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Abstract

Neocortical state variables are defined and evaluated at three levels: microscopic using
multiple spike activity (MSA), mesoscopic using local field potentials (LFP) and
electrocorticograms (ECoG), and macroscopic using electroencephalograms (EEG) and
brain imaging. Transactions between levels occur in all areas of cortex, upwardly by
integration (abstraction, generalization) and downwardly by differentiation (speciation).
The levels are joined by circular causality: microscopic activity upwardly creates
mesoscopic order parameters, which downwardly constrain the microscopic activity that
creates them. Integration dominates in sensory cortices. Microscopic activity evoked by
receptor input in sensation induces emergence of mesoscopic activity in perception,
followed by integration of perceptual activity into macroscopic activity in concept
formation. The reverse process dominates in motor cortices, where the macroscopic
activity embodying the concepts supports predictions of future states as goals. These
macroscopic states are conceived to order mesoscopic activity in patterns that constitute
plans for actions to achieve the goals. These planning patterns are conceived to provide
frames in which the microscopic activity evolves in trajectories that adapted to the
immediate environmental conditions detected by new stimuli. This circular sequence
forms the action-perception cycle. Its upward limb is understood through correlation of
sensory cortical activity with behavior. Now brain-machine interfaces (BMI) offer a
means to understand the downward sequence through correlation of behavior with motor
cortical activity, beginning with macroscopic goal states and concluding with recording
of microscopic MSA trajectories that operate neuroprostheses. Part 1 develops a
hypothesis that describes qualitatively the neurodynamics that supports the action-
perception cycle and derivative reflex arc. Part 2 describes episodic, “cinematographic”
spatial pattern formation and predicts some properties of the macroscopic and
mesoscopic frames by which the embedded trajectories of the microscopic activity of
cortical sensorimotor neurons might be organized and controlled.
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1. Introduction to BCI

The brain-computer interface (BCI) or brain-machine interface (BMI) begins with
attachment of electrodes in or near the brain to measure and model its electrical
activity. Direct control by means of brain electrical activity of an instrument for
communication by a victim of paralysis or a remote platform by a scientist
wanting to explore an inhospitable environment requires BCI. The first BCI using
the scalp EEG (electroencephalogram) for device control was developed by
student engineers in Berkeley California in the 1960s soon after the invention of
the transistor enabled construction of lightweight, low-power amplifiers, filters,
and electronic switches. Users demonstrated remote on-off control of a light, an
electric train, or a cursor on a monitor by inducing and blocking alpha waves.
Engineers learned to control alpha by means of biofeedback, in which the sub-
audible alpha waves (8-12 Hz) were used to modulate a 1 kHz carrier wave in a
so-called ‘alphaphone’, so that one could immediately sense the audible FM or
AM tone as an indicator of his or her alpha waves (Millay, 1999). The techniques
then were too primitive to achieve more than on-off switching in BCI, but they
have flourished in biofeedback (Othmer, Othmer and Kaiser, 1999), especially
with evoked potential techniques (Cheng et al., 2002) for single-trial EEG as well
(Blankertz et al., 2004). Gao et al. (2003) used steady-state visual evoked
potentials giving an information transfer rate up to 68 bits/minute. Even so the
baffling complexity of EEG, the smoothing by the impedance barriers of the skull
and scalp, and the contamination by noise from muscle and eye movements still
severely limit its utility for BCI.

An alternative approach for BCI research is based on the technology for reliable
recording of the spike trains of single neurons with arrays of multiple
microelectrodes inserted directly into the neocortex of an experimental animal
(Georgopoulos, Schwartz and Kettner, 1986; Chapin et al., 1999; Wessburg et al.,
2000; Nicolelis, 2001; Serruya et al., 2002; Donoghue, 2002; Taylor et al., 2002;
Kipke, Vetter and Williams, 2003; Sanchez et al., 2004; Musallam et al., 2004;
Andersen et al., 2004). Bundles of very fine wires (25-100 micron diameter) are
inserted into the deeper layers of the frontal and parietal cortices that include the
sensorimotor cortex of a monkey or a rat. The locations of the tips of the wires are
adjusted to isolate the spike trains of multiple neurons from each tip (Nicolelis,
2003). Alternatively spikes are recorded from a silicon probe inserted vertically
through a single cortical hypercolumn spanning 2 mm with spikes recorded at 50
micron intervals (Blanche et al., 2005; Hochberg et al., 2006). The spikes from
single neurons are identified by pattern recognition algorithms of the spike
waveforms sampled at rates 10-40 kHz (spike durations are typically ~ 1 ms) and
digitized as 1’s for spikes in sequences of 0’s for each identified neural spike
train. The animal is trained to use a forelimb to move a lever in order to get a
reward (typically juice to slake thirst). The spike trains are binned into sets of
spatiotemporal feature vectors of multiple spike activity (MSA) in steps typically
of 50-250 ms. After the animal has learned the task, the feature vectors are used
instead of the limb movement to control an electronic switch that delivers the
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reward. For a while the animal continues to use the lever despite the disconnect.
Eventually the lever is removed, and the animal receives the reward solely by
generating the spike trains.

The amount of information in the MSA integrated over many trials suffices to
replicate 80% of the variance in the trajectory of limb movement needed to press
the lever, and to decompose the feature vectors that capture the contributions of
different spike trains to each stage of movement (Carmena et al., 2003). The high
variability of the spike trains is dealt with by spatiotemporal averaging through a
linear regressor (FIR adaptive filter), indicating that the information used by the
brain for lever control is distributed over many neurons (Lee et al., 1998; Cohen
and Nicolelis, 2004; DiGiovanna, Sanchez and Principe, 2006). On the one hand
investigators can demonstrate control of simple movements by as few as 7-16
neurons (Seruya et al., 2002), and on the other hand the reliability and complexity
of control can be enhanced by using as many spikes in MSA as can be extracted,
already exceeding 100 sampled neural spike trains (Nicolelis, 2001; Carmena et
al., 2005; Blanche et al., 2005) but with diminishing returns for with increasing
numbers by standard adaptive filtering techniques (Sanchez et al., 2006). With
further improvements in the engineering techniques this form of BCI may achieve
use of cortical action potentials for control of more complex actions. However,
use of this technique for BCI in human subjects is restricted to hospitalized
victims of global paralysis such as the ‘locked-in syndrome’ (Hinterberger et al.,
2003), for whom communication and environmental engagement by this method
requires surgical invasion for BCI, with poor prospects for long term stability in a
clinical setting (Hochberg et al., 2006). Moreover, sampling with microelectrodes
is constrained to recording spike trains from at most 10° neurons, which are
embedded in cortex containing 10° neurons/mm®, and which are distributed over
areas exceeding 10° mm?, suggesting sample rates less than 1 neuron in 10° by
use of microelectrodes. In effect, greater information transfer rates are needed to
construct a variety of limb trajectories for flexible BCI. Scalp EEG may meet that
need when its mechanisms are adequately understood.

2. Definitions of state variables and state space at three hierarchical levels

The control of limb movement depends on sequential patterns of brain activity
that are indirectly observed by recording the extracellular potential differences
created by loop currents of neurons. The loop currents are the basis for observing
the electric potentials of both the spikes of axons and the dendritic currents by
which spikes are controlled, all of which sum in the volume conductor of the
whole brain. The voltage of each sequential pattern oscillates at a characteristic
frequency that carries a spatial pattern by amplitude and phase modulation. A
pattern that lasts at least three to five cycles at the characteristic frequency is
called a frame. The frame defines a brain state that emerges by a state transition
and collapses by another state transition to a new pattern. Such conditionally
stable patterns were described by Ilya Prigogine (1980) in terms of the emergence
of order from disorder by formation of “dissipative structures” [patterns in
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frames], and by Hermann Haken (1983) in terms of “order parameters™ [patterns
in frames] of ensembles that constrain the particles creating them. During the state
transitions the brain is referred to as metastable (Bressler and Kelso, 2001;
Fingelkurts and Fingelkurts, 2004). The full description of a sequence of brain
states includes not only the patterns but also the behavior, the brain modules
(Houk, 2005) that control behavior, and the context in which the brain is planning,
predicting and evaluating the behavior (Houk and Wise, 1995; Andersen et al.,
2004).

A set of signals from an array of » electrodes determines a set of n state variables
and the dimensions of their n—space (Freeman, 1975/2004, 2005a; Basar, 1998;
Sanchez et al., 2006). The n-space is a finite subspace projected from the
essentially infinite state space of the brain; each channel defines an independent
axis in the state space. The ranges of values taken by the measurements of the
electric potentials define the boundaries of the accessible state space. The
measurement of the n state variables at one point in time gives a point in n-space.
Multiple recurrences by repeated measurement giving nearly the same pattern
define a state by a cluster of points. A sequence of points through state space
defines a trajectory. The shift by a trajectory from one cluster to another cluster
defines a state transition. Each cluster of points manifests a self-organized brain
state that is governed by an attractor. Each attractor is surrounded by a basin of
attraction, so that when a trajectory crosses into the basin, the brain converges to
that pattern. A collection of basins and attractors forms an attractor landscape. A
habitual sequence of patterns is connected by a pathway that is called an itinerant
trajectory (Tsuda, 2001), in analogy to migrant workers following the seasons.
This state-space approach to dynamics gives great flexibility in describing the
neural correlates of behaviors, because the clusters of points can be defined at
different scales of time and space, and the measured state variables can be
processed and combined in many different ways that flexibly reflect the
underlying dynamics.

These state variables then may also serve as variables in analytic equations that
express the dynamics revealed by data-driven models in nonlinear differential
equations (Freeman, 1975/2004) forming K-sets (Kozma and Freeman, 2001;
Principe, et al., 2001; Kozma, Freeman and Erdi, 2003; Li et al., 2006) and
neuropercolation theory (Kozma et al., 2005). These modeling aspects will not be
elaborated here. Instead emphasis is given to the choice of state variables
representing brain activity at different scales of time and space. There is
increasing evidence that brain dynamics is scale-free (Barabasi, 2002), thus
accounting for the similarity in temporal dynamics among mammalian species of
neocortex (reviewed by Freeman, 2005b) despite its vast range of variation in area
(Bok, 1959). Recent ECoG findings have shown the utility of discretizing the
continuum into three levels: microscopic (MSA), mesoscopic (LFP and local
ECoG) and macroscopic (large-scale ECoG, EEG, and whole brain imaging).
Transitions between levels are described in terms of circular causality (Haken,
1983, 2006); ensembles of neurons create mesoscopic order parameters that
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regulate the microscopic neurons in the ensembles. In sensory cortices the
microscopic input is followed within a few milliseconds by emergence of a
sequence of mesoscopic patterns reflecting integration within each primary
sensory receiving area (Barrie, Freeman and Lenhart, 1996). Roughly half a
second later, multicortical patterns emerge that span much of the cerebral
hemisphere (Freeman and Burke, 2003; Freeman and Rogers, 2003) and that
reflect macroscopic integration of mesoscopic patterns into a macroscopic pattern
that includes both limbic and the primary motor areas (Freeman, 2005a).
Hypothetically in premotor and motor cortices this macroscopic goal-state orders
and embeds the emergence of mesoscopic states that regulate spike trains of
microscopic neurons carrying motor cortical output.

3. Interrelation of state variables; dendritic field potentials and axonal spikes

Brain activity coexists at the three levels, and the observed loop currents from all
levels contribute potential differences simultaneously in all of the » channels used
for observation. The task of analysis is to decompose them in order to define and
measure useful state variables at each level. It is essential to average the data.
Two types of averaging are used that extract data structures at different levels.
Time averaging across trials removes the background activity as noise and
emphasizes the stimulus- or event-related components of the data: macroscopic
event-related potentials (ERP) from field potentials and microscopic post stimulus
time histograms (PSTH) from MSA. Spatial averaging in single trials over signals
from high-density electrode arrays enhances the background activity, making it
possible to study its reorganization by state transitions under the impact of stimuli
(Freeman, 2004). Spatial averaging gives reference values for phase and
amplitude patterns and their rates of change in the spatial and temporal
dimensions for every signal that is used to get the spatial average in single trials.
The averaged waveforms from field potentials can be decomposed by linear
techniques (Freeman, 1975/2004; Nunez et al., 1997; Basar, 1998).

A multi-dimensional approach to BCI is based not only on levels but also on the
fact that neurons have two main functional branches. Dendrites receive spikes and
sum them by converting the MSA into waves of dendritic current density. Axons
transmit spike trains that express magnitudes of dendritic activity by pulse rates
and intervals. Dendritic currents regulate spike output at trigger zones and in turn
are regulated by spike input at synapses. For single neurons the spike rate has
repeatedly been demonstrated to be linearly additive and proportional to
transmembrane current density imposed with an intracellular electrode between
the limits of threshold and doublet firing over a broad range (e.g., Granit and
Renkin, 1961; Granit, Kernell and Shortess, 1963). At synapses the postsynaptic
potential amplitude is nonlinear, because the amplitude of the impulse response
decreases as the evoked amplitude level approaches the equilibrium potential of
the synaptic generator. To the contrary, for a population of neurons the relation of
pulse density (MSA amplitude) to mean transmembrane current density (ECoG) is
nonlinear but monotonic at trigger zones. Typically the relation is sigmoid (Fig.
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1.01), owing to the distributions of thresholds. The relation of pulse density to
dendritic wave amplitude at synapses is kept within a narrow near-linear range at
synapses (Freeman, 1975/2004).
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Fig. 1.01. A. Triangles show normalized pulse probability density conditional on wave
amplitude from equation (A1.7) in Appendix 1. Squares show the numerical derivative.
B. The sigmoid equation for the static nonlinear wave-pulse relation is derived by a
statistical mechanical generalization from the Hodgkin-Huxley equations. The derivative,
dg/dv, gives the forward nonlinear gain. Q,, designates the maximal asymptote, which
increases above rest (Q, = 2) with hunger, rage, etc. (Q,, = 5). From Freeman (1979)

Synaptic current always flows in closed loops, with the electromotive force
located in the high-resistance current source in the synapse, and the maximum
energy dissipation at the matching resistance in the axonal trigger zone. Both
axonal and synaptic loop currents cause weak fields of electric potential in the
extracellular low-resistance volume conductor. They differ from the
transmembrane potential differences in two respects. First, they are lower in
magnitude by 10° owing to the low extraneuronal specific resistance. Second,
they result from the sum of extracellular current densities of all participating
neurons in the neighborhood, estimated to be conservatively on the order of 10
(Sholl, 1956; Bok, 1959; Freeman, 1975/2004; Braitenberg and Schiiz, 1998).
Therefore axonal pulses are microscopic, and dendritic waves are mesoscopic.

The pervasive background activity observed in BCI is caused by mutual
excitation among cortical neurons, predominantly local. About 85% of cortical
neurons are pyramidal neurons (Sholl, 1956; Braitenberg and Schiiz, 1998). Each
excitatory neuron transmits to ~10* other neurons and receives from ~10* other
neurons but not the same neurons to which they transmit. The likelihood of any
two neurons having a reciprocal connection is about 10 (Braitenberg and Schiiz,
1998; Liley and Wright, 1994). The mutual excitation results in self-sustained
‘spontaneous’ background activity. That activity is locally stabilized everywhere
by the thresholds and refractory periods of axons (Freeman, 1975/2004; 2006).
The dynamics is modeled with a 4™ order nonlinear differential equation (a Kle
set, Freeman, 1975/2004). In the language of linear dynamics, linearization of the
equations at the operating point gives a zero eigenvalue that specifies a closed
loop pole at the origin of the complex plane. In the language of nonlinear
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dynamics, the population maintains a stable, non-zero point attractor. In the
language of physics the population maintains a stable ground state. In the
language of neurophysiology the population sustains steady-state background
activity. Each local neighborhood (‘cortical column’) has two measurable
quantities with mean values that are governed by this attractor: the local mean
field dendritic current density and the local axonal pulse density. For an estimate
of the average background firing rate of cortical neurons of ~1/s (Swadlow,
1994), the average pulse density of 10* would be ~10,000 spikes/s. Each spike
lasts about 1 ms, which allows treatment of spike density as a continuous variable
with its modulation depth limited by thresholds and refractory periods (Fig. 1.01).
In the language of engineering a population signal is formed by time-multiplexing
across the 10" neurons participating in the mesoscopic pattern.

Wave density is recorded extracellularly as a continuous analog time series before
digitizing. The pulse density (at the mesoscopic level) must be computed from an
average over MSA. It is not possible to record the spike trains of all 10*
contributing neurons, so the ergodic hypothesis is invoked. It must be assumed
that over a long enough time in the resting state the mesoscopic participation of an
observed neuron will occupy the states of all the neurons at any one time, with
respect to its contributions to the LFP and ECoG. This assumption holds only for
brains at rest or under light anesthesia and does not hold for neurons in brains of
animals engaged in intentional behavior or driven in ERP and PSTH. Owing to
the nonstationarity of brains repeatedly departing from the rest state the wave-
pulse relation of neuron populations can be tested only with individual neurons
that have spike rates >10/s in order to get the 10" spikes needed in 1,000 s (~17
minutes) of recording. More commonly MSA with ~10 spike trains giving an
average rate of 10/s are used to interrelate MSA and LFP or ECoG.

The statistical wave-pulse relation (Appendix 1) at trigger zones of axons is
expressed in a sigmoid curve as the probability of pulse occurrence conditional on
wave amplitude (Fig. 1.01, triangles calculated with equation (A1.7)). The
amplitude histograms of LFP and ECoG typically are Gaussian. The distributions
of interspike intervals of the single spike trains typically conform to a Poisson
process with a dead time (the refractory periods) and the correlations between
spike trains are very low (Abeles, 1991). The spectrum of MSA (300-6000 Hz)
tends to be flat resembling white noise (1/f°), while the spectrum of field
potentials tends to resemble “brown” noise (1/f%) (Schroeder, 1991). The impulse
response of a mutually excitatory population to single shock stimuli shows a brief
oscillation at high frequency (80-250 Hz, the epsilon range) in the field potential
accompanied by chattering of single cells at spike intervals ~4-5 ms followed by
exponential decay back to the baseline.

These properties are readily simulated with a random number generator, provided
that the flat spectrum (1/f°) is weighted by a 1/f* filter:

A*(f) = -2 antilog) (a(f)),
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where f is frequency in Hz, a is the noise amplitude before filtering, and A 1is
noise power after filtering (Freeman, 2006), which reflects the way in which the
background activity is generated (Ch. 8 in Freeman, 2000) by summation of
innumerable random processes (p. 125 in Schroeder, 1991) in mutual excitation.
Each neuron is multitasking; it contributes specifically to its local networks at the
microscopic level, and simultaneously it interacts with its neighborhood and
participates at the population level with a small fraction of the variance of its
pulse train by time-multiplexing (rotating at random among neurons the duty of
transmitting a spike while maintaining a high transmission pulse density with low
spatial density). That small fraction of the variance of its pulse train is not
detectable in an isolated single microscopic pulse train, yet it contributes to the
mesoscopic state variable of the neighborhood. The transfer function for the
feedback pathway of each neuron with its neighborhood can be approximated by a
one-dimensional diffusion process with a lumped delay, T, for which the transfer
function in a piece-wise linear approximation is exp (-(sT)™’) (Freeman,
1975/2004) that randomizes spike occurrences and likewise the refractory periods
on each passage around the positive feedback loop between each neuron and its
local neighborhood. Hence the nonlinear relation between microscopic spikes and
mesoscopic waves can be treated as static rather than dynamic, in contrast to the
time-varying nonlinear dynamics of single neurons described by the Hodgkin-
Huxley equations, which relate lower level kinetics of ions and ion channels to
higher level membrane currents.

The extraneuronal dendritic potential recorded from the same depth electrode as
the MSA is the LFP. Each electrode samples the LFP over multiple neural
populations comprising multiple cortical hypercolumns, each on the order of 1.0
mm in diameter containing ~10° neurons/mm’; though the radius of spike
detection is commonly asserted to be roughly 200 microns, the radius for
detection of LFP components is undefined and well exceeds 1 mm. An array of
10% electrodes sampling the mean fields of an area of cortex 10x10 mm (Freeman
et al., 2000) might in theory give sampling averaging 1 neuron in 10, an
improvement over 1 in 10°. Further, the dendritic current of the LFP spreads by
volume conduction (Nunez et al., 1997) to the pial surface of the cortex, where it
gives the electrocorticogram (ECoG) without need for penetration into the cortex
(Fig. 1.02). The current also spreads to the overlying scalp giving the EEG. These
features indicate that wave recording might surmount the sampling limitations on
spike recording, as suggested also by Mehring et al. (2003) despite the
complexities of the relations between MSA and LFP Wang et al. (2006).

However, there remains a long and arduous path from single neuron recording
through LFP and ECoG to the EEG as a channel for BCI. The key point here is
that the farther one places the recording electrode from the generating cortex, the
greater is the loss of detail by spatiotemporal smoothing. Yet the brain is doing
exactly that — spatial averaging — prior to constructing its motor control patterns
in self-organization of the activity of billions of neurons. Likewise researchers are
averaging their MSA data, often to find oscillations in firing probabilities. Reports
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of gamma scalp EEG correlates of behavior are now commonplace (Miiller et al.,
1996, Tallon-Beaudry et al., 1996, 1998; Rodriguez et al., 1999; Miltner et al.,
1999), as well as reports of epsilon correlates (Gonzalez et al., 2006), which
demonstrate the enhancement of global ECoG signals by smoothing that may
enable researchers, metaphorically speaking, to see the forest instead of the trees.

Fig. 1.02. The locations are shown of typical placements by neurosurgeons of arrays of 4
mm diameter electrodes 1 cm apart on the pial surface of neocortex, here shown as the
left side of the cerebrum, to record ECoG. From Sanchez, Carney and Principe (2006)

What, then, are the optimal space and time windows in which to construct the
space-time averages to extract patterns of successive states as frames without loss
of crucial detail? Available evidence (Freeman, 2005a, 2006) shows that frames
are not and need not be synchronized with each other, because emergent frames at
mesoscopic and macroscopic levels often overlap, possibly by superposition, and
possibly by nonlinear interaction. Each mesoscopic frame can be conceived to
shape the continuous trajectories of microscopic neural activity that control limb
movement by evolving in frames that within themselves appear to be linear and
stationary. That patterning of itinerant trajectories (Tsuda, 2001) is extracted and
reconstructed using multivariate linear techniques (e.g., Hochberg et al., 2006).
The requirements for high-density recording arrays, high-speed digitizing, and
linear systems analysis are met; the need now is for comprehensive theory by
which to guide decomposition of signals to extract optimized state variables in
frames.

4. Size of spatial frames: two modes of description of behavior in BCI

The motor control operations of brains are described from two viewpoints of the
simplest experiment: a hungry rat pressing a switch for a pellet, which serves as
an animal model for a human subject performing a more complex task. The first
viewpoint is that of the behaviorist and engineer, who treat the brain as a
deterministic signal generator that can be controlled by reinforcement learning
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(Ferster and Skinner, 1957). In behaviorist terms a rat is conditioned to use its
forelimb to press a lever (an “operant”) and get a reward or avoid punishment in
reinforcement learning (Ohl, Scheich and Freeman, 2001). The behavior of the
animal is “shaped” to perform a conditioned response (CR). Next the food is
given only when a conditioned stimulus (CS) such as a tone or light flash is paired
in a fixed schedule of reinforcement. An array of implanted microelectrodes is
used to record the MSA, which samples the cortical activity pattern that mediates
the CS into the CR. When the subject has learned the association and can perform
the task reliably, the lever is disconnected from the switch controlling the
reinforcement, and the MSA is used to deliver it instead. After training is
completed, the lever is removed, and the rat performs by using its brain activity
through an electronic channel. Successful transfer of reinforcement delivery from
an operant to its neural correlate opens a BCI channel.

The second viewpoint is that of the psychologist and pragmatist, who treat the
brain as a self-organizing system that predicts its own goals and plans its actions
to achieve them. In pragmatist terms the CR is performed through an intentional
process that is called the “action-perception cycle”, which is aimed to achieve
“maximum grip” (Merleau-Ponty, 1945). The expectation of performing an action
to receive a reward such as juice emerges as an internally generated macroscopic
intentional state involving thirst by which the rat predicts its future of getting a
reward. The initial training (shaping) shapes in the brain the microscopic synaptic
connections that the rat must have in order to predict, plan and construct the
neural command that executes the forthcoming intentional act of lever pressing
with the expectation that reward will follow. This mesoscopic command has the
form of oscillatory patterns of dendritic waves and axonal pulses that are
embedded in and constrained by the macroscopic state. Each command further
constrains the trajectories of spikes that descend into the brain stem and spinal
cord. They are accompanied by other patterns of spikes called “corollary
discharges™ (Sperry, 1950) and “efference copies” (von Holst and Mittelstéadt.
1950) that propagate through the brain (not the through the body in the
proprioceptive “sixth sense”, Abbott, 2006) to the primary sensory areas.
Corollary discharges modify the sensory cortices by conditioning (shaping) their
synaptic sensitivities to embody the predictions of the changes in sensory input
that will result from acts to search for and consume juice. Then cortical neurons
can respond selectively to a CS that is expected, even when it is obscured by noise
and distorted by variations in body position. This selective cortical sensitization is
called preafference (Kay and Freeman, 1998); it implements attention and
expectancy.

The prediction of a range of possible outcomes of each act in search of reward is
mediated by the dynamics of the sensory cortices. The selective sensitivities of
each sensory cortex form a landscape of basins of attraction (Skarda and Freeman,
1987). Each class of discriminated input corresponds to a learned attractor. The
cortex in the expectant state of search has wave and pulse state variables that trace
a trajectory through the high-dimensional state space of cortical dynamics. At
each time step the cortical state advances by a measurable Euclidean distance
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through state space. When an action such as a sniff or a foveation is taken, the
afferent spikes that are triggered by a CS in sensory receptors are carried by relays
to sensory cortex. The impact of the background noise that accompanies the CS
destabilizes the cortex and actualizes the attractor landscape. The CS in the
sensory noise selects a basin of attraction, which is one among the sensitized
patterns that are potentiated by preafference in the sensory cortex to which the
afferent spikes are directed. The trajectory defined by the state variables of the
sensory cortex in the high-dimensional hyperspace gives immediate access to any
among all basins of attraction, which individually are in low-dimensional
subspaces. Capture by a basin initiates the construction of a spatially distributed
signal that signifies the class to which the stimulus is assigned. The mesoscopic
output pattern transmits the knowledge about the CS from past experience.

Every sensory cortex simultaneously diverges its mesoscopic output, and all
outputs converge in the superficial entorhinal cortex, which cycles the combined
activity through the hippocampal system where spatial and temporal orientation
are assigned to the multisensory percept (Gestalt) in the cognitive map and short
term memory. The output from the deep entorhinal cortex diverges to all sensory
areas and the pre-motor and motor cortex. A sequence of macroscopic patterns
emerge that incorporate all of the areas (Freeman and Burke, 2003; Freeman and
Rogers, 2003). By hypothesis the macroscopic pattern embeds an appropriate
neural command that evolves by successive mesoscopic frames under the
guidance of the surrounding areas in constant communication. That command is
accompanied by its observable neural correlates in MSA, LFP and local ECoG.
Minimally, that motor correlate is observed in the sensorimotor cortex, measured,
and used by the experimentalist to deliver the reward, after disabling the lever-
reward connection. Optimally, much of the configuration of the anticipatory
corollary discharge of preafference and sensory testing by proprioceptive
feedback may be available in the prefrontal, parietal, temporal and occipital
cortices in the signals from areas that surround the sensorimotor cortex. The
distribution of sampling of mesoscopic and macroscopic cortical activity is
profitably quite wide indeed, as shown by Nicolelis (2003) with MSA and by Gao
et al. (2003) with EEG.

These two modes of description, the reflex arc starting with a stimulus and the
action-perception cycle starting with intention, are not in conflict. Each has its
advantages and limitations; they are complementary. They should both be used to
define and measure the properties of neural correlates of actions. The behaviorist
approach focuses on the movement execution by control in the motor and
premotor cortices in the posterior frontal lobe and the proprioceptive feedback of
limb movement in the somatosensory cortex in the anterior parietal lobe. The
pragmatist approach focuses on the neural context in which the act is performed,
including the predictions formulated by the animal and the preparations required
of the body in order to perform reliably and robustly. Virtually all structures in the
brain are involved in this broad context (Kozma, Freeman and Erdi, 2003;
Freeman and Burke, 2003; Freeman and Rogers, 2003; Houk, 2005).
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5. Sequential time frames of the neural processing mediating CS into CR

In behaviorist terms the reflex stimulus-response model is constructed with data
from spike recording at the microscopic level of analysis. Each trial after training
begins with delivery by the investigators of a discriminative CS to the eyes or
ears, where the stimulus energy is transduced to spikes and the stimulus
information is encoded in spike rates and intervals for transmission to the primary
sensory cortex, with pre-processing at spinal and thalamic relays in the ascending
path. Cortical networks extract the information by feature detector neurons, bind
its features (Singer and Gray, 1995) and send the new spike pattern to association
areas for comparison with information already stored by training in associational
networks. After identification and classification, the deciding information is sent
as yet another a pattern of spikes to the premotor and motor cortices. A motor
command is organized by neural modules that include the basal ganglia and
cerebellum (Houk and Wise, 1995; Houk, 2005). The command is sent as a
spatiotemporal pattern of spikes into the brain stem and spinal cord. The activated
limb sends proprioceptive signals to the parietal somatosensory areas, which are
selectively activated and integrated into the activity of motor areas. The command
patterns are intercepted by arrays of microelectrodes in BCI, and the trial is
completed after delivery of the reward. These sequential patterns are inferred to
have start and end times giving their durations as well as their spatial locations
and sizes. They may well be overlapping and interactive.

In pragmatist terms the nonlinear neurodynamics paradigm is pursued with data
from LFP and ECoG at the mesoscopic level of analysis. Each trial after training
begins with an expectant state of a rat by which the brain holds the sensory
cortices in receiving mode by preafference. Its intentional stance includes an
appropriate posture of head, trunk and limbs (Stuart, 2005) for stabilization of its
center of gravity and orientation of its sense organs to the expected types and
locations of CS. Preparation for action also includes optimization of the janitorial
functions of the autonomic and neuroendocrine back-up systems. Attention is
focused through preafference by construction of relevant attractor landscapes in
all sensory cortices. The basins of attraction in each landscape (Skarda and
Freeman, 1987; Kozma and Freeman, 2001) include selective sensitivities to the
background inputs that the rat continually checks to detect all expected
discriminative CS. Each attractor landscape also includes the basin of an attractor
for novel or unexpected stimuli, which generates unpatterned ‘“chaotic” activity
that evokes an orienting response to a salient unknown stimulus and enables the
formation of new attractors by Hebbian category learning (Ohl, Scheich and
Freeman, 2001). While the rat is attentive and expectant, holding its cortices in
open receptive mode, it is ready to receive a CS.

Sensory receptors respond to whatever they receive; habituation is cortical. Each
CS is embedded in background noise. The impact on each sensory cortex of the
afferent spikes evoked by background greatly exceeds that of the CS and
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destabilizes the cortex. The state transition is a spontaneous symmetry breaking
(Freeman and Vitiello, 2006) that activates the latent attractor landscape in each
primary sensory cortex. The ECoG reflects an intracortical search trajectory in n-
space by which the sensory information in the spikes selects an appropriate basin
of attraction. Each attractor is based in a Hebbian cell assembly of mutually
excitatory pyramidal cells. The spikes specifically evoked by the CS excite the
cells in one assembly, which amplify the impact and result in the selection of that
assembly and attractor. On convergence of the intracortical search trajectory to
the selected low-dimensional attractor, each sensory cortex in its transmitting
mode broadcasts a spike pattern that designates the class to which the cortex has
assigned the CS, and it incrementally modifies and updates the selected attractor
in the continuing process of learning. Convergence to the attractor implements the
process of generalization (Lashley, 1942). The cortex deletes the raw sensory
information during transmission. Smoothing imposed by a spatiotemporal integral
transform in the output pathway implements the process of abstraction (Freeman,
2004a,b, 2005, 2006).

The description in terms of sparse networks of neurons in Hebbian assemblies that
communicate by spike trains is microscopic. The description in terms of neural
populations, spike densities in MSA, dendritic current densities in LFP from
microwires, and local ECoG from a pial surface array is mesoscopic. The
behavioral description and use of the electroencephalogram (EEG) from the scalp
as well as other tools for imaging (MEG, fMRI, etc.) is macroscopic. Again, these
descriptions are complementary, because they address different hierarchical levels
of brain function. The state variables at the microscopic level are measured in the
pulse trains, which must be averaged in one way or another for correlation with
the state variables at the mesoscopic level. The field potentials measured at that
level must be combined and expressed as high dimensional feature vectors for
correlations with the behavior that is measured at the macroscopic level.
Multidimensional scaling and statistics project high dimensional clusters into 2-D
for visualization and classification (Freeman and Grajski, 1987; Barrie et al.,
1999).

There are two salient aspects of MSA feature vectors in the pulse mode that help
predict the relevant LFP and ECoG feature vectors in the wave mode. One is the
success of empirical temporal coarse-graining of spike activity into 50-250 ms
bins. This produces a time-to-amplitude conversion that is critical for adaptive
filters that correlate modulations in amplitude. The other is the spatial patterning
of mean pulse densities of the multichannel MSA feature vector in each time step
(Carmena et al,, 2006). The counterparts in the accompanying LFP and ECoG in
the wave mode are revealed by decomposing the LFP and ECoG signals
respectively into the gain and phase at each frequency by means of the Fourier
transform (Barrie, Freeman and Lenhart, 1996; Freeman and Barrie, 2002) at each
digitizing step. Each signal has multiple rates of change seen in the power law
(1/f*) distribution of energy density in power spectral densities (PSD) of brain
field potentials (Freeman et al., 2003; Freeman, 2006). The highest power is in the
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empirical theta (3-7 Hz) and alpha (8-12 Hz) ranges, followed by the beta (12-30
Hz) and gamma (30-80 Hz) ranges. Beta and gamma rates reflect the carrier
frequencies of spatial patterns of amplitude modulation in frames; theta and alpha
rates reflect the frame repetition rates. Higher frequencies form the epsilon range
of 80 to 300 Hz. Beta  and gamma y oscillations (Bressler and Freeman, 1980)
result from negative feedback with time constants near 5 ms giving center
frequencies near 40 Hz (Freeman, 1975/2000), whereas epsilon & oscillations
reflect positive feedback (pp. 181 ff. in Freeman, 2000) again with time constants
near 5 ms but with maximal center frequencies near 200-250 Hz. The highest
range, >300 Hz in ECoG from surface electrodes (Fig. 1.02) as well as LFP from
depth electrodes, manifests massed multiunit activity (MUA) from innumerable
action potentials that merge into fluctuations that resemble thermal noise, which
can contribute a behavioral correlate by variations in its root mean square (rms)
amplitude. The fluctuations would be indistinguishable from thermal noise were it
not for low-frequency variations in mean amplitude correlated with behavior as
seen in spatial displays. MUA activity resembles muscle potentials
(electromyogram, EMG) in having a flat spectrum with low frequencies in the
envelope, and in being measurable only at high temporal frequencies. This is
because the 1/f* amplitude spectrum enables ECoG and LFP to dominate at low
temporal frequencies and EMG and MUA to appear at high temporal frequencies.

6. A hypothesis: Five steps in the central dynamics mediating CS into CR

John von Neumann (1958) wrote: “Whatever the language of the brain is, it
cannot fail to differ considerably what we consciously and explicitly consider as
mathematics ... . Brains lack the arithmetic and logical depth that characterize our
computations. ... We require exquisite numerical precision over many logical
steps to achieve what brains accomplish in very few short steps” (pp. 80-81). We
are now in a position to describe in non-mathematical terms five central “short
steps” in a sequence major state transitions that give a kind of scaffold for
analysis of the action-perception cycle: downwardly from macrostates to
microstates and upwardly in the reverse direction. According to this hypothesis
training establishes a macroscopic state at the beginning of a trial, which is
expressed in a global pattern of forebrain activity constituting a state of
understanding, attention, and preparedness. 1. That pattern supports formation by
state transition of a prediction of some future state by extrapolation based in
experience. The mechanism is unknown. 2. The new macroscopic pattern embeds
and constrains multiple mesoscopic patterns that appear as locally coherent
domains of neural activity implementing planning and preafference. 3. Each local
pattern constrains the neurons in the domains, inducing them to form microscopic
patterns of spike activity and transmit them into the brain stem, spinal cord, and
other cortices. Outside the brain the body executes an act including observation.
The occurrence of an expected event triggers transmission of a barrage of spikes
to the sensory cortices. 4. In each cortex a state transition enables the emergence
of a mesoscopic pattern that constrains the transmitting neurons into a spike
pattern that is broadcast to other parts of the brain including the limbic system. 5.
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According to this hypothesis the integration of activity from multiple areas
through the limbic system precipitates a macroscopic state transition to a new
spatial pattern that replaces and updates the preexisting pattern, closing the cycle.

Classical and operant conditioning studies of sensory cortical activity have
yielded the data needed to construct this hypothesis by extrapolation from the
sensory-perceptual limb. BCI offers an opportunity to test the five-step hypothesis
by revealing the way in which macroscopic patterns of brain activity precede and
guide the formation first of mesoscopic patterns and then of spatial patterns of
MSA and trajectories of limb movements. The strategy that is proposed in Part 2
is linear decomposition of ECoG, identification of the spatial and temporal
locations (start and end times) of individual frames, and application of linear
analysis and multivariate statistics for classification of frames with respect to
behavior, so that within each frame the time-dependent trajectory of MSA that
relates to limb movement might be described. An analogy from the field of
engineering is flight control of an aircraft. An operator selects the end point of a
flight plan. An outer loop controller expresses the plan in a series of set points. A
set of inner loop controllers adjusts the control surfaces of the aircraft to maintain
the inputs of flight sensors within designated ranges. The thrust of the analogy is
that using MSA tends to focus on the details of limb control, whereas using ECoG
and LFP may give access to higher order expressions of goal states and their
derivatives, by which the brain selects among its modules the interactive patterns
needed construct limb trajectories and adapt them to local adventitious conditions.
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Appendix 1. Wave-pulse statistical relations.

A continuous record is digitized at 1 KHz simultaneously of a spike train of a
single neurons and the ECoG at the cortical site of penetration (Freeman,
1975/2004). The ECoG is filtered in the pass band of the desired oscillatory
frequency, e.g., 20-80 Hz. The spike train is accumulated to give n, ~10,000
pulses expressed as a series of 0’s and 1’s. The N values of ECoG values are
normalized to zero mean and unit SD; an amplitude histogram is divided into 61
bins centered at 0 and ranging between +3 SD in steps of 0.1 SD. At each time
step the question is asked, is there a pulse in any bin between T = 0 and T = £T,
time steps (e.g., Tr = £25 ms preceding and following T = 0 ms). A 1-D table of
the pulse occurrences at each amplitude is accumulated at T = 0, p(v). The ny(v)
values in each bin, n,, are divided by the total number of pairs to get the
probability density for amplitude at T = 0:

P(V) = ny(v) / N. (AL1)

The number of pulses in each bin, n, (p,v) is divided by the total number of pairs
to give the joint pulse-amplitude probability density at T = 0:

P(p N v) =n, (p,v) /N. (A1.2)

The pulse probability density is divided by the amplitude probability density to
give the pulse probability conditional on amplitude at T = 0:

P(p[v) =P(p N v) / p(V). (A1.3)

The algorithm is repeated at each time lag between — T, and + T, to get the pulse
probability conditional on time and amplitude in 2-D, which is then normalized
by dividing the function by the grand mean pulse probability, P,:

PPITNv)=P(p N TNv)/pv). (Al.4)

The function is normalized by dividing all values by the grand mean pulse
probability, P, to get the normalized conditional pulse probability (NCPD):

Pu(pIT N v)=P(pTNV)/P,. (AL.5)
The time dependence of the NCPD is found by averaging across the upper third of
the range for v > 0, giving the pulse probability wave that is comparable to the

autocorrelation of the filtered ECoG or LFP:

Poy(T)=1/KSP,(pTNv), SD<vw>3SD.  (Al.6)



State variables for BCI, Part 1 23 Walter J Freeman

The sigmoid curve is the NCPD on amplitude is estimated by averaging over lag
times at k values where the deviation of Py(T) above zero is maximal:

Poi(v)= 1/k S Py(p|T Nv), P(Ty)>>P,. (A1.7)

The sigmoid curve is fitted to the data (Fig. 1.01, A) in order to evaluate the upper
asymptote, Qn, as given in the equation inset with the data. The asymptote varies
in proportion to the degree of arousal, and it has differing mean values for
differing populations in the olfactory and limbic systems. The forward gain of the
population is given by the derivative of the sigmoid curve, dg/dv. Two examples
are shown for Qn = 2 in behavioral rest and Qn, = 5 in arousal (Freeman, 2000) for
comparison with the numerical derivative in Fig. 1.01, A. The maximal gain, Vimax
= In Q, from the second derivative set to 0, is displaced to the excitatory side.
This asymmetry underlies the input-dependent nonlinearity of cortical dynamics,
which is required for the destabilization in spontaneous breaking of symmetry by
state transitions (Freeman and Vitiello, 2006). From Freeman (1979; reprinted Ch.
10, 2000)





