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ORIGINAL ARTICLE

Cardiovascular Risk Assessment Using Artificial 
Intelligence-Enabled Event Adjudication and 
Hematologic Predictors
James G. Truslow, PhD; Shinichi Goto , MD, PhD; Max Homilius , PhD; Christopher Mow, MS; John M. Higgins, MD;  
Calum A. MacRae , MD, PhD; Rahul C. Deo , MD, PhD

BACKGROUND: Researchers routinely evaluate novel biomarkers for incorporation into clinical risk models, weighing tradeoffs 
between cost, availability, and ease of deployment. For risk assessment in population health initiatives, ideal inputs would be 
those already available for most patients. We hypothesized that common hematologic markers (eg, hematocrit), available in 
an outpatient complete blood count without differential, would be useful to develop risk models for cardiovascular events.

METHODS: We developed Cox proportional hazards models for predicting heart attack, ischemic stroke, heart failure 
hospitalization, revascularization, and all-cause mortality. For predictors, we used 10 hematologic indices (eg, hematocrit) 
from routine laboratory measurements, collected March 2016 to May 2017 along with demographic data and diagnostic 
codes. As outcomes, we used neural network-based automated event adjudication of 1 028 294 discharge summaries. We 
trained models on 23 238 patients from one hospital in Boston and evaluated them on 29 671 patients from a second one. 
We assessed calibration using Brier score and discrimination using Harrell’s concordance index. In addition, to determine 
the utility of high-dimensional interactions, we compared our proportional hazards models to random survival forest models.

RESULTS: Event rates in our cohort ranged from 0.0067 to 0.075 per person-year. Models using only hematology indices 
had concordance index ranging from 0.60 to 0.80 on an external validation set and showed the best discrimination when 
predicting heart failure (0.80 [95% CI, 0.79–0.82]) and all-cause mortality (0.78 [0.77–0.80]). Compared with models trained 
only on demographic data and diagnostic codes, models that also used hematology indices had better discrimination and 
calibration. The concordance index of the resulting models ranged from 0.75 to 0.85 and the improvement in concordance 
index ranged up to 0.072. Random survival forests had minimal improvement over proportional hazards models.

CONCLUSIONS: We conclude that low-cost, ubiquitous inputs, if biologically informative, can provide population-level readouts 
of risk.

Key Words: cardiovascular disease ◼ heart failure ◼ hematology ◼ ischemic stroke ◼ machine learning

See Editorial by Ouyang and Cheng

Two approaches guide the development of clinical risk 
models.1 One strategy focuses on evaluating inno-
vative markers, typically biomolecular, in a research 

cohort where banked historical samples and adjudicated 
outcomes are available. Recent biomarker candidates 

include genetic variants,2–4 protein biomarkers,5 somatic 
mutations,6 and serum metabolites.7 The motivation for 
such an approach is to improve model performance while 
proposing something new about disease mechanisms. 
One challenge for such a strategy is the lack of such 

mailto:rdeo@bwh.harvard.edu


Truslow et al AI-Enabled Risk Models From Blood Profiles

Circ Cardiovasc Qual Outcomes. 2022;15:e008007. DOI: 10.1161/CIRCOUTCOMES.121.008007 June 2022 378

markers in other cohorts, making replication a challenge. 
The problem of predictor availability extends to model 
deployment, especially when considering such models 
for population health initiatives. Moreover, given that con-
tributors to disease may evolve, insights from a historical 
cohort may not be readily transportable to new settings.8

An alternative strategy involves training models using 
existing low-cost data readily available on a high per-
centage of patients within a health care system. Such an 
approach is pragmatic and exploits model training as the 
first step in a systematic program to enable risk assess-
ment for the maximal number of individuals. The output 
of the models could then be used to guide population 
health initiatives, hospital- or payer-level financial plan-
ning, or clinical trial enrollment.9 The use of widely avail-
able inputs also facilitates iteratively updating models to 
match changing environments.

In this work, we focus on the latter approach but 
use an unconventional yet widely available choice of 
predictors: hematologic indices available in a sim-
ple complete blood count (CBC). The CBC provides 
counts and distributional properties of red blood cells, 
platelets, and white blood cells taken in aggregate and 
is commonly used in screening settings. Others have 
shown an association of hematologic indices with all-
cause mortality and cardiovascular events, including 
a focus on red-cell distribution width10–15 and have 
found similar associations with parameters based on 
specific leukocyte populations available in the related 
CBC with differential, such as the neutrophil-to-lym-
phocyte ratio.16

Our emphasis here was on estimating and validating 
time-to-event models for cardiovascular events. Unlike 
other risk-model efforts,17,18 which have focused on a 
population free of cardiovascular disease (CVD) events 
and not taking statins, our focus was on a broader set of 
patients, likely at higher risk. Our rationale was that such 
individuals are responsible for high resource health care 
utilization and could benefit from triggered therapeutic 
innovations to reduce risk, whether they be novel medi-
cations or population-health initiatives.

Moreover, in the spirit of enabling ease of re-training 
models in new settings, we use a machine-learning strat-
egy for adjudication of acute coronary syndrome (ACS), 
coronary revascularization, heart failure hospitalization 
(HF), and ischemic stroke (IS), using discharge sum-
maries from hospitalizations.19 We describe discrimina-
tion and calibration performance of the models across 2 
institutions and compare additive models to an ensemble 
machine learning approach.

METHODS
Data Access
Code used for data processing and analysis will be available 
upon request.

WHAT IS KNOWN
• Risk models often prioritize novel biomarkers for pre-

dicting adverse cardiovascular outcomes, although 
such biomarkers may have limited availability for 
model replication and deployment.

• Simple biological measures, such as the complete 
blood count, have been shown to be associated with 
specific clinical events.

• Artificial intelligence methods for text processing 
can enable rapid adjudication of events from clinical 
notes, thereby overcoming deficiencies in diagnostic 
code-based approaches.

WHAT THE STUDY ADDS
• We develop a strategy to developing time-to-event 

models for cardiovascular events using simple 
hematologic predictors from a complete blood count 
and artificial intelligence-adjudicated outcomes.

• Models are competitive with or outperform existing 
models such as the pooled cohort equations.

• The primary proposed clinical application of such mod-
els are population health initiatives, hospital- or payer-
level financial planning, or clinical trial enrollment, 
where low-cost widely available predictors and ongo-
ing event ascertainment can provide maximal utility.

Nonstandard Abbreviations and Acronyms

ACS acute coronary syndrome
AGE-HEM  The set of predictors composed of 

age and hematology indices
AGE-HEM-HX  The set of predictors composed 

of age, hematology indices, and 
disease history

AGE-HX  The set of predictors composed of 
age and disease history

AI artificial intelligence
CABG coronary artery bypass graft
CAD coronary artery disease
CBC complete blood count
CVD cardiovascular disease
HEM  The set of predictors composed 

only of hematology indices
HEM-HX  The set of predictors composed of 

hematology indices and disease 
history

HF heart failure hospitalization
IS ischemic stroke
MGB-EDW  Massachusetts General Brigham 

Electronic Data Warehouse
PCE pooled cohort equation
PCI percutaneous coronary intervention
RDW-CV red cell volume distribution width
RSF random survival forest
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Overview
We used Cox proportional-hazards models to predict time 
to various cardiovascular outcomes. The predictors of most 
interest were 10 hematologic parameters produced by rou-
tine CBC. We also studied predictor sets that included demo-
graphics and disease history. Outcomes were identified and 
located in time from electronic health records by applying 
neural-network classifiers to discharge summaries. Models 
were developed using data from one hospital and validated 
using data from another hospital.

Patient Selection and Data Retrieval
Patients in the model-derivation cohort were at least 18 
years old and had a CBC recorded on a Sysmex XE-5000 
Automated Hematology System at the Massachusetts General 
Hospital during March 2016 to May 2017 (see Table S1 for 
a glossary of medical terms). The Massachusetts General 
Hospital Sysmex XE-5000 devices produce a digital file in a 
proprietary format for each CBC. We extracted this file from 
each of the 3 Massachusetts General Hospital XE-5000s dur-
ing the period March 17, 2016, to May 17, 2017. We then used 
software supplied by Sysmex to convert the proprietary format 
into a collection of several nonproprietary-format files, includ-
ing a result-log file. Each sample analysis on an XE-5000 pro-
duces a single result-log file, uniquely identifiable by a lab-order 
ID number and a timestamp. A result-log file contains various 
types of data, including details of the machine and operation; 
standard hematology parameters, such as red blood cell count 
and hematocrit; and more specialized hematology parameters, 
such as the percentage of reticulocytes or the centroid of a 
basophil cluster in the scattergram; and binary flags signifying 
pathological conditions or sample-quality problems.

Using the 595 557 result-log files generated from the 
XE-5000 devices during this period, we matched 452 731 
unique lab-order identifiers to 136 341 unique patient identifi-
ers. Some lab-order identifiers were associated with >1 result-
log file. In 99% of cases, the files’ timestamps varied by <3 
hours and mapped to a single set of hematologic parameters, 
so we limited analysis to the most recent file. We discarded 
another six files with more than one distinct set of results and 
another 19 files with more than one unique lab-order identi-
fier. This process resulted in 452 706 CBC tests for 136 339 
patients (Figure S1A and S1B)

For each patient, we accessed structured data from the 
Massachusetts General Brigham Electronic Data Warehouse 
(MGB-EDW), a data repository for a large multi-institutional 
Integrated Delivery Network in the greater Boston area. The 
2 primary hospitals used in this study were Massachusetts 
General Hospital and Brigham and Women’s Hospital, which 
are 999- and 793-bed teaching hospitals, respectively, affili-
ated with Harvard Medica School. Together, they are the found-
ing members of Mass General Brigham, the largest health care 
provider in Massachusetts. Structured data included diagnostic 
codes reflecting past medical history, lists of actively managed 
problems, the reasons for any hospital admission, and encounter 
diagnoses. The latter are diagnostic codes used to justify billing 
for a broad range of medical encounters, including laboratory 
draws, imaging tests, outpatient visits, and hospital admissions. 
In addition to structured data, we also captured medical notes 
focusing on discharge summaries, which represent a detailed 

description of the clinical course for a hospitalization encoun-
ter. Encounters, diagnostic codes, and notes could be from any 
of the institutions within the Massachusetts General Brigham 
network of hospitals.

Structured encounter information was further used to 
limit CBCs so that the hematologic indices more closely 
reflected the patient’s baseline values. Specifically, we only 
included CBCs drawn during an elective outpatient encounter. 
Furthermore, we excluded all tests that occurred within 7 days 
before or 30 days after an emergency department visit or hos-
pital admission, as defined by the date of a discharge summary, 
as such tests may reflect some active temporary disruption in 
the baseline laboratory values (eg, acute infection, blood loss) 
which is not the intended use of our models. From the resulting 
41 444 CBCs, we selected the earliest result for each patient, 
which also defined the patient’s time of entry into the study. 
This process resulted in 27 493 patient-CBC pairs.

We excluded 341 patients without demographic data and 
3489 patients younger than 30 years at the time of entry 
into the study. Follow-up time was defined from the date of 
the CBC to the last encounter or note within the MGB-EDW 
under the following categories: encounters coded as office 
visit, system generated, or hospital encounter; notes coded 
as progress note, telephone encounter, assessment & plan, 
discharge summary, ED provider note, consult, MR AVS snap-
shot, plan of care, patient instruction, H&P. Because of the 
dramatic change in hospital population caused by COVID-
19 in the winter of 2020, we did not consider follow-up or 
events after December 31, 2019. When a patient’s follow-up 
extended past this date or if a study outcome occurred after 
this date, we right-censored the patient at January 1, 2020. 
Finally, 437 patients with no follow-up in the MGB-EDW sys-
tem were excluded, resulting in 23 226 patients.

The validation cohort consisted of adult patients who had a 
10-parameter CBC (described below) collected at Brigham & 
Women’s Hospital between June 2015 and December 2016 
and whose results were available within the MGB-EDW. As with 
the training data, we excluded laboratory values that occurred 
close in time to emergency department or hospital discharges 
(Figure S1C and S1D).

AI Enabled Adjudication of Cardiovascular 
Outcomes
We recently trained neural network-based models to classify 
discharge summaries as associated with one of the following 4 
cardiovascular events: ACS, IS, HF, and percutaneous coronary 
intervention/coronary artery bypass surgery (PCI/CABG).19 
Briefly, after manually labeling 1372 training notes + 592 vali-
dation notes + 1003 testing notes across 17 institutions, we 
trained and validated models for event adjudication, measuring 
area under the receiver-operating characteristic curve on the 
1003 test notes as follows: ACS, 0.967; HF, 0.965; IS, 0.980; 
PCI/CABG, 0.998. The fraction of all discharges in our test 
set that received labels for CVD events was as follows: ACS, 
0.054; HF, 0.122; IS, 0.059; PCI/CABG, 0.054. The 4 types 
of events were not mutually exclusive, and a discharge sum-
mary could receive as many as 4 positive labels. For the cur-
rent work, we selected classification thresholds to maximize 
the F1 score (Table S2). The 4 event models were deployed 
on the 1 028 294 discharge summaries for the derivation and 
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validation cohorts, and a binary event status was determined by 
each model for each note.

The four artificial intelligence (AI)-adjudicated clinical 
events, plus all-cause mortality, constituted the 5 primary 
outcomes for our survival analysis. In addition to these pri-
mary outcomes, we also defined 2 composite outcomes: 
(1) ACS or heart-failure hospitalization or IS (ACS/HF/IS) 
and (2) ACS/HF/IS or death (ACS/HF/IS/death). Date of 
death was obtained from MGB-EDW (which uses data from 
the Social Security Administration Death Master File) with-
out mediation by statistical methods. We did not exclude a 
patient from the dataset for outcome X if they also experi-
enced outcome Y.

Prior history of coronary artery disease (CAD), IS, or HF 
was established using diagnostic codes, which we previously 
evaluated for performance on a set of manually labeled test 
notes19 (Table S3). In contrast to the event models above, 
which map a single discharge summary to the probability of 
an event immediately associated with that hospital discharge, 
ICD10 codes were taken in aggregate across a patient’s his-
tory to generate a binary status of extant disease up to a 
specific date. As an alternative strategy to capture a greater 
number of comorbidities, we determined the Charlson comor-
bidity index20 for each patient using a published ICD10 code 
mapping21 and model weights.22

Predictors
Hematologic Predictors
Hematologic predictors used in time-to-event models (defined 
in Table 1) included hematocrit, hemoglobin concentration, 
mean corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, mean corpuscular volume, mean platelet volume, 
platelet count, red blood cell count, and red cell volume dis-
tribution width (RDW-CV). Of the 2 red blood cell distribution 
width parameters calculated by the XE-5000, only RDW-CV, 
not RDW-SD, was available in our external data set, and thus 
we only included RDW-CV in our models. Entry into the study 
for a patient was defined by the patient’s first CBC.

Nonhematologic Predictors
Models also incorporated commonly available nonhematologic 
predictors:

• Patient’s age at entry into the study.

• Binary diagnostic codes for history of each of three con-
ditions, at time of entry into the study: heart failure, IS, 
coronary artery disease, or myocardial infarction.

All predictors were centered and scaled except the 3 binary 
flags for disease (Table S4). Some predictor sets included first-
order interactions with age. When main effects were centered 
and scaled, this transformation was applied before computing 
interaction terms (Table S5).

Derivation and Validation of the Models
For each of the 7 outcomes, we used L1-penalized Cox pro-
portional-hazards models to estimate coefficients for each risk 
factor. For each outcome, we developed separate models for 
male and female patients. Penalty strength for each model was 
selected by optimizing Harrell concordance index (C-index)23 
through k-fold cross validation (3≤ k ≤5). Ties were handled 
with Breslow method.24 Regression and penalty tuning were 
performed with the Python package scikit-survival v0.14.0.25

Given that except for death, one cardiovascular outcome is 
unlikely to preclude the development of any other, we did not 
look at competing risks among cardiovascular events. Death 
was treated as a competing risk implicitly through censoring (ie, 
cause-specific hazard functions for other outcomes).26

Each combination of outcome and sex was treated with 5 
different models, each supported by a different set of predic-
tors: set 1 consisted of the 10 hematologic indices (hematol-
ogy-only, or HEM); set 2 added age to set 1 (age-hematology 
or AGE-HEM); set 3 added disease history to set 2 (age-
hematology-history or AGE-HEM-HX); set 4 consisted of age 
and history (age-history or AGE-HX); set 5 consisted of just 
age (age-only or AGE). Whenever we included age in a predic-
tor set, we also include first-order interactions between age 
and all main effects (Table S5).

To evaluate performance within the derivation set and pro-
vide a measure of uncertainty for the performance estimate, 
we repeated rounds of 5-fold cross-validation, placing the 
penalty-tuning loop within the model-derivation step for each 
fold. We then trained final models on the entire derivation data 
set. We externally validated each final model on the Brigham & 
Women’s Hospital data set, having preprocessed the validation 
data in the same way as the training data. We removed any 
patients from the validation data set who also appeared in the 
derivation data set.

Table 1. Hematologic Parameters Used in Survival Models

Parameter Description

Hematocrit Volume fraction of whole blood which is red cells

Hemoglobin concentration Concentration of hemoglobin in whole blood, in units of mass per volume

Mean corpuscular hemoglobin Average hemoglobin content per red cell, in units of mass

Mean corpuscular hemoglobin concentration Average hemoglobin concentration inside red cells, in units of mass per volume

Mean corpuscular volume The average volume of a single red cell

Mean platelet volume The average volume of a single platelet

Platelet count The number of platelets per volume of whole blood

Red blood cell count The number of red cells per volume of whole blood

RDW-CV SD of red cell volume, divided by mean corpuscular volume

White blood cell count The number of while cells per volume of whole blood

RDW-CV indicates red cell volume distribution width.
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As a sensitivity analysis, we substituted the Charlson 
comorbidity index for disease history, focusing on death, and 
ACS/HF/IS/death as outcomes. As a further evaluation of the 
robustness of our results, we evaluated the use of encounter 
diagnoses for discharge summaries as outcomes rather than 
AI-derived values. For the latter analysis, we focused on the 
AGE-HEM model, as ICD10 codes used for both past history 
and outcomes are likely to be correlated, and this correlation 
complicates interpretation of the AGE-HEM-HX models. We 
also evaluated model performance on an event-free population.

As a comparison to established models, for those individu-
als where all input parameters were available, we computed 
a 3-year estimate of atherosclerotic cardiovascular risk using 
the Pooled Cohort Equations (PCE)17 (see Methods in the 
Supplemental Material).

Evaluation of Model Performance
Each combination of outcome, predictors, and sex was evaluated 
by C-index and Brier score. Brier score was calculated using sur-
vival at 3 years post-CBC, using inverse probability of censoring 
weights to address censoring.27,28 Performance on the deriva-
tion data set is presented with means and CIs computed from 
repeated k-fold cross-validation (40 repeats of 5-fold cross-vali-
dation). Performance on the validation data set is presented with 
means and CIs calculated from bootstrapping the validation data 
set (1000 bootstrapped samples). Coefficients for final models 
are estimated using the entire derivation data set.

We also assessed discrimination on the external validation 
data set by comparing survival among quartiles of predicted risk, 
using an unweighted log-rank significance test as implemented in 
the Python package lifelines 0.26.29 For each model, we split the 
validation cohort into quartiles, according to the model’s predicted 
relative risk of the outcome for each patient. For models com-
posed of the AGE-HEM-HX predictor set, we performed a pair-
wise comparison among the resulting four Kaplan-Meier curves.

Where the performance of 2 different predictor sets was 
compared for a single event model (eg, compare predictor sets 
AGE-HEM-HX and AGE-HX, for the time-to-death model on 
the female validation cohort), the comparison was reported 
as the difference between model scores for a given set of 
patients. For the derivation data set, this means that model 
scores were computed during each fold of cross-validation and 
compared for the patients in that fold. For the validation data 
set, this means that model scores were calculated on each 
bootstrapped sample and compared for the patients in that 
sample. Thus, a distribution of comparisons was compiled for 
each type of performance metric.

We evaluated model calibration graphically by plotting 
deciles of observed event probability versus predicted probabil-
ity. Comparisons are made at 3 years of follow-up. Baseline haz-
ard was estimated nonparametrically, using Breslow method,30 
and represents the hazard for a patient whose predictors are 
all zero (ie, a patient with average hematologic indices, aver-
age age, and with no history of CAD or myocardial infarction or 
heart failure or stroke).

Random Survival Forest
To explore the benefit of modeling high dimensional interac-
tions, we employed an ensemble learning method, random sur-
vival forest (RSF),31 to train models for each combination of 

outcome, sex, and predictor set with the help of the Python 
package scikit-survival v0.14.0. We performed a single round 
of hyperparameter tuning using k-fold cross-validation (k=5). 
Hyperparameters optimized included: trees per forest {50,150}; 
maximum depth of any tree {2,4,6,8}; number of features 
examined for splitting at each node {1,2,3,4}. We report the 
mean test-set C-index calculated over the k folds. The hyper-
parameter set represented by the reported C-index is the one 
that produced the highest mean C-index.

Other Statistical Analyses
In addition to the above analyses, we compared baseline char-
acteristics for the derivation and validation cohorts using χ2 
tests (categorical variables) or t test (continuous variables). 
We compared baseline clinical characteristics using t tests for 
cohort characteristics that are sample averages and Z tests for 
characteristics that are frequencies or proportions. Confidence 
intervals for frequency of clinical outcomes were estimated by 
the Clopper-Pearson method.32

Ethical Statement
This study complies with all ethical regulations and guidelines. 
The study protocol was approved by the Mass General Brigham 
institutional review board of (2019P002651).

RESULTS
Baseline Characteristics
The derivation cohort included 11 056 men and 12 182 
women, all of whom received at least one outpatient CBC 
between April 2, 2016, and May 16, 2017 (Tables 2 and 
3). The external validation cohort consisted of 10 771 
men and 18 900 women, all of whom received at least 
one outpatient CBC between June 1, 2015, and January 
1, 2017 (Figure S1).17,18

Median follow-up time was 3.0 years for the deriva-
tion cohort and 4.2 years for the validation cohort (Fig-
ures S2 and S3). The most notable differences between 
derivation and validation cohorts were a younger age 
of the female validation cohort than the derivation 
cohort (53.7 versus 57.4 years) and greater racial diver-
sity within the validation cohort (eg, 19.6% non-White 
in female validation versus 12.3% in female deriva-
tion). The prevalence of CVD in the male derivation 
cohort was similar to that in the male validation cohort, 
whereas the prevalence in the female derivation cohort 
was higher than in the validation cohort.

Rates of CVD and Death
In the derivation cohort, the number of patients with one 
or more ACS events within the follow-up period was 443 
(1.9%), with one or more HF hospitalizations was 1077 
(4.6%), with one or more ISs was 515 (2.2%), with one 
or more coronary revascularizations was 525 (2.3%; 
Table 4). The number who died was 1248 (5.4%). In the 
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validation cohort, the number of patients with one or more 
ACS events was 386 (1.3%), with one or more HF hos-
pitalizations was 1344 (4.5%), with one or more ISs was 
630 (2.1%), with one or more coronary revascularizations 
was 427 (1.4%). The number who died was 1506 (5.0%).

Model Performance
To evaluate the contribution of hematologic predictors, 
we first compare the age-only predictor set to the age-
hematology predictor set. We then compare the age-
hematology predictor set to the age-history predictor set. 
Finally, we focus on the complete model with age, medi-
cal history, and hematologic parameters.

Hematology-Only
Hematologic parameters alone had utility for predicting 
cardiovascular outcomes (Table S6). On the internal test 
set, C-indices for the hematologic parameter models 
ranged from 0.59 to 0.80, whereas, on the validation set, 
C-indices ranged from 0.61 to 0.80 (Table 5). For both 
cohorts, the maximal discrimination was seen for HF, 
composite cardiovascular outcomes, and death for both 
sexes, whereas the poorest prediction was seen for ACS 
risk in men (Table 5).

Age-Only Compared With Age-Hematology
The addition of hematologic parameters to age signifi-
cantly improved discrimination and calibration for nearly 
all outcomes (Table 6, Tables S7 through S9, AGE-HEM 

versus AGE), for both the internal test set and exter-
nal validation set. The only models that did not benefit 
from adding the hematologic predictors were models for 
ACS and PCI/CABG, in which cases the improvement in 
C-index was minor or not statistically significant.

Age-Hematology Compared With Age-History
For several outcomes (HF, IS, composite outcomes), 
models with age and hematologic indices were compa-
rable or mildly inferior to those using age and structured 
diagnostic codes for history of CVD and were superior in 
the case of death, with an increase in C-index of 0.077 
(Table 6, Tables S7 and S8, AGE-HEM versus AGE-HX). 
In contrast, they were inferior predicting ACS and PCI/
CABG, with a drop in C-index between 0.062 and 0.127, 
which was significant in both sexes and data sets. Cali-
bration showed minimal difference, (Table S9, AGE-HEM 
versus AGE-HX), with the HF model showing the lowest 
magnitude change in performance (an increase of 0.003 
on the external data set).

The Full Model: Age, Medical History, and 
Hematologic Parameters

Discrimination and Calibration
As with the age-only models, adding hematologic pre-
dictors to the age-history models yielded significantly 
higher C-indices for both men and women in several 
circumstances (Table 6, AGE-HEM-HX versus AGE-
HX). For example, under the age-hematology-history 

Table 2. Baseline Demographic Characteristics of Derivation and Validation Cohorts

Parameter

Men Women

Deriv. cohort Valid. cohort P value Deriv. cohort Valid. cohort P value

N 11056 10771  12182 18900 …

Age, y (SD) 60.1 (14.3) 59.9 (13.9) 3.89×10−1 57.4 (15.0) 53.7 (15.4) <0.0001

Race

 White, % (N) 79.2 (8756) 80.3 (8652) <0.0001 78.0 (9497) 73.1 (13808) <0.0001

 Black or African American, % (N) 5.5 (606) 6.6 (714) 5.7 (698) 9.9 (1872)

 Hispanic or Latino, % (N)* 0.4 (45) 2.8 (303) 0.9 (107) 4.1 (779)

 Asian, % (N) 4.9 (543) 3.3 (356) 5.5 (664) 5.5 (1042)

 American Indian or Alaska Native, % (N) 0.1 (8) 0.2 (19) 0.1 (12) 0.1 (18)

 Native Hawaiian or Other Pacific Islander, % (N) 0.0 (3) 0.1 (10) 0.1 (7) 0.0 (6)

 Missing, % (N) 9.9 (1095) 6.7 (717) 9.8 (1197) 7.3 (1375)

Ethnicity

 Hispanic, % (N) 4.8 (536) 5.8 (628) <0.0001 6.5 (789) 8.5 (1614) <0.0001

 Non-Hispanic, % (N) 85.0 (9399) 76.3 (8222) 84.2 (10252) 75.7 (14301)

 Missing, % (N) 10.1 (1121) 17.8 (1921) 9.4 (1141) 15.8 (2985)

Smoking

 Current, % (N) 8.0 (887) 6.9 (743) <0.0001 5.7 (690) 4.7 (881) <0.0001

 Former, % (N) 30.7 (3393) 34.9 (3757) 25.7 (3133) 26.5 (5000)

 Never, % (N) 49.3 (5454) 51.9 (5591) 58.0 (7071) 62.4 (11789)

 Missing, % (N) 12.0 (1322) 6.3 (680) 10.6 (1288) 6.5 (1230)

Significance for age difference is via t test. The other 3 differences are compared via χ2 tests. Deriv indicates derivation and valid, validation.
*This number is likely inaccurate as Hispanic is typically asked in an ethnicity questionnaire and not in a race questionnaire.
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predictor set, C-index for the male HF model was higher 
by 0.067 and C-index for the male death model was 
higher by 0.080, compared with the age-history pre-
dictor set. Likewise, models for death and for the 2 
composite outcomes showed statistically significant 
improvements in both cohorts for both sexes. Improve-
ments in Brier score followed almost the same pattern 
(Table S9, AGE-HEM-HX versus AGE-HX). Improve-
ment in prediction of ACS or PCI/CABG was not statis-
tically significant. On the validation cohort, the combined 

age-hematology-history models demonstrated C-indi-
ces between 0.75 and 0.85 (Table 5).

Calibration Curves
We examined calibration curves for the age-hematology-
history model for all outcomes (Figure 1), as measured on 
the validation cohort. For women, risk was well-calibrated 
for all but the highest-risk decile. Over-prediction of risk 
for high-risk patients was more pronounced among the 
male models than the female models, consistent with 
higher Brier scores for male models.

Table 3. Baseline Clinical Characteristics of Derivation and Validation Cohorts

Parameter

Men Women

Deriv. cohort Valid. cohort P value Deriv. cohort Valid. cohort P value

Heart rate, bpm, mean (SD, NMISS) 73.6 (11.5–1171) 72.5 (11.8–222) <0.0001 76.5 (11.0–1375) 75.8 (11.1–812) <0.0001

Systolic BP, mm Hg, mean (SD, NMISS) 128.0 (13.4–1092) 129.2 (13.5–214) <0.0001 123.9 (14.3–1170) 123.8 (14.7–246) 5.1×10−1

Diastolic BP, mm Hg, mean (SD, NMISS) 75.3 (8.4–1092) 75.3 (9.7–214) 8.2×10−1 73.3 (7.9–1170) 70.9 (8.5–246) <0.0001

BMI kg/m2, median (IQR, NMISS) 27.9 (25.1-31.5–1759) 28.0 (25.3-31.5–530) 8.5×10−1 26.4 (22.7-31.3–1811) 26.5 (22.9-31.4–1200) 1.3×10−1

LDL mg/dL, mean (SD, NMISS) 96.6 (35.5–8221) 99.2 (33.3–3128) 8.3×10−4 109.1 (35.9–9529) 106.4 (32.6–7359) 2.6×10−4

HDL mg/dL, mean (SD, NMISS) 47.8 (15.2–4665) 51.6 (16.3–3037) <0.0001 61.0 (19.4–5918) 66.5 (20.3–7143) <0.0001

Triglycerides, mg/dL, mean (SD NMISS) 131.3 (96.6–4660) 137.9 (98.5–3003) <0.0001 115.6 (72.8–5950) 115.9 (73.4–7155) 8.0×10−1

eGFR mL/min/1.73 m2, mean (SD, NMISS) 67.1 (23.2–2322) 67.3 (21.1–417) 4.3×10−1 91.0 (26.7–3140) 94.7 (24.8–2564) <0.0001

Ejection fraction, %, mean (SD, NMISS) 59.6 (14.8–10130) 56.6 (12.3–9192) <0.0001 64.3 (11.1–11448) 61.1 (8.6–17319) <0.0001

Coronary artery disease, % (N) 18.3 (2026) 16.1 (1739) <0.0001 6.8 (824) 4.1 (777) <0.0001

Heart failure, % (N) 9.3 (1028) 8.4 (909) 2.6×10−2 5.0 (613) 3.3 (619) <0.0001

Ischemic stroke, % (N) 3.6 (403) 3.2 (349) 1.0×10−1 2.5 (309) 1.7 (328) <0.0001

Type 2 diabetes, % (N) 18.8 (2083) 17.7 (1907) 3.0×10−2 11.5 (1398) 10.8 (2032) 4.6×10−2

Hypertension, % (N) 51.4 (5678) 51.0 (5488) 5.5×10−1 38.5 (4691) 34.2 (6460) <0.0001

Atrial fibrillation, % (N) 10.9 (1210) 11.8 (1272) 4.4×10−2 5.1 (617) 3.9 (734) <0.0001

Aspirin, % (N) 44.2 (4888) 43.4 (4673) 2.2×10−1 27.0 (3289) 22.9 (4329) <0.0001

Statin, % (N) 45.7 (5057) 46.4 (5002) 3.0×10−1 27.7 (3369) 23.8 (4493) <0.0001

ACE inhibitor, % (N) 23.7 (2615) 26.0 (2798) <0.0001 13.7 (1664) 12.7 (2400) 1.4×10−2

Angiotensin receptor blocker, % (N) 12.7 (1401) 12.5 (1342) 6.4×10−1 9.9 (1204) 8.8 (1665) 1.4×10−3

Beta blocker, % (N) 32.9 (3634) 34.2 (3685) 3.6×10−2 23.4 (2853) 19.5 (3684) <0.0001

Means are compared via t test. Proportions are compared via Z test. ACE indicates angiotensin-converting enzyme; BMI, body mass index; BP, blood pressure; deriv, derivation; 
eGFR, estimated glomerular filtration rate; IQR, interquartile range; LDL, low-density lipoprotein; NMISS, number of patients with missing data; and valid, validation.

Table 4. Frequency of Clinical Outcomes in Derivation and Validation Cohort

Outcome Cohort

Women Men

Cases Total Cases/1000 Cases Total Cases/1000

ACS Deriv. 112 12 177 9.2 (7.6–11.1) 331 11 048 30.0 (26.9–33.3)

Valid. 127 19 036 6.7 (5.6–7.9) 259 10 891 23.8 (21.0–26.8)

HF Deriv. 441 12 177 36.2 (33.0–39.7) 636 11 048 57.6 (53.3–62.1)

Valid. 678 19 036 35.6 (33.0–38.3) 666 10 891 61.2 (56.7–65.8)

IS Deriv. 233 12 177 19.1 (16.8–21.7) 282 11 048 25.5 (22.7–28.6)

Valid. 348 19 036 18.3 (16.4–20.3) 282 10 891 25.9 (23.0–29.1)

PCI/CABG Deriv. 135 12 177 11.1 (9.3–13.1) 390 11 048 35.3 (31.9–38.9)

Valid. 129 19 036 6.8 (5.7–8.0) 298 10 891 27.4 (24.4–30.6)

Death Deriv. 530 12 182 43.5 (40.0–47.3) 718 11 056 64.9 (60.4–69.7)

Valid. 684 19 042 35.9 (33.3–38.7) 822 10 896 75.4 (70.5–80.6)

Number of patients in derivation and validation cohorts, and cases of each type of outcome observed, as well as the fraction of patients with each out-
come. Fraction is reported as outcomes per 1000 patients, along with 95% CIs for the fraction. ACS indicates acute coronary syndrome; CABG, coronary 
artery bypass graft; Deriv, derivation; HF, heart failure; IS, ischemic stroke; PCI, percutaneous coronary intervention; and valid, validation. 
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Survival by Predicted-Risk Quartile
We assessed discrimination of each model by compar-
ing survival among quartiles of the risk that it predicted. 
Kaplan-Meier curves are shown in Figure 2, grouped by 
model, one subplot per model. In each subplot, the valida-
tion cohort was split into quartiles according to the pre-
dicted relative risk of the outcome for each patient.

For all 7 models among men, there were statistically 
significant differences (P<0.05) in survival between 
each of the 4 quartiles, with a single exception: for the 
HF model, survival curves for the low-risk and lowest-
risk quartiles intersect at a follow-up time of ≈4 years. 
This could indicate poor calibration of this model for 
the healthiest patients, though given the low event rate 
after 4 years (<10/mo for the entire male cohort), it 
may be attributable to uncertainty in the Kaplan-Meier 
estimator.

Performance for the female-cohort models was simi-
lar. Survival curves for the highest risk 3 quartiles were 
significantly different from each other with the following 
exceptions: (1) the high-risk group and low-risk group 
were not different for the ACS model or for the PCI/
CABG model; (2) the high-risk group and lowest-risk 
group were not different for the HF model.

Parameter Estimates
Proportional-hazards coefficients in the age-hematol-
ogy-history models were examined for the 3 outcomes 
(composites not included) where the predictor set had 
better discrimination than age-history on the internal test 
set (Table 7). The L1 penalization selected approximately 
half of the 10 hematologic indices for each of the final 
models. Among the highly correlated set {HCT, HGB, 

MCH, MCHC, MCV, red cell count}, usually more than 
half were eliminated, with the most retained being red 
cell count and HGB. Two out of the 10 hematologic indi-
ces appeared in all 6 models in Table 7: platelet count 
and RDW. White cell count and red cell count were 
retained in 5 out of 6 models. As expected, the disease-
history and age terms were strong factors in most age-
hematology-history models.

Related Analyses
We explored the robustness of our results by substitut-
ing encounter diagnoses for AI-derived outcomes. Over-
all, C-indices were comparable and within the margin 
of uncertainty, though the HF and ACS/HF/IS models 
had higher C-indices using ICD10 codes (Tables S10 
and S11). We confirmed that hematology parameters 
add to traditional risk factors, with C-indices and Brier 
scores all improving. We next looked at whether using 
the Charlson comorbidity index rather than the focused 
CVD past history codes would eliminate the additional 
utility of the hematology predictors, but that was not the 
case (Tables S12 and S13). We also looked at whether 
our models, which were trained using a combination of 
primary and secondary events as outcomes, performed 
as well on patients who had no CVD events before their 
entry into study. The incremental benefit of hematol-
ogy parameters over traditional risk factors was largely 
intact when tested on the restricted cohort (Tables S14 
and S15). For example, we saw 9 models with significant 
improvements in C-index when tested on the restricted 
cohort, instead of 12 models. We found a similar pat-
tern with slightly more degraded performance when we 

Table 5. Discrimination Performance on Internal Test Set and External Validation Set

Pred. set Outcome

C-index, internal test set C-index, external validation set

Women Men Women Men

HEM ACS 0.632 (0.607–0.647) 0.594 (0.579–0.602) 0.619 (0.569–0.671) 0.596 (0.562–0.629)

HF 0.757 (0.750–0.763) 0.783 (0.777–0.786) 0.732 (0.711–0.752) 0.803 (0.788–0.820)

IS 0.702 (0.682–0.710) 0.653 (0.644–0.663) 0.636 (0.603–0.665) 0.681 (0.647–0.714)

PCI/CABG 0.644 (0.615–0.656) 0.633 (0.626–0.638) 0.614 (0.560–0.669) 0.609 (0.576–0.641)

death 0.780 (0.764–0.790) 0.796 (0.794–0.797) 0.762 (0.743–0.782) 0.784 (0.769–0.800)

ACS/HF/IS 0.728 (0.722–0.731) 0.714 (0.712–0.715) 0.681 (0.663–0.699) 0.729 (0.714–0.745)

ACS/HF/IS/death 0.741 (0.732–0.746) 0.735 (0.734–0.736) 0.709 (0.694–0.724) 0.744 (0.732–0.757)

AGE HEM HX ACS 0.809 (0.795–0.820) 0.769 (0.761–0.781) 0.839 (0.803–0.872) 0.762 (0.731–0.790)

HF 0.824 (0.821–0.827) 0.839 (0.837–0.840) 0.756 (0.732–0.780) 0.854 (0.841–0.868)

IS 0.786 (0.779–0.792) 0.722 (0.715–0.728) 0.748 (0.723–0.774) 0.747 (0.719–0.774)

PCI/CABG 0.807 (0.794–0.815) 0.773 (0.766–0.779) 0.827 (0.785–0.865) 0.763 (0.736–0.788)

death 0.833 (0.821–0.839) 0.821 (0.819–0.822) 0.849 (0.834–0.863) 0.804 (0.789–0.819)

ACS/HF/IS 0.809 (0.806–0.811) 0.775 (0.772–0.777) 0.748 (0.730–0.765) 0.794 (0.780–0.806)

ACS/HF/IS/death 0.811 (0.810–0.812) 0.782 (0.780–0.783) 0.780 (0.767–0.793) 0.788 (0.778–0.799)

Mean and 95% CIs for C-index. For 7 outcomes modeled with 2 predictor sets (HEM, AGE-HEM-HX). The distribution of C-index on the derivation data set is obtained by repeated 
k-fold cross-validation. The distribution on the validation dataset is obtained by bootstrapping inputs to a final model trained on the entire derivation data set. ACS indicates acute 
coronary syndrome; AGE-HEM-HX, age-hematology-history; CABG, coronary artery bypass graft; HEM, hematology-only; HF, heart failure; IS, ischemic stroke; PCI, percutaneous 
coronary intervention and pred, predictor.
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tested the models on patients who had neither CVD 
events nor any ICD-derived history of CVD before their 
entry into study (Tables S16 and S17). In contrast, the 
number of models whose Brier score benefited from 
using hematology parameters on the restricted cohorts 
was the same as or higher than the number on the 
entire validation cohort.

To benchmark our hematology-based models 
against an established risk model, we compared the 
age-hematology models to a version of the PCE for 
ASCVD risk17 which we modified to estimate 3-year 
instead of 10-year risk. The age-hematology models 
were re-trained to predict a composite outcome, ACS/
IS/death, which approximates the end point specified 
for the PCEs—either CHD death or the first occur-
rence of myocardial infarction or stroke. When tested 
in the derivation cohort, the age-hematology models 
showed superior discrimination (Table S18) and cal-
ibration (Table S19) to the PCE risk models. When 
tested in the validation cohort, the age-hematology 
model for women had superior discrimination to the 
PCE risk models for women. No other significant dif-
ferences appeared between the 2 types of model in 
the validation cohort.

Random Survival Forest
Calibration of the RSF models was comparable to that 
of the Cox proportional hazards model (Table S20). Many 
of the optimized RSF models had slightly better discrimi-
nation than the Cox proportional hazards models, with 
advantages for RSF ranging from −0.009 to 0.050. The 
biggest advantage for RSF came when using the hema-
tology predictor set, which does not include any explicit 
interaction terms, and which therefore, might be harder 
for a linear model to learn from than for a tree-based 
model. Improvement was less apparent for the age-
hematology-history models.

DISCUSSION
The primary result of this article is that hematologic 
predictors have predictive value for cardiovascular out-
comes both above and beyond traditional risk factors. 
Our hematology-based models demonstrated success 
primarily for heart failure, major adverse cardiovascular 
events, all-cause mortality, and to a lesser extent, IS. In 
addition, model performance was robust to the choice of 
ICD10 or AI-determined outcomes.

Table 6. Comparison of Pairs of Predictor Sets According to C-Index

Pred. Set Outcome

ΔC, derivation data set ΔC, validation data set

Women Men Women Men

A: AGE HEM 
B: AGE

ACS 0.024 (−0.014 to 0.056) −0.001 (−0.017 to 0.016) 0.019 (0.005 to 0.033)* 0.003 (−0.012 to 0.019)

HF 0.091 (0.075 to 0.103)*† 0.131 (0.125 to 0.137)*† 0.086 (0.072 to 0.100)* 0.092 (0.071 to 0.113)*

IS 0.040 (0.030 to 0.052)*† 0.036 (0.021 to 0.048)*† 0.024 (0.009 to 0.039)* 0.029 (0.009 to 0.050)*

PCI/CABG 0.026 (−0.013 to 0.048) 0.024 (0.016 to 0.034)* 0.030 (0.007 to 0.055)* 0.005 (−0.013 to 0.025)

death 0.084 (0.073 to 0.100)*† 0.103 (0.100 to 0.113)*† 0.065 (0.051 to 0.079)* 0.091 (0.077 to 0.105)*

ACS/HF/IS 0.060 (0.057 to 0.068)*† 0.070 (0.068 to 0.075)*† 0.048 (0.038 to 0.058)* 0.055 (0.042 to 0.069)*

ACS/HF/IS/death 0.068 (0.061 to 0.072)*† 0.082 (0.080 to 0.085)*† 0.058 (0.049 to 0.068)* 0.070 (0.060 to 0.080)*

A: AGE HEM 
B: AGE HX

ACS −0.073 (−0.116 to −0.055)*† −0.127 (−0.142 to −0.111)*† −0.065 (−0.098 to −0.034)* −0.105 (−0.137 to −0.075)*

HF 0.003 (−0.007 to 0.009) 0.015 (0.011 to 0.020)* 0.023 (0.006 to 0.041)* −0.002 (−0.022 to 0.017)

IS 0.002 (−0.006 to 0.010) −0.010 (−0.022 to −0.002)* −0.005 (−0.022 to 0.011) −0.003 (−0.026 to 0.019)

PCI/CABG −0.072 (−0.095 to −0.057)*† −0.089 (−0.094 to −0.080)*† −0.062 (−0.097 to −0.030)* −0.091 (−0.120 to −0.064)*

death 0.058 (0.050 to 0.064)*† 0.077 (0.075 to 0.078)*† 0.043 (0.029 to 0.058)* 0.071 (0.056 to 0.085)*

ACS/HF/IS −0.001 (−0.003 to 0.001) −0.020 (−0.022 to −0.018)*† −0.006 (−0.018 to 0.007) −0.018 (−0.032 to −0.004)*

ACS/HF/IS/death 0.023 (0.017 to 0.028)*† 0.017 (0.015 to 0.018)*† 0.021 (0.011 to 0.031)* 0.021 (0.010 to 0.032)*

A:AGE HEM 
HX B: AGE 
HX

ACS 0.006 (−0.009 to 0.016) −0.006 (−0.016 to 0.007) 0.011 (−0.004 to 0.026) −0.002 (−0.009 to 0.005)

HF 0.037 (0.034 to 0.041)*† 0.067 (0.066 to 0.070)*† 0.049 (0.037 to 0.062)* 0.042 (0.029 to 0.056)*

IS 0.020 (0.012 to 0.026)* 0.017 (0.009 to 0.024)* 0.006 (−0.008 to 0.020) 0.011 (−0.007 to 0.028)

PCI/CABG 0.003 (−0.008 to 0.010) 0.002 (−0.005 to 0.005) 0.012 (−0.001 to 0.026) −0.003 (−0.013 to 0.006)

death 0.065 (0.053 to 0.070)*† 0.080 (0.078 to 0.081)*† 0.050 (0.038 to 0.064)* 0.072 (0.059 to 0.086)*

ACS/HF/IS 0.029 (0.026 to 0.030)*† 0.029 (0.026 to 0.030)*† 0.024 (0.016 to 0.033)* 0.020 (0.013 to 0.028)*

ACS/HF/IS/death 0.045 (0.044 to 0.046)*† 0.046 (0.045 to 0.047)*† 0.040 (0.032 to 0.048)* 0.041 (0.033 to 0.049)*

Mean and 95% CI of the statistic ΔC=CA–CB, where CA is the C-index of an outcome modeled with predictor set A, and CB is the C-index for an outcome modeled with predictor 
set B. Four predictor sets shown (AGE-HEM, AGE, AGE-HX, AGE-HEM-HX). ACS indicates acute coronary syndrome; AGE, age-only; AGE-HEM, age-hematology; AGE-HEM-HX, 
age-hematology-history; AGE-HX, age-history; CABG, coronary artery bypass graft; HF, heart failure; IS, ischemic stroke; PCI, percutaneous coronary intervention and pred, predictor. 

*ΔC is significantly different from 0.
†Next to a derivation-set result denotes that that ΔC is also significantly different from 0 in the validation set, and the effect is in the same direction as in the derivation data set, 

ie, the result in the derivation set is corroborated by the result in the validation set. There were no cases where a validation-set result was significant, but in the opposite direction of 
a significant derivation-set result.
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Hematology-based models had less success predict-
ing coronary revascularization or incident ACSs beyond 
what was possible using only age and prior diagnoses. 
Nonetheless, a model using hematologic indices alone 
was able to modestly predict incident ACSs (Table 5): 
C-index=0.62 (95% CI, 0.57–0.67) and 0.60 (95% 
CI, 0.56–0.63) for women and men, respectively, on 
the validation data set, comparable to polygenic risk 
scores.2 This suggests that some signal exists in the 
hematology data, but there is likely redundancy with 

age and existing CVD. Nonetheless, a strategy combin-
ing age and hematologic predictors may still be help-
ful in predicting coronary revascularization or incident 
ACSs when structured diagnoses are not as complete 
as those found within the MGB-EDW.

The objective of our work is fundamentally different 
from that of most efforts focused on training risk mod-
els: we sought to develop risk models for cardiovascular 
events based entirely on widely available, well-calibrated,33 
and objective input features. Whereas most risk models 

Figure 1. Calibration curves for age-hematology-history models in the validation cohort.
Calibration curves for the 7 modeled outcomes, on women (A) and men (B) in the validation cohort. Each data point is an average over 
the set of 1000 bootstrapped samples. Each pair of error bars represents the middle 95% of values from the bootstrapped samples. 
The predictor set includes hematology and age and disease history, and interactions with age. Predicted risk is compared with observed 
outcomes at 3 y. ACS indicates acute coronary syndrome; CABG, coronary artery bypass graft; HF, heart failure; IS, ischemic stroke; and 
PCI, percutaneous coronary intervention.
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have emphasized the utility of a diverse set of inputs, 
which will typically require providers to order specific lab-
oratory tests, document an expansive set of diagnoses, 
and record candid responses of patients regarding such 
attributes as smoking status,18 our approach deliberately 
attempts to minimize the burden on providers. Our ratio-
nale is based partly on our own experience with EHR-
based risk assessment: for example, the percentage of 
patients in our cohorts for which one can compute the 
Pooled-Cohort Equation risk score from structured data 
within the MGB-EDW is <30%. Even when the relevant 
tests may have been ordered, they may not be available 
as structured data in the EHR if, for example, they were 
collected outside of the system and were only available 
as scanned documents. Furthermore, most risk models 
focus on primary prevention—whereas our focus was 

on a broader patient population with anticipated high 
resource utilization.

We have used hematologic predictors based on the 
assumption that many contributors to chronic diseases 
such as CVD are systemic and may be reflected across 
multiple tissue types. This hypothesis is supported by a 
large amount of prior data, both experimental and obser-
vational, including the ability to estimate cardiovascular 
outcomes from digital retinograms,34 the association of 
somatic mutations in leukocytes with coronary artery 
disease and heart failure risk,6,35 the association of a 
complete-blood count-based score with mortality,10,36–39 
and the modulation of CVD through leukocyte-restricted 
gene knockouts.40,41

The utility of RDW that we and others have observed 
for predicting outcomes may be related to its association 

Figure 2. Kaplan-Meier curves for age-hematology-history models, by quartiles of predicted risk in validation cohort.
Curves are shown for all 7 outcomes in the validation cohort, women (A) and men (B). For each outcome, the cohort is split into quartiles, 
according to the risk model developed for that outcome on the derivation cohort. Lowest-risk quartile is shown in blue; highest-risk quartile is 
shown in red. ACS indicates acute coronary syndrome; CABG, coronary artery bypass graft; HF, heart failure; IS, ischemic stroke; and PCI, 
percutaneous coronary intervention.
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with anemias of chronic disease or with clonal hematopoi-
esis of indeterminate potential,6 which appear to predict 
similar patterns of events. In both cases, the biomark-
ers may primarily be providing a readout for underlying 
systemic pathway abnormalities, with the hematopoietic 
lineage representing a shared upstream pathway abnor-
mality or an index of prior exposures.

The primary limitation of our work, which is also a 
strength, is the deliberate use of a minimal numbers of 
inputs to the risk models to maximize availability. Further-
more, the use of a real-world patient population is also 
likely to suffer from multiple biases that may not be pres-
ent in cohort studies, including unmeasured confounders. 
Our patient population may also exhibit some selection 
bias that could limit generalizability to other settings. 

Specifically, our model was trained on a hospital outpa-
tient-based cohort rather than a population-based cohort. 
Hence, the cohort includes very few, if any, truly healthy 
individuals. However, the findings are in agreement with 
previous reports testing the association of hematologic 
indices with CVD.42,43 Furthermore, we would like to 
emphasize that our approach combining widely available 
inputs with automated adjudication should enable rescal-
ing or retraining whenever it needs to be deployed on a 
cohort where the model does not perform well out-of-the-
box. Such an approach should address if the composition 
of the cohort for which deployment is intended varies from 
that described here (eg, racial composition or comorbid-
ity distribution). We have also not looked at how these 
measures of risk progress through time and in response 

Table 7. Age-History-Hematology Parameter Estimates for Selected Outcomes

Predictor

HF hospitalization Ischemic stroke Death

Women Men Women Men Women Men

β value P value β value P value β value P value β value P value β value P value β value P value

HCT 0 1 0 0.999 0 1 0 1 0 0.999 0 0.999

HGB −0.01 0.945 0 0.999 −0.078 0.534 −0.266 0.001 −0.468 0.029 −0.172 0.021

MCH 0 1 0 0.999 0 1 −0.002 0.983 0 0.999 0 0.999

MCHC 0 1 0 0.999 0 1 −0.014 0.875 0.14 0.1 0 0.999

MCV 0.135 0.154 0 0.999 0 1 0 1 0.318 0.008 0 0.999

MPV −0.046 0.299 0 0.999 0 1 0 1 −0.092 0.034 −0.005 0.892

PLT −0.194 0.002 −0.049 0.157 −0.089 0.288 0.002 0.972 −0.105 0.009 −0.242 0

RBC −0.053 0.704 −0.334 0 −0.211 0.061 0 1 −0.003 0.989 −0.357 0

RDW 0.376 0 0.261 0 0.207 0.007 0.014 0.836 0.332 0 0.286 0

WBC 0.043 0.321 0 1 0.051 0.166 0.082 0.001 0.081 0.006 0.02 0.354

age 0.473 0 0.072 0.206 0.714 0 0.514 0 0.799 0 0.519 0

Hx_CAD 0.548 0.005 0.249 0.034 0.408 0.192 0 1 0.479 0.024 0.166 0.237

Hx_HF 2.149 0 1.576 0 0.578 0.066 0.207 0.221 0.792 0 0.539 0

Hx_stroke 0 1 0.019 0.904 1.281 0 1.64 0 0 0.999 0.024 0.866

HCT×age 0 1 0 0.999 0 1 0 1 0 0.999 0.053 0.163

HGB×age −0.056 0.426 0 1 0 1 −0.088 0.168 0 0.999 0 0.999

MCHC×age 0 1 −0.016 0.647 0.023 0.714 0 1 0 0.999 0 0.999

MCH×age 0 1 0 0.999 0 1 0 1 −0.001 0.991 0 1

MCV×age 0 1 0 1 −0.059 0.358 0.097 0.112 −0.034 0.74 0 0.999

MPV×age 0.033 0.288 0 1 0.027 0.533 −0.001 0.978 0.06 0.042 0.022 0.481

PLT×age 0.005 0.927 0 0.999 −0.006 0.939 0.066 0.269 0 1 0.101 0.01

RBC×age −0.024 0.707 0 0.999 0 1 0 1 0.068 0.135 0 0.999

RDW×age −0.04 0.302 0 0.999 −0.011 0.858 0 1 −0.049 0.181 −0.008 0.791

WBC×age −0.02 0.51 0 1 0 1 −0.034 0.489 −0.014 0.541 0 1

Age×age 0.121 0.005 0 1 0 1 0.026 0.666 0.085 0.043 0.038 0.345

Hx_CAD×age −0.007 0.96 0.093 0.341 −0.043 0.851 −0.104 0.398 −0.155 0.292 0.061 0.607

Hx_HF×age −0.623 0 0 0.999 −0.329 0.159 0 1 −0.22 0.113 0.056 0.616

Hx_stroke×age 0.236 0.042 0 0.999 −0.026 0.911 −0.482 0.005 0.127 0.256 0 1

Estimates of each age-hematology-history parameter for selected outcomes. Parameter estimates, β, from the final models trained on derivation data set. Outcomes appear here if 
the age-hematology-history predictors (AGE-HEM-HX) yield superior performance to age-history (AGE-HX) predictors (see Table 6). Predictor names that begin with Hx are binary 
variables for history of disease (no history=0). HCT indicates hematocrit; HF, heart failure hospitalization; HGB, hemoglobin concentration; Hx_CAD, history of coronary disease or 
heart attack before entry into study; Hx_HF, history of heart failure before entry into study; Hx_stroke, history of stroke before entry into study; MCH, mean corpuscular hemoglobin; 
MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PLT, platelet count; RBC, red blood cell count; RDW, red cell volume 
distribution width; and WBC, white blood cell count.
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to therapy in individual patients. Given the limited per-
formance benefit of RSFs for predicting outcomes with 
these same inputs, we chose not to explore other algo-
rithms, though some might show superior performance. 
The positive predictive value of our AI-adjudicated mod-
els, which in general was high, could be improved further. 
Nonetheless, the scale of our work, involving the analysis 
of >1 million notes, made a manual alternative unfea-
sible. Additionally, we have not provided a formal utility 
analysis for this model, which will depend on event rates 
and downstream consequences of a more widely avail-
able assessment of risk. Next, our event adjudication is 
likely an underestimate, as patients may have events at 
hospitals outside of those for which we accessed dis-
charge summaries. Finally, for modest event rates such as 
those observed here (between 1% and 7.5% per person-
year), measures such as C-index may not provide enough 
emphasis on false positives, which may be of greater 
interest for some applications.44,45

There is no shortage of risk models available for car-
diovascular outcomes—and the challenge is motivating 
their use. We suspect that models such as the ones 
described here will primarily be attractive at an institu-
tional or payer level, where better estimation of risk for 
a considerable percentage of a population has clear 
economic value46 or at a community level, where global 
identification of patients at risk is the first step in insti-
tuting preventive measures.47 We thus see our efforts 
aligned with the increasing emphasis on population 
health, whether the population is a panel within a hos-
pital system or a group of patients within a community. 
Subsequent, more specialized and targeted testing can 
follow such an initial risk assessment rather than be a 
precondition for risk to be estimated in the first place. 
Given the deployment of hematology counters,48–51 such 
models could have a broad reach, though should be fine-
tuned to better reflect local patterns of health outcomes.

Few efforts exist that create risk models from clinical 
electronic health record data or deliberately include mini-
mal features, and none is comparable to this AI-driven 
approach that pushes the limits of modeling cardiovascu-
lar risk. We see our approach as complementary to other 
models which typically rely on individual or provider-
entered data and have focused on patients not currently 
taking statins and free of CVD.17,18,52 Our strategy may 
also lend itself to the creation of continuously updating 
risk trajectories where the rates of change may have 
additional predictive utility. Our goal is to maximize the 
number of patients for which a system-level estimation 
of risk is feasible, with minimal disruption to the exist-
ing workflow of providers, a place where we see model 
deployment having the greatest impact.
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