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Hole-induced Dynamic Nuclear Polarization in Quantum Dots

Wen Yang and L. J. Sham
Center for Advanced Nanoscience, Department of Physics,

University of California San Diego, La Jolla, California 92093-0319, USA

We present a microscopic theory showing that an optically excited heavy hole can induce a steady-state nu-
clear polarization in a quantum dot. With the preferential direction of the nuclear spin flip set by the energy
mismatch instead of thermal relaxation, the resulting nuclear polarization shows a sign dependence on the prod-
uct of the nuclear Zeeman splitting and the frequency detuning of the pumping laser, leading to experimentally
observed bidirectional hysteretic locking or shift of the optical absorption peak, accompanied by a significant
suppression of the nuclear fluctuation and hence prolonged electron spin coherence time.

PACS numbers: 78.67.Hc, 72.25.-b, 71.70.Jp, 03.67.Lx, 05.70.Ln

Electron spins in semiconductor quantum dots (QDs) are
promising candidates as qubits for quantum technology [1].
The main practical obstacle is the short spin coherence time,
limited to a few nanoseconds by the contact hyperfine inter-
action with the QD nuclear spins [2], which produce a fluc-
tuating effective magnetic field that randomly shifts the elec-
tron Zeeman splitting (referred to as Overhauser shift in lit-
erature) and rapidly diminishes its phase coherence [3]. To
suppress the nuclear fluctuation and hence the electron spin
decoherence, the simplest idea is to completely polarize the
nuclear spins through dynamic nuclear polarization (DNP),
e.g., 99% polarization yields an order of magnitude suppres-
sion [4]. Two DNP mechanisms, the well-known Overhauser
effect [5] and the recently proposed reverse Overhauser effect
[6], both based on the electron-nuclear contact hyperfine in-
teraction, have been intensively investigated [7]. The highest
polarization achieved so far is only∼ 65% [8].

Recently, significant suppression of the QD nuclear fluctu-
ation has been reported [9–13]. In coherent dark-state spec-
troscopy in Voigt geometry, Xuet al. [11] observe a∼ 6-fold
suppression by one pump laser and a unprecedented∼ 103-
fold suppression by two pumps, accompanied by a symmet-
ric hysteretic broadening of the transient dark-state spectra.
The hysteretic broadening is attributed to the feedback from
a transient nuclear polarization induced by thenon-collinear
dipolar hyperfine interaction [14] with the optically excited
heavy hole through a semi-phenomenologicalthird-order pro-
cess [15]. A theory of hole-induced suppression of the nuclear
fluctuation is lacking at present.[16]

In this Letter, we present a microscopic theory showing that
through asecond-order process, an optically excited heavy
hole can induce asteady-state nuclear polarization. The pref-
erential direction of the nuclear spin flip is set by the prod-
uct of the nuclear Zeeman splittingωN and the detuning
∆ ≡ ωeh− ω between the electron-hole excitation energyωeh

and the laser frequencyω. This hole-induced DNP is mani-
fested as a bidirectional hysteretic locking of the opticalab-
sorption peak onto resonance or as a bidirectional hysteretic
shift of the peak away from zero detuning. This sheds light on
a puzzling observation of bidirectional hysteretic locking of
the neutral exciton absorption peak in Faraday geometry [12].
Through the Fokker-Planck equation, we found a∼ 10-fold
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FIG. 1. (color online). (a) Energy levels of the electron, the hole,
and a typical nuclear spin-1/2. (b) and (c): Two competing nuclear
spin-flip processes for (b)∆ > 0 and (c)∆ < 0, respectively.

suppression of the steady-state nuclear fluctuation, in reason-
able agreement with the single pump experiment of Ref. [11].

The essential physics of the hole-induced DNP is captured
by a simple model consisting of a heavy hole state|1〉, an elec-
tron state|0〉, and a typical nuclear spin-1/2 with Zeeman split-
tingωN in an external magnetic field along thez axis in a QD
[Fig. 1(a)]. The hole state is optically excited from the elec-
tron state by a pumping laser with Rabi frequencyΩR and de-
tuning∆ ≡ ωeh−ω. Due to heavy-light hole mixing, the hole-
nuclear dipolar hyperfine interaction contains a non-collinear
secular term ˆσ11ãh(Î+ + Î−) [11], where σ̂ ji ≡ | j〉 〈i| and
ãh ≡ O(η2)ah with η being the hole mixing coefficient. The
hole dephasing broadens|1, ↑〉 and|1, ↓〉 to Lorentzian distri-
butionL(γ2)(E) = (γ2/π)/(E2+γ2

2). In the weak pumping limit,

two nuclear spin-flip channels|0, ↓〉
ΩR
→ |1, ↓〉

ãh
→ |1, ↑〉 (down-

to-up channel) and|0, ↑〉
ΩR
→ |1, ↑〉

ãh
→ |1, ↓〉 (up-to-down chan-

nel) are opened up to leading order [Figs. 1(b) and 1(c)]. For
each channel, the transition rate isqualitatively proportional
to the square of the coupling strength times the final densityof
states determined by the energy mismatch between the inter-
mediate state and the initial state. For the down-to-up channel,
the transition rateW+ ∝ Ω2

Rã2
hL(γ2)(∆)L(γ2)(ωN+∆), where∆ is

the energy mismatch andL(γ2)(∆) is the final density of states

for |0, ↓〉
ΩR
→ |1, ↓〉, while (ωN + ∆) andL(γ2)(ωN + ∆) are cor-

responding quantities for|1, ↓〉
ãh
→ |1, ↑〉. For the up-to-down
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channel, the transition rateW− ∝ Ω2
Rã2

hL(γ2)(∆)L(γ2)(ωN − ∆).
Without other nuclear relaxation mechanisms, the hole mech-
anism alone establishes anintrinsic steady-state nuclear po-
larization

〈Îz〉0 ∝
W+ −W−
W+ +W−

= −
2∆ωN

∆2 + γ2
2

+ O(ω2
N/γ

2
2) (1)

during a time scale characterized by the inverse of the DNP
buildup rateΓp ≡ W+ + W− = O(ã2

hΩ
2
R). This polarization

shows a striking dependence on∆ωN : for ∆ωN < 0, the down-
to-up channel involving a smaller energy mismatch|ωN + ∆|

dominates and leads to〈Îz〉0 > 0; for ∆ωN < 0, the down-to-
up channel dominates and leads to〈Îz〉0 < 0.

Compared with the electron-induced DNP, the direction of
the hole-induced nuclear polarization is determined by theen-
ergy mismatch instead of thermal relaxation. For a nuclear
spin-1/2, the intrinsic electron-induced nuclear polarization
〈Îz〉0 = 〈Ŝ z

e〉 − 〈Ŝ
z
e〉eq (〈Îz〉0 = 〈Ŝ z

e〉eq) through the Over-
hauser (reverse Overhauser) mechanismalone is equal to the
nonequilibrium (equilibrium) part of the electron spin polar-
ization and is insensitive to the pumping frequency.

For the microscopic theory, we consider a negatively
charged QD for specificity. We identify|0〉 with the spin-up
electron state and|1〉 with the trion state (still referred to as
hole, which is the only active member of the trion). With the
spin flip of the electron (hole) suppressed by the large electron
(hole) Zeeman splitting, we focus on the energy-conserving
term σ̂00ae Îz/2 ≡ σ̂00ĥ of the electron-nuclear contact hy-
perfine interaction and the non-collinear term ˆσ11ãh(Î+ + Î−)
of the hole-nuclear dipolar hyperfine interaction. The den-
sity matrix ρ̂ obeys the Lindblad master equation with spon-
taneous emission|1〉 → |0〉 (rate γ1), hole dephasing (rate
γ2 ≥ γ1/2), and nuclear depolarization (rateΓ1) included. For
a typical self-assembled InAs QD containingN = 104 nuclear
spins under a magnetic fieldB = 1 T, we have (units:µs−1)
ΩR, γ1, γ2 ∼ 103, ωN ∼ 102, ae ∼ 10, ah ∼ 0.1ae [17], and
Γ1 ∼ 10−6. Since |ae| ≪ |ωN |, the contact hyperfine inter-
action has a negligible influence on the energy mismatch and
hence the nuclear polarization. Thatγ1,2 ≫ |ωN | provides a
small parameterωN/γ1,2 for keeping only the leading order.

In the exact steady state ˆ̺ of the electron-hole subsystem in
the absence of the nuclear spin, the populations on|0〉 and
|1〉 are ̺00 ≡ (1 + W/γ1)d0 and ̺11 ≡ (W/γ1)d0, respec-
tively, whered0 ≡ ̺00 − ̺11 = γ1/(γ1 + 2W) and W ≡

2π(ΩR/2)2L(γ2)(∆) is the optical transition rate between|0〉 and
|1〉. The symmetric and antisymmetric correlation functions of
the population fluctuation ˜σ00 ≡ σ̂00 − 〈σ̂00〉 areC(t − t′) ≡
〈{σ̃00(t), σ̃00(t′)}〉/2 andχ(t − t′) ≡ 〈[σ̃00(t), σ̃00(t′)]〉/2, re-
spectively, where〈· · · 〉 ≡ Tr ˆ̺(· · · ). Their Fourier transforms
are evaluated through the quantum regression theorem as

Cω=0 =
2
γ1
̺11d

2
0c1,

χω=ωN ≈
ωN∆

∆2 + γ2
2

2
γ2
̺11d2

0c0,
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FIG. 2. (color online). s(ss) andΓp (inset) from analytical (dashed
lines) and numerical (solid lines) results forΓ1 = 0.2 s−1 and (units
ns−1) ΩR = 0.2 (curve A), 1.0 (curve B), 2.0 (cuve C) andγ1 = γ2 =

1,ωN = −0.1, ãh = 4× 10−5 (corresponding to a typicalη ∼ 0.2).

wherec0 ≡ 1/2+γ2/γ1+ f +W/γ1 andc1 ≡ 1+ [γ1/(2γ2)] f +
W/γ1 are non-negative constants,f ≡ (γ2

2 − ∆
2)/(γ2

2 + ∆
2),

and “≈” is used for approximate results up to the first order of
ωN/γ1,2 hereafter.

In the absence of optical pumping, the system is in ther-
mal equilibriumρ̂eq = (1/2)(|0, ↑〉 〈0, ↑| + |0, ↓〉 〈0, ↓|) with the
nuclear spin being unpolarized. The (degree of) nuclear po-
larizations ≡ 2〈Îz〉 is driven by the optically generated hole,

ṡ = −Γ1s − 4ãh Im ρ1↑,1↓. (2)

In the weak pumping limit (Γp ≪ Γ1), perturbation theory
givesρ(ss)

1↑,1↓ = A+ρ
eq
0↓,0↓ + A∗−ρ

eq
0↑,0↑ with

A± =
ΩR/2

±ωN − iγ1

ãh

∆ ± ωN − iγ2

ΩR/2
∆ − iγ2

(3)

up to O(ãhΩ
2
R). Here A+ (A−) is the contribution from the

down-to-up (up-to-down) channelρeq
0↓,0↓

ΩR
→ ρ1↓,0↓

ãh
→ ρ1↑,0↓

ΩR
→

ρ1↑,1↓ (ρeq
0↑,0↑

ΩR
→ ρ1↑,0↑

ãh
→ ρ1↓,0↑

ΩR
→ ρ1↓,1↑). The steady-state

nuclear polarization is

s(ss)≈ −
4ã2

h/γ2

Γ1

∆ωN

∆2 + γ2
2

̺11c0 ≈ −
2ã2

h

Γ1
χω=ωN (4)

up to leading order in ˜ah andΩR. The sign ofs(ss) is deter-
mined by−∆ωN , in agreement with Eq. (1).

For the evolution of the nuclear spin-1/2 under a gen-
eral pumping intensity, we note that the motion of the nu-
clear polarizations characterized by the DNP buildup rate
Γp = O(ã2

hCω=0) (estimated from the fluctuation-dissipation
theorem) is much slower than the electron-hole subsystem and
the nuclear spin coherence〈Î−〉 ∼ e−Γ2t, which is strongly
damped by the fluctuating contact hyperfine interaction, with
Γ2 = (a2

e/8)Cω=0. This enables us to identifys = 2〈Îz〉 as
the slow variable and single out its dynamics from the cou-
pled motion through the adiabatic approximation, which es-
sentially assumes that the response of other variables tos is



3

instantaneous. Replacingρ1↑,1↓(t) in Eq. (2) with its steady-
state responseρ(sr)

1↑,1↓(s) to a givens yields

ṡ = −Γ1s + 2W+P↓ − 2W−P↑ = −Γ1s − Γp(s − s0) (5)

valid up toO(ã2
h), whereW+ (W−) is the transition rates for

the down-to-up (up-to-down) channel,P↓ ≡ (1 − s)/2 [P↑ ≡
(1+s)/2] is the spin-down (spin-up) probability of the nucleus,

s0(∆) ≡
W+ −W−
W+ +W−

≈ −
∆ωN

∆2 + γ2
2

γ1

γ2

c0

c1
≈ −
χω=ωN

Cω=0
(6)

is theintrinsic steady-state nuclear polarization in the absence
of other nuclear spin relaxation mechanisms, and

Γp(∆) ≡ W+ +W− ≈
4ã2

h

γ1
̺11d

2
0c1 ≈ 2ã2

hCω=0 (7)

is the hole-induced DNP buildup rate. In the presence of nu-
clear depolarization, the steady-state nuclear polarization is
s(ss) = Γps0/(Γ1 + Γp), which recovers Eq. (4) in the weak
pumping limit (Γp ≪ Γ1). The analytical results in Eqs. (6)
and (7) agree well with the direct numerical solutions of the
density matrix master equation (see Fig. 2).

The adiabatic theory above can be readily generalized to
many nuclei of spin higher than 1/2. The only difference
is that for many nuclear spins, the large Overhauser shift
ĥ ≡

∑

j ae, j Î
z
j/2 of the electron level|0〉 must be treated

non-perturbatively. With the electron-hole motion and off-
diagonal nuclear coherences [18] adiabatically eliminated, the
diagonal partP̂ of the nuclear density matrix ˆρN ≡ Treh ρ̂

obeys the rate equation

˙̂P = −
1
2

∑

j

W j,−(∆̂)
(

Î+j Î−j P̂ + P̂Î+j Î−j − 2Î−j P̂Î+j
)

−
1
2

∑

j

W j,+(∆̂)
(

Î−j Î+j P̂ + P̂Î−j Î+j − 2Î+j P̂Î−j
)

(8)

up toO(ã2
h). Eq. (8) shows that thejth nuclear spin jumps be-

tween adjacent eigenstates ofÎz
j with rates∼ I j(I j + 1)W j,±(∆̂)

dependent on other nuclear spins through the Overhauser shift
ĥ, whereW j,±(∆̂) is obtained fromW± by replacing ˜ah, ωN , and
∆ with ãh, j, ωN, j, and∆̂ ≡ ∆ − ĥ, respectively.

For a single nuclear spin-I, by neglecting the Overhauser
shift, Eq. (8) gives theintrinsic steady-state (degree of) nu-
clear polarizations ≡ 〈Îz〉/I:

s(I)
0 (∆) ≡ BI

(

I ln
1+ s0

1− s0

)

|s0|≪1
−→

2(I + 1)
3

s0, (9)

whereBI(x) is the Brillouin function. For many nuclear spins,
to keep the theory simple, we consider identical nucleiI j = I,
ωN, j = ωN , ae, j = ae, ãh, j = ãh and hence uniform nuclear
polarizations j ≡ 〈Î

z
j〉/I j = 〈Îz〉/I ≡ s. When the fluctuation

of ĥ is much smaller thanγ2, we can replacêh by its mean-
field averagehMF = AeIs/2 and obtain

ḣMF = −Γp(∆MF)

[

hMF −
1
2

AeIs(I)
0 (∆MF)

]

(10)
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FIG. 3. (color online). (a) and (d): Stable (black lines) andunsta-
ble (grey lines)h(ss)

MF vs. detuning. (b) and (e): Optical absorption
spectra obtained by sweeping∆ in different directions (indicated by
the arrows). (c) and (f): Nuclear fluctuation under hole-induced DNP
relative to thermal fluctuation. The calculation is done fora typical
QD (e.g., InAs QD) containingN = 104 identical nuclear spin-9/2’s
with (unit: ns−1) Ae = 100,γ1 = γ2 = ΩR = 1, andωN = −0.2 [(a)-
(c)] or 0.2 [(d)-(f)]. The sharp Lorentzian peaks centering at∆ = 0
in (b) and (e) are absorption spectra in the absence of the nuclei.

for |s0| ≪ 1, whereAe ≡
∑

j ae, j is the contact hyperfine inter-
action constant and∆MF ≡ ∆ − hMF. The steady-state Over-
hauser shifth(ss)

MF obtained fromhMF = (AeI/2)s(I)
0 (∆MF) may

have multiple solutions sinces(I)
0 (∆MF) is a highly nonlinear

function of∆MF and hencehMF (see Fig. 2). The condition for
a given solutionh(ss)

MF to be stable is (dḣMF/dhMF)h(ss)
MF
< 0.

As an example, we consider a typical QD containingN =
104 identical nuclear spin-9/2’s. The intrinsic steady-state
Overhauser shifth(ss)

MF is shown in Figs. 3(a) and 3(d). For a
given detuning∆, there are at most three possible Overhauser
shiftsh(ss)

MF, with two being stable (black lines) and one being
unstable (gray lines). ForωN < 0 [Fig. 3(a)], when sweeping
the laser frequency from large (blue or red) detuning towards
resonance,h(ss)

MF starts from the weak polarization phase (curve
I) and gets trapped into the strong polarization phase (curve
II) when the detuning becomes smaller than a critical value.
In the strong polarization phase,h(ss)

MF always tends to compen-
sates the “bare” detuning∆ and locks the effective detuning
∆MF = ∆ − h(ss)

MF onto the resonance condition for both∆ < 0
and∆ > 0. By contrast, the electron-induced DNP is weakly
dependent on∆ and locks the effective detuning onto the res-
onance for∆ > 0 (or∆ < 0) only [6, 19, 20]. As a result of
the hole-induced DNP, the sharp Lorentzian optical absorp-
tion peak is broadened symmetrically into a round top with
abrupt edges, where bistable Overhauser shift manifestingas
hysteretic loops [3(b)]. By identifying|0〉 as the vacuum and
|1〉 as the spin-up neutral exciton, the hole-induced DNP qual-
itatively explains the puzzling observation of hystereticbidi-
rectional locking of the blue neutral exciton absorption peak
[12]. Takingγ1 = γ2 = ΩR = 1 ns−1, ah = 0.2ae = 2 µs−1, and
a typical hole mixing coefficientη = 0.1 for self-assembled
QDs [21, 22], the DNP buildup timeτp ≡ 1/Γp ≈ 5 s agrees
reasonably with the observed valueτexp

p ≈ 1 s.

ForωN > 0, h(ss)
MF in Fig. 3(d) always tends to repel the ef-
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fective detuning∆MF away from the resonance condition for
both blue detuning and red detuning. As a result, the sym-
metric Lorentzian absorption peak is shifted hysteretically to
finite detunings by the bistable Overhauser shift [Fig. 3(e)].

Locking of the Overhauser shiftĥ onto the resonance con-
dition ∆MF = 0 suppresses the nuclear fluctuation [19].
For identical nuclei, the rate equation Eq. (8) leads to the
Fokker-Planck equation [6, 19] for the probability distribution
p(s, t) ≡ Tr ρ̂N(t)δ(s− ŝ) of the average (degree of) nuclear po-
larizationŝ ≡ (1/N)

∑

j Îz
j/I (N is the number of QD nuclei):

d
dt

p(s, t) =
∂

∂s

[

D(s)
∂

∂s
p(s, t) − v(s)p(s, t)

]

(11)

with the drift coefficient v(s) = a[G+(s) − G−(s)] and the
diffusion coefficient D(s) = (a2/2)[G+(s) + G−(s)], where
a = 1/(NI) is the change of ˆs by each nuclear spin flip,
G±(s) ≡ N∓(s)W±(∆ − AeIs/2), and N±(s) ≡ NI[2(I +
1)/3 ± s]. The steady-state solution to Eq. (11) isp(ss)(s) =
p(ss)(s∗) exp[

∫ s

s∗
v(s′)/D(s′)ds′], with the most probable nu-

clear polarizations∗ determined byv(s∗) = 0, which is equiv-
alent to the mean-field approximation in Eq. (10). The sta-
bility condition (∂v(s)/∂s)s=s∗ < 0 for s∗ is also equivalent to
(dḣMF/dhMF)h(ss)

MF
< 0. First-order Taylor expansion arounds∗

shows thatp(ss)(s) assumes a Gaussian form centered ats∗,
with the standard deviation

σDNP
s (s∗) =

√

∣

∣

∣

∣

∣

∣

D(s∗)
[∂v(s)/∂s] s=s∗

∣

∣

∣

∣

∣

∣

∼
1
N

√

γ2
2

aeI |ωN |
. (12)

By contrast, in the absence of optical pumping, the nuclear
spins are in the unpolarized state with standard deviation
σ

eq
s = [(I + 1)/(3NI)]1/2.
For a typical QD (e.g., InAs QD) withI = 9/2 and (units:

ns−1) γ2 = 1, Ae = 100, and|ωN | = 0.2 (corresponding to|B| ∼
2 T), we plot the ratioσDNP

s (s∗)/σeq
s in Figs. 3(c) and 3(f).

Corresponding to the two stable phases (curves I and II) of
the nuclear polarizations in Figs. 3(a) and 3(d), there are two
possible nuclear fluctuationsσDNP

s (I) (curve I) andσDNP
s (II)

(curve II) in Figs. 3(c) and 3(f). ForωN < 0 [Fig. 3(c)],
once the nuclear spins are trapped into the strong polarization
phase [curve II in Fig. 3(a)] by frequency sweeping of the
laser, the nuclear fluctuation is suppressed below its thermal
equilibrium value by a factor∼ 10, in reasonable agreement
with the one pump experiment in Ref. [11]. Interestingly, the
strongest (∼ 15-fold) suppression of the nuclear fluctuation
occurs at the resonance condition∆ = ∆MF = 0, where the
nuclear polarization vanishes. This corresponds to a∼ 15-
fold enhancement of the electron spin coherence time. For
ωN > 0 [Fig. 3(f)], the resonance condition∆MF = 0 and
hence maximal suppression appears at finite detunings.
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