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Abstract

The problem of tripeptide loop closure is formulated in terms of the
angles {τi}

3
i=1 describing the orientation of each peptide unit about

the virtual axis joining the Cα atoms. Imposing the constraint that
at the junction of two such units the bond angle between the bonds
Cα–N and Cα–C is fixed at some prescribed value θ results in a sys-
tem of three bivariate polynomials in ui := tan τi/2 of degree 2 in each
variable. The system is analyzed for the existence of common solutions
by making use of resultants, determinants of matrices composed of the
coefficients of two (or more) polynomials, whose vanishing is a neces-
sary and sufficient condition for the polynomials to have a common
root. Two resultants are compared, the classical Sylvester Resultant
and the Dixon Resultant. It is shown that when two of the variables
are eliminated in favor of the third, a polynomial of degree 16 results.
To each one of its real roots, there corresponds a common zero of the
system. To each such zero, there corresponds a consistent conforma-
tion of the chain. The Sylvester method can find these zeros among
the eigenvalues of a 24 × 24 matrix. For the Dixon approach, after
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removing extraneous factors, an optimally sized eigenvalue problem of
size 16 × 16 results. Finally, the easy extension to the more general
problem of Triaxial Loop Closure is presented and an algorithm for
implementing the method on arbitrary chains is given.

1 Introduction

Determining the structure of a molecule from its chemical composition is
the central problem of stereochemistry. Especially for large macromolecules
with complex topologies and unique compositions, such as proteins and nu-
cleic acids, the extreme complexity of the configuration space makes this
problem one of the grand challenges of our time. The recent advances in
the field of genomics have resulted in ever increasing numbers of proteins
whose sequence can be deduced from the genome, but whose structure and
function are not understood. Computer prediction has thus become an in-
creasingly alluring alternative to costly and time consuming experimental
structure determination, such as by crystallographic or NMR techniques.

Proteins are fascinating objects of study from a geometric standpoint.
They are one-dimensional polypeptide chains that fold in specific ways to
form three-dimensional structures which are the building and functional
blocks of all living things. These structures are characterized by certain mo-
tifs, such as α-helices and β-sheets, but various other constructions are also
present, e.g., a variety of types of turns, hinges and bridges, underpinning
and supporting the stability of larger structural units.

The protein chain’s basic links are the amino acids. Each amino acid
is composed of a central carbon atom, Cα, bonded to a hydrogen atom, an
amino group and a carboxyl group. This central carbon is also attached to a
side chain, a variable group of atoms that differentiates one amino acid from
another. The amino acids come in 80 different types, 20 of which together
with some variants form all known proteins. Two special amino acids, glycine,
which has a second hydrogen as its side chain, and proline, whose side chain
of 3 carbon atoms loops around to connect to the amino nitrogen, are special
structural elements, the first acting as a flexible hinge and the second as
a provider of structural stiffness. Amino acids join by forming a peptide
bond between the carboxyl and amino groups of successive residues. The
resulting polypeptide chain inherits certain structural properties that must
be understood before a systematic exploration of the conformation space of
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such chains can be attempted.
In studying the structure of a protein by computer, one typically con-

siders ensembles of candidate structures. Although it is believed that most
proteins exist at a unique (native) conformation representing a global min-
imum of the Gibbs free energy, many proteins require flexibility in order
to perform their function and exist within a range of alternative conforma-
tions. In general, deciding which are “native” or native-like conformations
is often done on the basis of comparisons to the known structures of other
proteins with strong sequence similarity if available (homology modeling), or
by searching for a conformation minimizing some energy functional. Thus
stated, the problem is one of optimization: given a certain scoring functional
or energy, physics-based or information-theoretic, find the conformation or
ensemble of conformations that minimize(s) that functional. Given the over-
whelmingly large number of possible conformations even for a small-sized
protein (under 70 residues) and the extreme granularity of the energy land-
scape that is being searched for minimal points, it is important to further
refine and extend techniques for the efficient exploration of the conforma-
tion space of proteins as an indispensable component of any methodology for
determining their structure in silico.

From the modeling point of view, it is important to recognize that the
various Degrees of Freedom (DoF) of a protein possess distinctly different
flexibility properties. The stiffness constants associated with the deformation
of dihedral angles from their optimal values are an order of magnitude smaller
than those associated with deforming bond angles (with the exception of
the ω torsion angle associated with the peptide bond, whose constant is
comparable to that of typical bond angles). On the other hand, the constants
associated with deforming bond angles are an order of magnitude smaller
than those associated with deforming bond lengths [2]. Thus, bond-length
distortion can be practically ignored, while bond angles may vary just a little:
variations of ±5–10% account for almost all of the bond-angle variability
observed in the Top500 database of high resolution, non-redundant protein
structures [3]. As a result, the shape variability of a polypeptide chain is
mostly due to the flexible torsion angles associated with the bonds at the
Cα carbon in the backbone (φ and ψ torsions) and to various sidechain (χ)
torsions not associated with rings [4].

Thus, the exploration of the low-energy conformation space of a pro-
tein involves mainly examination of all the different arrangements associated
with deforming the φ, ψ and χ dihedrals, with small perturbations in the
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bond angles and the ω torsions associated with peptide bonds also playing
an important role, while even very small variations in bond lengths incur
large energy penalties. Topological obstructions (steric clashes between dis-
tant atoms) pose obstacles to this exploration, and to achieve a native-like
conformation often requires an arrangement of polar or aliphatic residues
in three dimensions relative to each other and to the solvent in ways that
minimize the electrostatic and other solvent-mediated interactions.

In the context of exploring the conformational space of proteins (a central
task in protein folding) and other macromolecules, it is often useful to proceed
by considering alternative structures differing only by the transposition of a
few localized segments [5, 6, 7, 8]. Such localized transpositions have been
employed as localized moves in Monte Carlo methods [9] for efficient searches
for the free energy minimum of a protein [10, 6, 11, 8, 12, 13] and they offer
the advantage that they can help achieve local refinement in the structure of
a molecule without altering more distant elements.

It is often the case that a protein’s structure is known (or can be predicted
with reasonable accuracy due to sequence similarity), except for certain re-
gions: this is the missing loop problem. In other instances, a certain segment
contains errors or needs to be determined with higher precision than afforded
by a given model: this is the loop refinement problem. Problems of this type
require the systematic exploration of the conformation space of a subsegment
(loop) in a protein within the constraints imposed by the attachment to the
rest of the molecule, whose structure is known. For this exploration, we can
deform the chain locally by only changing the φ and ψ torsions while sam-
pling a certain range of values of other DoF. The problem of determining the
structure of ring molecules is of a similar nature, as changes in various tor-
sional and other DoF must respect the closure of the ring. Mathematically
these problems are manifestations of the simple idea of deforming a polyhe-
dral line by only changing its dihedrals such that certain distance (and/or
angle) constraints between remote atoms or bonds are conserved, exactly or
to within a certain tolerance. In molecular structure studies the problem has
a long history, especially since the pioneering work of Go and Scheraga [5],
and several algorithmic implementations are available. A relatively recent
review can be found in [8]. The relation of this problem to the problem
of Inverse Kinematics in modern robotics has been investigated recently by
several authors ([14, 15, 16, 8, 17, 18, 19]). Because 6 DoF must be specified
for placing an object at a given point with a given orientation, at least 6
torsions need to be changed to achieve a local deformation of a polypeptide
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chain so that it remains attached to fixed ends while all other DoF (bond
lengths, bond angles, ω torsions) retain prescribed values. Concerted vari-
ation in 7 (or more) torsions allows continuous motions, while when only 6
torsions are allowed to vary, discrete sets of at most 16 alternative arrange-
ments will result. In robotics, these problems are called the 7R and 6R

problems of Inverse Kinematics, respectively [20]. The most general solution
known in the robotics literature [21] allows arbitrary arrangements of the
torsional axes. In the molecular context, it is often the case that pairs of
freely rotatable bonds share a vertex (atom), making the formulation of the
problem considerably simpler.

Recently we proposed a general method of solving this problem when the
6 torsions are associated with 3 pairs of coterminal axes (meeting at points
Ri, i = 1, 2, 3), with arbitrary structure between the pairs [8]. This for-
mulation leads to a system of three biquadratic polynomials in terms of the
variables ui = tan(τi/2), i = 1, 2, 3, where the τi describe the orientation of
the rigid units about virtual axes joining the points Ri (Fig. 2), which is a
generalization of a system derived originally for the study of the conforma-
tion of octahedra [22]. We present the reduction of this polynomial system
to a univariate polynomial of degree 16 by means of the Sylvester [23] and
Dixon [24] resultants. In both cases, the implementation of this reduction
with Maple is accomplished efficiently by first effecting certain algebraic sim-
plifications as direct reductions proved to be intractable, leading either to
numerically unstable results in the case of the Sylvester resultant, or for the
Dixon resultant, to extraneous factors [25] whose presence led to a polyno-
mial of degree 32. Moreover, in the Dixon case, the direct implementation
masked the symmetry of the final form, which proved useful for deducing
interesting geometric properties associated with certain special cases such as
the conformational problem of a 6-membered ring [14]. Further applications
to structural problems in biological systems become possible with this for-
mulation, and we are currently pursuing a connection with tensegrity studies
of the stability of the cytoskeleton [26].

The smallest molecule for which alternative conformations may exist that
satisfy all hard constraints is a hexagonal ring or loop with all of its bonds
rotatable (Fig. 1). Since each residue in a protein backbone contributes
two rotatable bonds, the smallest protein segment that can be considered
possessing alternative conformations with respect to a given protein backdrop
is a tripeptide unit whose first and last rotatable bonds are fixed in space. If
other chains, e.g., a chain including a disulfide bridge, are considered, then
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Figure 1: Alternative conformations preserving bond lengths and bond an-
gles of a slightly asymmetric hexagon. In the frame of the triangle C5, C6, C1,
atom C3 (shown at position 3) traces a circle about the axis C1 − C5,
parametrized by the torsion τ3. Conformations 1 and 4 are “boats”, while 2
and 3 are “chairs”.
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the rotatable bonds my also be found on segments of the side chains. The
extension to these cases is straightforward as we discuss in the last section.

This paper is organized as follows: in Section 2 we define the problem
and derive the polynomial equations describing loop closure. In Section 3,
we discuss their solution by Sylvester and Dixon resultants. Sec. 4 gives an
algorithm for introducing local perturbations in a chain with loop closure.

2 Loop Closure: Basic Definitions

When bond lengths are fixed, the conformational problem of a tripeptide unit
in the protein backbone can be described in terms of 15 internal coordinates,
i.e., the 7 bond and 8 dihedral angles. Since the closure conditions introduce
6 constraints, the conformation of the tripeptide unit can be completely char-
acterized by specifying 9 of these and determining values for the remaining 6
such that closure is satisfied. Conveniently, the 3 pairs of φ, ψ torsions about
each Cα can be chosen for this task. Of course, other combinations of 6 DoF
are possible and have been used by various authors [21, 15].

In this paper, we consider an important special case in which the 6R

problem has an intuitively simple description: consider all the motions of a
chain molecule that involve changes in only six backbone torsions. If these
are arranged so that they form three coterminal pairs, then the segments
between successive pairs will effectively form a coarser chain of 3 (closed
case) or 4 (open case) rigid bodies, joined at the locations of the paired
torsion axes. Illustrations are given in Figs. 2 and 3 for a six-membered ring
and a tripeptide example, respectively. For the former, the 3 rigid bodies are
the triangles (ABC), (CDE) and (EGA), Fig. 2 (left). For the latter, the 4
rigid bodies are (N1 Cα1), (Cα1 C1 N2 Cα2), (Cα2 C2 N3 Cα3), and (Cα3 C3).

We focus on the more general tripeptide case, which is similar to introduc-
ing non-planarity to the three triangles while keeping each one rigid, Fig. 2
(right). If we require the two end segments of the chain (N1 Cα1) and (Cα3

C3) to remain at a fixed position relative to each other, (Cα3 C3 N1 Cα1)
forms a third, virtual segment. Now, each of the three rigid units (Cα1 C1 N2

Cα2), (Cα2 C2 N3 Cα3), and (Cα3 C3 N1 Cα1) has two junctions on it, attach-
ing to the other two units. Define the line connecting the two junctions on a
unit as the virtual axis of the unit (Cα1–Cα2, Cα2–Cα3, and Cα3–Cα1). The
motions of the first two segments relative to the rest of the chain can only
be composed of individual rotations of each about their respective virtual
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Figure 2: Definition of the three variables τ1, τ2, and τ3, and the three
constraints θ1, θ2, and θ3 in the simple hexagonal loop closure problem.

axes (Cα1–Cα2 and Cα2–Cα3) or joint rotations of the two as a unit about
the (fixed) virtual axis Cα1–Cα3. The angles involved in the statement of
the problem are shown in Fig. 3 in the context of the Cα triangle, while
Fig. 2 (right) shows them for the most general chain since arbitrary but rigid
structure can be introduced between the points B–B ′, D–D′ and F–F ′.

The angles τi and σi are related to each other because Cαi
–Ci and Ni+1–Cα,i+1

are rotated together as a rigid body. Fig. 4 (a) shows that τi and σi are related
by the simple relation

σi = τi + δi, (1)

where δi is the dihedral angle defined by the three vectors (CiCαi, CαiCα,i+1,
Cα,i+1Ni+1). The generalization to arbitrary chains containing atoms with
paired rotatable bonds (2) is straightforward and is discussed in detail in [8].

2.1 Coefficients of the polynomials

Requiring that the bonds Ni–Cαi
and Cαi

–Ci maintain a given angle θi leads
to the relation [8],

cos θi + cos ηi cos ξi−1 cosαi =

sinαi(sin ξi−1 cos ηi cos σi−1 + cos ξi−1 sin ηi cos τi)
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Figure 3: Definition of angle parameters αi, ηi, and ξi.

+ sin ξi−1 sin ηi(sin τi sin σi−1 + cosαi cos τi cos σi−1) . (2)

Eq. (2) can then be written as a double Fourier series

0 = ai + bi cos σi−1 + ci cos τi

+ di cos σi−1 cos τi + ei sin σi−1 sin τi , (3)

where the coefficients are

ai = − cos θi − cos ηi cos ξi−1 cosαi

bi = sinαi sin ξi−1 cos ηi

ci = sinαi cos ξi−1 sin ηi

di = cosαi sin ξi−1 sin ηi

ei = sin ξi−1 sin ηi .

Eq. (3) is now converted into polynomial form in the variables wi, ui,
where

wi := tan
σi

2
, ui := tan

τi
2
.

To do this, introduce the half-angle formulas

cos τ =
1− u2

1 + u2
, sin τ =

2u

1 + u2
, u = tan

τ

2
,
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Figure 4 (a): A peptide unit along the Cαi–Cα,i+1 virtual bond. In the local
coordinate system, τi and σi are related by σi = τi + δi.
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Figure 4 (b): Geometric definitions at the Cαi junction. The black dot at
the origin denotes the Cαi atom, while the circle centers correspond to Ni

(σ-circle) and Ci (τ -circle).
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Figure 5: An example of the general chain loop closure: a chain of fourteen
atoms corresponding to two residues in an RNA molecule. Here, atoms 3,
6 and 12 act as pivots for the move. Atoms shown for original, 45o helix
together with 9 alternative conformations.
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into (3) to arrive at a system of three biquadratics in wi, ui, (i = 1, 2, 3):

0 = ai + bi

(

1− w2
i−1

1 + w2
i−1

)

+ ci

(

1− u2
i

1 + u2
i

)

+ di

(

1− w2
i−1

1 + w2
i−1

)(

1− u2
i

1 + u2
i

)

+ ei

(

2wi−1

1 + w2
i−1

)(

2ui

1 + u2
i

)

,

or equivalently,

0 = ai(1 + w2
i−1)(1 + u2

i ) + bi(1− w
2
i−1)(1 + u2

i ) + ci(1 + w2
i−1)(1− u

2
i )

+ di(1− w
2
i−1)(1− u

2
i ) + ei4wi−1ui . (4)

Expanding and regrouping results in Eq. (4):

Aiw
2
i−1u

2
i +Biw

2
i−1 + Ciwi−1ui +Diu

2
i + Ei = 0 (5)

where

Ai = ai − bi − ci + di = − cos θi − cos (αi − ξi−1 − ηi)

Bi = ai − bi + ci − di = − cos θi − cos (αi − ξi−1 + ηi)

Ci = 4ei = 4 sin ξi−1 sin ηi

Di = ai + bi − ci − di = − cos θi − cos (αi + ξi−1 − ηi)

Ei = ai + bi + ci + di = − cos θi − cos (αi + ξi−1 + ηi) .

We now eliminate the variables wi. Using the twist transformation

wi =
ui + ∆i

1−∆iui

, ∆i = tan δi/2 ,

in Eq. (5), we find

Ai

(

ui−1 + ∆i−1

1−∆i−1ui−1

)2

u2
i +Bi

(

ui−1 + ∆i−1

1−∆i−1ui−1

)2

+Ci

ui−1 + ∆i−1

1−∆i−1ui−1

ui+Diu
2
i +Ei = 0

Finally, the derivation of the coupled biquadratic polynomials is carried
out by multiplying through by (1−∆i−1ui−1)

2 and regrouping. Since

∆ =
sin δ

1 + cos δ
, ∆2 =

1− cos δ

1 + cos δ
,
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we multiply the resulting expressions through by (1+ cos δi−1)/2 to arrive at
the expression for the coefficients:

p
(i)
22 = − cos θi − cos ξi−1 cos (αi − ηi)− cos δi−1 sin ξi−1 sin (αi − ηi)

p
(i)
21 = −2 sin δi−1 sin ξi−1 sin ηi

p
(i)
20 = − cos θi − cos ξi−1 cos (αi + ηi)− cos δi−1 sin ξi−1 sin (αi + ηi)

p
(i)
12 = −2 sin δi−1 sin ξi−1 sin (αi − ηi)

p
(i)
11 = 4 cos δi−1 sin ξi−1 sin ηi

p
(i)
10 = −2 sin δi−1 sin ξi−1 sin (αi + ηi)

p
(i)
02 = − cos θi − cos ξi−1 cos (αi − ηi) + cos δi−1 sin ξi−1 sin (αi − ηi)

p
(i)
01 = 2 sin δi−1 sin ξi−1 sin ηi

p
(i)
00 = − cos θi − cos ξi−1 cos (αi + ηi) + cos δi−1 sin ξi−1 sin (αi + ηi) .

The polynomials themselves will be given by

P1(u3, u1) =
2
∑

k=0





2
∑

j=0

p
(1)
jk u

j
3



uk
1 =

2
∑

k=0

Lku
k
1, (6)

P2(u1, u2) =
2
∑

j=0

(

2
∑

k=0

p
(2)
jk u

k
2

)

uj
1 =

2
∑

j=0

Mju
j
1, (7)

and

P3(u2, u3) =
2
∑

j=0

(

2
∑

k=0

p
(3)
jk u

k
3

)

uj
2 =

2
∑

j=0

Nju
j
2, (8)

where

Lk := Lk(u3) :=
2
∑

j=0

p
(1)
jk u

j
3,

Mj := Mj(u2) :=
2
∑

k=0

p
(2)
jk u

k
2,

and

Nj := Nj(u3) :=
2
∑

k=0

p
(3)
jk u

k
3. (9)

All three constraints must be satisfied at once. Therefore we are looking
for common real roots of these polynomials: each common root is a triplet

14



(u1, u2, u3) that satisfies all three polynomials. The corresponding torsions
{τi}

3
1 give a placement of the three chains so that the bond angles are correct

at the 3 ”pivot” junctions.
In the next section we describe the method of the Resultant for finding

these common zeros. Although deriving the Resultant leads naturally to
a 16th degree polynomial in one of the ui, it is possible to prove that a
system of 3 biquadratics of the above form must generically have 16 zeros,
real or complex. This follows from a straightforward application of the BKK

theorem [27, 28].

3 Systems of polynomials and resultants

The vanishing of the Resultant of a system of multivariate polynomials is a
necessary and sufficient condition for the existence of a common root. For
two polynomials, Fm(u) and Fn(u) of degrees m and n, to have a common
root u, they must have a factor in common, i.e., there must exist polynomials
g(u) and h(u) of degrees ≤ n− 1 and ≤ m− 1, respectively, such that

gFm + hFn = 0 .

This leads to a system of m+n linear homogeneous equations for determining
the coefficients of g and h, and the resultant is the determinant of the matrix
associated with that system. We demonstrate how this works for two second
order equations in a single variable. Let

f1(u) = a2u
2 + a1u+ a0 = 0

f2(u) = b2u
2 + b1u+ b0 = 0 .

If these have a common root, say u∗, they must be of the form

f1(u) = a2(u− u
∗)(u− u1)

f2(u) = b2(u− u
∗)(u− u2)

and so there exists two polynomials of degree 1, g(u) = b2(u − u2) and
h(u) = −a2(u− u1) such that

g(u)f1(u) + h(u)f2(u) = 0 . (10)

Since the roots are generally not known, we simply write

g(u) = g1u+ g0 , h(u) = h1u+ h0
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and Eq. (10) becomes

(g1u+ g0)(a2u
2 + a1u+ a0) + (h1u+ h0)(b2u

2 + b1u+ b0) = 0

or, grouping like powers of u together,

(g1a2+h1b2)u
3+(g1a1+g0a2+h1b1+h0b2)u

2+(g1a0+g0a1+h1b0+h0b1)u+(g0a0+h0b0) = 0

which can be written in the equivalent form

(

g1 g0 h1 h0

)











a2 a1 a0 0
0 a2 a1 a0

b2 b1 b0 0
0 b2 b1 b0





















u3

u2

u
1











= 0 .

The left and right null vectors give, respectively, the coefficients of the two
factor polynomials and the (common) zero of the original pair. The rank
deficiency of the coefficient matrix (and the vanishing of its determinant,
i.e., the resultant) is the necessary and sufficient condition for the existence
of these null vectors.

Once the vanishing of the determinant above has been established, finding
u is straightforward; discarding the third equation implied above for the right
null vector (since it is dependent on the others), and moving the column
associated with the component 1 to the right hand side, we solve the resulting
system for u using Cramer’s rule:

u =

∣

∣

∣

∣

∣

∣

∣

a2 a1 0
0 a2 −a0

0 b2 −b0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a2 a1 a0

0 a2 a1

0 b2 b1

∣

∣

∣

∣

∣

∣

∣

3.1 Successive eliminations and the Sylvester resultant

The resultant of P1 and P2, whose vanishing guarantees a common root in
u1, is given by the determinant

R8(u2, u3) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2 L1 L0 0
0 L2 L1 L0

M2 M1 M0 0
0 M2 M1 M0

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

L2 L0

M2 M0

∣

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∣

L2 L1

M2 M1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1 L0

M1 M0

∣

∣

∣

∣

∣

.

Since all the non-vanishing elements are products of two quadratics in u2 and
two quadratics in u3, the resultant is a biquartic in these variables, and has
the form

R8(u2, u3) =
4
∑

j,k=0

qjku
j
2u

k
3 .

Here, the 5 × 5 = 25 quantities qjk are found in terms of products of the

ajk := p
(1)
jk and bjk := p

(2)
jk by expressing R8 as a sum of six tensor products.

We write R8 as a quartic in u2 introducing the functions Qj, quartics in
u3:

R8 =
4
∑

j=0

(

4
∑

k=0

qjku
k
3

)

uj
2 =:

4
∑

j=0

Qju
j
2 . (11)

The final resultant, which eliminates u2 to arrive at a degree 16 polynomial
in u3 is given by:

R16 = det(S)

where the matrix S is given as:

S(u3) :=
4
∑

k=0

Sku
k
3 =





















N2 N1 N0 0 0 0
0 N2 N1 N0 0 0
0 0 N2 N1 N0 0
0 0 0 N2 N1 N0

Q4 Q3 Q2 Q1 Q0 0
0 Q4 Q3 Q2 Q1 Q0





















(12)

so that

Sk :=





















c2k c1k c0k 0 0 0
0 c2k c1k c0k 0 0
0 0 c2k c1k c0k 0
0 0 0 c2k c1k c0k

q4k q3k q2k q1k q0k 0
0 q4k q3k q2k q1k q0k





















(where we defined cij := p
(3)
ij , with ci3 = ci4 = 0, i = 0, 1, 2). These matrices

can be used directly in the matrix polynomial approach which finds the
solutions as eigenvalues of a “companion” matrix pencil. The computation
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of the polynomial coefficients for the direct approach requires some additional
computations given in [8].

From these expressions, whose computation involves only 4 distinct 2× 2
determinants, we can compute the final polynomial. This computation can
be done analytically, by deriving the lengthy expressions for the coefficients
of the final polynomial in terms of the coefficients of the original polynomi-
als. These analytical expressions can be useful, especially if one wants to
study the effect of varying parameters on the behavior of the solution of the
tripeptide loop closure. For the calculation shown in Fig. 5, the computa-
tion of the coefficients was done numerically, using the numerical algorithm
tripep closure.f90 [30], based on the Sylvester resultant.

Once u3 is obtained, u2 and u1 can be found via the equations [8]:

u2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N2 N1 N0 0 0
0 N2 N1 N0 0
0 0 N2 N1 0
0 0 0 N2 −N0

0 Q4 Q3 Q2 −Q0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N2 N1 N0 0 0
0 N2 N1 N0 0
0 0 N2 N1 N0

0 0 0 N2 N1

0 Q4 Q3 Q2 Q1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where Nj andQj are functions of u3 defined by Eqs. (9) and (11), respectively,
and

u1 =

∣

∣

∣

∣

∣

∣

∣

L2 L1 0
0 L2 −L0

0 M2 −M0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L2 L1 L0

0 L2 L1

0 M2 M1

∣

∣

∣

∣

∣

∣

∣

,

where Lj and Mj are functions of u3 and u2, respectively.

3.2 Simultaneous elimination and the Dixon Resultant

The Dixon resultant provides a powerful alternative to the previous discus-
sion. The idea is to find the condition on the coefficients of n polynomi-
als pi(x1, . . . , xn−1) in n − 1 variables for the existence of a common root,
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(x?
1, . . . , x

?
n−1). In practice, to use this method for the solvability of a system

of n polynomials in n variables, the variable xn is treated as a parameter and
the resulting condition is a polynomial in xn. Depending on the method em-
ployed, this polynomial may exhibit various kinds of singular or redundant
behavior and may only constitute a necessary (but not sufficient) condition
for the existence of a common root. We give a brief outline of Dixon’s method
as developed in the paper by Kapur et al. [31] and give a Dixon Resultant
for the triaxial loop closure problem of minimal size.

Consider a system of polynomials pi(x1, . . . , xn−1) with i = 1, . . . , n. Form
the Cancellation Matrix

A(x1, . . . , xn−1, y1, . . . , yn−1) =

















p1(x1, x2, . . . , xn−1) · · · pn(x1, x2, . . . , xn−1)
p1(y1, x2, . . . , xn−1) · · · pn(y1, x2, . . . , xn−1)
p1(y1, y2, . . . , xn−1) · · · pn(y1, y2, . . . , xn−1)

· · · · · · · · ·
p1(y1, y2, . . . , yn−1) · · · pn(y1, y2, . . . , yn−1)

















and define the Dixon polynomial

δ(x1, . . . , xn−1, y1, . . . , yn−1) =
detA

n−1
∏

i=1
(xi − yi)

:=
∑

l∈L,m∈M

Dlmx
lym

where l, m are ordered (n−1)-tuples, l = (l1, l2, . . . , ln−1), m = (m1, m2, . . . , mn−1)

so that xl := xl1
1 x

l2
2 · · ·x

ln−1

n−1 and similarly for ym, with L the set of all ex-
ponents corresponding to x-monomials present in the Dixon polynomial and
similarly forM and the y-monomials. In general there is no guarantee that
the matrix of coefficients

D := [Dlm]

is square. If it turns out to be so, then its determinant,

D := detD

or, more precisely, the irreducible part of D as a function of the polynomial
coefficients, is called the Dixon Resultant.

In general, the dimensions associated with l and m could be different,
leading to a non-square Dixon matrix. However, for the triaxial loop closure
problem this turns out to not be the case; as we shall see, the Dixon matrix
is 8 × 8 and composed of quadratic terms in u3. We begin with the three
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polynomials (6), (7), (8), written with their dependence on u3 not shown
explicitly:

P1(u3, u1) =
2
∑

k=0





2
∑

j=0

p
(1)
jk u

j
3



uk
1 =

2
∑

k=0

Lku
k
1 =: p3(u1),

P2(u1, u2) =
2
∑

j=0

(

2
∑

k=0

p
(2)
jk u

k
2

)

uj
1 =

2
∑

j=0

2
∑

k=0

Mjku
j
1u

k
2 =: p1(u1, u2),

and

P3(u2, u3) =
2
∑

j=0

(

2
∑

k=0

p
(3)
jk u

k
3

)

uj
2 =

2
∑

j=0

Nju
j
2 =: p2(u2),

where

Lk(u3) :=
2
∑

j=0

p
(1)
jk u

j
3,

Mjk := p
(2)
jk ,

and

Nj(u3) :=
2
∑

k=0

p
(3)
jk u

k
3.

We now have the cancellation matrix

A(u1, u2, v1, v2) =







p1(u1, u2) p2(u2) p3(u1)
p1(v1, u2) p2(u2) p3(v1)
p1(v1, v2) p2(v2) p3(v1)







and the Dixon polynomial

δ(u1, u2, v1, v2) =
detA

(u1 − v1)(u2 − v2)
:=

∑

l∈L,m∈M

Dlmu
lvm

It turns out that this matrix results in a system that is too large. Indeed, a
symbolic computation of the resultant produces a polynomial of degree 32.
Careful hand optimization of the formulas with the left and right null vectors
defined as

Vl :=
[

1 v1 v2 v1v2 v2
2 v1v

2
2 v3

2 v1v
3
2

]T

and
Vr :=

[

1 u1 u2
1 u3

1 u2 u1u2 u2
1u2 u3

1u2

]T
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helps isolate an extraneous factor of degree 16, resulting in a much more
elegant and compact expression for the irreducible part RD, that is, the
Dixon Resultant:

D := (M22N2L2)
4 detRD

with

RD := [Dlm] =































0 A0 A1 A2 0 B0 B1 B2

A0 A1 A2 0 B0 B1 B2 0
0 B0 B1 B2 0 C0 C1 C2

B0 B1 B2 0 C0 C1 C2 0
0 0 0 0 0 D0 D1 D2

0 0 0 0 D0 D1 D2 0
0 D0 D1 D2 0 0 0 0
D0 D1 D2 0 0 0 0 0































where, for i = 0, 1, 2:

Ai := Mi1N0 −Mi0N1 ,

Bi := Mi2N0 −Mi0N2 ,

Ci := Mi2N1 −Mi1N2 ,

Di := Li .

These coefficients are all quadratic in the third variable, u3. In this way, the
reduced Dixon matrix RD can be written as a matrix polynomial. We have

Ai = Ai2u
2
3 + Ai1u3 + Ai0 ,

and similarly for B,C,D. The coefficients are defined as

Aij := p
(2)
i1 p

(3)
0j − p

(2)
i0 p

(3)
1j ,

Bij := p
(2)
i2 p

(3)
0j − p

(2)
i0 p

(3)
2j ,

Cij := p
(2)
i2 p

(3)
1j − p

(2)
i1 p

(3)
2j ,

Dij := p
(1)
ji .

Then
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RD := R2u
2
3 + R1u3 + R0 =

2
∑

i=0

ui
3































0 A0i A1i A2i 0 B0i B1i B2i

A0i A1i A2i 0 B0i B1i B2i 0
0 B0i B1i B2i 0 C0i C1i C2i

B0i B1i B2i 0 C0i C1i C2i 0
0 0 0 0 0 D0i D1i D2i

0 0 0 0 D0i D1i D2i 0
0 D0i D1i D2i 0 0 0 0
D0i D1i D2i 0 0 0 0 0































The above form of the Dixon resultant has been verified by symbolic calcu-
lation using Maple ([32, 33]). We note that the presence of the extraneous
factor was not precluded by the general theory because the triaxial loop
closure system is not generic n-degree [25]

3.2.1 Generalized eigenproblem formulation

To apply this formulation to the triaxial loop closure problem, we first note
that the Sylvester method discussed previously amounts to essentially apply-
ing the Dixon method of the preceding section in turns: first u1 is eliminated
between P1(u3, u1) and P2(u1, u2), resulting in a new polynomial in u2 and
u3, R8(u2, u3). Then u2 is eliminated between R8(u2, u3) and P3(u2, u3),
producing a polynomial in u3 alone. The computational characteristics of
this process depend clearly on the order in which variables are eliminated,
and in some cases [24] this has been reported to cause numerical difficul-
ties. However, there is another, algebraically subtler effect resulting from the
“unbalancing” of the process by this preferential order of elimination: the
resultant matrix can be written as a matrix polynomial. In the successive
elimination method, the final matrix (whose determinant is the resultant)
arises from elimination between a bi-quadratic and a bi-quartic (by which
we mean quartic in both variables). It therefore has size 6 × 6 and can be
expanded as a matrix polynomial of degree 4. However, in the determinan-
tal expansion every term is the product of two quartic and four quadratic
polynomials, so the resulting polynomial is of degree 16, as expected from
the BKK root-count for a polynomial system with elements in the 2× 2× 2
box.

As is well known, the determinant of a matrix polynomial can be written
as the characteristic polynomial of a companion matrix, in this case of size
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(4× 6)2. The root system of this polynomial contains the u3-components
of the common roots. However, these must be separated from extraneous
zeros, whose computation adds unnecessary overhead to the method. As a
result, the alternative offered by the Dixon resultant becomes attractive for
two reasons: it is both simpler to state and compute, and all of its terms
are quadratic in u3. This latter property implies that the companion matrix
will be block 2 × 2, and since the blocks are of size 8 × 8, the resulting
generalized eigenproblem has dimension 16 and is a constant multiple of
the resultant. However, here one needs to identify the extraneous factor
(M22N2L2)

4 resulting from the computation of the Dixon Resultant, whose
presence made the problem practically uncomputable by automatic means.

We give now the formulation of the above polynomial equations as gen-
eralized eigenproblems. Following Manocha [14], we write R16(u3) as a de-
terminant of a matrix polynomial with matrix coefficients Sk:

det

(

4
∑

k=0

Sku
k
3

)

= 0,

which for a generic set of matrices Sk is equivalent to

det (Bu3 −A) = 0

with

B :=











I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 S4











, A :=











0 I 0 0
0 0 I 0
0 0 0 I
−S0 −S1 −S2 −S3











,

where all blocks are of size 6× 6.
For the Dixon version,

det

(

2
∑

k=0

Rku
k
3

)

= 0,

which for a generic set of matrices Rk is equivalent to

det (BDu3 −AD) = 0

with

BD :=

(

I 0
0 R2

)

, AD :=

(

0 I
−R0 −R1

)

,
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where all blocks are of size 8× 8.
The resulting generalized eigenproblems, of form u3BZ = AZ, can be

solved numerically with the LAPACK routine dggev.f, for example. Having
found the roots, the reconstruction of the chain with the altered torsion an-
gles is straightforward. However, in practical applications, one must guard
against solutions made unfeasible by the clashing of distant parts of the chain
due to the rearrangement. Especially when additional driver angles are in-
troduced, solution branches can disappear or new solutions can bifurcate
from old branches. Topological considerations become important and pow-
erful continuation and other topological methods can be brought to bear to
identify feasible solution sets and speed up the solution process [34].

4 Reconstructing the chain

In the previous sections, we saw how to reduce the problem to either a 16th
degree polynomial or a generalized eigenproblem for u3, and how to then
determine for each solution the corresponding values of u2 and u1.

Reconstructing the configuration corresponding to each triplet is a straight-
forward geometrical exercise, which we describe here for completeness:

ALGORITHM: Triaxial Loop Closure

1. Define cartesian coordinates for a chain of N atoms,

X = [x1, · · · ,xN ]

where it is possible that x1 is connected to xN , i.e., the chain may be
a closed ring.

2. Identify 3 atoms in the chain that will serve as pivots for the loop
closure. These atoms must be connected to their nearest neighbors via
rotatable bonds. Let these be defined as a1 ≡ xa, a2 ≡ xb and a3 ≡ xc,
with 1 ≤ a < b < c ≤ N , where we require that no two of these pivotal
atoms are neighbors.

3. Subdivide the chain into three subchains,

X1 = [xa, · · · ,xb] , X2 = [xb, · · · ,xc] , X3 = [xc, · · · ,xa]
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Note that the third chain is looped back, and a bond is introduced
between xN and x1. This may be a real bond or a virtual bond, i.e., the
third piece may be a contiguous chain (part of a closed ring), or a virtual
chain formed by connecting the beginning and end pieces. We also
introduce the notation ni (respectively ci) for the previous (respectively
next) neighbors of the atoms ai. It is possible that ci = ni+1 for some
i = 1, 2 and/or 3.

4. Chains may now be perturbed in an arbitrary fashion: for example,
some dihedrals may be changed, or some bond angles or even bond
lengths can be altered in a prescribed fashion. The new configura-
tion will be known in cartesian form, but the perturbed chains will, in
general, no longer be cohesive with each other.

5. If subchain X3 is perturbed, it must be anchored to an absolute coordi-
nate system in some fashion. In the case of an open chain, this means
that the actual ends are anchored to some fixed positions as is typical
for missing-loop closure problems. For a ring molecule, this serves to
fix the arbitrary affine transformation that may be applied to the entire
molecule. As a result of this procedure, the atoms a3 and a1 as well as
c3 ≡ xc+1 and n1 ≡ xa−1 become fixed to absolute locations that will
subsequently serve as the anchors of the loop closure algorithm. From
this point on, subchain X3 remains fixed.

6. Calculate the triangle-scaffold for loop closure in its own body frame.
That is, form the vectors

di = ai+1 − ai , i = 1, 2, 3

where a4 ≡ a1, and also calculate their norms, di = ||di||. Calculate
the exterior angles

αi = cos−1 di−1 · di

di−1di

(with d0 ≡ d3) at vertices Ai, i = 1, 2, 3 corresponding to the atoms
ai, where A3 is placed at the origin [coordinates (0, 0, 0)], A1 along
the positive x-axis [coordinates (d3, 0, 0)] and A2 on the positive xy-
halfplane [coordinates (−d2 cosα3, d2 sinα3, 0)].
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7. Reduce subchains X1 and X2 each to its own body frame. These are
defined in terms of a local x̂i, ŷi, ẑi orthogonal coordinate system, where

x̂i =
di

di

, ẑi =
x̂i × (ci − ai)

||x̂i × (ci − ai)||
, ŷi = ẑi × x̂i , i = 1, 2.

Then the rotation-to-body matrices are defined by

Qi = [x̂i , ŷi , ẑi] ,

and the transformation to body coordinates for each subchain is given
by

X b
i ≡ Q

T
i (Xi − ai) .

8. Compute the remaining loop closure polynomial parameters (i = 1, 2, 3):

δi−1 = dihedral 6 (ci−1, ai−1, ai,ni)

ηi = bond 6 (ci, ai, ai+1)

ξi−1 = bond 6 (ai−1, ai,ni)

using the normal definitions for dihedral and bond angles, while the
constraint parameters, θi, must be computed from the initial chain as
the bond angles at the pivotal atoms (and their values may be retained
or perturbed as desired).

9. Now solve the loop closure problem, and determine the number of real
solution triplets, τ1, τ2, τ3. For each triplet:

(a) Rotate d1 and d2 by angle π − τ3 and compute the frame vector
ẑ.

(b) Place atom a2 using frame Q3:

a2 ← a3 +Q3Rx(π − τ3)A2

(c) Rotate chains X b
i , i = 1, 2 about their respective body x-axes by

the angles τi and place them in the rotated triangle frame using
corresponding edges and ẑ.

We are in the process of implementing a version of this algorithm which
will also include side chain placement.

26



5 Acknowledgments

We would like to thank Michael Barnett for organizing a very stimulating
conference. One of the authors (EAC) would like to acknowledge the hospi-
tality of the Dill group during several visits to UCSF. EAC also acknowledges
helpful suggestions by Manfred Minimair who introduced him to the Dixon
resultant and shared a Maple script for its computation.

Correspondence to: vageli@math.unm.edu

References

[1] Coutsias, E. A., Seok, C., Wester, M. J., Dill, K. A. Resultants and Loop

Closure, International Journal of Quantum Chemistry, 106(1), 176-189,
2005.

[2] Leach, A. R. Molecular Modeling: Principles and Applications, 2nd
edition; Pearson Education EMA, Harlow, UK, 2001.

[3] http://kinemage.biochem.duke.edu/databases/top500.php.

[4] Branden, C.; Tooze, J. Introduction to Protein Structure; Garland, New
York, 1999.
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