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Gene deficiency and pharmacological inhibition of
soluble epoxide hydrolase confers resilience to
repeated social defeat stress
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Chun Yanga, Wei Yaoa, Chao Donga, Mei Hana, Bruce D. Hammockb,1, and Kenji Hashimotoa,1

aDivision of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; and bDepartment of Entomology
and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, CA 95616

Contributed by Bruce D. Hammock, February 8, 2016 (sent for review November 18, 2015; reviewed by Eric J. Nestler and Jill Turner)

Depression is a severe and chronic psychiatric disease, affecting 350
million subjects worldwide. Although multiple antidepressants have
been used in the treatment of depressive symptoms, their beneficial
effects are limited. The soluble epoxide hydrolase (sEH) plays a key
role in the inflammation that is involved in depression. Thus, we
examined here the role of sEH in depression. In both inflammation
and social defeat stress models of depression, a potent sEH inhib-
itor, TPPU, displayed rapid antidepressant effects. Expression of sEH
protein in the brain from chronically stressed (susceptible) mice was
higher than of control mice. Furthermore, expression of sEH protein
in postmortem brain samples of patients with psychiatric diseases,
including depression, bipolar disorder, and schizophrenia, was higher
than controls. This finding suggests that increased sEH levels might
be involved in the pathogenesis of certain psychiatric diseases. In
support of this hypothesis, pretreatment with TPPU prevented the
onset of depression-like behaviors after inflammation or repeated
social defeat stress. Moreover, sEH KOmice did not show depression-
like behavior after repeated social defeat stress, suggesting stress
resilience. The sEH KO mice showed increased brain-derived neuro-
trophic factor (BDNF) and phosphorylation of its receptor TrkB in the
prefrontal cortex, hippocampus, but not nucleus accumbens, suggest-
ing that increased BDNF-TrkB signaling in the prefrontal cortex and
hippocampus confer stress resilience. All of these findings suggest
that sEH plays a key role in the pathophysiology of depression, and
that epoxy fatty acids, their mimics, as well as sEH inhibitors could be
potential therapeutic or prophylactic drugs for depression.

brain-derived neurotrophic factor | depression | epoxyeicosatrienoic acid |
soluble epoxide hydrolase | resilience

Depression is the most severe and debilitating of the psychi-
atric illnesses. The World Health Organization estimates

that more than 350 million individuals of all ages suffer from
depression (1). Almost one million lives are lost annually be-
cause of suicide, which translates to 3,000 deaths daily (1). Al-
though antidepressants are generally effective in the treatment
of depression, it can still take weeks before patients feel the full
antidepressant effects. However, approximately two-thirds of de-
pressed patients fail to respond fully to pharmacotherapy. Fur-
thermore, there is a high rate of relapse, and depressed patients
have a high risk of committing suicide (2–4).
Accumulating evidence suggests that inflammation plays a central

role in the pathophysiology of depression (5–9). Meta-analyses
showed higher blood levels of proinflammatory cytokines, such as
tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in drug-
free depressed patients compared with healthy controls (10–13).
Studies using postmortem brain samples showed elevated gene ex-
pression of proinflammatory cytokines in the frontal cortex of people
with a history of depression (14, 15). Taking these data together, we
find that it is likely that both peripheral and central inflammations
are associated with depression and that antiinflammatory drugs, such
as cyclooxygenase inhibitors, could ameliorate depressive symptoms
in depressed patients (16, 17).

Epoxyeicosatrienoic acids (EETs), which are produced from ara-
chidonic acid by the action of cytochrome P450s, have potent antiin-
flammatory actions. These mediators are broken down into the
corresponding diols by soluble epoxide hydrolase (sEH), and
inhibition of sEH enhances the beneficial effects of EETs (18–21). It is
also reported that sEH inhibitors have potent antiinflammatory effects
in a number of animal models (18–20, 22, 23). Although sEH has been
associated with the onset of anorexia nervosa (24), the role of sEH
in the pathophysiology of depression has not been studied to date.
The purpose of this study was to examine the role of sEH in the

pathophysiology of depression using a potent sEH inhibitor and
sEH knockout (KO) mice. Furthermore, we examined the role of
brain-derived neurotrophic factor (BDNF) and its receptor TrkB
signaling in selected brain regions, because BDNF-TrkB signaling
plays a key role in the pathophysiology of depression (25–30).

Results
TPPU and 14,15-EET Enhance Nerve Growth Factor-Induced Neurite
Outgrowth. Because antidepressants are known to affect the neuro-
nal plasticity, we examined the effects of 1-trifluoromethoxyphenyl-
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3-(1-propionylpiperidine-4-yl)urea (TPPU: a potent sEH inhibitor)
(31–33) and the endogenous eicosanoid 14,15-EET on nerve
growth factor (NGF)-induced neurite outgrowth in PC12 cells.
Both TPPU and 14,15-EET potentiated NGF-induced neurite
outgrowth in PC12 cells, in a concentration-dependent manner
(Fig. S1). The 14,15-EET was shown to enhance axonal growth
neuronal cell cultures (34). These findings suggest that TPPU and
14,15-EET can enhance neuronal plasticity, which is implicated in
the action of antidepressants.

TPPU Has Antidepressant Effects in an Inflammation-Induced Model
of Depression. Oral administration to mice of TPPU (0.3, 1.0, or

3.0 mg/kg, 60 min before) attenuated LPS (0.5 mg/kg)-induced
increase of TNF-α serum levels in a dose-dependent manner
(Fig. 1 A and B), confirming its ability to reduce inflammation.
TPPU (3.0 mg/kg, orally) gave no effect on serum levels of TNF-α
in the control mice. Next, we examined whether TPPU showed
antidepressant effects in mice pretreated with LPS (0.5 mg/kg)
(Fig. 1C). There were no differences in locomotion among the
four groups (Fig. 1D). In the tail suspension test (TST) and forced
swim test (FST), TPPU (3 mg/kg, orally) significantly reduced the
increased immobility time in LPS-treated mice (Fig. 1 E and F).
Furthermore, chronic intake of TPPU (15 mg/L for 3 wk) in the

drinking water significantly prevented LPS (0.5 mg/kg)-induced
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Fig. 1. Effects of TPPU in an inflammation model of depression. (A) Schedule of treatment and blood collection. (B) Pretreatment with TPPU (0.3, 1.0, or 3.0 mg/kg,
orally) attenuated increased serum levels of TNF-α after a single administration of LPS (0.5 mg/kg, intraperitoneally), in a dose-dependent manner. Data are shown as
mean ± SEM (n = 5 or 6). *P < 0.05, ***P < 0.001 compared with vehicle + LPS group [one-way ANOVA, F(5,27) = 26.67, P < 0.001, post hoc Tukey test]. (C) Schedule
of treatment and behavioral tests. Vehicle or TPPU (3 mg/kg, orally) was administered 23 h after a single administration of LPS (0.5 mg/kg, intraperitoneally)
or saline. Behavioral tests, including the LMT, TST, and FST were performed. (D–F) Two-way ANOVA revealed the results: LMT [LPS: F(1,26) = 3.040, P = 0.093;
TPPU: F(1,26) = 0.078, P = 0.783; interaction: F(1,26) = 0.001, P = 0.970], TST [LPS: F(1,28) = 5.357, P = 0.028; TPPU: F(1,28) = 4.428, P = 0.044; interaction: F(1,28) =
5.937, P = 0.021], and FST [LPS: F(1,27) = 5.974, P = 0.021; TPPU: F(1,27) = 6.747, P = 0.015; interaction: F(1,27) = 5.738, P = 0.024]. Data are shown as mean ± SEM
(n = 7–9). *P < 0.05 (post hoc Tukey test); N.S., not significant. (G) Schedule of treatment and behavioral tests. Water alone or water including TPPU (15mg/L) was given
for 3 wk before a single administration of LPS (0.5 mg/kg, intraperitoneally). The LMT, TST, and FST were performed 24, 26, and 28 h after LPS administration. (H) There
were no changes for body weight increase of two groups [repeated one-way ANOVA, F(3,29) = 1.894, P = 0.153]. N.S., not significant. (I–K) Two-way ANOVA revealed
the results: LMT [TPPU: F(1,20) = 0.725, P = 0.405; LPS: F(1,20) = 2.415, P = 0.136; interaction: F(1,20) = 0.083, P = 0.776], TST [TPPU: F(1,20) = 4.814, P = 0.040, LPS: F(1,20) =
5.529, P = 0.029; interaction: F(1,20) = 13.93, P = 0.001], and FST [TPPU: F(1,20) = 6.708, P = 0.017, LPS: F(1,20) = 9.939, P = 0.005; interaction: F(1,20) = 4.542, P = 0.046]. Data
are shown as mean ± SEM (n = 6). *P < 0.05 (post hoc Tukey test); N.S., not significant.
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depression-like behavior in mice, although body weight was not
different in the two groups (Fig. 1 G–K). These data suggest that
oral administration of TPPU has therapeutic and prophylactic
effects in the inflammation model of depression.

Pharmacokinetic Study of TPPU in Mice. Following single oral ad-
ministration of TPPU (3 mg/kg), concentration of TPPU in the
blood and brain increased rapidly. The average concentration of
TPPU in the blood and brain 2 h after oral administration was
4,240 ng/mL and 760 ng/g tissue, respectively. The half-life of
TPPU in the plasma and cerebral cortex was 17.8 and 10.7 h, re-
spectively (Fig. S2 A and B). The pharmacokinetic data suggest that
TPPU can enter into the brain, consistent with a recent report (35).

TPPU Has Antidepressant Effect in a Social Defeat Stress Model. First,
we examined the effects of TPPU pretreatment (3 mg/kg/d for 10 d,
orally, 60 min before each stress) on the depression-like behavior
after repeated social defeat stress (Fig. 2A). In the social interaction
test, TPPU-pretreated mice showed the increased social interaction
time in the chronically stressed mice after social defeat stress
compared with vehicle-treated mice (Fig. 2B). In the 1% sucrose
preference test (SPT), TPPU-pretreated mice showed increased
sucrose preference compared with vehicle-treated mice (Fig. 2C).
These findings suggest that pretreatment with TPPU confers
resilience to repeated social defeat stress.
Next, we examined the effects of TPPU treatment (3 mg/kg,

orally) on the depression-like behavior in mice after repeated so-
cial defeat stress (Fig. 2D). In the social interaction test, suscep-
tible mice were used in the subsequent behavioral test (Fig. 2E).
There were no differences in locomotion among the four groups
(Fig. 2F). In the TST and FST, TPPU significantly reduced the
increased immobility time in the mice after social defeat stress
(Fig. 2 G and H). In the SPT, TPPU significantly increased the
reduced preference in the mice after social defeat stress (Fig. 2I).
In contrast, TPPU did not affect the sucrose preference in the
control mice (Fig. 2I). These findings suggest that TPPU showed a
rapid antidepressant effect in the social defeat stress model.

sEH KO Mice Show Resilience to Repeated Social Defeat Stress. Be-
havioral tests [locomotion (LMT), TST, FST, SPT] were first
performed on the WT and the sEH KO mice (Fig. 3A). There
were no differences in the all of the behavioral tests among the two
groups (Fig. 3 B–E). Next, the behavioral tests were performed
after repeated social defeat stress (Fig. 3F). In the social in-
teraction test, after social defeat stress, the social interaction time
of KO mice was significantly higher than that of WT mice, and was
similar to control no-stress mice (Fig. 3G). There were no differ-
ences in the LMT among the three groups (Fig. 3H). In the TST
and FST, the immobility time of KO mice was significantly lower
than that of WT mice after social defeat stress (Fig. 3 I and J). In
the SPT, the sucrose preference of KO mice was significantly
higher and comparable to control animals than that of WT mice
after social defeat stress (Fig. 3K). Overall, these data suggest that
sEH KO mice show resilience to repeated social defeat stress.

Protein Levels of sEH in the Brain from Mice with Depression-Like
Phenotype After LPS Administration or Social Defeat Stress. Pre-
vious reports demonstrated that the prefrontal cortex (PFC),
CA3, and dentate gyrus (DG) of the hippocampus, striatum, and
nucleus accumbens (NAc) play a role in the depression-like be-
haviors in rodents after inflammation, social defeat stress, and
learned helplessness (36–40). We examined whether sEH protein
is altered in the brain tissues from mice after LPS (0.5 mg/kg)
administration (Fig. 4A) or repeated social defeat stress (Fig. 4B).
We found significant increases of sEH protein in the PFC,
striatum, CA1, CA3, and DG, but not the NAc, of both models
of depression.

Increased Levels of sEH Protein in the Brain of Depressed Patients.
Using postmortem brain samples from the Neuropathology Con-
sortium of the Stanley Medical Research Institute (41) (Table S1),
we examined whether sEH protein was also altered in the brain of
patients suffering from depression, bipolar disorder, and schizo-
phrenia. Protein levels of sEH in the parietal cortex (Brodmann
area 7: BA7) from depression (n = 15), bipolar disorder (n = 15),
and schizophrenia (n = 15) patients were significantly higher than
those of controls (n = 15) (Fig. 4C). In contrast, protein levels of
sEH in the cerebellum were not different among the four groups
(Fig. 4D). These findings suggest that increased levels of sEH in
the parietal cortex may be implicated in the pathogenesis of these
psychiatric disorders.

Enzyme Activity of sEH and Oxylipin Profile of Brain from Mice with
Depression-Like Phenotype. Because the levels of sEH protein
were increased in the brain samples from mice with depression-
like behaviors, we examined whether enzyme activity of sEH and
eicosanoids in the brain regions are altered in the brain from
chronically stressed (susceptible) mice. Unexpectedly, enzyme
activity of sEH in the frontal cortex, hippocampus, and striatum
from chronically stressed (susceptible) mice was significantly lower
than that of control mice (Fig. 4E).
Next, we measured tissue levels of eicosanoids metabolites

(Fig. S3) in the PFC, hippocampus, and striatum from control
and repeated social defeat stress (susceptible) mice. There were
no changes for metabolites including EETs, and their metab-
olite dihydroxyeicosatrienoic acids (DHETs) in the three re-
gions (Tables S2–S4).

Role of BDNF-TrkB Signaling and Synaptogenesis in the Stress Resilience
of sEH KO Mice. Because the BDNF-TrkB signaling pathway plays a
key role in depression-like phenotype in rodents (25–30), we ex-
amined this signaling pathway in selected brain regions of sEH KO
mice. First, we performed Western blot analysis of BDNF antibody
in the Bdnf KO rat brain sample. The bands for BDNF (mature
form) and its precursor proBDNF were not detected in the brain
sample from KO rats, indicating that these bands can recognize
both BDNF (mature form) and proBDNF (Fig. S4). Subsequently,
Western blot analyses of BDNF, its precursor proBDNF, TrkB,
and phosphorylated TrkB (p-TrkB) in the selected brain regions
(PFC, NAc, striatum, DG, CA1, and CA3 of the hippocampus) in
WT mice and sEH KO mice were performed. Levels of BDNF in
the PFC, CA1, CA3, DG, but not the NAc and striatum, of KO
mice were significantly higher than those of WT mice (Fig. 5 A and
D). In contrast, tissue levels of proBDNF in the all tested regions
did not differ between the two groups (Fig. 5 B and D).
To clarify the role of TrkB phosphorylation in the stress

resilience of sEH KO mice, we performed Western blot analyses
of TrkB and p-TrkB, an activated form of TrkB, in samples from
the PFC, NAc, striatum, and hippocampus (CA1, CA3, DG).
Tissue levels of TrkB in the all tested regions did not differ
among the four groups (Fig. 5D). KO mice showed an increased
ratio of p-TrkB/TrkB protein in the PFC, CA1, CA3, and DG,
but not the NAc and striatum (Fig. 5C). These findings suggest
that increased BDNF-TrkB signaling in the PFC and hippo-
campus (CA1, CA3, DG) of KO mice might be involved in the
resilience to repeated social defeat stress.
Next, we performed Western blot analysis on the synaptogenesis

markers, GluA1 (a subtype of AMPA receptor) and postsynaptic
density protein 95 (PSD-95), in selected brain regions (Fig. 5 E–G).
Levels of GluA1 and PSD-95 in the PFC, CA1, CA3, DG, but not
NAc and striatum, of KO mice were significantly higher than those
of WT mice (Fig. 5 E–G).

Discussion
Overall, our results demonstrate a key role of sEH in the path-
ogenesis of depression. The major findings of the present study
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are: First, a potent sEH inhibitor TPPU and 14,15-EET poten-
tiated NGF-induced neurite outgrowth in PC12 cells, suggesting
that sEH inhibitors can enhance neuronal plasticity associated
with depression. Second, TPPU showed prophylactic and ther-
apeutic effects in the inflammation and social defeat stress
models of depression. Third, protein levels of sEH in the brain
from mice with depression-like behaviors or postmortem brain
from depressed patients were higher than those of controls.
Fourth, sEH KO mice show resilience to social defeat stress, and
increased BDNF-TrkB signaling in the PFC and hippocampus of
KO mice might be implicated in the stress resilience. These all

findings suggest that sEH inhibitors would be potential thera-
peutic drugs for depression.
In this study, we found that a single dose of TPPU has a rapid

antidepressant effect in both the inflammation and the repeated
social defeat stress models of depression. Interestingly, current
antidepressants (paroxetine and venlafaxine) do not have any
effect in the LPS-induced inflammation model of depression (36).
In addition, most current antidepressants can take weeks before
patients or animal models feel the full antidepressant effects (42, 43).
Recently, we reported that a single dose of N-methyl-D-aspartate
(NMDA) receptor antagonist ketamine (or R-ketamine) showed a
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were performed 2, 4, and 6 h after a single administration of vehicle or TPPU, respectively. One percent SPT was performed 48 h after a single administration
of vehicle or TPPU (3 mg/kg, orally). (E) Mice with depression-like behaviors were selected by social interaction test [social interaction time (s); no target: t =
1.990, P = 0.052; target: t = 21.46, P < 0.001]. ***P < 0.001 (Student t test). N.S., not significant. (F–I): Two-way ANOVA showed the results: LMT [stress: F(1,39) =
1.412, P = 0.242; TPPU: F(1,39) = 0.088, P = 0.769; interaction: F(1,39) = 0.363, P = 0.551], TST [stress: F(1,34) = 4.495, P = 0.025; TPPU: F(1,34) = 5.666, P = 0.023;
interaction: F(1,34) = 4.600, P = 0.039], FST [stress: F(1,35) = 7.752, P = 0.009; TPPU: F(1,35) = 4.490, P = 0.041; interaction: F(1,35) = 4.262, P = 0.046], and SPT [stress:
F(1,39) = 4.920, P = 0.032; TPPU: F(1,39) = 7.122, P = 0.011; interaction: F(1,39) = 5.875, P = 0.020]. Data are shown as mean ± SEM (n = 7–16). *P < 0.05; **P < 0.01
(post hoc Tukey test); N.S., not significant.
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rapid antidepressant effect in the social defeat stress model (37, 39),
consistent with rapid antidepressant effects of ketamine in treatment-
resistant patients with depression (44–46). However, ketamine leads
to psychotomimetic side effects and abuse liability that appears to be
absent in the case of TPPU. These findings suggest that sEH in-
hibitors have the ability to be more effective, faster acting, and have
fewer side effects than current antidepressant drugs.
Tissue levels of sEH protein in the PFC, striatum, and hip-

pocampus of mice with depression-like behaviors were higher
than those of control mice. Interestingly, we also found that
levels of sEH in the parietal cortex from patients with major
psychiatric disorders (depression, bipolar disorder, and schizo-
phrenia) were higher than controls. Inflammation is also impli-
cated in these psychiatric disorders (6–10, 47–50). Recent studies
showed that peripheral IL-6 is critical in regulating stress-related

depression-like phenotypes in rodents (51–53). Because sEH
plays an active role in the inflammatory response (18–20), it is
possible that increased levels of sEH protein in the parietal
cortex may play a role in the pathogenesis of these psychiatric
disorders. In contrast, the enzyme activity of sEH in these re-
gions from mice with depression-like phenotype was lower than
that of control mice. In addition, we found no changes in the
eicosanoid metabolites, such as EETs and their metabolites
DHETs. Although the reasons underlying this discrepancy are
currently unclear, it seems that compensatory response by in-
creased levels of sEH protein in mice with depression-like phe-
notype may be involved.
Accumulating evidence suggests that BDNF-TrkB signaling

plays a key role in the depression-like phenotype in rodents (25–
30). In this study, we found that BDNF protein in the PFC and
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hippocampus, but not the NAc, of sEH KO mice was higher than
that of WT mice, and that the p-TrkB/TrkB ratio in the PFC and
hippocampus of sEH KO mice was also higher than that of WT
mice, indicating increased BDNF-TrkB signaling in the PFC and
hippocampus in the sEH KO mice. Previously, we reported that
inflammation, social defeat stress, and learned helplessness caused
decreased BDNF-TrkB signaling in the PFC and hippocampus,
while increasing signals in the NAc, inducing depression-like
behavior in rodents (36–40). Interestingly, we reported that re-

gional differences in BDNF levels in the PFC and hippocampus of
rat brain may contribute to resilience to inescapable stress (38). A
recent study demonstrated that 14,15-EET could promote the
production of BDNF from astrocyte (54). Because sEH KO mice
show a higher level of 14,15-EET, it is likely that increased level of
14,15-EET by sEH deletion might contribute to increased BDNF
expression in the frontal cortex and hippocampus, although the
precise mechanisms are unknown. Given the key role of BDNF-
TrkB signaling in the depression-like phenotype, it is likely that
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P = 0.031), NAc (t = 0.035, P = 0.973), striatum (t = 2.523, P = 0.030), CA1 (t = 3.458, P = 0.006), CA3 (t = 2.439, P = 0.041), DG (t = 2.608, P = 0.026). The values
are the mean ± SEM (n = 5–7). *P < 0.05, **P < 0.01 compared with control group (Student t test). (B) Social defeat stress was performed 10 d. Twenty-four
hours after the final stress the social interaction test was performed. Brain regions [PFC, NAc, striatum, hippocampus (CA1, CA3, DG)] from chronically stressed
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significantly higher than those on controls. One-way ANOVA showed the results [F(3,56) = 4.364, P = 0.008]. Data are shown as mean ± SEM (n = 15). *P < 0.05,
**P < 0.01 compared with control group (post hoc Tukey test). (D) Western blot analysis of sEH in the cerebellum from control (n = 15), depression (n = 15),
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increased BDNF-TrkB signaling in the PFC and hippocampus
may contribute to the stress resilience of sEH KO mice. Fur-
thermore, we did not find any change of BDNF in the NAc of sEH
KO mice. Because the NAc plays a key role in the depression, it is
of interest to study the role of sEH in the NAc.
Many depressed patients become chronically ill, with several re-

lapses (early return of symptoms within the expected duration of a
current episode, of perhaps 3–12 mo) or later recurrences (new
episodes) following initial short-term improvement or remission
(55, 56). Recurrence rates are over 85% within a decade of an index
depressive episode, and average ∼50% or more within 6 mo of
apparent clinical emission (56). Therefore, the prevention of re-
lapse and recurrence is very important in the management of de-
pression. In this study, we found the prophylactic effects of TPPU in
the inflammation and repeated social defeat stress models of
depression, suggesting that TPPU could prevent the onset of

depression-like phenotype by inflammation or repeated social
defeat stress. Therefore, it is likely that sEH inhibitors could be
prophylactic drugs to prevent or minimize the relapse by in-
flammation or stress in the remission state of depressed patients.
In conclusion, our study shows that a single dose of the sEH

inhibitor TPPU can produce a rapid antidepressant effect in the
inflammation and social defeat stress models of depression.
Furthermore, it is likely that increased BDNF-TrkB signaling in
the PFC and the hippocampus in sEH KO mice may confer
stress resilience. Finally, unlike ketamine, sEH inhibitors appear
to be rapid antidepressants without psychotomimetic side effects
and abuse liability.

Materials and Methods
Male adult C57BL/6 mice, aged 8 wk (body weight 20–25 g, Japan SLC, Inc.),
and male adult CD1 (ICR) mice, aged 13–15 wk (body weight >40 g; Japan
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*P < 0.05, **P < 0.01 (Student t test). (G) Representative data of Western blot analyses of GluA1, PSD-95, and β-actin in the mouse brain regions.
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SLC, Inc.) were used for the social defeat stress model. A colony of sEH KO
mice with targeted deletion of the sEH gene (Ephx2), which is backcrossed
to C57BL/6 background, was used (57). Animals were housed under con-
trolled temperatures and 12-h light/dark cycles (lights on between 0700
and 1900 hours), with ad libitum food (CE-2; CLEA Japan, Inc.) and water.
This study was carried out in strict accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health (58). The protocol was approved by the Chiba Uni-
versity Institutional Animal Care and Use Committee.

Details of the experimental protocols, including materials, cell culture,
inflammation model, social defeat stress model, behavioral tests of anti-
depressant effects, pharmacokinetic study, enzyme activity, analysis of

oxylipins, Western blot analysis, and statistical analysis are given in SI
Materials and Methods.
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