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ABSTRACT OF THE DISSERTATION

First Principles Studies of van der Waals Magnetic and Energy Materials
by
Yuhang Liu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2022
Dr. Roger K. Lake, Co-Chairperson
Dr. Mahesh Raj Neupane, Co-Chairperson

Two-dimensional chromium ditelluride (CrTes) is a promising ferromagnetic lay-
ered material that exhibits long-range ferromagnetic ordering in the monolayer limit. The
formation energies of the different possible structural phases (1T, 1H, 2H) calculated from
density functional theory (DFT) show that the 1T phase is the ground state and the ener-
getic transition barriers between the phases, calculated by the nudged elastic band method,
are large, on the order of 0.5 eV. The self-consistent Hubbard U correction parameters are
calculated for all the phases of CrTes. The calculated magnetic moment of 1T-CrTes with
> 2 layers lies in the plane, whereas the magnetic moment of a monolayer is out-of-plane.
Band filling and tensile bi-axial strain cause the magnetic moment of a monolayer to switch
from out-of-plane to in-plane, and compressive bi-axial strain in a bilayer causes the mag-
netic moment to switch from in-plane to out-of-plane. The magnetic anisotropy is shown
to originate from the large spin orbit coupling (SOC) of the Te atoms and the anisotropy
of the exchange coupling constants J,, and J, in an XXZ type Hamiltonian. Renormalized

spin wave theory using experimental values for the magnetic anisotropy energy and Curie
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temperatures provides a range of values for the nearest neighbor exchange coupling.

The self-intercalated Criy,Tes is a ferromagnetic layered material with complex
structure and magnetic configurations. It is composed of alternating CrTe, and intercalated
Cr layers. The calculated formation energies show that Crii,Tes is more stable when both
the top and bottom surfaces are the CrTey layers. The exchange coupling constants are
extracted by calculating the energies of different magnetic configurations. The direction of
magnetic anisotropy depends on the inversion symmetry in Cri;,Tes. The perpendicular
magnetic anisotropy only exists in the structures with broken inversion symmetry. The
exchange coupling constant Jp, that is between the intercalated Cr atom and its nearest
neighbor Cr atom in the CrTey layer, responds to applied strain in different ways in struc-
tures with different symmetries.

A systematic theoretical study of dopants in a half-delithiated lithium nickel oxide
(Lip.5NiOg) cathode is performed to determine the preferred occupation sites, dopant ion
migration, the improvement of structural stability, and the suppression of oxygen evolution.
Dopants considered include Li, B, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Ga, Ge, As, Y, Zr, Nb, Mo, In, Sn, Sb, La, Ce, Ta, and W. For the non-transition metal
dopants, the energy barrier governing dopant migration is correlated with the number of
valence shell electrons, so that it increases from left to right across a row of the periodic
table. For these dopants, the energy barrier also decreases moving down a column of the
periodic table. For transition metal dopants, the energy barrier depends on the number
of unpaired valence electrons of the dopant, so that the energy barrier is maximum near

the middle of a transition metal row. The energy required in oxygen evolution is linearly
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correlated with the change in charge of the oxygen resulting from the neighboring dopant
ions. In particular, oxygen release is enhanced most by cobalt doping and suppressed most

by boron doping.
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Chapter 1

Motivation

1.1 Objectives

The synthesis of monolayer graphene has brought a research boom in 2D materials
due to their exotic electronic properties and potential applications in new generation elec-
tronic devices [2, 3, 4]. Among all the 2D materials, the 2D magnets have gained enormous
attention [5, 6]. Theoretically, in 2D systems, spontaneous long-range magnetization does
not exist at a finite temperature according to the Mermin-Wagner theorem [7]. However, the
Mermin-Wagner is based on a 2D isotropic Heisenberg model. When magnetic anisotropy
exists in 2D materials, the restriction is lifted. Thus, magnetic anisotropy is the key factor
to realize 2D ferromagnetic materials.

The 2D van der Waals (vdW) ferromagnetic materials are an important part of the
2D material family. Their unique electronic and magnetic properties make them promising
for spintronics [8]. For example, monolayer Crls has been found to be a ferromagnet with

perpendicular magnetic anisotropy [9]. Besides its intrinsic properties, the ferromagnetic-



to-antiferromagnetic transition can be induced by pressure [10, 11]. However, Crls’s Curie
temperature of 45K is much lower than the room temperature of 300K, which has lim-
ited its application in spintronics [9]. 1T-CrTes is a recently found 2D magnetic material,
which has one of the highest Curie temperature 310K among all the 2D magnetic materi-
als [12]. Its ferromagnetism was maintained above 300K in thin films down to 8 nm [13].
The magnetic anisotropy of 1T-Cr'Tes has been extensively studied. However, different and
contradicting experimental results for 1T-CrTey’s magnetic anisotropy were obtained from
different growth conditions and substrates, which indicates a sensitivity of this material
to external perturbations such as strain, band filling, and screening. A systemic study of
its magnetic anisotropy under different external perturbations is strongly needed. Another
interesting vdW magnetic material Crjy,Teqs [14, 15] is a self-intercalated transition metal
chalcogenide. It is often referred to as its bulk form’s chemical formula CroTes. With dif-
ferent number of layers and surface layer type, Cri4,Tes can stably exist in many different
forms, including, CroTes [14, 16, 17, 18], CryTes [19], CrsTeg [20, 21], Crs4,Teg [22], and
Cria—;Teqg [23], which are promising room temperature 2D ferromagnet with high Curie
temperature ranging between 170 and 350 K. However, the absence of a deeper understand-
ing of its layer-dependent and surface-dependent magnetism has limited its potential for
engineering magnetic phases.

Another type of vdW material is the LiNiOg based cathode material. In the era
of all-electric vehicles, the importance of stability, capacity, and safety of batteries has
increased continually. However, the performance of a LiNiOs based cathode is limited by

many challenges: cation mixing, phase transition, lattice instability, oxygen release, etc



[24, 25]. Cation doping is a promising approach to improve the stability of LiNiOy based
cathode material [26, 27, 28]. Nevertheless, there is still a lack of systematic theoretical
studies on the properties of various dopants in LiNiOg including the preferred occupation
site, dopant ion migration, and the mechanism of dopants to improve structural stability
and suppress oxygen evolution.

Thus the main object of this work is to systemically study the structural, elec-
tronic, and magnetic properties of 2D magnetic materials including layered CrTes and
self-intercalated Crii,Tes, and the ion migration and oxygen stability in doped LiNiOs

based cathode material.

1.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the theoret-
ical background of density functional theory, magnetism, and phonon dispersion. Chapter
3 presents the 2D ferromagnetic material CrTes’s structural, electronic, and magnetic prop-
erties. Chapter 4 presents the preliminary work on the structural properties, formation en-
ergy, and magnetic properties of the self-intercalated magnetic material Cri4,Tes. Chapter
5 presents the ion migration and oxygen stability in doped LiNiO2 based cathode material.
Chapter 6 is a summary of all the interesting findings and an outlook for future work. In
the Appendix, the python codes for modeling doped half-delithiated cathode Lig 5NiO9 are

documents.



Chapter 2

Theoretical Background

This chapter provides a brief description of the theories and methods used in this
thesis. The first part introduces density functional theory (DFT), which has become the
most popular tool for the simulation of electronic structure, magnetism, structural stability,
and phase transition in solid states. Several fundamental elements of DFT including many
body problem, Khon-Sham equation, exchange correlation functionals, pseudopotential, and
Hubbard U correction are included in this part. The second part discusses the origin of
spin-orbit coupling and its role in magnetic anisotropy. The third part introduces simulating

phonon spectra from first principles calculation.

2.1 Density functional theory

2.1.1 Many body problem

Solid state is many-particle system consisting of interacting atomic nuclei and

electrons. The most fundamental problem in condensed matter physics is describing a solid



state system using the non-relativistic Schrédinger equation
HY = FEV¥ (2.1)

where W is the total wave function of all ions (including nuclei) and electrons in the system,
E is the total energy of the system. H is the Hamiltonian which contains kinetic terms and
interaction terms of both nuclei and electrons, it can be expressed as

_ ZIZ.Je Z[e
H"me Z|R1—RJ| sz Z\r—r| Zle_ry (2.2)

I

where Ry, r; represent the positions of nuclei and electrons, m; and m. represent the mass
of the nuclei and electrons respectively. Z; is the atomic number. In this Hamiltonian, the
first term is the kinetic energy of all nuclei, the second term is the Coulomb interaction
between nuclei, the third term is the kinetic energy of all electrons, the fourth term is
the Coulomb interaction between electrons and the last term is the Coulomb interaction
between electrons and nuclei.

Solving the exact solution of the Hamiltonian of all nuclei and electrons is al-
most impossible. The most simple but powerful approximation to be made is the Born-
Oppenheimer Approximation. The mass of electron is only 1/1836 of proton mass, so they
are much lighter than nuclei and move much faster than nuclei. Therefore the electrons
respond almost instantaneously to any movement of nuclei, the nuclei are almost static
compared to electrons. This approximation makes it possible to separate the nuclei part
from the Hamiltonian and wavefunction. Thus, the Hamiltonian of electrons can be ex-

pressed as,

H——Z—VZ 5 Z Zic” (2.3)
4 |r—1"! IR, — 1il '

Z#J



The problem is simpler to work out the electrons wavefunction ¥g(r) which is governed by
the kinetic energy, electron-electron Coulomb interaction, and the static Coulomb potential
field of nuclei. However, this Schrédinger equation is still unsolvable due to the complexity
of the electron-electron Coulomb interaction. Thus a better method is needed to describe

electrons.

2.1.2 Khon-Sham equation

According to Hohenberg-Kohn theorems [29], an interacting electron in an external
potential V,,; follows two theorems:
Theorem 1 The external potential V,;; can be uniquely determined by the ground state
density ng(r) except for a constant.
Theorem 2 The total energy can be written as a functional of the density E[n(r)]. The
total energy functional is minimized at the exact ground state electronic density ng(r).
These theorems do not told us the exact form of the energy functional E[n(r)].
Kohn and Sham [30] derive the single-particle Schrédinger equation by the variational prin-

ciple. Following their approach, We can write the total energy functional E[n] as

e2n(r)n(r’
E[n] = TIn| +/Vext(r)n(r)dr + 1 / Mdrdr’ + Eycln] (2.4)

2 |r — r/|
in which T[n] is the kinetic energy functional of the hypothetical non-interacting electrons,
Vest is the external potential due to the nuclei or ions, the third term is the Coulomb
(Hartree) energy, and E,.[n] is the exchange-correlation energy which includes all many-
body effects. The exchange-correlation part of kinetic energy Ty is included in E,. We can

use the variational principle on the total energy functional E[n] and the minimization of the



energy functional results in the Kohn-Sham(KS) equation,

n_,
[_va + Veff(r)] i(r) = €i(r) (2.5)

where the effective potential Vs is defined as

e?n(r')

v —r'|

Verp(r) = Vear(r) +

dr’ + Vpe(r) (2.6)

where the exchange-correlation potential is expressed as

_ 0Eg[n]
Vo= 0l .1)

The electron density is expressed as

N
n(r) = loi(r)? (28)

If the exact form of E,. is known, the ground state energy E[ng| can be obtained from the
Kohn-Sham approach. It should be noted that the eigenvalues €; of the Kohn-Sham orbital
¢; have no significant physical meaning and the sum of these energy eigenvalues does not

equal to the total energy but is related as

Y1 [l S Eyeln]
Ei:ez =E+; / Wdrdr — Epeln] + ST (] n(r)dr (2.9)

2.1.3 Exchange correlation functionals: LSDA and GGA

The DFT theory successfully separates the single particle kinetic energy and the
Coulomb (Hartree) energy from the many-body exchange-correlation functional, which can
be expressed in many different approaches, such as the local spin density approximation

(LSDA) and the generalized gradient approximations (GGA).



Hohenberg and Kohn have suggested the local density approximations in their
first DFT paper [29]. They pointed out that electrons in solids can be often considered
as homogeneous electron gas. The LDA exchange-correlation functional has a quite simple

form.
E;;JCDA[n(r)] = /n(r)emc(n(r))dr (2.10)

Where €,.(n) represents the exchange-correlation energy density of a homogeneous electron
gas with density n(r). The local spin-density approximation (LSDA) is a generalization of

LDA formulated in terms of two spin densities n 1 () and n | (r).

Eypelny,ny| = /n(r)em(nT,ni)dr (2.11)

The exchange-correlation energy F,. can be decomposed into exchange part F,[n(r)] and
correlation part E¢[n(r)]

Eyc[n(r)] = Ex[n(r)] + Ec[n(r)] (2.12)

The analytic form of E, term of homogeneous electron gas can be derived from Dirac’s

work in 1930 [31].

TS

Eun(r)] = —k / n (£)dr (2.13)

where k = %(%)% for LSDA and k = 2_%%(%)% for LDA.

In respect of E. unfortunately we only know analytic expressions for the correla-
tion part E.in the high [32, 33] and low [34] density limits. A commonly used form is the
interpolation formula of Perdew and Zunger [35] in which the interpolation coefficients are

derived from the data of quantum Monte Carlo of the homogeneous electron gas generated

by Ceperley and Alder [36].



Despite LDA’s simplicity, it gives good predictions for systems with slowly varying
charge densities. Predicted lattice constants by LDA are accurate to within a few percent.
But LDA has several deficiencies. It tends to give higher binding energy. In magnetic
systems, LDA may give a wrong prediction of magnetic order, such as Fe is predicted to be
fcc paramagnetic by LDA, but it has bce ferromagnetic order in experiments. In strongly
correlated systems LDA gives inaccurate results. For instance, LDA predicts transition
metal oxides FeO, CoO, NiO and MnO to be metals or semiconductors, but they are all
Mott insulators.

LDA is limited by its bad performance in systems with rapidly changing charge
density. An improvement that can be easily considered is to include the gradient of the
electron density, then we have the generalized gradient approximations (GGA). The general

form of GGA is:

ESSAn(r)] = / F(n(r), Va(r)dr (2.14)

Most GGAs are based on corrections on LDA, the gradient of electron density Vn(r) can be
considered as the effect of the velocity of electron’s movement. The PBE [37] is a commonly
used form of GGA, in which all parameters are constants, it is a simplification of the PW91
[38]. Compared with LDA, GGAs correct the overestimated binding energy, give correct
predictions for magnetic systems such as Fe’s bce ferromagnetic order, and perform better
for bulk phase stability, etc. Thus, GGAs have become the most common choice of exchange

functional for studying magnetic materials.



2.1.4 DFT+U: On-site Coulomb repulsion correction

The self-interaction of localized electrons is not correctly described by L(S)DA
or GGA, which makes the L(S)DA and GGA fail in predicting the band structures of
materials with d and f orbitals such as transition metal oxides and rare earth compounds.
This deficiency is remedied by introducing the on-site Coulomb repulsion term into the
standard DFT total energy functional Eppr in a Hatree-Fock like approach. Then, the
localized orbitals can be shifted to the correct energy levels by the repulsion term. In our
calculations, a simplified form of LDA+U introduced by Dudarev [39] et al is used. In

Dudarev’s approach, the energy functional is expressed as

U—-J

Eprriv = Eprr + — Z[Tr(p") —Tr(p°p?)]

g
= Eprr + — Z Z p7) — O 807:)] (2.15)
i,

where pf ; is the density matrix element of d of f electrons with spin state o. In Dudarev’s

approach, only the effective U value Uy = U — J is of significance.

2.2 Magnetism

2.2.1 Heisenberg Hamiltonian and exchange interactions

The spontaneous magnetic ordering originates from the interaction between atomic
magnetic moments. Two types of interactions exist between atomic magnetic moments:
dipole-dipole interaction and exchange interaction. Dipole-dipole interaction is the classic
interaction between two magnetic dipoles. In solid states, the dipole-dipole interaction is

typically very weak and has negligible effects on the magnetic ordering at room temperature.
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Thus, it can be totally ignored without concern in FM, AFM, and other types of magnetic
materials. The exchange interaction is a quantum effect due to the overlap of antisymmetric
electron wavefunctions between neighboring atomic sites. It is described by the Heisenberg

Hamiltonian,

HHeisenbe’/‘g = Z Jz]Sz ) Sj (216)
i#j

where J;; is the exchange coupling constant between atomic spins S; on site ¢ and S; on site
j- In a simple magnetic material where J;; keeps the same value for all pairs of neighboring
sites, the magnetic ordering is decided by the sign of J;;. Positive J;; makes neighboring
spins tend to align parallel to each other, which results in the FM ordering. On the contrary,

with a negative J;; anti-parallel spins become the ground state, i.e. the AFM ordering.

2.2.2 Spin-Orbit coupling

According to the Mermin-Wagner theorem [7], finite temperature long-range mag-
netic ordering in 2D materials cannot exist without magnetic anisotropy. Magnetocrys-
talline anisotropy is a special case of magnetic anisotropy. It means the total energy of an
FM material depends on the magnetization direction. In this thesis, magnetic anisotropy al-
ways refers to magnetocrystalline anisotropy. The magnetocrystalline anisotropy originates
from the relativistic properties of electrons, i.e. spin-orbit coupling (SOC), which describes
the interaction between the electron spins and the magnetic field generated by the orbital
motion of electrons around the nucleus. Relativistic electrons are described by the Dirac

equation, but it is beyond the scope of this thesis. In the non-relativistic limit v/c < 1, the
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Dirac equation is reduced to the relativistic Hamiltonian,

(p +eA)? e (p +eA)* eh? _,
H=——"——¢eV-—S-B-— — vV
2m c m 8m3c3 8m2c?
e
where S = %(7 is the spin operator, V is the potential, p is the canonical momentum

operator, c¢ is the speed of light, and A is the magnetic vector potential. The first term
2
% — eV is the non-relativistic Hamiltonian. The second term is the Zeeman effect,

e
HZeeman = _ES -B (218)

it describes the interaction between spins and the external magnetic field B. The following

(pteA)?
8m3c3

eh?

S22 V2V are the relativistic kinetic energy correction and the

and —

two terms —

Darwin term, respectively. The last term is the SOC term.

e

Replacing the kinetic momentum term (p 4 eA) by mv, we can obtain

e
Assuming the potential V is spherically symmetric scalar potential, then the SOC Hamil-

tonian becomes

e rdV(r)
Hsoc = —5—555 - (C—7— xmv)
B e dV(r)
T oo2am2er dr S (mrxv)
e dV(r)
- _ L-
2m2c?r  dr S
=¢(r)L-S (2.21)



where £(r) is the SOC constant. Switching L with S does not change the Hgoc, because
L and S commute with each other.

For a hydrogen-like atom with the spherical potential V' (r) = eZ/4megr, the expec-
tation value of SOC constant in the non-relativistic eigenstate |n,[) with principal quantum
number n and orbital quantum number [ can be expressed as

fn,l = <n7l’€(r) ‘nv l>

Z*atmc?

T 2m2nl(l+ 3)(1+ 1)

(2.22)

2 .
4;50% is the fine structure constant. From this

where Z is the atomic number, o =
expression, we can see that the SOC constant is quite large for states with small [ and large
Z. Specially, when [ = 0 the &,; becomes 0, but the L - S term also becomes 0 which make
the expectation value of Hgoc always be 0.

To obtain the expectation value of L- S in state |n, 1), the following transformation

is performed by using this relation J = L + S,
L o 2 2
L-S:§(J —L*-8S%) (2.23)

where J is the total angular momentum operator. Then the expectation value is

2
(n,l|L-8S|n,l) = %(j(j +1)—1l(l+1)—s(s+1)) (2.24)

where 7, [, and s are the total angular momentum number, orbital angular momentum
number, and the spin angular momentum number, respectively. Combining the Eq. (2.22)

and Eq. (2.24), we can obtain the SOC energy of a given state |n,[)

Zratmc(j(G+1) — 11+ 1) — s(s + 1))
An3l(l+ 3)(L+1)

Esoc(n,l) = (2.25)
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By using the following ladder operators

Sy =S, +iS,
S_ =8, —iS,
Ly =Ly +ilL,
L_=L,—iL, (2.26)

The L - S term in the SOC Hamiltonian can be transformed to
1
L . S - §(L+Sf + L,SJF) + LZSZ (227)

Since S and S_ contain the off-diagonal terms in the spinor space and the L and L_
contain off-diagonal terms in the orbital angular momentum space when [ > 0, L - S is the

only term in Eq. (2.17) coupling states with different S, and L, together.

2.2.3 Magnetic anisotropy

In the transition metal compounds, the SOC constant £ is typically much smaller
than the bandwidth. Thus, the Hgpoc can be treated as the perturbation. In this approach,

the SOC energy shift AES%C of a particular state |n) caused by a state |m) is

soc _ 2 |(n| L - 8 [m)[*
AE.;D =&(n|L-S|n) +§ Z T B _E,

m#n

(2.28)

where |n) and |m) are eigenstates of the unperturbed Hamiltonian with energy levels F,, and
E,,. The (n|L-S |n) only allow states with either different spins or different orbital angular
momentum couple to each other, so the first term in Eq. (2.28) has zero contribution to

AE;?%C. The numerator of the second term depends on the direction of spin quantization
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Figure 2.1: The effect of SOC on the energy levels of states |n) and |m) with Fermi level at
various positions.

axis n = (sinfcos@, sinfsing, cosh), which brings the anisotropy. The denominator depends
on the energy difference between two states, which means the SOC coupling is stronger
between states on closer energy levels. The sign of Eq. (2.28) changes when swapping |n)
and |m), which indicates the two states are shifted the same amount by SOC but in opposite
directions. For the SOC between degenerate states, the degenerate perturbation is needed,
which gives

AESOC — 4i¢ (n| L |m)| (2.29)
It is noteworthy that the degenerate SOC energy shift is of the first order in &, which makes
degenerate states have stronger SOC coupling than non-degenerate states. The AESOC
varies from 0 to its maximum value as the spin quantization axis rotates [40]. It affects the
MAE in different ways depending on the position of the Fermi level. In Fig. 2.1 (a), the two

states |n) and |m) are occupied before and after the SOC coupling is included. The total

energy of these two states is not affected by the SOC coupling in this situation. The case in
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Fig. 2.1 (b) is more complicated, |m) becomes unoccupied and |n) decreases in energy with
SOC perturbation. This situation contributes to the MAE, but the changed total energy
does not equal to AEsoc because the electrons in |m) are redistributed after the SOC effect
is included. In Fig. 2.1 (c), |n) is occupied and |m) is unoccupied with and without SOC.
The total energy is changed by the amount of AEgoc in this situation. In Fig. 2.1 (d),
|n) changes from unoccupied to occupied, which increases the total energy. Similarly to the
case in Fig. 2.1 (b), electrons re-distribution happens when SOC is included. In Fig. 2.1
(e), the two states |n) and |m) are always unoccupied before and after the SOC is included,

so they have no contribution to the total energy.

2.3 First principles phonon dispersion calculation

The harmonic approximation is commonly used in phonon frequency calculation.
Atoms are assumed oscillating around their equilibrium positions r with displacements
d. The total energy function ® is assumed to be a function of the displacements around
equilibrium positions up to the second order. The total energy is expressed in the following

series form:

O=0o+ » Z@a(l,n)da(l,n)—i—%z D Bap(ln, 0 )da(l,n)ds(I', 1) (2.30)

a=x,y,2 I,n a,b ln,l' n'

where a, b = x, y, z represent directions of three Cartesian coordinate axes. [ and n are the
labels of unit cell and atom in that unit cell respectively. ®q is the zeroth order force constant
which does not depend on the positions of atoms, it is set to be 0 by default. ®,(l,n) is
the first order force constant acting on the nth atom in the /th unit cell along direction a.

®,(1,n) only depends on the position of one atom and one direction. @, (I, n,’,n’) is the
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more complicated second order force constant which is determined by two atoms and two
directions. d4(l,n) is the displacement of the nth atom in the /th unit cell along direction
a.

The finite displacement method is used to calculate these force constants. Potential
energies of unit cells with small displacements along different directions at constant volume
are calculated by first principles method such as DFT. A force Fy(l,n)and a second-order

constant @, (In,!'n") are obtained by partial derivatives of potential energy.
—0P
~ 0da(l,n)

- 920 R
= 9d(,n)dy (1) 9da(l,n)

Fo(l,n) = (2.31)

Oy p(l,n, U0 (2.32)

With the finite displacement method, the force is given approximately by the total energy

difference between the unchanged and displaced unit cell as

vV — Vda(l,n)
F,(l,n)= ——F—— 2.3
@) = e (2:33)
and the second-order derivative is also replaced by
Fb(l/ nl) _ Fda(lvn)(l/ TL/)
B, p(l,n, ', n) = ’ b ’ 2.34
,b( , 1, ,’I’L) da(l,n) ( )

where the superscript d,(l,n) means the nth atom is displaced d along the a direction.
The forces on atoms at equilibrium positions are all zero. With these second-order force

constants, the dynamical matrix D(q) is constructed as

(Z Onl n Z r ’n, —r n
Dapm () = 3 Leal0r L) b ) ikt ) -x (O] (2.35)
l/

The dynamical matrix describes the interaction between the nth atom with a mass of m,,

in one unit cell and the n'th atom with a mass of m,, in all unit cells. The sum of the unit
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cells usually runs over the nearest neighbors in practical calculations in order to reduce the
cost.
The phonon frequency wy and polarization vector py are obtained by solving

eigenvalue equation of dynamical matrix D(k),

Z Da’b’n’n/ (k)pkjvbvnl = wl%jpkj#Ln (236)
bn

where j is the index of the jth phonon band. The displacement vector of the nth atom in

the Ith unit cell can be derived from its corresponding polarization vector,

A iq-r(l,n
d(l,?’l) = 7kaj7nelq (Lm) (237)

where A is the complex constant.

The displacement vectors d(l,n) are used for analyzing and visualizing the vi-
bration modes. The phonon dispersion is plotted from phonon frequencies at k points
connecting high-symmetry points in reciprocal space. The potential energy @ is at its min-
imum if the crystal is in the ground state, which means any displacement of an atom from
the equilibrium position increase the energy. The phonon frequencies of a stable phase are
real at all k points. The imaginary frequencies (always shown as negative frequencies in
the dispersion curve) indicate the current unit cell is not in the ground state and has the

possibility of phase transition.
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Chapter 3

Structural, Electronic, and

Magnetic Properties of CrTes

3.1 Introduction

The recent discovery of monolayer two-dimensional (2D) ferromagnetic (FM) ma-
terial [41, 42], the compatibility of 2D FM materials with other 2D materials, and their
susceptibility to external control of their magnetic properties have made 2D FM materials
a topic of high current interest. For example, the magnetic anisotropy can be controlled by
applying an external electric field [43], strain [44], and band filling [45]. The ground state
magnetic ordering can be switched among ferromagnetic (FM), anti-ferromagnetic (AFM),
collinear, and noncollinear by stacking pattern [46], strain [47], and electric field [48, 49].
Moreover, the formation of heterostructures with other 2D materials, breaks time reversal

symmetry, which can be exploited for valleytronics [50] or the Chern insulator [51].
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A relatively new class of layered magnetic materials such as CrTey, Crls and
CrGeTes have extended the applicability of the layered materials in the field of spintron-
ics [52]. One material of particular interest is CrTes in which Cr hexagonal planes are
sandwiched by Te layers. Several studies [53, 54| suggested the non-magnetic 2H phase
was the ground state, whereas recent studies all find the 1T phase to be the ground state
[12, 13, 55, 56, 57, 58]. 1T-CrTey has one of the highest Curie temperatures among the 2D
magnetic materials. The discovery that bulk 1T-CrTes is a layered metallic ferromagnet
with a Curie temperature of ~ 310 K [12], led to a number of further studies. Mechani-
cal exfoliation of 1T-CrTes with either h-BN or Pt encapsulation in a glove box produced
samples in which easy-plane ferromagnetism was maintained in thin-films down to ~ 8 nm
while maintaining a Curie temperature above 300 K [13]. This study also showed that CrTes

L and

rapidly oxidizes in ambient conditions and that the pristine Raman peaks at 100 cm™
134 ecm™! shift to 125 cm™! and 145 cm™! after a few hours in air [13]. A number of
studies of epitaxial grown material quickly followed. Thin film 1T-CrTes was grown by
molecular beam epitaxy (MBE) on bilayer graphene (BLG)/SiC and capped with a 5 nm
Te layer to prevent the oxidation [55]. Ultrathin films (< 7 monolayers (ML)) posessed
perpendicular magnetic anisotropy (PMA) with 7, dropping from 300 K for thicker films
down to 200 K for a monolayer. A large PMA constant of K, = 5.63 x 10% erg/cm® was
measured for a 7 ML film. In a separate work, this value of K, was also found for 80 nm
thick films of Crj 3Tey [15]. In thin films of 1T-CrTey grown by chemical vapor deposition

(CVD) on SiOj, the magnetic easy axis changed from in-plane to perpendicular as the

thickness was reduced below approximately 10 nm (& 17 MLs) [56]. Reflectance magneto
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circular dichroism measurements showed that T, increased from approximately 165 K to
212 K as the film thickness decreased from 48 nm to 7.5 nm. This last trend of increasing
T. with decreasing film thickness is unique to these samples and experiments. The major-
ity of the data in this study was taken from oxidized samples based on the Raman peaks
at 123 cm~! and 143 cm™!, however a comparison was made between samples with and
without h-BN encapsulation; the values for T, remained essentially the same, and both sets
of films exhibited strong PMA [56]. The authors theoretically found that the sign of the
magnetic anisotropy energy (MAE) in ML 1T-CrTes switches from in-plane to out-of-plane
with increasing magnitude of the on-site Coulomb potential (U), with switching occurring
at U ~ 3.2 eV; and they discuss the possibility that thinner samples provide less screening,
larger electrostatic interaction with the substrate, larger values of U, and thus PMA [56].
MBE grown 1T-CrTey on (111) GaAs exhibited a Curie temperature that dropped from
T. = 205 K for a 35 ML film to 191 K for a 4 ML film, and, unique to these samples, all
thicknesses exhibited PMA [57]. No information on a capping layer or other protection from
oxidation was provided [57]. A most recent study of MBE grown 1T-CrTe; on BLG/SiC
found that ML 1T-CrTes had a zigzag AFM (z-AFM) ground state accompanied by a 2 x 1
reconstruction of the lattice resulting from relatively large substrate induced strain (-5%
along a; and +3% along as) [59].

The intense interest in 1T-CrTey also motivated many theoretical investigations
based on density functional theory calculations. Calculations using the Perdew-Burke-
Emzerhof (PBE) functional [37] without a Hubbard U correction or spin orbit coupling

found that 1% compressive strain caused ML 1T-CrTes to transition from an FM to an
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AFM ground state [60]. Simulations of ML 1T-CrTey with the all electron code WIEN2k
[61] using the PBE functional found unstable modes in the phonon spectrum which were
removed in a /3 x v/3 charge density wave (CDW) state [62]. In both the normal and CDW
phase, tensile strain was required to obtain PMA, and the magnetic anisotropy switched
from in-plane to out-of-plane for a lattice constant of > 3.8 A in the CDW phase and
> 3.86 A in the normal phase [62]. PBE4U calculations, with U = 2 eV, found a stable
phonon spectrum for ML 1T-CrTey and in-plane FM magnetization [63]. The finding of in-
plane magnetization results from the use of the value U = 2 eV [56]. PBE level calculations
without a Hubbard U correction found an AFM ground state for MLL 1T-CrTeq, and a
reduction of the lattice constant from 3.79 A in the bulk to 3.68 A in ML [64]. The ML
AFM ground state was attributed to the reduction of the lattice constant. The thickness
dependence of the magnetization of 1T-CrTey was investigated [65] using the opt-B86b-
vdW functional [66] implemented in VASP [67, 68]. The ML ground state was found to be
z-AFM with a corresponding reduction of the in-plane lattice constant from ~ 3.8 A for
bulk to ~ 3.57 A for ML [65]. The FM ML CDW ground state [62] was found to be higher
in energy than the z-AFM state. The results are qualitatively similar to those of Ref. [64].
AFM interlayer coupling was found in 2 through 4 MLs, and FM interlayer coupling for
5 MLs or more [65]. PBE-D3 + (U =2 eV) calculations of bilayer 1T-CrTe; found a g-type
AFM ground state with both intra-layer and inter-layer AFM coupling [69]. Compressive
strain greater than 4% caused the interlayer coupling to become FM while the intra-layer
coupling remained AFM.

Crls is another 2D magnetic material with many similarities to CrTes. The Cr
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ion is in octahedral coordination with the I anions resulting in the same ey, to, crystal field
splitting and superexchange coupling through the Cr-I-Cr bonds at near 90° bond angles.
The origin of the large out-of-plane magnetic anisotropy in Crlz has been investigated in
detail [70, 71]. It was found that the MAE is primarily from the SOC on the I atoms, and,
therefore, anisotropic superexchange is the source of the magnetic anisotropy [70]. Further
investigation found that the MAE was very sensitive to the deviation of the dihedral angle p
between the plane formed by the Cr-I-Cr bonds and a vertical plane through the Cr-Cr pair
[71], which is a measure of the trigonal distortion of the edge-sharing CrTeg octahedra. In
the undistorted octahedron, the dihedral angle 6o, ~ 35.3°, and the deviation is defined as
080 = 0o, —0p. In Crl3, positive values for 60p resulted in out-of-plane magnetic anisotropy
and negative values resulted in in-plane magnetic anisotropy.

The variety of different and contradicting experimental data for 1T-CrTey origi-
nating from different growth conditions and substrates indicates a sensitivity of the thin
layer material to external perturbations such as strain, band filling and screening. The
variety of different and contradictory theoretical predictions resulting from different models
and, particularly, from the use of different values of U possibly indicate a sensitivity to
screening, which is affected by different environments as discussed in [56]. In few monolayer
films, both the interlayer magnetic coupling and the sign of the magnetic anisotropy are
affected in incompatible ways by the value of U. For few layer films, small U values give,
what appears to be at this time, the experimentally correct sign of the interlayer magnetic
coupling coupling (i.e. FM), but the incorrect sign for the magnetic anisotropy (i.e. predic-

tion of easy-plane magnetic anisotropy). Conversely, larger values of U predict the correct
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magnetic anisotropy (PMA), but the incorrect interlayer magnetic coupling (i.e. AFM).
Thus, to address the question of the magnetic anisotropy in a monolayer, a value for U
must be chosen that reproduces the observed magnetic anisotropy, which, experimentally,
is found to be out-of-plane.

In this work, we first quantify the energy differences and energy barriers separating
the different crystallographic phases: 1T, 1H, and 2H. We then focus on the magnetic
anisotropy of bilayer and monolayer 1T-CrTes and understand how it is affected by strain
and band filling. We investigate the source of the magnetic anisotropy originating from
the large SOC of the Te atoms. Based on the insights gained from prior work on Crls
[70, 71], we analyze the SOC matrix elements and distortion of dihedral angle, and their
relationships to the sign of the MAE. Finite temperature long range magnetic order in 2D
monolayer 1T-CrTey is subject to the Mermin-Wagner theorem [7]. As such, an energy gap
is required in the magnon excitation spectrum to prevent the magnetic order from being
destroyed by thermal fluctuations. This energy gap results from the magnetic anisotropy.
The interdependence of the MAE, exchange coupling, and Curie temperature in ML 1T-
CrTey, is analyzed using renormalized spin wave theory (RSWT) [72]. RSWT provides
a mean field self-consistent calculation of the magnon mode occupation and the average
magnetic moment as a function of temperature. Examples of RSWT applied to other 2D
magnetic materials can be found in Refs [42, 70, 49]. Finally, an inverse calculation is
performed in which the experimentally measured value for T, is used to determine all pairs

of values for the MAE and exchange coupling constants that result in 7.
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3.2 Computational methods

The first-principle calculations use spin-polarized density functional theory (DFT)
with the projector augmented wave (PAW) [73, 74] method and a plane-wave basis, as
implemented in the Vienna ab initio simulation package (VASP) [67, 68]. The Perdew-
Burke-Enzerhof’s (PBE) [37] version of the generalized gradient approximation (GGA) is
used for the exchange-correlation density functional. The vdW corrections are included with
the PBE+D3 model [75]. All structural relaxation calculations use the PBE+D3 level of
theory. The lattice is fully relaxed until the force on each atom is smaller than 0.001 eV/ A
For finite thickness slabs, 15 A vacuum layers are added. Energy barriers between the
ground state and the metastable states of CrTes are determined using the nudged elastic
band (NEB) method [76, 77].

For calculation of the electronic and magnetic properties, the Hubbard U correction
(PBE+U) [39]. and spin orbit coupling (SOC) are included. The values of the U parameter
for the different phases of CrTey are calculated using the linear response method [78], and
the values are given in Table 3.1. In this method, the linear behavior of the total energy with
respect to the occupation number is imposed to correct the local and semi-local functionals.
Prior to the implementation of the Linear Response method, the standard DFT calculation
was first performed to obtain the converged charge. Following that, the interacting response
of one single Cr atom was calculate by performing self-consistent DF'T calculations with a
series of Lagrange multipliers for the energy window from -0.08 to 0.08 eV, which usually
falls within the linear region of number of d electrons versus Lagrange multipliers. The

bare response of a single Cr atom was calculated by performing a non-self-consistent charge
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Table 3.1: U parameters of the Cr atom in CrTes calculated from linear response method.

Phases 1T bulk 1H bulk 2H bulk 1T 1L 1H 1L 2H 2L

U (eV) 5.80 5.59 5.85 5.92 5.91 5.59

calculation with the same Lagrange multipliers as the self-consistent calculations. To avoid
the interaction between the Cr atom and its periodic image within the unit cell, a 2x2x2
supercell was used during the U parameters calculations. The U parameter is then given
by the difference between the second derivatives of the self-consistent energy, a*/ and the
non-charge-self-consistent energy, a”°"~*¢/ with respect to the localized occupation of a

single site 78],

aafcf 8a?on—scf

aqiscf B aq@on—scf

1

U =

(3.1)

where « is the Lagrange multiplier, g; is the number of d electrons of the single Cr atom. The
first term in the right-hand side of the equation represents the interacting case, whereas the
second term represents non-interacting case. The accuracy of DFT+U calculations depends
on the choice of the system dependent parameter, U. In general, the value of U parameter
is determined empirically to match experimental structural and electronic properties of a
given material.

For all calculations of the magnetic properties of 1T-CrTes, the value of U= 5.8 eV
is used. Because with U = 5.8 eV, the magnetic moment per formula unit of 1T-CrTes is
3.05 pup for monolayer and 3.08 up for bulk, which are closest to the typical value 3 up.
Calculated magnetic moments as a function of U is provided in Table. 3.2. This method

has been used for other 2D Cr based materials such as CrX3(X = Cl, Br, I) monolayers
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Table 3.2: DFT calculated magnetic moment (up) per Cr atom in 1T-CrTey with different
U values.

U (eV) 0 1 2 3 4 4.5

Mono-layer | 2.390 | 2.548 | 2.667 | 2.769 | 2.860 | 2.913
Bi-layer 2.406 | 2.562 | 2.692 | 2.806 | 2.903 | 2.949

Bulk 2.385 | 2.528 | 2.661 | 2.781 | 2.884 | 2.933

U (eV) 48 |5 58 |6 7 8

Mono-layer | 2.953 | 2.978 | 3.085 | 3.110 | 3.208 | 3.285
Bi-layer 2.976 | 2.993 | 3.059 | 3.074 | 3.148 | 3.216

Bulk 2.958 | 2.981 | 3.053 | 3.070 | 3.147 | 3.219

[79]. 12 valence electrons are included for Cr (3p®3d®4s'), and 6 valence electrons for Te
(55%5p*). The cutoff energy is 500 eV. A 24x24x12 Monkhorst-Pack k-grid mesh [80]
for bulk structures and a 28x28x1 mesh for layered structures are used to ensure that
the magnetic anisotropy energies are well converged. The convergence tests are shown in
Fig. 3.1. The Gaussian smearing method is employed with a width of 0.05 eV for the
structure, magnetic, and energy barrier calculations for insulating systems. For metallic

systems, the Methfessel-Paxton smearing method is employed with a width of 0.05 eV.

3.3 Results

3.3.1 Ground state and energy barrier in phase transition

CrTes can potentially crystalize into various layered phases such as 1T, 1Ty, 1H,

and 2H phases [81, 82], as illustrated in Fig. 3.2. The geometry-optimized in-plane lattice
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Figure 3.1: K-point convergence test on the magnetic anisotropy energy in (a) layered and
(b) bulk 1T-CrTes
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Figure 3.2: Top and lateral views of 1T, 1H, and 2H phases of CrTes. The unit cells are
shown by the thin lines. Blue and golden balls represent Cr and Te atoms, respectively. The
1T phase contains one formula unit (f.u.) per unit cell in a hexagonal lattice belonging to the
P3m1 space group with each Cr atom surrounded by Te atoms in octahedral coordination.
The 1H and 2H phases are hexagonal, trigonal prismatic, and the difference between the
two phases is in their interlayer stacking. In the 1H structure, layers are stacked directly
on top of each other so that the 1H structure contains 1 f.u. / unit cell and belongs to
the P6m2 space group. The 2H structure contains 2 f.u. / unit cell and belongs to the
P63/mmec space group.

constant a and the interlayer distance d for each phase is shown in Table. 3.3. Among
all of the possible phases, the 1T; phase of CrTes in both the bulk and monolayer forms
is unstable during the structure optimization step, and hence is excluded from this study.
Experimental values are only known for the 1T bulk phase, and our calculated values match
well with the experimental ones of a = 3.7887 A and ¢ = 6.0955 A [12].

To determine the energetic stability of each phase, the formation energy E oy, is
calculated from the energy difference between the material and isolated atoms per chemical

formula, which is defined as

n
Eform = Etotal - Z L; (3.2)

(2
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Table 3.3: Formation energies Efop (€V) and relaxed lattice constants for different phases
of CrTes in bulk, monolayer (1L) and bilayer (2L) geometries. For the bilayer structure, ¢
corresponds to the interlayer Cr-Cr distance.

Phases  Ejform a c

1T bulk -10.44 3.787 5.967

1T 2L -10.18 3.759 -

1T 1L -10.09 3.692 -

1H bulk -10.04 3.491 7.493

1H1L  -9.75 3.646 -

2H bulk -10.14 3.498 6.951

2H 2L -9.98 3.493 7.001

where Ejq is the total energy of the material, E; is the energy of a single constituent
atom, and n is the total number of atoms in the unit cell of the material. A more negative
E{orm corresponds to a more stable system. As shown in the Table. 3.3, the 1T phase is
the ground state for both the bulk and the monolayer forms. Quantitatively, the formation
energy of the 1T bulk phase is lower than those of the 2H and 1H phases by 0.30 and 0.40 eV,
respectively. The energetic barriers separating the ground state from the metastable states,
calculated from the NEB method, are shown in Fig. 3.3 for (a) bulk and (b) monolayer.
The energies of the 1T bulk and monolayer serve as the reference energies and are set to
be 0 eV. The energetic barriers for the bulk phase transitions from 1T to 2H and 1H are
0.99 eV and 0.95 eV, respectively. The energetic barrier for the monolayer transition from

1T to 1H is 0.78 eV. The large magnitudes of energy barriers separating the 1T phase from
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Figure 3.3: (a)The energy barrier between 1H, 2H, and 1T phases of bulk CrTey. (b)The
energy barrier between 1T and 1H phases of monolayer CrTe,.

the other metastable phases combined with the large energy differences of the ground states,
indicate that the 1T phase, in both bulk and monolayer forms, should be very stable, and
transitions to other phases difficult to achieve.

To verify the stability of 1T phase monolayer, the phonon spectrum is calculated
using different U parameters as shown in Fig. 3.4. As found previously [63], the unstable
modes vanish with the inclusion of a non-zero Hubbard U parameter. It is also found from

our calculation that the phonon becomes insensitive to the Hubbard U parameter when

U>1¢eV.
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Figure 3.4: Phonon spectra of monolayer 1T-CrTes calculated with different values of U.
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3.3.2 The magnetic anisotropy of layered and bulk 1T-CrTe,

The magnetic anisotropy energy plays a crucial role in the stability of the magnetic
ordering in low dimensional materials, and there is great interest in controlling it with
externally applied fields and strain. We therefore investigate the sensitivity of the MAE to
strain and band filling in both few-layer and bulk 1T-CrTes. Since, the energy differences
and energy barriers between the 1T phase and the other phases are large, we only consider
the magnetic properties of the 1T phase.

The MAE (Apa) is defined as the energy difference between the total energies

Fliotal when the magnetization m lies along the x axis or the z axis, i.e.

AMA = Etotal(mHi‘) - Etotal(m||§)~ (33)

The sign of MAE is very sensitive to the Hubbard U parameter, as shown in Fig. 3.5. U =
5.8 eV is used to calculated the MAE of all different structures of CrTey. As shown in the
Table. 3.4, in the FM ground state, the magnetization easy axis of monolayer 1T-CrTes is
out-of-plane while the multilayer and bulk 1T-CrTes have in-plane magnetic easy axes.
Device applications require external control of the MAE, so we therefore consider
the effects of strain and band filling in monolayer, bilayer, and bulk 1T-CrTe,. As shown in
the Fig. 3.6(a) the MAE of a monolayer is sensitive to tensile bi-axial strain, and the MAE
of a bilayer is sensitive to compressive bi-axial strain. The easy axis of monolayer 1T-CrTes
switches from out-of-plane (z-axis) to in-plane (z-axis) at 2.3% bi-axial tensile strain. The
easy axis of bilayer 1T-CrTey switches from in-plane (z-axis) to out-of-plane (z-axis) at 3%

bi-axial compressive strain. The MAE of the bulk structure is relatively insensitive to the
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Figure 3.5: DFT calculated magnetic anisotropy energy (Aya) as a function of on-site
Coulomb potential U for monolayer, bilayer, and bulk 1T-CrTe,.

Table 3.4: Magnetic anisotropy energies of 1T-CrTes in layered and bulk forms.

Structure MAE per f.u. (meV)  Easy axis

1L 5.56 out-of-plane
2L -4.15 in-plane
3L -3.61 in-plane
4L -2.88 in-plane
5L -3.37 in-plane
6L -3.29 in-plane
Bulk -3.22 in-plane
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applied uniaxial or biaxial strain. As shown in Fig. 3.6(b), band filling also switches the
magnetic moment of monolayer of 1T-CrTes from out-of-plane (z-axis) to in-plane (z-axis).

The sign of the MAE switches at a filling of 0.22 electrons per unit cell, corresponding to a

sheet carrier concentration of ng = 1.9 x 10 cm™2.
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Figure 3.7: Magnetic anisotropy energy Ay (per fu.) and difference in SOC energies
Agoc (per f.u.) of Te-5p orbitals between the x (in-plane) and z (out-of-plane) magnetiza-
tion orientations. Te® and Te” denote the Te atoms on the surface and at the vdW gap of
the bilayer, respectively.

To obtain insight into the source of the magnetic anisotropy in 1T-CrTes, we
consider the SOC matrix elements of Cr-3d and Te-5p orbitals. The Cr d-orbitals’ contri-
butions to SOC matrix elements are negligible in comparison with those of the Te p-orbitals,
so they will be ignored. We abbreviate the p-orbital matrix elements of the SOC term in

the Hamiltonian as (p;|p;). Similar to the definition of the MAE in Eq. (3.3), we define

Asoc = Esoc(ml|2) — Esoc(ml]|2) (3.4)

where Egoc is the energy associated with the SOC matrix elements.
In Fig. 3.7, Esoc(ml||z, 2) is calculated from the sum of the SOC matrix elements,
i.e.
Esoc(ml|Z,2) = ((pylpz) + (pylp=) + Pelp)) |z 2 (3.5)
and the difference Agoc is plotted. Fig. 3.7 shows Ay and Agoc for monolayer, bilayer

and bulk 1T-CrTes. It is clear that the difference in the SOC energy Agoc tracks both
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the magnitude and sign of the MAE, Aya. In the bilayer structure, the Te atoms on the
outer surfaces (Te®) and the ones adjacent to the vdW gap (Tev) are in different chemical
environments, and thus they contribute different amounts to the total MAE.

The changes in individual SOC matrix elements with different magnetization di-

rections are shown in Fig. 3.8. Here, A, = (0ilpj) s — <pi|pj>\m”2. In the FM ground

state (zero strain) of monolayer 1T-CrTey, (py|p.) contributes the most to Agoc, while
in the FM ground states of bilayer and bulk, the dominant matrix element is (p,|p,). A

dominant A, ) matrix element anisotropy coincides with an out-of-plane easy axis, and

Pylp=

a dominant A ) matrix element anisotropy coincides with an in-plane magnetic easy

Pylpa
axis.

Fig. 3.8(a) also shows the effect of strain on the dihedral angle 6p between the
Cr-Te-Cr plane and a vertical plane through the Cr-Cr pair illustrated in Fig. 3.9. Positive
values of 60p = 6o, — Op correspond to the Cr-Te-Cr plane becoming more vertical. For
the monolayer and bilayer, an out-of-plane easy axis occurs at more positive values of §6p,
which is qualitatively consistent with the results for Crls described in Ref. [71], although
the dependence is far from linear. For the monolayer in equilibrium, 66p = 2.6° is relatively

large and positive, the A, matrix element anisotropy is dominant, and the easy axis

Pylp=)

is out of plane. For the bilayer in equilibrium, two values of d0p are given, one for the
Te atom at the surface (1.0°) and one for the Te atom at the van der Waals gap (0.8°).
The angles are similar, 66p ~ 1°, the matrix element anisotropy is dominated by A, 1.

and the easy axis is in plane. As compressive bi-axial strain is applied to the bilayer, d0p

becomes more positive, the SOC ma