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Abstract

A lack of tools to precisely control gene expression has limited our ability to evaluate relationships 

between expression levels and phenotypes. Here, we describe an approach to titrate expression of 

human genes using CRISPR interference and series of single guide RNAs (sgRNAs) with 
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systematically modulated activities. We used large-scale measurements across multiple cell 

models to characterize activities of sgRNAs containing mismatches to their target sites and derived 

rules governing mismatched sgRNA activity using deep learning. These rules enabled us to 

synthesize a compact sgRNA library to titrate expression of ~2,400 genes essential for robust cell 

growth and to construct an in silico sgRNA library spanning the human genome. Staging cells 

along a continuum of gene expression levels combined with single-cell RNA-seq readout revealed 

sharp transitions in cellular behaviors at gene-specific expression thresholds. Our work provides a 

general tool to control gene expression, with applications ranging from tuning biochemical 

pathways to identifying suppressors for diseases of dysregulated gene expression.

The complexity of biological processes arises not only from the set of expressed genes but 

also from quantitative differences in their expression levels. As a classic example, some 

genes are haploinsufficient and thus sensitive to a 50% decrease in expression, whereas other 

genes are permissive to far stronger depletion1. Enabled by tools to titrate gene expression 

levels such as series of promoters or hypomorphic mutants, the underlying expression-

phenotype relationships have been explored systematically in yeast2–4 and bacteria5–8. 

These efforts have revealed gene- and environment-specific effects of changes in expression 

levels4 and yielded insight into the opposing evolutionary forces that determine gene 

expression levels including the cost of protein synthesis and the need for robustness against 

random fluctuations3,6,8.

The availability of equivalent tools in mammalian systems would enable similar efforts to 

probe expression-phenotype relationships in more complex models. In addition, such tools 

could be used to identify the functionally sufficient levels of gene products, which can serve 

as targets for rescue by gene therapy or chemical treatment, or as targets of inhibition for 

anti-cancer drugs. It is possible to titrate the expression of individual genes in mammalian 

systems by incorporating microRNA binding sites of varied strength into the 3′-UTR of the 

endogenous locus9 or using synthetic promoters and regulators10, but these approaches 

require engineering of the endogenous locus for each target, limiting scalability and 

transferability across models. The development of artificial transcription factors, such as 

TALEs11 or the CRISPR-based effectors underlying CRISPR interference (CRISPRi) and 

activation (CRISPRa)12, has now provided tools to systematically knock down or 

overexpress genes in mammalian models. CRISPR/Cas9 based systems in particular have 

attracted considerable attention due to the exquisite programmability of targeting a locus via 

sequence complementarity to an associated single guide RNA (sgRNA)13. Thus far, 

however, these tools have been primarily optimized for strong knockdown or 

overexpression14,15 and do not afford nuanced control over gene expression levels.

Studies of the targeting mechanisms of Cas9 and its nuclease-dead variants (dCas9) have 

established that both activity and binding can be modulated by introducing mismatches into 

the sgRNA targeting region, modifying the sgRNA constant region, or adding hairpin 

extensions13,16–20. In addition, (d)Cas9 activity can be controlled using small molecules, 

degrons, or anti-CRISPRs (e.g. 21–24), but these approaches generally have not been 

optimized to afford precise control over activity levels and can be challenging to transfer 

across models. Here, we report a systematic approach to control DNA binding of dCas9 
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effectors through modified sgRNAs as a general method to titrate gene expression in 

mammalian cells. We describe both an empirically validated compact sgRNA library to 

titrate the expression of essential genes and a genome-wide in silico library derived from 

deep learning analysis of the empirical data. As a starting point for analyses of expression-

phenotype relationships in mammalian cells, we examined transcriptional phenotypes 

derived from single-cell RNA-seq at various expression levels of 25 essential genes. Our 

data reveal gene-specific expression-phenotype relationships and expression level-dependent 

cell responses at single-cell resolution, highlighting the utility of systematically attenuated 

sgRNAs in staging cells along a continuum of expression levels in order to explore 

fundamental biological questions.

Results

Mismatched sgRNAs mediate diverse intermediate phenotypes

To comprehensively characterize the activities of mismatched sgRNAs in CRISPRi-

mediated knockdown, we measured the knockdowns mediated by all 57 singly mismatched 

variants of a GFP-targeting sgRNA25 (Fig. 1a). K562 cells harboring mismatched sgRNAs 

experienced knockdown levels between those of cells with the perfectly matched sgRNA 

(94%) and cells with a non-targeting control sgRNA (Fig. 1b, S1a–c, Table S1). As 

expected, sgRNAs with mismatches in the PAM-proximal seed region13,16 had strongly 

attenuated activity. By contrast, sgRNAs with mismatches in the PAM-distal region 

mediated GFP knockdown to an extent similar to that of the unmodified sgRNA, albeit with 

substantial variability depending on the type of mismatch (Fig. 1b–c). The distributions of 

GFP levels with mismatched sgRNAs were largely unimodal, although the distributions 

were typically broader than those with the perfectly matched sgRNA or the control sgRNA 

(Fig. 1b, S1c). These results suggest that series of mismatched sgRNAs can be used to titrate 

gene expression at the single-cell level, but that mismatched sgRNA activity is modulated by 

complex factors.

Rules of mismatched sgRNA activity derived from a large-scale screen

We reasoned that we could empirically derive the factors governing the influence of 

mismatches on sgRNA activity by measuring growth phenotypes imparted by a large 

number of mismatched sgRNAs in a pooled screen. For this purpose, we generated a 

~120,000-element library comprising series of variants for 4,898 sgRNAs targeting 2,449 

genes with growth phenotypes in K562 cells14. Each individual series, herein referred to as 

an allelic series, contains the original, perfectly matched sgRNA and 22–23 variants 

harboring one or two mismatches (Fig. 2a, Table S2, the first nucleotide of the sgRNA was 

held as a G regardless of its match in the genome, Methods). We then measured CRISPRi 

growth phenotypes (γ; a more negative value indicates a stronger growth defect) for each 

sgRNA in both K562 and Jurkat cells using pooled screens18,26 (Fig. 2b, S2a–b, Methods). 

Growth phenotypes of targeting sgRNAs were well-correlated in replicate screens (Fig. S2a–

b, Tables S3–S4) and recapitulated previously reported phenotypes14 (Fig. S2c).

Mismatched sgRNAs mediated a range of phenotypes, spanning from that of the 

corresponding perfectly matched sgRNA to those of negative control sgRNAs (Fig. 2c). To 
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account for differences in absolute growth phenotypes, we normalized the phenotype of each 

mismatched sgRNA to that of its corresponding perfectly matched sgRNA (relative activity, 

Fig. 2b) and filtered for series in which the perfectly matched sgRNA had a strong growth 

phenotype (Methods). Relative activities measured in K562 and Jurkat cells were well-

correlated (Fig. 2d), regardless of differences in absolute phenotype of the perfectly matched 

sgRNAs (Fig. S2d–e). We therefore averaged relative activities from both cell lines for 

further analysis. Although the majority of mismatched sgRNAs were inactive (Fig. 2d), 

particularly if they contained two mismatches (Fig. S2f), approximately 25% of mismatched 

sgRNAs exhibited intermediate activity (relative activity 0.1–0.9).

To understand the rules governing the impacts of mismatches on activity, we stratified the 

relative activities of singly-mismatched sgRNAs by properties of the mismatch. As expected, 

mismatch position was a strong determinant of activity, with mismatches closer to the PAM 

leading to lower relative activity (Fig. 2e). In agreement with patterns of Cas9 off-target 

activity27,28, sgRNAs with rG:dT mismatches (A to G mutations in the sgRNA) retained 

substantial activity even for mismatches close to the PAM (Fig. 2f). Other factors had 

smaller effects on activity and were more context-dependent. For example, sgRNAs with 

higher GC content or for which the first, invariant G matched the genome retained higher 

activity for mismatches located 9 or more bases upstream of the PAM (positions –9 to –19), 

and mismatch-surrounding G nucleotides were associated with marginally higher activity for 

mismatches in the intermediate region (Fig. S2g–i). CRISPRi activities of mismatched 

sgRNAs were moderately correlated with Cas9 cutting scores in the presence of mismatches 

(CFD scores27), but Cas9 cutting appears to be less sensitive to many types of mismatches 

(Fig. S2j). By contrast, the CRISPRi activities of mismatched sgRNAs were well-correlated 

with previous in vitro measurements of dCas9 binding on-rates in the presence of 

mismatches29 (Fig. 2g). The activities of mismatched sgRNAs in CRISPRi thus appear to be 

determined by general biophysical rules; a premise further supported by the high correlation 

of relative activities obtained in different cell lines (Fig. 2d).

Overall, 86.7% of sgRNA series contained at least 2 sgRNAs with intermediate activity 

(relative activity 0.1–0.9, Fig. S2k). As we explored only ~20% of possible single 

mismatches and <1% of possible double mismatches, it is likely that intermediate-activity 

sgRNAs also exist for the remaining series. Altogether, these results suggest that 

systematically mismatched sgRNAs provide a general method to titrate CRISPRi activity 

and, consequently, target gene expression.

Controlling sgRNA activity with modified constant regions

We also explored the orthogonal approach of generating intermediate-activity sgRNAs 

through modifications to the sgRNA constant region, which is required for binding to Cas9. 

Although previous work has established that such modifications can lead to varied effects on 

Cas9 activity19,30–34, the mutational landscape of the constant region has only been sparsely 

explored, and largely with the goal of preserving sgRNA activity.

To comprehensively assess the activities of modified sgRNA constant regions, we designed 

995 constant region variants comprising all single nucleotide substitutions, base pair 

substitutions, and combinations of these changes (Methods, Table S5) and determined the 
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growth phenotypes for each variant paired with 30 targeting sequences against 10 essential 

genes in pooled CRISPRi screens in K562 cells (Fig. 3a, S3a; Tables S1, S6, S7). We 

calculated relative activities for each targeting sequence:constant region pair by normalizing 

its phenotype to that of the targeting sequence paired with the unmodified constant region, 

identifying 409 constant region variants that on average conferred intermediate activity (0.1–

0.9, Fig. 3b). Ten variants selected for individual evaluation mediated intermediate mRNA 

knockdown (Fig. S3b). Mapping the activities of constant region variants with single base 

substitutions onto the structure recapitulated known relationships between constant region 

structure and function: mutation of bases in the first stem loop or the nexus that mediate 

contacts19 with Cas9 reduced activity, whereas mutations in regions not contacted by Cas9 

(e.g. the hairpin region of stem loop 2) were well-tolerated (Fig. 3c). Notably, several 

variants carrying mutations in stem loop 2 had consistently increased activities (Fig. 3b–c).

Evaluating the relative activities of constant region variants across the 30 targeting 

sequences revealed consistent rank ordering but substantial variation in the actual values 

(Fig. 3d, S3c). For example, a targeting sequence against TUBB retained high activity with 

~100 constant region variants with which other targeting sequences lost activity, whereas a 

targeting sequence against SNRPD2 lost activity with ~50 variants that otherwise conferred 

intermediate activity (Fig. 3d). In some but not all cases (Fig. 3e), this heterogeneity 

extended to different targeting sequences against the same gene, both at the level of growth 

phenotype (Fig. 3f–g, S3d–e) and mRNA knockdown (Fig. S3b). This heterogeneous 

behavior could be a consequence of structural interactions between specific targeting 

sequences and constant regions or of differences in basal sgRNA expression levels such that 

lowly expressed sgRNAs are more susceptible to constant region modifications. Thus, 

although modified constant regions can be used to titrate gene expression, the activity of a 

given constant region:targeting sequence pair is difficult to predict. We therefore focused on 

sgRNAs with mismatches in the targeting region for the remainder of our work, given that 

the activities of these sgRNAs appeared to be governed directly by more readily discernible 

biophysical principles.

A neural network predicts mismatched sgRNA activities with high accuracy

We next sought to leverage our large-scale dataset of mismatched sgRNA activities to learn 

the underlying rules in a principled manner and enable predictions of intermediate-activity 

sgRNAs against other genes. We reasoned that a convolutional neural network (CNN) would 

be well-suited to uncovering these rules due to the ability of CNNs to learn complex global 

and local dependencies on spatially-ordered features such as nucleotide sequences35, 

including factors governing CRISPR guide RNA activity36,37.

We constructed our CNN model using two convolution steps, a pooling step, and a 3-layer 

fully connected neural network (Fig. 4a, S4a). As inputs, the model received sgRNA relative 

activities paired with nucleotide sequences represented by binarized 3D arrays denoting the 

genomic sequence of the target and the associated sgRNA mismatch (Fig. 4a, Table S8). 

After optimizing hyperparameters using a cross-validated randomized grid search on the 

training dataset (80% of randomly selected sgRNA series, Fig. S4b–d, Methods), we trained 

20 independent, equivalently initialized models for 8 epochs, which minimized loss without 
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extensive over-fitting (Fig. S4e). Predicted and measured sgRNA relative activities for the 

validation sgRNA set (i.e. the remaining 20% of series that were not used to optimize 

parameters or train the model) were well-correlated (r2 = 0.65), with mean predictions of the 

20-model ensemble outperforming all individual models (Fig. 4b, S4f). The correlation 

coefficients for individual sgRNA series were unimodally distributed (25th-75th percentile 

range: 0.77–0.93), indicating that the model performed comparably well for most series 

(Fig. 4c). Model accuracy varied by mismatch position and type, with the highest accuracies 

corresponding to mismatches in the PAM-proximal seed region (Fig. S4g–h). The accuracy 

of CNN predictions showed no correlation with off-target specificity scores, suggesting that 

off-target effects did not substantially contribute to the phenotypes we measured (Fig. S4i). 

Despite the fact that the model was trained on relative growth phenotypes, it accurately 

predicted relative fluorescence values measured in the GFP experiment (Fig. 4d), further 

supporting the hypothesis that relative growth phenotypes report on biophysical attributes of 

sgRNA:DNA interactions.

To derive intermediate-activity sgRNAs for all human genes, we used the CNN ensemble to 

predict relative activities for all 57 singly-mismatched sgRNAs for the top 5 sgRNAs against 

each gene in the hCRISPRi-v2.1 library14 (Table S9). Based on the accuracy of predictions 

for the validation set, we estimate that for any given gene, sampling 3 sgRNAs with 

predicted relative activity between 0.37 and 0.63 will yield at least one sgRNA of 

intermediate activity (0.1–0.9) over 95% of the time (Fig. S4j–m). This resource should 

therefore enable the titration of any gene(s) of interest.

To further understand the features of mismatched sgRNAs that contribute most to their 

activity, which is difficult to assess directly with a deep learning model, we also trained an 

elastic net linear regression model on the same data using a curated set of features 

(Methods). This linear model explained less variance in relative activities than the CNN 

model (r2 = 0.52, Fig. S5a–b), implying that our feature set was incomplete and/or sgRNA 

activity is partly determined by non-linear combinations of features; nonetheless, the relative 

activities predicted by the different models were well-correlated (r2 = 0.74, Fig. S5c). 

Consistent with our earlier observations, mismatch position and type were assigned the 

largest weights in the model, although other features such as GC content and the identities of 

flanking bases up to 3 nucleotides from the mismatch were weighted as well (Fig. S5d–e). 

For any given position the type of mismatch contributed differentially to the prediction, 

which was especially pronounced in the sgRNA intermediate region (Fig. S5f). Taken 

together, these data demonstrate that the activities of mismatch-containing sgRNAs are 

determined by multiple factors which can be captured using supervised machine learning 

approaches.

A compact mismatched sgRNA library conferring intermediate phenotypes

We next set out to design a more compact version of our large-scale library to titrate 

essential genes with a limited number of sgRNAs. We selected 2,405 genes which we had 

found to be essential for robust growth of K562 cells in our large-scale screen, divided the 

relative activity space into six bins, and attempted to select mismatched variants from each 

of the center four bins (relative activities 0.1–0.9) for two sgRNA series targeting each gene. 
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If a bin did not contain a previously measured sgRNA, we selected one from the CNN model 

ensemble predictions, filtered to exclude sgRNAs with off-target binding potential (Fig. 5a, 

S6a–c; Table S10).

We evaluated the relative activities of sgRNAs in this compact library using pooled CRISPRi 

growth screens in K562 and HeLa cells (Fig. S6d–f, Tables S11, S12). The correlation of 

measured and predicted relative activities of the imputed sgRNAs was lower than that 

observed for the validation set in our CNN model (r2 = 0.24; Fig. S6g), although the imputed 

sgRNAs were selected from predicted activity bins that are associated with higher model 

errors, and indeed the per-bin errors were consistent between the imputed sgRNAs and the 

CNN model validation set (Fig. S6h). Whereas the majority of mismatched sgRNAs in the 

large-scale screen were inactive, relative activities in the compact library were evenly 

distributed (Fig. 5b, S6i). Relative sgRNA activities measured in K562 cells were well-

correlated with those measured in the large-scale screen (r2 = 0.7), and relative activities 

were also well-correlated between K562 and HeLa cells (r2 = 0.59, Fig. 5c). In addition, in a 

chemical-genetic screen in K562 cells for sensitivity to lovastatin, a potent HMG-CoA 

reductase inhibitor, even moderate-activity sgRNAs targeting HMGCR strongly reduced 

growth in the presence of lovastatin, suggesting that our approach could be used to probe 

drug-gene interactions (Fig. S6j–k, Tables S11, S12). Altogether, these data demonstrate that 

our library reproducibly provides access to intermediate phenotypes for this core gene set in 

multiple cell types.

Exploring expression-phenotype relationships with sgRNA series

Finally, we sought to use sgRNA series to explore expression-phenotype relationships for a 

diverse set of genes. To simultaneously measure gene expression levels and the resulting 

cellular phenotypes for multiple series, we used Perturb-seq, which enables matched capture 

of the transcriptome and the identity of an expressed sgRNA for each individual cell in pools 

of cells34,38–40 (Fig. S7a). We targeted 25 genes involved in essential cell biological 

processes (Table S13) with series of 5–6 sgRNAs (138 sgRNAs total including 10 non-

targeting controls, Table S1). We then subjected pooled K562 CRISPRi cells expressing 

these sgRNAs from a modified CROP-seq vector40,41 to single-cell RNA-seq (scRNA-seq), 

using the sgRNA barcodes to assign unique sgRNA identities to ~19,600 cells (median 122 

cells per sgRNA, Fig. S7b–c, Table S14). In addition to the single-cell transcriptomes, we 

measured the bulk growth phenotypes conferred by the sgRNAs in these cells, which were 

well-correlated with those from the large-scale screen and were used to assign sgRNA 

relative activities for further analysis (Methods, Fig. S7d–e, Tables S15, S16).

We first used the scRNA-seq data to assess the expression levels of each targeted gene. To 

account for cell-to-cell variability in transcript capture efficiency, we quantified target gene 

unique molecular identifier (UMI) counts as a fraction of total UMI count in a given cell 

(Fig. S8a), although analyzing raw UMI counts yielded similar results (Fig. S9). For 

approximately half of the genes targeted we were able to directly assess expression levels on 

the single-cell level (median >10 UMIs per cell, Fig. 6a, S8a). These expression levels were 

largely unimodally distributed, with medians shifting downwards with increasing sgRNA 

activity (Fig. 6a). For some genes, however, two populations with different knockdown 
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levels were apparent (Fig. 6a, S8a). These populations were present both with intermediate-

activity sgRNAs and the perfectly matched sgRNAs, suggesting that they did not result from 

limited knockdown penetrance for intermediate-activity sgRNAs. For genes with 

intermediate to low expression we typically observed 0–4 UMIs per cell, rendering the 

quantification of single-cell expression levels more difficult. We nonetheless observed a shift 

of the distribution to lower UMI numbers with increasing sgRNA activity (Fig. S8a, S9) as 

well as a decrease in mean expression levels when averaging expression across all cells with 

the same sgRNA (Fig. S8b).

Titration is also apparent at the level of the transcriptional responses, which provide a robust 

single-cell measurement of the phenotype induced by depletion of the targeted gene. In the 

simplest cases, knockdown led to substantial reductions in cellular UMI counts, consistent 

with large-scale inhibition of mRNA transcription (Fig. 6b, Fig. S10a). Examples include 

GATA1, a central myeloid lineage transcription factor, POLR2H, a core subunit of RNA 

polymerase II (and RNA polymerases I and III), or to a lesser extent BCR, which is fused to 

the driver oncogene ABL1 in K562 cells. Notably, the reduction in UMI counts correlated 

linearly with growth phenotype within sgRNA series (Fig. 6b, Fig. S10b) but exhibited non-

linear relationships with target gene knockdown at least in the cases of GATA1 and 

POLR2H (Fig. 6c, S10b, BCR levels are difficult to quantify accurately). Both relationships 

appeared to be sigmoidal but with different thresholds: whereas cellular UMI counts 

dropped sharply once GATA1 mRNA levels were reduced by 50%, a larger reduction of 

POLR2H mRNA levels was required to achieve a similarly sized effect.

Knockdown of most other targeted genes did not perturb total UMI counts to the same extent 

(Fig. S10a) but resulted in other transcriptional responses. Knockdown of CAD, for 

example, triggered cell cycle stalling during S-phase, consistent with previous 

observations34, with a higher frequency of stalling with increasing sgRNA activity (Fig. 

S10c, S10d). Knockdown of HSPA9, the mitochondrial Hsp70 isoform, induced the 

expected transcriptional signature corresponding to activation of the integrated stress 

response (ISR) including upregulation of DDIT3 (CHOP), DDIT4, ATF5, and ASNS34,42. 

The magnitude of this transcriptional signature increased with increasing sgRNA activity on 

both the population (Fig. 6d) and the single-cell level (Fig. 6e), although populations with 

intermediate-activity sgRNAs had larger cell-to-cell variation in response magnitude. 

Similarly, the transcriptional responses to knockdown of other genes scaled with sgRNA 

activity and exhibited larger variance for intermediate-activity sgRNAs (Fig. 6e).

We next compared the expression levels of the targeted gene to the magnitudes of the 

resulting phenotypes. Within each series, two metrics of phenotype, bulk population growth 

phenotype and transcriptional response, were well-correlated, despite substantial differences 

in the absolute magnitudes of the transcriptional responses with different series (Fig. 6f, 

S10e–g). By contrast, the relationships between either metric of phenotype and target gene 

expression were strongly gene-specific (Fig. 6g, Fig. S10h–j). For HSPA5 and GATA1, for 

example, a reduction in mRNA levels by ~50% was sufficient to induce a near-maximal 

transcriptional response and growth defect, whereas for most other genes a larger reduction 

was required. These results suggest that K562 cells are intolerant to moderate decreases in 

expression of GATA1 and HSPA5, with sharp transitions from growth to death once 
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expression levels drop below a threshold. More broadly, these results highlight the utility of 

titrating gene expression to map expression-phenotype relationships and quantitatively 

define gene expression sufficiency.

Following single-cell trajectories along a continuum of gene expression levels

To gain further insight into the diversity of responses induced by depletion of essential 

genes, we compared the transcriptional profiles induced by each individual sgRNA. 

Averaging transcriptional profiles across all cells with the same sgRNA and clustering the 

resulting mean profiles revealed multiple groups segregated by biological function, 

including a cluster of ribosomal proteins and POLR1D, a subunit of the rRNA-transcribing 

RNA polymerase I (and of RNA polymerase III), and a cluster of perturbations that activate 

the ISR (HSPA9, HSPE1, and EIF2S1/eIF2α, Fig. S11a). To further visualize the space of 

transcriptional states, we performed dimensionality reduction on the single-cell 

transcriptomes using UMAP43. The resulting projection recapitulated the clustering, as 

indicated for example by the close proximity of cells with perturbations of HSPA9, HSPE1, 

and EIF2S1 (Fig. 6h). Within individual series, cells projected further outward in UMAP 

space with increasing sgRNA activity, further highlighting the titration of gene expression 

levels on the single-cell level (Fig. 6i).

Closer examination of the UMAP projection revealed more granular structure, including the 

grouping of a subset of cells with knockdown of ATP5E, a subunit of ATP synthase, with 

cells with ISR-activating perturbations (Fig. 6h). This subset of cells indeed exhibited 

classical features of ISR activation (Fig. S11b). The frequency of ISR activation increased 

with lower ATP5E mRNA levels, but even at the lowest levels some cells did not exhibit ISR 

activation (Fig. 6j, S11b). These results suggest that depletion of ATP synthase under these 

conditions predisposes cells to ISR activation, perhaps by exacerbating transient phases of 

mitochondrial stress in a manner that is proportional to ATP synthase levels. More broadly, 

these results highlight the utility of titrating gene expression in probing cell biological 

phenotypes, especially in conjunction with rich phenotyping methods such as scRNA-seq.

Discussion

Here we describe the development of an approach to systematically titrate gene expression 

in human cells using allelic series of attenuated sgRNAs. These series, either individually or 

as a pool, have a broad range of applications across basic and biomedical research. We 

highlight the utility of the approach by mapping gene expression levels to phenotypes with 

single-cell resolution, enabling identification of gene-specific viability thresholds and 

expression level-dependent cell fates.

Our approach builds on in vitro work describing the biophysical principles by which 

modifications to the sgRNA modulate (d)Cas9 binding on-rates and activity16,28,29,44,45. In 

cells, modifications to the sgRNA constant region were affected by specific interactions with 

targeting sequences, rendering sgRNA activities difficult to predict. By contrast, the effects 

of targeting sequence mismatches on sgRNA activity followed readily discernible 

biophysical principles, enabling us to apply machine learning approaches to derive the 

underlying rules and predict series for arbitrary sgRNAs. The resulting genome-wide in 

Jost et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



silico library (Table S9) enables titration of any expressed gene. We also describe a compact 

(~25,000-element) library that enables titration of ~2,400 essential genes (Table S10), with 

potential applications for example in focused screens for sensitization to chemical or genetic 

perturbations. Our approach yields intermediate-activity sgRNAs in a predictable manner, is 

readily scalable to target any number of genes, by contrast to approaches that titrate gene 

expression using microRNAs or synthetic biology tools, and provides access to many 

expression levels of each gene in a single pooled experiment, by contrast to approaches that 

rely on small molecules to control (d)Cas9 activity. The sgRNA activities also hold across 

different cell models, suggesting that the approach should be widely applicable to models in 

which CRISPRi is available, including primary cell models such as iPSCs or 

organoids23,46,47. In these settings, combining sgRNA series with single-cell readout can 

circumvent limitations such as small cell numbers and low transduction efficiency, as 

meaningful phenotypes can be extracted from far fewer cells than typically needed for bulk 

readouts.

These sgRNA series now enable systematic mapping of expression-phenotype relationships 

directly in mammalian systems, with implications for human genetics, evolutionary biology, 

and disease biology. As an example, we highlight how the minimal expression levels that 

sustain cell growth vary for different genes, with K562 cells being particularly sensitive to 

depletion of GATA1 and HSPA5. This variability suggests gene-specific buffering 

capacities, in line with findings in yeast4, but the logic by which these buffering capacities 

are determined in mammalian systems remains unclear. Comprehensive efforts to generate 

such dose-response curves across cell models could begin to reveal the underlying principles 

that have shaped gene expression levels. Analogous efforts to map dose-response curves in 

cancer cells could identify specific vulnerabilities as targets for therapeutics and, vice versa, 

mapping these curves for cancer driver genes or genes underlying specific diseases could 

enable defining the corresponding therapeutic windows as goals for drug development.

Our intermediate-activity sgRNAs also provide access to diverse cell states including loss-

of-function phenotypes that otherwise may be obscured by cell death or neomorphic 

behavior. Thus, our approach enables positioning cells at states of interest to record 

chemical-gene or gene-gene interactions or to characterize transcriptional trajectories near 

phenotypic transitions. These sgRNA series will also facilitate recapitulating gene 

expression levels of disease-relevant states such as haploinsufficiency or partial loss-of-

function, enabling efforts to identify suppressors or modifiers, or modeling quantitative trait 

loci associated with multigenic traits in conjunction with rich phenotyping to identify the 

mechanisms by which they interact and contribute to such traits. Finally, mismatched 

sgRNAs can be used to titrate dCas9 occupancy and activity in other applications such as 

CRISPRa or other dCas9-based epigenetic modifiers.

In summary, our allelic series approach provides a scalable tool to titrate gene expression 

and evaluate dose-response relationships in mammalian systems. This resource should be 

equally enabling to systematic large-scale efforts and detailed single-gene investigations in 

basic cell biology, drug development, and functional genomics.
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Online methods

Reagents and cell lines

K562 and Jurkat cells were grown in RPMI 1640 medium (Gibco) with 25 mM HEPES, 2 

mM L-glutamine, 2 g/L NaHCO3 supplemented with 10% (v/v) standard fetal bovine serum 

(FBS, HyClone or VWR), 100 units/mL penicillin, 100 μg/mL streptomycin, and 2 mM L-

glutamine (Gibco). HEK293T and HeLa cells were grown in Dulbecco’s modified eagle 

medium (DMEM, Gibco) with 25 mM D-glucose, 3.7 g/L NaHCO3, 4 mM L-glutamine and 

supplemented with 10% (v/v) FBS, 100 units/mL penicillin, 100 μg/mL streptomycin, and 2 

mM L-glutamine. K562 (chronic myelogenous leukemia) and HeLa (cervical carcinoma) 

cells are derived from female patients. Jurkat (acute T-cell lymphocytic leukemia) cells are 

derived from a male patient. HEK293T (embryonic kidney) cells are derived from a female 

fetus. The K562 and HeLa CRISPRi cell lines and the GFP+ K562 CRISPRi cell line were 

previously published18,25,34. Jurkat CRISPRi cells (Clone NH7) were obtained from the 

Berkeley Cell Culture Facility. All cell lines were grown at 37 °C in the presence of 5% 

CO2. All cell lines were periodically tested for Mycoplasma contamination using the 

MycoAlert Plus Mycoplasma detection kit (Lonza).

DNA transfections and virus production

Lentivirus was generated by transfecting HEK239T cells with four packaging plasmids (for 

expression of VSV-G, Gag/Pol, Rev, and Tat, respectively) as well as the transfer plasmid 

using TransIT-LT1 Transfection Reagent (Mirus Bio). Viral supernatant was harvested two 

days after transfection and filtered through 0.44 μm PVDF filters and/or frozen prior to 

transduction.

Cloning of individual sgRNAs

Individual perfectly matched or mismatched sgRNAs were cloned essentially as described 

previously18. Briefly, two complementary oligonucleotides (Integrated DNA Technologies), 

containing the targeting region as well as overhangs matching those left by restriction digest 

of the backbone with BstXI and BlpI, were annealed and ligated into an sgRNA expression 

vector digested with BstXI (NEB or Thermo Fisher Scientific) and BlpI (NEB) or Bpu1102I 

(Thermo Fisher Scientific). The ligation product was transformed into Stellar chemically 

competent E. coli cells (Takara Bio) and plasmid was prepared following standard protocols.

Individual evaluation of sgRNA phenotypes for GFP knockdown

For individual evaluation of GFP knockdown phenotypes, sgRNAs were individually cloned 

as described above, ligated into a version of pU6-sgCXCR4–2 (marked with a puromycin 

resistance cassette and mCherry, Addgene #46917)25, modified to include a BlpI site. 

Sequences used for individual evaluation are listed in Table S1. The sgRNA expression 

vectors were individually packaged into lentivirus and transduced into GFP+ K562 CRISPRi 

cells34 at MOI < 1 (15 – 40% infected cells) by centrifugation at 1000 × g and 33 °C for 

0.5–2 h. GFP levels were recorded 10 d after transduction by flow cytometry using a 

FACSCelesta flow cytometer (BD Biosciences), gating for sgRNA-expressing cells 

(mCherry+). Experiments were performed in duplicate from the transduction step. Relative 
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activities were defined as the fold-knockdown of each mismatched variant 

(GFPsgRNA[non-targeting] / GFPsgRNA[variant]) divided by the fold-knockdown of the perfectly-

matched sgRNA. The background fluorescence of a GFP– strain was subtracted from all 

GFP values prior to other calculations. Data were analyzed in Python 2.7 using the 

FlowCytometryTools package (v0.5.0). The distributions of GFP values in Fig. 1B were 

plotted following the example in https://seaborn.pydata.org/examples/kde_ridgeplot.

Design of large-scale mismatched sgRNA library

To generate the list of targeting sgRNAs for the large-scale mismatched sgRNA library, hit 

genes from a growth screen performed in K562 cells with the CRISPRi v2 library14 were 

selected by calculating a discriminant score (phenotype z-score × –log10(Mann-Whitney P)). 

Discriminant scores for negative control genes (randomly sampled groups of 10 non-

targeting sgRNAs) were calculated as well, and hit genes were selected above a threshold 

such that 5% of the hits would be negative control genes (i.e. an estimated empirical 5% 

FDR). This procedure resulted in the selection of 2477 genes. Of these genes, 28 genes for 

which the second strongest sgRNA by absolute value had a positive growth phenotype were 

filtered out as these were likely to be scored as hits solely due to a single sgRNA. For the 

remaining 2,449 genes, the two sgRNAs with the strongest growth phenotype were selected, 

for a total of 4,898 perfectly matched sgRNAs.

For each of these sgRNAs, a set of 23 variant sgRNAs with mismatches was designed: 5 

with a single randomly chosen mismatch within 7 bases of the PAM, 5 with a single 

randomly chosen mismatch 8–12 bases from the PAM, and 3 with a single randomly chosen 

mismatch 13–19 bases from the PAM (the first base of the targeting region was never 

selected for this purpose as it is an invariant G in all sgRNAs to enable transcription from 

the U6 promoter). The remaining 10 variants had 2 randomly chosen mismatches selected 

from positions –1 to –19. The compiled sgRNA sequences were then filtered for sgRNAs 

containing BstXI, BlpI, and SbfI sites, which are used during library cloning and sequencing 

library preparation, and 2,500 negative controls (randomly generated to match the base 

composition of our hCRISPRi-v2 library) were added. Note that the first base of all sgRNAs 

was fixed as a G, regardless of whether or not it matched the genome, consistent with the 

design of our hCRISPRi-v2 library14. Sequences of sgRNAs and descriptions of mismatches 

are listed in Table S2.

Assessment of off-target potential

To assess the off-target potential of mismatched sgRNAs, we first extended our previous 

strategy to estimate sgRNA off-target effects14,18. Briefly, for each target in the genome, a 

FASTQ entry was created for the 23 bases of the target including the PAM, with the 

accompanying empirical Phred score indicating an estimate of the anticipated importance of 

a mismatch in that base position. Bowtie (http://bowtie-bio.sourceforge.net)48 was then used 

to align each designed sgRNA back to the genome (or a subset of the genome solely 

encompassing annotated transcription start sites flanked by 500 base pairs), parameterized 

so that sgRNAs were considered to mutually align if and only if: a) no more than 3 

mismatches existed in the PAM-proximal 12 bases and the PAM, b) the summed Phred score 

of all mismatched positions across the 23 bases was less than a threshold. This alignment 
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was done iteratively with decreasing thresholds, and any sgRNAs which aligned successfully 

to no other site in the genome at a particular threshold were then deemed to have a 

specificity at said threshold.

Subsequently, the empirical measurements of relative activities of CRISPRi sgRNAs in the 

presence of mismatches from our large-scale screen afforded the opportunity to calculate the 

off-target potential in a more nuanced manner, akin to the methods used to measure off-

target potential for CRISPR cutting as implemented for example in GuideScan49. Briefly, we 

used Cas-OFFinder50 to first find all potential off-target sites up to 3 mismatches away for 

each sgRNA. We then aggregated these off-target sites into a specificity score for each 

sgRNA:

specificity score = 1
∑i = 1

n RAi ⋅ qi

Where n represents the number of sites with up to 3 mismatches, RA the empirically 

measured relative CRISPRi activity of each sgRNA at this target site given the positions and 

types of mismatches, and q the number of times the ith site occurs in the genome. In 

particular, RA was calculated as follows:

RA = ∏j = 1
m RAj

Where m represents the number of mismatches between the sgRNA and the target site and 

RAj represents the mean relative activity of sgRNAs with mismatch j (given mismatch type 

at given sgRNA position). An equivalent methodology was previously used to assess off-

target potential of sgRNAs in CRISPR cutting27,49. If the “mismatched site” was the 

intended on-target site (because many of our sgRNAs contained mismatches to the intended 

on-target site), we instead assigned it RA = 1 to keep specificity scores on a scale of 0 to 1. 

A specificity score of 1 indicates that there are no off-target sites with up to 3 mismatches in 

the genome.

We also calculated equivalent specificity scores using the empirically measured CFD scores, 

which were determined by measuring cutting frequency at mismatched sites27. Note that 

CRISPR cutting appears to be less sensitive to mismatches (see also Fig. S2j), and thus 

specificity scores calculated using CFD scores are frequently lower than those calculated 

using relative CRISPRi activities.

We also note that the off-target potential calculated in this manner is likely overestimated, as 

binding of CRISPRi sgRNAs in most regions of the genome outside of promoters/TSSs, 

enhancers, or similar regions is relatively innocuous. Nonetheless, these off-target specificity 

scores can serve as guidelines in sgRNA selection. All four off-target scoring metrics 

(Bowtie threshold genome-wide, Bowtie threshold near TSSs only, off-target specificity 

score calculated using CRISPRi relative activities, off-target specificity score calculated 

using CFDs) are included in Table S2 as well as in Tables S9 and S10.
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Pooled cloning of mismatched sgRNA libraries

Pooled sgRNA libraries were cloned largely as described previously18,26,51. Briefly, 

oligonucleotide pools containing the desired elements with flanking restriction sites and 

PCR adapters were obtained from Agilent Technologies. The oligonucleotide pools were 

amplified by 15 cycles of PCR using Phusion polymerase (NEB). The PCR product was 

digested with BstXI (Thermo Fisher Scientific) and Bpu1102I (Thermo Fisher Scientific), 

purified, and ligated into BstXI/Bpu1102I-digested pCRISPRia-v2 (marked with a 

puromycin resistance cassette and BFP, Addgene #84832)14 at 16 °C for 16 h. The ligation 

product was purified by isopropanol precipitation and then transformed into MegaX DH10B 

electrocompetent cells (Thermo Fisher Scientific) by electroporation using the Gene Pulser 

Xcell system (Bio-Rad), transforming ~100 ng purified ligation product per 100 μL cells. 

The cells were allowed to recover in 3–6 mL SOC medium for 2 h. At that point, a small 1–5 

μL aliquot was removed and plated in three serial dilutions on LB plates with selective 

antibiotic (carbenicillin). The remainder of the culture was inoculated into 0.5 to 1 L LB 

supplemented with 100 μg/mL carbenicillin, grown at 37 °C with shaking at 220 rpm for 16 

h and harvested by centrifugation. Colonies on the plates were counted to confirm a 

transformation efficiency greater than 100-fold over the number of elements (>100x 

coverage). The pooled sgRNA plasmid library was extracted from the cells by GigaPrep 

(Qiagen or Zymo Research). Even coverage of library elements was confirmed by 

sequencing a small aliquot on a HiSeq 4000 (Illumina).

Large-scale mismatched sgRNA screen and sequencing library preparation

Large-scale screens were conducted similarly to previously described screens14,18,26. The 

large-scale library was transduced in duplicate into K562 CRISPRi and Jurkat CRISPRi 

cells at MOI <1 (percentage of transduced cells 2 days after transduction: 20–40%) by 

centrifugation at 1000 × g and 33 °C for 2 h. Replicates were maintained separately in 0.5 L 

to 1 L of RPMI-1640 in 1 L spinner flasks for the course of the screen. 2 days after 

transduction, the cells were selected with puromycin for 2 days (K562: 2 days of 1 μg/mL; 

Jurkat: 1 day of 1 μg/mL and 1 day of 0.5 μg/mL), at which point transduced cells accounted 

for 80–95% of the population, as measured by flow cytometry using an LSR-II flow 

cytometer (BD Biosciences). Cells were allowed to recover for 1 day in the absence of 

puromycin. At this point, t0 samples with a 3000x library coverage (400 × 106 cells) were 

harvested and the remaining cells were cultured further. The cells were maintained in 

spinner flasks by daily dilution to 0.5 × 106 cells/mL at an average coverage of greater than 

2000 cells per sgRNA with daily measurements of cell numbers and viability on an Accuri 

bench-top flow cytometer (BD BioSciences) for 11 days, at which point endpoint samples 

were harvested by centrifugation with 3000x library coverage.

Genomic DNA was isolated from frozen cell samples and the sgRNA-encoding region was 

enriched, amplified, and processed for sequencing essentially as described previously14. 

Briefly, genomic DNA was isolated using a NucleoSpin Blood XL kit (Macherey-Nagel), 

using 1 column per 100 × 106 cells. The isolated genomic DNA was digested with 400 U 

SbfI-HF (NEB) per mg DNA at 37 °C for 16 h. To isolate the ~500 bp fragment containing 

the sgRNA expression cassette liberated by this digest, size separation was performed using 

large-scale gel electrophoresis with 0.8% agarose gels. The region containing DNA 
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fragments between 200 and 800 bp was excised and DNA was purified using the NucleoSpin 

Gel and PCR Clean-up kit (Macherey-Nagel). The isolated DNA was quantified using a 

Qubit Fluorometer (Thermo Fisher Scientific) and then amplified by 23 cycles of PCR using 

Phusion polymerase (NEB), appending Illumina adapter and unique sample indices in the 

process. Each DNA sample was divided into 5–50 individual 100 μL reactions, each with 

500 ng DNA as input. To ensure base diversity during sequencing, the samples were divided 

into two sets, with all samples for a given replicate always being assigned to the same set. 

The two sets had the Illumina adapters appended in opposite orientations, such that samples 

in set A were sequenced from the 5′ end of the sgRNA sequence in the first 20 cycles of 

sequencing and samples in set B were sequenced from the 3′ end of the sgRNA sequence in 

the next 20 cycles of sequencing. With updates to Illumina chemistry and software, this 

strategy is no longer required to ensure high sequencing quality, and all samples are 

amplified in the same orientation. Following the PCR, all reactions for a given DNA sample 

were combined and a small aliquot (100–300 μL) was purified using AMPure XP beads 

(Beckman-Coulter) with a two-sided selection (0.65x followed by 1x). Sequencing libraries 

from all samples were combined and sequencing was performed on a HiSeq 4000 (Illumina) 

using single-read 50 runs and with two custom sequencing primers (oCRISPRi_seq_V5 and 

oCRISPRi_seq_V4_3′, Table S17). For samples that were amplified in the same orientation, 

only a single custom sequencing primer was added (oCRISPRi_seq_V5), and the samples 

were supplemented with a 5% PhiX spike-in.

Sequencing reads were aligned to the library sequences, counted, and quantified using the 

Python-based ScreenProcessing pipeline (https://github.com/mhorlbeck/ScreenProcessing). 

Calculation of phenotypes was performed as described previously14,18,26. Untreated growth 

phenotypes (γ) were derived by calculating the log2 change in enrichment of an sgRNA in 

the endpoint and t0 samples, subtracting the equivalent median value for all non-targeting 

sgRNAs, and dividing by the number of doublings of the population18,26. For sgRNAs with 

a read count of 0, a pseudocount of 1 was added. sgRNAs with <50 reads in both the 

endpoint and t0 samples in a given replicate were excluded from analysis. Read counts and 

phenotypes for individual sgRNAs are available in Table S3 and Table S4, respectively. To 

calculate relative activities, phenotypes of mismatched sgRNAs were divided by those for 

the corresponding perfectly matched sgRNA. Relative activities were filtered for series in 

which the perfectly matched sgRNA had a growth phenotype greater than 5 z-scores outside 

the distribution of negative control sgRNAs for all further analysis (3,147 and 2,029 sgRNA 

series for K562 and Jurkat cells, respectively). Relative activities from both cell lines were 

averaged if the series passed the z-score filter in both. All analyses were performed in 

Python 2.7 using a combination of Numpy (v1.14.0), Pandas (v0.23.4), and Scipy (v1.1.0).

Design and pooled cloning of constant region variants library

The sequences in the library of modified constant regions were derived from the sgRNA (F

+E) optimized sequence30 modified to include a BlpI site18. Each modified constant region 

was paired with 36 sgRNA targeting sequences (3 sgRNAs targeting each of 10 essential 

genes and six non-targeting negative control sgRNAs). The cloning strategy (described 

below) allowed the mutation of most positions in the sgRNA constant region. A variety of 

modifications were made, including substitutions of all single bases not in the BlpI 
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restriction site (which is used for cloning), double substitutions including all substitutions at 

base-paired position pairs not before or in the BlpI site, and a variety of triple, quadruple, 

and sextuple substitutions, including base-pair-preserving substitutions at adjacent base-

pairs.

The library was ordered and cloned in two parts. One part consisted of ~100 modifications 

to the eight bases upstream of the BlpI restriction site. Constant region variants with 

mutations in this section were paired with each of the 36 targeting sequences, ordered as a 

pooled oligonucleotide library (Twist Biosciences), and cloned into pCRISPRia-v2 as 

described above. The second part consisted of ~900 modifications to the 71 bases 

downstream of the BlpI restriction site. This part was cloned in two steps. First, all 36 

targeting sequences were individually cloned into pCRISPRia-v2 as described above. The 

vectors were then pooled at an equimolar ratio and digested with BlpI (NEB) and XhoI 

(NEB). The modified constant region variants were ordered as a pooled oligonucleotide 

library (Twist Biosciences), PCR amplified with Phusion polymerase (NEB), digested with 

BlpI (NEB) and XhoI (NEB), and ligated into the digested vector pool, in a manner identical 

to previously published protocols and as described above, except for the different restriction 

enzymes.

Compact mismatched sgRNA library and constant region library screens

Screens with the compact mismatched sgRNA library and the constant region library were 

conducted largely as described above, with smaller modifications during the screening 

procedure and an updated sequencing library preparation protocol. Briefly, the libraries were 

transduced in duplicate into K562 CRISPRi (both libraries) or HeLa CRISPRi cells 

(compact mismatched sgRNA library) as described above. K562 replicates were maintained 

separately in 0.15 to 0.3 L of RPMI-1640 in 0.3 L spinner flasks for the course of the screen. 

HeLa replicates were maintained in sets of ten 15-cm plates. Cells were selected with 

puromycin as described above (K562: 1 day of 0.75 μg/mL and 1 day of 0.85 μg/mL; HeLa: 

2 days of 0.8 μg/mL and 1 day of 1 μg/mL). The remainder of the screen was carried out at 

>1000x library coverage (K562 compact mismatched sgRNA library: >2000x; HeLa 

compact mismatched sgRNA library: >1000x; K562 constant region library: >2000x). For 

the drug screen, 10 μM lovastatin (ApexBio) or an equivalent volume of DMSO (vehicle) 

was added to flasks at t=0, and 3 days later cells were pelleted and re-suspended in fresh 

medium. Lovastatin (12 μM) or DMSO was again added after 5 and 9 days of growth, with 

media exchanges 3 days after drug supplementation. Multiple samples were harvested after 

4 to 8 days for the K562 and HeLa growth screens. Both drug-treated and vehicle-treated 

samples were harvested after 12 days for the drug screen, which allowed for a difference of 

3.5 to 4.1 cell population doublings between drug- and vehicle-treated groups.

Genomic DNA was isolated from frozen cell samples as described above. The subsequent 

sequencing library preparation was simplified to omit the enrichment step by gel extraction. 

In particular, following the genomic DNA extraction, DNA was quantified by absorbance at 

260 nm using a NanoDrop One spectrophotometer (Thermo Fisher Scientific) and then 

directly amplified by 22–23 cycles of PCR using NEBNext Ultra II Q5 PCR MasterMix 

(NEB), appending Illumina adapter and unique sample indices in the process. Each DNA 
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sample was divided into 50–200 individual 100 μL reactions, each with 10 μg DNA as input. 

All samples were amplified using the same strategy and in the same orientation. The PCR 

products were purified as described above and sequencing libraries from all samples were 

combined. For the compact mismatched library screens, sequencing was performed on a 

HiSeq 4000 (Illumina) using single-read 50 runs with a 5% PhiX spike-in and a custom 

sequencing primer (oCRISPRi_seq_V5, Table S17). For the constant region screens, the 

PCR primers were adapted to allow for amplification of the entire constant region and to 

append a standard Illumina read 2 primer binding site (Table S17). Sequencing was then 

performed in the same manner including the custom sequencing primer (oCRISPRi_seq_v5) 

and a 5% PhiX spike-in, but using paired-read 150 runs.

Sequencing reads were processed as described above, except that sgRNAs with <50 reads 

(compact mismatched sgRNA library) or <25 reads (constant region library) in both the 

endpoint and t0 samples in a given replicate or with a read count of 0 in either sample were 

excluded from analysis. Read counts and phenotypes for individual sgRNAs are available in 

Tables S6–S7 (constant region screen) and Tables S11–S12 (compact mismatched sgRNA 

library screen).

Generation and evaluation of individual constant region variants by RT-qPCR

Constant region variants were evaluated in the background of a constant region with an 

additional base pair substitution in the first stem loop (fourth base pair changed from AT to 

GC32). Ten constant region variants with average relative activities between 0.2 and 0.8 from 

the screen and carrying substitutions after the BlpI site were selected (Table S17). Cloning 

of individual constant regions was performed essentially as the cloning of sgRNA targeting 

regions, described above, except that the BlpI and XhoI restriction sites were used for 

cloning (the XhoI site is immediately downstream of the constant region) and that cloning 

was performed with a variant of pCRISPRia-v2 with the modified stem loop. For each of the 

ten constant region variants as well as the constant region carrying only the stem loop 

substitution, two different targeting regions against DPH2 were then cloned as described 

above (Table S1). These 22 vectors as well as a vector with a non-targeting negative control 

sgRNA (Table S1) were individually packaged into lentivirus and transduced into K562 

CRISPRi cells at MOI < 1 (10 – 50% infected cells) by centrifugation at 1000 × g and 33 °C 

for 2 h. Cells were allowed to recover for 2 days and then selected to purity with puromycin 

(1.5 – 3 μg/mL), as assessed by measuring the fraction of BFP-positive cells by flow 

cytometry on an LSR-II (BD Biosciences), allowed to recover for 1 day, and harvested in 

aliquots of 0.5 – 2 × 106 cells for RNA extraction. RNA was extracted using the RNeasy 

Mini kit (Qiagen) with on-column DNase digestion (Qiagen) and reverse-transcribed using 

SuperScript II Reverse Transcriptase (Thermo Fisher Scientific) with oligo(dT) primers in 

the presence of RNaseOUT Recombinant Ribonuclease Inhibitor (Thermo Fisher Scientific). 

Quantitative PCR (qPCR) reactions were performed in 22 μL reactions by adding 20 μL 

master mix containing 1.1x Colorless GoTaq Reaction Buffer (Promega), 0.7 mM MgCl2, 

dNTPs (0.2 mM each), primers (0.75 μM each), and 0.1x SYBR Green with GoTaq DNA 

polymerase (Promega) to 2 μL cDNA or water. Reactions were run on a LightCycler 480 

Instrument (Roche). For each cDNA sample, reactions were set up with qPCR primers 
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against DPH2 and ACTB (sequences listed in Table S17). Experiments were performed in 

technical triplicates.

Machine learning

In order to establish a subset of highly active sgRNAs with which to train a machine learning 

model, we filtered for perfectly matched sgRNAs with a growth phenotype greater than 10 

z-scores outside the distribution of negative control sgRNAs in the K562 and/or Jurkat 

pooled screens (K562 γ < –0.21; Jurkat γ < –0.35). All singly-mismatched variants derived 

from sgRNAs passing the filter were then included, and relative activities were calculated as 

described previously, averaging the replicate measurements for each sgRNA. In cases where 

a perfectly matched sgRNA passed the filter in the K562 and Jurkat screen, the average 

relative activity across both cell types was calculated for each mismatched variant; otherwise 

the relative activities for only one cell type were considered. This filtering scheme resulted 

in 26,248 mismatched sgRNAs comprising 2,034 series targeting 1,292 genes, with 

approximately 40% of relative activity values averaged from K562 and Jurkat cells.

For each sgRNA, a set of features was defined based on the sequences of the genomic target 

and the mismatched sgRNA. First, the genomic sequence extending from 22 bases 5′ of the 

beginning of the PAM to 1 base 3′ of the end of the PAM (26 bases in all) was binarized into 

a 2D array of shape (4, 26), with 0s and 1s indicating the absence or presence of a particular 

nucleotide at each position, respectively. Next, a similar array was constructed representing 

the mismatch imparted by the sgRNA, with an additional potential mismatch at the 5′ 
terminus of the sgRNA (position –20), which invariably begins with G in our libraries due to 

the U6 promoter. Thus, the mismatched sequence array was identical to the genomic 

sequence array except for 1 or 2 positions. Finally, the arrays were stacked into a 3D volume 

of shape (4, 26, 2), which served as the feature set for that particular sgRNA.

The training set of sgRNAs was established by randomly selecting 80% of sgRNA series, 

with the remaining 20% set aside for model validation. A convolutional neural network 

(CNN) regression model was then designed using Keras (https://keras.io/) with a 

TensorFlow backend engine, consisting of two sequential convolution layers, a max pooling 

layer, a flattening layer, and finally a three-layer fully connected network terminating in a 

single neuron. Additional regularization was achieved by adding dropout layers after the 

pooling step and between each fully connected layer. To penalize the model for ignoring 

under-represented sgRNA classes (e.g. those with intermediate relative activity), training 

sgRNAs were binned according to relative activity, and sample weights inversely 

proportional to the population in each bin were assigned. Hyperparameters were optimized 

using a randomized grid search with 3-fold cross-validation with the training set as input. 

Parameters included the size, shape, stride, and number of convolution filters, the pooling 

strategy, the number of neurons and layers in the dense network, the extent of dropout 

applied at each regularization step, the activation functions in each layer, the loss function, 

and the model optimizer. Ultimately, 20 CNN models with identical starting parameters 

were individually trained for 8 epochs in batches of 32 sgRNAs. Performance was assessed 

by computing the average prediction of the 20-model ensemble for each validation sgRNA 

and comparing it to the measured value.
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A linear regression model was trained on the same set of sgRNAs, albeit with modified 

features more suited for this approach. These features include the identities of bases in and 

around the PAM, whether the invariant G at the 5′ end of the sgRNA is base paired, the GC 

content of the sgRNA, the change in GC content due to the point mutation, the location of 

the protospacer relative to the annotated transcription start site, the identities of the 3 RNA 

bases on either side of the mismatch, and the location and type of each mismatch. All 

features were binarized except for GC and delta GC content. In total, each sgRNA was 

represented by a vector of 270 features, 228 of which describe the mismatch position and 

type (19 possible positions by 12 possible types). Prior to training, feature vectors were z-

normalized to set the mean to 0 and variance to 1. Finally, an elastic net linear regression 

model was created using the scikit-learn Python package (https://scikit-learn.org), and key 

hyperparameters (alpha and L1 ratio) were optimized using a grid search with 3-fold cross 

validation during training.

Design of compact library

Genes targeted by the compact allelic series library were required to have at least one 

perfectly matched sgRNA with a growth phenotype greater than 2 z-scores outside the 

distribution of negative control sgRNAs (γ < –0.04) in a single replicate of a K562 pooled 

screen (this work or Horlbeck et al.14). By this metric, 4,722 unique sgRNAs targeting 2,405 

essential genes were included. Next, for each perfectly matched sgRNA, variants containing 

all 57 single mismatches in the targeting sequence (positions –19 to –1) were generated in 
silico, and sequences with off-target binding potential in the human genome were filtered 

out as described previously14. Remaining variant sgRNAs were whitelisted for potential 

selection in subsequent steps.

For each gene being targeted, if both of the perfectly matched sgRNAs imparted growth 

phenotypes greater than 3 z-scores outside the distribution of negative controls (γ < –0.06) 

in this work’s large-scale K562 screen, then one series of 4 variant sgRNAs was generated 

from each. Otherwise, one series of 8 variants was generated from the sgRNA with the 

stronger phenotype. Both perfectly matched sgRNAs were included regardless of their 

growth phenotype, for a total of 2 perfectly matched and 8 mismatched sgRNAs per gene.

In order to select mismatched sgRNAs, we first divided the relative activity space into 6 bins 

with edges at 0.1, 0.3, 0.5, 0.7, and 0.9. For each series, we attempted to select sgRNAs from 

each of the middle 4 bins (centers at 0.2, 0.4, 0.6, and 0.8 relative activity) as measured in 

this work’s K562 screen. If multiple sgRNAs were available in a particular bin, they were 

prioritized based on distance to the center of the bin and variance between replicate 

measurements. If no previously measured sgRNA was available in a given bin, then the 

CNN model was run on all whitelisted (novel) mismatched sgRNAs belonging to that series, 

and sgRNAs were selected based on predicted activity as needed. In total, the compact 

library was composed of 4,722 unique perfectly matched sgRNAs, 19,210 unique 

mismatched sgRNAs, and 1,202 non-targeting control sgRNAs. Approximately 68% of 

mismatched sgRNAs were evaluated in previous screens (72% single mismatches, 28% 

double mismatches), with the remaining 32% imputed from the CNN model (all single 

mismatches). Sequences of sgRNAs and descriptions of mismatches are listed in Table S10.
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Availability of sgRNA libraries

The large-scale and compact mismatched sgRNA libraries are available at Addgene under 

catalog numbers 136478 (large-scale) and 136479 (compact).

Perturb-seq

The Perturb-seq experiment targeted 25 genes involved in a diverse range of essential 

functions (Table S13). For each target gene, the original sgRNAs and 4–5 mismatched 

sgRNAs covering the range from full to low activity were chosen from the large-scale 

screen. These 128 targeting sgRNAs as well as 10 non-targeting negative control sgRNAs 

(Table S1) were individually cloned into a modified variant of the CROP-seq vector40,41 as 

described above, except into the different vector. Lentivirus was individually packaged for 

each of the 138 sgRNAs and was harvested and frozen in array. To determine viral titers, 

each virus was individually transduced into K562 CRISPRi cells by centrifugation at 1000 × 

g and 33 °C for 2 h, and the fraction of transduced cells was quantified as BFP+ cells using 

an LSR-II flow cytometer (BD Biosciences) 48 h after transduction.

To generate transduced cells for single-cell RNA-seq analysis, virus for all 138 sgRNAs was 

pooled immediately before transduction and then transduced into K562 CRISPRi cells by 

centrifugation at 1000 × g and 33 °C for 2 h. To achieve even representation at the intended 

time of single-cell analysis, the virus pooling was adjusted both for titer and expected 

growth-rate defects. 3 d after transduction, transduced (BFP+) cells were selected using 

FACS on a FACSAria2 (BD Biosciences) and then resuspended in conditioned media (RPMI 

formulated as described above except supplemented with 20% FBS and 20% supernatant of 

an exponentially growing K562 culture). 2 d after sorting, the cells were loaded onto three 

lanes of a Chromium Single Cell 3′ V2 chip (10x Genomics) at 1000 cells/μL and processed 

according to the manufacturer’s instructions.

The CROP-seq sgRNA barcode was PCR amplified from the final single cell RNA-seq 

libraries with a primer specific to the sgRNA expression cassette (oBA503, Table S17) and a 

standard P5 primer (Table S17), purified on a Blue Pippin 1.5% agarose cassette (Sage 

Science) with size selection range 436–534 bp, and pooled with the single cell RNA-seq 

libraries at a ratio of 1:100. The libraries were sequenced on a HiSeq 4000 (Illumina) 

according to the manufacturer’s instructions (10x Genomics).

To measure the growth rate defects conferred by each sgRNA for comparison with the 

transcriptional phenotypes, samples of ~500,000 transduced cells were taken from the same 

transduced cell population used in the Perturb-seq experiment 2, 7, and 12 days after 

transduction. Genomic DNA was extracted using the Nucleospin Blood kit (Macherey-

Nagel) and sgRNA amplicons were prepared as described previously and above14, albeit 

with no genomic DNA digestion or gel purification, and sequenced on HiSeq 4000 as 

described above for the other screens. Growth phenotypes were calculated by comparing 

normalized sgRNA abundances at day seven and twelve to those at day two, as described 

above. Read counts and growth phenotypes (γ and relative activity) for individual sgRNAs 

are available in Table S15 and Table S16, respectively. Relative sgRNA activities measured 

at day 7 (5 days of growth) were used to assign sgRNA activities in further analysis.
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Perturb-seq data analysis

i) Cell barcode and UMI calling, assignment of perturbations—UMI count tables 

with UMI counts for all genes in each individual cell were calculated from the raw 

sequencing data using CellRanger 2.1.1 (10x Genomics) with default settings. Perturbation 

calling was performed as described previously34. Briefly, reads from the specifically 

amplified sgRNA barcode libraries were aligned to a list of expected sgRNA barcode 

sequences using bowtie (flags: -v3 -q -m1). Reads with common UMI and barcode identity 

were then collapsed to counts for each cell barcode, producing a list of possible perturbation 

identities contained by that cell. A proposed perturbation identity was identified as 

“confident” if it met thresholds derived by examining the distributions of reads and UMIs 

across all cells and candidate identities: (1) reads > 50, (2) UMIs > 3, and (3) coverage 

(reads/UMI) in the upper mode of the observed distribution across all candidate identities. 

As described previously52, perturbation identities were called for any cell barcode with 

greater than 2,000 UMIs to enable capture of cells with strong growth defects. Any cell 

barcode containing two or more confident identities was deemed a “multiplet”, and may 

arise from either multiple infection or simultaneous encapsulation of more than one cell in a 

droplet during single-cell RNA sequencing. Cell barcodes passing the 2,000 UMI threshold 

and bearing a single, unambiguous perturbation barcode were included in all subsequent 

analyses. Cell counts for each perturbation are summarized in Table S14.

ii) Expression normalization—Some portions of analysis use normalized expression 

data. We used a relative normalization procedure based on comparison to the gene 

expression observed in control cells bearing non-targeting sgRNAs, as described 

previously34:

1. Total UMI counts for each cell barcode are normalized to have the median 

number of UMIs observed in control cells.

2. For each gene x, expression across all cell barcodes is z-normalized with respect 

to the mean (μx) and standard deviation (σx) observed in control cells:

xnormalized =
x − μx

σx

Following this normalization, control cells have average expression 0 (and standard 

deviation 1) for all genes. Negative/positive values therefore represent under/overexpression 

relative to control.

iii) Target gene quantification—Expression levels of genes targeted by a given 

sgRNA were quantified by normalizing UMI counts of the targeted gene to the total UMI 

count for each individual cell (Fig. S8). Considering raw UMI counts of the targeted gene 

(Fig. S9) or z-normalized target gene expression as described above yielded similar results. 

Note that the sgRNA targeting BCR is toxic due to knockdown of the BCR-ABL1 fusion 

present in K562 cells. Knockdown was apparent both in BCR and ABL1 expression, but we 

used BCR expression for further analysis as there are likely additional copies of ABL1 that 
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are not fused to BCR (and thus would not be affected by the BCR-targeting sgRNA) 

contributing to ABL1 expression.

iv) Cell cycle analysis—Calling of cell cycle stages was performed using a similar 

approach to Macosko et al.53 and largely as described in Adamson and Norman et al.34. 

Briefly, lists of marker genes showing specific expression in different cell cycle stages from 

the literature were first adapted to K562 cells by restricting to those that showed highly 

correlated expression within our experiment. The total (log2-normalized) expression of each 

set of marker genes was used to create scores for each cell cycle stage within each cell, and 

these scores were then z-normalized across all cells. Each cell was assigned to the cell cycle 

stage with the highest score.

v) Differential gene expression analysis—We took two approaches to differential 

expression, as described previously52. For both approaches, we only considered genes with 

expression greater than 0.25 UMIs per cell on average across all cells. First, for a given 

gene, we could assess the changes in the expression distribution of that gene induced by a 

given genetic perturbation by comparing to the expression distribution observed in control 

cells bearing non-targeting sgRNAs. We performed this comparison using a two-sample 

Kolmogorov-Smirnov test and corrected for multiple hypothesis testing at an FDR of 0.001 

using the Benjamini-Yekutieli procedure.

We also exploited a machine learning approach that potentially allows correlated expression 

patterns to be detected and that scales beyond two sample comparisons. Perturbed cells and 

control cells bearing non-targeting sgRNAs were each used as training data for a random 

forest classifier that was trained to predict which sgRNA a cell contained from its 

transcriptional state. As part of the training process the classifier ranks which genes have the 

most prognostic power in predicting sgRNA identity, which by construction will tend to vary 

across condition. For most further analysis, the top 100–300 genes by prognostic power 

were then considered.

To assess the overall magnitude of transcriptional changes in individual cells, z-scores of 

differentially expressed genes were signed by the direction of change in cells with the 

perfectly matched sgRNA of a series (such that all z-scores were positive in cells with the 

perfectly matched sgRNA) and then summed. Conclusions were robust across several 

metrics used to measure distance in gene expression space and aggregate these distances.

vi) Constructing mean expression profiles—For some analyses, expression profiles 

were averaged across all cells with the same perturbation. In general, this was done simply 

by calculating the mean z-normalized expression of all genes with mean expression level of 

0.25 UMI or higher across all cells in the experiment or within the specific considered 

subpopulation (usually all cells with sgRNAs targeting a given gene as well as all control 

cells with non-targeting sgRNAs).

vii) UMAP Dimensionality reduction—For UMAP dimensionality reduction43 of all 

cells, the 300 genes with the highest prognostic power in distinguishing cells by targeted 

gene as ranked by a random forest classifier were selected. Dimensionality reduction was 
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then performed on the z-normalized single-cell expression profiles of these 300 genes using 

the following parameters: n_neighbors = 40, min_dist = 0.1, metric = ‘euclidean’, spread = 

1.0. UMAP dimensionality reduction of subpopulations containing only cells with 

perturbation of a given gene or control cells was performed analogously but using the 

expression profiles of the 100 genes with the highest prognostic power and using 

n_neighbors = 15.

From the UMAP projection, we concluded that ~5% cells had misassigned sgRNA 

identities, as evident for example by the presence of cells with negative control sgRNAs 

within the cluster of cells with HSPA5 knockdown. These cells had confidently assigned 

single perturbations and only expressed the corresponding barcode transcript, suggesting 

that they did not evade our doublet detection algorithm. We speculate that these cells 

expressed two different sgRNAs but silenced expression of one of the reporter transcripts. 

Given the strong trends in the results above, we concluded that this rate of misassignment 

did not substantially affect our ability to identify trends within cell populations.

viii) ATP5E analysis and ISR scores—Analysis of ISR activation in cells with 

ATP5E knockdown was confounded by a small subpopulation of cells with residual 

activation of stress responses (cluster labeled * in Fig. 6h). Cells within this cluster were 

excluded for analysis of ISR activation to ensure that the measured stress responses were 

indeed the result of ATP5E knockdown. Magnitude of ISR activation in individual cells was 

quantified as activation of the PERK (EIF2AK3) regulon from the gene set and activation 

coefficients determined previously34.

Statistics

Tests for differences in distributions of pairwise correlation coefficients of constant region 

relative activities within and between gene targets (Fig. S3d) were carried out with a two-

tailed Student’s t-test. Tests for differential gene expression in the single-cell RNA-seq data 

were performed with a two-sample Kolmogorov-Smirnov test and corrected for multiple 

hypothesis testing at an FDR of 0.001 using the Benjamini-Yekutieli procedure, as described 

in the Methods section on “Perturb-seq data analysis”. Other methods to analyze the single-

cell RNA-seq data are described in the Methods section on “Perturb-seq data analysis”. 

Correlation coefficients reported are Pearson correlation coefficients unless otherwise 

indicated. Sample sizes used to calculate statistics are provided in the figure legends.

Reporting Summary

Further information on experimental design and reagents is provided in the Life Sciences 

Reporting Summary published alongside this paper.

Data Availability Statement

Raw and processed Perturb-seq data are available at GEO under accession code GSE132080. 

Raw and processed sgRNA read counts from pooled screens are provided as supplementary 

tables. All other data will be made available by the corresponding author upon request.
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Code Availability Statement

Custom scripts in this manuscript largely build on scripts published previously14,34,52. An 

IPython notebook detailing the initialization of the CNN model and its use to predict 

mismatched sgRNA activities is included as a supplementary file. All custom scripts will be 

made available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mismatched sgRNAs titrate GFP expression at the single-cell level. (a) Experimental design 

to test knockdown conferred by all mismatched variants of a GFP-targeting sgRNA. (b) 
Distributions of GFP levels in cells with a perfectly matched sgRNA (top), mismatched 

sgRNAs (middle), and a non-targeting control sgRNA (bottom). Sequences of sgRNAs are 

indicated on the right (without the PAM). (c) Relative activities of all mismatched sgRNAs, 

defined as the ratio of fold-knockdown conferred by a mismatched sgRNA to fold-

knockdown conferred by the perfectly matched sgRNA. Data represent mean relative 

activities obtained from two replicate transductions.
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Figure 2. 
A large-scale CRISPRi screen identifies factors governing mismatched sgRNA activity. (a) 
Design of large-scale mismatched sgRNA library. (b) Schematic of pooled CRISPRi screen 

to determine activities of mismatched-sgRNAs. (c) Growth phenotypes (γ) in K562 and 

Jurkat cells for four sgRNA series, with the perfectly matched sgRNAs shown in darker 

colors and mismatched sgRNAs shown in corresponding lighter colors. Phenotypes 

represent the mean of two replicate screens. Differences in absolute phenotypes likely reflect 

cell type-specific essentiality. A γ of 0 is equivalent to the average phenotype of non-

targeting control sgRNAs. (d) Comparison of mismatched sgRNA relative activities in K562 

and Jurkat cells. Marginal histograms depict distributions of relative activities along the 

corresponding axes. n = 41,512 sgRNAs; r2 = squared Pearson correlation coefficient. (e) 
Distribution of mismatched sgRNA relative activities stratified by position of the mismatch. 

Position –1 is immediately adjacent to the PAM. n = 1372–3374 sgRNAs. (f) Distribution of 

mismatched sgRNA relative activities stratified by type of mismatch, grouped by 

mismatches located in positions –19 to –13 (PAM-distal region), positions –12 to –9 

(intermediate region), and positions –8 to –1 (PAM-proximal/seed region). Division into 

these regions was based on previous work13,16 and the patterns in panel e. n = 437–2342 

sgRNAs. (g) Comparison of mean apparent on-rates measured in vitro for mismatched 

variants of a single sgRNA29 and mean relative activities from large-scale screen. Values are 

Jost et al. Page 28

Nat Biotechnol. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compared for identical combinations of mismatch type and mismatch position; mean relative 

activities were calculated by averaging relative activities for all mismatched sgRNAs with a 

given combination. Data are from n = 57 unique combinations of mismatch type and 

position; r2 = squared Pearson correlation coefficient. Lines in violin plots (e, f) denote 

distribution quartiles.
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Figure 3. 
Identification and characterization of intermediate-activity constant regions. (a) Design of 

constant region variant library. (b) Mean relative activities of constant region variants, 

calculated by averaging relative activities for all targeting sequences; n = 995 constant 

region variants, gray margins denote 95% confidence interval of 30 targeting sequences. 

Inset: Focus on 6 constant region variants with higher activity than the original constant 

region. Black diamonds denote mean relative activity, gray dots denote relative activities of 

individual targeting sequences. (c) Mapping of constant region variant relative activities onto 

the constant region structure. Each constant region base is colored by the average relative 

activity of the three constant region variants carrying a single mutation at that position. 

Positions mutated in 6 highly active constant regions (inset in panel b) are indicated by 

colored dots. The BlpI site (gray) is used for cloning and was not mutated. (d) Constant 

region activities by targeting sequence, plotted against ranked mean constant region activity. 

For each gene, the activities with the strongest targeting sequence are shown as rolling 

means with a window size of 50. (e-g) Constant region activities by targeting sequence for 

all three targeting sequences against the indicated genes. Growth phenotypes (γ) of each 

targeting sequence paired with the unmodified constant region are indicated in the legend.
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Figure 4. 
Neural network predictions of sgRNA activity. (a) Schematic of a singly-mismatched 

sgRNA feature array (Xi) and the convolutional neural network architecture trained on pairs 

of such arrays and their corresponding relative activities (yi). Black squares in Xi represent 

the value 1 (the presence of a base at the indicated position); white represents 0. The mean 

prediction from 20 independently trained models was used to assign a final prediction (ŷ) to 

each sgRNA in the hold-out validation set (orange). (b) Comparison of measured relative 

growth phenotypes from the large-scale screen and predicted activities assigned by the 

neural network. Marginal histograms show distributions of relative activities along the 

corresponding axes. n = 5,241 sgRNAs; r2 = squared Pearson correlation coefficient. (c) 
Distribution of Pearson r values (predicted vs. measured relative activity) for each sgRNA 

series in the validation set. n = 406 series. (d) Comparison of measured relative activity (i.e. 

relative knockdown) in the GFP experiment and predicted relative sgRNA activity. Two 

outliers with lower-than-predicted activity are annotated with their respective mismatch 

position and type. Predictions are shown as mean ± S.D. from the 20-model ensemble. n = 

57 sgRNAs; r2 = squared Pearson correlation coefficient.
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Figure 5. 
Compact mismatched sgRNA library targeting essential genes. (a) Design of library. For 

activity bins lacking a previously measured sgRNA, novel mismatched sgRNAs were 

included according to predicted activity. (b) Distribution of relative activities from the large-

scale library (gray) and the compact library (purple) in K562 cells. The dashed line 

represents sgRNAs that were selected based on predicted activity from the deep learning 

model. (c) Comparison of relative activities of mismatched sgRNAs in HeLa and K562 cells. 

Marginal histograms show the distributions of relative activities along the corresponding 

axes. n = 9,514 sgRNAs; r2 = squared Pearson correlation coefficient.
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Figure 6. 
Rich phenotyping of cells with intermediate-activity sgRNAs by Perturb-seq. (a) 
Distributions of HSPA9 and RPL9 expression in cells with indicated perturbations. 

Expression is quantified as target gene UMI count normalized to total UMI count per cell. 

sgRNA activity is calculated using relative γ measurements from the Perturb-seq cell pool 

after 5 days of growth. (b) Distributions of total UMI counts in cells with indicated 

perturbations. (c) Comparison of median UMI count per cell and target gene expression in 

cells with GATA1- or POLR2H- targeting sgRNAs. (d) Right: Expression profiles of 100 

genes in populations with HSPA9-targeting sgRNAs. Genes were selected by lowest FDR-

corrected p-values in cells with the strongest sgRNA from a two-sided Kolmogorov-Smirnov 

test (Methods). Expression is quantified as z-score relative to population of cells with non-

targeting sgRNAs. Left: Growth phenotype and knockdown for each sgRNA. (e) 
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Distribution of gene expression changes in populations with indicated sgRNAs. Magnitude 

of gene expression change is calculated as sum of z-scores of genes differentially expressed 

in the series (FDR-corrected p < 0.05 with any sgRNA in the series, two-sided Kolmogorov-

Smirnov test, Methods), with z-scores of individual genes signed by the direction of change 

in cells with the perfectly matched sgRNA. Distribution for negative control sgRNAs is 

centered around 0 (dashed line).

For a-e, the cell numbers for each perturbation are listed in Table S14. Box plots inside 

violin plots denote quartile ranges (box), median (center mark), and 1.5 × interquartile range 

(whiskers).

(f) Comparison of relative growth phenotype and magnitude of gene expression change for 

all individual sgRNAs. Growth phenotype and magnitude of gene expression change are 

normalized in each series to those of the sgRNA with the strongest knockdown. (g) 
Comparison of magnitude of gene expression change and target gene knockdown, as in f. (h) 
UMAP projection of all single cells with assigned sgRNA identity in the experiment, 

colored by targeted gene. Clusters clearly assignable to a genetic perturbation are labeled. 

Cluster labeled * contains a small number of cells with residual stress response activation 

and could represent apoptotic cells. Note that ~5% cells appear to have confidently but 

incorrectly assigned sgRNA identities (Methods). Given the strong trends in the other 

results, we concluded that such misassignment did not substantially affect our ability to 

identify trends within cell populations and in the future may be avoided by approaches to 

directly capture the expressed sgRNA41. n = 19,587 cells. (i) UMAP projection, as in h, with 

selected series colored by sgRNA activity. n = 19,587 cells. (j) Comparison of extent of ISR 

activation to ATP5E UMI count in cells with knockdown of ATP5E or control cells.
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