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in a free-ranging marine mammal
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Large fluctuations in animal body mass in relation to life-history events can

influence contaminant concentrations and toxicological risk. We quantified

mercury concentrations in adult northern elephant seals (Mirounga angustir-
ostris) before and after lengthy at sea foraging trips (n ¼ 89) or fasting

periods on land (n ¼ 27), and showed that mercury concentrations in

blood and muscle changed in response to these events. The highest blood

mercury concentrations were observed after the breeding fast, whereas the

highest muscle mercury concentrations were observed when seals returned

to land to moult. Mean female blood mercury concentrations decreased by

30% across each of the two annual foraging trips, demonstrating a fora-

ging-associated dilution of mercury concentrations as seals gained mass.

Blood mercury concentrations increased by 103% and 24% across the breed-

ing and moulting fasts, respectively, demonstrating a fasting-associated

concentration of mercury as seals lost mass. In contrast to blood, mercury

concentrations in female’s muscle increased by 19% during the post-breed-

ing foraging trip and did not change during the post-moulting foraging

trip. While fasting, female muscle mercury concentrations increased 26%

during breeding, but decreased 14% during moulting. Consequently, regard-

less of exposure, an animal’s contaminant concentration can be markedly

influenced by their annual life-history events.
1. Introduction
Mercury is a protein-bound contaminant that is widely distributed in the ocean

[1] and bioaccumulates in top predators [2,3]. Mercury exposure in animals can

cause overt and subclinical health effects [4,5]. Marine vertebrates that occupy

upper trophic levels within oceanic food webs are especially vulnerable to

bioaccumulation of mercury, and these species accumulate higher concen-

trations of mercury in their tissues than their terrestrially foraging

counterparts [6,7]. Pacific Ocean mercury concentrations are predicted to

increase until they reach equilibration with current levels of atmospheric

mercury [8].

The concentration of mercury in animal tissues varies in response to

environmental exposure. Individuals may bioaccumulate higher quantities of

methylmercury (MeHg), the form of mercury that biomagnifies and is most

toxic to biological organisms, when foraging in certain habitats [9,10]. For

example, MeHg concentrations in fish tissues increase with ocean depth such

that animals foraging deeper in the mesopelagic (200–1000 m) region accumu-

late higher concentrations of mercury than epipelagic (0–200 m) species [11].
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Consequently, changes in an individual’s foraging habitat or

diet over time can alter their mercury exposure [12,13].

Whereas most studies of mercury contamination have

focused on the likelihood of mercury exposure through inges-

tion, the life history of animals and associated changes in

physiology can also influence contaminant concentrations

[14–18]. For example, rapid growth in juvenile birds caused

a decrease in mercury concentrations, despite continued con-

sumption of fish containing relatively high levels of mercury

[14]. Similarly, blood mercury concentrations in northern ele-

phant seal pups dramatically decreased while they were

nursing and undergoing a period of rapid growth [15,19].

In addition, faster growing Atlantic salmon (Salmo salar)

had lower mercury concentrations than their slower-growing

conspecifics [17]. These examples illustrate the large influence

that growth in body mass can have on mercury concen-

trations. By contrast, adults of many marine and terrestrial

species, including birds, fishes, turtles, bears, cetaceans and

pinnipeds, undergo significant decreases in body mass as a

result of extensive fasting periods [20–24] or lengthy

migrations with limited food availability [25–28]. Significant

proportional changes in body mass for small- or large-bodied

species as a result of these life-history events can dramatically

influence contaminant concentrations and toxicological risk

within individuals [14–18,29].

The northern elephant seal (Mirounga angustirostris)

undergoes extreme fluctuations in body mass while fasting

on the beach during annual breeding and moulting periods,

which can each last several weeks to months depending on

the individual and sex [20,30,31]. Conversely, seals rapidly

accumulate body mass at sea during the post-breeding fora-

ging trip (approx. 75 days for females and 117 days for

males) and the post-moulting foraging trip (approx. 219

days for females and 112 days for males) [32,33]. These dra-

matic variations in body mass associated with foraging and

fasting periods can be used to assess the influence of

animal physiology on contaminant concentrations. We

studied changes in mercury concentrations in blood, muscle

and hair of adult northern elephant seals across the time

periods associated with the two annual fasting periods on

land (breeding and moulting) and the two annual foraging

migrations at sea (post-breeding and post-moulting). North-

ern elephant seals are a relatively tractable study system

that can illuminate risk for species undergoing similar

physiological conditions and fluctuations in body mass.
2. Material and methods
(a) Animal sampling
To quantify the changes in mercury (Hg) concentrations of whole

blood, muscle and hair associated with foraging and fasting by

northern elephant seals, we collected samples from the same

adult seals. We refer to males falling into the subadult 3, sub-

adult 4 and adult-age classes [34] as adult males. From 2011 to

2014, we used standard protocols to chemically immobilize

seals at the Año Nuevo colony (Año Nuevo State Reserve, San

Mateo County, CA, USA) [32,33,35] while we collected tissue

samples and morphometric measurements, including standard

length and mass, although male elephant seals were not weighed

owing to their large body size. To decrease the variability associ-

ated with sampling specific body locations [36], we standardized

the sampling location of hair and muscle across all animals. We

used cordless clippers to sample hair from the dorsal pelvic
region, and we used a sterile 6 mm biopsy punch (Miltex, Inc.,

York, PA, USA) to collect a muscle biopsy from the lateral

pelvic area. We collected whole blood (hereafter blood) from

the extradural vein into sodium heparin treated vacutainers.

Blood and muscle samples were stored at 2208C until analysis.

These samples are a subset of tissue concentrations reported

previously to describe correlations among total Hg (THg)

concentrations in different tissues [29].

In general, all adult seals are on land to breed, after which

they take a post-breeding foraging trip. Males and females then

return to land to moult but not at the same time, after which

they take a post-moulting foraging trip. The post-breeding fora-

ging trip is substantially shorter than the post-moulting trip for

females, although the trip lengths are similar for males. At the

end of the post-moulting trip, seals are back on land to breed

(electronic supplementary material, figure S1).

Before and after foraging, we collected paired samples from

83 adult female seals. We collected 82 paired samples of blood

and hair (n ¼ 51 post-breeding trip and 31 post-moulting trip)

and 69 paired samples of muscle (n ¼ 42 post-breeding trip

and 27 post-moulting trip). Female seals were sampled a mean

80+ 13 days apart for their shorter, post-breeding foraging trip

(mean mass gain ¼ 53+33 kg) and 240+ 12 days apart for

their longer, post-moulting foraging trip (mean mass gain ¼

168+ 34 kg). Additionally, we collected paired samples of

blood and hair from six male elephant seals before and after a

foraging trip (n ¼ 4 post-breeding trip and 2 post-moulting

trip), with a mean 131+ 7 days in between sample collection

for the post-breeding foraging trip and 151+24 days in between

sample collection for the post-moulting trip.

For the breeding and moulting fasting periods on land, we

collected paired early and late fasting samples of blood and

hair from 19 adult females (n ¼ 10 breeding fast and 9 moulting

fast) and muscle from 18 of those females (n ¼ 9 each fast).

Female seals were sampled a mean 18+ 1 days apart during

the breeding fast (mean mass loss ¼ 142+19 kg) and a mean

36+ 3 days apart during the moulting fast (mean mass loss ¼

113+ 14 kg). During the breeding season, we collected paired

early and late fasting samples from male elephant seals of

blood (n ¼ 7), muscle (n ¼ 5) and hair (n ¼ 8). Males were on

land for longer during the breeding fast than females, and tissues

samples were taken 50+ 8 days apart. Males were not sampled

across the moulting fast.
(b) Mercury analysis
We cleaned hair by sonicating samples in a mild detergent [37],

rinsed the samples multiple times in deionized water and then

dried samples for 24–48 h at 508C. Muscle samples were

thawed, rinsed, gently blotted dry, weighed to obtain a wet

mass and then dried for 48 h at 508C to obtain a final dry

weight (dw). Hair, muscle and blood samples were weighed to

the nearest 0.0001 g prior to analysis (Mettler Toledo XS105,

Columbus, OH, USA). All samples were analysed for THg,

because the Hg in these three tissues types is almost entirely

MeHg [38–42].

We followed US Environmental Protection Agency Method

7473 and analysed tissue samples for THg using a Milestone

DMA-80 Direct Mercury Analyzer (Milestone, Shelton, CT,

USA) at the US Geological Survey Dixon Field Station Environ-

mental Mercury Laboratory. Each run of samples included

certified reference materials (National Research Council of

Canada, Ottawa, Canada: DORM-3, DOLT-3, DOLT-4 or TORT-

3), continuing calibration verifications, system and method

blanks, and duplicate samples for quality assurance. Recoveries

(mean+ standard error) of certified reference materials were

102.4+0.5% (n ¼ 46), recoveries of calibration verifications

were 101.4+0.9% (n ¼ 67) and duplicate samples had a mean
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reported previously [29]. Concentrations of THg (mg g21) are

reported as dw for hair and muscle and as wet weight (ww)

for blood.
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(c) Statistical analysis
For females, we used mixed-effects models to examine how

tissue concentrations varied within individuals between the

start and end of each of the two foraging trips and two fasting

periods. We analysed foraging trips separately from fasting

periods. For foraging, the sampling period (before versus after

foraging), foraging trip (post-breeding versus post-moulting

trip) and a sampling period � foraging trip interaction were

fixed effects. For fasting, the sampling period (early versus late

fasting), fast (breeding versus moulting fast) and a sampling

period � fast interaction were fixed effects. Individual seal was

included as a random effect in the models to statistically nest

samples from the same individual. We determined type III

tests of significance with F-statistics using the afex package, and

degrees of freedom were calculated using the Kenward–Roger

method [43]. If the interaction was not significant, we removed

it and reran the analysis with type II tests of significance. We con-

ducted post hoc pairwise comparisons using least squares mean

estimates in the lsmeans R package [44]. We report back-

transformed least squares mean estimates and standard errors

derived using the delta method. To demonstrate the effect size,

we calculated the percentage change in THg concentrations

between sampling periods using least squares mean estimates

for each sampling period.

For males, we conducted paired t-tests to test for changes

in THg concentrations across foraging trips (with both

foraging trips combined for analyses of blood and hair THg

concentrations) and across the breeding fast.

Secondly, we used general linear models to examine if the

proportional change in mass of adult female elephant seals

explained the significant differences observed in blood or

muscle THg concentrations across foraging and fasting periods.

For each individual female, we calculated a proportional

change in mass (MassFinal/MassInitial) and a proportional

change in tissue THg concentrations ([THg]Final/[THg]Initial)

across each foraging trip or fasting period. Note that the

change in mass is between sampling events and does not rep-

resent absolute mass gain while foraging. We ran separate

analyses for THg concentrations in blood and muscle across

each fasting and foraging period. In addition to proportional

mass loss, we examined if the THg concentrations within indi-

viduals at the first sampling period influenced the proportional

change in THg concentrations across the following fasting or

foraging periods. To test this, we used likelihood ratio tests to

determine if the addition of the initial THg concentration, from

the beginning of the fasting or foraging period, improved the

model fit. If the proportional change in THg concentrations

was significantly related to the initial THg concentrations, we

tested an additional null hypothesis (b ¼ 21) to verify that the

relationship was not a statistical artefact because the initial

THg concentration was both a predictor variable and in the

denominator of the response variable.

All female THg concentrations and the proportional change

in THg concentrations were natural log transformed prior to

analysis to meet the assumptions of normality and homogeneous

variance. Refer to the electronic supplementary material, table S1

for the sample sizes and summary THg concentrations for

females and males at each sampling period and electronic sup-

plementary material, table S2 for a summary of the change in

THg concentration and the per cent change in THg concentration

across fasting and foraging periods. Analyses were conducted in

R v. 3.2.1 [45] and a was set at p ¼ 0.05.
3. Results
(a) Mercury concentrations across foraging and fasting

periods
(i) Foraging females
THg concentrations in the three tissues did not change in the

same manner over the course of the two foraging trips

(figure 1; electronic supplementary material, table S2). We

did not observe a significant interaction between foraging

trip � sampling period (before versus after foraging) on

THg concentrations in blood (F1,81.5¼ 0.16, p ¼ 0.69) or hair

(F1,81.6¼ 1.07, p ¼ 0.30), but we observed a significant inter-

action between foraging trip � sampling period on THg

concentrations in muscle (F1,67.9¼ 4.72, p ¼ 0.03). Thus, we

removed the foraging trip � sampling period interaction for

blood and hair. For muscle, we did not test the main effects,

but ran pairwise tests on the least squares means for all four

sampling periods.

Blood THg concentrations declined while foraging

(F1,135.3 ¼ 19.73, p , 0.001; figure 1), with mean blood

THg concentrations 31% and 32% lower at the end of the

post-breeding and post-moulting foraging trips, respectively.

Additionally, mean blood THg concentrations were higher in

females at both the start and end of the shorter, post-breeding

trip than at the start and end of the longer, post-moulting trip

(F1,82.5 ¼ 307.46, p , 0.001; figure 1). We were able to sample

eight seals over at least four consecutive time periods. This

unique time series demonstrates the same trends in figure 1

but within an individual (figure 2; electronic supplementary

material, table S3). Similar to blood, hair THg concentrations

declined across each foraging trip (F1,82.6¼ 65.83, p , 0.001).

Specifically, mean hair THg concentrations declined by 15%

and 17% from the start to the end of the post-breeding and

post-moulting trips, respectively. Unlike blood, overall hair

THg concentrations did not differ between the two foraging

trips (F1,124.1¼ 1.82, p ¼ 0.18).

In contrast to blood and hair, mean muscle THg concen-

trations increased by 16% across the post-breeding foraging

trip (t¼ 2.93, p ¼ 0.005), but were not different between the

start and end of the post-moulting foraging trip (t ¼ 0.44,

p ¼ 0.66; figure 1). Additionally, mean THg concentrations

in muscle at the start of the two foraging trips were not differ-

ent (t ¼ 0.23, p ¼ 0.82), although THg concentrations were

25% higher at the end of the post-breeding trip than at the

end of the post-moulting trip (t ¼ 2.58, p ¼ 0.01).

(ii) Foraging males
Mean blood THg concentrations in males did not signifi-

cantly decrease from the start to the end of their foraging

trips (t ¼ 2.18, p ¼ 0.08; electronic supplementary material,

table S1 and figure S2), although our sample size was limited

to only six individuals and conducting a two-tailed t-test

resulted in more conservative results. Unlike females, hair

THg concentrations did not decrease over the foraging trip

(t ¼ 1.03, p ¼ 0.35).

(iii) Fasting females
THg concentrations changed differently across the two fast-

ing periods, as indicated by the significant interactions we

observed between the sampling period (early versus late

fast) � fast (breeding versus moulting) for each of the three
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tissues (blood: F1,19.0 ¼ 87.72, p , 0.001; muscle: F1,18.2 ¼

15.84, p , 0.001; hair: F1,19.5 ¼ 12.31, p ¼ 0.002; figure 1).

THg concentrations in blood increased across both the breed-

ing fast (t ¼ 19.66, p , 0.001) and moulting fast (t ¼ 5.75, p ,

0.001), but they increased more across the breeding fast (by

103%: 0.25–0.64 mg g21 ww) than the moulting fast (by

24%: 0.04–0.17 mg g21 ww). Additionally, mean THg concen-

trations in blood were 22% higher at the start of the moulting

fast compared with the start of the breeding fast (t ¼ 3.80, p ¼
0.001), but 25% lower at the end of the moulting fast than at

the end of the breeding fast (t ¼ 5.63, p , 0.001). In muscle,

mean THg concentrations increased by 26% across the breed-

ing fast (t ¼ 3.36, p ¼ 0.004), but decreased by 14% across the

moulting fast (t ¼ 2.27, p ¼ 0.035). In hair, THg concen-

trations did not change across the breeding fast (t ¼ 0.23,

p ¼ 0.82). However, mean hair THg concentrations increased

by 82% across the moulting fast (t ¼ 5.05, p , 0.001), indicat-

ing that almost fully grown new hair had higher THg

concentrations than old hair that had been grown during

the previous moult.
(iv) Fasting males
Across the breeding fast, THg concentrations in blood

increased (t¼ 2.47, p ¼ 0.048), whereas THg concentrations

in hair decreased (t¼ 3.73, p ¼ 0.007; range: 1.0–7.3 mg g21

dw; electronic supplementary material, figure S2). For

muscle THg concentrations, we observed a small increase

across the breeding fast (t¼ 2.05, p ¼ 0.11), with a sample

size of only five paired individuals.
(b) Change in mass related to change in mercury
concentration

(i) Foraging females
Females increased their body mass by a mean 17+10%

during the shorter, post-breeding foraging trip, whereas

females increased their body mass by 55+13% during the

longer, post-moulting foraging trip (electronic supplementary

material, table S2). Individual females that gained proportion-

ally more mass also had a greater proportional decrease in
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blood THg concentrations during the post-breeding foraging

trip (F1,49 ¼ 35.04, p , 0.001, R2 ¼ 0.42) and during the post-

moulting foraging trips (F1,29 ¼ 5.02, p ¼ 0.03, R2 ¼ 0.15;

figure 3).

The proportional change in muscle THg concentrations

was related to the proportional change in mass during the

post-moulting trip (F1,25 ¼ 6.47, p ¼ 0.02, R2 ¼ 0.21) but not

during the post-breeding foraging trip (F1,40 ¼ 0.86, p ¼ 0.36;

figure 3). All seals gained mass during the post-moulting

trip; however, seals that gained proportionally more mass

decreased their muscle THg concentrations, whereas seals

that gained proportionally less mass increased their muscle

THg concentrations.

(ii) Fasting females
Between sampling events, fasting females lost a mean 30+4%

of their body mass during the breeding season and lost

28+ 3% of their body mass during the moulting fast (elec-

tronic supplementary material, table S2). In contrast to

foraging, the proportional change in blood THg concen-

trations did not relate to that in mass during either the

breeding fast (F1,8 ¼ 1.34, p ¼ 0.28) or the moulting fast

(F1,7 ¼ 0.28, p ¼ 0.61; figure 3). Furthermore, for muscle, the

proportional change in THg concentrations did not relate to

that in seal mass during either the breeding fast (F1,7 , 0.01,

p ¼ 0.97) or the moulting fast (F1,7 ¼ 0.09, p ¼ 0.78; figure 3).

(iii) Influence of initial tissue mercury concentrations
We found that the animal’s THg concentration at the start of a

foraging trip or a fasting period was an additional variable

that helped explain the proportional change in THg concen-

trations in specific cases (electronic supplementary material,

figure S3). For blood, initial THg concentrations improved

model fit for the post-breeding foraging trip (x2
1 ¼ 8:35, p ¼

0.004) but not for the post-moulting foraging trip

(x2
1 ¼ 0:39, p ¼ 0.53), breeding fast (x2

1 ¼ 0:23, p ¼ 0.63) or

moulting fast (x2
1 ¼ 2:99, p ¼ 0.08). For muscle, initial THg
concentrations improved the model fit for both foraging

trips (post-breeding: x2
1 ¼ 39:97, p , 0.001; post-moulting:

x2
1 ¼ 4:79, p ¼ 0.03) and the moulting fast (x2

1 ¼ 7:21, p ¼
0.007). For muscle, the initial THg concentration improved

the model fit for the breeding fast (x2
1 ¼ 8:22, p ¼ 0.004),

but this relationship may have been a statistical artefact

because we failed to reject the second null hypothesis ( p ¼
0.27). For these four of eight foraging and fasting time

periods, females with lower starting THg concentrations

gained relatively more (or decreased less) in THg concen-

trations than females with higher starting THg

concentrations.
4. Discussion
THg concentrations in adult northern elephant seals changed

substantially based on their annual life-history events,

regardless of whether or not they were still acquiring Hg

through their diet. Specifically, we demonstrated that blood

Hg concentrations increased by as much as 153% over 18

days during the breeding fast, despite the fact that seals

were not acquiring any Hg through their diet at that time.

Furthermore, we showed that blood Hg concentrations

declined by as much as 55% over the approximately 75 day

post-breeding foraging period as seals rapidly increased in

mass and diluted the concentration of Hg in their blood,

probably through an increase in blood volume and muscle.

Sampling the same individuals at different points in their

annual life cycle illustrated the profound influence of physi-

ology on THg concentrations and the resulting toxicity risk.

Blood and muscle THg concentrations, notably, did not

fluctuate in parallel, which indicates that different mechan-

isms influenced the changes in THg concentrations in these

tissues while animals were foraging and fasting. For example,

muscle THg concentrations increased during the post-breed-

ing foraging trip, while blood THg concentrations decreased

during the same foraging trip. Furthermore, we observed the
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lowest blood THg concentrations when female seals were

heaviest, at the start of the breeding fast, having just returned

from the longer, post-moulting foraging trip at sea. We

observed the highest blood THg concentrations at the end

of the breeding fast when females had been fasting and

were about to wean their pup to depart on the short, post-

breeding foraging trip. By contrast, muscle THg concen-

trations in females were highest at the start of the moulting

fast, when seals were in good body condition and had just

returned from the post-breeding foraging trip. For hair,

THg concentrations were lowest in the old hair that was

sampled at the start of the moult when the old hair was

about to be shed, whereas THg concentrations were highest

towards the end of the moulting period when the new hair

had not fully finished growing and the sampling was

biased towards the ‘tips’ of the hair that were grown first

during moult. Owing to abrasion of the tips of the hair in

between sampling periods, the old hair samples may have

been biased more towards the base of the hair and thus,

hair that was grown later in moult when body Hg concen-

trations would have been lower. Abrasion of the tips may

also explain the decrease in male hair THg concentrations

across the breeding fast, when males were on land for 2.7

times longer than females.

Generally, we observed a strong foraging-associated

dilution effect on THg concentrations in blood that was par-

tially explained by the proportional amount of mass gained
while foraging. Elephant seal females increased their body

mass by a mean 17% during the post-breeding foraging trip

and 55% during the post-moulting foraging trip, and these

mass gains at sea corresponded to a decline in their blood

THg concentrations. Elephant seal blood comprises approxi-

mately 20% of their body mass and their blood volume is

tightly correlated with their body mass at the start and end

of foraging trips [46]; thus, an increase in body mass

during their foraging trips corresponds to a similar increase

in blood volume. The dilution of blood THg concentrations

in female and male elephant seals while foraging is most

likely explained by an increase in body mass and blood

volume that outpaces the ingestion of Hg through their

diet, similar to growth dilution of THg concentrations in

juvenile birds [14].

The foraging-associated dilution effect, however, did not

apply to muscle tissue. Instead, mean muscle THg concen-

trations increased during the post-breeding foraging trip and

did not change during the post-moulting trip. Nonetheless,

THg concentrations in muscle declined proportionally more

in those individuals that gained proportionally more mass

during the post-moulting foraging trip. The increase in mean

muscle THg concentrations across the post-breeding foraging

trip indicated that, for many seals, sequestration of Hg into

muscle probably outpaced any potential effect of mass dilution

as a result of increasing body mass and muscle stores during

this foraging trip. Foraging elephant seals may sequester Hg
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in protein-rich tissues like muscle while they actively rebuild

their protein and fat reserves while foraging at sea after they

had relied on those tissue compartments to fuel their extensive

fasting periods on land during both the breeding season and

the moulting period [20,30]. Notably, during both at sea fora-

ging trips, seals with lower initial muscle THg concentrations

increased their muscle THg concentrations relatively more

during foraging trips than those with higher initial muscle

THg concentrations. Specifically, seals that started foraging

with lower muscle THg concentrations increased their THg

concentration during foraging trips, whereas seals that started

with the highest muscle THg concentrations decreased their

THg concentrations while foraging. Consequently, this

suggests that the mechanisms of Hg deposition into and mobil-

ization out of muscle tissue may be concentration-dependent.

Several reasons may account for the decline in blood and

increase in muscle THg concentrations during the post-breeding

foraging trip. Seals starting the post-breeding foraging trip

had the highest intra-annual blood THg concentrations and

then went to sea where they foraged on highly contaminated

mesopelagic prey [10], which probably provided a reservoir

of Hg in blood to be deposited in muscle tissue that was

actively being regenerated as body mass increased by a

mean 17% while at sea (between sampling periods). Within

the mesopelagic zone, methylation of inorganic Hg provides

a source of MeHg to deep-ocean food webs [47], and more-

over, fishes in the mesopelagic zone contain higher THg

concentrations than those from the epipelagic zone [11]. Fur-

thermore, there is little opportunity for elephant seals to

offload Hg during the post-breeding foraging trip, because

seals are not undergoing gestation or hair growth. By con-

trast, gestation during the post-moulting foraging trip

allows trans-placental transfer of Hg from mother to pup

[15,48] and may partially explain the lack of an overall

increase in muscle THg concentrations between the start

and the end of this longer, post-moulting foraging trip at sea.

Female and male elephant seals markedly increased in

blood THg concentrations while fasting, supporting a fast-

ing-associated concentration of blood THg, although the

proportional decrease in body mass while fasting did not

relate to these changes during breeding or moulting. While

on land for breeding and moulting, seals are fasting and,

consequently, THg concentrations should increase [15,18],

despite the fact that they are no longer ingesting Hg-contami-

nated prey. However, concurrent with fasting, seals are

offloading some Hg into their offspring during the breed-

ing-associated fast or into their growing hair during the

moulting-associated fast. These offloading mechanisms may

have countered any concentration of THg associated with

the decline in body mass (24–36%) while fasting. Extensive

fasting periods occur in other taxonomic groups and are

well documented for bears, birds and cetaceans [22,49];

thus, the fasting dynamics of other species may result in

similar fluctuations in contaminant concentrations.

The proportional change in blood THg concentrations

was markedly higher during the breeding fast than the

moulting fast, which is probably attributable to differences

between the Hg offloading mechanisms. During breeding,

multiple seal species and humans transfer a portion of their

THg burden to their offspring via milk [15,18,48,50]. For ele-

phant seals, although Hg is transferred to offspring through

milk, the mammary gland acts as a filter to reduce maternal

transfer, and THg concentrations in milk are not correlated
with the THg concentrations in maternal blood [15]. During

moult, elephant seals completely shed their old hair along

with the epidermis and grow an entirely new epidermis

and hair before returning to the ocean to forage [51]. Circulat-

ing Hg in blood is incorporated into these protein-rich tissues

(skin and hair) in mammals [52] in a manner similar to how

Hg is offloaded into avian feathers [53], which can substan-

tially decrease the burden of Hg in blood and reduce the

fasting-associated concentration of contaminants. Therefore,

the smaller increase in blood THg concentrations during the

moulting fast compared with the breeding fast is probably

attributed to the offloading mechanisms of Hg into skin

and hair during the moulting fast. Moulting of hair is ubiqui-

tous among mammals, although the frequency and duration

can vary widely among species [54]. Variability in moult

characteristics among mammals may influence the capacity

of hair to serve as an offloading mechanism of Hg.

For muscle THg concentrations, breeding and moulting

resulted in changing THg concentrations that went in oppo-

site directions. The lower proportion of protein stores

catabolized during breeding than during moulting [20,30]

in conjunction with different offloading mechanisms may

partially explain differences observed between the two fast-

ing periods. During the breeding fast, muscle THg

concentrations increased, similar to blood THg concen-

trations, suggesting that Hg was concentrated in the

remaining muscle tissue. By contrast, muscle THg concen-

trations decreased during the moult, suggesting that Hg

was mobilized out of muscle tissue faster than seals lost

mass, and potentially this mobilized Hg was deposited in

the newly grown epidermis and hair during moult.

Numerous marine and terrestrial species undergo large

proportional changes in body mass as a result of growth,

migration, breeding, fasting, hibernation and other life-his-

tory events [22–28,55], and adult northern elephant seals

demonstrated that life-history events corresponding with

substantial changes in body mass can significantly influence

contaminant concentrations. If toxicological risk is driven

by tissue contaminant concentrations, then there are probably

specific times during the year that small- or large-bodied ani-

mals may be more vulnerable to contaminants, regardless of

current exposure. Additionally, intra-annual changes in

tissue contaminant concentrations and toxicological risk

have important implications for the design of biomonitoring

programmes. For comparisons of Hg exposure to be relevant,

sampling should occur when animals are in a similar con-

dition. Furthermore, biomonitoring for toxicological risk

may be most effective if samples are collected during the

time of year when animals will have the highest contaminant

concentrations or during sensitive time periods such as

breeding. In conclusion, our study highlights the importance

of life-history events and physiological changes on the

influence of contaminant concentrations and toxicity risk.
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JPM. 1998 Methylmercury in fish and hair samples
from the Balbina Reservoir, Brazilian Amazon.
Environ. Res. 77, 84 – 90. (doi:10.1006/enrs.1998.
3836)

42. Voegborlo RB, Matsuyama A, Adimado AA, Akagi H.
2010 Head hair total mercury and methylmercury
levels in some Ghanaian individuals for the
estimation of their exposure to mercury: preliminary
studies. Bull. Environ. Contam. Toxicol. 84, 34 – 38.
(doi:10.1007/s00128-009-9901-7)

43. Singmann H, Bolker B, Westfall J. 2015 Afex:
analysis of factorial experiments. R package v.0.14-2.
Vienna, Austria: R Foundation for Statistical
Computing. See http://CRAN.R-project.org/
package=afex (accessed 28 July 2015).

44. Lenth R, Herv M. 2015 Least-squares means. R
package v.2.20-23. Vienna, Austria: R Foundation
for Statistical Computing. See http://CRAN.R-project.
org/package=lsmeans (accessed 1 August 2016).

45. R Core Team. 2015 R: a language and environment
for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing. See http://
www.R-project.org/.

46. Hassrick JL, Crocker DE, Teutschel NM, McDonald BI,
Robinson PW, Simmons SE, Costa DP. 2010
Condition and mass impact oxygen stores and dive
duration in adult female northern elephant seals.
J. Exp. Biol. 213, 585 – 592. (doi:10.1242/jeb.
037168)
47. Blum JD, Popp BN, Drazen JC, Choy CA, Johnson
MW. 2013 Methylmercury production below the
mixed layer in the North Pacific Ocean. Nat. Geosci.
6, 879 – 884. (doi:10.1038/ngeo1918)
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