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ABSTRACT OF THE THESIS

Accounting for Omitted Variable Bias

in Hierarchical Linear Models with

Group-Varying Treatment Assignment Processes

by

Thomas Abram Jacobson

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Chad J. Hazlett, Chair

In multisite observational studies where level-one units are nested within level-two groups and treatment

assignment occurs within (as opposed to between) groups, treatment assignment processes may vary between

groups. A possible consequence of such group-varying treatment assignment processes is that the conditional

exchangeability assumption may hold for some groups in a given sample while other groups are susceptible

to omitted variable bias. This paper employs a simulation study to explore the potential for leveraging

information about group-specific treatment assignment processes in order to mitigate omitted variable bias in

hierarchical linear models with random intercepts and treatment effect slopes. The simulation demonstrates

that an “augmented” model that incorporates information about group-varying treatment assignment can

substantially reduce bias in treatment main effect estimates and also reduce the mean squared error of

treatment random effect variance estimates.
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1 Introduction

An important concern for social scientists, policymakers, and practitioners across various fields is to under-

stand the causal effects of social policy interventions (or “treatments”) in settings where individuals are nested

within groups. Hierarchical linear models (e.g., Raudenbush and Bryk (2002), Gelman and Hill (2007), and

others) are useful tools in these contexts because they enable investigators to estimate an overarching fixed

or “main” effect of the treatment while also modeling group-level variation in treatment effects.

Although randomized controlled trials (RCTs) are held up as the “gold standard” for evaluating causal

relationships in education (US Department of Education; Institute of Education Sciences, 2003) and other

fields, RCTs often are not a realistic option for studying the effects of social policies. This may be due to

ethical concerns, practical infeasability, or other obstacles that interfere with randomly assigning partici-

pants to different treatment conditions. In such cases non-experimental observational data may be the only

available empirical evidence for investigating important causal questions in community health, education,

public safety, and other policy arenas.

A pervasive problem with using observational data for causal inference in social research, however, is

selection bias. Naive comparisons of non-randomized comparison groups generally do not lead to valid causal

effect estimates because individuals’ likelihood of being exposed to different treatment conditions can depend

on “confounding variables,” i.e, background characteristics that also predict the outcomes of interest. While

some of these confounding variables (or, at least, reasonable proxies for them) may be directly observed,

investigators working with observational data must always be mindful of how their causal estimates might

be biased by any unobserved confounders that their models necessarily omit.

Methodologists in recent decades have developed an array of so-called “quasi-experimental” strategies

that can potentially identify unbiased causal effect estimates from observational data in certain contexts.

In every case, however, the robustness of the causal inferences that we might hope to make from a quasi-

experimental research design will hinge on satisfying some specific set of relevant assumptions. One such

approach, which underpins widely-used strategies such as propensity score matching (Rosenbaum & Rubin,

1983b), is sometimes referred to as the conditional exchangeability assumption. Conditional exchangeability

implies that—given some set of observed pre-treatment data—an individual’s actual treatment status is

independent of the potential outcomes that would be associated with the respective treatment conditions

they could have experienced.

When dealing with nested observational data where any individual in any group could potentially experi-

ence any of the treatment conditions (i.e., where the treatment is not simply assigned at the group level), the

process for assigning treatment status to individuals may vary from one group to another (see Rickles (2011),

1



for example). Investigators who possess qualitative knowledge about how the treatment assignment process

varies between groups (specifically with regard to how the association between observed and unobserved

variables to treatment status varies among different groups) might then potentially use that information as

leverage in obtaining an unbiased estimate of the main effect of the treatment, as well as in making inferences

about the magnitude of the omitted variable bias that might be present in groups where unobserved factors

are understood to influence treatment assignment.

To date, the potential for exploiting this kind of information about group-varying treatment assignment

processes for estimating causal effects has received little attention in the literature around causal inference and

hierarchical linear models. Kim and Seltzer (2007) considered different approaches for estimating propensity

scores and treatment effects in multi-site settings where the factors influencing treatment selection vary

between sites, but did not address sensitivity analysis to unobserved confounders writ large or the possibility

that the magnitude of confounding may vary by site. Seltzer, Kim, and Frank (2006) usefully extended the

approach outlined in Frank (2000) to multi-site evaluations where treatment assignment occurs at the group

level and unobserved group-level confounders may bias the effect estimates. Less attention, however, has

centered on how selection into treatment may vary between groups when treatment assignment occurs within

the group level or the implications of heterogeneous selection for estimating the main effect of a treatment,

the effect of a group-level moderator variable on group-level treatment effects, or group-level treatment effect

variance.

This thesis uses simulated data to explore a possible framework for accounting for omitted variable

bias in nested data structures where the treatment assignment process varies between groups such that the

presence or absence of omitted variable bias may also vary from one group to another. If we assume a set of

nested observational data where the conditional exchangeability assumption is tenable for a subset of groups

but selection bias may inhere in other groups, how well can information about group-level variation in the

treatment assignment process aid us in obtaining unbiased estimates of key parameters of interest?

The next section reviews the potential outcomes framework for causal inference and outlines necessary

relevant assumptions for the particular data structures under consideration. Section 3 describes a specific

hypothetical data generating process and specifies some hierarchical linear models that actual investigators

might use in this context. Section 4 outlines the simulation study procedure for data generation and analysis,

and Section 5 reviews the results of the simulation study. Finally, Section 6 sketches out some related

methodological concerns that merit further attention as well as possible implications of this work for applied

researchers.
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2 Core Assumptions for Causal Inference in this Context

2.1 Potential Outcomes Framework

This discussion takes as a starting point the so-called “potential outcomes” model for causal inference,

outlined in Rubin (1974), Holland (1986), Hernán and Robins (2020), and elsewhere. A simple case of

the potential outcomes framework supposes a population of units i = 1, . . . , N that could potentially be

exposed to some binary treatment condition (or “cause”) Di 2 {0, 1}, and that exhibit some measurable

post-treatment outcome Yi.

The causal effect ⌧i, then, of the treatment Di on the outcome Yi for unit i would be the difference

between the value that Yi would take if unit i had been exposed to the treatment condition (which we write

as Y1i ⌘ Yi | Di = 1) and the counterfactual value Yi would take had unit i instead been exposed to the

control condition (Y0i ⌘ Yi | Di = 0), i.e.,

⌧i = Y1i � Y0i. (1)

The “Fundamental Problem of Causal Inference” (Holland, 1986) is that only one of the potential outcomes

in {Y0i, Y1i} can possibly be observed. Its counterfactual is always missing and can only, at best, be inferred.

The common strategy for estimating an average treatment effect given that only one potential outcome

is observed for each unit i is to randomize treatment assignment so that unit i’s potential outcomes are

independent of its treatment status, i.e.,

{Y0i, Y1i} ?? Di. (2)

Thus, the unobserved potential outcomes are missing completely at random and we can assume that treat-

ment assignment is exchangeable.

An estimand of primary interest will be the average treatment effect ⌧ATE, which we define as

⌧ATE ⌘ E[⌧i] = E[Y1i � Y0i]

=
1

N

NX

i=1

(Y1i � Y0i) . (3)

3



We cannot compute ⌧i or ⌧ATE directly from the data since only one of {Y0i, Y1i} is observed for each unit

i. But if the randomization process is valid, the exchangeability assumption in Equation (2) is assured.

If we can moreover assume consistency—that the observed Yi is the outcome that unit i would exhibit

given the specific treatment condition Di 2 {0, 1} it experienced—then we can write

Yi = Ydi | Di = d; (4)

equivalently,

Yi = DiY1i + (1�Di)Y0i. (5)

And if we can also rely on the stable unit treatment value assumption (SUTVA), implying that the

potential outcomes for unit i do not depend on the treatment assignment mechanism or on the treatment

status of any other unit i0 in the data (Rubin, 1986), then we can obtain an estimate of the average treatment

effect ⌧̂ATE from the observed data:

⌧̂ATE = E[Y1i � Y0i] = E[Y1i | Di = 1]� E[Y0i | Di = 0] (by exchangeability)

= E[Yi | Di = 1]� E[Yi =| Di = 0] (by consistency)

=
1

N1

N1X

i=1

(Yi)�
1

N0

N0X

i=1

(Yi) , (6)

where N0 and N1 represent a partition of the data into control (Di = 0) and treatment (Di = 1) units,

respectively.

2.2 Additional Relevant Assumptions

Some other assumptions that will be important for this discussion include the following:

Positivity. Individual units could potentially be exposed to treatment or control conditions (Hernán &

Robins, 2020), i.e.,

0 < Pr(Di = d) < 1. (7)

This is important because it enables us to contrast the outcomes associated with different treatment

levels. Otherwise it would be impossible to quantify an average causal effect from the data.

Conditional exchangeability. This is a weaker form of the exchangeability assumption in Equation (2)
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entailing that unit i’s potential outcomes are independent of treatment assignment given the observed

unit-level pre-treatment covariates Xi (Dawid, 1979; Rosenbaum & Rubin, 1983a):

{Y0i, Y1i} ?? Di | Xi = x for any x 2 X . (8)

Note that the conditional exchangeability assumption can be falsified, for example, by obtaining a nonzero

estimate of the treatment’s effect on an outcome that could not have been affected by the treatment, such as a

lagged measure of the outcome that is taken before units receive the treatment. Alternatively, if the untreated

group can be partitioned into two or more groups, it may be possible to estimate the effect of a “pseudo-

treatment” that distinguishes the different control groups and is known a priori not to affect the original

outcome (Imbens, 2004; Imbens & Rubin, 2015). But since conditional exchangeability cannot dispositively

be proven true, the plausibility of this assumption hinges on investigators’ domain knowledge about whether

and how strongly any unobserved set of confounders could conceivably influence treatment assignment and

the outcome of interest. Focusing on the specific context of nested observational data with group-varying

treatment selection processes, we will also assume the following for the purposes of this discussion:

Within-group positivity. There is a positive probability of assignment to each treatment level for any

unit i in each group j,

0 < Pr(Dij = d) < 1, (9)

such that it is possible to estimate a group-specific average treatment effect ⌧̂j for each group j.

(In other words, individual units within groups get assigned to different treatment levels rather than

treatment being assigned at the group level.)

Varying degrees of unobserved confounding. Investigators’ contextual knowledge includes qualitative

information about group-level variation in the treatment assignment process. Specifically, although

selection into treatment is not random, some unobserved covariate zij potentially influences treatment

assignment for units that belong to some groups but it is not associated with treatment assignment

within other known groups.

5



3 Data Structure and Model Framework

3.1 Hypothetical Data Structure and Data Generating Process

Data structure

Consider a relatively simple data structure that investigators might plausibly encounter in an observational

study of some multi-group educational or other social policy where

• there is a consistent treatment-control contrast of interest;

• a goal of the study is to understand or account for between-group variation in treatment effects (in-

cluding random variation or nonrandom variation explained by some group-level moderator);

• the investigators possess qualitative knowledge about how the treatment assignment process varies

between groups, and specifically can distinguish between a set of groups where the conditional ex-

changeability assumption in Equation (8) is tenable on the basis of observed data and another set of

groups where unobserved variables may influence treatment assignment.

Given the preceding assumptions, suppose we have data comprising i = 1, . . . , N level-one units (e.g.,

individual students) nested within one of j = 1, . . . , J level-two groups (e.g., schools) and that we are able

to observe the following variables:

yij is a continuous outcome of interest for unit i in group j;

dij is a binary treatment indicator for for unit i in group j;

xij is a level-one pre-treatment covariate for unit i in group j;

wj is a level-two variable for group j.

We also assume that an important omitted variable exists:

zij is an unobserved level-one pre-treatment covariate for unit i in group j.1

In addition, we assume that the treatment and control conditions are available within each group, meaning

that any level-one unit i in any level-two group j could potentially experience treatment or not; and that

the relative influence of the observed covariate xij to the unobserved covariate zij in determining treatment
1For the sake of this discussion, we will assume that zij is some omitted variable that is associated with both treatment

status dij and outcome yij but is uncorrelated with the observed covariate xij so that including xij in a linear model that
omits zij does not “soak up” any of the variance in yij or dij that is explained by zij (which would consequently attenuate
the model’s omitted variable bias). For this reason it might be more precise to write zij as z?x

ij , but for ease of notation the
remaining discussion will treat the “? x” superscript for zij as implied.
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status dij varies between groups. To make the latter point more explicit, we could write a logit model for

the treatment assignment process as follows:

logit(E[dij | xij , zij ]) = �0j + �1jxij + �2jzij , (10a)

such that the slope parameters �1j and �2j corresponding to xij and zij , respectively, vary by group. Then

the expected treatment propensity for unit i in group j would be

E[Pr(dij = 1 | xij , zij)] =
1

1 + exp[��0j � �1jxij � �2jzij ]
. (10b)

Given our stipulation above that investigators possess some general qualitative knowledge regarding the

heterogeneous treatment assignment process outlined in Equations (10a) and (10b), we assume that an

additional dummy variable cj can be encoded into the observed data where each group j is classified such

that

cj =

8
>><

>>:

0 if �2j = 0

1 otherwise.
(11)

In other words, cj = 0 for the groups where the conditional exchangeability assumption is tenable on the

basis of observed xij alone (because zij has no association with treatment status in those groups), and cj = 1

for the groups where both xij and zij may be associated with treatment assignment.

We also suppose that group membership is not completely random, i.e., that units associated with a

given group “hang together” to some degree such that there is variation in the level-two means of xij and

zij , denoted as follows:

x̄.j = 1
nj

Pnj

i=1 xij is the level-two mean of xij for group j with mean µx̄ and variance �2
x̄; and

z̄.j = 1
nj

Pnj

i=1 zij is the level-two mean of zij for group j with mean µz̄ and variance �2
z̄ .

Accordingly, we could compute the intraclass correlation of xij , i.e., the proportion of variance that is

between groups as

ICCx = �2
x̄/�

2
x, (12)

where �2
x̄ is the variance of the level-two means x̄.j and �2

x is the total overall sample variance in xij . Likewise,

we could, in theory, compute the analogous proportion of between-group to total variance for z̄.j and zij

7



were zij observed.

Data generating process

Given the data structure outlined above, we assume the following data generating process:

Level 1:

yij = ↵j + ⌧jdij + �xij + �zij + eij , eij
iid⇠ N

�
0,�2

�
(13a)

Level 2:
↵j = ↵. + ⌘1wj + r↵j

⌧j = ⌧. + ⌘2wj + r⌧ j

, r↵j , r⌧ j
iid⇠ N (0,⌦)

.
(13b)

This two-level hierarchical data generating process comprises a random intercept (↵j) and a random treat-

ment effect slope (⌧j), along with six fixed effects:

� is the fixed effect of the observed level-one covariate xij on the level-one outcome yij (holding constant

dij and zij);

� is the fixed effect of the unobserved level-one covariate zij on the level-one outcome yij (holding constant

dij and xij);

↵. is the fixed intercept;

⌧. is the treatment fixed effect;

⌘1 is the fixed effect of the level-two moderator variable on the group-specific intercept;

⌘2 is the fixed effect of the level-two moderator variable on the group-specific treatment effect.

We also have three residual terms: eij at level one and r↵j and r⌧ j at level two.

Omitted variable bias in this context

Focusing, for the time being, on the level-one component of the data generating process outlined in Equation

(13a), a hypothetical investigator who was unable to observe zij would be limited to estimating the following

restricted (biased) level-one model,

yij = ↵̂(r)
j + ⌧̂ (r)

j dij + �̂(r)xij + ê(r)
ij , (14a)

8



whereas the unrestricted, unbiased level-one model the investigator would wish to estimate would include

zij :

yij = ↵̂(u)
j + ⌧̂ (u)

j dij + �̂(u)xij + �̂zij + ê(u)
ij . (15a)

The dbiasj inherent to the sample estimate of the treatment effect for group j, then, is the difference

between the estimate an actual investigator would obtain from the restricted level-one model specified in

Equation (14a) and the estimate one would obtain from the full unrestricted model specified in Equation

(15a), were zij observed:

dbiasj = ⌧̂ (r)
j � ⌧̂ (u)

j . (16)

This is the traditional definition of omitted variable bias outlined in Angrist and Pischke (2009) and elsewhere.

As shown in Cinelli and Hazlett (2020), we can decompose the group-level dbiasj into “impact” and “imbalance”

components by employing the Frisch-Waugh-Lovell theorem (Frisch & Waugh, 1933; Lovell, 1963, 2008) to

“partial out” the observed covariate Xj . (Here, Xj , as well as Dj and Zj respectively denote the nj ⇥ 1

column vectors of the values of xij , dij , and zij for group j):

⌧̂ (r)
j =

cov(D?Xj

j , Y
?Xj

j )

var(D?Xj

j )

=
cov(D?Xj

j , ⌧̂ (u)
j D

?Xj

j + �̂Z
?Xj

j )

var(D?Xj

j )

= ⌧̂ (u)
j

 

⇠⇠⇠⇠⇠⇠⇠⇠⇠cov(D?Xj

j , D
?Xj

j )

var(D?Xj

j )

!
+ �̂

 
cov(D?Xj

j , Z
?Xj

j )

var(D?Xj

j )

!

= ⌧̂ (u)
j + �̂

 
cov(D?Xj

j , Z
?Xj

j )

var(D?Xj

j )

!

| {z }
�̂j

= ⌧̂ (u)
j + �̂�̂j|{z}

dbiasj

. (17)

Expressed this way, dbiasj , i.e., the bias of the sample estimate of the treatment effect for group j, comprises

two components:

• �̂, the (fixed) “impact” of a unit change in the confounder zij on the linear expectation of the outcome

yij , holding constant the observed covariate xij and treatment status dij as parameterized in Equation

9



(15a), the unrestricted level-one model:

yij = ↵̂(u)
j + ⌧̂ (u)

j dij + �̂(u)xij + �̂zij + ê(u)
ij ; and

• �̂j , the (group-varying) “imbalance” of the confounder zij in relation to the treatment dij after account-

ing for xij in group j. More specifically, if we could regress the confounder zij on dij and xij within

each group,

zij = ◆̂j + �̂jdij +  ̂jxij + êzij , (18)

then �̂j would represent the expected change in the confounder zij in group j given a unit change in

the treatment dij , holding constant the observed covariate xij .

Implications of group-varying treatment selection and conditional exchangeability

If we suppose that the j = 1 . . . J groups in our sample can be partitioned into subsets J = {J 0, J 00} where

the unobserved confounder zij0 has no association with treatment status dij0 for one subset of the groups

j0 = 1 . . . J 0, but that zij00 potentially is associated with treatment status dij00 among the remaining groups

j00 = 1 . . . J 00, then we can say that �̂j0 = 0 in Equation (18) for the groups that constitute the former subset,

and consequently

⌧̂ (r)
j =

8
>><

>>:

⌧̂ (u)
j0 for group j0 (because �̂j0 = 0);

⌧̂ (u)
j00 + �̂�̂j00 for group j00.

(19)

In other words, the group-specific treatment effect estimate ⌧̂ (r)
j obtained from the restricted model is

equivalent in expectation to the estimate from the corresponding unrestricted model (and therefore unbiased)

for group j0, but potentially biased for group j00.

3.2 A General Two-Level Random Intercept and Treatment Effect Model

Given the grouping structure and data generating process outlined in the previous section, a hypothetical

investigator might be interested in estimating ⌧̂. to get a sense of the main effect of treatment, !̂22 to un-

derstand random group-level variation in the treatment effect, and ⌘̂2 to assess the group-level moderator

variable’s effect on the group-level treatment effect. Below we consider the differences between the ideal

10



model the investigator would wish they could run, a naive (and likely biased) restricted model that an inves-

tigator could feasibly run with actually-observed data, and an augmented restricted model that incorporates

additional qualitative information about group-level variation in the treatment selection process in order to

ameliorate omitted variable bias.

“Omniscient” unrestricted outcome model (had zij been observed)

Ideally, were it possible to observe zij , an investigator would want to estimate the following unrestricted

hierarchical linear model, which would precisely mirror the data generating process in Equations (13a) and

(13b), and would provide unbiased estimates of the parameters of interest:

Level 1:

yij = ↵̂(u)
j + ⌧̂ (u)

j dij + �̂(u)xij + �̂zij + ê(u)
ij (20a)

Level 2:
↵̂(u)
j = ↵̂(u)

. + ⌘̂(u)
1 wj + r̂(u)

↵ j

⌧̂ (u)
j = ⌧̂ (u)

. + ⌘̂(u)
2 wj + r̂(u)

⌧ j ,
(20b)

where we assume the level-one and level-two residuals are distributed as follows:

ê(u)
ij

iid⇠ N
⇣
0, �̂(u)2

⌘
,

0

B@
r̂(u)
↵ j

r̂(u)
⌧ j

1

CA iid⇠ N

0

B@

0

B@
0

0

1

CA ,

2

64
!̂(u)
11 !̂(u)

12

!̂(u)
21 !̂(u)

22

3

75

1

CA . (20c)

The “(u)” superscript in Equations (20a), (20b), and (20c) above distinguishes the unrestricted model’s

parameter estimates from the analogous parameter estimates produced by the restricted models below.

“Naive” restricted outcome model (given that zij is actually unobserved)

In practice, however, an investigator who was blind to the true data generating process, was unable to

observe zij , and who did not have any additional information about group-level heterogeneity in the treat-

ment assignment process might estimate the following group-mean-centered hierarchical linear model, where

the “(r)” superscript distinguishes the naive restricted model’s parameter estimates from the other models

discussed in this section:

Level 1:

yij = ↵̂(r)
j + ⌧̂ (r)

j dmc
ij + �̂(r)xmc

ij + ê(r)
ij , (21a)
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Level 2:
↵̂(r)
j = ↵̂(r)

. + ⇣̂(r)
11 d̄.j + ⇣̂(r)

12 x̄.j + ⌘̂(r)
1 wj + r̂↵

(r)
j

⌧̂ (r)
j = ⌧̂ (r)

. + ⇣̂(r)
21 d̄.j + ⇣̂(r)

22 x̄.j + ⌘̂(r)
2 wj + r̂⌧

(r)
j ,

(21b)

with the level-one and level-two residuals assumed to be distributed as follows:

ê(r)
ij

iid⇠ N
⇣
0, �̂(r)2

⌘
,

0

B@
r̂↵

(r)
j

r̂⌧
(r)
j

1

CA iid⇠ N

0

B@

0

B@
0

0

1

CA ,

2

64
!̂(r)
11 !̂(r)

12

!̂(r)
21 !̂(r)

22

3

75

1

CA . (21c)

The naive restricted model above differs from the omniscient unrestricted model in two key respects. First,

it omits the unobserved confounder zij but also (given the hypothetical investigator’s lack of knowledge

about the true data generating process) conservatively accounts for group-level means of the treatment

indicator dij and observed covariate xij : At level two, d̄.j and x̄.j are the group-level means of dij and xij ,

respectively, and at level one, dmc
ij = dij � d̄.j and xmc

ij = xij � x̄.j are the group-mean-centered values of

dij and xij . (This centering approach follows recommendations outlined in Raudenbush and Bryk (2002),

Schunck (2013), Hazlett and Wainstein (2022), and elsewhere to mitigate potential bias induced by correlated

random effects.) This naive model is nevertheless problematic, however, because the fixed and group-level

treatment effect estimates (⌧̂ (r)
. and ⌧̂ (r)

j ) that it produces would be susceptible to bias due to the omission of

zij . We might also be concerned about the reliability of other parameter estimates of interest, such as ⌘̂(r)
2 ,

the estimated effect of the group-level moderator variable wj on the group-level treatment effect, or !̂(r)
22 , the

estimated variance of the group-level treatment effect.

“Augmented” restricted outcome model

Supposing, on the other hand, that it were possible to incorporate the kind of qualitative knowledge about

group-level variation in the treatment assignment process described in Section 3.1, our hypothetical investi-

gator could augment the naive restricted model at level two with the group-level dummy variable cj defined

in Equation (11). This model would theoretically account for the omitted variable bias owing to the un-

observed covariate zij ’s association with treatment status dij among the subset of groups where treatment

assignment was confounded:

Level 1:

yij = ↵̂j + ⌧̂jd
mc
ij + �̂xmc

ij + êij , (22a)

12



Level 2:
↵̂j = ↵̂. + ⇣̂11d̄.j + ⇣̂12x̄.j + ⌘̂1wj + ✓̂1cj + r̂↵j

⌧̂j = ⌧̂. + ⇣̂21d̄.j + ⇣̂22x̄.j + ⌘̂2wj + ✓̂2cj + r̂⌧ j ,
(22b)

with the level-one and level-two residuals assumed to be distributed as follows:

êij
iid⇠ N

�
0, �̂2

�
,

0

B@
r̂↵j

r̂⌧ j

1

CA iid⇠ N

0

B@

0

B@
0

0

1

CA ,

2

64
!̂11 !̂12

!̂21 !̂22

3

75

1

CA . (22c)

If the inclusion of the group-level dummy variable cj accurately flags the groups affected by omitted

variable bias via confounded treatment assignment, then ⌧̂. in the level-two model in Equation (22b) should

be an unbiased estimate of the treatment fixed effect ⌧.. The coefficient ✓̂2 also becomes an additional pa-

rameter of potential interest, corresponding to the estimated fixed effect of group-level confounded treatment

assignment on the group-level treatment effect.

The next section outlines a simulation study that examines the utility of this sort of augmented model

for mitigating omitted variable bias in different grouped data structures where investigators are interested

in estimating a main effect of the treatment while also accounting for random and nonrandom variation in

the group-specific treatment effects.

4 Methods

4.1 Data Generation

Nested data structures

The simulation study considers three different nested data structures:

(a) J = 10 groups with nj = 28 units per group;

(b) J = 20 groups with nj = 20 units per group;

(c) J = 50 groups with nj = 8 units per group.

Recognizing that the overall number and specific choices of different nested data structures to include

in the simulation study is arbitrary, these particular selections take the following criteria into consideration:

First, they should correspond to sample sizes that that applied researchers in education or other social policy

fields might employ, given a reasonable set of cost constraints for recruiting groups of participants. In other

words, the sample size should be neither unrealistically large nor so small as to make the design drastically

underpowered.
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Second, the range of data structures should be appropriate for estimating a variety of different combi-

nations of focal parameter magnitudes. In multisite study design, expanding the number of groups in the

sample (while holding nj constant) increases statistical power much faster than increasing the number of

units per group while holding J constant (Raudenbush & Liu, 2000). In practice, however, it will often be

very costly to add more sites to a sample and relatively inexpensive to recruit additional participants within

each site.

Also, depending on the context, an investigator will probably be most concerned with one or two pa-

rameter estimates from the hierarchical linear model and consequently less interested in the others. For

example, a researcher who suspects that the variability between group-specific treatment effects is relatively

small would be inclined to focus on obtaining an accurate estimate of the treatment main effect and much

less worried about estimating group-level moderator effects or random effect variance. On the other hand

if there is reason to believe a priori that the main effect of the treatment is relatively small but substantial

between-group treatment effect variation exists, it may be much more interesting to understand the main ef-

fect random variance or to isolate the effect of a group-level moderator variable on the group-level treatment

effect.

With those considerations in mind, this simulation study examines three two-level nested data structures

from Raudenbush and Liu (2000), which outlined a range of multisite study designs to optimize statistical

power for estimating key parameters of interest as a function of treatment main effect size, main effect vari-

ance, group moderator effect, and the cost ratio of sampling additional sites relative to sampling additional

participants per site. Table 1 shows a set of presupposed true parameter values for the treatment main

effect ⌧., intercept and treatment main effect variances !11 and !22, as well as the group moderator effect on

group-level treatment effect ⌘2, along with the corresponding statistical power for estimating each parameter,

given its magnitude, via a two-level hierarchical linear model with each of the three nested data structures

used in the simulation:

# of units # of main main effect group mod- power power power
per group groups effect variance erator effect for for for

nj J ⌧. !11, !22 ⌘2 ⌧. !11, !22 ⌘2
28 10 0.4 0.10 0.4 0.629 0.344 0.205
20 20 0.3 0.05 0.4 0.721 0.185 0.395
8 50 0.2 0.15 0.6 0.405 0.350 0.732

Table 1: Nested data structures, effect sizes, and corresponding power for simulated data sets (power calcu-
lations for hypothetical study designs from Raudenbush and Liu (2001)).

The scenario in the first row of Table 1, with 10 groups and 28 units per group, supposes a medium-sized

treatment main effect (⌧. = 0.4), medium-sized random effect variance (!11 = !22 = 0.10), and a medium-
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sized group-level moderator effect (⌘2 = 0.4). The scenario in the second row, with 20 groups and 20 units

per group, supposes a small-to-medium-sized treatment main effect (⌧. = 0.3), a small random effect variance

(!11 = !22 = 0.05), and a medium-sized group-level moderator effect (⌘2 = 0.4). Finally, the scenario in the

third row, with 50 groups and 8 units per group, supposes a small treatment main effect (⌧. = 0.2), a relatively

large random effect variance (!11 = !22 = 0.15), and a large group-level moderator effect (⌘2 = 0.6). In

practice, the first two sample structures might be appropriate (if slightly under-powered) for investigators

primarily interested in estimating the main effect of treatment, while the third sample structure would be

more useful for an investigator focused on understanding between-group variance in treatment effects.

Group-varying treatment selection and variation in confounded treatment assignment

For each of the three nested data structure scenarios described above, the simulation study varies the

proportion of groups with unconfounded treatment assignment processes (i.e., groups where the unobserved

covariate zij has no association with treatment status dij) from 10% to 30% to 50%. Given that the omitted

variable bias in the naive restricted model approaches zero as the proportion of unconfounded groups in

the sample approaches 100%, our interest centers around scenarios where the naive restricted model would

perform the worst and where the augmented model has the most potential to reduce bias.

In addition to varying the proportion of unconfounded groups in each sample design, the simulation study

also varies the degree of group-level confounding by modulating the coefficient �2j on unobserved zij from

Equations (10a) and (10b) among the groups with confounded treatment assignment from 1 to 2 to 3 to 6,

while holding the coefficient �1j on observed xij constant at 1. This enables comparison between the naive

and augmented restricted models’ performance over a range of magnitudes of omitted variable bias.

To summarize the various permutations, the simulation study looks at three different nested sample

designs and varies the proportion of unconfounded groups three ways over four different magnitudes of

omitted variable bias. For each of these 36 permutations, the simulation randomly generated 1000 data sets

in order to compare the relative performance of the three models outlined in Section 3.2.

Covariates, parameters, and outcome

The simulated data sets were generated using R Statistical Software (R Core Team, 2023) with each iteration

proceeding as follows:

1. The intraclass correlations of xij and zij , i.e., the proportion of the total variance of each variable that

is between groups, is set to 0.1:2

2An intraclass correlation of 0.1 is within the range of what might conventionally be regarded as a “medium-sized” intraclass
correlation in the context of an education research study involving students nested within intact schools (Murnane & Willett,
2010).
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ICCx = ICCz = 0.1.

2. The fixed effects are set as follows:

⌧. 2 {0.2, 0.3, 0.4}, depending on the nested data structure (see Table 1);

� = 0.75;

� = 0.75;

⌘2 2 {0.4, 0.6}, depending on the nested data structure (see Table 1).

These values correspond to what might be considered small (0.2) to medium-sized (0.4) treatment

fixed effects (⌧.) and medium-sized 0.4 to large 0.6 level-two moderator fixed effects (⌘2). The level-one

covariates xij and zij are both strongly predictive of the level-one outcome yij with their fixed effects

(� and �, respectively) set at 0.75. The fixed intercept (↵.) and the level-two moderator effect on the

group-specific intercept (⌘1), both of which might be regarded as “nuisance parameters,” are assigned

some arbitrary value from a normally distributed random draw with mean 0 and standard deviation

0.2.

3. The level-one covariates xij and zij are generated randomly from a standard normal draw and their

covariance is set to zero:
0

B@
xij

zij

1

CA ⇠ N

0

B@

0

B@
0

0

1

CA ,

2

64
1 0

0 1

3

75

1

CA.

4. The level-two moderator variable wj is generated randomly from a standard normal draw:

wj ⇠ N (0, 1).

5. Depending on the iteration, 10%, 30%, or 50% of the J groups in the data set are randomly selected to

be “unconfounded,” with the remainder designated to exhibit unobserved confounding in their group-

level treatment assignment process.

6. Treatment propensity for each unit is then computed according to Equation (10b):

pij = Pr(dij = 1 | xij , zij) =
1

1 + exp[��0j � �1jxij � �2jzij ]
,

with the coefficients �0j ,�1j ,�2j set to

�0j = 0
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�1j = 1

�2j =

8
>><

>>:

0 for unconfounded groups where zij plays no role in treatment assignment

�2j 2 {1, 2, 3, 6} otherwise (to vary the resulting magnitude of omitted variable bias).

Then, treatment status dij is determined randomly from a binomial draw with parameters n = 1 and

p = pij :

dij ⇠ B(1, pij)

7. The level-one residual (eij) values are generated randomly from a standard normal draw:

eij ⇠ N (0, 1),

and the level-two residuals (r↵j) and (r⌧ j) are generated randomly from a bivariate normal distribution

with zero covariance and differing variances depending on the number of level-two groups and level-one

units per group, as outlined in Table 1:
0

B@
r↵j

r⌧ j

1

CA ⇠ N

0

B@

0

B@
0

0

1

CA ,

2

64
!11 0

0 !22

3

75

1

CA;

!11,!22 2 {0.05, 0.10, 0.15}, depending on the nested data structure (see Table 1).

8. Finally, the outcome yij is determined based on data generation process outlined above in Equations

(13a) and (13b) (shown below in combined form),

yij = (↵. + ⌘1wj + r↵j)| {z }
↵j

+(⌧. + ⌘2wj + r⌧ j)| {z }
⌧j

dij + �xij + �zij + eij .

4.2 Data Analysis

For each of the 36,000 simulated data sets generated according to the procedure above, the unbiased “om-

niscient” unrestricted as well as the “naive” and “augmented” restricted models were then estimated using

restricted maximum likelihood via the lmer() function from the R Statistical Software package lme4 (Bates,

Mächler, Bolker, & Walker, 2015).

The following section outlines the naive and augmented models’ comparative performance relative to

the unrestricted model across the different permutations of sample structures, proportions of unconfounded

groups, and magnitudes of unobserved confounding in the treatment assignment process, focusing on the

model parameters likely to be of substantive interest to investigators working with these sorts of study

designs, including
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(a) ⌧̂ (r)
. and ⌧̂., the treatment main effect;

(b) ⌘̂(r)
2 and ⌘̂2, the effect of the group-level moderator wj on estimated group-level treatment effect ⌧̂ (r)

j

or ⌧̂j , respectively (holding constant the group-level means d̄.j and x̄.j);

(c) !̂(r)
22 and !̂22, the random variance of the treatment main effect;

(d) �̂(r) and �̂, the fixed level-one effect of covariate xij on outcome yij , holding treatment status dij

constant; and

(e) ✓̂2, the effect of the group-level confounded treatment assignment indicator cj on estimated group-level

treatment effect ⌧̂j in the augmented model.

5 Results

5.1 Comparison of Naive and Augmented Restricted Model Performance

Table 2 shows selected mean parameter estimates from the naive and augmented models for the simulations

where omitted variable bias was maximized (i.e., �2j = 6 in the treatment assignment process detailed

in Equation (10a) for groups with confounded treatment assignment),3 and contrasts the mean parameter

estimate over each permutation of 1000 simulated data sets to the corresponding true parameter value

specified in the data generation procedure.

For treatment fixed effect ⌧., the naive model estimates had a mean bias of between 0.49 to 1.00, depending

on the study design and the proportion of groups with unconfounded treatment assignment. The mean bias

of the corresponding estimates from the augmented model ranged from 0.02 to 0.07. In other words, inclusion

of the “confounded treatment assignment” dummy variable in the level-two model absorbed between 88%

and 98% of the omitted variable bias present in the naive model.

Figure 1 plots the error of the naive, augmented, and omniscient model estimates of the treatment fixed

effect relative to the true value of ⌧. for each simulated data set. Although the augmented model outperformed

the naive model in terms of bias, the augmented model’s error variance was substantially larger than the

unrestricted model that accounts for the unobserved confounder zij at level one. The large error variance of

the restricted models is especially problematic when the number of groups is relatively small, as in the top

row of the subfigures where J = 10.

We can estimate the bias of the naive and augmented models’ estimates of the treatment fixed effect for

each data set by examining their respective differences in relation to the unrestricted model’s estimate (i.e.,
3Analogous tables for the other values of �2j appear in the Appendix.
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Table 2: Selected mean parameter estimates from simulations where �2j = 6

parameter study % of groups true mean “naive” mean “augmented” “naive” “augmented” bias
of interest design unconfounded value estimate estimate bias bias reduction

10% 0.40 1.381 0.419 0.981 0.019 0.962
30% 0.40 1.162 0.473 0.762 0.073 0.689n=28; J=10
50% 0.40 0.894 0.418 0.494 0.018 0.476

10% 0.30 1.274 0.318 0.974 0.018 0.956
30% 0.30 1.091 0.353 0.791 0.053 0.738n=20; J=20
50% 0.30 0.872 0.367 0.572 0.067 0.505

10% 0.20 1.203 0.273 1.003 0.073 0.930
30% 0.20 0.967 0.228 0.767 0.028 0.739

⌧.

n=8; J=50
50% 0.20 0.794 0.244 0.594 0.044 0.550

10% 0.40 0.419 0.414 0.019 0.014 0.005
30% 0.40 0.424 0.416 0.024 0.016 0.008n=28; J=10
50% 0.40 0.393 0.392 -0.007 -0.008 -0.001

10% 0.40 0.398 0.400 -0.002 0.000 0.002
30% 0.40 0.397 0.397 -0.003 -0.003 0.000n=20; J=20
50% 0.40 0.404 0.398 0.004 -0.002 0.002

10% 0.60 0.591 0.592 -0.009 -0.008 0.001
30% 0.60 0.606 0.602 0.006 0.002 0.004

⌘2

n=8; J=50
50% 0.60 0.605 0.606 0.005 0.006 -0.001

10% 0.10 0.105 0.044 0.005 -0.056 -0.051
30% 0.10 0.215 0.048 0.115 -0.052 0.063n=28; J=10
50% 0.10 0.272 0.056 0.172 -0.044 0.128

10% 0.05 0.051 0.017 0.001 -0.033 -0.032
30% 0.05 0.127 0.016 0.077 -0.034 0.043n=20; J=20
50% 0.05 0.154 0.017 0.104 -0.033 0.071

10% 0.15 0.105 0.056 -0.045 -0.094 -0.049
30% 0.15 0.221 0.069 0.071 -0.081 -0.010

!22

n=8; J=50
50% 0.15 0.245 0.058 0.095 -0.092 0.003

10% 0.75 0.686 0.690 -0.064 -0.060 0.004
30% 0.75 0.692 0.699 -0.058 -0.051 0.007n=28; J=10
50% 0.75 0.704 0.713 -0.046 -0.037 0.009

10% 0.75 0.674 0.682 -0.076 -0.068 0.008
30% 0.75 0.680 0.693 -0.070 -0.057 0.013n=20; J=20
50% 0.75 0.692 0.709 -0.058 -0.041 0.017

10% 0.75 0.675 0.684 -0.075 -0.066 0.009
30% 0.75 0.675 0.695 -0.075 -0.055 0.020

�

n=8; J=50
50% 0.75 0.683 0.708 -0.067 -0.042 0.025
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(a) Naive restricted model error in estimates of treatment

main effect: error
(r) = ⌧̂ (r)

. � ⌧..
(b) Augmented restricted model error in estimates of

treatment main effect: error = ⌧̂. � ⌧..

(c) Omniscient unrestricted model error in estimates of

treatment main effect: error
(u) = ⌧̂ (u)

. � ⌧..

Figure 1: Error of (a) “naive” restricted, (b) “augmented” restricted, and (c) “omniscient” unrestricted model
estimates of treatment fixed effect relative to true parameter (⌧.). Each scatterplot point corresponds to a
simulated data set. Violin plots represent density of estimates over y-axis for each permutation with solid
horizontal line segment denoting the median of each distribution. Dashed lines set at zero.
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(a) Naive restricted model estimates of

dbias
(r)
⌧. = ⌧̂ (r)

. � ⌧̂ (u)
. .

(b) Augmented restricted model estimates of

dbias⌧. = ⌧̂. � ⌧̂ (u)
. .

Figure 2: Means and 95% confidence intervals of (a) “naive” and (b) “augmented” restricted model estimates
of treatment fixed effect omitted variable bias relative to omniscient model. Solid points correspond to mean
estimates and vertical lines extend to upper and lower bounds of 95% confidence interval over 1000 simulated
data sets for each permutation. Dashed lines set at zero.

dbias
(r)
⌧. = ⌧̂ (r)

. � ⌧̂ (u)
. for the naive model, and dbias⌧. = ⌧̂. � ⌧̂ (u)

. for the augmented model). Figure 2 plots

the means and 95% confidence intervals of the treatment fixed effect bias estimates for each permutation of

1000 data sets.

As shown in Table 2, the naive model produced relatively unbiased mean estimates of the group-level

moderator effect (⌘2), within the range of -0.01 and 0.02 of the true parameter values. The augmented

model’s estimates were no worse on average, falling within approximately the same range. Figure 3 plots

the means and 95% confidence intervals of the two models’ estimates of ⌘2 in each scenario in relation to

the corresponding true parameter values specified in the data generation procedure. The two models are

broadly similar in terms of their confidence interval ranges and relative lack of bias in each instance.

As shown in Table 2 above and Figure 4 below, the augmented model did not perform straightforwardly

better than the naive model in terms of bias in estimating the random variance of the group-level treatment

effect (!22). In each of the simulated scenarios, the augmented model underestimated !22 on average. On

the other hand, the naive model exhibited a larger bias in the opposite direction in some scenarios, especially

as the proportion of groups with unconfounded treatment assignment increased.

Although the augmented model did not exhibit a substantial improvement over the naive model in terms

of bias reduction in estimating the variance of the treatment random effect, the mean squared error of the

augmented model’s estimates of !22 was smaller than the MSE of the naive model’s estimates, as is visually

apparent in Figure 4.
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(a) Naive restricted model estimates of ⌘̂(r)
2 . (b) Augmented restricted model estimates of ⌘̂2.

Figure 3: Means and 95% confidence intervals of (a) “naive” and (b) “augmented” restricted model estimates
of fixed effect of group-level moderator variable on group-level treatment effect. Solid points correspond to
mean estimates and vertical lines extend to upper and lower bounds of 95% confidence interval over 1000
simulated data sets for each permutation. Dashed lines correspond to the true parameter value for each
study design structure.

(a) Naive restricted model estimates of !̂(r)
22 . (b) Augmented restricted model estimates of !̂22.

Figure 4: Means and 95% confidence intervals of (a) “naive” and (b) “augmented” restricted model estimates
of group-level treatment random effect variance. Solid points correspond to mean estimates and vertical
lines extend to upper and lower bounds of 95% confidence interval over 1000 simulated data sets for each
permutation. Dashed lines correspond to the true parameter value for each study design structure.
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Table 3: Mean squared error of unrestricted, naive, and augmented model estimates of treatment random
effect variance (!22)

selection bias study % of groups true unrestricted “naive” “augmented” augmented/naive
magnitude design unconfounded !22 MSE MSE MSE MSE ratio

10% 0.10 0.008 0.033 0.012 0.351
30% 0.10 0.008 0.127 0.017 0.135n=28; J=10
50% 0.10 0.008 0.176 0.015 0.086

10% 0.05 0.002 0.005 0.002 0.427
30% 0.05 0.002 0.027 0.002 0.078n=20; J=20
50% 0.05 0.002 0.040 0.002 0.057

10% 0.15 0.015 0.020 0.017 0.859
30% 0.15 0.016 0.075 0.022 0.290

�2j = 6

n=8; J=50
50% 0.15 0.015 0.077 0.018 0.231

10% 0.10 0.008 0.024 0.012 0.494
30% 0.10 0.008 0.074 0.017 0.224n=28; J=10
50% 0.10 0.008 0.100 0.023 0.231

10% 0.05 0.002 0.003 0.002 0.637
30% 0.05 0.002 0.015 0.002 0.151n=20; J=20
50% 0.05 0.002 0.021 0.003 0.119

10% 0.15 0.016 0.020 0.018 0.878
30% 0.15 0.015 0.042 0.018 0.436

�2j = 3

n=8; J=50
50% 0.15 0.015 0.049 0.017 0.355

10% 0.10 0.008 0.025 0.015 0.587
30% 0.10 0.008 0.053 0.017 0.332n=28; J=10
50% 0.10 0.008 0.054 0.020 0.361

10% 0.05 0.002 0.003 0.002 0.839
30% 0.05 0.002 0.008 0.002 0.283n=20; J=20
50% 0.05 0.002 0.011 0.003 0.236

10% 0.15 0.016 0.019 0.018 0.958
30% 0.15 0.015 0.034 0.020 0.593

�2j = 2

n=8; J=50
50% 0.15 0.015 0.033 0.017 0.523

10% 0.10 0.007 0.014 0.013 0.905
30% 0.10 0.008 0.027 0.018 0.660n=28; J=10
50% 0.10 0.007 0.022 0.017 0.772

10% 0.05 0.002 0.002 0.002 0.904
30% 0.05 0.002 0.003 0.002 0.819n=20; J=20
50% 0.05 0.002 0.004 0.002 0.638

10% 0.15 0.015 0.019 0.018 0.972
30% 0.15 0.015 0.025 0.021 0.858

�2j = 1

n=8; J=50
50% 0.15 0.016 0.020 0.018 0.878

Table 3 details the mean squared error of the omniscient, naive, and augmented models’ estimates of

the treatment random effect variance parameter !22 in each permutation. In every case, the MSE of the

augmented model was smaller than the naive model’s MSE, and in many cases the augmented model’s MSE

was roughly equivalent to (or only slightly larger than) the MSE of the omniscient model that perfectly

mirrors the data generating process.

Both the naive and augmented models produced negatively biased mean estimates of �, the fixed effect of

the observed covariate xij on the outcome yij (holding constant treatment status dij), with bias ranging from

between -0.08 and -0.05 for the observed model and -0.07 and -0.04 for the augmented model. The augmented

model performed modestly better, absorbing between 6.3% and 37.3% of the naive model’s bias depending

on the study design and the proportion of unconfounded groups. For each study design permutation, the

augmented model’s performance improved relative to the naive model as the proportion of unconfounded
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(a) Naive restricted model estimates of �̂(r)
. (b) Augmented restricted model estimates of �̂.

Figure 5: Means and 95% confidence intervals of (a) “naive” and (b) “augmented” restricted model estimates
of fixed effect of unit-level covariate on unit-level outcome, holding constant unit-level treatment status. Solid
points correspond to mean estimates and vertical lines extend to upper and lower bounds of 95% confidence
interval over 1000 simulated data sets for each permutation. Dashed lines correspond to the true parameter
value (� = 0.75 for each study design structure).

groups increased from 10% to 30% to 50%. Although � in this context may not be likely to be a parameter

of primary interest to investigators, this minor improvement may be an added benefit in the augmented

model’s favor.

5.2 Estimation of the Effect of Group-Level Confounded Treatment Assignment

on Group-Level Treatment Effect

Investigators who are interested in exploiting the characteristics of these kinds of data structures to quantify

the magnitude of omitted variable bias among the confounded groups as it relates to the group-level treatment

effect estimates may be interested in the augmented model’s estimate of ✓2, the coefficient on the group-

level “confounded treatment assignment” indicator in the level-two model where the group-level treatment

effect is the outcome. Figure 6 plots the means and 95% confidence intervals of ✓̂2 from each permutation.

As would be expected, there is substantial uncertainty around the estimates of ✓2 when the proportion of

unconfounded groups in the sample is very small but the confidence intervals narrow as the proportion of

unconfounded groups approaches 30% or more.
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Figure 6: Means and 95% confidence intervals of “augmented” restricted model estimates of fixed effect
of group-level confounded treatment assignment indicator on group-level treatment effect (✓̂2). Solid points
correspond to mean estimates and vertical lines extend to upper and lower bounds of 95% confidence interval
over 1000 simulated data sets for each permutation. Dashed lines set at zero.

6 Discussion

6.1 Implications and Next Steps

As this simulation study shows, incorporating accurate qualitative information about sample-wide variation

in group-level treatment selection processes can substantially reduce omitted variable bias in estimating the

main effect of treatment and reduce the mean squared error of treatment random effect variance estimates

in multisite studies where treatment is assigned to various units within each group.

That said, the hypothetical examples examined here are limited to “best-case” scenarios in which the

conditional exchangeability assumption is unequivocally valid among a subset of groups in a sample, and

where each of those groups is correctly flagged by the investigators carrying out the data analysis. In practice,

such confident assumptions may not be warranted. Cautious researchers in these situations will worry about

how reliably they can ascertain whether (or which of) the ostensibly unconfounded groups in their sample

actually satisfy the criteria for conditional exchangeability. Further work along these lines could consider

how the utility of the approach outlined here would be attenuated under a weaker set of assumptions, for

example, by looking at the effect of mis-classifying actually-confounded groups as “unconfounded” based on

flawed information about group-specific treatment assignment processes.

This simulation study also only considers situations where groups can be neatly classified as confounded

or perfectly unconfounded, which may be an unrealistic oversimplification. Another useful line of inquiry

would be to study how the robustness of hierarchical linear model inferences are affected by continuously
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varying degrees of group-level confounding within a sample instead of the straightforward binary distinction

considered here.

Some other related topics worth probing in future work include the effects of group-varying treatment

selection processes with regard to more complex hierarchical linear models with additional random slopes

besides the intercept and treatment effect, how interactions between unobserved confounders at the unit

level and the group level affect inference, the implications of heterogeneous treatment selection on causal

inference in nested data structures with three or more levels, in unbalanced nested data structures with

uneven numbers of units within each group, as well as in cross-classified and multiple-membership data

structures where units and groups are not tidily nested between levels.

In the absence of a more general approach to sensitivity analysis for multilevel models, the most persuasive

way that applied researchers may be able to assert the robustness of causal inferences drawn from hierarchical

linear models is by reporting results of ad hoc sensitivity analyses appropriate to the context at hand.

Ideally, these tests should account for plausible sources and magnitudes of unobserved confounding, given

relevant domain knowledge, the specific data structure in question, and the particular specifications of

the hierarchical linear models employed in the analyses. Given the parameter estimates obtained from a

potentially confounded model, researchers could consider implications of omitted variable bias along the

lines of what Cinelli and Hazlett (2020) proposed for OLS regression. A starting point could be to simulate

a plausibly strong source of confounding at level one, level two, or both levels, and then report on how

unobserved confounding of that magnitude would shift the confidence intervals for key parameter estimates

of interest. Hong and Raudenbush (2006) demonstrated a useful example of this approach as it applies to

estimating the effects of kindergarten retention on reading and math achievement scores. To provide yet

more transparency, researchers could extended their sensitivity analysis reporting to include the magnitude

of confounding at either level that would be necessary to render key parameter estimates equal to zero, as

well as the minimum degree of confounding that would render a statistically significant estimate with the

opposite sign.
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7 Appendix

7.1 Supplementary Tables

Table 4: Selected mean parameter estimates from simulations where �2j = 3

parameter study % of groups true mean “naive” mean “augmented” “naive” “augmented” bias
of interest design unconfounded value estimate estimate bias bias reduction

10% 0.40 1.302 0.473 0.902 0.073 0.829
30% 0.40 1.092 0.489 0.692 0.089 0.603n=28; J=10
50% 0.40 0.796 0.441 0.396 0.041 0.355

10% 0.30 1.191 0.366 0.891 0.066 0.825
30% 0.30 0.997 0.356 0.697 0.056 0.641n=20; J=20
50% 0.30 0.834 0.395 0.534 0.095 0.439

10% 0.20 1.102 0.299 0.902 0.099 0.803
30% 0.20 0.893 0.256 0.693 0.056 0.637

⌧.

n=8; J=50
50% 0.20 0.746 0.270 0.546 0.070 0.476

10% 0.40 0.413 0.409 0.013 0.009 0.004
30% 0.40 0.420 0.410 0.020 0.010 0.010n=28; J=10
50% 0.40 0.391 0.390 -0.009 -0.010 -0.001

10% 0.40 0.397 0.398 -0.003 -0.002 0.001
30% 0.40 0.399 0.398 -0.001 -0.002 -0.001n=20; J=20
50% 0.40 0.398 0.391 -0.002 -0.009 -0.007

10% 0.60 0.593 0.595 -0.007 -0.005 0.002
30% 0.60 0.604 0.602 0.004 0.002 0.002

⌘2

n=8; J=50
50% 0.60 0.604 0.605 0.004 0.005 -0.001

10% 0.10 0.085 0.043 -0.015 -0.057 -0.042
30% 0.10 0.159 0.048 0.059 -0.052 0.007n=28; J=10
50% 0.10 0.199 0.062 0.099 -0.038 0.061

10% 0.05 0.040 0.017 -0.010 -0.033 -0.023
30% 0.05 0.091 0.018 0.041 -0.032 0.009n=20; J=20
50% 0.05 0.108 0.018 0.058 -0.032 0.026

10% 0.15 0.096 0.061 -0.054 -0.089 -0.035
30% 0.15 0.173 0.070 0.023 -0.080 -0.057

!22

n=8; J=50
50% 0.15 0.185 0.057 0.035 -0.093 -0.058

10% 0.75 0.651 0.654 -0.099 -0.096 0.003
30% 0.75 0.667 0.673 -0.083 -0.077 0.006n=28; J=10
50% 0.75 0.687 0.693 -0.063 -0.057 0.006

10% 0.75 0.641 0.645 -0.109 -0.105 0.004
30% 0.75 0.656 0.665 -0.094 -0.085 0.009n=20; J=20
50% 0.75 0.677 0.687 -0.073 -0.063 0.010

10% 0.75 0.643 0.648 -0.107 -0.102 0.005
30% 0.75 0.654 0.666 -0.096 -0.084 0.012

�

n=8; J=50
50% 0.75 0.672 0.687 -0.078 -0.063 0.015
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Table 5: Selected mean parameter estimates from simulations where �2j = 2

parameter study % of groups true mean “naive” mean “augmented” “naive” “augmented” bias
of interest design unconfounded value estimate estimate bias bias reduction

10% 0.40 1.174 0.474 0.774 0.074 0.700
30% 0.40 0.989 0.468 0.589 0.068 0.521n=28; J=10
50% 0.40 0.788 0.499 0.388 0.099 0.289

10% 0.30 1.071 0.374 0.771 0.074 0.697
30% 0.30 0.926 0.370 0.626 0.070 0.556n=20; J=20
50% 0.30 0.764 0.394 0.464 0.094 0.370

10% 0.20 0.991 0.306 0.791 0.106 0.685
30% 0.20 0.800 0.257 0.600 0.057 0.543

⌧.

n=8; J=50
50% 0.20 0.678 0.272 0.478 0.072 0.406

10% 0.40 0.414 0.414 0.014 0.014 0.000
30% 0.40 0.415 0.407 0.015 0.007 0.008n=28; J=10
50% 0.40 0.397 0.396 -0.003 -0.004 -0.001

10% 0.40 0.401 0.402 0.001 0.002 -0.001
30% 0.40 0.398 0.398 -0.002 -0.002 0.000n=20; J=20
50% 0.40 0.402 0.399 0.002 -0.001 0.001

10% 0.60 0.598 0.599 -0.002 -0.001 0.001
30% 0.60 0.603 0.601 0.003 0.001 0.002

⌘2

n=8; J=50
50% 0.60 0.605 0.606 0.005 0.006 -0.001

10% 0.10 0.074 0.046 -0.026 -0.054 -0.028
30% 0.10 0.119 0.051 0.019 -0.049 -0.030n=28; J=10
50% 0.10 0.146 0.060 0.046 -0.040 0.006

10% 0.05 0.031 0.017 -0.019 -0.033 -0.014
30% 0.05 0.062 0.017 0.012 -0.033 -0.021n=20; J=20
50% 0.05 0.075 0.018 0.025 -0.032 -0.007

10% 0.15 0.087 0.063 -0.063 -0.087 -0.024
30% 0.15 0.139 0.072 -0.011 -0.078 -0.067

!22

n=8; J=50
50% 0.15 0.144 0.060 -0.006 -0.090 -0.084

10% 0.75 0.641 0.642 -0.109 -0.108 0.001
30% 0.75 0.660 0.663 -0.090 -0.087 0.003n=28; J=10
50% 0.75 0.684 0.688 -0.066 -0.062 0.004

10% 0.75 0.631 0.634 -0.119 -0.116 0.003
30% 0.75 0.651 0.657 -0.099 -0.093 0.006n=20; J=20
50% 0.75 0.674 0.681 -0.076 -0.069 0.007

10% 0.75 0.634 0.637 -0.116 -0.113 0.003
30% 0.75 0.651 0.658 -0.099 -0.092 0.007

�

n=8; J=50
50% 0.75 0.673 0.683 -0.077 -0.067 0.010
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Table 6: Selected mean parameter estimates from simulations where �2j = 1

parameter study % of groups true mean “naive” mean “augmented” “naive” “augmented” bias
of interest design unconfounded value estimate estimate bias bias reduction

10% 0.40 0.957 0.535 0.557 0.135 0.422
30% 0.40 0.735 0.416 0.335 0.016 0.319n=28; J=10
50% 0.40 0.729 0.549 0.329 0.149 0.180

10% 0.30 0.833 0.393 0.533 0.093 0.440
30% 0.30 0.686 0.325 0.386 0.025 0.361n=20; J=20
50% 0.30 0.621 0.388 0.321 0.088 0.233

10% 0.20 0.732 0.295 0.532 0.095 0.437
30% 0.20 0.603 0.261 0.403 0.061 0.342

⌧.

n=8; J=50
50% 0.20 0.528 0.268 0.328 0.068 0.260

10% 0.40 0.409 0.408 0.009 0.008 0.001
30% 0.40 0.408 0.399 0.008 -0.001 0.007n=28; J=10
50% 0.40 0.400 0.400 0.000 0.000 0.000

10% 0.40 0.398 0.399 -0.002 -0.001 0.001
30% 0.40 0.400 0.400 0.000 0.000 0.000n=20; J=20
50% 0.40 0.403 0.399 0.003 -0.001 0.002

10% 0.60 0.600 0.601 0.000 0.001 -0.001
30% 0.60 0.602 0.601 0.002 0.001 0.001

⌘2

n=8; J=50
50% 0.60 0.610 0.610 0.010 0.010 0.000

10% 0.10 0.055 0.048 -0.045 -0.052 -0.007
30% 0.10 0.076 0.054 -0.024 -0.046 -0.022n=28; J=10
50% 0.10 0.083 0.059 -0.017 -0.041 -0.024

10% 0.05 0.022 0.018 -0.028 -0.032 -0.004
30% 0.05 0.031 0.018 -0.019 -0.032 -0.013n=20; J=20
50% 0.05 0.038 0.019 -0.012 -0.031 -0.019

10% 0.15 0.075 0.067 -0.075 -0.083 -0.008
30% 0.15 0.096 0.073 -0.054 -0.077 -0.023

!22

n=8; J=50
50% 0.15 0.089 0.061 -0.061 -0.089 -0.028

10% 0.75 0.658 0.658 -0.092 -0.092 0.000
30% 0.75 0.676 0.677 -0.074 -0.073 0.001n=28; J=10
50% 0.75 0.697 0.698 -0.053 -0.052 0.001

10% 0.75 0.649 0.649 -0.101 -0.101 0.000
30% 0.75 0.668 0.669 -0.082 -0.081 0.001n=20; J=20
50% 0.75 0.689 0.691 -0.061 -0.059 0.002

10% 0.75 0.652 0.652 -0.098 -0.098 0.000
30% 0.75 0.671 0.673 -0.079 -0.077 0.002

�

n=8; J=50
50% 0.75 0.691 0.694 -0.059 -0.056 0.003
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