedron is infinite, the space as a whole has finite volume.

Thus far, we have considered the “best case scenario” for empirically determining cosmic
topology, i.e., Small Universes. It is worth asking whether we can lift this assumption and
consider cases in which the universe is finite and exceeds the observational horizon, but only
by a “negligible” amount. Astonishingly, there has been some recent work that has shown
it would be possible to distinguish an infinite universe from a finite, though technically non-
observable, universe for particular multiply connected topologies. This means that, even if
we did not live in a small universe, but rather a “relatively” small universe, both the topology
and size of space could be empirically detectable ([Fabre et al., 2013]).

Despite these developments, there has been no especially compelling evidence for a mul-
tiply connected spatial topology. As I have tried to indicate in this section, this does not,
of course, rule out the possibility. It does seem, though, that the set of models both (i)
consistent with our best evidence and (ii) either small or “relatively” small is shrinking.

3.5.4 The Topological Underdetermination Thesis

Before turning to further complications, let us summarize our findings and make explicit our
underdetermination thesis. We have taken the Cosmological Principle on board as an as-
sumption about the global structure of space. An immediate consequence of this assumption
is that we must restrict our attention to the FLRW models of general relativity. We then
saw that, internal to this highly symmetric class of models, we might distinguish between
simply connected models (SCMs) and multiply connected models (MCMs). The existence
of a tractable (because spatially finite and particularly small) subset of MCMs, the so-called
Small Universes, suggested that we might empirically investigate spatial topology. However,
given the lack of empirical evidence that we live in a Small Universe, combined with the
many sensitivities and difficulties of the empirical techniques used, we postulate:41

Thesis 3.5.1 (Topological Underdetermination Thesis). For any simply connected FLRW
model (M, gab), there exists a multiply connected FLRW model (M′, g′ab) that is not isometric
to (M, gab) such that (M, gab) and (M′, g′ab) are observationally indistinguishable.42

For example, let the spatial section M3 of M be R3. This is simply connected and
infinite. Let the spatial section M′3 of M′ be T 3, the hypertorus. This is multiply connected
and finite. These two models share the exact same kinematics and dynamics and so, given

41Note that, in general, my underdetermination thesis does not follow from Manchak’s result in
[Manchak, 2009]. This is because I impose further conditions on (M′, g′ab); in particular, that it be an
FLRW model.

42Again, following [Malament, 1977], we say that two models (M, gab), (M′, g′ab) are observationally indis-
tinguishable if for all p ∈M, there is some p′ ∈M′ such that I−(p) and I−(p′) are isometric.
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the observational difficulties noted above, are observationally indistinguishable.43

In sum, despite some impressive advances in the study of cosmic topology, I believe that
we are still faced with a severe underdetermination of spatial topology by observational data.
And this is so even under the assumption of the Cosmological Principle.

3.5.5 MCMs, Manchak’s Theorem, and Isotropy

Finally, let us consider whether our topological underdetermination would vanish if strong
evidence for a particular MCM emerged, e.g., matching circles of CMB indicating a particular
multiply connected topology. The first issue to examine is the nature of the “empirical
evidence” that could be adduced for MCMs. Obviously, the meaning of “empirical evidence”
here must be quite generous in that sense that we infer a particular topology from its
“signature” in the CMB. Second, there are a number of worrisome restrictions on popular
techniques for determining topology. For example, it has emerged that some techniques have
complicated dependencies upon the geometry (viz., group of isometries) of a given manifold;
thus, a “negative” result may not in fact be such given that some possible models cannot be
detected by the technique. Finally, even the preferred circles method is susceptible to many
observational difficulties.

But let’s proceed in the spirit of optimism. If it becomes clear that a particular MCM
is the best explanation for a given set of observational data, have we dispensed with the
topological underdetermination? Initially, it would appear that the answer is no. This is
because the models we are considering are causally well-behaved, and so Manchak’s theorem
on observationally indistinguishable spacetimes still applies. It is not worth rehearsing the
exact details of his proof here, but the basic point is that we can form spacetimes by cutting
and pasting together subsets of other spacetimes ([Manchak, 2009], 55). Assume that we
have been convinced that we live in a Small Universe, i.e., such that I−(p0), our observable
past from point p0, contains all of space. It can then be shown that I−(p0) can be attached
to various other regions in the future of p0, thereby generating a spacetime that is globally
different from the assumed Small Universe model.

The significance of this result for Small Universes is somewhat unclear and ultimately
depends upon a complicated set of considerations. For instance, one might already be
concerned about the body of assumptions laid down internal to which the above observational
data would be considered evidence. The fact that, even after all these assumptions have been
stated, there is still the possibility that strong empirical evidence for an MCM would not
break our underdetermination could incline one to a skepticism about knowledge of spatial
topology. On the other hand, one might be relatively unconcerned about the assumptions
in question and further contend that Manchak’s result, in the face of evidence for an MCM,
lacks bite. Namely, the cutting and pasting technique generates a spacetime that has a
decidedly “cooked-up” look, and this is a much less reasonable explanation for the evidence
in question.

Following the discussion in [Cinti and Fano, 2021], we can make these concerns about
Manchak’s result more precise. Their primary contention is that Manchak’s construction

43More precisely, these models are governed by the exact same FLRW solutions to Einstein’s Equation.
See [Luminet and Lachièze-Rey, 1995] and [Luminet, 2015] for details.
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is not physically reasonable and thus the implications of his result for physical cosmology
are overstated. That is, Manchak has only shown that “[...] the mathematics of General
Relativity allows for certain structures, not that these structures are physically relevant, and
thus relevant to our actual attempts at modelling the universe” ([Cinti and Fano, 2021], 104).
In particular, they argue that the spacetime (M′, g′ab) produced by Manchak is “pathological”
because it possesses features that lack a physical explanation in terms of some physical
process. This is because (M′, g′ab), in virtue of its production by the cutting and pasting
construction, has singularities in the form of deleted boundaries of 3-spheres.44 However, no
physical explanation is provided for the existence of these singularities, e.g., gravitational
collapse of a body. In fact, by Manchak’s own lights, no such physical explanation could
ever be produced because such a physical process would violate another property of (M′, g′ab)
stated in his theorem, i.e., that (M′, g′ab) and (M, gab) are locally isometric.45 Clearly, if
there were such a physical process responsible for the singularities in (M′, g′ab), there would
be no corresponding process in (M, gab), thereby violating the local isometry of (M, gab) and
(M′, g′ab). The authors continue by isolating a particular formal condition, local b-boundary
inextendibility, which they argue characterizes a physically reasonable spacetime, and show
that Manchak’s (M′, g′ab) fails to satisfy this condition.46

I find the discussion of [Cinti and Fano, 2021] quite compelling. As such, we should
conclude that, if strong evidence supporting a particular MCM emerges, e.g., matching
circles in the CMB, then we should accept this evidence on its face rather than appeal to
Manchak’s skeptical scenario. However, as I have noted, there are many reasons to doubt
that such evidence is forthcoming. Furthermore, [Cinti and Fano, 2021] bolsters the aims of
this chapter insofar as it indicates the importance of topological underdetermination.47 This
is because I have not merely provided “possible geometric objects which might be studied in
General Relativity,” but rather have shown that there are spacetimes that are both physically
reasonable and observationally indistinguishable. Thus, I have produced a case of “genuine”
underdetermination in physical cosmology.

I would like to close this section by making our statement of the Cosmological Principle
more precise. This is because all MCMs48 violate the global isotropy of space, i.e., there will
be “principal” or “preferred” directions in space reflecting the identification of faces of the
fundamental polyhedron under the action of group Γ.49 However, these preferred directions
will only be present beyond a particular length scale, and so “local isotropy everywhere” still
holds in MCMs.50 This local isotropy, along with spatial homogeneity, ensures consistency
with our best data. Thus, we have identified precisely the assumption that would rule out

44My reader is encouraged to consult [Manchak, 2009] and [Cinti and Fano, 2021] for full technical details.
45Two spacetimes (M, gab) and (M′, g′ab) are said to be locally isometric if, for each p ∈ M, there is an

isometry from a neighborhood U of p to a neighborhood U ′ of p′ ∈M′. Local isometry guarantees that the
local physics for each observer in (M, gab) and (M′, g′ab) will be the same.

46See [Cinti and Fano, 2021], p. 109 for technical details.
47Indeed, in their conclusion, they suggest that results about topological underdetermination would be

“extremely valuable.”
48With one exception, real projective space, RP3. See [Luminet and Lachièze-Rey, 1995].
49Indeed, the violation of global isotropy by MCMs is a consequence of the mathematical fact that

the group of isometries of most MCMs is smaller than that of its universal covering space. See
[Luminet and Lachièze-Rey, 1995], Section 9.3 and [McCabe, 2004], pp. 551-6.

50See [McCabe, 2004] for a definition of local isotropy everywhere.
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MCMs, viz., the imposition of global isotropy. Providing an argument for this claim would be
difficult indeed, and typically something weaker is assumed ([Ellis, 2007], [Beisbart, 2009]).
In any case, given the difficulty in justifying global isotropy and the potential benefits im-
parted by MCMs (see below), our Cosmological Principle should take the form of “spatial
homogeneity + local isotropy everywhere.”

I will now argue that, though an observational underdetermination of spatial topology
seems unavoidable, there are nonetheless reasons to prefer MCMs thereby avoiding a ro-
bust underdetermination. I consider reasons that exploit the relationship between multiply
connected topologies and finite universe models compatible with our best data.

3.6 Issues Concerning the Infinite

It is a truism that many questions arise when we countenance an infinite universe. Can the
actual infinite be instantiated in the physical world? What are some philosophical implica-
tions of an actually infinite universe? I cannot, of course, do justice to these questions here;
rather, I wish to illuminate how they relate to our topological underdetermination. The logi-
cal flow of the argument is as follows: by Thesis 3.5.1, the topology of space is observationally
underdetermined. However, in virtue of the relationship between the infinitude-finitude of
the spatial universe and spatial topology, MCMs enjoy theoretical virtues that SCMs do not.
In particular, here I will argue that MCMs possess a particular kind of simplicity because
there are spatially finite MCMs consistent with our best data.51,52 In virtue of this finitude
(and hence simplicity), particular MCMs avoid difficulties latent in cosmological models that
postulate the existence of an actually infinite universe.53 Thus, we have good reasons for
preferring MCMs, thereby providing a means for dispensing with a robust topological under-
determination, viz., an underdetermination in which all epistemic reasons underdetermine
the choice of topology.

Before turning to my main discussion concerning the relationship between spatial topol-
ogy and the size of the universe, I must clear some ground. In recent years, various authors
have claimed that it is a direct consequence of inflationary theory that the universe is actu-
ally infinite, and this claim has been used to support substantive philosophical conclusions.54

However, the claim that inflationary theory implies an actually infinite universe relies upon a
feature of the idealized mathematical model of inflation that is difficult to support on either
physical or philosophical grounds.55 In virtue of this fact, along with the various ontological
and physical scruples one might have about inflationary theory, we should resist arguments
from inflationary theory for the infinitude of the universe.

51In particular, consistent with the near flatness of the universe thus far observed, i.e., the value of spatial
curvature is k ≈ 0.

52Another very important consideration that could be discussed under the auspices of “simplicity” is the
fact that a universe with compact spatial sections would exclude various cases of the classical multiverse.
See [Ellis and Larena, 2020]. This is deserving of an independent discussion, so I set it aside for future work.

53In particular, as discussed above, if our topology is simply connected, the only cosmological models
consistent with our best data about the curvature of space are spatially infinite.

54For a discussion of inflationary theory, see [Guth, 1981]. For a discussion of possible philosophical
consequences, see [Knobe et al., 2006].

55See my discussion in Appendix D following [Ellis and Stoeger, 2009]
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Consequently, it would appear that the topology of the spatial sections will be the primary
determinant of the size of the spatial universe (constrained by the value of curvature k). As
such, our choice of topology is immediately related to questions of the cogency of an actually
infinite universe. Thus, if there are serious philosophical and physical problems with an
infinite universe, this should motivate the choice of a topology that avoids ascribing an
actually infinite size to space.

3.6.1 Actual Infinities in Cosmology

I would like to begin by considering [Brundit and Ellis, 1979] in which a particularly strange
consequence of an actually infinite universe is dramatized. Although the conclusion drawn
by the paper is not my primary objection to positing actually infinite universe models, the
discussion serves as a useful starting point for a few reasons. First, it is one of the few articles
that emphasizes the difficulties latent in the use of infinite universe models.56 Second, the
authors realize the possible theoretical dividends of positing a multiply connected topology,
though they dispense with this option much too quickly.

Brundrit and Ellis argue that, provided we live in an FLRW universe that is nearly flat
(k ≈ 0), it is highly probable that57

[...] there exist infinitely many worlds on which there are ‘duplicate’ populations
(i.e., populations identical in number and genetic structure) to that on our own
world ([Brundit and Ellis, 1979], 37).

Furthermore,

It soon becomes clear that it is difficult to provide a precise argument against
there existing elsewhere in the Universe an identical person reading the identi-
cal article on ‘Life in the Infinite Universe’ [...] for, with an infinite family of
histories to look at, it is difficult to provide an incontrovertible argument as to
why a particular history should occur only once. [...] There is no need to pos-
tulate some hypothetical statistical ensemble—it exists in the infinite universe!
([Brundit and Ellis, 1979], 38)

This is a remarkable and somewhat dizzying conclusion. Nonetheless, though the redu-
plication is odd and unsettling, its strangeness need not incline us to posit one model over
another. However, I will show that there are a number of theoretical disadvantages that come
with the postulation of an actually infinite spatial universe and the attendant possibility of
infinite populations and infinitely much matter.

56G.F.R. Ellis makes similar remarks in [Ellis, 2007] and [Ellis, 2014]. For a more recent discussion, see
[Ellis et al., 2018]. This paper distinguishes “placeholder” and “essential” uses of infinity in mathematized
physical theories. The authors suggest that our best physical theories, even at the most fundamental level
of analysis, should not involve essential uses of infinity, i.e., the use of actual infinities. This is because
actual/essential infinity satisfies relations that “cannot occur in physical reality; in essence, it fails to obey
conservation laws” ([Ellis et al., 2018], 770).

57For the details of the argument, see [Brundit and Ellis, 1979], pp. 37-8.
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Before detailing these disadvantages, I would like to examine the options available to us
for dispensing with them. First, further developments in quantum theory or in our under-
standing of how “very small” variations of parameters may affect population formation might
be of use. A survey of these possibilities would, however, merit an extensive independent
discussion. Brundrit and Ellis themselves propose that one could: (i) deny the application
of probability theory to scientific models; (ii) deny the Cosmological Principle; (iii) assume
that the spatial sections have multiply connected topologies. Option (i) seems incredibly
restrictive and should be set aside. Option (ii), though a licit possibility, is a standing as-
sumption of this chapter and is employed in much cosmological research. Finally, option (iii),
as we have seen, provides particular universe models in which the spatial sections are finite,
thereby disrupting the reduplication argument and the postulation of infinite quantities. It
is set aside in [Brundit and Ellis, 1979] because

[T]here appears to be no philosophical reason—based on the uniformity principle,
or any other principle—why the space-sections should not have their ‘natural’
[simply connected] topologies (40).

I would like to press on this reasoning. Indeed, it seems that this is a case in which ap-
peal to the classical theoretical virtue of simplicity may be of use. Of course, the notion of
“simplicity” is extremely slippery and multi-faceted (though no more so than that of “nat-
urality”). As such, let us try to be a little more precise.58 Two distinct sorts of simplicity
are commonly acknowledged: ontological and syntactic. Ontological simplicity is given by
the number and complexity of entities postulated by a theory, while syntactic simplicity is
given by the number and complexity of the laws of the theory.59 Following Quine, these two
aspects are often thought to be inversely related: an expansion in ontology usually results in
a contraction in laws, while an expansion of hypotheses/laws usually results in a contraction
of entities. However, as we shall see, this relationship is highly non-obvious and difficult to
evaluate.

Another distinction is also required: when considering ontological simplicity, one can
have either a qualitative species or a quantitative species. In the former, the number of kinds
(however one construes a “kind”) is minimized, while in the latter the number of entities
simpliciter is minimized. I am here concerned with the quantitative ontological simplicity
of MCMs. Let me now elucidate the theoretical advantages afforded by this simplicity.60

First, one might think that the postulation of actual infinities is unscientific in the sense
that an actually infinite quantity is untestable.61 So, if one thinks that science should
deal with statements that are at least in principle testable, actual infinities, e.g., actually
infinite spatial sections, actually infinite populations of organisms, should be avoided. Put
differently: our best science should not postulate entities that are, by their nature, beyond

58The literature on what, exactly, “simplicity” amounts to is vast. My remarks on the notion of simplicity
employed here are, of necessity, skeletal. See [Baker, 2016] for the following distinctions and discussion. See
also [Sober, 2015] for an extended discussion of simplicity.

59In our case, the models of a theory.
60For some recent discussions that support conclusions about space and time friendly to my own (though

from more metaphysical perspectives) see: [Nolan, 2022], [Sorensen, 2014], [Tallant, 2013]. For a more gen-
eral consideration of quantitative simplicity (or parsimony), see [Nolan, 1997].

61See [Ellis et al., 2018], p. 772.

105



the scope of science itself. Furthermore, it would seem that, since actual infinities are
unobservable and untestable, any scientific theory that makes use of actual infinities (in
an essential way) is committed to some form of mathematical platonism.62 Platonism, as is
well-known, involves a host of philosophically questionable theses, most notably that abstract
entities are assumed to exist independently of any means of human definition, construction, or
observation. Furthermore, on its face, platonism is at odds with scientific realism, especially
its epistemic component. I think it preferable to avoid these issues whenever possible.

Second, if one finds this response too hard-nosed, there are a few specific consequences
of an infinite universe that would require explanation: most obviously, the generation of
infinitely much space at the time of the Big Bang. Furthermore, since we are working under
the auspices of FLRW models, we will also have to explain the generation of infinitely much
matter (due to the homogeneity of these models).63 Of course, one might then ask why
the existence of infinitely much matter and space is more in need of explanation than the
existence of finitely much. I would then be inclined to fall back on the first consideration:
the existence of finitely much matter and space is in principle testable, while this is not true
in the infinite case.

Finally, considered in the context of extant theories of quantum gravity (and more broadly
grand unification programmes in physics), the existence of actually infinite space is prob-
lematic. In particular, if one subscribes to string theory, then one deals with additional
“small” compactified dimensions. Without any reason for thinking that our three “ordi-
nary” spatial dimensions are distinguished in some way, it seems much more reasonable that
our “ordinary” dimensions are also compact, as given by a finite MCM.64

Objection: Syntactic Complexity

However, following the Quinean insight above, the use of an MCM will require the postu-
lation of additional laws and hypotheses, thus increasing the syntactic complexity of our
cosmological model. Starting from a strictly mathematical perspective, an MCM is rather
more complicated than an SCM: we must pass to the universal covering space, consider
which polyhedra tile the space, etc. This requires the use of various theorems linking SCMs,
MCMs, and their geometries. Even from a physical perspective, an MCM could generate
a further complexity: the need to reinterpret particular observations of radiation as “ghost
images.” Namely, in an SCM, there is (generally) a 1-1 correspondence between an object
in space and an event in spacetime, e.g., a star produces observable radiation.65 In an MCM
this correspondence fails; there are, rather, multiple spacetime events associated with a single
entity in space. However, unlike the complexities generated by positing an infinite universe,
e.g., why infinitely much space and matter, we have a good handle on the mathematics

62This remark applies to many contexts, especially in physics, since the real numbers R are constantly
used. For a nice discussion of related issues see [Feferman, 1998a]. It goes far beyond the scope of this paper
to address the relationship between the postulation of infinite space and the use of continua; I set this aside
for future work.

63In essence, matter does not occur in “distinguished” regions of the universe. Thus, since matter is
uniformly distributed throughout an infinite universe, there is infinitely much matter.

64For an excellent survey on quantum gravity, see [Rovelli, 2008].
65There is one case of a simply connected space in which this 1-1 correspondence fails.
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and physics underlying the added syntactic complexity. Thus, I am inclined to think the
ontological simplicity gained outweighs the additional syntactic complexity of MCMs.

Finally, adopting an MCM would raise the question: why that particular multiply con-
nected topology (with its particular fundamental polyhedron of particular size)? However,
if we no longer expect spatial topology to be empirically determinable, I do not see why
we should expect our best cosmology to answer this question. Indeed, no explanation is
provided for the preference of a simply connected topology, and so this issue is a wash.66

In sum, I propose that we have good reason to prefer MCMs over SCMs in virtue of their
simplicity (of the kind indicated) and the advantages this simplicity affords our physical
theorizing. Thus, though we have a topological underdetermination by observational data,
we can still avoid a robust underdetermination by attending to theoretical virtues. More
explicitly, consider Thesis 3.5.1 once more. Let (M, gab) be an FLRW model with simply
connected topology and let (M′, g′ab) be an FLRW model with multiply connected topology
such that (M, gab) and (M′, g′ab) are non-isometric and observationally indistinguishable. I
have argued that we should select (M′, g′ab) as our preferred model in virtue of the fact that
such a model could have finite spatial sections consistent with our best data. In virtue of
this spatial finitude, (M′, g′ab) enjoys the sort of simplicity discussed above and avoids the
difficulties presented by models that employ actually infinite spatial sections. Thus, we have
good theoretical reasons to prefer MCMs, and thus we need not resign ourselves to a robust
topological underdetermination.

3.7 Einstein and Mach’s Principle

Another consideration that might dispense with a robust topological underdetermination
involves Mach’s Principle. In its original formulation, Mach’s Principle was developed as
a challenge to a substantivalist conception of space.67 Mach’s central idea was that the
inertia of a given body derives from its relation to the “fixed stars” and matter throughout
the universe rather than its relation to the “absolute space” postulated by Newton. In
more modern terminology, we might say that Mach’s Principle is the claim that all inertial
properties of an object are entirely determined by the distribution of mass-energy throughout
space.68 I now turn to an argument originating from Einstein that relates Mach’s Principle
to the extent of space (and thus to its topology).

In The Meaning of Relativity, Einstein provides three arguments “against the conception
of a space-infinite” ([Einstein, 1950], 107). The first argument is of the same sort I have
offered above: namely, from the standpoint of general relativity, the postulation of a finite
universe is “very much simpler” (though he does not give any indication of what this is
supposed to mean) than the infinite case. He does not mention topological considerations,
but, as we have seen, multiply connected topologies appear to be the only possible way that
the universe could turn out finite.69 In any case, I take this argument to be further grist for

66Again, pending a workable theory of quantum gravity, which would hopefully provide insight into the
topological structure of the early universe.

67See the classic account given by [Sklar, 1974].
68See the various formulations given in [Wheeler, 1964].
69And, again, consistent with our current value of k.
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my mill.
Let us now turn to his second argument from Mach’s Principle:

But in the second place the theory of relativity makes it appear probable that
Mach was on the right road in his thought that inertia depends upon the mutual
interaction of matter. For we will show in the following that, according to our
equations, inert masses do act upon each other in the sense of the relativity of
inertia, even if only very feebly. What is to be expected along the lines of Mach’s
thought? (ibid., 100)

Einstein then proceeds to list three consequences of Mach’s Principle and demonstrates
that, internal to the formalism of general relativity, these consequences are borne out.70

Given his derivation of these consequences, he concludes that our interpretation of general
relativity should validate Mach’s Principle. He continues,

The idea that Mach expressed, that inertia depends upon the mutual action of
bodies, is contained, to a first approximation, in the equations of the theory of
relativity; [...] But this idea of Mach’s corresponds only to a finite universe (ibid.,
107-108).

The point here is one that we have already seen. Einstein’s Equation does not specify so-
lutions that can be studied from a physical standpoint. Further assumptions, sometimes
expressed as “boundary conditions at infinity,” are required. However, these boundary con-
ditions simply replace the role played by Newtonian absolute space. This is because, when
boundary conditions are specified, it is no longer simply the presence of mass-energy that de-
termines the geometry of spacetime, and hence mass-energy no longer determines the inertial
properties of any given object. For instance, general relativity appears to validate the idea
that, in a universe without matter, there is nonetheless an “absolute” flat (Minkowskian)
spacetime structure, as dictated by the imposition of natural Minkowskian boundary condi-
tions.

In response to these concerns, Einstein suggested a radical way to deal with the problem:
simply postulate a finite universe model, thereby obviating the need for boundary conditions
at infinity that contradict Mach’s Principle. Concisely, we might say, “[I]t is likely that
the requirement of Mach’s Principle is identical with the requirement of a finite universe”
([Wheeler, 1964], 306). Thus, since our best experimental evidence indicates that the uni-
verse is not sufficiently dense to force finiteness, the presence of a multiply connected spatial
topology would be the only way to produce a finite universe model. And so, if one is con-
vinced by (some version of) Mach’s principle, one should be compelled to select a multiply
connected spatial topology.71

The reasons for preferring a multiply connected topology that proceed from Machian
considerations are not obviously of the same sort adduced above. It is, however, possible to
think in these terms, since we get both an ontological and syntactic simplicity. The former
is clear; the latter occurs because, instead of having to specify boundary conditions for each

70As Einstein notes, these effects are so minuscule as to rule out the experimental confirmation.
71For extremely brief mention of “Machian considerations,” see [Fagundes, 1983],

[Ellis and Schreiber, 1986], and [Ellis, 2007].
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possible solution of Einstein’s Equation, we add a single stipulation (multiply connected
topology) to the mathematics of our physical theory that eliminates the need for boundary
conditions. Nonetheless, as in both Mach’s case and Einstein’s case, the reason for eliminat-
ing boundary conditions is not a desire for simplicity, but rather a preference for a highly
plausible metaphysics of space and characterization of inertial properties (as well as the
purely formal consequences derived by Einstein).

3.8 The Explanatory Power of MCMs

To conclude my discussion of topological underdetermination, I would like to consider the
explanatory power of positing a finite MCM. I examine two sorts of recent cosmological data
for which a finite MCM would appear to be a good (or even the best available) explanation.

Following the common practice of cosmologists, we have assumed the Cosmological Prin-
ciple and thereby have considered FLRW models. However, as we have noted, the assumption
of the Cosmological Principle is an a priori prescription imposed on all possible models of
general relativity. To what extent is the spatial isotropy and homogeneity72 assumed in the
Principle observationally justified? It turns out that spatial isotropy about our location is
strongly supported by observational evidence, consisting of both the observation of luminous
sources and the CMB radiation discussed in Section 3.5. As George Ellis has noted,

Considered on a large enough angular scale, astronomical observations are very
nearly isotropic about us, both as regards source observations and background
radiation; indeed the latter is spectacularly isotropic, better than one part in
104 after a dipole anisotropy, understood as resulting from our motion relative
to the rest frame of the universe, has been removed. Because this applies to all
observations (in particular, there are not major observed matter concentrations
in some other universe region), this establishes that in the observable region
of the universe, to high accuracy both the space-time structure and the matter
distribution are isotropic about us ([Ellis, 2007], 1225).

Clearly, this isotropy (and homogeneity) cannot be explained by the commonly used FLRW
models, as such models assume these properties. It would be desirable, however, to have some
sort of explanation for them. It is commonly postulated that spatial homogeneity results from
an inflationary period in the early universe73; however, it has been shown that inflation would
only produce the observed homogeneity if the pre-inflationary universe were already suffi-
ciently homogeneous ([Luminet and Lachièze-Rey, 1995]). Thus, inflationary theory only
pushes the problem back. As usual, a fully developed theory of quantum cosmology and
quantum universe formation would deal with this issue, but no such theory is yet operative.

However, the postulation of a finite MCM seems a reasonable and readily available expla-
nation of the phenomenon of homogeneity.74 More precisely, a finite MCM with especially
small volume would produce the special initial conditions necessary for a “chaotic” (in the

72Spatial isotropy along with some version of the so-called Copernican Principle, i.e., we are not distin-
guished observers, implies spatial homogeneity. See [Ellis, 2007], Section 4.2.2 for discussion.

73See, especially, [Guth, 1981] and [Gibbons et al., 1983]
74This possibility is hinted at in [Ellis and Schreiber, 1986].
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sense of inhomogeneous) early universe to transition to a homogeneous one. The details here
are extremely complex and depend upon the dynamics of the precise models considered,
but the basic point is that, at a sufficiently young age, a small MCM is causally connected.
In virtue of causal connectedness at an early age, the universe can homogenize before the
the scattering of the CMB. Thus, the isotropy of the CMB reflects the homogeneity of the
early universe, which is itself explained and made possible by a causal process occurring in
a sufficiently small MCM.75 It is worth noting that more calculations have to be done before
MCMs can confidently discharge this explanatory role. Nonetheless, they serve as one of the
best available explanations of the homogeneity and isotropy of space.

I would like to close with what I take to be the strongest explanatory function of finite
MCMs. As we have noted, the key data for observational cosmologists are surveys of the
CMB.76 It was hoped that CMB data could decisively reveal the spatial topology of the
universe via such methods as circles in the sky; however, we have adopted a position of
justified pessimism towards this endeavor. Nonetheless, particular measurements of the
CMB may provide reasons to posit a finite MCM. I will now show why this is so.

Of particular interest are temperature fluctuations (anisotropies) in the CMB as these
can yield information about the physical conditions of the early universe. (It is worth noting
that these anisotropies are, on the whole, minuscule, so they in no way impugn the large
scale isotropy of the CMB; see Ellis’s quote above.) It is believed that the early universe was
crossed by acoustic waves soon after the Big Bang and, in turn, these waves left imprints on
the universe (≈ 380,000 years after the Big Bang) as density fluctuations in the primordial
plasma. The anisotropies detected in the CMB reflect these density fluctuations, which can
be mathematically constructed from vibrational modes of space.77

Suppressing the mathematical details of the spherical harmonics, the crucial quantity for
measuring anisotropies is the full-sky two-point correlation function of temperature fluctua-
tion δT (n̂), observed for our sky in the direction of unit vector n̂. This function is written
as

Cobs(θ) := 〈δT (n̂), δT (n̂′)〉 (3.8.1)

where n̂ · n̂′ = cos θ. The brackets denote averaging over directions n̂ and n̂′ separated by an-
gle θ. Using CMB datasets, values of Cobs(θ) have been computed for 0 ≤ θ ≤ 180 (degrees).
However, there are a number of “intriguing discrepancies” between the observational values
of Cobs(θ) and predictions of the “standard” cosmological model, which is flat, infinite, and
Euclidean with simply connected topology (this model is often written as ΛCDM). In par-
ticular, for angular scales over 60 degrees, there is very little correlation between the CMB
observations and ΛCDM simulations. As has been noted in very recent studies, especially
[Aurich et al., 2021], this discrepancy finds “a natural explanation in cosmic topology.” That
is, a finite MCM would make good sense of this discrepancy because the spatial sections are
finite and so space is not large enough to support the longer wavelengths produced by larger

75For full details see [J. Richard Gott, 1980]. For an investigation of a different possible model see
[Hayward and Twamley, 1990].

76The most recent space probe missions are WMAP (Wilkinson microwave anisotropy probe; active life-
time 2001-2010) and Planck (Planck probe; active life-time 2009-2013).

77For exhaustive details see [Levin, 2002].
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angles. Indeed, as of yet, there appears to be no other explanation of this phenomenon of
“angular power spectrum suppression.”78

It is important to note, however, that this does not impugn our underdetermination
thesis (Thesis 3.5.1). The observational constraints and extreme sensitivities of even our
best methods (circles in the sky, statistical techniques for anisotropies) warrant a healthy
does of skepticism. Nonetheless, especially given the discussion of anisotropies, finite MCMs
remain a live possibility and, furthermore, provide the best explanation for our current data.

3.9 Conventionalism: Geometrical and Topological

In light of the underdetermination of spatial topology by observational data, what then are
we to say of it? Provided that we accept the last century of work in relativity theory, we must
accept that spacetime has (or is well-modeled by) a manifold structure, and this manifold
structure must be equipped with particular topological properties. Indeed, these properties
are required for the very cogency of relativistic cosmology.79 A natural suggestion, especially
in light of the long and lively dialectic concerning the conventionality of spatial geometry,
is that topological properties of space are “conventions.”80 Namely, because no empirical
evidence can compel us to choose one topology over another, we simply make a choice, mo-
tivated by the concerns mentioned above: simplicity, explanatory power, etc. It is, however,
not entirely clear what a topological conventionalism amounts to or what the precise kinds
of arguments for favoring it are. Thus, I will first chart out a few possible arguments, taking
the (mathematically) simpler and better known geometrical conventionalism of Poincaré as
a guiding example. Indeed, this will also be of use as my ultimate position concerning the
epistemic status of spatial topology will share many features with Poincaré’s own complex
conception of the role of “conventions” in a physical theory.

3.9.1 Poincaré’s Geometrical Conventionalism

Geometrical conventionalism is usually taken to originate in Poincaré’s famous epistemolog-
ical critique of geometry in Science and Hypothesis81 and is principally motivated by the
following, now well-known, thought experiment.

Imagine a finite Euclidean sphere of constant temperature Tc at its center and absolute
zero at the surface. The temperature Tp of any given point p between center and surface
varies according to the gradient R2 − r2, where R is the radius of the sphere and r is the
distance of the given point p from the center. Now imagine that the sphere’s inhabitants
are trying to ascertain empirically the geometry of their space using rigid rods. Importantly,
the length of these rods is susceptible to variations in temperature; in particular, as the

78For a very convincing and thorough discussion see [Aurich et al., 2021]. See also the earlier paper
[Aurich et al., 2008].

79As already noted, it has simply been assumed by more or less all cosmologists over the course of the 20th
century (modulo those who took an interest in cosmic topology, especially G.F.R. Ellis, J.P. Luminet, and
M. Lachièze-Rey) that spatial topology is simply connected. That is to say, physicists have not remained
agnostic concerning spatial topology.

80Topological conventionalism originates in [Reichenbach, 1957]. See below.
81See [Poincaré, 2015] and [Poincaré, 2017].
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temperature decreases, the rods proportionally contract in length. This is unknown to the
inhabitants who proceed to measure distances between points using these rods. Say that one
inhabitant initially uses a rod of length ` = 1 meter and attempts to measure the distance
from center c to point p. But observe what happens: as they continue laying down their
rod, r → R, T → 0, and ` → 0. Thus, they will think that they live in an infinite,82

hyperbolic space, when, in fact, they live in a finite, Euclidean one! Thus, the inhabitants of
this world could assert, consistent with all empirical evidence, either that they live in a finite
Euclidean space equipped with a special temperature field or that they live in an infinite
hyperbolic space without such a field. Furthermore, Poincaré allows that the inhabitants
have access to light rays, suitable for triangulating their space. Analogous to the shrinking
of the rods, these light rays are refracted through their medium of transmission proportional
to 1/(R2 − r2). The inhabitants assume that, as usual, light travels along geodesics (paths
of shortest distance) and their index of refraction in a vacuum is constant. Thus, they could
again describe the geodesics followed by the light beams as either straight lines in hyperbolic
geometry or as circular arcs in Euclidean geometry.

From this thought experiment, Poincaré concludes that experience is compatible with
various geometries, and so we must choose which geometry we will use to describe physical
phenomena. This choice is, however, far from arbitrary. First, he argues that our choice
is restricted to the three geometries of constant curvature: Euclidean, elliptic, hyperbolic.83

(Note that, given our own physical assumptions above, we are also limited to these three
geometries.) Second, he argues that we have good reason to select Euclidean geometry, and
this choice is motivated by concerns of simplicity and convenience:

One geometry cannot be more true than another; it can only be more convenient.
Now, Euclidean geometry is, and will remain, the most convenient: (1) Because it
is the simplest, and it is so not only because of our mental habits or [because] of I
know not what direct intuition we may have of Euclidean space; it is the simplest
in itself, just as a polynomial of the first degree is simpler than a polynomial of
the second degree [...]; (2) Because it sufficiently agrees with the properties of
natural solids, those bodies which our hands and our eyes compare and with
which we make our measuring instruments ([Poincaré, 2017], p. 80; emphasis my
own).

We might summarize by saying that we have no epistemic (in the sense of truth-tracking)
reasons to prefer Euclidean geometry, but we do have practical reasons that are sufficient to
determine our choice. Note that there are definitely some unclarities here.84 How, exactly,
are we to make sense of simplicity “in itself”? Why think the physical theory employing
Euclidean geometry is simpler than the physical theory employing hyperbolic geometry? I
discuss this further below where I attempt to provide a sharpening of Poincaré’s argument
in the case of spatial topology.

82Poincaré asserts that the measurer will think they live in an infinite space; however, as we have seen,
one could live in a finite space, without any “distortions”, and still think space is infinite. Namely, space
could be finite but still “too large” to measure.

83Thus, he makes essential use of the Helmholtz-Lie theorem. See footnote 89.
84As has long been recognized. See, for example, [Sklar, 1974], p. 93.
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A more immediate concern is how we are to interpret the above thought experiment in
order to establish Poincaré’s desired conclusion. Here are a few possible readings.

Reading I: From Observational Equivalence. Since the sphere interpreted with a par-
ticular set of physical laws and hyperbolic geometry (L1,H) is observationally equivalent to
the sphere interpreted with a different set of physical laws and Euclidean geometry (L2,E),
no empirical facts can determine whether the geometry is hyperbolic or Euclidean. Thus,
only conventional choice (and not matters of fact) can determine spatial geometry. Such an
argument from observational equivalence was favored by the logical positivists in their own
adoption of Poincaré’s geometrical conventionalism. However, as Friedman points out in
Chapter 4 of [Friedman, 1999], this argument has nothing to do with geometry in particular
and can be applied to any part of a physical theory. Indeed, the crucial ingredient to this
argument is Duhemian holism: our physical theories (physical laws and geometry) confront
experience as a whole. Thus, the only fact about geometry that renders it conventional is
that it is a part of our complete physical theory. This is certainly not a reasonable interpre-
tation of Poincaré (as Friedman argues) and is generally unpalatable. For indeed every part
of a physical theory could be rendered conventional, and geometrical conventionalism would
seem to be of little independent interest.

Reading II: From Observational Equivalence and Further Geometrical Facts. One
way to block the move to a thoroughgoing conventionalism would be to appeal to specific
geometrical facts that produce the observational equivalence. I have in mind something like
the following. It is well known that one can construct models of hyperbolic geometry within
Euclidean geometry,85 and thus we have a precise and systematic way to move between these
different systems. This can then, in turn, suggest to us the changes to our physical laws that
would be needed in order to get an observational equivalence between (L1,H) and (L2,E),
i.e., the temperature gradient and contraction of objects. Indeed, it seems likely that this
is precisely how Poincaré proceeded.86 Thus, there is something distinguished about the
geometrical parts of our physical theories that drives the observational equivalence and thus
generates the conventionality of geometry. I will return to this kind of argument below when
I discuss topological conventionalism.

Poincaré himself constructs a “dictionary” between hyperbolic (Lobachevskian) geometry
and Euclidean geometry with the aim of obtaining theorems of hyperbolic geometry from
those of Euclidean geometry.87 However, this argument does not on its own establish the
conventionalist thesis. All it does is show that we can produce a model of hyperbolic geometry
within Euclidean geometry, which is merely a feature of formal geometrical systems and not
physical theories as a whole.88 Thus, it seems that the most convincing way to interpret

85Thereby establishing the relative consistency of hyperbolic geometry, i.e., the question of the consistency
of the system of hyperbolic geometry reduces to the question of the consistency of the system of Euclidean
geometry.

86See [Torretti, 1978] on Poincaré’s study of Fuchsian functions and hyperbolic geometry.
87See Chapter 3, [Poincaré, 2017].
88See [Ben-Menahem, 2001] where this is noted and used to clarify the relationship between Poincaré’s

various arguments for conventionality. See especially pp. 486-488 where she suggests, entirely in line with
my point above, that “Geometric equivalence does not entail physical equivalence, but provides direction on
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Poincaré’s thought experiment is to appeal to both the formal features of geometrical systems
and how such formal features interact with physical laws and observations.

Finally, a sort of conventionalism that is always available and need not be explicitly tied
to the above thought experiment is:

Reading III: Semantic Conventionalism. Under this reading, we note that the truth of
any geometrical statement will be dependent upon how we have defined “distance.” Since
the meaning we assign to this word is a matter of convention, so the argument goes, the truth
of any geometrical statement will be conventional. Thus, the body of truths that comprise
a geometrical system will be conventional. As with Reading I, this appeals to nothing in
particular about geometry, and thereby also leads to a thoroughgoing conventionalism.

It is not my intent to judge whether any of these readings of geometrical conventionalism
adequately describes Poincaré’s position. Indeed, it is almost certain that none does. For
Friedman has provided a convincing interpretation of Poincarean conventionalism in terms of
Poincaré’s hierarchical conception of the sciences and the group-theoretic basis for metrical
properties of space.89 What these readings do provide, however, is a few reasonable starting
points for how we might construe conventionalism with respect to a mathematical component
of a physical theory.

When we consider topological properties of space, I argue that some version of Reading
II could describe our situation, provided we elaborate further on how we are to understand
the role of “conventions” in a physical theory. This elaboration will, in fact, lead us back
to Poincaré, who interprets “conventions” in a rather strong sense.90 I find Readings I and
III less interesting, in this context at least, for the same reasons noted above: they do
not indicate why a topological (or geometrical) conventionalism is particularly compelling.91

Furthermore, I will provide reasons for thinking Reading III in the topological case requires
assumptions that are difficult to accept. With these points in mind, let me now turn to a
discussion of topological conventionalism.

3.9.2 Topological Conventionalism

Reichenbach’s The Philosophy of Space and Time ([Reichenbach, 1928], [Reichenbach, 1957])
provides the crucial stepping stone between Poincaré’s pre-relativistic views on the conven-
tionality of geometry and my discussion of spatial topology. Reichenbach first provides
a modified version of Poincaré’s thought experiment in order to obtain the observational
equivalence of Euclidean and hyperbolic geometries in the context of general relativity. The
crucial change is the following. Poincaré’s argument relies on non-uniform, distorting, forces,

how to generate it.”
89As codified by the Helmholtz-Lie theorem, which provides a classification of the geometries of all

(3-dimensional) manifolds of constant curvature (i.e., “free mobility”). For Friedman’s argument, see
[Friedman, 1999], Chapter 4. [Ivanova, 2015] also contains a related discussion as to how we might square
Poincaré’s many philosophical and mathematical commitments.

90That is, though there is a degree of freedom in our choice of geometry, and this choice is determined by
non-epistemic reasons, the conventions we choose play a distinguished role in our physical theories.

91I do not deny, however, that they might have some bite in more general discussions of conventionalism.
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which, according to Reichenbach, are in principle detectable. Thus, Poincaré’s thought ex-
periment does not necessarily establish observational equivalence. Reichenbach’s insight was
that, in space-time theories, one can introduce uniform or universal forces that are always
undetectable, thereby establishing the desired equivalence.92

This is all extremely interesting and has received a great deal of attention. However,
Reichenbach did not stop there. He goes on to consider whether a conventionalist thesis
might also hold for topological properties.93 The discussion remains extremely good, despite
some technical unclarities. Ultimately, though, it requires that we countenance what Re-
ichenbach calls “causal anomalies,” viz., we allow causal loops. I have been operating under
the assumption (as do many cosmologists) that, though such anomalies are possible, they
represent rather exotic spacetime models and are to be ruled out. Interestingly, Reichenbach
concludes his discussion of topological conventionalism by saying,

Topology is an empirical matter as soon as we introduce the requirement that no
causal relations must be violated ([Reichenbach, 1957], 80).

This is precisely the question with which we have been concerned. That is, if we accept
the usual well-behaved spacetime models, equivalent to some rather strong physical and
mathematical hypotheses (e.g., the Cosmological Principle), does spatial topology become
empirically determinable, as Reichenbach claims? The answer, thus far, appears to be no.94

Even Reichenbach, who seemed to think that conventionalism could be extended very far
indeed, did not envisage that it could be extended to spatial topology (provided we disallow
causal anomalies). But this is precisely what we will now consider.

I should also mention an important precursor of my investigation, that of Glymour in
[Glymour, 1972]. In this paper, Glymour too takes up the Reichenbachean suggestion and
applies it to relativistic cosmology in a more precise manner. Some of my points below will
overlap with Glymour’s early work; I note these when applicable. There are, however, a
few ways in which Glymour’s account must be supplemented. First, serious research into
cosmic topology was not yet under way at the time of his writing, and this brings with it
further interesting possibilities left untouched by [Glymour, 1972]. Second, and relatedly,
this recent cosmological work makes clearer the relationship between finitude-infinitude and
topology, a connection I will exploit a great deal below in my philosophical discussion of
conventionality. Third, the various senses in which Glymour employs “convention” and
“conventionality” are not perspicuous (an issue not endemic to his discussion; compare to
geometrical conventionalism above). Nonetheless, my conclusions95 concerning the empirical
determination of the universe’s spatial topology agree with Glymour’s main thesis that

[F]or each of a class of fashionable cosmological models there is another (unfash-
ionable) model different from the first in the topology it ascribes to space-time,
and there are good reasons to think that any two such cosmological models are,

92This is a traditional reading of the historical development found in, e.g., [Sklar, 1974]. For more recent
evaluations of Reichenbach’s geometrical conventionalism (or whether it was such) see [Friedman, 1999]
(Chapter 3) and [Gimbel, 2004].

93See [Reichenbach, 1957], pp. 58-81.
94Again, see the discussion above in Section 3.5.
95Again, see Section 3.5.
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both in fact and in principle, experimentally indistinguishable. Any bit of evi-
dence which we can account for with one model, we can account for with another,
and conversely ([Glymour, 1972], 196).

In any case, following Glymour, my first step in an argument for the conventionality
of spatial topology is to produce two models of spacetime that have different topologies
(simply or multiply connected) and yet are observationally indistinguishable. That is, we
wish to produce the topological analogue to Poincaré’s thought experiment (or Reichenbach’s
generalization thereof).

More precisely, we produce two FLRW models of spacetime, one with a simply connected
topology (SCM), the other with a multiply connected topology (MCM), that are nonethe-
less observationally indistinguishable (in the sense of Section 3.3). But this has already been
done! Consider again the Topological Underdetermination Thesis (Thesis 3.5.1) in which
we postulated that for any simply connected FLRW model (M, gab), we can find a multiply
connected FLRW model (M′, g′ab) such that these models are observationally indistinguish-
able and yet non-isometric. Since we are concerned with the topology of space, we select
M3 = R3 and M′3 = T 3. These models are locally the same insofar as for any p ∈M3, there
is a p′ ∈ M′3 such that I−(p) and I−(p′) are isometric. However, they differ significantly in
the large: M3 is infinite and simply connected, whereas M′3 is finite and multiply connected.
If the Topological Underdetermination Thesis holds, then these models will always be obser-
vationally indistinguishable. Furthermore, unlike Poincaré’s geometrical thought experiment
(or Reichenbach’s generalization) we have not needed to resort to imposing further distor-
tions (temperature fields, universal forces) to produce the equivalence. Thus, if one finds
those postulates suspect insofar as they produce different ontological commitments, one need
not worry about them here.

The question of observational indistinguishability here becomes especially interesting. It
seems that there are two possible options. First, (M, gab) and (M′, g′ab) could be observa-
tionally indistinguishable due to limitations in our capacities as scientific enquirers. This
would be a case in which our two models are in principle observationally distinguishable,
but we fail to produce, e.g., the correct techniques for doing so.96 That is, the multiply
connected topology of (M′, g′ab) is in principle detectable, say, by cosmic crystallography or
circles-in-the-sky (see Section 3.5), but we always fail to distinguish statistical signal from
noise or fail to identify matching circles. Such failure might occur for technological reasons
(our instruments are not sufficiently discriminating) or because of insufficient data sets.

This case is, I think, rather close to Poincaré’s original thought experiment under Read-
ing II. For here, just as with his spherical world, we can use our knowledge of the mathemat-
ical part of the theory to reinterpret physical parts of our theory. Namely, just as Poincaré

96By “in principle detectable,” I mean that the fundamental polyhedron of the multiply connected model
is sufficiently small, so as to generate multiple images of a single source of radiation. Recall the UC space
with Euclidean geometry in Section 3.5, which corresponds to a two-dimensional version of (M′, g′ab). Note
that only star S, and not each {S1, S2, . . .}, is a genuine object in spacetime. However, S produces, for
observer O, multiple spatiotemporal events registered by {S1, S2, . . .}, which is an immediate consequence of
the multiply connected topology. Radiation from star S scatters in infinitely many directions, wraps around
the hypertoric universe, and produces multiple images of S. On the other hand, were we in the other model
we could safely assume a 1-1 correspondence between objects in spacetime and observed radiation, i.e., there
would be distinct objects (stars, quasars, or what have you) corresponding to each {S1, S2, . . .}.

116



exploited the “dictionary” between Euclidean and hyperbolic geometries to discover the con-
traction law needed to render the two versions of the spherical world equivalent, here we can
exploit the mathematics behind the differing topological models to suggest requisite physical
changes. That is, presented with some data set, e.g., of luminous sources, we could either
assume that we are in (M, gab) or (M′, g′ab). In the first model, we would interpret any obser-
vation to be 1-1 correlated to a source, whereas in the second we would reinterpret by not
assuming such a correlation. That is, in (M′, g′ab) we would reinterpret some observations
as indicating the presence of mere “ghost” images generated by the wrapping of light due
to the multiply connected topology of the model. In short, under these different topologi-
cal models, we need to accommodate for a different relationship between observations and
objects in our model, whereas in the geometrical case we needed to account for different
metrics. In the former case, we do so by giving different referents (genuine object or ghost
image) in each model, whereas in the latter we do so by imposing the distorting temperature
field. Crucially, both of these procedures exploit the mathematics underlying the physical
situation.

The second sort of observational indistinguishability is rather different from that of
Poincaré’s spherical world. Here we can say that (M, gab) and (M′, g′ab) are observation-
ally indistinguishable not solely because of our epistemic limitations, but rather because of
the way the universe is constituted. This would be a case in which the “signature” of the
multiply connected topology far exceeds the in principle observable universe. Namely, no
wraparound effect/multiple images are even there for detection. In this case we get ob-
servational equivalence without having to reinterpret anything in the models. Rather, the
equivalence proceeds from the fact that, in either (M, gab) or (M′, g′ab), we are living in an
inappreciably (or even infinitesimally) small patch of the universe.

This second sort of observational indistinguishability is Glymour’s primary focus. He
does not make entirely clear whether the observational indistinguishability in question is
epistemic or metaphysical, but the latter seems closer to the mark. For he concludes

The significant cases of conventional topologies are those in which the world is one
way or the other, not both, but things are so arranged that we cannot discover
which way the world is ([Glymour, 1972], 216).

In any case, these two different sorts of indistinguishability produce two different argu-
ments for the conventional nature of spatial topology. The first proceeds from an indistin-
guishability induced by epistemic limitations and by our understanding of the mathematical
components of the theory:

1. We have a systematic technique to move between SCMs and MCMs that maintains a
local equivalence between (M, gab) and (M′, g′ab);

2. This technique suggests what physical hypotheses have to be reinterpreted in the newly
formed MCM;97

3. Therefore, spatial topology will always be underdetermined by empirical evidence;

97It is an interesting and difficult question as to whether there might be techniques available to distinguish
these prima facie equivalent models. For instance, an MCM and an SCM could, respectively, contain finitely
much and infinitely much matter. Could this difference induce local and observable differences?
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4. Therefore, it is precisely the topological properties of an FLRW model that are con-
ventional.

This is analogous, following [Ben-Menahem, 2001], to a reasonable Poincarean argument
for the conventionality of geometry:

1. We have a “dictionary” systematically relating results in Euclidean and hyperbolic
geometries;

2. This dictionary suggests what physical hypotheses have to be reinterpreted in each
geometrical model of space;

3. Therefore, spatial geometry will always be underdetermined by empirical evidence;

4. Therefore, it is precisely the geometrical features of a physical theory that are conven-
tional.

The second argument for the conventionality of spatial topology is much more straight-
forward and follows simply from the way in which the universe is constituted:

1. We live on an appreciably small (possibly infinitesimally small) patch of the universe;

2. Spatial topology is thus always beyond even in principle detectability;

3. Therefore, the topology of space, along with much else, must be conventional.

This is closer to Reading I of geometrical conventionalism, though here it would seem that
it is not Duhemian holism driving the observational equivalence. Rather, it is the global
nature of topological properties. So, in particular, there is nothing special about spatial
topology that renders it conventional. There are many other global spatial (or spatiotempo-
ral) properties beyond empirical determination, and these could be conventional in the same
way.

3.9.3 Assessment of Topological Conventionalism

I think that, in either argument, we find that connectivity properties are conventional in a
rather distinguished (or perhaps strange) sense. For it would appear that these properties
are closely intertwined with extremely fundamental properties of space and the matter occu-
pying it. This is one reason for thinking that a semantic conventionalism for spatial topology
(Reading III above) is not promising. In the geometrical case, it does not seem totally
unreasonable that two physical theories might have the same observational consequences
and yet be employing the word “distance” in different ways. However, in the topological
case, we would have to say that there is a systematic ambiguity in ascriptions of identity.
This is because an MCM is generated by means of a new identification procedure, e.g., in
order to form a hypertoric model, points judged to be distinct on a flat Euclidean model are
identified under the action of Γ.98 Thus, if we wanted to cleave to a semantic conventional-
ism with respect to spatial topology, we would also have to allow that the models disagree

98See [Glymour, 1972], pp. 201-202 for the same remark. This is yet another way in which the models
“disagree as to the basic individuals in the universe.”
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about the identification of points. This seems quite troubling. Furthermore, the fact that
an SCM and an MCM might disagree on the finitude of the universe, despite being obser-
vationally equivalent, is also quite strange. Finally, if we assume the uniform distribution of
matter on average throughout the universe, an assumption of the FLRW models, we could
have two observationally indistinguishable models that radically disagree over the amount
of matter in the universe. This is because a finite, multiply connected spacetime will have
finitely much matter, while an infinite, simply connected spacetime will have infinitely much
matter.99 Thus, a difference in topology makes an enormous difference to the models under
consideration, even if they are observationally indistinguishable. This fact indicates that
the conventionality at work here is in no way anodyne; these models cannot be the same
theory in disguise, as it were, given the close relationship between connectivity properties,
ascriptions of identity and finitude, and the amount of matter present in the universe.

3.9.4 A Stronger Sort of Convention

Recent scholarship on Poincaré’s geometrical conventionalism provides us with an extremely
useful way of understanding topological conventionalism.100 I will briefly sketch the main
points of this work and then apply it to connectivity properties of space. In short, I wish
to say that these properties, given what we know at this juncture, are conventions in the
sense that no empirical evidence can compel us to choose a simply or multiply connected
topology. The best way to understand this fact is that, at a rather abstract and general
level of our cosmological theory, we have a particular degree of freedom, represented by
the possibility of choosing different spatial topologies consistent with our data. However,
these conventions, these degrees of freedom, do not amount to mere arbitrary elements of a
theory. Rather, a choice of spatial topology constitutes the basic entities of our cosmological
theory in extremely different ways, and this constitutive role must be attended to when we
do ultimately select a particular topology.

Many recent accounts of Poincaré’s work on geometrical conventionalism stress his de-
sire to square a generally Kantian scientific and epistemic framework with the emergence of
non-Euclidean geometries. Roughly, his invention of conventions as a new sort of “epistemic
category”101 proceeds from the following line of thought. The axioms of Euclidean geometry
must be either analytic a priori, synthetic a priori, or synthetic a posteriori propositions
(given Kant’s classification of propositions). Poincaré then argues that each class of propo-
sition fails to appropriately capture the nature of the Euclidean axioms.

Thus, Poincaré cannot comfortably accommodate geometrical propositions in the Kantian
framework and so calls them “conventions.” In light of Poincaré’s commitment to a hierarchy
of sciences, these conventions take on a particularly interesting valence. As Friedman says,

[T]he determination of particular physical forces presupposes the laws of motion,
and the laws of motion in turn presuppose geometry itself: one must first set up a
geometry before on can establish a particular theory of physical forces. We have
no other choice, therefore, but to select one or another geometry on conventional

99See my discussion of [Brundit and Ellis, 1979] above.
100I draw from, in particular, [Friedman, 1999], Chapter 4, [Ben-Menahem, 2001], and [Ivanova, 2015].
101This very helpful way of putting the point is found in [Ben-Menahem, 2001].
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grounds, which we can then use, so to speak, as a standard measure or scale
for the testing and verification of properly empirical or physical theories of force
([Friedman, 1999], 78).

That is, for Poincaré, the choice of geometry in the construction of a physical theory plays
a constitutive role.

Now, of course, Poincaré’s conception of geometry as conventional and constitutive is in-
consistent with contemporary relativistic cosmology. By virtue of the fact that the curvature
of spacetime is determined by the presence of energy-momentum (given by particular exact
solutions of the Einstein Equations), geometry becomes an empirical matter. However, as
Friedman has noted in his work on the relativized a priori,102 a version of Poincaré’s view
can be salvaged. That is, though geometry might not play the epistemic role that Poincaré
thought, other principles do in fact make possible or constitute the empirical content of our
scientific theories. We must, however, weaken the claim that there is a unique, fixed set of
such constitutive a priori principles, as Kant and Poincaré believed, and understand these
constitutive principles as relative to a given scientific theory at a given time.

Let me now turn to this conception of the constitutive or relativized a priori. Before doing
so, we may summarize our findings in the following way: the topology of space is an excellent
candidate for a principle of relativistic cosmology that is both conventional and constitutive.
Conventional because there are many topologies compatible with our observational data;
this induces a particular degree of freedom at a very abstract level of our scientific theory
and requires that a choice be made.103 Constitutive because the ascription of particular
topological properties are required for the cogency of subsidiary physical laws and for the
application of fundamental physical concepts.

3.10 The Constitutive or Relativized A Priori

3.10.1 The Basics of Friedman’s Account

In an influential collection of writings,104 Michael Friedman has articulated a neo-Kantian
picture of scientific knowledge designed both to accommodate Kuhn’s theory of scientific
revolutions and to resist the pull of Quinean epistemological holism. In particular, Friedman
envisages a dynamical and hierarchical conception of knowledge consisting of three levels.
At the lowest level sit empirical principles of natural science, namely, those principles sus-
ceptible to empirical confirmation or disconfirmation, e.g., Newton’s law of gravitation or
exact solutions of Einstein’s Field Equations. At the next highest level sit the so-called
“constitutive” or “relativized” a priori principles which define the fundamental framework
internal to which empirical principles are tested. As Friedman says, these are

[...] relatively stable sets of rules of the game, as it were, that define or make
possible the problem solving activities of normal science ([Friedman, 2001], 45).

102See, in particular, [Friedman, 2001].
103See the discussion in Sections 3.6, 3.7, and 3.8 for how such a choice might be made.
104See especially [Friedman, 1999] (Ch. 3), [Friedman, 2001], [Friedman, 2007], and [Friedman, 2009]. I

follow most closely the presentation in [Friedman, 2001].
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Furthermore, though these constitutive principles are not fixed for all time, since it is pre-
cisely these principles that are changed in periods of “deep conceptual revolution,” they are
not straightforwardly empirical. This is because, in the absence of an agreed upon set of
constitutive a priori principles, there is no agreed upon process of empirical verification.
It is only internal to a particular constitutive a priori framework that various observations
could be said to count as confirmation (or disconfirmation) of a particular empirical law.
For instance, one must first lay down the mathematical framework of pseudo-Riemannian
manifolds (along with auxiliary hypotheses105) before one can claim that solutions of Ein-
stein’s Equation are either empirically true or false. Only then, for example, does Einstein’s
calculation of Mercury’s perihelion “count” as empirical evidence for the theory of general
relativity as codified by the Einstein Equation.106

Finally, the third level of Friedman’s hierarchy consists of “philosophical meta-paradigms
or meta-frameworks,” which serve to effect the transition from one constitutive a priori
framework to another in periods of conceptual revolution. It is by identifying this role for
philosophical investigation that Friedman avoids Quinean holism in which both principles
commonly construed as a priori and philosophy tout court are absorbed into empirical sci-
ence.

Let us articulate further what is meant by the constitutive a priori. As Friedman notes,
there is something rather strange about calling any principles a priori when they are sus-
ceptible to revision. Indeed, the full, Kantian notion of the a priori means (i) necessary
and unrevisable (in light of epistemic independence from experience) and (ii) constitutive
of the concept of the object of knowledge. However, Friedman argues (following the logical
positivists) that these two aspects of the Kantian a priori can be distinguished and that
particular principles of a scientific theory may be a priori in the sense of (ii) alone. That
is, particular principles of a scientific theory ensure the meaningfulness of empirical laws by
making possible their confirmation or disconfirmation by data.

Friedman identifies two components of the constitutive a priori part of a physical theory:
(i) strictly mathematical principles and (ii) fundamental “coordinative” principles. The lat-
ter are “coordinative” in the sense that they mediate between abstract mathematical entities
and the concrete empirical phenomena these mathematical entities are intended to repre-
sent.107 This need for coordination between mathematics and empirical phenomena became
especially pressing with the advent of general relativity as this theory employs mathemat-
ical concepts that bear no obvious relation to human sense perception ([Friedman, 2007]).

105Like Einstein’s Principle of Equivalence. I will discuss the difference between purely mathematical
components of the constitutive a priori and “coordinative principles” (like the Principle of Equivalence)
below.
106A more contemporary example would be the recent imaging of supermassive black holes at the center of

galaxy M87 and at the center of the Milky Way. These discoveries have provided further empirical support
for Einstein’s theory of general relativity because the respective masses of the black holes can be computed
to a high degree of accuracy. This then dictates how “large” they should be, viz., how much they curve
spacetime. Thus far, the measurement of the images matches the masses of the black holes, thus confirming
Einstein’s theory. However, this is only possible once one has laid down the framework of pseudo-Riemannian
manifolds.
107The need for such principles was already noted by Reichenbach in [Reichenbach, 1920] and

[Reichenbach, 1957].
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Much of Friedman’s discussion108 focuses on these coordinative principles because he (cor-
rectly) finds this problem of coordination a philosophically interesting feature of contempo-
rary physics. On the other hand, he seems to find the strictly mathematical part of the
spacetime theories under consideration rather less interesting. However, as we have seen
above, the choice of different topological properties of space can have profound effects upon
our scientific theory, indicating that the mathematical part of the constitutive a priori is
perhaps more interesting than Friedman allows.

Before investigating particular mathematical features of the constitutive a priori, let
us discuss Friedman’s conception of general relativity in more detail. We begin with the
following strata of a physical (spacetime) theory:

1. Philosophical Meta-paradigms.

2. Constitutive A Priori Principles:

(a) Mathematical Principles;

(b) Coordinative Principles.

3. Empirical Principles.

We can then think of general relativity as consisting of three components: (2a) the theory of
pseudo-Riemannian manifolds of variable curvature; (2b) Einstein’s Equivalence Principle;109

(3) exact solutions to Einstein’s Equation. This is because, if we accept general relativity as
the best extant scientific description of gravity and spacetime, then we accept that spacetime
is (or is well-modeled by) a smooth manifold M satisfying further constraints.110 And so we
should think of this general topological structure as a “constitutive” component of general
relativity insofar as it makes possible the extraction of particular empirical laws like those of
local metrical structure.111 Note, however, that the strictly mathematical part of a physical
theory is a merely necessary condition on the extraction of empirical laws: sufficiency is
achieved only after coordinative principles have been set up. What the mathematical part
alone does is determine the space of logical possibilities :

Einstein’s field equations are thus logically possible as soon as we have Rieman-
nian manifolds available within pure mathematics, but they are only [possible as
an actual description of some empirical phenomena] when these abstract math-
ematical structures have been successfully coordinated with some or another
empirical reality ([Friedman, 2001], 84).

This is all well and good, and I am in complete agreement with this conclusion; indeed,
Friedman’s conception of the relativized a priori provides us with an extremely helpful

108See Part Two, Lectures 1 and 2 of [Friedman, 2001] as well as [Friedman, 2009].
109This is the most fundamental example of a coordinative principle in general relativity. There are many

other such, e.g., the Light Principle and whatever assumptions are required to produced exact solutions to
Einstein Equation.
110See the definitions in Section 3.2.
111Friedman also suggests that the differentiable structure and the pseudo-Riemannian form of the metric

are also constitutive. See fn. 4, [Friedman, 1999], p. 82.
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way of analyzing the epistemic status of connectivity properties. However, as I will argue
below, Friedman’s “three levels” cannot fully make sense of our situation. It will turn out
that the connectivity properties of space, though intelligibly constitutive, are rather more
conventional and contingent than other components of the constitutive a priori structure of
a spacetime theory.

3.10.2 Articulating the Problem

The crux of the problem is this. We have seen that connectivity properties can be construed
as conventional in the sense that empirical evidence need not compel us to choose one
or the other. However, they are also constitutive in precisely Friedman’s sense because
they are included among the mathematical principles of general relativity. In particular,
these properties make possible the application of fundamental physical concepts as well
as the determination of subsidiary physical laws. On the other hand, there is no unique
choice for connectivity: each property (simply or multiply connected) seems to be a licit
option internal to the mathematics of general relativity, rendering them unlike, say, the
manifold structure simpliciter without which one could not even state general relativity
as such.112 Furthermore, as my discussion of topological underdetermination has shown,
observational data will not help us to decide. This places the connectivity properties in a
strange “intermediate” position in Friedman’s hierarchy. This is because Friedman seems to
think that our choice of constitutive a priori components of a scientific theory is guided by
“philosophical meta-paradigms,” and, furthermore, these paradigms, once one has carefully
considered “integrated intellectual history,” issue in a practically unique such choice.113 This
is not, however, what happens with connectivity properties.

Once more, a comparison with the evolution of the epistemic status of spatial geometry
will help us to see why the case of spatial topology is interesting. Consider first Euclidean
geometry. For Kant, the axioms of Euclidean geometry were a priori constraints on any
scientific theory of space. This was similarly the case for Poincaré, though he had to muster
new arguments for this fact given his knowledge of non-Euclidean geometries. However, once
we entered the era of general relativity, it became clear that geometry could not be a priori
even in the weaker “relativized” sense. Rather, considerations of metrical structure were
“demoted” to merely empirical principles. This is because of Einstein’s postulation of the
(weak) “Equivalence Principle.”114 Once Einstein had developed special relativity, he real-
ized that this theory was incompatible with classical Newtonian gravitation, since Newtonian
gravitation postulates instantaneous “action at a distance” and thus absolute simultaneity
([Friedman, 2001], pp. 83-92). Einstein therefore sought a new theory of gravitation com-
patible with relativistic spacetime. He did this by appealing to a well-known empirical fact:
that gravitational and inertial mass are equal, so all bodies fall with the same acceleration in
the gravitational field. In short, he appealed to the strangely “universal” nature of gravity.

112Connectivity properties also seem different from, say, the assumption that the spacetime manifold is
without boundary, for a manifold with boundary would introduce regions in which Einstein’s Field Equations
does not apply. I discuss this in other work.
113I explicate this claim below in Section 3.10.3. See also [Friedman, 2009].
114Einstein himself did not carefully distinguish a strong from a weak Principle of Equivalence, resulting

in much confusion. See [Ryckman, 2007].
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As Friedman notes, Einstein then “elevated” this mere empirical fact to a postulate that
gravitation and inertia are the same phenomenon, i.e., the so-called Equivalence Principle.
This principle then served as one of the constitutively a priori principles of general relativity
(a coordinative one). Finally, on the basis of this Equivalence Principle, Einstein took the
spacetime metric, registering the curvature of spacetime, as the mathematical representation
of the gravitational field. Einstein’s Field Equations relate this curvature to the presence of
matter, and thus spacetime geometry became an empirical matter.

Hopefully, it is clear that both the development of general relativity from special rela-
tivity and the preceding development of special relativity from pre-relativistic Newtonian
physics constitute rather deep conceptual revolutions in scientific practice. As such, ac-
cording to Friedman, such transitions required guidance from philosophical meta-paradigms.
For instance, he claims that Einstein was able to communicate with practitioners of clas-
sical physics by situating his constitutively a priori principles in a long historical dialectic
concerning absolute versus relative motion ([Friedman, 2001], pp. 105-117). This histori-
cal dialectic guided scientific practice from one constitutive framework to another, and, in
particular, guided the evolution of spacetime geometry from a priori to empirical.

In selecting spatial topology we cannot, however, appeal to the guidance of meta-paradigms
because such a choice must be made internal to our current physical theory, viz., general
relativity with its attendant postulates. This is because we would need to select particular
topological properties after we have already set up much of our mathematical and coordi-
native framework for general relativity. Furthermore, in light of our topological underdeter-
mination, we cannot make our choice on the basis of empirical data. Thus, the connectivity
properties must be selected on the basis of epistemic (e.g., simplicity, explanatory power,
coherence with other areas of physics) or even pragmatic considerations, and yet are also
constitutively a priori. Consequently, the epistemic status of these fundamental features of
space is not adequately captured by the categories on offer. In terms of Friedman’s hierarchy,
we have the following:

1. Philosophical meta-paradigms/integrated intellectual history (e.g., dialectic concerning
absolute versus relative motion from 17th-20th century).

2. Constitutive A Priori :

(a) Mathematical Principles (e.g., theory of pseudo-Riemannian manifolds):

i. Spatial Topology (How is this to be determined?).

(b) Coordinative Principles (e.g., Equivalence Principle).

3. Empirical Principles (e.g., exact solutions of Einstein’s Field Equations dictating space-
time geometry in general relativity).

The connectivity properties, as mathematical properties of the spacetime manifold, are
part of the constitutive a priori level. However, which property shall we choose: simply or
multiply connected? As we shall see below, the historico-philosophical record cannot decide
in any way, as Friedman argues it does for other constitutively a priori principles. But
neither can empirical findings internal to general relativity decide. It would seem, then, that
only epistemic or pragmatic considerations can guide such a choice, and this choice must be
made internal to the constitutive a priori level of Friedman’s hierarchy.
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3.10.3 The Contingency of Spatial Topology

Here I will show why particular mathematical properties of the constitutive a priori “level”
cannot be comfortably integrated into Friedman’s account. In particular, though connec-
tivity properties are part of the constitutive a priori apparatus of general relativity, these
properties are also interestingly different from other examples of constitutive a priori princi-
ples. Let us first consider how they differ from coordinative principles. (Beyond the obvious
fact that connectivity properties do not “coordinate” mathematical abstracta with empirical
phenomena.) Since Friedman claims that these general mathematical structures and coor-
dinative principles jointly exhaust the constitutively a priori level of general relativity, my
findings then indicate that particular mathematical properties occupy an odd position that
does not quite fit into Friedman’s schema of a spacetime theory or of scientific knowledge
more generally.

Consider [Friedman, 2009] where Friedman acknowledges a new problem for the consti-
tutive a priori. The problem is this: once we give up the ambition of delineating the a priori
structure of all possible scientific theories up front (as Kant sought to do), it would seem
that any argument for the constitutively a priori status of particular principles will depend
entirely upon “the concrete details of the historical process in question” ([Friedman, 2009],
254). Consequently, one of Friedman’s primary aims in this paper is to show that both
Kant’s project and his own contemporary extension of it do not fall prey to a radical con-
tingency. The argument is quite complicated, but it is worth spelling out as my inclusion of
connectivity properties among the constitutive a priori principles affects it.

Our first concern is: how did Kant seek to explain that the axioms of Euclidean geometry
and laws of Newtonian mechanics were (fully) a priori, i.e. both necessary and constitutive?
This was done by appealing to the structure of our cognitive faculties of sensibility and
understanding. Immediately a problem arises,

[...] How can such proposed transcendental explanations inherit the (assumed) a
priori necessity of the sciences whose possibility they purport to explain unless
we can also somehow establish that they are the unique such explanations? (ibid.,
254).

Friedman’s argument then reduces to defending Kant’s transcendental method as “practi-
cally unique,” given the philosophical and scientific resources (especially those of Leibniz and
Newton) at his disposal. Finally, he proposes that this particular conception of the tran-
scendental method can be extended to post-Kantian developments in the dialectic between
philosophy, mathematics, and science:

That each of these successive new intellectual situations has its own “inner logic”
implies that the enterprise does not collapse into total contingency [...] therefore
integrated intellectual history of both the exact sciences and scientific philosophy
takes over the role of Kant’s original transcendental faculty psychology (ibid.,
256).

Friedman seems to suggest that aspects of evolving scientific theories that should be con-
sidered properly “transcendental” are those that arise as “practically unique” solutions to
problems generated by specific intellectual circumstances and these circumstances themselves
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have evolved against the background of Kant’s original work. The constitutively a priori
principles of a given scientific theory are those that arise in such a fashion, and thus these
principles are not merely a posteriori matters of fact.

Returning to the case of spatial topology, it is very unclear why a particular choice of
connectivity property, though constitutively a priori in some sense, should present itself as
a “practically unique solution” to a scientific problem. According to Friedman’s proposal, in
order for an aspect of a scientific theory to count as constitutively a priori it must: (i) not
be subject to empirical confirmation or disconfirmation; (ii) make possible the application of
subsidiary physical laws; (iii) be a “practically unique” choice given the intellectual context;
(iv) come to light against an intelligibly Kantian background of intellectual development.
Given the current state of affairs in classical general relativity and observational cosmology,
connectivity properties satisfy (i). These properties also make possible the application of
empirical laws in virtue of being properties of the topological manifold, thus satisfying (ii).
However, what are we to say of (iii) and (iv)? If we cannot show that the properties in
question satisfy these final two conditions, then Friedman’s account does appear to fall prey
to an historical contingency and, independent of his project, we are left with fundamental
properties of space that require a new category to classify them.

Thus, in order to avoid this situation, is there an argument that shows the choice of a
particular connectivity property is “practically unique”? Let us turn to Friedman’s discussion
of how coordinative principles are selected to see whether this reasoning can be applied to
the choice of connectivity properties.

This is done by “elevating” mere “empirical laws” to the status of constitutive condi-
tions, which in turn make possible the construction of a rigorous mathematico-scientific
theory. For instance, Friedman claims that Poincaré began with the supposedly empirical
fact that Euclidean geometry (approximately) governs our perceptual experience of bodily
displacements. In virtue of this fact, along with the purported “simplicity” of Euclidean
geometry, Poincaré takes Euclidean geometry as an a priori constitutive condition on “a
precise mathematical framework within which alone our properly physical theories can be
subsequently formulated” (ibid., 262). Similarly, Einstein began with the empirical fact that
the gravitational and inertial mass of bodies are equal such that all bodies fall with the
same acceleration in the gravitational field. Einstein elevated this empirical fact to a con-
stitutive condition of general relativity, the (weak) Equivalence Principle, which gave rise
to the entirely new inertial-kinematical structure of general relativity.115 Friedman does not
make clear how it is that more general mathematical features of the constitutive a priori
are selected, though presumably the process would look similar: we search internal to pure
mathematics for an abstract structure that can represent and systematize new and surpris-
ing experimental evidence. Is this, however, what we have seen in the case of connectivity
properties? Do these instantiate the process Friedman envisages for how constitutively a
priori principles are selected?

In particular, in the case of topological properties of space, do we find empirical data
that are then elevated to constitutive principles of general relativity? Not at all. There is no
compelling empirical evidence internal to classical general relativity to prefer either a simply
connected or a multiply connected topology. (Developments in theories of quantum gravity

115One requires also the Light Principle.
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could very well change this situation, but such theories are not yet operative.) Rather, the
reasons one might provide for preferring, say, a multiply connected topology are either of an
epistemic character, viz., the simplification and explanatory power we gain in our physical
theories, or consist of a complicated mixture of physical and metaphysical reasons, viz., the
plausibility of Machian considerations. As we have seen, the common thread present in both
lines of reasoning is the complications that arise with the postulation of an infinite universe.
Thus, the process by which we “elevate” a connectivity property to a constitutively a priori
condition of general relativity is quite different from the one proposed by Friedman. Con-
sequently, we obtain a constitutively a priori principle of general relativity whose selection
does not seem possible to anticipate using the “inner logic” described by Friedman.

Perhaps one could try to understand my (briefly sketched) arguments for multiply con-
nected topologies in a way more salutary for Friedman. One might first try to find an
empirical principle concerning either simply or multiply connected topology which could
then be elevated to the status of a constitutive condition. Finding such a principle is, how-
ever, quite difficult precisely because these topological properties are global and thus do not
obviously relate to our perceptual experience (or even empirical knowledge, broadly con-
strued). This makes them quite different from, say, assessing local metrical structure. Thus,
it does not seem that a claim analogous to “Euclidean geometry approximately governs our
perceptual experience of bodily displacement” is available for spatial topology. Without this,
we are forced to turn to Poincaré’s more pragmatic considerations for preferring Euclidean
geometry, transposed to the topological case. But, of course, Friedman does not emphasize
these pragmatic considerations in his discussion.

A more nuanced attempt to find an empirical principle related to our perceptual experi-
ence might concern our perception (or lack thereof) of infinite quantities. For instance, since
we only ever perceive finite regions of space,116 we might elevate this empirical principle to
the status of a constitutive condition on our scientific theorizing, resulting in our construc-
tion of finite universe models only.117 And, if we wish to remain consistent with out best
current data about the curvature of space,118 finite universe models can only be produced
by adopting a multiply connected topology. The crucial idea here would be that, in order
to produce genuine scientific knowledge, we would have to constrain our physical theories so
as to accommodate basic facts about our cognitive capacities. I am rather skeptical of such
a proposal, however. This is because our perceptual capacities are so severely limited that
elevating what can be perceived to the level of a constitutive condition is tantamount to
undercutting most of contemporary physics. Indeed, it is certain that there is an n ∈ N such
that even the most perceptually acute human being could not perceive anything outside a
region of radius n nor inside a region of radius 1/n. To say that this empirical fact should
be elevated to a constitutive constraint on our spacetime theories would be absurd. Thus, I

116Setting aside thorny issues of infinite divisibility.
117There is surely an interesting connection to be made here with Kant’s arguments in the Metaphysical

Exposition of Space in the Critique of Pure Reason. In particular, Kant argues that space is given to us as
“infinite” and “boundless” and no conceptual representation can account for this. Thus, our representation
of space is intuitive in character. However, one might think that here Kant oversteps his own prescribed
boundaries of “possible experience,” returning us to the suggestion that we only ever experience finite spatial
regions. See Essay 4 in [Parsons, 1983].
118These data indicate that space is approximately flat, i.e., its curvature k ≈ 0. See [Spergel et al., 2007].
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doubt that Friedman’s “inner logic” that extends the Kantian transcendental project can be
intelligibly applied to the topological properties under consideration. And thus, though they
are reasonably constitutive of general relativity, they are also rather more contingent and
conventional than Friedman would like. Therefore, these fundamental, global properties of
space seem to escape adequate classification by an otherwise attractive theory of scientific
knowledge.

3.11 Conclusion

In this chapter, I have argued first, that even assuming the Cosmological Principle, the topol-
ogy of space is underdetermined by observational evidence. Indeed, even if we had strong
evidence for a particular spatial topology, it would still be a live option that the underdeter-
mination persists (recall, however, the concerns about Manchak’s theorem). Nonetheless, I
believe that we have good reasons to prefer multiply connected topologies. In particular, I
argued that we should prefer MCMs on grounds of simplicity, Machian considerations, and
explanatory power, where many of these grounds follow from troubling consequences of a
spatially infinite universe. Thus, we have good reasons to think that a robust underdeter-
mination is avoidable.

Second, I have argued that our understanding of spatial topology requires a fusion of
various aspects of conventionalism and the relativized a priori. The connectivity properties
in question are conventional in the sense that no empirical evidence can compel us to choose
one over the other. However, following the work of Poincaré and Friedman, I have also
argued that these connectivity properties are not “mere” conventions insofar as they play
an intelligibly constitutive role in our cosmological theories. They are, however, neither
coordinative principles nor do they function in the same way as more general mathematical
features of relativistic cosmology.

Even after all this work has been done, we must not think that these conclusions are
unrevisable: the development of a workable theory of quantum gravity would, once again,
change the rules of the game. This would, in fact, cohere very nicely with my analysis.
Surely, the transition from classical general relativity and cosmology to a theory of quantum
gravity would constitute a paradigm shift requiring the guidance of Friedman’s highest level
of “philosophical meta-paradigms.” That is, such a meta-paradigm would effect the transi-
tion from one set of constitutive a priori principles (those of classical general relativity) to
another, as of yet unknown, set. And, under the auspices of these new principles, spatial
topology could be demoted to the level of empirical principles, just as occurred with spatial
geometry in the transition from pre-relativistic to relativistic theories of spacetime.119 It is
also possible that our questions about spatial topology will be rendered moot: some theories
of quantum gravity postulate that the topology of spacetime fluctuates at a quantum level
(the so-called “space-time foam”), and it is not at all apparent what it would even mean
to ask about the topology of space in this context. My hope is that such further scientific
developments will help to shed light on and to enrich the philosophical issues here discussed.

119The results of work by [Almheiri et al., 2020] suggest this possibility in the context of string theory and
AdS-CFT (anti de Sitter-conformal field theory) duality.
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4 Intuitions of the Infinite and Probability

4.1 Introduction

As discussed in the introduction to the dissertation, the notion of the infinite, even in strictly
mathematical contexts, can be understood in many ways. This chapter considers various
techniques for “measuring” the infinite and shows how these techniques might be used to
shed light on a family of difficult and misunderstood philosophical puzzles.1

In contemporary mathematics, there are at least three intuitive criteria (with attendant
formalizations) for measuring infinite collections/sets. Let us call the first criterion Cantor’s
Principle (CP): two infinite sets A and B have the same “size” if and only if their elements
can be put into 1-1 correspondence. A rich mathematical theory flows from formalizing this
intuition via Cantorian cardinalities; however, it is well known that the use of cardinalities
produces counterintuitive results. For instance, the set of even numbers has the same cardi-
nality as the set of all natural numbers, despite the fact that the evens are a proper subset
of the naturals. This suggests an alternative criterion, Part-Whole (PW), for determining
the size of a set: if A is a proper subset of B, then the size of A should be strictly less than
the size of B. Famously, Bernard Bolzano argued that PW should serve as the criterion for
measuring infinite collections; however, he was not able to develop the mathematics needed
to formalize this intuition.2 Indeed, PW has been adequately formalized only very recently
by Benci and Di Nasso’s theory of numerosities.3 Importantly, PW and CP yield the same
verdicts on finite collections but are incompatible when applied to infinite collections.

The third and final criterion for measuring infinite sets involves a Frequency (FR)
intuition: if infinite sets A and B occur “equally often” in an ambient set C, then A and
B have the same size. FR finds expression in the number-theoretic notion of density.4 For
example, the even and odd numbers have the same (natural) density because they occur
equally often in the natural numbers. This intuition is somewhat under-explored, primarily
because it does not offer a way to generalize counting from the finite to the infinite case.5

In the past decade or so, a significant philosophical literature has sprung up around the

1In this chapter, “measuring” should be taken to mean “measuring the ‘size’ of an infinite set/collection”
no matter how “size” is construed in the various approaches here considered.

2See [Bolzano, 1972] and [Bolzano, 1975]. Note also that Galileo and Leibniz were drawn by the part-
whole intuition, though, ultimately, they concluded that one should not attempt to construct a theory of
measuring the infinite.

3See, for instance, [Benci and Nasso, 2003b], [Benci et al., 2006], [Benci and Nasso, 2019]. See also
[Katz, 1981] for an early precursor.

4See, e.g., [Tenenbaum, 1995]. Note that there are various types of densities employed in number theory.
5I wish to pursue questions about the conceptual significance of FR in future work.
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theory of numerosities.6 The motivation for much of this work is that numerosities allow
us to generalize counting from the finite to the infinite case such that PW, rather than
CP, is preserved. Many rich philosophical questions immediately follow, e.g. how does
this new theory of counting compare with Cantorian cardinalities in terms of epistemic and
mathematical usefulness? Beyond such questions about what constitutes a “good” theory of
infinite counting, it is plausible that, given the fundamental nature of these mathematical
developments, there should be wide-ranging consequences in areas of study employing infini-
tary considerations. Here I consider the effect of applying PW and numerosities to infinitary
probability theory. There has already been some very nice mathematical and philosophical
work done here, but my aims are somewhat different.7

In particular, after examining three central paradoxes of infinitary probability theory,
the Label Invariance Paradox, God’s Lottery, and Bertrand’s Paradox, I came to the con-
clusion that none of these seems to be generated by anything involving probability. Rather,
these paradoxes involve a conflict between our techniques for measuring infinite sets and the
information we wish to preserve when doing so. More precisely, they are generated by the
conflict between the coarseness of CP, our intuitions about the “relative sizes” of infinite
sets,8 and how these size relations ought to behave in different contexts. I thereby develop
a unified framework in which to think about these seemingly distinct “probabilistic” para-
doxes and suggest how these paradoxes might be resolved. The recognition that there are
different—and inconsistent—techniques for measuring infinite sets will help to disabuse us
of the intuitions underlying the paradoxes and will also help to make some of our claims
more precise.

Finally, a more general theme that emerges from this investigation is that there is an
inextricable indeterminacy to our theories of infinite counting.9 However, though one might
find this undesirable, I believe it provides a flexibility that allows us to select properties
suited to particular contexts (e.g., probability theory, set theory, number theory, etc.). This
will lead us back to questions about what a “good” theory of infinite counting should look
like and whether there is any such.

4.2 The Theory of Numerosities

It is undeniable that Cantorian set theory provides us with much insight into the nature of
mathematical infinity. Indeed, Cantor’s theory of cardinal numbers offered the first system-
atic generalization of arithmetic from the finite to the infinite case. As we have seen, this is
effected by accepting a particular intuitive criterion for “measuring” an infinite collection,
CP. Crucial for our purposes here is the fact that 1-1 correspondence, viz., the “equipotency”
equivalence relation, used to generate cardinality assignments is extremely coarse.

It is in large part this coarseness that produces counterintuitive verdicts, e.g., that all
infinite sets of integers have the same “size.” In this section, I wish to make clear how

6See especially [Mancosu, 2009], [Parker, 2013], [Mancosu, 2017] and the references provided below con-
cerning applications of numerosity theory to probability.

7See [Benci et al., 2013] and [Benci et al., 2018]. These papers will be discussed below. One should also
consult [Mancosu and Massas, 2023].

8By this I mean judgements like, “The even numbers comprise half of the natural numbers.”
9I use “infinite counting” as synonymous with “measuring” for infinite sets.
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the inclusion of finer-grained mathematical structure in the theory of numerosities allows
us to validate the PW intuition rather than CP. I will primarily follow the most recent
development of numerosity theory presented in [Benci and Nasso, 2019]. There is much here
of both technical and philosophical interest, but the main point for our purposes is the
following. In contrast to Cantorian cardinalities, the numerosity of a given set A can depend
quite sensitively upon two things: (i) how the elements of A are “labelled”; (ii) how one
constructs a model in which numerosity assignments are made.10 I claim no originality in
the presentation of the following technical results. Rather, I wish to show how results from
[Benci and Nasso, 2019] might be employed to help to resolve our philosophical concerns.

4.2.1 Counting Systems

Following [Benci and Nasso, 2019],11 let a counting system12 be a triple (U,N, n) where U is
a family of sets to be counted, N is a linearly ordered set of numbers, and n : U � N is a
surjective function assigning a “size” to each set in U. Intuitively, letting A and B be infinite
sets, we would like any such counting system to satisfy the following:

1. Cantor’s Principle (CP): n(A) = n(B) iff there is a bijection between A and B.

2. Part-Whole (PW): If A ⊂ B, then n(A) < n(B).

3. The usual algebraic properties of the natural numbers, e.g., commutativity of sum and
product operations.13

Importantly, these intuitive properties are gotten by considering our experience of counting
finite entities. If we restrict ourselves to only finite sets we obtain:

Example 4.2.1 (Finite Counting System). Let Ufin be the class of finite sets, N = N0 :=
N∪ {0}, and | · |fin the finite cardinality function. Then our counting system (Ufin,N0, | · |fin)
satisfies (1)-(3) above.

Unfortunately, there is no prima facie reason for thinking that all these properties will
generalize to the infinite case. And indeed, as is well known, such a generalization fails. We
cannot have a counting system containing infinite elements that satisfies (1) and (2) together.
Cantorian cardinalities provide an example of a counting system at infinity satisfying (1):

Example 4.2.2 (Cantorian Cardinalities). (V,Card, | · |) is the counting system of Cantorian
cardinals where V is the universal class of all sets, Card is the class of cardinal numbers, and
| · | assigns to a given set its equipotent cardinal.

10The theory of numerosities can be presented without appeal to labelled sets. In particular, one can begin
with the primitive notion of an “equisize” equivalence relation (instead of “equipotency”) and then show
that the theory of counting based upon this relation is equivalent to the theory of numerosities in terms of
labelled sets. This will not affect the main claims of the chapter.

11Note that, in the last two decades, various developments of the theory have been given. See
[Benci and Nasso, 2003b] and [Benci and Baglini, 2021].

12See Appendix E for the formal properties of a counting system.
13See [Benci and Nasso, 2003b], p. 52 for further discussion of this condition.
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It is possible to devise another counting system with infinite elements that satisfies (part of)
(1) and rejects (2). This is given by:

Example 4.2.3 (Cantorian Ordinals). (WO,Ord, ot) is the counting system of Cantorian
ordinals where WO is the class of well-ordered sets, Ord is the class of ordinals, and ot(·) is
the order-type function.

Cantorian ordinals represent a more complex way of counting than that of Cantorian cardi-
nals. This is because we must keep track of both the elements in some A ∈ WO and their
order. Note that this way of counting still rejects criterion (2), since, for example, ot(N) = ω
and ot(N0) = 1 +ω = ω, even though N ⊂ N0.14 However, Cantorian ordinals vindicate only
part of (1). This is because, in order for two sets to have the same order type, there must be
a bijection between the sets that, additionally, preserves order. Thus, if ot(A) = ot(B) for
A,B ∈ WO, then A and B stand in 1-1 correspondence. However, the converse fails: there
are many pairs A,B that are 1-1 correlated but have different order-types. Finally, it is
worth noting that (3) is satisfied by neither cardinals nor ordinals. Indeed, ordinal addition
and multiplication even fails to be commutative, e.g., 1 + ω = ω < ω + 1.

Benci and Di Nasso’s aim was to develop a mathematically adequate counting system,
the theory of numerosities, that rejects (1) instead of (2) and also satisfies (3). Let us see
how to do this for the case of countable infinities.15 In what follows, I will consider only
countably infinite sets, unless otherwise noted.

Type 1 Sensitivity

We wish to construct a numerosity counting system (U,N, n), viz., a counting system that
satisfies PW for infinite sets rather than CP. In order to obtain PW for this system, the
presentation of numerosities with which we are concerned arranges elements of sets A and
B into smaller sets to be counted. This is done by assigning each element of A (resp.
B) a “label” via a labelling function `A (resp. `B). We are not, in contrast to Cantorian
cardinalities, simply considering “bare” elements of sets. We are, instead, like Cantorian
ordinals, preserving additional information. However, the process by means of which we do
this is even more complicated.

We begin with a countably infinite set A,16 partition it via a labelling function into count-
ably many finite subsets, and then analyze a sequence of approximations. More precisely:
consider a pair A := (A, `A), called a labelled set, with `A : A → N0 such that, for any
n ∈ N0, `A(a) = n for finitely many a ∈ A. Thus, A can be written as the union of the
non-decreasing sequence of finite sets

A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ An+1 ⊆ · · · (4.2.1)

where An = {a : `A(a) ≤ n}. The finite cardinality |An| can then be thought of as the nth
approximation to the numerosity of A.

14Note that adding an element “to the right” of N does result in a larger order-type.
15See [Benci et al., 2006], [Benci et al., 2007], [Nasso and Forti, 2010], [Blass et al., 2012] for generaliza-

tions. As of yet, some central aspects of numerosities for uncountable sets remain unsettled.
16Again, see remark in footnote 15.
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In virtue of this additional structure, we require a new notion of “sameness” for labelled
sets. That is, under what conditions are two labelled sets A and B the same for the purposes
of counting? And how precisely does this sameness relate to the assignment of numerosities?
Consider first the notion of isomorphism between labelled sets:17

Definition 4.2.4. Two labelled sets A = (A, `A) and B = (B, `B) are isomorphic, written
as A ∼= B, if there exists a bijection ϕ : A → B that preserves the labellings of A and B,
i.e., `B ◦ ϕ = `A.

Clearly, now, we wish to say that two labelled sets that are “the same,” i.e., isomorphic in the
above sense, will have the same numerosity. Indeed, A ∼= B ⇒ n(A) = n(B). However, for
our purposes below, it is more instructive to see how assignments of numerosities can differ.
There are two ways in which labelled sets can fail to be isomorphic. First, if there is not a
bijection ϕ : A → B, then clearly the labelled sets A and B will not be isomorphic. This
condition encodes the coarsest counting condition, viz., 1-1 correspondence. However, we
now take a step further and say that A � B if our labellings are not preserved, i.e., `B◦ϕ 6= `A
(with ϕ now assumed to be a bijection). Either failure of isomorphism will result in a change
in the natural “counting function” that serves to provide the finite approximations of the
numerosity of a labelled set (see Proposition 4.2.6 below):

Definition 4.2.5. The counting function γA : N0 → N0 of labelled set A = (A, `A) is given
by

γA(n) = |An| = |{a ∈ A : `A(a) ≤ n}| . (4.2.2)

As we have already seen, A is given by the increasing union
⋃
n≥0An, and so An is the nth

approximation of the size of A.

There is then the following relationship between isomorphic labelled sets and their counting
functions:

Proposition 4.2.6. Let A = (A, `A) and B = (B, `B) be labelled sets. Then the counting
functions γA and γB are precisely identical iff A ∼= B.

Proof. See Appendix E.

With these preliminary definitions and results in hand, [Benci and Nasso, 2019] show that
their “Alpha-Theory,” an alternative development of nonstandard analysis, provides a nat-
ural definition of the numerosity of a labelled set:18

Definition 4.2.7. The numerosity of a labelled set A is given by

n(A) = lim
n↑α

γA(n), (4.2.3)

17See [Benci and Nasso, 2003b], [Benci and Nasso, 2019].
18In [Benci and Nasso, 2019], the numerosity of a labelled set is written as nα(·) to make explicit the

relationship to the alpha-limit. I will suppress the α-subscript.
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where limn↑α is the notion of an “alpha-limit.”19

Just as the (ε, δ)-limit is the foundational notion of classical analysis, so too is the alpha-limit
the foundational notion of nonstandard analysis via Alpha-Theory. Loosely, the alpha-limit
of a sequence is the value taken by the sequence at an ideal, infinite number, α. Then we
have

Definition 4.2.8. Let L be the class of (countable) labelled sets, and let N ⊆ N∗0 be the
range of the surjective function n, where N∗0 is the set of hypernatural numbers. Then
(L,N, n) is a numerosity counting system, viz., a counting system satisfying PW.

In [Benci and Nasso, 2019], the existence of alpha-limits for arbitrary sequences, as well
as the existence of α, are given as axioms of the theory.20 The authors then construct a
model for these axioms, thereby guaranteeing their consistency. This process is entirely
analogous to the axiomatic introduction of the real numbers: we postulate the existence
of the real numbers as a complete ordered field, and then construct a model via either
equivalence classes of Cauchy sequences of rational numbers or Dedekind cuts of rational
numbers. Finally, we define field operations and an order relation on the sets of the model
and verify that the resulting structure satisfies the properties of a complete ordered field. The
details of the model construction for the axioms of Alpha-theory is rather more involved and
are not especially relevant here. However, we can rest assured that the use of alpha-limits is
entirely safe.21

In contrast to the classical limit, the alpha-limit has some rather strange properties. Most
striking is the fact that alpha-limits always exist. Furthermore,

Proposition 4.2.9. Let f, g : N0 → N0. Then, if f(n) 6= g(n) for all but finitely many n,22

lim
n↑α

f(n) 6= lim
n↑α

g(n). (4.2.4)

Proof. See Appendix E.

Thus, we notice the following. By Proposition 4.2.6 we know that a failure of isomorphism
between labelled sets A and B means that their counting functions γA and γB are not
identical. Let us assume that these functions differ on all but finitely many n. Then by

19See [Benci and Nasso, 2003a] and [Benci and Nasso, 2019]. Theorem 16.14 of [Benci and Nasso, 2019]
shows that this way of defining numerosities ensures that (L,N, n) with N ⊆ N∗0 (the hypernaturals) satisfies
all the desired properties for a numerosity counting system.

20See Appendix E.
21In [Benci and Nasso, 2019], the authors first introduce axioms for what they call Alpha-Calculus (see Ap-

pendix E) which deals with alpha-limits of real-valued sequences. A model for the axioms of Alpha-Calculus
is then given in Section 2.11 using non-principal maximal ideals (equivalent to non-principal ultrafilters) in
the ring of real-valued sequences. (An alternative model construction for Alpha-Calculus is given in Chapter
11.4 via ultrapowers.) In Chapter 4, the authors develop Alpha-Theory as an extension of Alpha-Calculus
insofar as we take alpha-limits of sequences taking values in any set (not just R). A model for the axioms of
Alpha-Theory is then given in Chapter 6.7.

22Note that the sequences for which the alpha-limit is defined can take values on any set, not just N0. I
restrict myself to N0 because we will be interested in alpha-limits of counting functions taking values in N0.

134



Proposition 4.2.9 and the definition of numerosity:

lim
n↑α

γA(n) 6= lim
n↑α

γB(n) =⇒ n(A) 6= n(B). (4.2.5)

We will exploit this chain of relationships when we consider the Label Invariance paradox
below.

Type 2 Sensitivity

Finally, we should note that there is a second way that the assignment of numerosities might
be considered “sensitive” or perhaps “arbitrary.” This has been examined to some extent in
the literature,23 but here I will provide a different (though equivalent) presentation of this
sensitivity. My presentation will facilitate comparison with a possible resolution of God’s
Lottery discussed below.

Benci and Di Nasso construct a model for the axioms of Alpha-Calculus (see Section
2.11 of [Benci and Nasso, 2019]). They also show that models for Alpha-Calculus are highly
non-unique in the sense that a model is described by specifying the family of qualified sets
(see Appendix E). Furthermore, it is shown that every non-principal ultrafilter U on N is
the family of qualified sets that describes a model for Alpha-Calculus (Theorem 2.22 and
Theorem 11.18 of [Benci and Nasso, 2019], respectively). Recall the following definition:24

Definition 4.2.10 (Filter; Ultrafilter). Let I be a nonempty set. Then a nonempty collection
U ⊆P(I) is said to be a filter over I if U is closed under supersets and finite intersections.
U is a proper filter if ∅ /∈ U. Finally, an ultrafilter is a proper filter U satisfying

1. For every A ⊆ I, either A ∈ U or Ac ∈ U with Ac = I \ A.

Finally, if no finite subsets belong to U, then U is said to be non-principal or free.

Theorem 2.22 of [Benci and Nasso, 2019] proves that a family of qualified sets Q satisfies the
above conditions for a non-principal ultrafilter, and Theorem 11.18 proves the “converse”
that, given a non-principal ultrafilter U on N, there is a family of qualified sets Q such that
Q = U.

Since we are defining our numerosity counting systems via the Alpha-Calculus, it should
be clear that numerosities will inherit the sensitivities of the models of Alpha-Calculus.
However, this becomes even more complex and raises interesting foundational questions. This
is because Benci and Di Nasso suggest that the following principle, the Cauchy Infinitesimal
Principle (CIP), be added to the axioms of Alpha-Calculus (or the more general Alpha-
Theory):

Every positive infinitesimal number is the alpha-limit of some decreasing infinites-
imal sequence.

CIP is in fact independent of the axioms of Alpha-Calculus, and it can be shown that
the new theory produced by adjoining CIP to the Alpha-Calculus axioms admits models.

23See [Mancosu, 2009] and [Parker, 2013]
24See [Goldblatt, 1998].
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However, the existence of these models requires highly non-constructive mathematics; in
particular, to prove their existence one must go beyond the axioms of ZFC. This connection
is made evident by the following theorem (Theorem 14.12 of [Benci and Nasso, 2019]):

Theorem 4.2.11. Alpha-Calculus theory proves that CIP holds iff the non-principal ultrafil-
ter Q of qualified sets over N is selective.25

It is known that the existence of a selective ultrafilter is independent of ZFC.26 Thus,
the existence of models of Alpha-Calculus/Theory in which CIP holds is independent of ZFC.
But what, precisely, has this to do with numerosities? The connection is provided by the
following (Theorem 16.33 of [Benci and Nasso, 2019]):

Theorem 4.2.12. Assume the axioms of Alpha-Theory. Then the following are equivalent:

1. Cauchy Infinitesimal Principle (CIP).

2. The numerosity counting system (L,N, n) is Zermelian, i.e., it satisfies PW and the
following property: n(A) ≤ n(B) iff n(A) = n(A′) for some subset A′ ⊆ B.

3. The set of numerosities N is precisely the set of hypernaturals N∗0. That is, for every
ν ∈ N∗0 there exists a labelled set A such that n(A) = ν.

This complicated chain of dependencies relates the new presentation of numerosity theory
within Alpha-Theory to the earlier work in [Benci and Nasso, 2003b]. There numerosities
are taken to be equivalence classes of nondecreasing functions f : N→ N equivalent modulo
a selective ultrafilter. Then, it is shown that a numerosity function n from the class of
countable labelled sets L to N∗0 exists iff there exists a selective ultrafilter.27 This is precisely
what we have seen above, except via a detour through Alpha-Theory, qualified sets, and CIP.
Once more, this will help us to see more clearly how numerosity theory might be applied to
the paradoxes below.

In virtue of the dependence of the numerosity function on the selective ultrafilter and
the fact that there are many selective ultrafilters, the assignments of numerosities are not
unique. As we shall see below, this is closely related to the arbitrariness of properties of α
since the properties of α will depend on our family of qualified sets.

This sensitivity of numerosities has been deemed either a disadvantage of the theory
([Parker, 2013]) or, at least, no less of a problem than the underdetermination present in
ZFC, e.g., the fact that ZFC cannot resolve basic questions about size assignments like the
Continuum Hypothesis ([Mancosu, 2009]). The details of this debate would take us too far
afield, but I wish to note that this second sensitivity can be turned into an advantage of the
theory. In particular, we might wish to solve a particular problem that requires n(N) = α to
have various properties. This can be achieved by selecting appropriate sets to be members
of our selective ultrafilter/family of qualified sets. This idea will feature significantly in
the resolution of God’s Paradox. More generally, the sensitivity of numerosities suggests

25There are many conditions for classifying selective ultrafilters. See Proposition 4.1 of
[Benci and Nasso, 2003b] and [Benci and Nasso, 2019], p. 291.

26See, e.g., [Booth, 1970] and [Kunen, 1976].
27See [Benci and Nasso, 2003b], pp. 62-3.
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that what constitutes a “good” theory of infinite counting may in fact be highly context-
dependent.

In conclusion, we have seen the following. The theory of numerosities validates PW, not
CP, and has well-behaved algebraic properties. It was required that our counting theory
preserve more information than either Cantorian cardinalities or ordinals. In particular, the
numerosity of a set A depends on both the elements of A and how the elements of A are
labelled (under the presentation of numerosity theory with which I have been concerned).
Call this Type 1 sensitivity of numerosities. This will help us to identify what is philosophi-
cally important in some famous paradoxes below and will provide independent arguments for
their resolution. We have also seen that numerosities exhibit a sensitivity to the underlying
selective ultrafilter. Call this Type 2 sensitivity. This will help us to resolve some of the
paradoxes in question.

4.3 The Label Invariance Paradox and God’s Lottery

In this section, I begin by examining two paradoxes from infinitary probability theory (La-
bel Invariance and God’s Lottery) and provide a single framework that both diagnoses and
dissolves the paradoxes. Much of this will turn, of course, on the details of the paradoxes in
question. However, my main contention is that these paradoxes are, ultimately, not about
probability theory per se. Rather, they involve a mismatch between: (i) our intuitions about
the relative sizes of infinite subsets of countably infinite sets; (ii) the coarse mathematical
framework typically used to analyze these relationships. In particular, the framework of
cardinalities (and its underlying reliance upon bijective correspondence alone) obliterates
information that must be preserved in order to validate our intuitions about relative sizes
of infinite sets. It is this mismatch the produces the paradoxes and not, ultimately, any-
thing about the nature of likelihood. I conclude by examining Timothy Williamson’s much
discussed argument that infinitesimals cannot save a regularity constraint in infinitary prob-
ability. I show that this involves assumptions common to the previous paradoxes and that
his argument can be disrupted by, once more, jettisoning the Cantorian framework.28

4.3.1 The de Finetti Lottery and Countable Additivity

I will begin with the Label Invariance paradox. The most focused discussion of the paradox
is found in [Bartha, 2004], so I follow the basics of the set-up found there.29 I would like to
note at the outset that I agree with much of what Bartha says; however, I think his analysis
is not sufficiently general insofar as it is tethered to the formalism of probability theory and
does not acknowledge the full significance of infinitary considerations.

28Ultimately, I think his argument is highly indeterminate and must be precisified before any evaluation
of it can be made.

29There is also a brief discussion of the Label Invariance intuition in [Wenmackers and Horsten, 2013].
[Gyenis and Rédei, 2015] discuss similar ideas in a rather different context. I take this up below in my
analysis of Bertrand’s Paradox. For a discussion of this intuition in the context of inflationary cosmology,
see [Norton, 2021], [Parker, 2020], and [Wenmackers, 2023].
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Bartha’s primary objective in this paper is to dispense with difficulties arising from the
de Finetti Lottery.30 I will describe this lottery in some detail as it will be relevant for
many sections of the chapter. De Finetti argued that we should be able to make sense
of a uniform probability distribution over a countably infinite set. Consider a lottery in
which the number of tickets issued is countably infinite with each ticket having an equal
(subjective) probability of winning.31 However, as de Finetti showed, the assumption of
equiprobability for each ticket is incompatible with a standard axiom of infinitary probability
theory: Countable Additivity (CA) (see Appendix F). Let ai, aj be tickets in our lottery with
i, j ∈ N and let P (ai), P (aj) be real numbers representing the probability of drawing ai or
aj, respectively. Equiprobability is then given by P (ai) = P (aj) for all i, j. CA is given
by P (a1) + P (a2) + · · · = 1, since the probability that some ticket wins is unity, and this
should be the infinite sum of probabilities for each individual ticket. Evidently, if we have
P (ai) = P (aj) = r for r ∈ (0, 1], then the series in CA diverges, and CA must be abandoned.
Similarly, if P (ai) = P (aj) = 0, then CA also fails. Thus, it would seem, we must abandon
either Equiprobability or CA. De Finetti chooses to abandon CA and, ultimately, retreats to
a probabilistic finitism by letting all P (ai) = 0 to retain Equiprobability.

Bartha agrees with de Finetti that Equiprobability should be retained but wishes to show
that, in many other cases, one can coherently retain CA. That is, the use of CA in other
applications of subjective probabilities is entirely unproblematic. He begins by surveying
some arguments for dropping Equiprobability in the de Finetti lottery. The first is that any
mechanism that might be employed will be biased in some sense, and so the conflict be-
tween Equiprobability and CA never gets off the ground.32 If we think this response cogent,
we might still object that the de Finetti lottery deals with subjective probabilities (cre-
dences) rather than objective probabilities (chances), and so worries about a “mechanism”
are not apropos.33 Still, we might reason that our credences should reflect our knowledge
of chances,34 and so we should still want a truly random mechanism. In any case, after
pursuing a number of such lines of thought, Bartha concludes (rightly, I think) that such
arguments for dropping Equiprobability are not conclusive.

The second, somewhat more worrisome, argument against Equiprobability goes as fol-
lows. We have a Dutch Book argument for CA as a constraint on subjective probability as
with other axioms of probability theory.35 More precisely, if we assign positive, real-valued
probabilities to ai for all i, then

∑∞
i=1 P (ai) = 1 on pain of being Dutch Booked. Thus,

30See [de Finetti, 1974].
31When discussing [Bartha, 2004], I restrict myself to subjective probabilities because his paper is con-

cerned with whether Countable Additivity serves as a constraint on subjective interpretations of probability
(following [de Finetti, 1974] and [Kelly, 1996]). Furthermore, parts of Bartha’s discussion deal with Dutch
Book Arguments, which are expressly concerned with whether there are rational constraints on subjective
probabilities. See [Hájek, 2009] for discussion. However, my interpretation of the Label Invariance paradox
applies equally well to both subjective and objective probabilities. I discuss this further below in the context
of God’s lottery.

32See [Spielman, 1977], [Howson and Urbach, 1993] and the references therein.
33See [Williamson, 1999] for extended discussion. See footnote 31 for the restriction to subjective proba-

bilities.
34As codified, for example, by Lewis’s Principal Principle, i.e., that the subjective probability for event

E, given that the chance of E is r, should be precisely r. See [Lewis, 1980].
35See [Howson and Urbach, 1993] and [Williamson, 1999].
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since CA holds, and Equiprobability is incompatible with CA in the de Finetti lottery, reject
Equiprobability.

Bartha sees two possible ways for avoiding the conclusion that we must adopt CA and
thereby drop Equiprobability. The first is to use non-standard probability measures. This
option has garnered much attention in recent years, and I will discuss it at length below.36

The second is simply to deny that we have a real-valued credence (or, in the context of a
Dutch Book, a fair betting quotient) for the proposition that some ticket ai wins. Namely,

The crucial point [...] is that we might lack betting quotients for these proposi-
tions taken in isolation. If we have no betting quotients for these propositions,
and hence no subjective probabilities, then countably additivity is inapplicable
rather than violated. This is not the bland observation that if there are no betting
quotients, there are no subjective probabilities at all. Rather, we shall see that it
is possible to define a type of betting quotient that is faithful to all the standard
axioms of the probability calculus except countable additivity ([Bartha, 2004],
307).

Many of the finer details of Bartha’s proposal are inessential for our purposes, so I will
briefly summarize his construction. In essence, he wishes to show that we can express
Equiprobability between two outcomes (and later two sets of outcomes; more on this below)
without appealing to the existence of a probability function to which CA applies. He starts
by defining a relative betting quotient for proposition B relative to A, written RBQ(B;A),
as k ∈ R+ such that a particular bet37 is subjectively fair. This is a generalization of a
special case in which A and B are assigned well-defined betting quotients p, q ∈ [0, 1]. In
this case, k is simply q/p, and yields a particular betting outcome. Bartha obtains the same
such outcome without postulating the existence of p, q. The key point is that, in doing so, we
have guaranteed that the relative betting quotient need not have an upper bound. Without
the existence of an upper bound, CA need not apply, as the series in question need not
converge.

Finally, from RBQ(B;A) alone we can define relative probabilities. Let R(B,A) be the
probability of B relative to A. Then, we can express Equiprobability as the condition that
R(B,A) = 1, and, by the above reasoning, we need not fear incompatibility with CA, which
will not be applicable in general.38 Finally, we can express the probability of B relative to the
entire outcome space X, written as R(B,X), which in turn induces a probability measure
PrR(B). With this set-up in hand, we can now describe the Label Invariance paradox.

36See [Bartha and Hitchcock, 1999], [Benci et al., 2013], [Wenmackers and Horsten, 2013],
[Easwaran, 2014], [Benci et al., 2018], and further references therein.

37See [Bartha, 2004], p. 308.
38Note that there are cases in which a version of CA for relative betting quotients will apply. For instance,

let RBQ(Bi;A) be defined for all i, let the Bi be exclusive, and let RBQ(B;A) be defined with B =
B1 ∨ B2 ∨ · · · . Then we will have

∑∞
i=1RBQ(Bi;A) = RBQ(B;A). If we let Bi be the event that “ticket

i wins” and A the event that “some ticket wins,” then we will encounter the same puzzle in the case when
each RBQ(Bi;A) = 0. However, Bartha’s analysis ensures that none of these RBQ(Bi;A) is defined since
any relative betting quotient is some positive real number k. The conceptual effect of this restriction is to
say that “...the proposition ‘ticket [i] wins’ and ‘some ticket wins’ are probabilistically incommensurable”
([Bartha, 2004], 310).
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4.3.2 The Label Invariance Paradox

This paradox threatens Bartha’s solution because it seems to show that assuming Equiprob-
ability over a countably infinite set, even when Equiprobability is defined using relative
probabilities, will lead to inconsistency. That is, the Label Invariance Paradox suggests that
Equiprobability is indeed the troublesome assumption and not CA. Somewhat surprisingly,
we shall see that another intuition could be the culprit.

Begin by labeling the elements of countably infinite set A as a1, a2, a3, . . .. Assume that
for any pair {ai, aj}, the (subjective) probability of choosing ai is equal to the (subjective)
probability of choosing aj, i.e., P (ai) = P (aj) for all i, j ∈ N. Once more, call this assumption
Equiprobability. Now assume that we have a well-defined relative probability function R. We
can then use this to generate an induced probability measure PrR for an event relative to the
entire outcome space. This allows us to express subjective probabilities for infinite subsets
of our countably infinite outcome space. In particular, Bartha claims we should have that

PrR(Even) = PrR(Odd) =
1

2
, (4.3.1)

where Even is the event that the selected ai has an even label and Odd is the event that the
selected ai has an odd label. I take it that Equation 4.3.1 has the status of a reasonable
intuition in Bartha’s discussion. One might argue for the intuition as follows. Since Even
(mutatis mutandis Odd) expresses that the selected ai belongs to a set consisting of every
other member in our original list, the event should have a relative betting quotient, and
hence relative probability, of 1/2 with respect to the full set of outcomes.39 Similarly, we
should have

PrR(One) = PrR(Two) = PrR(Three) = PrR(Four) =
1

4
(4.3.2)

where, for m = 0, 1, 2, 3, . . .,

One := {ai ∈ A : i = 4m+ 1} , Two := {ai ∈ A : i = 4m+ 2} ,
Three := {ai ∈ A : i = 4m+ 3} , Four := {ai ∈ A : i = 4m+ 4} .

As above, we understand, say, One, to be the event that the selected ai has a label of the form
i = 4m+ 1. The reasoning underlying Equation 4.3.2 is the same as that for Equation 4.3.1,
viz., One expresses that the selected ai belongs to a set consisting of every fourth member
in the original list. Thus, the event should have relative betting quotient, and hence relative
probability, of 1/4 with respect to the full set of outcomes.

Now a second crucial intuition enters the scene. Call Label Invariance the intuition that
the way in which we label the elements of A should not affect the probabilities of selecting
some ai from Even, Odd, One, etc. Let us then re-label the original list a1, a2, a3, . . . to
produce a new list b1, b2, b3, . . . according to the following rules:

• Rule I: ai=2m 7→ bi=4m

• Rule II: ai=4m+3 7→ bi=4m+2

39Bartha does not provide any reasoning for Equation 4.3.1.
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• Rule III: ai=4m+1 7→ bi=2m+1

Now let Odd− New be the event that the selected bi has an odd label and let Even− New
be the event that the selected bi has an even label.

By Label Invariance, the same reasoning as that given for Equation 4.3.1 should yield

PrR(Odd− New) = PrR(Even− New) =
1

2
. (4.3.3)

However, by Rule III, Odd− New represents that same subset of individuals as One, so we
should have

PrR(Odd− New) = PrR(One) =
1

4
. (4.3.4)

Contradiction.
Bartha claims that there are two key intuitions at work here: (i) Label Invariance and (ii)

Equiprobability; furthermore, he identifies Label Invariance as the problematic intuition, a
claim that I will make sense of in my own framework below. Despite our agreement here, I do
not think he teases out what is of fundamental philosophical interest: a conflict between our
infinitary intuitions and the information that must be carried by our theory of the infinite
in order to validate these intuitions. Let me make this more precise.

Begin first with Equiprobability. Bartha initially describes this intuition as: for tickets
ai, aj in our lottery with i, j ∈ N and P (ai), P (aj) real numbers representing the probability
of drawing ai or aj, respectively, we have P (ai) = P (aj) for all i, j. However, it is not quite
this intuition that plays a role in the Label Invariance paradox. Rather, it is the fact that
“...positing a relationship of equiprobability between sets of outcomes in a countably infinite
set leads to paradox” ([Bartha, 2004], 310; emphasis my own).40 The above construction of
relative probability functions and induced probability measures allows Bartha to describe
this relationship more precisely and yields claims like PrR(Odd) = PrR(Even) = 1/2.41

However, the relevant relationship between infinite subsets of A, in particular that be-
tween Even and Odd, is not a probabilistic one. It is, simply, the intuition that the even
numbers (resp. odds) comprise one-half of the natural numbers. Call this the Relative Size
Intuition.42 The Relative Size Intuition requires, first, that we take PW on board. This is
because, minimally, we want the size assignment for the evens to be strictly less than that
for the naturals, given that the evens are a proper subset of the naturals. It also appears
to require something like FR,43 since the intuition that the even numbers comprise one-half
of the naturals plausibly arises from the idea that every other natural number is even.44 In
what follows, it is sufficient to consider the weaker PW underlying the relative size intuition.
In sum, Bartha is not ultimately interested in Equiprobability, but rather the Relative Size
Intuition, which makes no essential appeal to anything involving probability.45

40Presumably, he would want to say “infinite sets of outcomes of equal cardinality.”
41Again, see my brief justification of this intuition above.
42Indeed, this is why Bartha uses relative probability functions and measures induced from these.
43Recall that the Frequency (FR) intuition says that if infinite sets A and B occur “equally often” in

an ambient set C, then A and B have the same size.
44Compare the reasoning behind Equation(s) 4.3.1 and 4.3.2.
45This is obscured by the fact that Bartha extends the “Equiprobability intuition for singletons” to some-
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Now let us turn to Label Invariance. Like Equiprobability (and, ultimately, the Rela-
tive Size Intuition), this is stated in terms of the probabilistic formalism, but I think this
inessential. All that we require is more fundamental information about infinite sets. There
are two ingredients to the infinitary Label Invariance assumption: (i) there are relabellings
of a countably infinite set A; (ii) these relabellings should not affect our probability assign-
ments. Note that (i) is just saying that there are permutations of A, viz., bijections from
A to itself. This is unobjectionable in many mathematical contexts.46 However, since the
only information these bijections carry is 1-1 correspondence between the elements of A, we
must immediately abandon component (ii) of Label Invariance. This is because the “proba-
bilities” mentioned in (ii), in the particular context we are treating, are supposed to reflect
part-whole relations between infinite subsets of A, codified by the Relative Size Intuition,
and this information is not preserved by Cantorian bijections.47 It is important to note that,
in this context, Label Invariance is a “mixed” intuition: it combines both CP and PW.
This need not be the case if the “probabilities” mentioned in (ii) are preserved under 1-1
correspondence; in such a situation, the labellings are indeed irrelevant.48 However, if fur-
ther information is desired, say, either PW or FR, then we are in trouble. Thus, since both
Label Invariance and the Relative Size Intuition can be interpreted in contexts which allow
for the mixing of different infinitary intuitions, expressed by PW and CP,49 contradictions
can arise. And this is because PW conflicts with CP on infinite sets. Thus, we should
conclude that the Label Invariance Paradox is not a “probabilistic” paradox at all. It simply
reflects our conflicting intuitions concerning how to measure the “size” of infinite sets. This
should be the diagnosis of the Label Invariance Paradox.

Now that we have our diagnosis, we can determine how to resolve the paradox. Clearly,
we should consistently apply only one infinitary intuition. Let us say that we wish to validate
PW. In order to do so, we should reject any sort of Label Invariance condition when we
wish to preserve information about the relative sizes of infinite sets of the same cardinality.
Consider a more general Label Invariance condition: (i′) there are relabellings of A; (ii′)
these should not affect our relative size assignments of infinite sets. Clearly, again, (i′) is
simply an existence condition that would be difficult to question. But if we wish to hold (i′)
and (ii′) together, then the relabellings in question cannot just be Cantorian bijections; they
must preserve the relative size assignments of infinite subsets of A. But Cantorian bijections
will not do this on infinite sets of the same cardinality.

The presentation of numerosities in terms of labelled sets provides another way of seeing
that Label Invariance must be rejected. Let us simplify Bartha’s discussion somewhat by
taking A = N (rather than some countably infinite set of arbitrary elements) and letting
Odd and Even be the sets of odd natural numbers and even natural numbers, respectively.50

thing like “Equiprobability for infinite subsets.”
46That is, excluding very weak mathematical contexts in which the existence of permutations of A might

fail.
47It is also worth noting that Label Invariance and the use of Cantorian cardinalities contradict Finite

Additivity (FA), one of Kolmogorov’s axioms for classical probability theory. See Appendix F. By Cantorian
cardinalities, Even, Odd, and N all have the same measure, and hence the same probability assignment.
However, it is also the case that N = Even ∪ Odd. Thus P (N) = P (Even ∪ Odd) 6= P (Even) + P (Odd).

48Clearly, this is the case where A is finite.
49And sometimes also FR.
50Rather than, as in Bartha’s paper, the sets comprised of ai ∈ A with odd and even labels, respectively.

142



Similarly, let One = {1, 5, 9, 13, . . .}. As in the Label Invariance paradox, select a bijection,
or “relabelling,” ϕ : One → Odd that takes 1 7→ 1, 5 7→ 3, 9 7→ 5, etc.51 This relabelling
plays the same role as Rule III in the Label Invariance paradox. Now consider One and Odd
as labelled sets, i.e., (One, `One) and (Odd, `Odd). Note that, since One ⊆ N0 and Odd ⊆ N0,
they are equipped with the canonical label, i.e., `One(n) = n for n ∈ One and `Odd(n) = n
for n ∈ Odd.52 From Definition 4.2.4 above, we saw that two labelled sets are isomorphic iff
there is a bijection preserving their labels. Further, if two labelled sets are non-isomorphic,
then their numerosities will differ.

We wish to see what happens when our relabelling ϕ interacts with `One and `Odd. That
is, we wish to know whether, for all a ∈ One, `Odd(ϕ(a)) = `One(a). Let a = 5. Then
ϕ(5) = 3 by the definition of ϕ. Now note that, by our canonical labelling, `Odd(3) = 3, but
`One(5) = 5. Thus,

`Odd(ϕ(5)) 6= `One(5). (4.3.5)

Thus, since our relabelling bijection ϕ does not preserve the canonical labels of (One, `One)
and (Odd, `Odd), we conclude that these sets are non-isomorphic under ϕ (by Definition
4.2.4). By Proposition 4.2.6, the associated counting functions for these sets will differ, and
by Proposition 4.2.9 and the definition of numerosity, n(One) 6= n(Odd). This disagreement
in numerosities is sufficient to block the paradox. This is because the contradiction derived
by Bartha, namely that we have both PrR(Odd− New) = 1/2 and PrR(Odd− New) =
PrR(One) = 1/4, ultimately derives from the fact that we collapse Odd− New into One.
But this is not validated by numerosity theory.

This provides us with an independent argument against the general Label Invariance
intuition that makes no appeal whatsoever to probabilistic notions. We initially arrived at
the rejection of Label Invariance by analyzing Bartha’s argument couched in probabilistic
formalism. However, we might have proceeded as follows: given some countably infinite
set A, we assume the general Label Invariance condition. We know that the Relative Size
Intuition requires that PW be satisfied. We then try to use our only theory of infinite
counting that satisfies PW, the theory of numerosities. Following one presentation of the
theory (in terms of labelled sets), we then see by the above reasoning that Label Invariance
cannot be maintained in general, and this is because arbitrary bijections need not preserve
the labels of labelled sets. Thus, we reject Label Invariance, and the paradox does not get
off the ground, prior to the introduction of anything having to do with probability.

We will discover that the Label Invariance intuition is something of a silent player in many
other so-called probabilistic paradoxes. It will cause difficulties below in both Williamson’s
infinite sequence of coin tosses and in Bertrand’s paradox. I believe its pervasiveness arises
from uncritical generalizations of finitary intuitions to the infinite case and from a reliance
upon CP.

I followed Bartha in choosing my bijection ϕ to match Rule III in his version of the
paradox. However, a natural thought immediately arises: perhaps we can construct bijections
satisfying further conditions that will preserve relative size assignments? This is more or less
Bartha’s solution (and also what is accomplished by using isomorphisms of labelled sets in

51We need only consider Odd here, not some relabelled set Odd− New.
52Consider Example 16.3 of [Benci and Nasso, 2019].
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numerosity theory); however, his solution simply bottoms out in favoring PW rather than
CP, and thus supports my analysis of the Label Invariance paradox as a paradox of infinity.

Bartha’s Solution

It is worth considering Bartha’s own solution to the paradox since it is structurally analogous
to what I have proposed. Let us see why.

My solution focused upon our background theory of infinite counting. In particular,
we saw that, if we use numerosities (or any possible theory vindicating PW) to retain the
possibility of validating the Relative Size Intuition, then we must reject Label Invariance.
On the other hand, Bartha’s solution focuses upon the background theory of “symmetries”
employed in probability theory. His idea is, first, to identify what kinds of symmetries are
“admissible” on our outcome space. He then uses these symmetries to validate Equiprobabil-
ity (and, ultimately, the Relative Size Intuition via relative probabilities) and rejects Label
Invariance. I find this approach somewhat less clean as it makes appeal to vexed notions
like “symmetry” and the Principle of Indifference. More to the point, it ultimately seems to
rely on favoring PW rather than CP and so reduces to my solution.

Bartha wishes to show that it is the Label Invariance intuition that causes issues. He
defines a “symmetry” as a bijection θ : X → X, where X is our outcome space, that “pre-
serves all features that bear on probability, [which] vary from case to case” ([Bartha, 2004],
p. 312). He then makes a distinction between “coherent” and “incoherent” symmetries via
the following condition:53

Definition 4.3.1 (Coherent/Regular Symmetries). A set Θ of symmetries on X is coherent
or regular if the following conditions hold:

1. Θ is a group under function composition.

2. There do not exist (i) a non-empty subset Y of X and (ii) m,n ∈ N with m > n such
that there are symmetries θ1, . . . , θm and ψ1, . . . , ψn in Θ satisfying

m⊔
i=1

θi(Y ) ⊆
n⋃
j=1

ψj(Y ), (4.3.6)

where θi(Y ) denotes the image of non-empty Y ⊂ X under symmetry θi (similarly, for
ψj(Y )).

The second condition might be called a “no collapse” condition in the sense that it rules
out placing m disjoint copies of Y inside n copies of Y with m > n. It can be shown that
such symmetries allow us to define the Equiprobability assumption and relative probabili-
ties rigorously.54 However, it is clear that the “symmetries” present in the Label Invariance
Paradox fail to be coherent. Indeed, this is because the Label Invariance assumption is equiv-
alent to claiming that any bijection on a countably infinite set is an admissible “symmetry.”

53I have edited the condition slightly for clarity.
54See the Appendix to [Bartha, 2004] and [Bartha and Johns, 2001] for details.
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However, not all relabellings/bijections satisfy the no collapse condition. Consider Y = Odd
and m = 2, n = 1. There exist relabellings

θ1 : Odd→ One (4.3.7)

θ2 : Odd→ Three (4.3.8)

such that

2⊔
i=1

θi(Odd) = ψ1(Odd) (4.3.9)

with ψ1 the trivial relabelling, i.e., we have One t Three = Odd. Hence, the no collapse
condition is violated. Thus, we reject the Label Invariance assumption and accept the
Equiprobability assumption via appeal to admissible symmetries on our outcome space.

It should be apparent that the no collapse condition proposed by Bartha just says that,
given an infinite subset Y of a countably infinite outcome space X, an admissible symmetry
cannot place Y in 1-1 correspondence with its proper subsets. But this is just a preference
for PW over CP. Thus, I think any proposed solution will ultimately bottom out in my
own in terms of infinitary intuitions.

4.3.3 God’s Lottery

Once we reject the Label Invariance assumption (at any level of generality), we have dissolved
the Label Invariance paradox. We are then left with the Relative Size Intuition, which Bartha
glosses as Equiprobability for infinite subsets of A; the original Equiprobability intuition for
singletons also remains. However, this returns us to the initial predicament discussed by
Bartha: we cannot describe a uniform probability distribution over a countably infinite set
using the axioms of Kolmogorov’s probability theory. We are still faced with the conflict
between Equiprobability and Countable Additivity. One possible way to deal with this
conflict would be the solution described by Bartha, that is, provide a formalism with which
to describe Equiprobability such that CA need not apply (but the rest of Kolmogorov’s
axioms do). The other possible way would be to use non-standard probability measures.55

I will now consider this approach by examining the recently developed Non-Archimedean
Probability (NAP) theory, which relies upon the theory of numerosities. In particular, NAP
theory can describe “God’s Lottery” and does so such that the probability assigned to an
event is directly proportional to the numerosity of the subset representing the event. God’s
Lottery is a version of de Finetti’s Lottery for objective probabilities (chance). This is made
clear at the outset of [McCall and Armstrong, 1989]:

[...] God’s lottery was different in that the winning number would be chosen from
the set of all positive integers. The winning number would, of course, be finite,
but no upper limit could be placed on the range from which it would be selected.

55NAP theory is a recent iteration of this much older idea, viz., that the domain, range, or both domain and
range of the probability function be non-Archimedean sets. See [Loeb, 1975], [Lewis, 1980], [Skyrms, 1980],
[Cutland, 1983], and [Nelson, 1987].
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In an entirely fair and purely random way, God would simply choose a number.
The fairness of the procedure would consist in the fact that the chance of any
given number being chosen would be the same as that of any other number (ibid.,
223).

Again, the exact same set of concerns about the “sizes” of infinite subsets of a countably
infinite set come into play here. This is unaffected by the distinction between credence
and chance. However, other considerations may differ depending on whether one considers
credence or chance. For instance, as we saw above, Bartha employs Dutch Book arguments,
which, I take it, are irrelevant to discussions of chance.56

I now describe how NAP theory can be used to describe God’s lottery and emphasize
the role that the sensitivity of numerosities plays in providing the solution. First, I show
how numerosity theory can validate the part-whole assumption that, e.g., the “size” of the
evens should be greater than that of the “size” of set Two above. Then, I show how this
relationship can be encoded by the NAP theory.

The Label Invariance paradox has made clear that an uncritical use of relabellings of
infinite sets will produce contradictions unless we are very clear about the information we
wish to be preserved under these relabellings. It is here that the “sensitivity” of numerosities,
so often assumed to be a disadvantage of the theory, can be turned into an advantage.
First, by examining the presentation of numerosity theory in terms of labelled sets (Type
1 sensitivity), we were able to produce an independent argument against Label Invariance
without making any appeal to probability. Second, by choosing our ultrafilter appropriately,
or, equivalently, which subsets Q ⊆ N are qualified57 (Type 2 sensitivity), we show that N
can be partitioned into k-many equinumerous sets for any k ∈ N and thereby validate our
intuitions about the relative sizes of these partitions (for various choices of k).

Indeed, consider again the size relations encoded by the Relative Size Intuition. That is,
we wish to say that Even comprises half of the natural numbers, Two comprises one-fourth
of the naturals, etc.58 Then, assuming Equiprobability for pairwise disjoint elements, we
get the intuitive probability assignments P (Even) = 1/2 > P (Two) = 1/4. Now consider
the following theorem (refer to Appendix E for discussion of the technical notions, e.g., the
Qualified Set Axiom, QSA):

Theorem 4.3.2. Assume (QSA)Q where Q = {m! : m ∈ N}. Then, for every k ∈ N, the
number α ∈ N∗ is a multiple of k and the numerosity of the set of multiples of k is

n({k, 2k, 3k, . . . , nk, . . .}) =
α

k
. (4.3.10)

From this theorem, we are able to consistently formulate the Relative Sizes Intuition
implicit in God’s Lottery and the Label Invariance paradox. Given the properties of n(·) we
have

n(Even) + n(Odd) = n(Even t Odd) = n(N) = α. (4.3.11)

56See [Hájek, 2009] for an illuminating discussion of Dutch Book arguments.
57See Appendix E for discussion of qualified sets.
58Going forward, I will use Even, Odd, etc. to denote the set of evens, the set of odds, etc. rather than

the event that an element of a countably infinite set A has an even label, odd label, etc.
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Applying Theorem 4.3.2 we conclude that n(Even) = n(Odd) = α/2. Furthermore, given
that sets One,Two, etc. are all multiples of four, we can conclude

n(One) = n(Two) = n(Three) = n(Four) =
α

4
. (4.3.12)

Finally, we conclude that

n(N) = α > n(Even) =
α

2
> n(Two) =

α

4
, (4.3.13)

thereby validating our intuitions about the relative sizes of infinite subsets of N.
Now let us see how these size assignments can be reflected by our NAP probability

assignments. I follow the presentation given in [Benci et al., 2013]. The key concept needed
for applying NAP to God’s Lottery is that of a Λ-limit.59 Defining this limit takes a bit
of work; refer to Appendix G for my discussion of the conceptual underpinnings of the
formalism.

Once the notion of a Λ-limit is in hand, one can validate the relative size assignments
of infinite subsets of N (given by numerosities) in NAP theory. We want the probability of
drawing an even number from N to be the same as that of drawing an odd number from N,
reflecting the Relative Size Intuition that precisely one-half of the naturals are even (resp.
odd). In NAP theory, we deal with triples (Ω, PN , J), where Ω is the outcome space of
elementary events, PN : P(Ω) → F∗ is the NAP probability function60 with F∗ a non-
Archimedean field, and J an algebra homomorphism. Using NAP theory, we can produce a
general result with PN(Even) = PN(Odd) as a special case. For any infinite set of k-tuples
of natural numbers, written as Nk, we have

PN(Nk) =
1

k
(4.3.14)

by choosing Λ = {m! : m ∈ N}. The main conceptual point here is that the Λ-limit, which
will itself provide the value of PN(Nk), the NAP probability assignment for Nk, depends
upon our choice of Λ. (Once more, the technical details are involved; see the discussion of
Axiom C.4 in Appendix G.) This choice of Λ as {m! : m ∈ N} is exactly as it should be, since
this is precisely the set that yields Theorem 4.3.2, and we wish our probability assignment
for event E ∈P(Ω) to be directly proportional to the numerosity of the subset representing

59Note that the Λ-limit is very similar to the alpha-limit discussed above and enjoys many of the same
properties. The (slight) differences are spelled out in Appendix G. See also Section 3.6 of [Benci et al., 2018]
for a discussion of the formal connections between numerosities and NAP theory.

60Distinguished from a Kolmogorov probability function by the N subscript.
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E. We may then explicitly compute:61

PN(Nk) =
limλn∈Λ |Nk ∩ {1, . . . ,m!} |

α
(4.3.15)

=
limλn∈Λ

[
n
k

]
α

(4.3.16)

=
limλn∈Λ

n
k

α
(4.3.17)

=
1

k
(4.3.18)

as desired. In particular, letting k = 2, we get N2 = Even and PN(Even) = 1
2
. Thus,

we are able to validate our basic intuitions about a fair lottery on N, i.e., the probabil-
ity of drawing an even number is precisely 1

2
, since the probability of drawing a natural

number is precisely one and we have made an appropriate choice for Λ. Similarly, writing
Nk,l = {k − l, 2k − l, . . . , nk − l, . . .} with l ∈ {0, . . . , k − 1}, we obtain Odd = N2,1 and find
PN(Odd) = 1

2
, as desired.

This solution has been effected by an appropriate choice of Λ. Of course, if we had chosen
Λ differently, we might have gotten a different probability assignment. However, as I noted
above, this non-uniqueness is something of an advantage. As long as we are able to get
clear on what probabilistic intuitions we wish to validate, we can use numerosities and NAP
theory to satisfy those intuitions given our choice of ultrafilter or Λ, respectively. Thus, the
sensitivity of these theories is in fact a powerful tool.

It might be interesting to see whether one could construct infinite subsets of the nat-
ural numbers that exhibit a more worrisome amount of indeterminacy. For instance, in
[Benci et al., 2013] it is shown that different choices for Λ will yield either PN(Even) = 1

2

or PN(Even) = 1
2
− 1

2α
. That is, a different choice of Λ will leave the standard part of

the probability fixed but induce infinitesimal differences. However, one might not be both-
ered by the infinitesimal differences. Perhaps, though, one could construct subsets whose
probability assignments differ with respect to their standard parts according to choice of
Λ. However, prima facie, my sense is that this project would be of limited philosophical
interest (though not necessarily mathematical interest). This is because we were interested
in using numerosities and NAP theory to capture basic intuitions we have about relatively
well-behaved subsets: evens, odds, multiples of k. When we pass to even slightly more
complicated subsets, e.g., arbitrary arithmetic progressions, it simply does not seem that we
have any fixed intuitions about the relative size of such subsets in N. It would seem that, in
this and related cases, we have no such intuitions that prompted our investigations of God’s
Lottery. Thus, if there is indeterminacy in computing probabilities for these sets, so be it.

61See [Benci et al., 2013], pp. 140-143 for full details. It is interesting that the intuition validated here is
not simply Part-Whole but rather a Density intuition. I will discuss this in other work.
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4.3.4 Williamson’s Infinite Sequence of Coin Tosses and Label Invariance

The Argument

Another case to which my analysis might be fruitfully applied is Williamson’s “infinite se-
quence of coin tosses” ([Williamson, 2007]). Here Williamson produces an argument for the
conclusion that infinitesimal probability assignments cannot save a “regularity” constraint
on our probability theory. Intuitively, regularity says that the probability of a possible event
should be strictly larger than the probability of an impossible event and that only necessary
truths should have probability 1 and necessary falsehoods probability 0. Classical probability
theory cannot accommodate regularity when we wish to deal with infinite (either countable
or uncountable) sets of possibilities. However, as we have seen with NAP theory, why not
then simply allow that our probability function take on infinitesimal values?

Against this, Williamson argues as follows. (I use his notation throughout.) Consider
a fair coin tossed infinitely many times at one second intervals. Let H(1 . . .) be the event
that every toss comes up heads and let H(2 . . .) be the event that “every toss after the first
comes up heads.” That is, H(1 . . .) may be written as H(1 . . .) := H(1) ∧ H(2 . . .), where
H(1) is the event that the first toss comes up heads. Let P (X) denote the probability of
event X and let the probability of X conditional on Y be given by the usual formula

P (X|Y ) =
P (X ∩ Y )

P (Y )
. (4.3.19)

Given these definitions and letting X = H(2 . . .) and Y = H(1), we can write:

P (H(1 . . .)) = P (H(1) ∧H(2 . . .)) = P (H(1)) · P (H(2 . . .)|H(1)). (4.3.20)

Because the toss is fair, we know that P (H(1)) = 1
2
. Furthermore, because the tosses

are independent of one another, the conditional probability P (H(2 . . .)|H(1)) is simply
P (H(2 . . .)). Substituting these equalities into Equation 4.3.20, we obtain:

P (H(1 . . .)) =
1

2
P (H(2 . . .)). (4.3.21)

However, Williamson goes on to argue that H(1 . . .) and H(2 . . .) are “isomorphic events”
and thus we should have P (H(1 . . .)) = P (H(2 . . .)). His defense of this isomorphism runs
as follows:

More precisely, we can map the constituent single-toss events of H(1 . . .) one-
one onto the constituent single-toss events of H(2 . . .) in a natural way that
preserves the physical structure of the set-up just by mapping each toss to its
successor. H(1 . . .) and H(2 . . .) are events of exactly the same qualitative type;
they differ only in the inconsequential respect that H(2 . . .) starts one second
after H(1 . . .). That H(2 . . .) is preceded by another toss is irrelevant, given the
independence of the tosses. Thus H(1 . . .) and H(2 . . .) should have the same
probability ([Williamson, 2007], 175).

Finally, we conclude that P (H(1 . . .)) = 1
2
P (H(2 . . .)) and P (H(1 . . .)) = P (H(2 . . .). These

149



equations can only hold simultaneously when P (H(1 . . .)), P (H(2 . . .)) are identically zero.
This is true whether we deal with infinitesimals or not. Thus, since H(1 . . .) is, intuitively,
a possible event, infinitesimals cannot preserve regularity.

My Analysis

I think many aspects of Williamson’s argument are severely underdetermined. The two
notions most in need of clarification are those of “event” and “isomorphism.” It may simply
be an unfortunate turn of phrase, but Williamson calls both the sequences of coin tosses
(i.e., both H(1 . . .) and H(2 . . .)) and the “constituent” single coin tosses “events.” This
produces confusion because it is unclear whether Williamson is taking “event” here in the
technical probabilistic sense or in the more mundane sense of a physical occurrence.

As described in Appendix F, a Kolmogorov probability space is a triple (Ω,F , P ). Ω is the
sample space consisting of “elementary events,” viz., singletons representing single outcomes
in Ω. The “events” of this probability space are measurable subsets of Ω and elements of
F . According to Williamson’s set-up and other mathematical models of infinite sequences
of coin tosses,62 our Kolmogorov probability space should be (Ω,F , P ) with Ω = {0, 1}N,
the set of countably infinite sequences of 0s and 1s, F the σ-algebra generated by “cylinder

sets,”63 and P : F → [0, 1] the unique probability measure that extends µ
(
C

(i1,...,in)
(t1,...,tn)

)
= 2−n

(guaranteed by the Carathéodory extension theorem). Considered in this way, clearly only
H(1 . . .) and H(2 . . .) are events. Furthermore, if we consider these events as unstructured
sets (as Williamson’s language of “one-one” correspondence would suggest; more on this
below), then these events cannot be isomorphic. In particular, since the outcome space is
Ω = {0, 1}N, as a subset of this outcome space, H(1 . . .) must be represented as a singleton
{s}, namely, the countably infinite sequence with all 1s. On the other hand, as we can see
from Williamson’s description, H(2 . . .) should not be a singleton. Indeed, he says that “[...]
H(2 . . .) is the event that every toss after the first comes up heads” ([Williamson, 2007],
175). This suggests that H(2 . . .) is a disjunctive event, since the first toss could be heads or
tails. This event is given by the pair {s, t} with s as above and t the sequence in which the
first term is 0, followed by all 1s. Thus, since obviously a singleton cannot be isomorphic to
a pair, Williamson’s argument falls apart.64

But perhaps Williamson intends “event” to mean “physical occurrence.” This is sug-
gested, first, by his talk of “preserving the physical structure of the set-up” and, second,
by the fact that he indiscriminately calls sequences of tosses and individual tosses “events.”
By the principle of charity, I think we should adopt this interpretation. Without it, we
must saddle Williamson with negligence concerning both the set-theoretic issue above and
his claims that there are “constituent events” (a single coin toss cannot be an “event” in
{0, 1}N). Under this interpretation, Williamson’s argument can get off the ground but, I
must admit, remains perplexing. For then it would appear the argument is really about

62See, for instance, [Benci et al., 2013] and [Benci et al., 2015].
63A cylinder set of codimension n is constructed using an n-tuple of indices (i1, . . . , in) and an n-tuple

of elements in {0, 1}, viz., (t1, . . . , tn), where each tj is either 0 or 1. We then define a cylinder set of

codimension n to be C
(i1,...,in)
(t1,...,tn)

=
{
ω ∈ Ω : ωij = tj

}
. This represents the event that for every j = 1, . . . , n,

the ijth coin toss yields tj as outcome.
64This same criticism can be found in [Howson, 2017], which I encountered after writing this.
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what makes physical occurrences “qualitatively identical” rather than anything about our
constraints on probability theory. Of course, these topics cannot be cleanly separated, but
this would constitute, what seems to me, a shift of focus. This is because Williamson is
ultimately concerned with a formal property of a mathematical theory of probability (regu-
larity). It is true that he uses an example that admits of a physical description to establish
his point; however, to my mind, the example is idealized to such an extent that it renders
questions about the nature of physical events irrelevant. In any case, for an interesting
discussion of Williamson’s argument in terms of qualitative differences between physical
events, see [Parker, 2021]; however, I find it hard to see that the disambiguation required
for Williamson’s argument comes from “[...] Special Relativity so that there is no absolute
inclusion relation between times.” This seems an ad hoc patch and rather far afield from
where we started.

Before we attempt to find a more satisfying interpretation of Williamson’s argument, we
must get clearer on what he means by “isomorphism.” For without the premiss that H(1 . . .)
and H(2 . . .) are isomorphic in some sense, his argument fails to go through. Unfortunately,
the premise is a weak one because there is no univocal meaning of “isomorphism,” and
Williamson does not elaborate on this notion. Thus, we must specify further the kind of
structure we wish to preserve under the isomorphism in question. This is a familiar notion
in mathematics: we must specify the category in which an isomorphism holds (e.g., Sets,
Topological Spaces, Differentiable Manifolds, whatever). Even internal to the category of
sets, we can impose additional structure to be preserved. This is what we witness in the
theory of numerosities: we wished to preserve PW and so needed an isomorphism of labelled
sets, not unstructured sets.

With these distinctions in hand, we can assess possible interpretations of the experiment.
One possibility would be to assume Williamson really is just interested in the physics and
metaphysics of events and how these topics relate to probability. In this case, the “isomor-
phism” in question would not be a mathematical notion at all.65 Another possibility would
be to assume Williamson is strictly interested in the formalism of probability theory. How-
ever, in this case, the isomorphism in question must be a 1-1 mapping, and no such mapping
exists between singletons and pairs. An intermediate interpretation between these extremes
is, I think, preferable.

Let us assume that Williamson intends “event” to mean “physical occurrence.” However,
this need not imply that his “isomorphism” has much to do with physical events at all.
Williamson justifies the “isomorphism” betweenH(1 . . .) andH(2 . . .) by noting that “[...] we
can map the constituent single-toss events of H(1 . . .) one-one onto the constituent single-toss
events of H(2 . . .) in a natural way that preserves the physical structure of the set-up...” That
is, the desired isomorphism comes from the one-one correspondence between the individual
tosses {H(1), H(2), H(3), . . .} comprising the sequence H(1 . . .) and the individual tosses
{H(2), H(3), H(4), . . .} comprising the sequence H(2 . . .). This is a cogent isomorphism
between infinite sets. But why think this preserves physical structure? On this point,
Williamson is silent, but perhaps he is thinking as follows. First, the isomorphism in question
maps each constituent toss in H(1 . . .) to its temporal successor in H(2 . . .). This only
changes the temporal index of each toss in H(1 . . .). That is, we have merely “relabelled”

65See both [Parker, 2019] and [Parker, 2021] for attempts to make sense of this.
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as above in the Label Invariance paradox, and so, according to Williamson, everything
should remain the same, including probabilities. Furthermore, the way Williamson has set
up the experiment guarantees that all other qualitative physical properties and relations are
preserved (the coin tosses are from the same fair coin, the time intervals are exactly the
same, etc.). Thus, the claim that H(1 . . .) and H(2 . . .) are isomorphic events (in the sense
of physically occurring sequences of tosses) is undergirded by a preference for CP, a Label
Invariance intuition, and the stipulations of the experiment.66

By why prefer CP in the first place? This question leads us to an earlier, important
criticism of Williamson by Weintraub ([Weintraub, 2008]). She argues that, since we should
construe H(2 . . .) as a subsequence of H(1 . . .), Williamson’s “isomorphism” fails to preserve
physical characteristics of the situation. Indeed, she says,

Williamson’s example shows that isomorphism doesn’t preserve all basic physical
properties. He claims that the two ‘sequences of events67 are of exactly the same
qualitative type’ [...] But although all the physical properties of the constituent
events are preserved by the mapping, as are the temporal intervals between
adjacent tosses, there is a global property (of the complex event) which is not
preserved. The second sequence is a proper subset of the first (ibid., p. 249).

Again, we must be careful here as it is not at all clear that Williamson intends H(2 . . .) to
be a proper subset of H(1 . . .).68 Nonetheless, Weintraub’s concerns clearly do apply to the
second iteration of the experiment in which there are two coins and two sequences running
in parallel ([Williamson, 2007], pp. 175-6; discussed below), so the point is well taken.

What is puzzling here is the fact that Williamson validates CP in order to preserve
the physical features of each sequence of flips. Both H(1 . . .) and H(2 . . .) are temporal
sequences. Then, assuming that time is infinite (which we must do anyway to make sense of
the experiment), we see that there are more constituent tosses in H(1 . . .) than in H(2 . . .).
H(1 . . .) will take more time to complete given that it starts one second earlier. This is
a relevant physical difference as Weintraub notes; however, I believe the Label Invariance
intuition blinds him to this fact, and not mere prejudice for CP.

The root of the problem, then, is a conflict between mathematical and physical intuitions,
rather than obvious technical errors or some preference for an unarticulated metaphysics of
events. Put differently, this conflict is, once more, that between the coarseness of CP as
criterion for measuring infinite sets (in this case used to produce an isomorphism) and the
information about the sets we wish to retain. Williamson immediately proposes that we use
CP to define an isomorphism between H(1 . . .) and H(2 . . .) via 1-1 correlating their “con-
stituent” coin tosses. But he also has the intuition that relabellings are “inconsequential.”

66It is reasonable to think that a more straightforward interpretation might be better here. Namely, we
should think that it is the qualitative identity of the constituent tosses alone that supports the isomorphism
claim. I was not satisfied with this interpretation because of Weintraub’s criticism. It seems quite clear
that the change in temporal index constitutes some sort of qualitative physical difference. So, the question
becomes: why does Williamson think this difference is not relevant? The Label Invariance intuition is
supposed to provide an answer to this question.

67Again, there is an infelicity here. We have sequences of tosses but not sequences of events in the
probabilistic sense. This is further support for the claim that Williamson is interested in physical events.

68For example, if we interpret “event” probabilistically, the opposite claim is now true: H(1 . . .) = {s} is
a proper subset of H(2 . . .) = {s, t}
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This intuition derives from the fact that, when measuring the size of unstructured sets using
CP, the labels are indeed irrelevant. However, as we have seen, if you wish your measure
of the relative sizes of infinite sets to be reflected in your probability assignments, the rela-
bellings will matter. Furthermore, in this case the relabellings have a determinate physical
meaning: they are the time indices for each individual coin toss. And this is a physical
difference between the events in question. Thus, Williamson should jettison his background
Cantorian framework in order to preserve physical characteristics of the toss sequences. But
then, since, suitably construed, H(2 . . .) is a proper subset of H(1 . . .), we will no longer
have an “isomorphism” of these events, and thus P (H(1 . . .)) 6= P (H(2 . . .)).69 Therefore,
Williamson’s argument fails.

Dispensing with the Notion of Isomorphism

Once we settle on what is meant by “event,” the issue with Williamson’s argument lies with
his choice of isomorphism and his background theory of infinity determining the kind of
isomorphism we wish to use. Again, from elementary probability, he shows that

P (H(1 . . .)) =
1

2
P (H(2 . . .)). (4.3.22)

Then, from his claim thatH(1 . . .) andH(2 . . .) are “isomorphic” in some sense that preserves
the physical situation, he shows that P (H(1 . . .)) = P (H(2 . . .)). As we have seen, this notion
of isomorphism is fraught with difficulties. Is there then a way to show that P (H(1 . . .)) =
P (H(2 . . .)) without appealing to such an “isomorphism”? It would seem a stock example
from the theory of measure-preserving systems can help.70

Define measure µ on {0, 1} as

µ({0}) = µ({1}) =
1

2
. (4.3.23)

Now consider our outcome space Ω = {0, 1}N equipped with the infinite product measure

µ∞ =
∏
N

µ. (4.3.24)

Since Ω is a compact metric space, our σ-algebra F is the Borel σ-algebra. We then have
a probability space (Ω,F , µ∞) that serves as a reasonable representation of Williamson’s
experiment. Now let T : Ω→ Ω be a left shift map defined by

T (x1, x2, . . .) = (x2, x3, . . .). (4.3.25)

This seems an adequate representation of Williamson’s “relabelling” of temporal indices.
Then (Ω,F , µ∞, T ) is a Bernoulli system. It is well-known that Bernoulli systems are

69See pp. 147ff. of [Benci et al., 2013] for the details of how to actually assign such probabilities using
NAP theory.

70For the details of this example, see the excellent text [Einsiedler and Ward, 2011], especially Chapter 2
and Appendix A.2.
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measure-preserving systems, viz., for any event E ∈ F we have µ(T−1E) = µ(E). Hence,
assuming (Ω,F , µ∞, T ) represents what Williamson is after, applying T to “shift” the tem-
poral indices of our events will not affect the probabilities of H(1 . . .) and H(2 . . .). Thus,
we are able to get the desired premise P (H(1 . . .)) = P (H(2 . . .)) without appealing to any
notion of isomorphism.

Though not our concern here, this still does not save his argument. And this is because,
if we allow our measure to take hyperreal values, the standard parts of P (H(1 . . .)) and
P (H(2 . . .)) will agree, but the non-standard parts need not. Thus, this premise does not
hold, and thus Williamson cannot derive his desired conclusion.

Embedding Events in the Outcome Space

The analysis of Williamson’s argument given in [Benci et al., 2018] suggests that there is yet
a third ambiguity present. In particular, the authors claim that Williamson has failed to
provide a well-defined sample space for his experiment:

[...] the assignment of probabilities does not make sense in the absence of a
well-defined sample space that is applied in a consistent way. In the case of
Williamson’s argument, a crucial aspect of fixing the sample space is an answer
to the question, ‘When does the count of events start?’ (ibid., 529).

At times, the authors misleadingly say that the “sample space has changed.” We must
understand this in the following way: all the “models” provided in [Benci et al., 2018] use the
same set as the sample space. (In their countable case, Ω = N, and in their uncountable case,
Ω = {0, 1}N.) However, the subsets of these sample spaces, to which we assign probabilities,
are understood differently. In particular, there is, “[...] a different correspondence between
sets in the event space and the situations in the (hypothetical) world” (ibid., 528). This
can be seen by considering the “relabelling” of the time indices of the sequences of tosses.
The authors insist, though, that “it is not the labelling itself that is essential, but rather the
choice of sample space and the embedding of events therein” (ibid., 527).

I believe that the authors are picking up on an important issue, one that will take center-
stage when we turn to Bertrand’s paradox. However, I do not think it is playing much
of a role in Williamson’s argument. First, I do think the relabelling is important; or, at
least, the intuition that relabelling elements of events should not affect our understanding
of the events in any significant way (Label Invariance) is important. As we have seen,
CP and Label Invariance underlie Williamson’s argument for the “isomorphism” between
H(1 . . .) and H(2 . . .). Second, it is implausible that Williamson is making the mistake of
applying the sample space inconsistently, for in his second version of the experiment he seems
to distinguish the so-called “different models” of the situation. Let us examine this more
carefully.

Benci et. al. begin by describing two “situations” independent of probabilistic formalism.
In Situation T1, a fair coin is tossed on all of a countably infinite collection of occasions,
whereas, in Situation T2, a fair coin is tossed on all but the first of a countably infinite
collection of occasions.71 Evidently, Situation T1 is supposed to describe H(1 . . .) and Sit-

71Once more, it is not clear that this is how Williamson is understanding the event H(2 . . .), but I’ll let
the gloss of [Benci et al., 2018] stand for the purposes of argument.
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uation T2 is supposed to describe H(2 . . .). They then introduce two different “models” in
which we might try to formalize these situations. Model A deals with the NAP probability
space (ΩA = {0, 1}N ,P(ΩA), PN). Model B deals with the exact same NAP probability
space, except that, “[...] this set [the sample space] is now used in a different way, namely, to
reflect that the count of events starts at the first toss of H(2 . . .)” (ibid., 529). The point is,
then, that in order to obtain P (H(1 . . .)) = P (H(2 . . .)), Williamson exploits the intuition
that PA(H(1 . . .)) = PB(H(2 . . .)). This amounts to comparing probabilities across different
models in which the sample space is interpreted differently. And, as the authors point out,
the NAP probability functions depend very delicately upon the sample space and how events
are “embedded” in the sample space. As such, we cannot derive P (H(1 . . .)) = P (H(2 . . .))
from PA(H(1 . . .)) = PB(H(2 . . .)), and so Williamson’s argument against infinitesimals does
not succeed.

This is an interesting idea, but it suffers from a few issues. First, it would seem that the
Bernoulli system provides a univocal model of Williamson’s experiment. Still, Benci et. al.
could object to the use of this model in the following way. NAP probability assignments
reflect the ratio between the numerosity of an event E and the numerosity of all cases, pro-
vided that all cases are equiprobable. However, Parker has shown that numerosities (and,
he claims, any theory of infinite counting satisfying PW) are not translation/shift invariant
([Parker, 2013]). And so, though Bernoulli systems are measure-preserving systems, they
have been formulated in a classical Cantorian framework that does not preserve NAP prob-
ability assignments. Williamson could concede this point, but then appeal to a recent paper
in which a non-Archimedean probability space is constructed that models infinite sequences
of coin tosses ([Benci et al., 2015]). This model does preserve the relevant probability as-
signments, viz., the probability of event E is the ratio between the numerosity of E and
the numerosity of the sample space. Furthermore, it is shown that the standard part of the
NAP probability assignment for any E agrees with the usual measure-theoretic probability
assignment. Thus, Williamson does have a univocal model available for his analysis.72

Second, in another iteration of his experiment, Williamson does distinguish what Benci
et. al. call Models A and B. He says,

[...] [S]uppose that another fair coin, qualitatively identical with the first, will also
be tossed infinitely many times at one second intervals, starting at the same time
as the second toss of the first coin, all tosses being independent. Let H∗(1 . . .) be
the event that every toss of the second coin comes up heads, and H∗(2 . . .) the
event that every toss after the first of the second coin comes up heads. [...] These
two infinite sequences of tosses proceed in parallel, synchronically, and there is
no qualitative difference between the coins ([Williamson, 2007], 175).

Diagrammatically, with Ti being the toss with time index i, the entire experiment is
given by the following arrays. The first array represents the first coin and the second array

72For the original discussion of the relationship between numerosities and measures, see [Benci et al., 2014].
See Mancosu’s forthcoming book, The Wilderness of Infinity: Robert Grosseteste, William of Auvergne and
mathematical infinity in the thirteenth century, for an application of these ideas to mathematico-philosophical
claims about the infinite from the 13th century.

155



represents the second coin:

T1 T2 T3 T4 · · ·
1 1 1 1 · · · (Event H(1 . . .))

1 1 1 · · · (Event H(2 . . .))

T1 T2 T3 · · ·
1 1 1 · · · (Event H∗(1 . . .))

1 1 · · · (Event H∗(2 . . .))

(4.3.26)

Once more, Williamson is trying to derive P (H(1 . . .)) = P (H(2 . . .)) using an isomor-
phism claim. He argues as follows: H(1 . . .) and H∗(1 . . .) are isomorphic events via 1-1
correspondence (implicit premise; preference for CP). Then P (H(1 . . .)) = P (H∗(1 . . .))
because “the probability that a coin comes up heads on every toss does not depend on
when one starts tossing [...]” (Label Invariance) and the coins are qualitatively identical.
By the same argument, H∗(1 . . .) and H(2 . . .) are isomorphic (implicit premise) and thus
P (H∗(1 . . .)) = P (H(2 . . .)). Thus, by transitivity P (H(1 . . .)) = P (H(2 . . .)), and the argu-
ment is off and running.

Evidently, the array describing the first coin is the author’s Model A and the array de-
scribing the second coin is their Model B. In particular, PA(H(1 . . .)) = P (H(1 . . .)) and
PB(H(2 . . .)) = P (H∗(1 . . .)). Williamson has, however, made the appropriate distinctions,
and so is not conflating different models of the experiment. Rather, as we saw, he ob-
tains P (H(1 . . .)) = P (H∗(1 . . .)) (Benci et. al. ’s PA(H(1 . . .)) = PB(H(2 . . .))) using the
same isomorphism claim (and underlying intuitions of CP and Label Invariance) as in the
first iteration of the experiment. Thus, once more, the crucial thing to understand is the
isomorphism and the information it preserves.

In sum, the analysis given in [Benci et al., 2018] is not an appropriate way to understand
Williamson’s argument and its endemic problems. Nonetheless, I think their discussion is
extremely useful in its emphasis on the fact that different representations of probabilistic
situations and different interpretations of the very same formalism may disagree in subtle
ways. This idea will feature significantly below.

4.4 Bertrand’s Paradox

4.4.1 Introduction

Bertrand’s paradox, originally proposed by J. Bertrand in [Bertrand, 1889], has been a cen-
tral concern in discussions of classical probability theory and the Principle of Indifference.73

It has received—and continues to receive—a great deal of attention from philosophers, math-
ematicians, and physicists alike.74 Nonetheless, I believe that all extant descriptions of (and

73In essence, the Principle says that the possibilities of which we have equal ignorance should be assigned
equal probabilities.

74See, for instance, [Keynes, 1921], [Jaynes, 1973], [Marinoff, 1994], [Shackel, 2007], [Bangu, 2010],
[Rowbottom, 2013], [Klyve, 2013], [Aerts and de Bianchi, 2014], [Gyenis and Rédei, 2015], [Rizza, 2018],
[Shackel and Rowbottom, 2020].
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proposed solutions to) the paradox fail to recognize the issues that constitute its heart. It
is, in its original formulation at least, a paradox of infinity produced by a conflict between
our techniques for measuring the infinite and the properties we wish to preserve when doing
so. In particular, an uncritical reliance upon CP helps to produce the paradox. Indeed,
it remains so thorny and contested precisely because the underlying foundational context
has remained unexamined. Analyses and resolutions have been given in terms of very inge-
nious constructions internal to measure-theoretic probability theory.75 However, for all their
ingenuity, these miss the point entirely.

I aim to show that Bertrand’s paradox is generated by the fact that the relative sizes of
infinite sets are not preserved under bijections and thus by a genuine conflict between PW
and CP. In particular, the relative size of S ⊂ X, e.g., “S is precisely one-fourth the ‘size’ of
X,” depends crucially upon (i) how X and S are represented and (ii) our ambient measure
of infinity. And this has nothing to do with probability theory per se. Furthermore, in light
of the conflict between PW and CP, Bertrand’s paradox is a genuine paradox, contrary to
many recent analyses.

I begin by examining Bertrand’s original text because this helps to make clear the central
role of infinitary considerations at its essence. I will then provide a more streamlined, quasi-
formal description of the paradox and demonstrate how our concerns with representation and
infinity appear. Finally, I compare my findings with some recent analyses of the paradox
that I find particularly insightful ([Gyenis and Rédei, 2015] and [Rizza, 2018]). I believe that
there are a number of interesting points of agreement; however, the authors often complicate
their analyses unnecessarily with their emphasis upon the details of classical probability
theory and erroneously claim that there is no real paradox present.

4.4.2 Bertrand’s Question and Three Procedures

Bertrand’s original formulation of the paradox is geometric in nature. This is the formulation
that I will follow throughout the paper; however, it is important to note that other statements
have been given in quite different dress.76 It would be interesting to see to what extent my
analysis could be applied to these, but I will set this aside for future work.

Bertrand begins with a preliminary section on the infinite that is worth quoting:77

A remark is now necessary: the infinite is not a number; we must not, without
explanation, introduce it into our reasoning. The illusory precision of words can
produce contradictions. To choose at random from an infinite number of possible
cases is not a sufficient indication of what to do ([Bertrand, 1889], §4).

After presenting a simple number-theoretic paradox, Bertrand says, with tongue-in-cheek,
“Contradictions of this sort can be multiplied ad infinitum.” These remarks are interesting
because they indicate that Bertrand himself quite clearly conceived of the central issue being
the indeterminate nature of the infinite and not anything about the nature of probability.

75[Jaynes, 1973] and [Marinoff, 1994] are perhaps the best known possible resolutions. [Shackel, 2007] and
[Gyenis and Rédei, 2015] are more recent discussions in this vein.

76See, for example, the “Water and Wine” paradox in [von Mises, 1957] and the “Cube Factory” in
[van Fraassen, 1989]. See [Mikkelson, 2004] for a proposed resolution of the former.

77All translations are my own from the French of [Bertrand, 1889]. See Appendix H.
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Bertrand’s discussion of the eponymous paradox starts by introducing a seemingly well-
formed question:

One draws, at random, a chord in a circle. What is the probability that [the chord]
is shorter than the side of an inscribed equilateral triangle? ([Bertrand, 1889],
§5)

He then provides three procedures by which the probabilities might be found. Unfortunately,
each procedure generates a distinct value, only one of which, it seems, can be correct. Since
the procedures actually focus on chords longer than the sides of the inscribed triangle,78 I
adopt the traditional terminology and call “Bertrand’s question” the following: What is the
probability that the chord is longer than the side of an inscribed equilateral triangle? In order
to answer this question, note that there is only one equilateral triangle (up to rotations) that
can be inscribed in a circle of radius r. By elementary geometry, the length of each side of
the triangle is precisely

√
3r. Here, then, are modernized, though quite faithful, versions of

Bertrand’s three procedures:79

Procedure I: Label a point A on the circumference of the circle. Inscribe an equilateral
triangle with one of its vertices at A and others at B and C. Fix A as an endpoint of the
chords we will construct. Any such chord is then completely determined by the specification
of its other endpoint and thus by the specification of the angle θ formed between the line
tangent to A and the chord itself. Since each angle of an equilateral triangle is 60◦, a
chord AP will be longer than a side of ∆ABC iff 60◦ < θ < 120◦. Since θ can take
values in (0◦, 180◦),80 one-third of all possible angles will produce a chord AP (one possible
construction drawn below) with length greater than

√
3r. Thus, the probability of drawing

a chord longer than the side of an inscribed equilateral triangle is precisely 1
3
.

A

B C

P

Procedure II: Let chord AP be given. Let BC be the diameter of the circle perpendicular
to AP . This diameter is composed of two radii BO and OC of length r with the O the
center of the circle. Now consider the length of QO, written as `(QO), with Q the point

78Bertrand obviously required that we perform a final step in subtracting the probability of drawing a
longer chord from unity to obtain the probability of drawing either a shorter chord or a chord of equal length.
Given this set-up, we would then also have to compute the probability of selecting a chord at random that
is precisely equal to the side of the inscribed equilateral triangle.

79Again, the reader is invited to compare with my translation in Appendix H.
80I exclude the endpoints because θ = 0◦, 180◦ would produce tangents, not chords.
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of intersection of AP and BO (w.l.o.g. OC). If 0 ≤ `(QO) < r
2
, then AP is longer than

the side of an inscribed equilateral triangle.81 Finally, since QO can take values in [0, r), we
see that the above range comprises precisely half the possibilities. Thus, the probability of
drawing a chord longer than

√
3r is precisely 1

2
.

B

C

O
A Q P

Procedure III: As in Procedure II, we note that an arbitrarily selected chord AP will have
length greater than

√
3r iff the distance from O to its midpoint Q is less than r

2
. We now

think about what this means in terms of areas of concentric circles. A smaller circle of radius
r
2

(shaded in teal below) will have area πr2

4
, which is 1

4
the area of the original circle of radius

r. Any point inside the circle will be the midpoint of some chord, and our desired chords, by
the above reasoning, will have midpoints inside the circle of radius r

2
. Thus, the probability

of drawing a chord longer than
√

3r is precisely the ratio of the area of the smaller circle to
the area of the original, i.e., 1

4
.

B

C

O
A Q P

After presenting these procedures, Bertrand suggests that none of the putative answers
is either correct or incorrect but rather that the “question is ill-posed.” This response can
be read, especially in light of his remarks in §4, as a preference for finitism. This reading is
supported by the description of §4 in the table of contents: “The number of cases cannot be
infinite. Contradiction resulting from forgetting this condition” (Le nombre des cas ne doit

81This is shown as follows. Inscribe equilateral triangle ∆XY Z in a circle of radius r with center O. The

sides of this triangle have length
√

3r. Let M be the midpoint of side XY . Then the length of MY is
√
3
2 r.

We also know that the length of OY is r, and so the length of OM is r
2 . Now construct a radius OR through

M . Let our chord AP intersect OR at Q. We then see that AP will be longer than
√

3r provided thar
0 ≤ `(QO) < r

2 .
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pas être infini. Contradiction résultant de l’oubli de cette condition). Thus, Bertrand’s pre-
ferred response to his paradox is a probabilistic finitism: in order for probability assignments
to be well-defined, the number of cases must be finite. The draw of probabilistic finitism
did not lose its luster in the subsequent century. As noted above, de Finetti proposed that
Kolmogorov’s postulate of Countable Additivity be rejected in favor of Finite Additivity.82

This latter connection to Bertrand has obviously been noted83 but has served to obscure the
significance of Bertrand’s paradox as a paradox of infinity and not expressly of probability.

In any case, though perfectly coherent, finitism is a restrictive position and should only
be accepted as a last resort. I believe my analysis can make good sense of the paradox
without dispensing with the use of infinitary resources.

4.4.3 My Analysis

I will first provide a quasi-formal framework in which all three procedures can be described.
This will help to make the discussion more uniform. Let X be the set of all chords that can be
drawn in a circle C of radius r. This set is uncountably infinite. Let S be the proper subset
of X that has chords longer than

√
3r as its elements. Given this information, what Bertrand

in effect does is produce three different representations of S and X, with each representation
corresponding to the procedures described above. Intuitively, each representation should be
constituted by an ambient representation space, a bijection from X to this representation
space, and the image of S under the bijection. Unfortunately, as we will see, there are a
number of complications that arise for each representation. In particular, for each case, we
only obtain a bijection by imposing further conditions on the representations, some of which
are quite ad hoc. I will note these in turn.
Representation I: Let our ambient representation space be given by

R1 := {the set of angles in the interval (0◦, 180◦)} . (4.4.1)

Let our bijection be ϕ1 : X → R1 and let ϕ1(S) ⊂ R1, the image of S under ϕ1, be the set
of angles taking values in (60◦, 120◦). The size of ϕ1(S) should be one-third the size of R1.

Remark 4.4.1. Unfortunately, this cannot be quite right. By selecting a point A as the
endpoint of the chords to be chosen, we have implicitly restricted our attention to a proper
subset of X. We have, in fact, produced a partition of X :=

⋃
t Pt with each part determined

by parameter t ∈ [0, 2πr). Given a choice of endpoint A, we then deal with only one of the
parts. Thus, we have a family of bijections {ϕt1} : Pt ⊂ X → R1, not simply ϕ1 : X → R1.84

Even worse, this partition will only be well-defined if we exclude diameters. Consider a
diameter with A as one of its endpoints. Let this be in partition Ps. Now apply ρ, where ρ
is a 180◦ rotation. When dealing with a chord that is not a diameter, this ρ will produce a
new chord. However, in the case of our diameter with endpoint A, when we apply ρ we will
double-count this diameter, assigning it to both Ps and some distinct Pq.

82See, again, [de Finetti, 1974].
83See [Shackel, 2007], p. 156.
84See Section 4.4.3 below for a discussion of whether this poses problems for Bertrand.
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Representation II: Let our ambient representation space be given by

R2 := {the set of lengths in the interval [0, r)} . (4.4.2)

Let our bijection be ϕ2 : X → R2. Finally, let ϕ2(S) ⊂ R2 be the image of S under ϕ2,
which is given by the set of lengths in [0, r

2

)
. By the reasoning in Procedure II, the “size” of

ϕ2(S) should be one-half the size of R2.

Remark 4.4.2. As above, there is a further complication. Bertrand has again produced
a partition of X, where each Pt is determined by the initial chord drawn and the radius
perpendicular to it. Two chords will lie in the same partition iff they are parallel and their
midpoints lie on the same radius. Thus, we really have a family of bijections {ϕt2} from
Pt ⊂ X → R2.

Representation III: Let our ambient representation space be given by85

R3 := {the set of interior points of the circle of radius r} . (4.4.3)

Let our bijection be ϕ3 : X → R3. Finally, let ϕ3(S) ⊂ R3 be the set of points in the interior
of the circle centered at O with radius r

2
. By the reasoning in Procedure III, the “size” of

ϕ3(S) should be one-fourth the size of R3.

Remark 4.4.3. Unfortunately, as in Representation I, we have an issue with the diameters.
In particular, though any point inside the circle besides the center O is the midpoint of a
unique chord, O serves as the midpoint for uncountably many chords (the diameters). Thus,
ϕ3 will only be a bijection if we exclude the center O as a midpoint of a chord.86

Parts, Wholes, and Symmetry

Thus, we see that a careful analysis of the paradox is rather more complicated than many
commentators have realized. In particular, a common theme that emerges from my remarks
is that, even before we pass to the representation spaces, Bertrand deals not with X directly
but rather with a proper subset of X. In Representations I and II, we deal with a part
Ps of one of the partitions, and in Representation III we deal with the subset of X that
excludes O as a midpoint determining a chord.87 Bertrand proceeds to write down bijections
between these subsets and the representation spaces. But why think that representing these
subsets of X via one of the Ri will yield the relative size information we desire, viz., the
relative size of S in X? Some commentators have argued that there is no issue here precisely
because the sets we consider are all (uncountably) infinite. Jaynes, for instance, suggests
that considering just one set of possible chords (e.g., one of the partitions in Procedure I) is
sufficient to produce the same answer as would have been produced had we considered the
entire set of chords. This is problematic. While it is true that a 1-1 correspondence between

85I take it that we would exclude the points on the circumference of the circle from being midpoints of
chords since a “chord” in this case would just be a point.

86This is noted in [Shackel, 2007].
87This is noted by [Shackel, 2007] (pp. 156ff.) and [Rowbottom, 2013].
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infinite sets is a necessary condition on the adequacy of our representation spaces, it cannot
be sufficient.

In order to infer the relative size of S in X by restricting our analyses to those proper
subsets of X mentioned above, we would have to show that each subset is representative of
or “essentially the same as” the entire set of chords. Perhaps this is so in light of the fact
that the partitions in Representations I and II will form a group under the symmetries of the
circle. For instance, we can produce distinct parts Ps and Pq in Representation II by rotating
an initially given chord (an element of Ps) by angle θ and then constructing the diameter
perpendicular to this rotated chord. Then, all chords parallel to the rotated chord and with
midpoints on the new diameter will be in Pq. A similar idea holds for Representation I. It is
plausible that these symmetry considerations will be sufficient.88

For the time being, I think we can proceed under the assumption that each part (of one
of the partitions) is an adequate representative for X as long as we recognize that this does
not follow from the fact that the sets are all uncountably infinite. The adequacy of the parts
follows, rather, from symmetry considerations. Thus, for the sake of simplicity, I assume
that we have legitimate bijections ϕi : X → Ri instead of the more cumbersome families
of bijections described above. It is also the case that the conflicting intuitions driving the
paradox appear regardless of the precise details of the domain and co-domain of the mappings
we consider. It is, however, important to clarify what Bertrand is doing in his initial set-up;
recognizing that he deals with “representative” parts of X is crucial for this. However, for
my ultimate claims about the conflict between PW and CP, putting things in terms of
partitions would only serve to obfuscate matters.

The Crux of the Paradox

We are now in a position to describe how the paradox arises. First, note that our original
sets X and S, though perfectly well-defined, do not come equipped with an obvious way to
measure their relative sizes. All we know, prima facie, is that X and S are uncountably
infinite. We do not have enough information to determine the size of S relative to X. Thus,
we must either represent our sets more determinately or pass to a measure of infinity finer
than cardinalities.

The second thing to notice is that each representation is judged to be acceptable, at least
initially, because we are able to write down a bijection ϕi : X → Ri for i = 1, 2, 3. It is
the case that each representation space is acceptable89 but only insofar as there is a 1-1
correspondence between X and Ri. We should not necessarily expect that other properties
we are interested in will be adequately represented. This is a lesson we have now encountered
repeatedly: if our bijection is merely a Cantorian bijection, then we should not expect it
to preserve more nuanced information. Indeed, information like part-whole relations will
depend upon how our mathematical entities are presented. In this case, the part-whole
relationships will depend upon how the representation spaces are given and the “natural”

88Bertrand himself may have been thinking along these lines. See his remarks in Appendix H concerning
“the symmetry of the circle.” See also [Klyve, 2013]. Rizza believes that we cannot decide as to whether
Bertrand in fact considers the whole ensemble of chords or merely a proper part without first providing a
“mathematical determination” ([Rizza, 2018], 379).

89Keeping in mind the caveats about representative parts.
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measure carried by each space.
Indeed, Bertrand uses R1, R2, R3 because, unlike X, they come equipped with intuitive

measures: ranges of angle measures,90 interval length, and areas, respectively. These intuitive
measures are required for us to judge the size relations between the Ri and ϕi(S); however,
there is no prima facie reason to think that the size relations will remain invariant between
the representation spaces.91 Indeed, as we have now seen, the size relations change as we deal
with different representation spaces: for example, ϕ1(S) is one-third of R1, whereas ϕ2(S) is
one-half of R2. But why think in the first place that the relative size of ϕi(S) in Ri would be
the same for all i? Once more, I believe that it is our coarse, Cantorian intuitions that have
led us astray. Indeed, note that we can write down bijections between the Ri by composing
the ϕi and their inverses. For example, we can construct a bijection ϕ2 ◦ ϕ−1

1 : R1 → R2.
In virtue of these bijections, we are inclined to think that the size relations between the Ri

and their subsets ϕi(S) will remain invariant. But this is not the case: each representation
space comes equipped with its own intuitive measure of set size, and these produce different
relative size assignments.

Thus, we can dissolve the paradox by jettisoning our Cantorian intuitions about infinite
sets. Once we notice that the relative size assignments of our sets will depend upon how
we choose to represent our original set X, we must simply stick to one representation.
This shows that there is some truth to what Bertrand says: perhaps there is no univocal
“correct” answer to his question. This is, however, part and parcel of what we have seen
in our discussion of Label Invariance and numerosities. Once we pass to measuring infinite
collections, there will always be some indeterminacy present.

This account of Bertrand’s paradox has some affinities with the description of Williamson’s
infinite sequence of heads provided in [Benci et al., 2018]. The authors placed great empha-
sis on the fact that Williamson implicitly switched between representations of an “intuitive”
situation, and it was this that produced the appearance of paradox. We have found some-
thing similar; however, I would like to emphasize that the root of the confusion in Bertrand’s
paradox is not merely that we implicitly move between representations. It is our predilec-
tion for CP. This is because we are inclined to accept each model precisely because we can
write down bijections ϕi and ϕj ◦ ϕ−1

i (i 6= j) and we expect that these will preserve the
information we care about. Unfortunately, when dealing with the infinite, the situation is
rather more nuanced.92

In sum, we have been able to express the fundamental conflicting intuitions at play in
Bertrand’s Paradox without making use of probability theory. I have presented the paradox
in the following way: given the set of all chords X in some circle C or radius r, what is
the relative size of S, the set of chords with length greater than

√
3r? If one wishes to

90It seems that the intuitive measures on R1 could be variously described. We might also try to use arc
length on the circumference.

91Nor will appeal to a “standard” measure across the Ri help. Since we are dealing with intervals and
regions in R and R2, we might immediately try to use Lebesgue measure. This will not work. For instance,
let’s try to use Lebesgue measure µ in Representation I. Intuitively, we wish to show that arc BC is one-third
the circumference of the circle. However, for the unit circle S1, µ(S1) = 0, since S1 ⊂ R2 and the Lebesgue
measure of any entity of dimension strictly less than the ambient space is always zero.

92There are points at which [Shackel, 2007] seems to circle around this idea, but I am not sure if this is
what he had in mind.
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honor the letter of Bertrand’s question, we can proceed from this to an intuitive probability
assignment by invoking the basic principle that The probability of some event E is the ratio
of the “number” of elementary events in E to the total “number” of elements in our sample
space Ω. Obviously, E is the event that we draw a chord from S and Ω = X. Thus, the
probability of our requested event should just be the ratio of the size of S to the size of X.
But, of course, producing such a probability assignment requires that we have a determinate
way to measure the sizes of S and X. And this is what we lack. Thus, one pillar of Bertrand’s
paradox is this: how to measure the sizes of infinite sets such that we preserve their relative
sizes.

Unfortunately, as we saw, there is no obvious way to do this for our X and S. And this
fact introduces further complications involving representations. In order to produce tractable
size assignments, we passed to new representation spaces equipped with their own intuitive
measures. These measures produced different size assignments (for ϕi(S) ⊂ Ri), which led
to the paradox because we expected these relative sizes to be preserved under bijections.

Now yet another problem emerges. Let us simply pick a representation space. We wish
to lift the relative size of a subset of this space back to X and thereby determine the relative
size of S in X. However, why think that our measurement of the relative size of a subset
of the representation space will produce values that agree with the “correct” relative size of
S in X (assuming there is such)? This becomes especially pressing if we no longer expect
relative sizes to be invariant under bijections. Let us make this more concrete. I will use
Representation II, since we have genuine bijections from partitions of X to R2 (that is, we
do not have the issues with diameters present in Representations I and III). Let us work with
ϕt2 : Pt ⊂ X → R2. We then see that ϕt2(Pt) =

{
the set of lengths in [0, r

2
)
}

. The “intuitive”
measure on R2 is simply interval length.93 This tells us that half the chords we can draw
through [0, r) are longer than

√
3r. But why now expect that this measure of the size of

ϕt2(Pt) in R2 can be lifted back to S and X thereby yielding a probability assignment of 1
2

for our desired event? There is nothing in the mathematics of the problem that guarantees
this can be done. Indeed, our above discussions should incline us to think otherwise: the
size of infinite sets are highly sensitive to presentation when we wish to ascertain part-whole
relations. Nonetheless, a precise answer to this question depends, ultimately, on whether we
can specify the sizes of X and S independently of Bertrand’s procedures. Let us now turn
to this possibility.

4.4.4 Bertrand’s Paradox and the Problem of Mathematical Determination

In a recent paper [Rizza, 2018], Rizza provides a novel analysis of Bertrand’s paradox that
can be fruitfully compared with my own account. His central contention is that the paradox
fundamentally expresses a “determination problem.” That is, the paradox (disagreement
of probability values) is generated because Bertrand did not have the mathematical tools
available to specify the size of infinite collections of geometrical objects, viz., the size of the
set of all chords in a circle of radius r. Thus, once we provide a numerical specification for

93If one wishes to use a more general measure, the Lebesgue measure µ will agree with interval length,
as it should. Indeed, µ([0, r/2)) = µ([0, r/2]) since [0, r/2] = [0, r/2) ∪ {r/2} and µ(point) = 0. Then,
µ([0, r/2]) = r/2− 0 = r/2. Finally, by the same reasoning, µ([0, r)) = r.
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the infinite collections involved, we can judge the adequacy of Bertrand’s drawing procedures
and dissolve the paradox. I will briefly describe Rizza’s findings and then compare them to
my own analysis.

After a discussion of a recent debate concerning Bertrand’s paradox ([Rowbottom, 2013],
[Klyve, 2013]), which Rizza takes to support his main thesis, he proceeds to extend the
existing apparatus of probability theory with a new computational theory: Sergeyev’s Gross-
one.94 The basic idea here is to operate with an enriched numeral system, viz., one employing
an infinite base η (read “Gross-one”). η is then supposed to refer to an infinitely large integer,
greater than any natural number represented as a finite-base numeral. One of the advantages
of this theory is that we can obtain numerical measures of infinite collections for which the
usual arithmetical properties hold. A second advantage is that we are able to numerically
discriminate between the size of an infinite collection and its infinite subcollections, i.e., PW
holds. As Rizza notes, these properties are also had by numerosities; however, it is worth
remarking that both in terms of their aims and mathematical constructions, the theory of
Gross-one and the theory of numerosities are rather different.

In any case, using η, Rizza provides a parameterization of the chords in a circle of radius
r. We have already seen that the specification of a chord will be given by the specification
of two points on the circumference of the circle. This suggests that we label η many points
on the circumference and compute the number of chords from there. Fixing an endpoint,
say A in Procedure I above, we find that there are η− 1 discriminable chords through A. As
our fixed endpoint ranges throughout the η many points on the circumference, we find that
there are η(η − 1) total chords. However, we have double-counted, since distinct orderings
(e.g., AB and BA) of the labelled endpoints have been considered distinct chords. Thus, the
total number of chords (with X again denoting the total collection of chords) is the infinitely
large integer

|X| = η2 − η
2

. (4.4.4)

Obviously, this “determination” was unavailable to Bertrand. It easily follows that we can
introduce a uniform, discrete probability distribution on the sample space X of chords with
the above size. The probability of drawing a given chord is then 2

(η2−η)
. Using these values,

we can compute the probabilities of drawing a chord equal to
√

3r (P (e)), shorter than
√

3r
(P (s)), and longer than

√
3r (P (l)).95 Given these values of P (e), P (s), P (l), we can then

judge the adequacy of Bertrand’s proposed drawing procedures. Rizza shows that the finite
values of these probabilities all agree (again given our specification of η many points on the
circumference), though they do differ by infinitesimal amounts.96 Rizza concludes

[...] when such homogeneous distribution is fixed as the geometrical configuration
of reference, the drawing methods proposed by Bertrand are in finite agreement
and only generate infinitely small discrepancies ([Rizza, 2018], 391).

Remark 4.4.4. It is worth noting that the finite values obtained are not those computed

94See [Sergeyev, 2003], [Sergeyev, 2009a], [Sergeyev, 2009b].
95See [Rizza, 2018], pp. 385-6 for the computations.
96See [Rizza, 2018], pp. 386-391 for computations.
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by Bertrand’s original procedures with the exception of Procedure I. This is because, as
Rizza’s claims, only Procedure I considers a subset S ⊂ X that is a scale model (or, in my
terminology, “representative”) of the total space. However, there is room to disagree here
as the way Rizza construes Procedure I is not obviously equivalent to the way Bertrand
construes it. In short, it is somewhat unclear whether Rizza is dealing with the same issues
that Bertrand is; I will discuss this further below.

In any case, the above conclusion at least is unimpeachable; it follows directly from the
mathematics of the situation. It is nonetheless worth asking: Is this really a solution to
Bertrand’s paradox? I would like to argue that our answer to this question should be no.
Rizza is absolutely correct in his assertion that Bertrand lacked a “sufficient mathematical
instrumentality” to address his question. However, Bertrand’s response to this lack was
to provide the various geometric representation spaces (see above), which themselves carry
intuitive measures of size. In so doing, he was able to produce numerical values for his desired
probabilities. As I have argued, it is precisely this use of different geometric representation
spaces, along with our expectation that the relative sizes of infinite sets ought to be preserved
under bijections, that produces the paradox. This is the paradox, and it remains entirely
untouched by Rizza’s computations. Indeed, he seems to realize this, when he says

[...] If, on the other hand, one replaces the geometrical configuration attached
to the parameterisation of chords as pairs of labelled endpoints with other ge-
ometrical ensembles (points on a diameter, interior points), which in turn lead
to distinct random selection processes, then probability values proliferate (ibid.,
391).

Thus, we must be aware that, in some sense, he has entirely side-stepped what makes the
paradox paradoxical. Nonetheless, this does not detract from the value of his contribution
to our understanding of the paradox. To conclude, I would like to sketch our points of
agreement as these make clear what we have learned from Bertrand’s paradox.

First, our accounts agree that Bertrand’s paradox is not ultimately about probability
theory (the Principle of Indifference, etc.) but is rather about the infinitary resources at our
disposal. Rizza stresses that the “canonical instrumentality” of classical probability theory
must be supplemented in order to assess Bertrand’s procedures. My proposal is somewhat
more radical as I think we can make sense of what is at issue entirely in terms of the properties
of infinite sets we wish to preserve.

Second, our accounts agree that Cantorian techniques are entirely useless in making sense
of the paradox. This is because we need a way to measure infinite collections such that field-
theoretic operations hold and such that part-whole relations are preserved. Rizza does not
make much of this, but the insufficiency of Cantorian techniques (in virtue of their coarseness)
has been a theme of this essay. I take it that it would be entirely possible to achieve a
similar sort of parameterization of chords and subsequent computation of probabilities using
numerosities, since these satisfy the above properties.97

97I would like to pursue this in future work following the developments in [Benci et al., 2014] and
[Benci et al., 2015].
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4.4.5 Defusing Bertrand’s Paradox

[Gyenis and Rédei, 2015] provides another interesting and subtle analysis of Bertrand’s para-
dox. The authors’ primary contention is that Bertrand’s paradox is not, in fact, a genuine
“unresolvable” paradox. Rather, it expresses a non-trivial mathematical fact, and this has
not been realized because all previous analyses have not been posed at an appropriate level
of abstraction. They claim that, once we adequately describe Bertrand’s paradox in terms of
measure-theoretic probability theory, we will be able to see what is really at stake.98 Thus,
the project is very much in line with Rizza’s: once we provide a “sufficient mathematical
instrumentality” for the paradox, it will be defused.

Besides this connection to Rizza’s work, [Gyenis and Rédei, 2015] is of interest because
the authors discuss a particular version of an intuition that has played a role in this chapter:
Label Invariance. They show that, in the category of Haar probability measure spaces, their
preferred context for describing Bertrand’s paradox, Label Invariance does not hold. (What
the authors mean by “Label Invariance” will be discussed below.) This is the mathemati-
cal fact that the paradox purportedly expresses. Rizza takes this as grist for his own mill,
suggesting that the violation of Label Invariance, “[...] may be regarded as a pointer to
differences between the probability models that cannot be fully detected by the canonical in-
strumentality [in this case, measure-theoretic probability]” ([Rizza, 2018], 393). I would like
to continue to suggest, however, that Label Invariance, in the context of infinitary probability
theory, derives its plausibility in large part from our predilection for Cantorian techniques.
Furthermore, against Rizza, I would like to emphasize that what is of philosophical interest
here is not the “problem of mathematical determination,” but rather, once more, the conflict
between different infinitary intuitions and our desire to retain particular information (in the
Bertrand case, the relative size of set S in X).

Bertrand’s Paradox in the Category of Haar Probability Spaces

Gyenis and Rédei attempt to show that the common construal of the paradox as a viola-
tion of the Principle of Indifference is incorrect.99 Internal to what they call the “classical
interpretation of probability theory,” their argument shows that

[...] Bertrand’s paradox does not affect the principle of indifference and does
not, in and by itself, undermine the classical interpretation of probability; the
classical interpretation, the principle of indifference, and labelling invariance are
independent ideas ([Gyenis and Rédei, 2015], 351).

By the “classical interpretation,” the authors mean Kolmogorov’s measure-theoretic de-
velopment of probability theory along with a “link” between this formalism and the world.
That is (following their notation), we deal with probability spaces (X, S, p) where X is the
outcome space of elementary random events, S is a Boolean σ-algebra of subsets of X, and
p : S → [0, 1] is a countably additive measure satisfying p(X) = 1. In addition, we deal

98As the authors note, this is also done in [Shackel, 2007]; however, Shackel’s discussion is posed at too
high a level of abstraction and is thus not sufficiently determinate.

99Nonetheless, in order to discharge this claim, they must provide an adequate interpretation of the
Principle of Indifference and the paradox itself. See below.
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with (here real-valued) random variables, viz., measurable functions f : X → R, where
measurability is the condition that f−1(B) ∈ S for any Borel set B of R.

To their credit, the authors note that this understanding of probability theory in con-
junction with the Kolmogorov axioms is not the only way to approach probabilistic phe-
nomena.100 However, measure-theoretic probability is the most widely-used and important
approach, and so they take this as an appropriate context to describe Bertrand’s paradox.
I think this is uncontroversial, but the alternative possibilities raise interesting questions
about the generality of their solution. In particular, I do wonder about their claim that

The significance of probability theory being part of measure theory is that
foundational-conceptual problems of probability theory, such as Bertrand’s para-
dox, can best be analysed in terms of measure theoretic concepts (ibid., 352;
emphasis my own).

This seems too strong.101 I will return to this below; however, it is certainly true that framing
Bertrand’s paradox in terms of measure theory is a reasonable approach.

With this formalism in place, the authors state the “elementary classical interpretation,”
viz., the classical interpretation for finite X:

In the case of a finite number of elementary events, the probabilities of events
are given by the measure pu that is uniform on the set of elementary events, and
(frequency link:) the numbers pu(A) will be (approximately) equal to the relative
frequency of A occurring in a series of trials producing elementary random events
from X (ibid., 353).

However, as the authors note, this interpretation is not “maintainable” because only in
special circumstances will pu(A) be indicative of the frequencies with which A occurs. These
special circumstances are codified by the Principle of Indifference. In short, this principle
must express some sort of epistemic neutrality with respect to the elementary events in
order for the classical interpretation to work. The authors’ way of describing this epistemic
neutrality is via permutations of X: given Πn, the group of permutations on set X with n
elements, we are epistemically neutral with respect to the elementary events if, for all π ∈ Πn

pu({xi}) = pu(
{
xπ(i)

}
) (4.4.5)

with i ∈ {1, . . . , n}. Clearly, this is a Label Invariance condition for finite sample spaces.
The authors now claim that, in order to provide an adequate interpretation of Bertrand’s

paradox, we must formulate a Principle of Indifference for infinite sample spaces. That
is, we need to find a permutation group with respect to which we can express a Label
Invariance condition (for some heretofore undetermined measure). This requires imposing

100They mention different axiomatizations by Rényi, Popper, and Keynes.
101Indeed, compare to the more cautious claim found in Folland’s discussion of probability theory, “Although

measure spaces are a natural setting for the study of probability, it is hardly accurate to say that probability
is a branch of measure theory, for its central ideas and many of its techniques are distinctively its own”
([Folland, 1999], 313).
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further structure on X. Begin by replacing Πn with some group G equipped with a group-
action αg : X → X.102 Our desired Label Invariance condition can then be expressed as: for
all g ∈ G and all A ∈ S

p(A) = p(αg(A)), (4.4.6)

i.e., the probability measure is invariant under the action of G. Unfortunately, for a general
probability space (X, S) with X uncountable, there is no guarantee that we can find such
a G leading to a unique probability measure p. Nonetheless, we can find such a G and p
if we require that X be a topological group103 satisfying further conditions. In particular,
let X be a compact topological group. Then there is a unique (up to scalar multiplication)
measure pH , the Haar measure, on the Borel sets of X that is invariant under group action.

In sum, then, the authors claim that we should consider triples (X, S, pH) where X is a
compact topological group with continuous group action, S is the Borel σ-algebra on X, and
pH is the Haar measure on S. When we do so, we get a “general classical interpretation” of
probability theory along with a General Principle of Indifference, where the latter is given
by pH(A) = pH(αg(A)) for all A ∈ S and g ∈ G.

With this formalism in hand, we can make precise a Label Invariance condition for the
“general classical interpretation.” Given two probability spaces (X, S, pH) and (X ′, S′, p′H)
used to describe the same phenomena, we call a map h : X → X ′ a relabelling if it is a
bijection between X and X ′ and both h and h−1 are measurable. That is, for all A ∈ S,
h(A), the image of A under h, is in S′. Similarly, for all A′ ∈ S′, h−1(A′) is in S. The
measurability of h and h−1 ensures that, for any event A ∈ S with a probability value, its
relabelled version will also receive a probability value. Label Invariance in this context then
is the requirement that for all A ∈ S and A′ ∈ S′

p′H(h(A)) = pH(A) (4.4.7)

pH(h−1(A′)) = p′H(A′). (4.4.8)

That is, the probabilities assigned are invariant under relabellings. Of course, this is just
another way of saying that (X, S, pH) and (X ′, S′, p′H) are isomorphic as probability spaces,
written as (X, S, pH) ∼= (X ′, S′, p′H). Gyenis and Rédei, then, have dealt with my complaint
about needing to specify what is meant by an “isomorphism.”104 They have very clearly
delineated the structure that must be preserved and have thus given us an excellent handle
on Label Invariance in their general classical interpretation.

Finally, we can express what the authors call

General Bertrand’s Paradox: Let (X, S, pH) and (X ′, S′, p′H) be probability
spaces where X and X ′ are compact topological groups of uncountable cardinality
and pH , p

′
H are Haar measures on the Borel σ-algebras of S and S′, respectively.

Then Label Invariance fails because either (i) there is no relabelling between X

102See, e.g., [Lang, 2002], Chapter I.5 for the definition of a group action. Lang defines it in a different
(though equivalent) manner.
103A topological group is a group G endowed with a topology such that the group operations G×G→ G

given by (x, y) 7→ xy and G→ G given by x 7→ x−1 are continuous.
104See Section 4.3.4.
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and X ′ or because (ii) if there is a relabelling, then another relabelling can be
found such that Label Invariance does not hold.

Described in this way, Bertrand’s “paradox” is a consequence of the following result105

Theorem 4.4.5 (Rudin, 1993). If G is an infinite compact topological group, with Haar
measure mG, then there is an autohomeomorphism106 h of G such that

mG(h(E)) 6= mG(E) (4.4.9)

for some open set E ⊂ G.

Thus, Gyenis and Rédei conclude that, once we have properly formalized the classical
interpretation of probability theory and an infinitary Principle of Indifference, Bertrand’s
Paradox is no paradox at all. It is simply an expression of a non-trivial mathematical fact:
the failure of Label Invariance in the category of Haar probability spaces.

Remarks on Formalizations of Bertrand’s Paradox

Both [Rizza, 2018] and [Gyenis and Rédei, 2015] propose that the central issue at work in
Bertrand’s paradox is the lack of an appropriate mathematical framework.107 Their respec-
tive plans of attack are, however, somewhat different. Rizza’s is much closer to Bertrand’s
original discussion insofar as he asks a general (he would say indeterminate) question about
the probability of drawing a chord longer than the sides of an inscribed equilateral triangle
and proceeds to consider three different representations of this situation. Rizza’s idea is that
we can make Bertrand’s question determinate by providing a more expressive “numerical
instrumentality” to the original geometrical set-up, i.e., we label points on the circumference
of the circle using Gross-one and determine the size of X (the set of all chords) and the size
of S (the set of all desired chords) using this labelling. We then consider how this numerical
framework is affected by each of Bertrand’s drawing procedures or representations of the
original set-up. Rizza is getting at something important, viz., the paradox inextricably in-
volves questions about measuring the size of infinite sets, but, as I have noted above, seems
to side-step the paradox entirely.

Gyenis and Rédei, on the other hand, discuss neither Bertrand’s original set-up nor his
drawing procedures anywhere in their paper. They seem to think these irrelevant in light
of the fact that Bertrand’s paradox was formulated prior to our best current mathematical

105The authors write the result differently and cite both [van Douwen, 1984] and [Rudin, 1993]. More
precisely: van Douwen shows that there is an infinite, compact, totally disconnected Hausdorff space X
with positive Borel measure µ such that, for all Borel sets E ⊂ X and all autohomeomorphisms h on X,
µ(h(E)) = h(E). He then asks whether this result might hold when we replace X with an infinite, compact,
connected group G and the Borel measure µ with Haar measure mG. (Van Douwen shows that this is false
when G is totally disconnected.) Rudin demonstrates that the answer to van Douwen’s question is always
negative.
106An autohomeomorphism h of G is a bijective map h : G → G such that h and h−1 are contin-

uous. Continuous maps are Borel measurable, so autohomeomorphisms are relabellings in the sense of
[Gyenis and Rédei, 2015].
107Though only Gyenis and Rédei are explicit about this, none of these authors seems to think it a genuine

paradox.
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probability theory; the “paradox” is an artefact of the historical situation, viz., that Bertrand
was writing before the foundations of measure-theoretic probability theory (and further
mathematics) were laid. Again, their discussion is very nice, and their points well-taken, but
it too seems not to address the paradox. Or, perhaps better, it addresses a particular iteration
of the paradox in the context of measure-theoretic probability theory (with the further
conditions required above to make sense of Label Invariance in the infinitary context). The
effect of their discussion is to provide a mathematical framework in which one could describe
Bertrand’s original proposal and to note very general properties about this framework that
would be inherited by the proposal. Furthermore, one must buy at the outset of their
discussion that describing Bertrand’s paradox in terms of the Principle of Indifference is the
right way to go. Obviously, I wish to resist this move. In sum, the authors’ approach only
works if we are working in the context of measure-theoretic probability and accept that an
adequate description of the paradox requires the Principle of Indifference. And as I made
clear above, and as Rizza’s discussion shows, there are many ways we might describe what
Bertrand is doing.

Thus, I think that the possibility of quite different formalizations of Bertrand’s para-
dox suggests that it deals with something more general than either Rizza or Gyenis-Rédei
realize. However, in both papers, there are hints at this generality. Rizza’s recognition of
the need for measures of infinity satisfying PW and the usual field operations is one such
hint. The hint provided by Gyenis and Rédei arises in their discussion of their precise no-
tion of Label Invariance and a more conceptual desideratum of probability theory, which
they call Label Irrelevance. In the tightly circumscribed context of Haar probability spaces,
Bertrand’s paradox expresses the failure of Label Invariance (that is, relabellings need not
be isomorphisms of Haar probability spaces). On the other hand, Label Irrelevance says
that “[...] the specific way the random events are named is irrelevant from the perspective
of the value of their probability” ([Gyenis and Rédei, 2015], 350). Then, the reason that
Bertrand’s paradox “appears paradoxical” is that we easily conflate Label Invariance with
Label Irrelevance, despite the fact that these notions are distinct. They continue,

Labelling irrelevance is respected in probabilistic modelling perfectly well—but
it is respected not by labelling invariance holding true: If the elements in the
pair of sets (X, S) label the (elementary, respectively, general) random events of
some random phenomenon, then one is free to use another pair of sets (X ′, S′) to
label the events as long as no random events are lost in X ′ and S′, i.e., as long as
there is a re-labelling h between X and X ′. Labelling irrelevance says that the
choice of (X, S) or (X ′, S′) does not affect the probabilities of the random events,
and this is in harmony with the fact that fixing either (X, S) or (X ′, S′) does not
determine any probability measure on either [...] (ibid., 366; my emphasis).

This quote makes clear that the seeds of the paradox are already present in the notion of
Label Irrelevance. The key thing here is that, for Label Irrelevance to hold, no random
events can be “lost.”108 This is very easy to satisfy in the finite case; however, when we pass
to spaces of infinite size, this condition will be determined by the ambient measure of infinity

108This comes up again in Gyenis and Rédei’s discussion of “descriptive accuracy.” I also think the idea
here is precisely the same as Bartha’s no-collapse condition.
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that we use, which is, in turn, determined by the information we wish to preserve in our
analysis. In Bertrand’s paradox, the information that interests us is the relative size of infinite
sets, in particular, how large the set S of chords longer than

√
3r is inside X, the set of all

chords. Given that there is not a canonical way of imposing such a measure on X, Bertrand
passed to more tractable geometric representations of the situation. However, we are led into
thinking that these representations are adequate given our uncritical reliance upon CP and
Cantorian cardinalities; that is, we can write down bijections (relabellings) between X and
each representation space and between pairs of representation spaces. But these bijections
need not preserve relative size assignments. Thus, we have a conflict between PW and
CP, made obscure by the different spaces in question and the imposition of probabilistic
structure. Indeed, the probabilistic structure (in this case at least) simply reflects the relative
sizes of the infinite sets. (Note that Gyenis and Rédei’s Label Irrelevance crops up before
probability measures are imposed.) Thus, once more, Bertrand’s paradox is a paradox of
infinity and this is, in fact, implicitly borne out by the analyses of Rizza and Gyenis-Rédei.
However, against both these analyses, we should conclude that Bertrand’s paradox is a
genuine paradox insofar as it is produced by a genuine conflict between CP and PW.

4.4.6 Conclusion

Bertrand asked What is the probability that a given chord is longer than the side of an
equilateral triangle inscribed in a circle of radius r? Given that he had no way to determine
the size of the set of all chords X and the subset S with which he was concerned, he passed
to different geometric representations of the problem. As we saw, there is a real question
as to whether any of these representations is adequate in virtue of the fact that Bertrand
implicitly restricts our attention to proper subsets of X (the partitions discussed above).
Nonetheless, in virtue of symmetry considerations, I think there is a reasonable argument
that these subsets can play the role of X. As such, we get bijections ϕi : X → Ri for
representation spaces Ri (i = 1, 2, 3) as well as bijections ϕj ◦ ϕ−1

i : Ri → Rj (i 6= j).
And now the paradox emerges. Each space Ri is equipped with its own intuitive geometric
measure that yields a particular part-whole relationship between itself (representing X) and
ϕi(S) (representing S). The part-whole relationships depend crucially upon the particular
representation space. We are then tempted to think, in virtue of the bijections between all
these spaces, that the part-whole relations will remain the same across representations. But
this is precisely what fails: as we have repeatedly seen, Cantorian bijections do not preserve
this more nuanced part-whole information, and thus we get different intuitive probability
assignments for each representation.

I then considered what I take to be two exemplary recent discussions of the paradox.
These are interesting and informative but fail to recognize the heart of Bertrand’s discussion
and therefore that he has identified a genuine paradox. Nonetheless, I do think that both
discussions can serve as implicit confirmation of my analysis.
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4.5 Summary and Concluding Remarks

In this chapter, I have examined the interplay between infinitary intuitions and probabil-
ity theory. We began by examining the theory of numerosities and saw that, as a theory
of infinite counting, numerosities validate PW rather than CP. In order to do this, the
construction of our theory had to be rather complicated; in particular, given a particular
presentation of numerosity theory, it was crucial that each element of a set A being counted
be given a “label.” Furthermore, we saw that, if this labelling were to change, the size
assignment for A would also change. I called this sensitivity to labelling the Type 1 sensi-
tivity of numerosities. Furthermore, we saw that numerosities exhibit what I called Type
2 sensitivity, viz., sensitivity to the model construction in which size assignments are made
(more precisely: the sets present in our underlying selective ultrafilter).

I then put these characteristics of numerosities to work in probability theory. My first
aim was to show that various paradoxes in infinitary probability theory (Label Invariance,
God’s Lottery, Bertrand’s paradox) can all be fruitfully conceptualized as paradoxes of the
infinite. In one way or other, they all involve a conflict between our infinitary intuitions
and the coarse framework based upon 1-1 correspondence in which we try to formalize these
intuitions. I used the Type 1 sensitivity of numerosities to provide an independent argument
that the Label Invariance assumption (at any level of generality) had to be jettisoned. This
idea emerged again in the discussion of Williamson’s Coin: there I argued that Williamson’s
argument can be disrupted by jettisoning his background Cantorian assumptions and reject-
ing his “re-labelling” isomorphism. Finally, I emphasized the utility of Type 2 sensitivity
of numerosities in dissolving God’s Lottery. In particular, this sensitivity can actually be
turned into an advantage: once we ascertain the intuitions we wish to validate, we can
precisely calibrate our model to produce results consonant with these intuitions.

Finally, I considered Bertrand’s paradox. I argued that Bertrand’s paradox is generated
by a conflict between our intuition that the relative sizes of infinite sets should be preserved
under bijections and the actual relative size verdicts of geometric measures. This paradox
is made even more complicated due to the presence of multiple representation spaces, each
of which yields a different verdict. As with the other paradoxes above, we are misled by our
uncritical reliance upon Cantorian intuitions when we in fact require a much more nuanced
formal framework.

I then considered one recent proposal to dissolve the paradox via such a framework,
viz., the theory of Gross-one. Here the PW intuition emerged once more in different dress:
in order to produce a workable model of Bertrand’s initial problem, we required a way of
manipulating infinite quantities such that PW and the usual arithmetical operations are
satisfied. It seems entirely possible that numerosities could be used to this effect; however,
as I noted, this way of proceeding side-steps what actually produces the paradox. Thus,
though my analysis of Bertrand’s paradox exhibits some affinities with my analysis of the
paradoxes in Section 4.3, the utility of new infinitary techniques here is rather less clear.

I hope to have shown that reflection upon the conceptual underpinnings of infinity sheds
light on some rather vexing puzzles. In particular, these so-called “probabilistic” paradoxes
are no such thing. Rather, they are all generated by a conflict between our long comfort with
CP and cardinalities and our intuitions about part-whole and relative size relations among
infinite sets. The disagreement of probability values merely reflects this deeper conflict.
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A final theme that has emerged is the indeterminacy present in our theories of infinite
counting. This phenomenon is made explicit by our examination of numerosities: it is fasci-
nating that the theory of numerosities, in order to validate a fundamental infinitary intuition
(PW), is so very sensitive. This inclines me to think that there is an inextricably indetermi-
nate character to the infinite, an indeterminacy rather different from the classical idea that
the infinite is “indefinitely extensible.” That is, even very basic statements about infinite
quantities, e.g., α = n(N) is odd, fail to have determinate truth-values. I have argued that,
because we know how to force a particular truth-value in the context of numerosities, this
indeterminacy can serve as a theoretical advantage. Nonetheless, it is somewhat troubling
that all our theories of infinite counting exhibit this indeterminacy (2ℵ0 = ℵ1? Is α = n(N)
odd?, etc.). This will have to serve as food for future thought.
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Critics. The British Journal for the Philosophy of Science, 52(3):471–513.

[Benacerraf, 1965] Benacerraf, P. (1965). What Numbers Could not Be. The Philosophical
Review, 74(1):47–73.

176



[Benacerraf, 1973] Benacerraf, P. (1973). Mathematical Truth. The Journal of Philosophy,
70(19):661–679.

[Benci and Baglini, 2021] Benci, V. and Baglini, L. L. (2021). Euclidean Numbers and Nu-
merosities. The Journal of Symbolic Logic, pages 1–35.

[Benci et al., 2014] Benci, V., Bottazzi, E., and Nasso, M. D. (2014). Elementary numerosity
and measures. Journal of Logic and Analysis, 6(3):1–14.

[Benci et al., 2015] Benci, V., Bottazzi, E., and Nasso, M. D. (2015). Some applications of
numerosities in measure theory. Rend. Lincei Mat. Appl., 26:37–47.

[Benci et al., 2013] Benci, V., Horsten, L., and Wenmackers, S. (2013). Non-Archimedean
Probabilities. Milan Journal of Mathematics, 81:121–151.

[Benci et al., 2018] Benci, V., Horsten, L., and Wenmackers, S. (2018). Infinitesimal Prob-
abilities. British Journal for the Philosophy of Science, 69:509–552.

[Benci and Nasso, 2003a] Benci, V. and Nasso, M. D. (2003a). Alpha-Theory: An Elemen-
tary Axiomatics for Nonstandard Analysis. Expositiones Mathematicae, 21:355–386.

[Benci and Nasso, 2003b] Benci, V. and Nasso, M. D. (2003b). Numerosities of labelled sets:
A new way of counting. Advances in Mathematics, 173:50–67.

[Benci and Nasso, 2019] Benci, V. and Nasso, M. D. (2019). How to Measure the Infinite:
Mathematics with Infinite and Infinitesimal Numbers. Singapore: World Scientific.

[Benci et al., 2006] Benci, V., Nasso, M. D., and Forti, M. (2006). An Aristotelian Notion
of Size. Annals of Pure and Applied Logic, 143:43–53.

[Benci et al., 2007] Benci, V., Nasso, M. D., and Forti, M. (2007). A Euclidean measure of
size for mathematical universes. Logique et Analyse, 50(197):43–62.

[Bertrand, 1889] Bertrand, J. (1889). Calcul des probabilités. Paris: Gauthier-Villars.

[Betti, 2010] Betti, A. (2010). Explanation in Metaphysics and Bolzano’s Theory of Ground
and Consequence. Logique et Analyse, 56(211):281–316.

[Bishop and Bridges, 1985] Bishop, E. and Bridges, D. (1985). Constructive Analysis. Num-
ber 279 in Grundlehren der mathematischen Wissenschaften. Springer.

[Blass et al., 2012] Blass, A., Nasso, M. D., and Forti, M. (2012). Quasi-selective ultrafilters
and asymptotic numerosities. Advances in Mathematics, 231:1462–1486.

[Bolzano, 1972] Bolzano, B. (1972). Theory of Science. Oxford: Basil Blackwell.

[Bolzano, 1975] Bolzano, B. (1975). Paradoxien des Unendlichen. Hamburg: Felix Meiner
Verlag.

[Booth, 1970] Booth, D. (1970). Ultrafilters on a Countable Set. Annals of Mathematical
Logic, 2:1–24.

177



[Bourbaki, 1950] Bourbaki, N. (1950). The Architecture of Mathematics. The American
Mathematical Monthly, 57(4):221–232.

[Brown and Simpson, 1993] Brown, D. and Simpson, S. G. (1993). The Baire Category
Theorem in Weak Subsystems of Second-Order Arithmetic. Journal of Symbolic Logic,
58(2):557–578.

[Brundit and Ellis, 1979] Brundit, G. and Ellis, G. (1979). Life in the Infinite Universe.
Quarterly Journal of the Royal Astronomical Society, 20:37–41.

[Buchholz et al., 1981] Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W. (1981). It-
erated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretic Studies.
Number 897 in Lecture Notes in Mathematics. Springer.

[Butterfield, 2014] Butterfield, J. (2014). On under-determination in cosmology. Studies in
History and Philosophy of Modern Physics, 46:57–69.

[Caldon and Ignjatovic, 2005] Caldon, P. and Ignjatovic, A. (2005). On mathematical in-
strumentalism. Journal of Symbolic Logic, 70(3):778–794.

[Chiu and Hoffman, 1964] Chiu, H.-Y. and Hoffman, W., editors (1964). Gravitation and
Relativity. Physical Investigations of the Universe. W.A. Benjamin, Inc.

[Cinti and Fano, 2021] Cinti, E. and Fano, V. (2021). Careful with those scissors, Eugene!
Against the observational indistinguishability of spacetimes. Studies in History and Phi-
losophy of Science, 89:103–113.

[Cornell et al., 2000] Cornell, G., Silverman, J. H., and Stevens, G., editors (2000). Modular
Forms and Fermat’s Last Theorem. Springer.

[Cornish et al., 1998] Cornish, N., Spergel, D., and Starkman, G. (1998). Circles in the
sky: finding topology with the microwave background radiation. Classical and Quantum
Gravity, 15:2657–2670.

[Cornish et al., 2004] Cornish, N., Spergel, D., Starkman, G. D., and Komatsu, E. (2004).
Constraining the topology of the universe. Phys. Rev. Lett., 92:201302.

[Cutland, 1983] Cutland, N. (1983). Nonstandard measure theory and its applications. Bul-
letin of the London Mathematical Society, 15:529–589.

[de Finetti, 1974] de Finetti, B. (1974). Theory of Probability. London: Wiley.

[de la Vallée Poussin, 1896] de la Vallée Poussin, C. (1896). Recherches analytiques sur la
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Functional Analysis, 11:465–588.

182



[Granville, 2008] Granville, A. (2008). Analytic number theory. In Timothy Gowers, J. B.-
G. and Leader, I., editors, The Princeton Companion to Mathematics, chapter 17, pages
332–348. Princeton University Press.

[Gray and Ferreirós, 2021] Gray, J. and Ferreirós, J. (2021). Epistemology of Geometry. In
Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Fall 2021 edition.

[Green and Tao, 2008] Green, B. and Tao, T. (2008). The primes contain arbitrarily long
arithmetic progressions. Annals of Mathematics, 167:481–547.

[Guth, 1981] Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon
and flatness problems. Physical Review D, 23(2):347–356.

[Guth, 2007] Guth, A. H. (2007). Eternal inflation and its implications. Journal of Physics
A: Mathematical and Theoretical, 40:6811–6826.
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Appendices

A Excerpts from Szemerédi’s Proof

Lemma A.1. (Szemerédi Regularity Lemma; Lemma 1 in [Szemerédi, 1975]) Let A and
B be disjoint sets, let I be a fixed subset of [A,B] := ({x, y} : x ∈ X, y ∈ Y ), k(u) =
{v ∈ A ∪B : {u, v} ∈ I}, and β(X, Y ) = k(X, Y )|X|−1|Y |−1. For all ε1, ε2, δ, ρ, σ, there
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exist m0, n0,M,N , such that for all I with |A| = m > M , |B| = n > N , there exist disjoint
Ci ⊆ A, i < m0, and, for each i < m0, disjoint Ci,j ⊆ B, j < n0, such that:

1. |A− ∪i<m0Ci| < ρm, |B − ∪j<n0Ci,j| < σn for any i < m0;

2. For all i < m0, j < n0, S ⊆ Ci, T ⊆ Ci,j, with |S| > ε1|Ci|, |T | > ε2|Ci,j|, we have

β(S, T ) ≥ β(Ci, Ci,j)− δ.

3. For all i < m0, j < n0 and x ∈ Ci,

|k(x) ∩ Ci,j| ≤ (β(Ci, Ci,j) + δ)|Ci,j|.
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B The Metamathematics of Szemerédi’s Theorem and Ergodic Theory

Here I provide a summary of what is known concerning the metamathematics of Szemerédi’s
theorem and various of its proofs.109 It is important to note that most of these results should
be understood as “confident claims,” unless otherwise noted, based upon an examination of
bounds and resources involved in the arguments. However, in order to rigorously justify
that a theorem can be formalized in some weak theory T, one must carefully write down
all definitions involved encoded in the language of second-order arithmetic. This task can
be very tedious (and may be non-trivial in some cases), and it has not been done for the
theorems considered here.110

Claim B.1. Szemerédi’s original proof in [Szemerédi, 1975] can be formalized in RCA0.
Utilizing bounds by Gowers, this can likely be gotten down to elementary function arithmetic
(EFA).

I have not discussed Timothy Gowers’s proof of Szemerédi’s theorem, but I cite its meta-
mathematical data for completeness:

Claim B.2. Gowers’s proof of Szemerédi’s theorem in [Gowers, 2001] can be formalized in
I∆0(exp). It is likely that it can be formalized in RCA0 as it has elementary bounds and is
an entirely combinatorial argument.

Let us now turn to the ergodic theorems employed in Furstenberg’s proof(s) ([Furstenberg, 1977]
and [Furstenberg et al., 1982]) of Szemerédi’s theorem. The axiomatic strength of these
proofs will turn upon the strength of the Furstenberg Structure Theorem (Theorem 2.3.37)
and whether the full power of this theorem is required. There is a rather complicated story to
tell here. It was originally claimed in [Avigad, 2009] that the Structure Theorem was equiv-
alent (over ACA0) to Π1

1-CA0. However, a few years later, it was noted in [Montalbán, 2011]
that Avigad and Towsner were comfortable asserting only the formalizability of the Structure
Theorem in Π1

1-CA0. The reversal, i.e., that the Structure Theorem + ACA0 implies Π1
1-CA0,

was—and remains—open. This is because, though one might try to straightforwardly apply
the techniques of [Beleznay and Foreman, 1996] to get the reversal, a more delicate approach
is required to get this to go through ACA0. Thus, we have

Claim B.3. The Furstenberg Structure Theorem (Theorem 2.3.37) can be formalized in
Π1

1-CA0.

Conjecture B.4. The reversal holds.

Now let us assess what is known about the ergodic proofs of Szemerédi’s theorem. The
crucial question will be: How far into the countable ordinals need the construction of the
maximal distal factor of arbitrary measure-preserving system X extend? That is, need

109This information was gathered from personal correspondence with Jeremy Avigad. He very generously
fielded my questions and provided references, unpublished notes, and past email communications for me to
utilize.
110I take it with the exception of the formalized of the Furstenberg Structure Theorem in Π1

1-CA0 as this
was part of the work done by Avigad and Towsner. They are confident in this particular direction of the
equivalence claimed in Theorem 5.3 of [Avigad, 2009].
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it extend arbitrarily far and thus require the full Furstenberg Structure Theorem? It is
relatively well known that Furstenberg’s original proof did not. However, the presentation
in [Furstenberg et al., 1982] does appear to use the full Structure Theorem. Nonetheless,
Avigad and Towsner show in [Avigad and Towsner, 2010] that the maximal distal factor
need only extend to the ωω

ω
th level.111 In short we can say:

Claim B.5. Furstenberg’s original proof in [Furstenberg, 1977], when proved for each k,
can be formalized in ACA0. When proved for all k, the proof goes slightly beyond ACA0.
The same is true for the proof given in [Furstenberg et al., 1982].

The ergodic proof(s) in both [Furstenberg, 1977] and [Furstenberg et al., 1982] are then in
principle much weaker than they appear because they do not require the full Furstenberg
Structure Theorem. But this raises an interesting question: why didn’t Furstenberg et. al.
in [Furstenberg et al., 1982] simply avoid using this much power? As Avigad noted in per-
sonal correspondence, “I am sure they knew that it was possible. It would have changed the
presentation only slightly: they could throw away the limit argument for the SZ property
and the appeal to transfinite induction, and then they only needed to modify one of their
calculations slightly.” Thus, the answer is, probably, that they did not care to do so: the
Structure Theorem is an incredibly interesting result and provides understanding as to why
the ergodic analogue of Szemerédi’s theorem holds. Why then dispense with it or try to
whittle away at its logical strength if it provides a perspicuous proof?

Thus, I believe the following morals can be drawn. Even though the ergodic proofs are
not as axiomatically strong as they appear, they are still much stronger than Szemerédi’s
original proof. We should emphasize the relative distance, which is nicely precisified by
reverse mathematical analysis: Szemerédi’s combinatorial proof is incredibly weak but also
incredibly difficult to understand. On the other hand, Furstenberg’s proof(s), especially
that of [Furstenberg et al., 1982], takes us from RCA0 (possibly even EFA) to just beyond
ACA0 and thus into the realm of the infinitary. In so doing, we get a perspicuous high-level
proof of Szemerédi’s theorem that emphasizes crucial structural features of the mathematics.
Is this a consequence of the increase in axiomatic strength? The questions about logical
strength may actually be the less interesting part of the story here. Perhaps what is more
interesting and most germane to the explanatory advantages of the ergodic techniques is
the way in which these techniques package and modulate the information about structure
and randomness present in the combinatorial setting. We have seen that the Furstenberg
Structure Theorem gives us a direct means of presenting the dichotomy, and this generates
a significant gain in clarity over the combinatorial proof. (For instance, we can avoid the
very delicate structuring of generalized arithmetic progressions sketched in Section 2.5.4.) In
short, the passage to infinite spaces, factors, and extension maps allows us to avoid a good
deal of complicated, highly non-linear, combinatorial work that obfuscates our understanding
of Szemerédi’s theorem. When we do pass to these resources, naturally we get an attendant
increase in axiomatic strength; however, this strength is a by-product of the mathematical
concepts we “needed” for an explanatory proof and not the cause.112

111This is actually quite curious as Furstenberg’s original proof makes do with even less than this.
112Thanks very much to Jeremy Avigad for emphasizing this point so clearly to me.
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C Reverse Mathematics

Here I define various formal systems that occur throughout the paper. I begin with the very
weak (and first-order) Primitive Recursive Arithmetic (PRA) and proceed to subsystems of
second-order arithmetic. I primarily follow the canonical presentation of [Simpson, 1999],
but deviate at some points for ease of exposition, e.g., I try to give a more natural presenta-
tion of PRA below. At the beginning of each subsection, I provide a very brief motivation for
the subsystem defined, note its philosophical background, and mention some of the mathe-
matics that can be done in the subsystem.

Let me first provide some basic notions for the reader less familiar with mathematical logic.
A formal system is defined by specifying a formal language and axioms. We say that any
formula of the given language deducible by logic from the axioms is a theorem of the given
formal system. Here our logic is classical and either first-order (for PRA) or second-order
(for the remaning systems). A subsystem T′ of a formal system T is itself a formal system in
the given language whose axioms are theorems of T. Finally, we say that T2 is a conservative
extension of T1 iff for every sentence ϕ ∈ LT1 such that `T2 ϕ we have `T1 ϕ. Informally, we
say that T2 proves no new theorems of T1.

C.1 First-Order Arithmetic and PRA

Our language is that of first-order arithmetic written as L1.

Definition C.1. (Language of First-Order Arithmetic; L1)

1. Variables : there is one sort of variable called number variables which range over the
natural numbers ω = {0, 1, 2, . . .}. These are written as lower-case Roman letters
i, j, k, . . .;

2. Constant and Function Symbols : the constant symbol 0, the successor symbol 1, binary
operation symbols + and · for addition and multiplication, respectively. We also have
function symbols for primitive recursive functions,113 all of which can be explicitly
defined in terms of {0, 1,+, ·};

3. Numerical Terms : these are constructed from number variables and 0 by closing under
the successor and other primitive recursive functions;

4. Atomic Formulas : equations t1 = t2 between numerical terms t1, t2;

5. Formulas : these are constructed from atomic formulas using the usual propositional
connectives {∧,∨,¬,→,↔} and number quantifiers ∀n,∃n.

Now we can provide the axioms for first-order arithmetic. Our logic is the classical first-order
predicate calculus with equality.

113I define the language (and below the axioms) of first order arithmetic (PA) in this way so that we can
see PRA is straightforwardly included in PA. See [Feferman, 1998b] for a similar formulation.
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Definition C.2. (First Order Arithmetic; Z1; PA)

1. (Number-Theoretic + Primitive Recursive Axioms):

(a) n+ 1 6= 0;

(b) m+ 1 = n+ 1→ m = n;

(c) m+ 0 = m;

(d) m+ (n+ 1) = (m+ n) + 1;

(e) m · 0 = 0;

(f) m · (n+ 1) = (m · n) +m;

(g) defining equations for each additional primitive recursive function.

2. (Induction Scheme)

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) (C.1)

for each formula ϕ in L1.

Having defined PA in this way, we get PRA very easily:

Definition C.3. (Language of Primitive Recursive Arithmetic; LPRA) This is simply the
quantifier-free part of L1.

Definition C.4. (Primitive Recursive Arithmetic; PRA)

1. Number-Theoretic + Primitive Recursive Axioms;

2. (Quantifier-Free Induction Rule; IRQF):

From ϕ(0) and ϕ(n)→ ϕ(n+ 1), deduce ϕ(n) (C.2)

for each quantifier-free ϕ.

PRA plays an important role in the arguments concerning simplicity and impurity in Section
2.5. It is also of philosophical interest as William Tait has argued that PRA serves as a
reasonable precisification of “finitary reasoning” in Hilbert’s program.114 See the subsection
on WKL0 below for a brief discussion of Hilbert’s Program and its contemporary, “relativized”
iterations.

C.2 Second-Order Arithmetic and Its Subsystems

Our language is that of second-order arithmetic written as L2. This is formed by adding
set variables and quantifiers (or function variables and quantifiers) to L1 along with a new
binary relation symbol ∈ between numbers and sets. I explicitly record the axioms for the
convenience of the reader (here I follow [Simpson, 1999] closely):

114See [Tait, 1981].
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Definition C.5. (Language of Second-Order Arithmetic; L2)

1. Variables : There are two sorts of variables in L2:

(a) Number variables ranging over the natural numbers ω = {0, 1, 2, . . .}. These are
written as lower-case Roman letters i, j, k, . . .;

(b) Set variables ranging over the full powerset of ω. These are written as upper-case
Roman letters X, Y, Z, . . ..

2. Constant and Function Symbols : the constant symbol 0, the successor symbol 1, binary
operation symbols + and · for addition and multiplication, respectively.

3. Numerical terms : these are constructed from number variables and 0 by closing under
the successor, addition, and multiplication;

4. Atomic formulas : t1 = t2, t1 < t2, and t1 ∈ X with t1, t2 numerical terms and X a set
variable. These formulas have the obvious intended meaning.

5. Formulas : these are constructed from atomic formulas using the usual propositional
connectives {∧,∨,¬,→,↔}; number quantifiers ∀n,∃n; and set quantifiers ∀X, ∃X.

A sentence is a formula with no free variables.

Now we can provide the axioms of second-order arithmetic. Our logic is now the classical
two-sorted predicate calculus with equality in L1.

Definition C.6. (Second-Order Arithmetic; Z2)

1. (Number-theoretic axioms):

(a) n+ 1 6= 0;

(b) m+ 1 = n+ 1→ m = n;

(c) m+ 0 = m;

(d) m+ (n+ 1) = (m+ n) + 1;

(e) m · 0 = 0;

(f) m · (n+ 1) = (m · n) +m;

(g) ¬m < 0;

(h) m < n+ 1↔ (m < n ∨m = n).

2. (Induction Scheme; R-IND):

∀X((0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)). (C.3)
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3. (Comprehension):

∃X∀n(n ∈ X ↔ ϕ(n)) (C.4)

where ϕ(n) is any L2-formula in which X does not occur freely. Note that ϕ(n) may
contain other free variables besides n. Intuitively, the comprehension scheme asserts
that there is a set X defined as the set of all n such that ϕ(n) holds.

Finally, before proceeding to particular subsystems, I define classes of formulas that com-
monly appear in conservation results:

Definition C.7. (Σ0
1 and Π0

1 formulas) We say that an L2-formula115 ϕ is Σ0
1 if it can be

written as ∃n θ where n is a number variable and θ is a bounded quantifier formula.116

Similarly, a formula ϕ is Π0
1 if it can be written as ∀n θ, where n is a number variable and θ

is a bounded quantifier formula. Finally, we say a formula is ∆0
1 if it is both Σ0

1 and Π0
1.

This definition generalizes to:

Definition C.8. (Σ0
k and Π0

k formulas) For 0 ≤ k ∈ ω, a formula ϕ is said to be Σ0
k

(respectively Π0
k) if it is of the form ∃n1 ∀n2 ∃n3 · · ·nk θ (respectively ∀n1 ∃n2 ∀n3 · · ·nk θ)

with n1, . . . , nk numerical variables and θ a bounded quantifier formula. Finally, we say a
formula is ∆0

k if it is both Σ0
k and Π0

k.

Definition C.9. (Arithmetical Formula) A formula ϕ is said to be arithmetical if it contains
no set quantifiers (all quantifiers appearing in ϕ are numerical).

Definition C.10. (Σ1
1 and Π1

1 formulas) We say that a formula ϕ is Σ1
1 if it can be written

as ∃X θ where X is a set variable and θ is an arithmetical formula. Similarly, a formula ϕ is
said to be Π1

1 when it is of the form ∀Xθ for X a set variable and θ an arithmetical formula.
Finally, a formula is ∆1

1 if it is both Σ1
1 and Π1

1.

This generalizes to:

Definition C.11. (Σ1
k and Π1

k formulas) For 0 ≤ k ∈ ω, a formula ϕ is said to be Σ1
k if

it can be written as ∃X1 ∀X2 ∃X3 · · ·Xk θ for X1, . . . , Xk set variables and θ arithmetical.
Similarly, a formula ϕ is Π1

k if it can be written as ∀X1 ∃X2 ∀X3 · · ·Xk θ for X1, . . . , Xk set
variables and θ arithmetical. Finally, a formula is ∆1

k if it is both Σ1
k and Π1

k.

Unless otherwise noted, the subsystems considered below will all consist of the number-
theoretic axioms, a restricted induction scheme,117 and a specific comprehension scheme.

115Moving forward, I will simply assume that all formulas are L2-formulas and drop the qualification. I will
explicitly remark upon any formula that is not L2.
116A bounded quantifier formula is a formula ϕ such that all quantifiers occurring in ϕ are bounded

quantifiers. A bounded (numerical) quantifier is one of the following: ∀n < t, ∀n ≤ t, ∃n < t, ∃n ≤ t.
117More precisely, Σ0

1 induction, which is defined below. This is stronger than the induction scheme, R-IND,
given in the definition of Z2, but weaker than full second order induction. [Simpson, 1999] moves back and
forth between various induction schemes, which is unnecessary. Fixing our induction scheme as Σ0

1 from the
start does not affect the following results in any meaningful way. Also, please see the concluding remark of
this section.
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That is, only the set existence axiom118 will differ in each subsystem. This is, however, very
significant as the goal of the reverse mathematical program is to ascertain the set existence
axioms necessary to prove theorems of “ordinary” (or non-set-theoretic) mathematics. It
turns out that, in some cases, if a theorem of ordinary mathematics can be proved from an
appropriate set existence principle, then the theorem will be equivalent (over some weaker
subsystem) to the set existence principle. More precisely, consider some theorem of “ordi-
nary” mathematics τ . One then formalizes this theorem as τ̃ (in Z2) and shows that τ̃ is not
provable in some weak base theory T1. Then one shows that some stronger extension T2 of
T1 proves τ̃ . This gives one direction of the equivalence. Next take τ̃ + T1 and show that
this proves the axioms of T2 (this direction is often called a “reversal”). Thus, conclude the
axioms of T2 and τ̃ are equivalent over T1.

Of course, there are infinitely many subsystems of Z2; however, it is quite interesting that
five subsystems (RCA0,WKL0,ACA0,ATR0,Π

1
1-CA0) occur repeatedly in the context of such

“reversals.” I define these subsystems (along with a few others) in the order of increasing
axiomatic strength. Indeed, from the model theory of these subsystems we have an ascending
chain of proper subsystems:

RCA0 ⊂ WKL0 ⊂ ACA0 ⊂ ATR0 ⊂ Π1
1-CA0 . (C.5)

Remark C.12. (Induction Schemes) I have followed [Simpson, 1999] in recording R-IND as
the induction scheme for Z2. Note that this is weaker than the full second order induction
scheme (IND):

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n) (C.6)

for ϕ any L2-formula. However, from the unrestricted comprehension axiom (given in the
definition of Z2) and R-IND we can derive IND.

Whenever arbitrary subsystem X is written with a 0-subscript, i.e., X0, this indicates the use
of some form of restricted induction. The most commonly discussed subsystems of Z2 use an
induction scheme called Σ0

1-IND, which is stronger than R-IND, but much weaker than IND.
The reader may assume, for the sake of uniformity, that all subsystems written with a 0-
subscript have Σ0

1-IND as their induction scheme. However, whenever a subsystem is written
without such a subscript, it will employ full induction IND. This only becomes relevant for
our discussion of ∆1

1-CA below, which features in my discussion of [Feferman, 1987] in Section
2.6 of the main paper. The full induction scheme in this system is of particular importance
because it allows for ∆1

1-CA ` Con(PA). This is all quite subtle, and most readers need not
concern themselves with this.

118I identify the comprehension schemes as set existence principles, but this identification would not be
accepted by all. See [Dean and Walsh, 2017], Section 6 and [Eastaugh, 2019]. For our purposes, at least,
very little turns upon this.
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RCA0

The first subsystem of Z2 we consider is Recursive Comprehension written as RCA0. This is a
rather weak system; it may be thought to correspond in a suitably loose sense119 to Bishop’s
development of constructive analysis120. RCA0 is especially important in the reverse mathe-
matical program as it usually serves as the appropriate base theory in which equivalences (in
the sense above) are proved. Simply put, many results of reverse mathematics are theorems
of RCA0.

Informally, RCA0 contains the following axioms: the number theoretic axioms given above;
Σ0

1-induction; a set existence axiom asserting the existence of ∆0
1 (recursive/computable)

sets. We require the following definition:

Definition C.13. (Σ0
1-induction) The Σ0

1-induction scheme, Σ0
1-IND, is the restriction of the

full second-order induction scheme IND to formulas ϕ(n) which are Σ0
1. That is, we take the

universal closure of

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀n(ϕ(n)) (C.7)

where ϕ(n) is any Σ0
1 formula.

We now turn to the relevant set existence axiom:

Definition C.14. (∆0
1 Comprehension) The ∆0

1 comprehension scheme consists of the uni-
versal closures of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)), (C.8)

where ϕ(n) is any Σ0
1 formula, ψ(n) is any Π0

1 formula, n is a numerical variable, and X is
a set variable not freely occurring in ϕ(n).

Definition C.15. (RCA0) RCA0 is the subsystem of Z2 consisting of the number-theoretic
axioms of Z2, Σ0

1-IND, and ∆0
1 comprehension.

An important conservation result for RCA0 is the following:

Theorem C.16. RCA0 is conservative over PRA for Π0
2 sentences.

This follows from Parsons’s result121 that IΣ1 is conservative over PRA for Π0
2 sentences and

the fact that RCA0 and IΣ1 prove the same first-order sentences. See [Simpson, 1999], pp.
369 for the latter result.

119For instance, mathematics done in RCA0 utilizes the law of excluded middle and the meanings of propo-
sitional connectives and quantifiers are classical. The constructivists would not countenance either of these.
120See [Bishop and Bridges, 1985].
121See [Parsons, 1970].
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WKL0

Next define WKL0, the subsystem of Z2 consisting of RCA0 and a set existence principle
called Weak König’s Lemma. It is important to note that WKL0 is much stronger than
RCA0 and is able to accommodate many theorems of “ordinary” mathematics.122 WKL0

is of non-trivial philosophical significance as it enables what Simpson has called a “partial
realization” of Hilbert’s program. Broadly speaking, Hilbert sought to justify all classical, in-
finitary mathematics in terms of epistemically privileged finitary reasoning, where “finitary”
means appealing to nothing but “extralogical concrete objects that are intuitively present as
immediate experience prior to all thought” ([Hilbert, 1967], 376). Hilbert did not make what
he meant by “finitary” mathematically precise, but it is commonly accepted that the system
PRA is quite close to his intentions.123 The program was to be carried out by formalizing
the whole of classical mathematics and then providing a finitary consistency proof of this
formal system. Unfortunately, Gödel’s Second Incompleteness Theorem dashed the hopes of
a complete realization of the program.124 However, two lessons of the reverse mathematical
literature are: (i) many infinitary theorems of ordinary mathematics are equivalent to WKL0

over RCA0; (ii) there are conservation results for WKL0 over PRA (see below). Thus, we get
a partial finitary reduction in Hilbert’s sense.125

Lemma C.17. (Weak König’s Lemma) Write 2<N for the full binary tree, i.e., the set of
codes for finite sequences of 0’s and 1’s (in RCA0). Then every infinite subtree T of 2<N has
an infinite path.126

Definition C.18. (WKL0) The subsystem WKL0 consists of RCA0 and Weak König’s Lemma.

An important conservation result is the following:

Theorem C.19. (Harrington) WKL0 is conservative over RCA0 for Π1
1 sentences.

This is attributed to Harrington, but was first published in [Simpson, 1999], pp. 369-72.
This theorem along with Parsons’s result yields:

Theorem C.20. (Friedman; unpublished) WKL0 is conservative over PRA for Π0
2 sentences.

122See [Simpson, 1999], Chapters IV and IX.
123Following the argument in [Tait, 1981].
124In particular, infinitary mathematics is not conservative over PRA for Π0

1 sentences. Interestingly,
however, Gödel himself was unsure of the significance of his incompleteness results for Hilbert’s Program
(see his [Gödel, 1933]). He later concluded that his findings were in fact deadly to the original enterprise
([Gödel, 1958]).
125This interpretation of “relativizing” Hilbert’s Program follows [Simpson, 1999]. However, another sort

of relativization became available after the publication of [Gödel, 1933]. Here Gödel proved that one can
translate PA into Heyting arithmetic (HA), which differs from PA only insofar as it does not employ the
Law of Excluded Middle, i.e., the logic of HA is intuitionistic. This result explicitly satisfied one aim of
Hilbert’s Program: justify classical mathematics (or at least number theory) on constructive principles
alone. Implicitly, because one could argue that HA utilizes merely a potential infinity of numbers, Gödel’s
translation also serves to eliminate the actual infinite from number theory. Thus, Hilbert’s Program might
be “relativized” by employing only constructive methods of justification for infinitary theorems.
126More explicitly, we write T ⊆ N (via coding finite sequences as natural numbers) and let a path be a

function f : N→ {0, 1} such that for all n ∈ N we have 〈f(0), . . . , f(n− 1)〉 ∈ T .
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This is due to Friedman, but appears in [Simpson, 1999], pp. 381. It indicates that, from
the perspective of mathematical logic, WKL0 is weak; however, as discussed above, it accom-
modates a good deal of ordinary mathematical practice. Thus, this result is crucial for the
partial realization of Hilbert’s program.

Finally, I define an extension of WKL0 known as WKL+
0 .127

Definition C.21. The subsystem WKL+
0 is defined as WKL0 along with the following axiom

scheme

∀n∀σ ∃τ(τ → σ ∧ ϕ(n, τ))→ ∃X ∀n∃k(ϕ(n,X[k])) (C.9)

where n is a numerical variable, σ and τ range over 2<N, X ranges over 2N, and ϕ is an arith-
metical formula. Essentially, this scheme asserts that, given some sequence of arithmetically
defined dense subsets of 2<N, the sequence will have non-empty intersection.

Theorem C.22. (Brown and Simpson; [Brown and Simpson, 1993]) The subsystem WKL+
0

is conservative over RCA0 for Π1
1 sentences.

This conservativity result along with the result of Parsons yields:

Theorem C.23. (Brown and Simpson; [Brown and Simpson, 1993]) The subsystem WKL+
0

is conservative over PRA for Π0
2 sentences.

ACA0

The subsystem ACA0 consists of RCA0 along with a comprehension scheme asserting the
existence of arithmetically definable sets. A good deal more mathematics can be developed
in ACA0 than in the preceding subsystems. In particular, we can formalize many central
concepts of analysis, topology, and countable algebra. Note that, even though one can
define the number systems N,Z,Q, and R in RCA0, there are crucial results of analysis that
only become available in ACA0, e.g., the Bolzano-Weierstrass theorem and the monotone
convergence theorem.128 ACA0 also has an impressive philosophical pedigree. Weyl’s Das
Kontinuum (1918) seeks to develop a predicative129 foundation for classical mathematics by
using a system somewhat like ACA0. In Feferman’s words, “Weyl’s main step, then, was
to see what could be accomplished in analysis if one worked...only with the principle of
arithmetical definition” ([Feferman, 1987], 173). This approach was further expanded upon
and refined in the work of Kondô, Kriesel, and, of course, Feferman.130

127This was first studied in [Brown and Simpson, 1993].
128Indeed, Bolzano-Weierstrass and monotone convergence are equivalent to ACA0 over RCA0.
129Poincaré calls a definition predicative, “only if it excludes all objects that are dependent upon the

notion defined” (quoted in [Mancosu, 1998], 68). The distinction between predicative and impredicative
definitions (see below for the latter) can be quite slippery as there are many different formulations of it
(some incompatible) in the mathematical and philosophical literature. Poincaré’s gloss should suffice here.
130See [Mancosu, 1998], Part II, for an introduction to the historical and philosophical context of Weyl’s

program. [Dean and Walsh, 2017], Section 2, also contains a discussion of predicativity in the context of
reverse mathematics. See this latter paper for many references concerning the development of predicativity
in the 20th century.
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Definition C.24. (Arithmetical Comprehension Scheme) The arithmetical comprehension
scheme is the universal closure of

∃X∀n(n ∈ X ↔ ϕ(n)) (C.10)

for ϕ(n) an arithmetical formula in which X does not occur free.

Definition C.25. (ACA0) ACA0 consists of RCA0 and arithmetical comprehension.

It should be noted that there is a very close relationship between ACA0 and first order Peano
arithmetic (PA). Indeed, PA is the first order part of ACA0. Put differently

Theorem C.26. (Folklore) ACA0 is a conservative extension of PA for all arithmetical for-
mulas.

∆1
1-CA0

This subsystem immediately follows ACA0 in axiomatic strength. I dispense with it quickly,
since it serves as a stepping stone to ∆1

1-CA.

Definition C.27. (∆1
1 Comprehension) The ∆1

1 comprehension scheme is the universal clo-
sure of

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)) (C.11)

where ϕ(n) is any Σ1
1 formula, ψ(n) is any Π1

1 formula, n is a number variable, and X is a
set variable with X freely occurring in neither ϕ(n) nor ψ(n).

Definition C.28. (∆1
1-CA0) ∆1

1-CA0 consists of ACA0 and ∆1
1 Comprehension.

It is quite surprising that, just as with ACA0, we have the following conservation result:

Theorem C.29. (Barwise and Schlipf) ∆1
1-CA0 is conservative over PA for all arithmetical

formulas.

This was first proved in [Barwise and Schlipf, 1975].

∆1
1-CA

Here I define ∆1
1-CA. This occurs briefly at the beginning of Section 2.6 as there it is

remarked that Feferman shows that ∆1
1-CA ` Con(PA) ([Feferman, 1987], 191-192). This

system is much stronger than PA and stronger than ∆1
1-CA0 because its axioms include the

full second order induction scheme IND.

Definition C.30. (∆1
1-CA) ∆1

1-CA consists of ∆1
1-CA0, but using the full induction axiom

IND in place of R-IND.
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ATR0

I define this subsystem for the sake of completeness; however, it does not feature in the
discussion of the paper unlike the other systems presented here.131 The reader may skip the
details, if they wish.

ATR0 consists of ACA0 and a comprehension scheme called arithmetical transfinite recur-
sion, which asserts the existence of sets defined by iterating arithmetical comprehension
along countable wellorderings. This set existence axiom registers a significant increase in
axiomatic strength as one can begin to prove theorems concerning ordinals, descriptive set
theory, and infinitary combinatorics in ATR0. From a philosophical perspective, ATR0 can be
thought of as contributing to the program of predicative reductionism (cf. Hilbert’s finitistic
reductionism). This is because ATR0 is conservative over Feferman’s system IR of predicative
analysis132 for Π1

1 sentences, just as WKL0 is conservative over PRA for Π0
2 sentences.

We require the following definitions in order to get the comprehension scheme:

Definition C.31. A countable linear ordering is a structure (A,<A) with A ⊆ N and
<A⊆ N × N an irreflexive linear ordering of A. That is, <A is transitive and only one of
the following may hold for a, b ∈ A: a = b ∨ a <A b ∨ b <A a. A countable linear ordering
(A,<A) is a countable wellordering if there is no sequence 〈an : n ∈ N〉 of elements of A such
that an+1 <A an for all n ∈ N.

Definition C.32. (Arithmetical Transfinite Recursion) Let θ(n,X) be an arithmetical for-
mula with n and X free variables (note that θ(n,X) may contain additional free variables).
Fixing any additional free variables, θ may be considered as an operator:

Θ : P(N)→P(N), Θ(X) = {n ∈ N : θ(n,X)} . (C.12)

For any countable wellordering (A,<A), let Y be the set obtained by transfinitely iterating
Θ along (A,<A). More precisely, Y is defined by the conditions: Y ⊆ N × A and for each
a ∈ A, Ya = Θ(Y a), where Ya = {m : (m, a) ∈ Y } and Y a = {(n, b) : n ∈ Yb ∧ b <A a}. That
is, for each a ∈ A, Y a is formed by iterating Θ along an initial segment of (A,<A) up to and
not including a, and Ya is formed by applying Θ one final time.

The comprehension scheme arithmetical transfinite recursion asserts that such a set Y exists
for every operator Θ and every (A,<A).

Definition C.33. (ATR0) ATR0 consists of ACA0 and the comprehension scheme of arith-
metical transfinite recursion.

Π1
1-CA0

Finally, we arrive at the strongest of the most commonly studied subsystems of second order
arithmetic: Π1

1-CA0. This system is of particular interest for us as its axioms are equivalent,

131See subsection I.11, Chapter V, and Chapter IX.5 of [Simpson, 1999] for more information.
132See [Feferman, 1964] and [Feferman, 1968] for the formal development of predicative analysis.
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over ACA0, to the Furstenberg Structure Theorem.133 As Simpson notes, subsystems below
Π1

1-CA0 suffice to prove most of ordinary mathematics, but a few “exceptional theorems”
require the full strength of Π1

1-CA0. His examples come from diverse subfields of mathemat-
ics (countable algebra, topology, countable combinatorics, descriptive set theory), but they
all “directly or indirectly involve countable ordinal numbers” ([Simpson, 1999], 18). The
Furstenberg Structure Theorem is no exception to the rule.134

Π1
1-CA0, unlike ATR0 and ACA0, cannot be justified on predicative grounds,135 although, as

noted above in Section 2.6, this system does have a constructive justification via IDi
<ω. Thus,

Π1
1-CA0 represents an important juncture in the reverse mathematical hierarchy. Indeed,

Π1
1-CA0 is expressly impredicative since we quantify over the full powerset of N when defining

some particular subset of N (note the set quantifier in Π1
1 formulas). Despite the fact that

Π1
1-CA0 sits at a “conceptual fault line,” it has received less philosophical attention than

the forgoing subsystems, in part because it does not correspond to a classical foundational
program. One question I would like to pursue is whether Π1

1-CA0 can play a distinctive
epistemological role in the philosophy of mathematics, perhaps via an association of its
axiomatic strength with structural features involving countable ordinals and explanatory
power.136

Definition C.34. (Π1
1 Comprehension) The Π1

1 comprehension scheme is the universal clo-
sure of

∃X∀n(n ∈ X ↔ ϕ(n)) (C.13)

for all Π1
1 formulas ϕ(n) in which X does not occur free.

Thus we have:

Definition C.35. (Π1
1-CA0) Π1

1-CA0 consists of RCA0 and Π1
1 comprehension.

133See [Avigad, 2009], Theorem 5.3.
134Indeed, Beleznay and Foreman show that the length of the shortest tower satisfying the Furstenberg

Structure Theorem exhausts the set of countable ordinals. See [Beleznay and Foreman, 1996].
135Indeed, even ∆1

1-CA can be predicatively justified. See [Feferman and Sieg, 1981].
136Moving forward, one case to consider might be Kondô’s uniformization theorem for coanalytic sets. This

is equivalent to Π1
1-CA0 over ATR0 ([Simpson, 1999], 225). Other interesting cases to investigate deal with

the structure theory of abelian groups.
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D Inflationary Theory

Let me first give an extremely coarse overview of the substance of inflationary theory, after
which I show that the infinitude of the universe does not follow so easily from it (for a full
discussion see [Ellis and Stoeger, 2009]). The most basic (and least ontologically committed)
form of inflationary theory proposes that prior to the formation of our universe at the time of
the Big Bang, there was extant matter called a “false vacuum.” It is supposed that this false
vacuum is extremely high energy and is characterized by strong repulsive gravitational effects.
Because of these gravitational effects, an inflationary period of accelerating expansion would
then precede the Big Bang. The inflationary period would terminate when the unstable
false vacuum decays into a “genuine” vacuum, i.e., at the time of the Big Bang. Though this
is, of course, speculative, inflationary theory has gained rather wide acceptance due to its
explanatory power. A popular version is the so-called “multiverse” or “chaotic” inflationary
theory in which it is supposed that inflation ends at different times in different places in
the ambient “super-universe.” The inflationary process generates many (perhaps infinitely
many) “bubble universes” (of which our universe would be one) embedded in the continuously
expanding “super-universe.” This proposal in turn generates scores of philosophical puzzles
and difficulties (indeed, I would be inclined to handle multiverse talk with extreme caution),
but we only require this extremely general overview for our purposes.

The substance of my dispute with the claims in [Knobe et al., 2006] can be seen by
considering Section II, “Bubble Geometry,” of [Vilenkin and Winitzki, 1997]. Here the au-
thors compute the three-volume of a hypersurface (a “bubble universe”) produced by the
inflationary process. They first consider the false vacuum metric, given by

ds2 = −dt2 + exp(2H0t)[dr
2 + r2dΩ2] (D.1)

with dΩ2 := dθ2 + sin2 θ dφ2, H0 =
√

8πV0/3, and V0 the potential of the false vacuum.
At the “moment of nucleation,” i.e., when the false vacuum decays into a genuine vacuum,
particular “bubble universes” form and evolve according to the equations of the FLRW
model. In particular, we get the metric

ds2 = −dτ 2 + a2(τ)[dξ2 + sinh2 ξdΩ2] (D.2)

The scale factor a2(τ) will not matter for our purposes, so I ignore it. It is argued that, at
the time of nucleation, we can relate the metrics of the “super-universe” and a particular
FLRW universe by setting the time variables t = τ = 0. But now what are the values of the
spatial coordinates r and ξ? This is the crucial point because, depending on what we say
about the value of r at the time of nucleation, the FLRW universe generated by inflation
will be either actually infinite or merely tending to infinity. [Vilenkin and Winitzki, 1997]
set r = r0 when the false vacuum nucleates into a true vacuum, i.e., when the super-universe
produces an FLRW universe. This means that the radial position is assumed to be a point
and thus is assumed to have no spatial extent. The effect on Equation D.1 is easy to see: all
spatial components simply vanish and so ds2 = −dt2. Thus, at the time of nucleation, we
simply have s = t = 0 and ds2 = 0. This then defines a future light cone that extends to
infinity “in one direction.” [Vilenkin and Winitzki, 1997] describe this result as “the surface
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τ = 0 is the future light cone of that center...” and so “the boundary of the bubble can be
approximated by this light cone” (549). The essential point is that all of space, infinitely
much of it, comes into existence instantaneously at the time of nucleation.

I wish to emphasize that this will only be true provided that the initial radial position r
of the universe is assumed to be point-like, i.e., without extension. And this seems to be an
artifact of the model in question; what is currently known of quantum cosmology indicates
that the initial radial position is very small but still extended.137 Thus, this assumption and
its consequences seem somewhat dubious pending further evidence. Thus, it is not true that
inflationary theory immediately implies that the universe is infinite.

137See [Freivogel et al., 2006] and discussion in [Ellis and Stoeger, 2009].
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E Alpha-Theory and Numerosities

E.1 Properties of Counting Systems

Definition E.1. A counting system (U,N, n) satisfies the following properties:

1. U is closed under set inclusion, disjoint union, and Cartesian products.

2. If A ∈ U is finite, then n(A) = |A| is the number of elements of A. (n agrees with
cardinalities in finite sets.)

3. If A ⊆ B, then n(A) ≤ n(B) (monotonicity).

4. If n(A) = n(A′) and n(B) = n(B′), then n(A tB) = n(A′ tB′).

5. If n(A) = n(A′) and n(B) = n(B′), then n(A×B) = n(A′ ×B′).

6. n({P} × A) = n(A× {P}) = n(A) for every singleton P .

E.2 The Axioms of Alpha-Calculus Theory

Axiom E.2. Every real-valued sequence ϕ(n) has a unique alpha-limit, limn↑α ϕ(n).

Axiom E.3. If cr(n) = r is the constant sequence with value r ∈ R, then limn↑α cr(n) = r.

Axiom E.4. The alpha-limit of the identity sequence is the “new” infinite number α, i.e.,
limn↑α n = α /∈ N.

Axiom E.5. The set of all alpha-limits of real-valued sequences

R∗ =

{
lim
n↑α

ϕ(n) : ϕ : N→ R
}

(E.1)

satisfies the field axioms. Furthermore, sums and products of alpha-limits are compatible
with pointwise sums and products of sequences.

Finally, there is the Qualified Set Axiom, which, given some choice of infinite Q ⊆ N, can be
consistently added to the above axioms.138 This axiom merits its own discussion; see below.

E.3 Labelled Sets and Alpha-Limits

Proof of Proposition 4.2.6: Assume that γA = γB, i.e., the functions coincide for all
n ∈ N0. Now we establish that A ∼= B. First we show the existence of a bijection. Let
An = {a ∈ A : `A(a) = n} and Bn = {b ∈ B : `B(b) = n} for all n. Then∣∣A0

∣∣ = γA(0) = γB(0) =
∣∣B0

∣∣ . (E.2)

138This is proved in Theorem 2.56 of [Benci and Nasso, 2019].
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Then, for every subsequent n, we can obtain the cardinality of An and Bn by writing∣∣An∣∣ = γA(n)− γA(n− 1) = γB(n)− γB(n− 1) =
∣∣Bn

∣∣ . (E.3)

Thus, for every n, we have a bijection ϕn : An → Bn. Taking the union of these, we get
a bijection ϕ : A → B where A =

⋃
n≥0An and B =

⋃
n≥0Bn. Now we must show that

the labellings for A and B coincide, i.e., `B ◦ ϕ = `A. But this is immediate from our
construction, since `A(a) = n iff a ∈ An. Applying our bijection ϕ to a, we see

ϕ(a) = ϕn(a) ∈ Bn ⇐⇒ `B(ϕ(a)) = n. (E.4)

Thus, by this chain of equivalences, `A(a) = n = `B(ϕ(a)).
Now assume that A ∼= B, i.e., we have a bijection ϕ : A→ B such that `B ◦ ϕ = `A. Then,
as we saw, Bn = {b ∈ B : `B(b) = n} =

{
ϕ(a) : a ∈ An

}
with An as above. Thus,∣∣An∣∣ =

∣∣Bn

∣∣ =⇒ γA(n) = γB(n) (E.5)

for all n.

Proof of Proposition 4.2.9: First let us prove: if f(n) 6= g(n) for all n, then limn↑α f(n) 6=
limn↑α g(n) (Claim 1). All we require are the axioms of Alpha-calculus and basic properties
of fields. For all n, define

h(n) =
1

f(n)− g(n)
(E.6)

with f(n)−g(n) 6= 0. Taking α-limits, we obtain limn↑α h(n)·(limn↑α f(n)−limn↑α g(n)) = 1.
Hence, limn↑α f(n) 6= limn↑α g(n).

Now we prove: if f(n) = g(n) for all but finitely many n, then limn↑α f(n) = limn↑α g(n)
(Claim 2). Consider the set on which f(n) and g(n) disagree, written as {n1, . . . , nk}. Now
note that

(f(n)− g(n)) · (n− n1) · · · (n− nk) = 0. (E.7)

Taking alpha-limits yields(
lim
n↑α

f(n)− lim
n↑α

g(n)

)
· (α− n1) · · · (α− nk) = 0. (E.8)

Since α /∈ N, it must be the case that α − ni 6= 0 for all i. Thus, in order to get Equation
E.8, we must have limn↑α f(n) = limn↑α g(n), as desired.

211



Finally, we can prove Proposition 4.2.9. Consider the following sequence

g′(n) =

{
g(n) f(n) 6= g(n)

g(n) + 1 else.
(E.9)

Then f(n) 6= g′(n) for all n, so limn↑α f(n) 6= limn↑α g
′(n) by the proof of Claim 1. Further-

more, we see that limn↑α g
′(n) = limn↑α g(n) because g(n) = g′(n) for all but finitely many n

by the proof of Claim 2. Therefore, limn↑α f(n) 6= limn↑α g(n), as desired.

E.4 Qualified Sets

In order to make sense of the discussion in Subsection 4.2.1 and Theorem 4.3.2 above, we
require the notions of an “Alpha-measure” and “qualified set.”

Definition E.6. The Alpha-measure is the function

µα : P(N)→ {0, 1} (E.10)

defined as

µα(A) =

{
1 α ∈ A∗

0 α /∈ A∗
(E.11)

where A∗ ⊆ R∗ is the hyper-extension of set A ⊆ R, i.e., the set of all alpha-limits of real
sequences taking values in A.

We then have the following:

Definition E.7. A set A ⊆ N is qualified if µα(A) = 1. Write Q for the family of qualified
sets.

The importance of qualified sets is justified by the following theorem

Theorem E.8. Let ϕ, ψ be real-valued sequences. Then the set {n ∈ N : ϕ(n) = ψ(n)} is
qualified (or: ϕ(n) = ψ(n) holds almost everywhere) iff

lim
n↑α

ϕ(n) = lim
n↑α

ψ(n). (E.12)

That is, the alpha-limit of a sequence depends only on the values of the sequence taken on a
qualified set.

Proof. See [Benci and Nasso, 2019], p. 25-26.

Using this notion of qualified sets, we can see how to extend properties enjoyed by natural
numbers to properties of the corresponding hypernatural numbers.

Definition E.9. For property P of natural numbers, the property P ∗ of hypernatural num-
bers is satisfied by ν ∈ N∗ if ν ∈ {n ∈ N : P (n)}∗.
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Thus, if we are interested in examining properties of α, we note that α satisfies P ∗ iff
α ∈ {n ∈ N : P (n)}∗ iff {n ∈ N : P (n)} is qualified. This provides us with the flexibility
that proved so useful in Theorem 4.3.2. That is, in order to validate fundamental intuitions
about infinite subsets of N, we wanted α to be a multiple of some k ∈ N, our property P .
This is achieved using the Qualified Set Axiom for appropriate choice of Q:

Axiom E.10 (Qualified Set Axiom (QSA)). The set Q is qualified, i.e., α ∈ Q∗.

Thus, by choosing Q = {m ∈ N : m!} to be qualified by invoking QSA, we guarantee that
α ∈ Q∗, and thus that α satisfies P ∗, viz., α/k ∈ N∗ for all k ∈ N. Finally, it should be
noted that, for any choice of infinite Q ⊆ N, one can consistently add QSA for Q to the other
axioms of Alpha-Calculus. Again, this is proved in Theorem 2.56 of [Benci and Nasso, 2019].
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F Kolmogorov’s Axioms

Classical probability is based upon the work of Kolmogorov. A Kolmogorov probability theory
is a triple (Ω,F , P ) where Ω is a non-empty set of elementary events (the sample space), F
is a σ-algebra139 over Ω (the event space), and P : F → R is a probability function. That
is, for some event E ∈ F , P assigns to E the real-valued probability that E occurs. It is
required that (Ω,F , P ) satisfy the following axioms:

Axiom F.1. (Positivity). For all E ∈ F , P (E) ≥ 0.

Axiom F.2. (Normalization). P (Ω) = 1.

Axiom F.3. (Finite Additivity). For all E1, E2 ∈ F such that E1 ∩ E2 = ∅,

P (E1 ∪ E2) = P (E1) + P (E2).

Axiom F.4. (Continuity). Let A =
⋃
n∈NAn where ∀n ∈ N, An ⊆ An+1 ∈ F . Then

P (A) = sup
n∈N

P (An).

Remark F.5. Requiring the Continuity Axiom of one’s probability space is equivalent to
requiring Countable Additivity : for all E1, E2, . . . ∈ F such that E1 ∩ E2 ∩ · · · = ∅, we have

P (E1 ∪ E2 ∪ · · · ) = P (E1) + P (E2) + · · · (F.1)

139F ⊆P(Ω) is a σ-algebra over Ω if F is closed under complements, intersections, and countable unions.
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G Non-Archimedean Probability (NAP) Axioms

The most obvious difference between a Kolmogorov probability theory and a non-Archimedean
theory is that our probability function, now written as PN , will have different a domain and
range. In particular, one “problem” with Kolmogorov’s theory is that the domain of P
is not the full powerset of Ω, but rather a restricted family of subsets, the σ-algebra F .
Intuitively, however, one would expect a probability assignment to be given for every ele-
ment of P(Ω), including singletons. This intuition requires that we change the range of our
probability function to a non-Archimedean field, viz., a field with infinitesimals. A triple
(Ω, PN , J) is called an NAP probability theory, where Ω is a non-empty set of elementary
events, PN : P(Ω)→ F∗ is a function with F∗ a non-Archimedean field, and J is an algebra
homomorphism (to be defined). It is required that (Ω, PN , J) satisfy the following axioms:

Axiom G.1. (Positivity). For all E ∈P(Ω), PN(E) ≥ 0.

Axiom G.2. (Normalization). For all E ∈P(Ω), PN(E) = 1⇔ E = Ω.

Axiom G.3. (Finite Additivity). For all E1, E2 ∈P(Ω) such that E1 ∩ E2 = ∅,

PN(E1 ∪ E2) = PN(E1) + PN(E2).

Since in NAP theory the range of our probability function PN is no longer R but rather
some non-Archimedean field, we must replace Axiom F.4 with a version suitable for non-
Archimedean fields. (This is because in a non-Archimedean field the existence of a supremum
is not guaranteed.140) Thus, we also require that (Ω, PN , J) satisfy:

Axiom G.4 (Non-Archimedean Continuity). For all E1, E2 ∈ P(Ω) with E2 6= ∅, let the
conditional probability of E1 be given by

PN(E1|E2) =
PN(E1 ∩ E2)

PN(E2)
. (G.1)

Then the following hold:

1. For all λ ∈ P0
fin(Ω), PN(E1|λ) ∈ R+, where P0

fin(Ω) is the set of finite subsets of Ω
excluding the empty set.

2. There is an algebra homomorphism

J : F (P0
fin(Ω),R)→ F∗ (G.2)

where F (P0
fin(Ω),R) is the algebra of all real functions on P0

fin(Ω) such that for all
E ∈P(Ω)

PN(E) = J(ϕE) (G.3)

with ϕE(λ) = PN(E|λ) for any λ ∈P0
fin(Ω).

140Up to isomorphism, the only complete ordered field is R.

215



As the authors of [Benci et al., 2013] realize, the meaning of the above axiom is far from
evident. Thus, they prove a theorem that helps to establish the following intuition: the
knowledge of the conditional probability of event E, relative to a suitably chosen family
of sets (here λn ∈ P0

fin(Ω)) provides knowledge of the probability of E.141 In the classical
setting:

P (E) = lim
n→∞

P (E|Ωn) (G.4)

where Ω =
⋃
n∈N Ωn. In the non-Archimedean setting:

PN(E) = J(ϕE(λ)) = J(PN(E|λ)), (G.5)

and so the homomorphism J can be thought of as a sort of limit. We can develop this idea
by writing

PN(E) = J(ϕE(λ)) = lim
λ∈P0

fin(Ω)
λ↑Ω

ϕE(λ) = lim
λ∈P0

fin(Ω)
λ↑Ω

PN(E|λ). (G.6)

The limit is itself determined by the choice of an ideal IΛ ⊂ F (P0
fin(Ω),R) and so depends

on an appropriate choice of a family of sets Λ.142 Thus, we can express this limit more
compactly as

J(ϕ) = lim
λ∈Λ

ϕ(λ), (G.7)

and call this the Λ-limit.

141See Section 3.2 of [Benci et al., 2013]. See also [Benci et al., 2018], Sections 3.2 and 3.3. I follow the
notation of the former paper.
142More precisely: the values ϕ assumes on Λ. See [Benci et al., 2013], p. 135, Theorem 16.
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H Translation of §5 of Bertrand’s Calcul des Probabilités

Procedure I:

One can say: if one of the ends of the chord is known, this information does not
change the probability; the symmetry of the circle does not allow any other influ-
ence, favorable or unfavorable, to be attached to the occurrence of the requested
event.

One of the ends of the chord being known, the direction [of the chord] must be
determined at random. If one draws the two sides of the equilateral triangle,
having as their vertex the given point, they form, between themselves and the
tangent, three angles of 60 degrees. The chord, in order to be longer than the
side of the equilateral triangle, must be found in the one of the three angles that
is included between the other two. The probability that, of the three equal angles
that can receive it, the direction is in that one [i.e., the middle angle] seems, by
definition, equal to 1

3
.

Procedure II:

One can also say: if one knows the direction of the chord, this information
does not change the probability. The symmetry of the circle does not allow any
other influence, favorable or unfavorable, to be attached to the occurrence of the
requested event.

The direction of the chord being given, it [the chord], in order to be longer than
the side of the equilateral triangle, must intersect one or the other of the radii
that comprise the perpendicular diameter in the half closest to the center. The
probability that this is so seems, by definition, equal to 1

2
.

Procedure III:

One can say yet again: to choose a chord at random is to choose its midpoint
at random. In order that the chord be longer than the side of the equilateral
triangle, it is necessary and sufficient that the midpoint be at a shorter distance
from the center than the midpoint of the radius, that is, inside a circle four times
smaller in area. The number of points located in the interior of an area four
times fewer is four times fewer. The probability that the chord whose midpoint
is chosen at random be greater than the side of the equilateral triangle seems, by
definition, equal to 1

4
.

Conclusion:

Among these three answers, which is the true one? None of the three is false,
nor correct, but the question is ill-posed.
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