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Reduced grid operating costs and renewable energy curtailment with 
electric vehicle charge management 
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A B S T R A C T   

Widespread adoption of plug-in electric vehicles (PEVs) and renewable energy (RE) can help to jointly decar-
bonize the transportation and electricity sectors. Previous studies indicate strategies to manage PEV charging 
facilitate integration of RE into electricity grids, but the value of such strategies at scale is unclear because 
electricity markets and PEV charging have been inadequately represented together. This analysis focuses on the 
state of California in 2025, and improves on prior work by linking high-resolution mobility and grid dispatch 
models to quantify the value of managed charging under a 50% RE grid and PEV adoption scenarios up to 
California’s 5 million vehicle target. Even after accounting for practical charging and grid constraints, 0.95 to 5 
million “smart” charging PEVs avoid $120 to $690 million in California grid operating costs annually (up to 10% 
of total costs) and reduce RE curtailment up to 40% relative to unmanaged PEVs. Overnight time-of-use (TOU) 
charging provides similar cost savings but increases curtailment. Both of these managed strategies defer system 
infrastructure expansion at the 5 million PEV deployment. The results suggest residential smart charging com-
plemented by TOU tariffs with added daytime periods are policies with most potential to advance California’s 
dual PEV and RE goals.   

1. Introduction 

The number of plug-in electric vehicles (PEVs) on the road, including 
both fully battery electric vehicles (BEVs) and plug-in hybrid electric 
vehicles (PHEVs), has surpassed 3 million worldwide and is growing 
steadily (International Energy Agency, 2018). Widespread PEV adoption 
can enable oil independence (Kintner-Meyer et al., 2007), save on fuel 
costs for drivers (Dumortier et al., 2015), and lower greenhouse gas 
(GHG) emissions (Ramachandran and Stimming, 2015), among other 
benefits. Increasing the share of renewable energy (RE) on the power 
grid in parallel with vehicle electrification generates a cleaner PEV fuel 
source and thus accelerates GHG emissions reductions (Williams et al., 
2012). 

However, shifts to a PEV-dominant vehicle fleet and decarbonized 
generation mix can challenge grid operations. PEV charging typically 
begins as soon as a driver arrives home from their evening commute and 

plugs in the vehicle (Muratori, 2018; Sheppard et al., 2017). This 
charging load often coincides with the power system’s peak demand 
(Muratori, 2018) and increases ramping needs and costs through the 
dispatch of inefficient and expensive fossil generators. High penetrations 
of intermittent wind and solar photovoltaic (PV) sources may also in-
crease the need for curtailment or require other strategies to mitigate 
imbalances between energy supply and demand (Nelson and Wisland, 
2015; California Independent System Operator, 2016; Bird et al., 2014). 

California is an ideal region to study impacts of and interactions 
between an electrified fleet and a high-RE grid because both transitions 
are already underway and will likely accelerate in the next decade. In 
2012, the Governor set a state goal of 1.5 million zero emission vehicles 
(ZEVs)—which include hydrogen fuel cell electric vehicles (FCEVs)2 and 
PEVs—by 2025, and the goal has since been extended to 5 million ve-
hicles by 2030 (Brown, 2012; Governor Brown Takes Action to Increase 
Zero-Emission Vehicles). With about 500,000 PEVs currently on the 
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road, California has about half of the U.S.’s PEVs and about 15% of the 
world’s PEVs (International Energy Agency, 2018; Advanced Technol-
ogy Vehicle Sales Dashboard). The state has charging infrastructure 
investments (Merchant, 2018; Volkswagen California ZEV, 2017; Mul-
kern, 2016), growing vehicle model options (Vlasic and Boudette, 2017; 
BBC News 2017; EV Showroom), and other policy support (CVRP Rebate 
Statistics, 2016; Zero Emission Vehicle (ZEV) Program; Carpool Stickers) 
to help achieve the vehicle targets. For the power sector, through a 
Renewable Portfolio Standard (RPS), California mandated in 2015 that 
50% of electricity consumption come from RE sources by 2030 (De Le�on, 
2015). In 2018, the 50% RPS requirement was accelerated to 2026, on 
the way to 60% RPS by 2030 and an ultimate goal of 100% zero-carbon 
resources by 2045 (De Le�on, 2018). 

Prior research suggests that if PEV charging is managed, the vehicles 
could both alleviate peak loads and serve as a complementary grid 
resource to integrate more RE (Richardson, 2013). Time-of-use (TOU) 
charging and “smart” charging are two such managed charging strate-
gies that have been commonly studied and piloted (Richardson, 2013; 
Load Research Report, 2017; Kaluza et al., 2017).3 Under TOU charging, 
drivers are incentivized by a lower electricity rate to charge during 
off-peak hours, often pre-programming the start time through the 
charger or PEV. With smart charging, PEVs usually participate in a de-
mand response program whereby an aggregator (utility or third-party) 
remotely controls active charging to be on or off through the charger 
or vehicle software. The aggregator shifts charging to times that provide 
most grid benefit, when prices are low and/or RE is abundant, bidding 
the total flexible load of many PEVs into the wholesale electricity 
market. 

To plan for high adoption rates of both PEVs and RE, policymakers 
need an understanding of the impacts and benefits that managed 
charging, also known as Vehicle-Grid Integration (VGI), can realistically 
provide at scale. However, California’s related policy guidance lacks 
consensus on the systemwide value of VGI, calling for improved quan-
tification to inform program design, investments, and business models 
(California Independent System Operator, 2014). Accordingly, the 
purpose of this research is to assess the impacts on California’s planned 
2025 power system, including operating cost and RE curtailment, 
resulting from unmanaged, TOU, and smart charging at various PEV 
adoption levels. Because utilities are ahead of schedule to meet their 
2030 RPS goal (California Energy Commission, 2018), and the targets 
have been since been expedited, we evaluate the California grid in 2025 
with a 50% RPS. 

Bulk power system impacts have been studied in numerous contexts, 
varying in results depending on a system’s generation portfolio, PEV 
adoption level, and charging schemes (Richardson, 2013). For example, 
in several geographies studies including (Foley et al., 2013; Calnan et al., 
2013; Weis et al., 2014; Madzharov et al., 2014; Loisel et al., 2014; 
Coignard et al., 2018; Babrowski et al., 2014; Dallinger et al., 2013; 
Forrest et al., 2016; Wolinetz et al., 2018; Dallinger and Wietschel, 
2012) compare various outcomes of unmanaged and managed charging 
strategies, finding that overall, managed charging leads to lower costs, 
reduced emissions, and higher utilization of RE. Some studies (Foley 
et al., 2013; Loisel et al., 2014; Babrowski et al., 2014; Forrest et al., 
2016) use dispatch models to estimate generation with PEVs while 
others (Kiviluoma and Meibom, 2011; Calnan et al., 2013; Weis et al., 
2014; Wolinetz et al., 2018) also plan generation portfolios with 

consideration of PEV charging load profiles. Prior analyses (Lund and 
Kempton, 2008; Foley et al., 2013; Calnan et al., 2013; Weis et al., 2014; 
Dallinger et al., 2013; Forrest et al., 2016; Dallinger and Wietschel, 
2012; Eser et al., 2018) examine the interaction between PEV charging 
and RE resources, showing that PEV charging schemes can lower RE 
curtailment. Other examples (Coignard et al., 2018; Forrest et al., 2016) 
compare PEV flexibility value with that of stationary storage. 

Although VGI has been analyzed widely, much of the existing liter-
ature has either simplified the representation of charging strategies or 
grid dispatch. Without first robustly accounting for mobility (i.e. 
drivers’ travel demands), charging infrastructure, and drivers’ prefer-
ences, the availability of grid services provided by managed PEVs could 
be overestimated (Sheppard et al., 2017; Wolinetz et al., 2018; Dallinger 
and Wietschel, 2012; Sovacool et al., 2018; Xu et al., 2018). For 
example, some analyses (Kiviluoma and Meibom, 2011; Lyon et al., 
2012; Weis et al., 2014; Forrest et al., 2016) aggregate travel patterns 
inferred from travel surveys to characterize PEV charging. Because this 
approach cannot account for individuals’ mobility constraints and as-
sumes unlimited chargers, charging demands could be misrepresented. 
Previous work (Sheppard et al., 2017) demonstrates significant differ-
ences in timing and magnitude of loads when PEVs have access to un-
limited chargers versus to the actual limited number of installed 
chargers; when chargers are abundant, charging is evenly distributed 
between morning and evening peaks, whereas charging occurs primarily 
in the evening with limited chargers. Studies including (Lund and 
Kempton, 2008; Kiviluoma and Meibom, 2011; Forrest et al., 2016) 
assume PEVs park at certain locations and times, presuming they are 
plugged into a VGI-enabled charger (Eser et al., 2018), thereby poten-
tially overestimating availability by ignoring actual charger scarcity. 
Secondly, neglecting to model PEV loads endogenously within the 
dispatch of a RE-dominated wholesale electricity market may skew the 
demand for, and therefore the value of their grid services. (Lund and 
Kempton, 2008) uses an input-output method to model the system, 
(Lyon et al., 2012) conducts a macro-level supply-demand matching 
analysis, and (Coignard et al., 2018) uses non-PEV loads and RE profiles 
as the only grid-related model inputs. These approaches may inflate VGI 
value by ignoring electricity market dynamics and competing sources of 
flexibility in the dispatch such as stationary storage and gas generation. 

As a result, the existing literature lacks realistic estimates of 
managed charging services, and their value in a power system such as 
California’s with a high share of RE. Building on other studies, we 
compare grid impacts from managed and unmanaged PEVs, while rep-
resenting constrained infrastructure, mobility, and the dynamic elec-
tricity market. We first use a novel agent-based travel behavior 
model—Behavior, Energy, Autonomy, Mobility (BEAM) (Sheppard 
et al., 2017; BEAM)—that represents PEV drivers’ charging choices 
given constrained infrastructure. Agent-based models are seen as best to 
capture neglected traveler behaviors (Daina et al., 2017), and are 
distinguished by: 1) simulating individual drivers (agents) in a virtual 
transportation system with a detailed road network and 2) dynamically 
representing agents’ behavior contingent on the virtual environment 
and each other. Agents’ choices are based on empirical studies of human 
behavior. We then link the outputs of BEAM with PLEXOS, a unit 
commitment and economic dispatch model, to simulate PEV charging 
within the grid at an hourly resolution. PLEXOS is an industry-standard 
software developed by Energy Exemplar and used by system operators 
worldwide (Energy Market Modelling) for simulating grid operations, 
including to model VGI (Foley et al., 2013; Calnan et al., 2013; Gopal 
et al., 2015; Wagner and Reedman, 2010). PLEXOS uses mixed integer 
optimization to minimize the cost of meeting load given physical (e.g. 
generator capacities, transmission limits) and economic (e.g. fuel prices, 
start-up costs) parameters. Through this integration of BEAM and 
PLEXOS, we compare unmanaged charging to smart and TOU charging 
under four scenarios of California PEV adoption ranging from 0.95 
million (4% of the current California automobile fleet (Top 10 DMV 
Facts)) to 5 million PEVs (20% of the current fleet). 

3 Vehicle-to-grid (V2G) charging is also a managed charging strategy. V2G 
allows for bi-directional power flow between the vehicle and grid such that the 
vehicle can both discharge energy to the grid and charge from the grid. We do 
not model bi-directional power flow from the vehicle to the grid (V2G) or 
participation in ancillary services (Kempton and Tomi�c, 2005), because of the 
low marginal benefits and greater complexity and transaction cost of these 
strategies relative to just one-directional charging (Peterson et al., 2010), 
(Alstone et al., 2017). 
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Section 2 describes the two models and their linkage, and the 
methodology and data for each PEV charging scenario. Sections 3 and 4 
discuss the 2025 California hourly and annual results, conclusions, and 
policy implications. 

2. Methodology, data, and scenarios 

Fig. 1 illustrates our VGI methodology, beginning with the BEAM 
mobility model, continuing with the scaling of individual PEVs’ 
charging sessions to 2025 California-wide, and ending with the PLEXOS 
grid simulation with scenarios of PEV charging strategies and adoption. 

2.1. BEAM: agent-based PEV mobility and charging model 

BEAM is an extension of the open source transportation systems 
modeling framework Multi-Agent Transportation Simulation (MATSim), 
which simulates individuals and their detailed interactions with the 
transportation system. Prior work describes MATSim and BEAM in 
depth (Sheppard et al., 2017; BEAM; Daina et al., 2017). BEAM simu-
lates the daily travel patterns of individual drivers (where and when 
people drive between home, work, shopping mall, etc.) in their personal 
vehicles. These agents make their trips in a PEV and make 
charging-related decisions to maximize their utility by considering their 
battery’s state of charge (SOC), their remaining mobility needs for the 
day, their location, the number of accessible chargers at a site, the level 
of chargers, the cost, and the distance to their next activity (Sheppard 
et al., 2017). BEAM’s charging behavior model contains terms that 
simulate the difference between PHEVs and BEVs; charging away from 
home provides less utility to PHEV drivers, reflecting a lower sense of 
urgency to top off their battery. The BEAM simulation outputs data from 
each PEV’s charging sessions including: charging session start and end 
time, end time of active power delivery, charging location, charger level, 
energy delivered (kWh), and maximum power of the charger and ve-
hicle’s charge controller (kW). With these outputs we construct PEV 
charging scenarios (Section 2.3) for PLEXOS. 

BEAM simulates mobility and charging behaviors for the approxi-
mately 68,000 BEVs and PHEVs registered in the San Francisco Bay Area 
in 2016. The number of vehicles and their spatial distribution are based 
on ownership estimates from the Scenario Evaluation, Regionalization & 
Analysis (SERA) model developed by the National Renewable Energy 
Laboratory (NREL) (Scenario Evaluation and Reg). PEV attributes are 
based on Original Equipment Manufacturer (OEM) specifications and 
the U.S. Department of Energy (DOE) fuel economy website (Fue-
lEconomy.gov, 2016). Driver mobility is from the San Francisco Bay 
Area Metropolitan Transportation Commission’s (MTC) activity-based 
travel demand model (Metropolitan Transportation Commission and 
Parsons Brinckerhoff, Inc., 2012; Horni et al., 2016). The drivers’ 
charging preferences are calibrated to observed 2016 charging session 
data received from ChargePoint, the largest charging infrastructure 
provider in the United States (Supplementary Table D1). We assume San 
Francisco Bay Area driving behavior is representative of other parts of 
California. According to the MTC, the daily per capita vehicle miles 
traveled (VMT) in the San Francisco Bay Area (24.8) are almost equiv-
alent to that of Los Angeles (23.7) (Daily Miles Traveled, 2017). 
Congestion levels are also very similar; in 2017, drivers in both metro-
politan areas spent 12% of total driving time in congestion (Inrix 
Research, 2018). More explicitly modeling driving behavior across 
California is an area for future refinement. 

The charging infrastructure is modeled in detail in BEAM to include 
the number of parking spaces with physical access to chargers, resulting 
in the formation of queues at occupied chargers. We assume all drivers 
have a charger at home (Charging Plug-In Electri) and include a 

relatively small share of other chargers based on Alternative Fuels Data 
Center and ChargePoint data; we model about 5400 workplace chargers 
(Level 1, Level 2, and DC Fast chargers), 1200 public chargers (Level 1, 
Level 2, and DC Fast chargers), and 68,000 residential chargers (Level 2) 
for the San Francisco Bay Area (Table 1) (Electric Vehicle Chargin). In 
two infrastructure sensitivity analyses, we assess potential impacts on 
our results of additional workplace chargers (Appendix A), and different 
DC Fast charging assumptions (Appendix B). 

To reflect anticipated technology improvements and subsequently 
higher PEV utilization by our 2025 study year, we assume the PEV fleet 
has battery capacities—and therefore a driving range—1.5 times greater 
than that of the original 2016 fleet. For example, the Nissan Leaf’s 
second-generation model (2017-present) has a range of 1.5 times the 
range of a 2016 Leaf. Evidence suggests that the electric vehicle miles 
traveled (eVMT) is strongly correlated to battery capacity and vehicle 
range (California’s Advanced Cl, 2017; Carlson, 2015) and we therefore 
also scale the resulting charging load of the aggregated fleet to corre-
spond to the larger batteries. While proportional scaling of aggregated 
load does not completely account for the timing and charging power 
associated with increased travel demand, this approximation maintains 
the temporal distribution of individual vehicle loads developed within 
BEAM. This adjustment corresponds to BEVs driving 11,000 
electric-miles and PHEVs driving 7600 electric-miles on average per 
vehicle owner, annually. Given the rapidly evolving PEV market, we 
evaluate the implications of an even greater share of high-range PEVs 
(Appendix B). 

There are several limitations of the BEAM version used in this 
analysis. BEAM is calibrated to charging behavior from 2016 Charge-
Point data, which may differ by 2025. The calibration data also excludes 
Teslas, and therefore BEAM may over-represent the behavior of lower 
range vehicles, especially in the frequency of residential charging 
(although 961 residential chargers were included in the data). Addi-
tionally, PEV energy consumption in BEAM is derived from a simple 
calculation based on the average fuel economy of the vehicle and BEAM 
does not consider other forms of mobility, such as electrified ride- 
hailing. 

2.2. PLEXOS: power sector dispatch model 

PLEXOS performs a unit-commitment and economic-dispatch simu-
lation using mixed-integer programming and the Xpress-MP 28.01.13 
mathematical solver (Xpress Solver, 2018) to minimize an objective 
function of operating costs, subject to constraints including imports, 
generator capacities, and a linearized DC optimal power flow (Energy 
Market Modelling) (Appendix C). We populate PLEXOS with the scaled 
PEV loads and constraints from BEAM and data from a California 
stakeholder-validated database originally created by the California In-
dependent System Operator (CAISO) for the state’s 2024 grid planning 
process (Liu, 2014; Liu, 2016; ISO Transmission Plan, 2016). We use a 
version released in November 2016 that CAISO updated with a 50% RPS 
RE portfolio and 2025 loads (Liu, 2016; ISO Transmission Plan, 2016). 
Additional information on the CAISO database is described in regulatory 
documents (Liu, 2014; Liu, 2016; ISO Transmission Plan, 2016; Picker, 
2016). Several studies have been conducted with variants of the same 
database (Nelson and Wisland, 2015; Eichman et al., 2015; Jorgenson 
et al., 2014; Fioravanti et al., 2013). 

The PLEXOS simulation covers the Western U.S. grid, or Western 
Electricity Coordinating Council (WECC) geography, and is a zonal 
model such that the transmission network is broadly represented as 
paths between utility zones and not as individual lines. There are 25 
utility zones, including eight in California (Liu, 2014). California loads 
and distributed rooftop solar PV estimates come from a California 
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Energy Commission (CEC) forecast (Liu, 2016; California Energy De-
mand,). The total annual 2025 load for the California utility zones, net of 
distributed solar PV and energy efficiency, is 298 TWh. We remove 

Fig. 1. Vehicle-grid integration modeling framework and methodology. The approach links an agent-based mobility model (BEAM) with a unit commitment and 
economic dispatch model (PLEXOS) to evaluate grid outcomes of PEV charging. 

Table 1 
Key assumptions used in BEAM modeling for the San Francisco Bay Area.  

PEV Vehicles and Characteristics A 

Make/Model Type Battery capacity (kWh) Fuel economy (kWh/mi) L2 Charging limit (kW) DCFC Charging limit (kW) # Vehicles 

NISSAN LEAF BEV 45 0.30 7.0 50.0 16,598 
CHEVROLET VOLT PHEV 28 0.31 7.0 50.0 10,804 
TESLA MODEL S BEV 113 0.33 20.0 120.0 10,102 
TOYOTA PRIUS PLUG-IN PHEV 12 0.29 7.0 20.0 8599 
FIAT 500e BEV 37 0.29 7.0 50.0 3989 
FORD FUSION PHEV 11 0.34 3.3 – 4168 
FORD C-MAX PHEV 11 0.35 7.0 – 3490 
BMW I3 BEV 50 0.27 7.4 50.0 2721 
GEM - Various Models BEV 19 0.20 – – 1806 
VOLKSWAGEN E-GOLF BEV 36 0.29 7.2 50.0 1516 
FORD FOCUS BEV 50 0.32 6.6 – 1265 
CHEVROLET SPARK EV BEV 30 0.28 3.3 50.0 921 
TOYOTA RAV4 EV BEV 63 0.44 10.0 50.0 764 
All other BEVs BEV 41 0.37 varied varied 888 
All other PHEVs PHEV 17 0.47 varied varied 858 

Electric Vehicle Miles Traveled B 

Vehicle Type eVMT Comments 

BEVs 11,000 Average annual electric vehicle miles traveled per vehicle. Used to scale electricity demand for aggregated fleet for whole year, and based on 
assumption that all batteries are 50% higher capacity in 2025 than they are in 2016. PHEVs 7600 

Charging Infrastructure C 

Market Sector Level # Chargers Charging limit (kW)       

Residential L2 68,489 Typically 7 kW, up to 20 kW for some vehicles (see A) 
Workplace L1 330 1.92 kW 
Workplace L2 4900 Typically 7 kW, up to 20 kW for some vehicles (see A) 
Workplace DCFC 210 Typically 50 kW, up to 120 kW for some vehicles (see A) 
Public L1 130 1.92 kW 
Public L2 900 Typically 7 kW, up to 20 kW for some vehicles (see A) 
Public DCFC 160 Typically 50 kW, up to 120 kW for some vehicles (see A) 

Battery capacities are for 2025 (scaled 50% larger than 2016 levels). “All other BEVs” and “All other PHEVs” values represent weighted averages. Sources: A. Scenario 
Evaluation, Regionalization & Analysis model by National Renewable Energy Laboratory, Original Equipment Manufacturer specifications, and U.S. Department of 
Energy fuel economy website; B. San Francisco Bay Area Metropolitan Transportation Commission and California Air Resources Board; C. U.S. Department of Energy 
Alternative Fuels Data Center and ChargePoint data. 
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6.1 TWh of PEV load4 included in the original load forecast to avoid 
double-counting when adding the PEV loads from BEAM (California 
Energy Demand). Non-California loads come from the WECC Trans-
mission Expansion Planning Policy Committee (TEPPC). 

The 125 TWh RE portfolio (Table 2) in this analysis is forecasted by 
CAISO to meet a 50% RPS mandate (based on (Liu, 2014; Liu, 2016; 
California Energy Demand; RPS Calculator Home Page)). We set 
PLEXOS to curtail California in-state solar PV, wind, and solar thermal 
generation if electricity prices reach a -$150/MWh floor price, the lower 
limit for economic bids in the CAISO market (Liu, 2014; Golden and 
Paulos, 2015). 

We model the conventional thermal and hydro generators as speci-
fied in the CAISO database, including several generic fossil generators 
that represent authorized new plants expected to be built by 2025 in 
California (Liu, 2014; Liu, 2016; California Public Utilities Commission 
Rulemaking, 2013), and excluding California’s remaining nuclear plant 
whose license expires by 2025 (Penn and Masunaga, 2016). Generators 
are characterized in PLEXOS by start-up and shut-down times and costs, 
operations and maintenance (O&M) costs, heat rates, emissions rates, 
and energy limits for hydropower. Fuel prices vary by generator loca-
tion, using natural gas price forecasts from the CEC for California and 
natural gas and coal prices from TEPPC for the rest of WECC (Liu, 2014; 
Liu, 2016). The GHG price we include from CAISO is $20.75/metric ton 
CO2-eq, which is added to California fossil generators’ variable gener-
ation cost (Liu, 2014). Per the CAISO’s methodology, for resources im-
ported from outside California, except dedicated imports, a CO2 cost 
adder is added to the transmission wheeling charge (Liu, 2014). We also 
include 1300 MW of stationary storage mandated in California (Liu, 
2014; California Public Utilities Commission, 2013), and non-PEV de-
mand response (Liu, 2014). 

California’s hourly net exports are constrained such that exports 
minus imports cannot exceed 2000 MW (Picker, 2016). We also model 
dedicated imports to California entities, including from certain fossil and 
large hydropower resources, and 70% of out-of-state RPS-eligible RE 
(Liu, 2014). Regulation and load-following reserve requirements are 
calculated by CAISO based on variability and forecast error in load and 
RE (Integration of Renewable Resources, 2010). Renewable generators 
can provide up to half of their energy as downward load-following re-
serves, satisfying up to half the downward load-following requirement 
(Liu, 2016). 

For each PEV scenario (Section 2.3), we run PLEXOS deterministi-
cally, 1 month at a time for a full year. Each run first optimizes over a 
month-long time horizon to accommodate generators with monthly 
energy limits, and then conducts daily chronological optimizations to 
balance load by dispatching generation for each hour. PLEXOS co- 
optimizes for energy and reserves provision to achieve a minimum 
cost result. The optimization is run to globally minimize costs across all 
generators in the WECC area, but our analysis focuses on results for 
California. 

The PLEXOS solution for 2025 for each scenario includes hourly 
generator dispatch, RE curtailment, zonal prices, and California im-
ports/exports. We calculate the California total system cost, often 
referred to as production cost, by summing costs of generation (from 
fuel, startup/shutdown, and variable O&M) and emissions (for CO2) for 
all generators in California. Because the state is a net electricity importer 
from neighboring regions (Liu, 2014), we include the hourly import 
costs and export revenue (negative costs) by adding the product of net 
interstate power flows and the electricity price in the utility zone 
receiving the power (Brinkman et al., 2016). Finally, we add the total 
system costs from out-of-state generators serving as dedicated exporters 
to California. Since our focus is on operational impacts of PEVs and we 

hold infrastructure fixed, our California total system cost calculation 
does not include capital costs, such as for building new generators. We 
also do not include distribution system costs. Even at higher PEV pen-
etrations, distribution system upgrades are forecasted to contribute only 
a small component of California utilities’ costs (California Trans-
portation Electrification Assessment, 2014). Lastly, our study’s hourly 
resolution is standard for dispatch models, but could slightly underes-
timate ramping costs (Deane et al., 2014) and prevents study of 
intra-hour impacts of PEV charging for which more research is 
warranted. 

2.3. PEV adoption and charging strategy scenarios 

We run the PLEXOS optimization with constant grid parameters 
(Section 2.2) under 1 base case scenario with no PEVs included and 
under 12 PEV scenarios (Table 3) that each test a charging strategy at a 
range of California PEV adoption from a CEC forecast (Kavalec et al., 
2016). “Low” (0.95 million) and “High” (2.5 million) scenarios repre-
sent CEC’s estimate if PEV prices remain more or less expensive than 
gasoline vehicles, and “Mid” (2.1 million) scenarios are CEC’s estimate 
of “most likely compliance” with California’s ZEV Program5 (Kavalec 
et al., 2016; Bahreinian et al., 2016). We add “Reach” scenarios (5 
million) to estimate impacts of very aggressive PEV market trans-
formation, which would achieve the Governor’s extended target. 

Scenarios  

� Base case scenario: No PEVs included in California load.  
� Unmanaged charging scenarios: Low (0.95 million), Mid (2.1 

million), High (2.5 million), Reach (5 million) PEV adoption, all 
PEVs charging unmanaged.  
� Smart charging scenarios: Low (0.95 million), Mid (2.1 million), 

High (2.5 million), Reach (5 million) PEV adoption, all PEVs 
participating in an aggregator-based smart charging program.  
� TOU charging scenarios: Low (0.95 million), Mid (2.1 million), 

High (2.5 million), Reach (5 million) PEV adoption, all PEVs 
responding to a residential overnight off-peak TOU rate. 

We do not forecast customer participation rates for any charging 
strategy because the scenarios are meant to characterize the maximum 
potential wholesale market value—under more realistic mobility, 
charging infrastructure, and grid assumptions—if all California PEVs 
participated in a given charging strategy. Therefore, our results are the 
foundation for future work to assess benefits of specific smart charging 
or TOU tariff designs. Sections 2.3.1 and 2.3.2 describe how the sce-
narios are constructed with BEAM and PLEXOS. 

2.3.1. Modeling PEV charging strategy scenarios in BEAM 

2.3.1.1. Unmanaged charging. Charging sessions are first simulated for 
individual vehicles in BEAM as unmanaged, such that a PEV starts 
charging as soon as it is plugged in, and we record the energy delivered 
during each session as the unmanaged load for an individual PEV. 

2.3.1.2. Smart charging. We use outputs from the BEAM unmanaged 
charging simulation to construct individual vehicle energy and power 
constraints for smart charging, similar to the methodology of (Wolinetz 

4 The CEC generated this PEV load forecast based on their 2025 mid-case 
vehicle adoption scenario, assuming 75% of charging occurs 10pm to 6am 
(Kavalec et al.,2014). 

5 The California ZEV Program regulation (in place in some form since 1990) 
requires that each automaker hold a certain number of ZEV credits, which re-
flects the share of ZEVs produced out of the total number of cars the manu-
facturer sold in California each year. Each ZEV vehicle produced receives a 
number of credits based on its range, and automakers with surplus credits can 
bank or trade credits with other manufacturers (Zero Emission Vehicle (ZEV) 
Program). The California Governor’s executive orders setting 1.5 million and 5 
million ZEV targets are complementary policies to accelerate ZEV adoption. 
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et al., 2018). These constraints characterize a flexible resource to be 
dispatched by PLEXOS (Section 2.3.2.2). We assume smart charging 
PEVs are plugged-in at the same times as if unmanaged, but that the 
timing of active charging within those periods is flexible as long as the 

delivered energy is equivalent to that of the unmanaged case. Smart 
charging flexibility is thereby limited to within individual charging 
sessions, rather than across different sessions. We assume that 1) drivers’ 
travel needs are too highly valued and their plans too inflexible to 
charge at entirely different times of the day because chargers are not 
universally available, 2) drivers do not unplug immediately after active 
charging ends unless there is a queue, and 3) drivers have sufficient 
foreknowledge and willingness to indicate their expected departure 
times for an aggregator to schedule active charging (similar to (Xu et al., 
2016)). We do not model drivers leaving earlier than expected, but only 
5% of BEV charging events in BEAM start with a critically low remaining 
range of 20 miles or less; these BEVs would only need to charge on 
average 36 uninterrupted minutes to reach a 20-mile minimum in case 
of unexpected early departure. 

The cumulative energy delivered for unmanaged charging is the 
maximum constraint, representing the earliest possible charge, for each 
smart session. The minimum cumulative energy constraint assumes that 
active charging is delayed until the last possible moment, while still 
delivering equivalent energy by the end of the session, as in (Xu et al., 
2016). For three representative PEVs, Fig. 2 illustrates an example of the 
maximum (earliest) and minimum (latest) smart charging cumulative 
energy constraints for a week of the BEAM simulation. Within the area 
bounded by these curves, any monotonically increasing trajectory can 
be achieved with smart charging, subject to the target SOC and the 
maximum power of the PEV and charger. The curves meet between 
charging sessions. In BEAM, the probability that drivers charge at home 
each day is based on a distribution derived from ChargePoint data, in 
which the average residential charger was used 93% of the days. 

2.3.1.3. Overnight time-of-use charging. We represent the response to 
TOU rates in a second BEAM simulation by forcing the charging sessions 
to begin at staggered times (to avoid inducing a sudden demand spike) 

Table 2 
RE capacity and available annual generation in 50% RPS scenario.   

Biogas Biomass Geothermal Small Hydro Large Solar PV Small Solar PV Solar Thermal Wind Total 

Capacity (MW) 228 635 2076 986 19,316 2073 1021 14,649 40,986 
Energy (GWh) 1511 4120 15,775 3104 53,611 4995 2412 39,779 125,307 
% of RE 1.2% 3.3% 12.6% 2.5% 42.8% 4.0% 1.9% 31.7% 100% 

RE generation and capacity values include RPS-eligible out-of-state RE generators. Source: California Independent System Operator. 

Table 3 
Scenarios of 2025 California PEV adoption and energy.  

PEV Adoption A  

Low Mid High Reach 

Number of BEVs (60% of 
PEVs) 

570,000 1,260,000 1,500,000 3,000,000 

Number of PHEVs (40% of 
PEVs) 

380,000 840,000 1,000,000 2,000,000 

Total Number of PEVs 950,000 2,100,000 2,500,000 5,000,000 
PEVs % of Current CA Auto 

Stock 
4% 8% 10% 20% 

Annual PEV Loads B  

Low Mid High Reach 

Unmanaged charging load 
(GWh) 

2728 6030 7179 14,358 

TOU charging load (GWh) 2728 6030 7179 14,358 
Smart charging load (GWh) 2744 6062 7215 14,417 
PEV Load as % of CA Load 1% 2% 2% 5% 

A. "Total Number of PEVs" are from California Energy Commission (CEC) 2015 
California Energy Demand Forecast for 2016–2026, assumed split 60% BEVs and 
40% PHEVs. The "Current Auto Stock" assumed is 25.5 million registered au-
tomobiles from the California Department of Motor Vehicles. B. "Annual PEV 
Loads" are the scaled loads from BEAM. The "PEV Load as % of CA Load" is of 
292 TWh of California load in the PLEXOS model, net of solar PV, energy effi-
ciency and PEV loads. Smart charging total loads are <1% more than the un-
managed and TOU loads due to the load shifting efficiencies assumed for the 
smart charging storage resource in the PLEXOS dispatch. 

Fig. 2. Illustrative sample smart charging constraints of 3 individual PEVs. Maximum (upper line) and minimum (lower line) cumulative energy constraints 
bound possible smart charging trajectories for three representative PEVs in the first week of the BEAM simulation. 
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between 10 p.m. and 2 a.m.—approximately the range of start times of 
California’s current residential off-peak rate periods (Electric Vehicle; 
EV Rates; Electric Vehicle Rates)—for those PEVs that would already be 
plugged in overnight at home if unmanaged. Within BEAM, we record 
the energy delivered during each PEV’s TOU session. We do not 
explicitly model a TOU electric rate but assume the off-peak price would 
be sufficiently low to incentivize all drivers to pre-program charging for 
those times. PEV drivers enrolled in current California TOU rates are 
very responsive to off-peak periods, especially with a large 
peak/off-peak price differential (Load Research Report, 2017; Cook 
et al., 2014). 

2.3.2. Representing PEV charging scenarios in PLEXOS 

2.3.2.1. Aggregation of PEV charging loads and constraints. For the un-
managed and TOU charging scenarios we aggregate the loads, and for 
the smart charging scenarios we aggregate the constraints, across the 
individual vehicles in BEAM by summation (Xu et al., 2016). For each 
scenario, we do this summation separately for BEVs and PHEVs for the 
San Francisco Bay Area. These aggregated loads and constraints from a 
typical weekday (the second day of a three-day BEAM run) are used to 
construct a full week based on observed ChargePoint charging data. This 
construction occurs by repeating the full day of hourly loads from BEAM 
seven times to create a week, and then scaling the profiles separately by 
charger location (residential, workplace, and public) to match the 
normalized daily average loads from ChargePoint by charger location. 
Weekend loads are adjusted to mimic the observed ChargePoint week-
end load shapes. These weekly loads and constraints are repeated to 
create an annual data set for San Francisco Bay Area. 

These aggregated San Francisco Bay Area loads and flexibility con-
straints produced by BEAM for the three charging strategies in 2016 are 
then increased linearly by vehicle type (BEV and PHEV) to represent the 
eight California utility zones modeled in PLEXOS in 2025. The scaling 
occurs in two parts: 1) first by the ratio of the current San Francisco Bay 
Area PEV stock to that of each California utility area from the California 
Vehicle Rebate Program (CVRP) data (CVRP Rebate Statistics, 2016), 
and then 2) by the ratio of the current California-wide stock totaled from 
CVRP data compared to a CEC state forecast ranging from 0.95 million to 
2.5 million PEVs for 2025, and a “Reach” adoption level of the Gover-
nor’s targeted 5 million PEVs (Section 2.3). Because the state forecast is 
reported for PEVs in aggregate, we assume that 60% of the 2025 stock 
will be comprised of BEVs and 40% of PHEVs, similar to trends found in 
the CVRP data (CVRP Rebate Statistics, 2016). Finally, the annual loads 
for the TOU cases are normalized to equal the annual unmanaged loads 
for each level of PEV adoption, allowing for results comparison across 
charging strategies. Implicit in this overall scaling process of PEV loads 
from the San Francisco Bay Area in 2016 to California in 2025 is that the 
state’s charging infrastructure will continue to grow, such that the 
proportion of chargers to vehicles is the same as current levels. Given the 
planned large-scale infrastructure investments (Merchant, 2018; 
Volkswagen California ZEV, 2017; Mulkern, 2016) and the Governor’s 
goal of installing 250,000 additional chargers by 2025, we think this is a 
reasonable assumption (Governor Brown Takes Action to Increase 
Zero-Emission Vehicles). The final loads for each PEV adoption scenario 
are shown in Table 3. 

2.3.2.2. Incorporating PEVs into PLEXOS. For the unmanaged and TOU 
charging scenarios, for each utility zone we add the aggregated and 
scaled 2025 PEV load to the non-PEV load as a fixed load profile in 
PLEXOS. We model smart charging loads in PLEXOS as the sum of a fixed 
load plus net generation of a dispatchable storage resource. The fixed 
load is the unmanaged PEV load for each utility. The storage resource for 
each utility is dispatched as part of the PLEXOS WECC-wide optimiza-
tion to either discharge energy during high priced times (equivalent to 
PEVs not charging when unmanaged vehicles would have otherwise 

charged) or consume energy during low priced times (equivalent to 
PEVs charging when unmanaged vehicles would not have charged). This 
represents load shifting a collection of PEVs by an aggregator in a smart 
charging program. The storage resource starts full at the beginning of 
each PLEXOS simulation, and if not dispatched by the optimization, the 
smart load equals the load of the unmanaged scenario. 

We constrain the total size (in GWh) of the smart charging storage 
facility to be the largest difference between the maximum and minimum 
energy constraints of the aggregated PEVs in each utility zone (from 
Section 2.3.2.1). We limit the storage resource’s SOC to be greater than 
the hourly difference between the maximum and minimum cumulative 
energy constraints of the aggregated vehicles. We enforce time-varying 
maximum power constraints on discharging the storage resource, cor-
responding to the unmanaged load. The time-varying maximum power 
constraint for charging the storage resource depends on the capacity of 
all grid-connected PEVs and available chargers in each hour under un-
managed charging. We set the round-trip efficiency of the storage 
resource to 99% (instead of 100%) so that PLEXOS first dispatches a 
zero-marginal-cost generator before the flexible smart charging load. 
Because the PLEXOS simulation runs 1 month at a time, we account for 
edge effects by constraining the storage resource to return to the starting 
SOC by the end of each month. 

3. Results and discussion 

3.1. Hourly grid impacts 

For the same level of PEV adoption, even with PEVs comprising 1%– 
5% of total California loads (Table 3), the PLEXOS results show the 
choice of charging strategy noticeably impacts hourly grid operations, in 
terms of net load shapes, hourly RE curtailment, and wholesale elec-
tricity prices. 

Fig. 3 illustrates these key system outcomes averaged hourly across 
three seasonally representative months of grid operation with 2.5 
million PEVs; results are similar with other adoption scenarios. The 
majority of the unmanaged PEV load occurs between 3pm and 11pm 
(row B), after the predominant commute home. Unmanaged charging 
yields higher prices (row D) and exacerbates the evening peak of the 
system’s load net of solar PV, solar thermal, and wind generation (row 
A). TOU charging, by design, is concentrated overnight at home starting 
at 10pm and lasting until the early morning (row B). TOU charging 
creates smoother prices (row D), and avoids peak load times (row A) but 
also most RE curtailment (row C). In contrast, smart PEVs, as dispatched 
by PLEXOS, charge in the late morning and the late afternoon (row B) to 
reduce RE curtailment especially in spring (row C), surging again when 
prices drop around 11pm (row D). This pattern follows the timing of 
low-priced generation (row D) of solar PV during the day and wind plus 
baseload plants overnight. 

Fig. 3 suggests smart charging is the most favorable strategy for 
California hourly grid operations because of its flexibility to lower net 
load peak, smooth prices, and reduce curtailment. Subsequently, this 
study’s linked transportation model can identify when and where PEVs 
can supply such hourly flexibility to target VGI policies, subject to 
mobility needs and charger availability. For a typical weekday in the San 
Francisco Bay Area BEAM simulation (before scaling to California, 2025 
levels), Fig. 4 shows the energy demanded in unmanaged charging 
sessions and the duration of availability flexibility, based on the time 
between the end of active charging and unplugging. Most charging 
sessions occur at home in the afternoon and during grid peak hours. 
These residential sessions have the greatest flexibility (12 þ hours) to 
shift charging and therefore contribute most of the smart charging 
benefits we see in the hourly outcomes (Fig. 3). In contrast, there are 
relatively few charging sessions at work or public locations, and those 
sessions, concentrated in the mid-morning hours, have much less flexi-
bility since drivers are both parked for shorter times and have queues 
that require unplugging immediately after active charging. A sensitivity 
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testing the addition of four and eight times more workplace chargers 
shows only a minor increase in energy demanded and hours of daytime 
flexibility (Appendix A). 

Together, these results suggest that in terms of location and timing, 
residential smart charging policies are the most efficient way to capture 

the majority of hourly grid flexibility. Even when there is remaining RE 
curtailment and negative pricing in the middle of the day (Fig. 3)— 
which would be ideal times to shift additional PEV loads—the marginal 
value from increased smart charging at work or public chargers appears 
limited. In a sensitivity analysis, these results appear robust to a 

Fig. 3. California net load, PEV charging load, RE curtailment, and average prices with 2.5 M PEVs. These figures are for 2.5 million PEVs and California 
outcomes averaged hourly across three seasonally representative months of grid operation; results are similar with other PEV scenarios. A. "Net Load" is California 
system load net of solar PV, solar thermal, and wind generation; B. "PEV Load" shows Unmanaged, TOU, and smart charging PEV loads; C. "Curtailment" is 
curtailment of California solar PV, solar thermal, and wind generation; D. "CA Price" is the Load-weighted average price of California utility regions. 

Fig. 4. Weekday charging session flexibility duration and energy demanded, by location and hour. The panels show for a typical weekday in the San Francisco 
Bay Area BEAM simulation (before scaling to California, 2025 levels), the energy demanded by location and the hours of flexibility to shift load within charging 
sessions (based on the time between active charging and unplugging). 
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potentially higher buildout of DC Fast chargers: with a 20-fold increase 
in public DC Fast charging sessions, the number of charging-hours that 
can be shifted only decreases 3% and most flexibility still occurs at home 
(Appendix B). Similarly, if the 2025 PEV fleet includes a greater share of 
high-range vehicles, based on our sensivity analysis we expect margin-
ally less morning charging and slightly shorter duration evening flexi-
bility but not a significant change to overall grid costs and curtailment 
(Appendix B). 

3.2. Annual grid impacts 

The following section compares the annual total system cost and 
renewable curtailment impacts for California, resulting from hourly 
charging and grid interactions for each of the PEV scenarios. 

3.2.1. Total system cost 
When PEVs are added to the grid, California’s annual total system 

costs (grid operating costs described in Section 2.2) increase in all sce-
narios because of additional generation used to meet load. However, for 
the same number of vehicles, the charging strategy significantly affects 
the degree to which costs increase. The difference in total system cost 
increases from smart or TOU charging compared to unmanaged 
charging are what we consider the value of a given managed charging 
strategy. 

We find that smart charging provides the greatest annual value 
among the charging strategies tested. Smart charging avoids $120 to 
$690 million of California total system cost increases per year with 0.95 
million to 5 million PEVs, compared with the same number of unman-
aged vehicles (Fig. 5, Table 4). Therefore, by managing PEVs with smart 
charging, California can save about 50% of the incremental cost of 
adding the new vehicle loads to the grid. Across the state, these savings 
are significant, on the order of 2%–10% of California’s total system costs 
with 0.95–5 million smart PEVs, respectively. While smart charging 
results in lower total system costs than with TOU charging, similar to the 
findings of (Lyon et al., 2012), the difference in value between the two 
strategies is not large. Compared to unmanaged charging, TOU charging 
provides California $90 to $550 million in value per year. Consequently, 
these cost savings compared to unmanaged charging amount to 1%–8% 
of California’s annual total system cost with 0.95–5 million TOU 

charging PEVs. 
Across PEV adoption levels, smart charging incurs lower system costs 

relative to unmanaged charging because of lower peak loads (less 
expensive generators are used) and because more PEV load is served by 
RE (Supplementary Table D.2). TOU charging decreases system costs 
relative to unmanaged charging because of reduced load (Fig. 3)—and 
thus reduced ramping primarily from natural gas generation—during 
evening peak demand hours. Under both managed charging strategies, 
the system dispatches less demand response to reduce peak loads and 
displaces some use of stationary storage (Supplementary Table D.2), 
increasing the option value, or the opportunity for future use, of these 
flexible resources for other grid needs. 

With both managed strategies, the share of unmanaged charging 
costs that are avoided and the per PEV value are non-linearly related to 
increasing levels of PEV adoption. When divided by the number of PEVs 
assumed for each scenario, the total system cost savings are relatively 
low, averaging about $120/PEV per year with smart charging and about 
$90/PEV per year with TOU charging (Fig. 6). We note, however, that 
this value would be spread more broadly across ratepayers and is not 
necessarily what would accrue directly to drivers; the driver savings 
from managed charging would also depend on factors including the 
enablement cost for demand response aggregators of smart charging and 
the particular level of TOU rates. Because this analysis takes the societal 
perspective and focuses on statewide wholesale market value, we do not 
simulate specific business models or rate designs to determine monetary 
benefits at the customer level. To fully evaluate the customer impacts, 
future research must also quantify additional value streams of managed 
charging, such as from avoided investment in infrastructure upgrades or 
distributed stationary storage, which also may make managed charging 
more financially attractive to drivers (Niesten and Alkemade, 2016). 

Consistent with (Kiviluoma and Meibom, 2011), our results also 
show that at very high PEV levels, both smart and TOU charging stra-
tegies can defer capital costs for building new generating and trans-
mission capacity. If 5 million PEVs are deployed, unmanaged PEV 
charging stresses the system peak to the point that about 2500 MWh of 
load are unserved in California over two days in July, while smart or 
TOU charging PEVs can still be accommodated by existing generators 
without any unserved load. In our simulation, when there is not enough 
generation to meet load (within a utility zone or with imports), a zone’s 

Fig. 5. Annual California total system cost. Annual total system cost for California includes the grid operating cost from generation, emissions, and net imports.  
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electricity price spikes, up to the level of a market ceiling price set at 
$2000/MWh. Because we calculate California’s total system cost to 
include price times net imports into the region, the high total system cost 
for unmanaged charging with 5 million PEVs—and the greatest per PEV 
value for smart and TOU charging—is driven by the increased imports 
during spikes of California regional market prices around this price 
ceiling. These results show that without a charge management policy, 
California’s grid as it is planned for 2025 may reach a saturation point at 
the state’s 5 million PEV goal and require added resources to avoid 
unserved energy. 

3.2.2. RE curtailment 
VGI policies that reduce RE curtailment are favorable because cur-

tailment—although a reliable way to maintain grid stability—raises a 
system’s operating cost and is an inefficient use of RE assets (Bird et al., 
2014). Curtailment is often invoked because of transmission congestion, 
but also occurs when must-run inflexible resources and minimal levels of 
thermal generation exceed load minus exports (Golden and Paulos, 
2015). Lowering curtailment can increase investor confidence in 
developing future RE projects, and enable emissions reductions 
(Cochran et al., 2014). Our results show that smart charging is best able 

Table 4 
California annual total system costs and renewable curtailment results.  

California total system costs A  

Total system costs ($ Millions) Avoided cost relative to Unmanaged ($ Millions) Share of Incremental Cost Avoided (%) 

PEV Scenario Base Unmanaged Smart TOU Smart TOU Smart TOU 

No PEVs 6514 – – – – – – – 
Low (0.95M PEVs) – 6711 6592 6620 119 91 60% 46% 
Mid (2.1M PEVs) – 6946 6738 6778 208 168 48% 39% 
High (2.5M PEVs) – 7024 6783 6829 241 195 47% 38% 
Reach (5M PEVs) – 7792 7104 7244 688 548 54% 43% 

California renewable energy curtailment B  

Curtailment (GWh) Curtailment relative to Unmanaged (GWh) Curtailment relative to Unmanaged (%) 
PEV Scenario Base Unmanaged Smart TOU Smart TOU Smart TOU 

No PEVs 1347 – – – – – – – 
Low (0.95M PEVs) – 1274 1155 1324 -119 50 -9% 4% 
Mid (2.1M PEVs) – 1191 953 1294 -238 103 -20% 9% 
High (2.5M PEVs) – 1164 902 1287 -262 123 -23% 11% 
Reach (5M PEVs) – 1013 608 1230 -405 216 -40% 21% 

A. "California Total system costs" reflect the grid operating cost and include the cost of generation and emissions for power plants located within California and the out- 
of-state import cost and export revenue. "Avoided cost relative to Unmanaged" is the difference in cost between the Unmanaged and Smart (or TOU) cases. "Share of 
Incremental Cost Avoided" is the "Avoided cost relative to Unmanaged" divided by the cost increase between the Unmanaged and No PEV cases for each PEV adoption 
scenario. B. "California renewable energy Curtailment" is of California’s solar PV, solar thermal, and wind generation. "Curtailment relative to Unmanaged (GWh)" is 
the difference in curtailment between the Unmanaged and Smart (or TOU) cases. "Curtailment relative to Unmanaged (%)" is the avoided curtailment divided by the 
curtailment under the Unmanaged case for each PEV adoption scenario. 

Fig. 6. Avoided total system cost increases relative to Unmanaged PEVs. "Avoided incremental cost (%)" is the difference in incremental California total system 
cost above the No PEVs case from smart or TOU charging relative to unmanaged charging, divided by the incremental cost of unmanaged charging. The dollar-per- 
PEV system cost savings from smart charging and TOU charging is the annual avoided incremental cost divided by the number of PEVs for each adoption scenario. 
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to shift load to times with excess RE, when power is priced negatively. 
With 0.95 to 5 million PEVs, compared with unmanaged vehicles, smart 
charging lowers annual RE curtailment by an additional 9%–40%, or 
about 120–410 GWh, respectively (Fig. 7, Table 4). Dividing the avoided 
curtailment by the annual PEV load, it is estimated that with smart 
charging about 4% of PEV load is served by RE energy that would have 
otherwise been curtailed if the vehicles were left unmanaged (Supple-
mentary Table D.3). In contrast, across all PEV adoption scenarios TOU 
charging results in more curtailment than does unmanaged charging, 
because most of the RE generation, dominated by solar PV, does not 
coincide with overnight PEV load. For TOU charging to reduce curtail-
ment, off-peak periods may need to be augmented with more hours that 
overlap with solar generation. 

Because utilities consequently deliver less RE to comply with regu-
lations, curtailment also necessitates additional RE capacity or resources 
such as energy storage, quickly ramping generators, or flexible loads to 
compensate (California Independent System Operator, 2016; Bird et al., 
2014; Golden and Paulos, 2015). The additional monetary value of 
curtailment reductions therefore depends on the avoided capital cost of 
overbuilding RE plants and the cost of alternative curtailment-reduction 
measures. Although we find that annual curtailment even with un-
managed charging is only 1.1%–1.4% of RE generation (Supplementary 
Table D.3), more study is needed of future higher RE levels when PEV 
charging may play a much more significant role in reducing curtailment 
and thus overall costs and emissions in California. 

4. Conclusions and policy implications 

Previous literature, including (Lund and Kempton, 2008; Kiviluoma 
and Meibom, 2011; Lyon et al., 2012; Foley et al., 2013; Calnan et al., 
2013; Weis et al., 2014; Madzharov et al., 2014; Coignard et al., 2018), 
shows managed charging can save on grid costs and reduce RE curtail-
ment. However, most prior work does not fully account for constraints 
on mobility, charging infrastructure, and grid dispatch, thereby esti-
mating benefits which may not be achievable. This study improves on 
these models through more robust and realistic simulation of both the 
transportation and power sectors, to represent the hourly impacts and 
annual wholesale market value and curtailment that California 

policymakers can expect with large scale PEV and RE adoption. We find 
unmanaged charging coincides with peak loads and yields higher prices, 
while smart charging occurs during low-priced times to avoid peaks and 
lower curtailment; TOU charging also reduces peak impacts. Annually, 
even with our more realistic assumptions, California can save between 
$120 to $690 million of grid operating costs by managing PEVs with 
smart charging, and $90 to $550 million with overnight TOU charging. 
The introduction of practical limitations further reduces the average 
per-vehicle value of these managed charging strategies to the order of 
$100 per PEV annually compared to the $100 to $300 per PEV range 
seen in previous studies (Richardson, 2013). Nonetheless, the aggregate 
VGI values still make a significant difference for the California system: 
comprising up to about 8% or 10% of the state’s 2025 expected grid 
operating costs, making managed charging overall a beneficial policy for 
the state to pursue. Especially at the 5 million PEV penetration ulti-
mately targeted by state, some form of charge management becomes 
essential to avoid new generation or transmission investments. Lastly, 
smart charging lowers the cost of achieving California’s RE targets 
through curtailment reductions. Overnight TOU charging is counter-
productive to RE integration efforts because it results in higher annual 
curtailment than even unmanaged PEVs. 

In terms of hourly grid impacts, annual total system cost savings, and 
RE curtailment reductions, we find that smart charging is overall a more 
valuable managed charging policy for California. Our detailed mobility 
model demonstrates most flexibility exists at residential locations rather 
than at work or public locations. This residential flexibility contributes 
nearly all the smart charging value by avoiding evening peak times and 
utilizing solar generation. Therefore, smart charging targeted at resi-
dential customers, who typically already have home chargers, appears 
to be the biggest opportunity and most cost-efficient policy for the state. 
Many chargers available today can be upgraded for smart charging for 
about $100, and some PEV models have smart charging software on-
board (Coignard et al., 2018; Kaluza et al., 2017). However, for resi-
dential smart charging to be implemented at a large scale, careful 
consideration is needed to design programs that monetize multiple value 
streams (Niesten and Alkemade, 2016; Kley et al., 2011) to increase 
driver participation incentives and overcome other consumer adoption 
barriers including perceived restricted mobility, concerns about data 

Fig. 7. Annual California renewable energy curtailment. Annual curtailment of California in-state solar PV, solar thermal, and wind generation for each charging 
strategy and PEV adoption scenario. 
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privacy, and aversion to new technologies (Wolinetz et al., 2018; 
Sovacool et al., 2018; Will and Schuller, 2016; Bailey and Axsen, 2015; 
Axsen et al., 2017). Smart charging pilots have highlighted the impor-
tance of customer education on RE benefits, and of guaranteeing mini-
mum charge levels (Kaluza et al., 2017; Will and Schuller, 2016; 
Schmalfuß et al., 2015). 

Overnight TOU rates achieve the majority of smart charging cost 
savings, have been effective among current adopters (Load Research 
Report, 2017), and may have fewer customer acceptance barriers 
(Dütschke and Paetz, 2013), however, our results show they are detri-
mental for RE integration. Given these tradeoffs, California might 
additionally consider a policy adjusting residential TOU off-peak periods 
to include some daytime hours and to establish daytime commercial 
TOU rates to capture a greater share of RE. Some utilities are moving 
towards these rates to produce curtailment reductions that cannot be 
achieved with overnight charging (California Public Utilities Commis-
sion, 2017). Further work on impacts of these new TOU rates is needed 
and on market segmentation for PEV flexibility to account for customer 
heterogeneity in desired levels of user involvement, financial subsidy, 
and environmental benefit (Bailey and Axsen, 2015; Curtius et al., 2012; 
Axsen and Kurani, 2013). 

These estimates of VGI value are California-specific and will also 

depend on the evolution of the generation mix (such as higher RE 
levels), curtailment-reduction policies (such as better coordination with 
neighboring areas), distributed energy resources (such as other “smart” 
loads), and flexible supply-side resources (such as stationary battery 
storage). However, the relative value of managed compared to unman-
aged PEVs is applicable to other systems considering both high PEV and 
RE deployment. We conclude that regions with dual transportation 
electrification and grid decarbonization policies can benefit from hybrid 
smart charging and TOU strategies to avoid grid operating costs, RE 
curtailment, and capacity expansion. 
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Appendix A. Sensitivity analysis of added workplace charging infrastructure 

We assess the opportunity for expanding workplace chargers to increase the supply of load shifting flexibility of PEV charging. We do this by 
simulating BEAM in the San Francisco Bay Area with two workplace charger sensitivities on our base scenario of charging infrastructure (Table 1). The 
first sensitivity introduces 14,700 additional Level 2 chargers, sited at drivers’ workplace locations in the San Francisco Bay Area model. The chargers 
are sited in proportion to the spatial density of these existing workplace locations. This 4X sensitivity results in four times more Level 2 workplace 
chargers than in the base scenario. An additional 8X sensitivity is created using the same technique but with 34,300 new chargers, resulting in eight 
times more Level 2 workplace chargers than in the base scenario. 

We then process the charging sessions and analyze the change in charging flexibility from the base scenario (Figure A.1). As in Fig. 4 of the main 
text, these charging sessions represent a typical weekday in the San Francisco Bay Area and are not shown scaled to California 2025 levels. We find that 
dramatic increases in workplace charging infrastructure increases the charging load in the workplace sector, but not proportionally with the number of 
added chargers. The morning peak workplace charging load only increases by 63% and by 99% for the 4X and 8X sensitivities, respectively. For short 
duration flexibility (0–2 h), the peak morning workplace load increases by 57% from the base to the 8X sensitivity. For longer period flexibility, the 
peak morning load only increases by 123% with the 8X sensitivity. 

With both workplace charging sensitivities, overall, residential charging still dominates the load profile and the opportunity for charging flexi-
bility. Even in the 8X sensitivity, there is still eight times more energy demanded at home than at the workplace, and a much higher fraction of this load 
is of long-duration flexibility. These sensitivities support a focus on residential smart charging, because of the relatively small marginal increase in 
daytime load and flexibility from added workplace chargers. 
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Figure A.1. Weekday charging session flexibility duration and energy demanded, by location and hour for three workplace infrastructure sensitivities. 
The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California, 2025 levels), the energy demanded by location 
and the hours of flexibility to shift load within charging sessions (based on the time between active charging and unplugging). Each row of panels represents a 
different workplace charging infrastructure sensitivity where progressively more workplace chargers are sited. A. Base case with original number of chargers 
assumed in the analysis. B. 4X sensitivity with four times number of workplace chargers as base case. C. 8X sensitivity with eight times the number of workplace 
chargers as base case. 

Appendix B. Sensitivity analyses of vehicle range and fast charging infrastructure 

The PEV market is quickly evolving and battery capacities in new vehicle models are already much larger than the 2016 fleet (CVRP Rebate 
Statistics, 2016). While we assume in our baseline analysis that by our 2025 study year every vehicle will have 1.5X larger battery capacity than a 2016 
vehicle, even this assumption may be an underestimate. In addition to battery capacity, DC Fast charger technology is also advancing, with chargers 
rated as high as 350 kW entering the market (Evarts). Furthermore, with increased availability of DC Fast chargers in general (Fehrenbacher, 2018), 
PEV driver behavior in the future may differ from our assumed behavioral patterns which were based on 2016 utilization of DC Fast chargers in the San 
Francisco Bay Area. In these sensitivity analyses, we deduce how our flexibility results may potentially change by post-processing the charging sessions 
from our BEAM baseline scenario (Table 1, Fig. 4) to mimic higher range and faster charging futures. 

In Figure B.1 we disaggregate the flexibility result in the baseline BEAM scenario for the San Francisco Bay Area by low- and high-range vehicles 
using the medians of 126 miles for BEVs and 31 miles for PHEVs, respectively, as the dividing points. We observe subtle differences between low- and 
high-range vehicles in the time of day and the relative duration of load shift capacity. With BEVs, the low-range vehicles have slightly more of the 
longest duration flexibility (12 þ hours), while the high-range vehicles have more 8 to 10-h duration flexibility. For PHEVs, the low-range vehicles 
provide more flexibility during the morning hours compared to the high-range PHEVs. Consequently, we deduce that increased numbers of high-range 
PEVs may result in marginally lower cost savings and curtailment reductions, but not a significant overall change from our baseline results. 

In Figure B.2 we present the same flexibility analysis for the San Francisco Bay Area but for several scenarios that vary the amount and rate of DC 
Fast charging that occurs in the simulation. We replace a share of slow charging (Level 2) sessions in the baseline scenario BEAM output with a 
representative DC Fast charging session that occurs at approximately the same time and delivers approximately the same amount of energy, but at a 
higher rate. In these sensitivities, we increase the number of fast charging sessions by a factor of 20, to 6% of all sessions from 0.3% of all sessions 
originally in the baseline scenario. We also increase the rate of DC Fast charging across the scenarios from 50 kW to 350 kW. We find that including 
more public DC Fast chargers moves some charging away from home and to the morning (between 6am and 12pm). The added DC Fast chargers also 
decrease the flexibility in those hours; the overall amount of temporal flexibility (the number of hours into which load can be shifted) decreases by 3% 
between the baseline and the DC Fast sensitivities. This implies that if DC Fast chargers comprised a greater share of infrastructure, there may be 
slightly lower curtailment reductions (and cost savings) that could be achieved by smart charging in the morning hours than indicated by our baseline 
results. However, even with a 20-fold increase in DC Fast chargers, we expect this decrease to be relatively small and overall the bulk of load flexibility 
to still occur at home with slow chargers in the evening. Our sensitivities also show no difference in flexibility between the three fast charger rates, 
because in all cases we have assumed that PEVs unplug immediately at the end of active charging during fast charging sessions. Overall, we expect that 
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across increasing rates of DC Fast chargers the shape of the charging load would be different, and a greater installation of faster chargers might allow 
for more utilization over slow charging, but that the impact of charging rate on total load flexibility (and therefore costs and curtailment) would be 
marginal.

Figure B.1. Weekday charging session flexibility duration and energy demanded, by BEV and PHEV, by high-range and low-range battery sizes. 
The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California, 2025 levels), the percent of maximum energy 
demanded and the hours of flexibility to shift load within charging sessions (based on the time between active charging and unplugging) by high- and low-range 
battery sizes. Each row of panels represents a vehicle type, either BEV or PHEV. A. High- and Low-Range PHEVs, split by the median 31-mile PHEV range in the 
baseline analysis. B. High- and Low-Range BEVs, split by the median 126-mile BEV range in the baseline analysis.  
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Figure B.2. Weekday charging session flexibility duration and energy demanded in Base case (0.3% DC Fast charging sessions) and sensitivities (6% DC 
Fast charging sessions) with 50 kW–350 kW DC Fast chargers. 
The panels show for a typical weekday in the San Francisco Bay Area BEAM simulation (before scaling to California, 2025 levels), the energy demanded and the hours 
of flexibility to shift load within charging sessions (based on the time between active charging and unplugging). Each plot represents a different percent of charging 
sessions by DC Fast chargers, and a particular rate of DC Fast chargers. A. Base case with 0.3% of charging sessions at DC Fast chargers, at 50 kW. B. Sensitivity with 
6% of charging sessions at DC Fast chargers, at 50 kW. C. Sensitivity with 6% of charging sessions at DC Fast chargers, at 100 kW. D. Sensitivity with 6% of charging 
sessions at DC Fast chargers, at 350 kW. 

Appendix C. PLEXOS Unit Commitment and Economic Dispatch Optimization 

In this analysis we use the unit commitment and economic dispatch model PLEXOS, a commercial optimization software created by Energy 
Exemplar. This Appendix presents the main characteristics and high-level model outline of the optimization used in this analysis, and not a 
comprehensive mathematical model. More detail on the mathematical model is available in PLEXOS documentation from Energy Exemplar (PLEXOS). 
Additionally, (Foley et al., 2013; Calnan et al., 2013; Gopal et al., 2015; Wagner and Reedman, 2010) provide examples of other studies which have 
used PLEXOS for similar types of analyses. 

PLEXOS constructs the objective function and constraints based on parameters provided in the input database. The specific PLEXOS database we 
use in this analysis for the WECC region (containing generator, load, network data, and constraints) was obtained from and originally created by the 
California Independent System Operator (CAISO) for state grid planning processes, and more information on the database is described in regulatory 
documents (Liu, 2014; Liu, 2016; ISO Transmission Plan, 2016; Picker, 2016) and prior studies using variants of the same database (Nelson and 
Wisland, 2015; Eichman et al., 2015; Jorgenson et al., 2014; Fioravanti et al., 2013). 

The objective function for each day of the optimization in our WECC-wide analysis can broadly be simplified to: 

min
X

i;t
GenerationCosti;t þ

X

t
TransmissionCharget þ

X

j;t
VoLLj*UnservedEnergyj;t �

X

j;t
PriceofDumpEnergyj*DumpEnergyj;t (C.1) 

Subject to several types of operational constraints, which are described further below. 
The objective function has several main components defined as follows, where: 

i indexes each of the generators, which are in specific utility zones (j) within the WECC region and could be thermal (natural gas, coal, nuclear, 
other) or renewable. There are several thousand generators included in WECC. 
t indexes each hour in the optimization. The optimization is conducted for hourly intervals, at daily timesteps, 1 month at a time for a complete 
year. 
j indexes each utility zone in the optimization. This analysis has 25 total zones in WECC, including eight in California. 
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GenerationCosti;t is the operating cost of generator i at hour t, including the fuel costs (FCi;t), operations and maintenance costs (O&Mi;t), start/ 
shutdown costs of thermal units (SCi;tÞ and the emissions costs of fossil units (ECi;tÞ. 

GenerationCosti;t ¼FCi;t þ O&Mi;t þ SCi;t þ ECi;t (C.2) 

Each component of GenerationCosti;t is defined as follows: 

FCi;t ¼FuelPricei � HeatValuei � HeatRatei � Generationi;t (C.3)   

FCi;t is the fuel cost (applicable only for natural gas, coal, nuclear, and biomass generators). 
FuelPricei and HeatValuei are the price and heating value of the fuel used by generator i. 
HeatRatei is the rate of electricity output given a unit of fuel input, and could be modeled as a function (linear or non-linear) depending on the 
generation level. 
Generationi;t is the instantaneous electricity production from generator i in hour t. It is one of the main decision variables of the optimization. 

O&Mi;t ¼Generationi;t* VO&Mi (C.4)   

O&Mi;t is the cost for operations and maintenance for each generator, based on its variable VO&Mi cost per unit of Generationi;t. 

SCi;t ¼ StartCosti � UnitsStartedi;t þ ShutdownCosti � UnitsShutdowni;t (C.5)  

SCi;t is the cost to start and shutdown a generator and is typically applicable only for thermal generators depending on the number of UnitsStartedi;t or 
UnitsShutdowni;t during the period, which are integer decision values that are part of the unit commitment decision. 

ECi;t ¼EmissionsPrice � EmissionsRatei � Generationi;t (C.6)  

ECi;t is the emissions cost for CO2 emissions based on each fossil plant’s EmissionsRatei per MWh times its Generationi;t and the exogenously set 
EmissionsPrice per unit of CO2. The emissions cost is applied in this way directly to fossil generators within California, and added to the transmission 
WheelingChargejk with an assumed EmissionsRate to out-of-state generators which produce “unspecified” imports (not dedicated fossil or RE imports 
from a known origin). 

TransmissionCharget ¼
X

j;k
WheelingChargejk � LineFlowjk;t (C.7)  

TransmissionCharget reflects a Transmission Access Charge (Liu, 2014) for net hourly flow on the transmission paths between each zone j and all the 
connected utility zones k, based on the WheelingChargejk per MWh for each set of connected zones j and k and the hourly LineFlowjk;t decision variables 
in the reference flow direction. 

VoLLj*UnservedEnergyj;t is the cost of load shedding. The VoLLj sets a maximum price in each zone above which there is UnservedEnergyj;t . If there is 
not enough generation to meet load, the electricity market price will reach the VoLL: PriceofDumpEnergyj is a price below which generators shutoff 
rather than DumpEnergyj;t or over-generate. If generation exceeds load, the electricity market price reaches the PriceofDumpEnergy, which is typically 
negative. 
Generator unit commitment and dispatch is subject to the following selected constraints: 

For each utility zone j there is an energy balance constraint such that total generation of all generators within the zone j (minus any over-generation 
DumpEnergyj;t) plus total power Inflowsj;t from connected zones minus total power Outflowsj;t to connected zones must match the Loadt in zone j, which 
is the total electricity demanded in hour t (minus any under-generation UnservedEnergyj;t): 
X

i
Generationi;t � DumpEnergyj;t þ Inflowsj;t � Outflowsj;t ¼ Loadt � UnservedEnergyj;t (C.8)  

where: 

Outflowsj;t ¼
X

k
LineFlowjk;t (C.9)  

Inflowsj;t ¼
X

k
LineFlowkj;t (C.10) 

jk indicates power flow from zone j to zone k, and kj indicates power flowing from zone k to zone. j:
Selected generator constraints: 

Instantaneous energy from any generator must be less than or equal to its max capacity: 

MaxCapacityi � Generationi;t (C.11) 
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All thermal generators must abide by their ramping constraints: 

jGenerationi;t � Generationi;t� 1j � RampRatei (C.12) 

Hydropower generators have monthly energy budgets (based on the amount of water they can allocate that month) as well as minimum and 
maximum flows. PLEXOS first optimizes for the monthly budget through a monthly scheduling process. There are also particular constraints for other 
generator types or demand-side resources that are not described here, such as pumped storage, battery storage, and demand response. RE generation is 
included as a “fixed dispatch” with a VO&Mi set to -$150/MWh such that generation is curtailed when the market price reaches that level. The method 
for modeling PEVs and their constraints are described in Section 2.3.2. 

Overall, the optimization is a mixed integer program including a unit commitment decision (1 or 0 whether a generator is on or off) and an 
economic dispatch decision (how much a generator generates). The following are the main unit commitment related constraints: 

UnitOni;t ¼UnitOni;t� 1 þ UnitStartedi;t � UnitShutdowni;t (C.13) 

There are also constraints specific to the unit commitment problem for minimum stable levels, minimum up time, and minimum down time: 

Generationi;t �UnitOni;t*MinStableLeveli (C.14)  

when a generator is committed (UnitOni;t ¼ 1), it must operate at or above its MinStableLeveli. 

MinUpTimei is the minimum number of hours a generator unit must be on if committed (primarily applies to thermal generators). 
MinDownTimei is the minimum number of hours a generator unit must be off if shut down (primarily applies to thermal generators). 

Selected transmission and reserves constraints: 

The optimization solves a linearized DC power flow which follows Kirchhoff’s Laws, and flows between utility zones j and k must not exceed 
LineLimitsjk and LineLimitskj. 

For California there are some additional import and export constraints that are included in this analysis, per CAISO’s assumptions (Picker, 2016; 
Liu, 2014). For example, for the set of utility zones j which are part of the CAISO region (PG&E Valley, PG&E Bay, SCE, SDG&E), there is a 2000 MW 
limit on its total hourly total net exports: 
X

j
Outflowsj;t �

X

j
Inflowsj;t � 2000 8 j 2 fPG&E Valley; PG&E Bay; SCE; SDG&Eg (C.15) 

There are also hourly reserve requirements (load-following, regulation, spinning, and non-spinning) as estimated by CAISO that must be met for 
utility zones throughout the WECC. Constraints specify that certain generator types can provision different types of reserves, and the provision of 
reserves is determined as part of a co-optimization with the unit commitment and dispatch of generators to provide energy. 
Solution algorithm: 

We set the Mixed Integer Program (MIP) gap, the percentage difference between the best integer solution and the best bound (through the Branch 
and Bound algorithm) to be 0.01%, and set the optimization to stop solving for each day’s optimum when it reaches this MIP gap or a time limit of 
4000 s. 

Appendix D. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enpol.2019.111051. 
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