UC San Diego SIO Reference

Title

Visual contrast thresholds for large targets. Part II, The case of high adapting luminances

Permalink https://escholarship.org/uc/item/14v5m49s

Author Taylor, John H

Publication Date

1960-06-01

Visibility Laboratory University of California Scripps Institution of Oceanography San Diego 52, California

VISUAL CONTRAST THRESHOLDS FOR LARGE TARGETS

Part II: The case of high adapting luminances

John H. Taylor

June 1960 Index Number NS 714-100

Bureau of Ships Contract NObs-72092

SIO REFERENCE 60-31

Project S FOOl 05 01

Approved:

Seibert Q. Duntley, Director C Visibility Laboratory

Approved for Distribution:

Roger Revelle, Director Scripps Institution of Oceanography

Summary

Systematic data relating target size to the contrast necessary for detection at various levels of adapting luminance have heretofore been limited to 6° and lower. In many practical situations, however, larger target subtenses are involved, and the solution of visibility problems by established nomographic means has been impossible owing to lack of input visual performance data for large targets. The hypothesis has been advanced that the limiting target situation might reasonably be equivalent to the instance in which the entire visual field is divided, as it becomes fatuous to speak of targets larger than can be accommodated in the binocular visual field.

An experiment was performed which yielded data for both the upper limiting circular target size of the previously used data of the Tiffany research (6°) and for a "split field" in which the target comprised a luminance increment on one half of the visual field. Six levels of background luminance were studied; those for which the classical data had not reached a terminal value of contrast.

The curves of Blackwell (2) have been provisionally extrapolated to limiting contrast asymptotes on the basis of the experimental results obtained by the Visibility Laboratory.

- i -

VISUAL CONTRAST THRESHOLDS FOR LARGE TARGETS

Part II: The case of high adapting luminances

John H. Taylor

Scripps Institution of Oceanography, University of California La Jolla, California

Introduction

Part I of the present report described an experiment designed to extend the useful range of visual performance data regarding contrast threshold to very large target sizes, and presented graphical interpolations which enable the estimation of thresholds for any large target of interest up to a limiting, asymptotic value which cannot physiologically be exceeded owing to the structure of the human visual apparatus. (1) The data presented were suitable for the direct extension of the published curves of Blackwell (2), and Figure 1, however, only at scotopic levels of adapting luminance $(10^{-4} \text{ and } 10^{-5} \text{ foot-lamberts})$. At higher background levels $(10^{-3} \text{ up to } 10^{\circ} \text{ foot-lamberts})$, the data for 6° uniform circular targets of positive contrast showed a consistent departure from the Blackwell values for threshold contrast, being higher in all cases. These differences were tentatively ascribed to the fact that our experiment was conducted using a uniform target duration of six seconds, while the Blackwell data are for presentation times which were variable and reached, in some cases, more than 30 seconds. The obtained discrepancies

Contrast thresholds for uniform circular targets as a function of size, for various background luminances (foot-lamberts). Redrawn from Blackwell (2).

suggest that there may be duration effects which are operative with increasing times far longer than the classical duration function data would indicate. Since, however, complete systematic data did not exist which would enable the rigorous conversion of one set of data into terms of the other, it was necessary to devise an expedient set of rules and procedures for making the best possible estimates of the extrapolated, large-target sections of the curves of photopic contrast sensitivity.

This report will present data obtained using target durations of six seconds, and will describe the method used in extending the photopic threshold curves obtained at the Tiffany Foundation to their presumed limiting asymptotes. It is assumed that the reader is familiar with Part I of the report, as the experimental procedures were identical for all adapting luminances and will not be reiterated here, except as certain details were specific to the photopic adaptation case.

Considerable guidance in the construction of the extended curves was gained by recourse to the original record of research of the Tiffany Foundation (3). These raw data, from which the published smoothed data of Blackwell were derived, were consulted in order to evaluate the statistical variability and procedural differences which might bear upon the establishment of rules for performing the extrapolations.

* Experiments now in progress at the Visibility Laboratory are directed toward quantifying these long-duration effects. First results indicate that the effect is not confined to the high background luminance case.

- 2 -

In this phase of the work very considerable and fundamental help was given by Mrs. Jacqueline I. Gordon and Miss Catharine Fean of the Visibility Laboratory staff.

Apparatus and Procedure

As has already been stated, the experimental arrangements and procedures already described in Part I of this report were essentially similar in the experiments using photopic adapting luminances. The same observers were used, and it should be mentioned that, while the data from the two scotopic levels were reported first, the six adapting luminances were actually presented in random order. For certain of the higher levels, the integrating box was operated by use of lamps within the cavity, rather than by the adjustable tubes described in the earlier report. Figure 2 shows the configuration of the viewing situation. No formal pre-adapting period was used, since it was considered that during the time required for visual photometry of the background screen (approximately 10 minutes) the observers had reached a stable adaptation state.

Experimental Results

The complete experimental results are presented in Table I, which includes data for all adapting luminances from 10^{-5} to 1 foot-lambert. As each threshold value is based upon 600 observations, the data of Table I represent 21,600 trials, excluding <u>Vexierversuche</u>. As before,

- 3 -

Observer - R.C.

Target	Bo	с _т	$\sigma_{\rm T}$	р	б	x ²	P(X ²)
•					······································		
Split Field	10 ⁻⁵	•0967	.0268	4.375	- 461	9 646	02- 05
		.0920	.0280	5,628	. 849	5 3 80	10- 30
		.0932	.0283	5.379	.706	305	•10-•30
•					• / 0 0	• 50 5	> .90
	10-4	.0552	.0272	5,584	.722	2,262	- 50 - 70
		.0495	.0262	5,442	- 682	6.640	.05-10
		.0575	.0268	4,904	.578	1.050	.70 - 90
	_						• • • • • • • •
	10 ⁻³	.0263	.0251	4,527	. 663	2 749	30 - 50
		.0202	.0233	6.270	.778	445	.0000
		.0251	.0263	4.782	. 524	- 440	70 - 90
		•••••		10.02	.024	• / 52	• 10 - 90
	10 ⁻²	.00967	.0277	4.396	498	5 317	10- 70
		.0117	.0252	4 442	462	5.017	.1030
		.00912	-0275	3,859	• • • • 2 500	0.020	.0305 [*]
				0.003	• 500	0.093	.0205
	10-1	.00934	0331	3 973	597	7 101	05 10
		.00795	0258	4 952	• 36 I EAE	1 707	.0510
		.00705	0281	4,304	•040	1.141	.5070
			.0201	4.169	. 400	2.149	.1030
	10 °	.00536	-0279	4 093	470	6 616	05 10
		-00468	-0258	4.908	• 405 570	7 172	.0510
		.00468	0718	4.050	• 339	3.132	.3050
•						+.010	•10-•90
-0	5						
6	10 10	.123	.0233	4.960	.461	5.050	.1030
		.153	.0245	4.547	.423	2.371	.5070
		.126	.0242	5.907	.742	1.802	• 50 - • 70
	-1						
	10-4	.0725	.0258	5.227	.605	7.073	.0510
		•0620	.0283	3.752	.391	2.796	.3050
		.0675	.0211	5.759	.526	5.155	.1030
	- *						•
	10-3	.0295	.0276	4.018	.431	8.493	.0205
		.0309	.0267	3.535	.321	2.396	. 50 70
		.0324	.0262	4.082	.389	.255	>.90
	-2						••••
	10-2	.0245	.0290 /	4.058	.438	.201	>.90
		.0282	•0277 ·	5.079	.684	.764	.7090
		.0229	.0242	4.320	.388	2.242	. 50 70
	1						
	10-1	.0114	.00921	13.262	· 1.234	6.978	.0510
		.0138	.0106	14.115	1.539	1.950	.50 70
		.0129	.00983	13.287	1.364	.056	> .90
	100	.00852	.0217	6.320	.656	1.973	. 50 70
		•00 902	.0259	3.937	.355	2.601	.30 50
		00990	0250	4 993			

 $*_{P}(x^2)$ <.05 is questionable

-4-

.

7

ł

1

TABLE I, continued

•

.

Observer - J.F.

Target	Bo	° _T	$\sigma_{\rm T}$	Ъ	ፍ	x ²	P(X ²)	
Split Fight	1 5							
opile Field	10 0	•0902	.0216	6,182	641	0.7.7		
		.105	.0258	5, 521	•041	.233	> .90	
		.100	.0199	6.529	.101	.969	.7090	
	-4				.013	3.635	• 30 - • 50	
	10 📲	.0479	.0261	5.074	640			
•		.0484	.0220	5,885	.049	6.210	.1030	
		•0490	.0228	5 082	.035	4.527	.1030	
	-			0.002	•476	.258	. > .90	
	10-3	.0215	.0227	6 612	~ ~ ~			
		.0195	.0269	6 214	.912	4.533	.1030	
		.0164	.0215	0.214	.941	.374	>.90	
	-			0.040	• 609	1.122	•70 - •90	
	10-2	.00980	.0289	4 750				
		.00750	.0365	4.000	.525	3.510	.3050	
		.00795	.0307	3.018	• • 399	3.433	.3050	
	_		.0007	3.975	.562	4.533	.1030	
	10-1	.00322	0535	0 664				
		.00730	0254	2.554	.612	4.425	.1030	
		.00670	0254	4.472	.477	.438	>.90	
			.0555	3.004	•38 3	1.783	.5070	
	100	.00394	0257				••••	
		.00338	.0233	5.026	•604	2.447	.30 50	
		.00346	.0230	5.010	.520	.280	> .90	
`		100040	.0229	5.735	.690	4.370	.1030	
· 6•	10-5	.110	.026 2	3.866				
		.126	.0249	5.006	.3/3	3.030	• 30 - • 50	
		.124	.0290	4.055	• 563	.630	• 70 - • 90	
	-4			4.000	• 426	11.866	.00101*	
	10 -4	•0540	.0230	5 510	5.0.0	_		
		.0530	.0246	A 994	• 566	1.180	•7090	
		.0501	.0261	5 662	.506	•650	.7090	
	~			0.002	• 488	3.746	.1030	
	10-3	.0224	.0213	5 664				
		.0244	.0213	5 004	•645	.456	>.90	
		.263	.0242	0.084	•467	1.255	.7090	
	-			7+661	•386	1.213	.7090	•
	10-2	.0182	.0209	6 405				
		.0229	.0222 /	6 474	.669	.570	>.90	
		.0216	.0256	7 607	.720	1.460	. 50 70	
				3.697	.338	3.844	.1030	
	10 ⁻¹	.0104	.00917	17 000	•			
		.0119	.00890	10.225	1.370	3.081	.3050	
		.0117	.00090	14.263	1.339	3.010	.30 50	
			.00330	12.571	1.339	.0525	> .90	
	10 °	.00708	0340			-		
		.00860	0220	3.945	.706	4.971	.1030	
		.00776	0247	5.587	.558	2.891	.30 50	
			10620	4.905	.478	5.950	10- 10	

 $P(X^2)$ <.05 is questionable

Survey Change

ŝ

ł

TABLE I, continued

Observer - R.P.

Target	Bo	с _т	$\sigma_{\tilde{t}}$	Ъ	ፍ	x ²	P(X ²)
	· • - 5						
Split Field	10 0	.0850	.0174	9.039	.914	.495	> .90
		.0823	.0199	7.749	.972	.767	.7090
		.0890	.0185	8.380	.871	.246	>.90
	10-4	.0485	.0195	8.537	1.040	.137	>.90
		.0514	.0238	5.551	.648	5.480	.1030
		.0500	.0231	4.997	.447	2.766	.3050
	10-3	.0209	.0192	7.580	. 780	1 093	70 - 90
		.0181	.0195	8,154	1.041	712	70- 00
		.0204	0203	6 710	738	1 720	50 - 70
	-	.0204	.0200	5./10	• / 50	1.720	. 50 70
	10 - 2	.00725	.0189	6.336	.675	5.602	.1030
		.00860	.0216	5.736	.595	1.804	.5070
		.00758	.0284	5.433	1.024	4.819	.1030
	10-1	.00560	.0209	5,211	. 461	1 800	50 - 70
	10	.00610	0242	4 013	347	2 969	30- 50
		.00670	.0295	4 798	654	2.505	.3030
			.0250	4.750	.004	• * * * 2	.7090
•	10°.	.00396	.0249	5.288	.637	7.210	.0510
		.00282	.0240	5.466	.823	7.430	.0510
		.00310	.0308	4.018	.526	14.218	.00101*
	_						
6 °	10 ⁻⁵	.130	.0194	6.777	.679	1.294	.7090
		.120	.0199	6.573	.0636	2.166	.5070
		. 100	.0188	6.787	.680	1.755	.5070
	10-4	.0570	0201	5 992	500	7 084	70 - 60
	10	.0639	0175	6 228	.500	4 709	.3030
		.0624	.0189	6.592	.573	.455	.1030
	- 3						
	10-5	.0306	.0215	5.077	.413	4.365	.1030
		.0288	.0209	5.639	.496	6.024	.1030
		.0325	.0202	6.202	.540	.404	>.90
	10-2	.0204	.0200	6,217	846	400	> 00
	~~	.0228	.0183	8,248	850	• 1 3 U	× .90
		.0204	.0133	9.922	.881	6.900	.90 .0510
	1			_			
	10-1	.00891	.00915	14.123	1.339	14.387	.00101*
			.00803	14.632	1.413	11.572	.00101*
		.00923	.00791	14.935	1.371	10.084	.0102*
	10°	00676	.0186	6.555	. 565	. 601	70 - 90
	10°	00676 .00760	.0186	6.555 6.918	.565	.601	.7090

* $P(X^2)$ <.05 is questionable

the following quantities appear in the columns of the table:

 C_T - the value of threshold contrast O_T - the standard error of the threshold b - the slope of the psychophysical function O_D - the standard error of the slope x^2 - the value of Chi-square $p(x^2)$ - the Chi-square probability for 3 degrees of freedom

Comparison of the values obtained for the 6° circular target with the Tiffany data show our thresholds to be significantly higher at all but the two lowest background luminances (10^{-5} and 10^{-4} foot-lamberts). These differences are shown graphically in Figure 3, wherein are plotted threshold contrast estimates from the Visibility Laboratory against the smoothed data from the Tiffany study. Departure from the straight line of unit slope appears to commence at some background luminance between 10^{-4} and 10^{-3} foot-lamberts, although the data points at increased luminances are too sparse to define the relationship except in rough terms.

The threshold differences mentioned above obviously preclude the direct and easy use of the present data for extension of the Tiffany curves. The experimental differences between the two studies were outlined in Part I of this report, and it is to one or another of these dissimilarities that the obtained result may be ascribed. Perhaps the most reasonable assumption is that the differences in target duration are responsible. In the Blackwell experiments, the observers were

- 7 -

SIO Ref. 60-31

Threshold Contrast ($\Delta t = 6$ seconds)

Figure 3

Comparison of threshold contrasts for "infinite" target duration with those for six-second duration. Former data taken from smoothed curves of Blackwell (Tiffany Foundation). 1

i:

first tested to discover that presentation time which, when doubled would not yield a lower value of threshold contrast. This was considered the equivalent or "infinite time" and was used for the subsequent collection of data. In the present experiments, however, a uniform target duration of six seconds was used throughout. Another salient difference concerned the use of a somewhat smaller adapting field in our study, owing to the impracticability of arranging the very extensive luminous surround required to duplicate the Tiffany conditions. While either or both of these experimental conditions may contribute to the obtained non-correspondency, the duration function seems to be the more likely cause. In any case, for the purpose of the present application -- the expedient use of the data in visibility problem solving -- it was necessary to estimate the probable curve shapes by appeal to a set of rules and assumptions and to defer the rigorous determination of the complete curves until time and facilities may permit collection of adequate data. The following sections will describe the procedures used in arriving at the curves finally adopted, and from which extended visibility nomographs have been prepared (4).

The Upper Limiting Value of Terminal Contrast

It is possible to set limits for the upper and lower values of contrast at which the Tiffany curves would become asymptotic with increasing target size by making certain assumptions. The upper limits were delineated in terms of the following two assumptions:

- 8 -

-

- (1) That the terminal contrast value must be equal to or lower than the contrast value for the 6° target, and
- (2) That the terminal contrast value must be equal to or lower than the Visibility Laboratory contrast value for split field.

The first assumption is, perhaps, trivial, and asserts that the curves for adaptation luminances below 10 foot-lamberts will exhibit the same monotonicity as the Tiffany curves for 10, 100 and 1000 foot-lamberts do. The second assumption implies that an increase in viewing time may lower the contrast threshold, but not raise it. The upper limiting value of contrast is set, accordingly, by the Tiffany 6° thresholds at background luminances 10° and 10^{-1} foot-lamberts, and by the Visibility Laboratory split field data at 10^{-2} and 10^{-3} foot-lamberts.

The Lower Limiting Value of Terminal Contrast

In setting the lower limits for terminal contrast, again two assumptions were made:

- (1) That the asymptotic contrast value for any given adaptation luminance must equal or exceed the value for any adaptation luminance greater than itself, and
- (2) That the change in contrast threshold between 6° and the asymptote must be equal to or less than the change found using target durations of six seconds.

The first assumption simply states that there will be no entrairup crossing of the curves before reaching a contrast asymptote, and is well supported by our results as well as by the Tiffany data for which an asymptote has been reached. The second assumption, which asserts that the magnitude of the differences between 6° and terminal target sizes is not constant with size but decreases as subtense increases, is based upon the first. If one considers data from the 10° foot-lambert background case, for example, it is clear that if the foregoing were not true, then the terminal contrast would be less than that for 10 foot-lamberts; a violation of the first assumption. The same situation holds at the 10° foot-lambert level also, and it is believed justifiable to assume that the remaining two levels will exhibit the same property.

Extrapolation of the Tiffany Smooth Data to a Terminal Contrast

Using the foregoing criteria for the establishment of upper and lower limits for the terminal contrast which might be expected to sot the contrast asymptote for each of the Blackwell curves, the final extrapolations were made. Table 2 presents a summary of the contrast values obtained with 6° targets at the Tiffany Foundation, the values determined experimentally here for 6° and split-field targets, and the upper and lower limits of terminal contrast adopted for the adaptation luminances for which there was need.

- 20 -

Adaptation	Tiffany	Smooth Data	Visibili	ity Lab Data	Li	mits
	60	Terminal	60	Terminal	Upper	Lower
10 ³	.00272	.00272			.00272	.00272
102	.00272	.00272			.00272	.00272
101	.00277	.00277			.00277	.00277
100	.00334		.00745	.00383	.00334	.00277
10 ⁻¹	.00534		.0119	.00577	.00534	.00277
10-2	.0110		.0221	.00883	.00883	.00439
10 ⁻³	.0303		.0373	.0218	.0218	.0176
10-4	.0624		.0622	.0509	.0510	.0510
10 ⁻⁵	.136		.132	.0895	.0923	.0923

Table II

Construction of the completed curves was undertaken on the basis of the foregoing considerations, and with the further assumption that both terminal contrast and the target size at which the asymptote was reached would be smooth functions of background luminance.

Certain secondary considerations influenced the plotting of some of the individual curves. For example, the curve at 10° foot-lamberts had so nearly reached its asymptote by the time the target had increased to 6° , that it was clear that the terminal contrast must lie very close to the upper limit shown in Table II. In the 10^{-3} foot-lambert case, no such convenient clue presented itself, and the problem of setting some value between the limits arose. It was found that the effect upon sighting range (which is nomographically related to target size in usual visibility problem-solving) in moving from one limit to the other amounted to approximately 15 per cent. Accordingly, the terminal contrast adopted was that midway between the limits, so that the range uncertainty amounts to only \pm 7.5 per cent.

The complete family of curves for all adaptation levels is shown in Figure 4. This Figure, it should be emphasized, is not sufficiently accurate as regards curve shape and threshold values to warrant its use for more than gross inspection. In this laboratory, very accurate data plots were made upon large logarithmic graph paper (10 inches per cycle) from which tabular presentation of the data could be made. The values read from these large-scale plots are given in Table III, which forms an extension of the tabulated data to be found in the record of the Tiffany research as published in a Summary Technical Report (5).

It is realized that the data generated in the above manner must be regarded as tentative until further experiments are performed to discover the methodological differences responsible for the apparent failure of the data to correspond at certain adaptation levels.

Extended curves of threshold contrast as a function of target size. For explanation see text.

SIO Ref. 60-31

.

.

TABLE III

Targe	<u>et</u>	Adaptation Luminance (foot-lamberts)										
(Min.	.)	1000	100	10	1	10-1	10-2	10-3	10-4	10 ⁻⁵		
360	(6°)	00272	00979	00077	00774							
370	(0)	.00212	.00272	.00277	.00334	.00534	.0110	.0302	.0621	.135		
380					.00334	.00533	•0109	.0300	.0615	.133		
390					•00333	.00532	•0108	.0297	.0610	• 131		
400					.00333	.00531	.0107	.0294	•0606	.130		
410					•00333	.00530	.0106	.0291	.0602	.128		
420	(79)				.00333	.00529	.0105	.0288	.0598	.127		
430	$\langle \gamma \rangle$.00333	.00528	.0105	.0286	.0594	.126		
400					.00333	.00527	.0104	.0284	.0591	.125		
450					.00333	.00526	.0103	.0282	.0588	.124		
460					•00333	.00525	.0103	.0280	.0586	.123		
400					.00333	.00524	.0102	.0278	.0583	.122		
490	(8 °)				•00333	.00523	.0102	.0276	.0580	.121		
400	(0)				•00333	.00522	.0101	.0274	.0578	.120		
490 500					.00333	.00521	.0101	.0272	.0575	.119		
500					.00332	.00520	.0100	.0270	.0573	.118		
510						.00520	.00995	.0269	.0571	.118		
520		,				.00519	.00990	.0268	.0569	.117		
530	(09)					.00519	.00985	.0266	.0567	.116		
540	(9)					.00518	.00980	.0264	.0565	.116		
550						.00518	.00975	.0263	.0564	.115		
500						.00517	•00970	.026 2	.0563	.114		
570						.00517	.00966	.0260	.0562	.114		
500		•				.00516	.00963	.0258	.0561	.113		
500	(109)					.00516	•00960	.0257	.0560	.113		
610	(10)					.00515	.00956	.0256	.0559	.112		
610						.00515	.00953	.0255	.0558	.112		
630						.00514	.00950	.0254	.0557	.111		
640			,			.00514	.00946	.0253	.0556	.111		
650						.00514	.00943	.0252	•0555	.110		
000	(1) %					.00514	.00940	.0251	.0554	.110		
670	(11)					.00513	.00936	.0250	.0553	.109		
690						.00513	.00933	.0249	.0552	.109		
600						.00513	.00930	.0248	.0551	.109		
700						.00512	.00926	.0247	.0550	.108		
710	-					.00512	.00923	.0246	.0549	.108		
720	(109)					.00512	.00920	.0245	.0548	.108		
160 730	(15.)					.00511	.00917	.0244	.0547	.107		
740						.00511	.00914	.0243	.0546	.107		
750						.00511	.00911	.0242	.0545	.107		
760						.00511	.00908	.0241	.0544	.107		
100						-00510	.00906	.0240	0543	106		

3

ł

TABLE III, continued

Targe	ot	Adaptation Luminance (foot-lamberts)											
Subte (Min.)	1000	100	10	1	10 -1	10-2	10 - 3	10-4	10 ⁻⁵			
770		.00272	.00272	.00277	.00332	.00510	.00904	.0240	.0542	.106			
780	(13°)					.00510	.00902	.0239	.0542	.106			
790						.00509	.00900	.0238	.0541	.105			
800						.00509	.00898	.0237	.0541	.105			
810				,		.00509	.00896	.0237	.0540	.105			
820						.00508	.00894	.0236	.0540	.104			
830						.00508	.00892	.0236	.0539	.104			
840	(14°)			,		.00508	.00890	.0235	.0539	.104			
850						.00507	.00888	.0234	.0538	.104			
860						.00507	.00886	.0233	.0538	.103			
870						.00507	.00884	.0233	.0537	.103			
880						.00506	.00882	.0232	.0537	.103			
890						.00506	.00880	.0231	.0536	.103			
900	(15°)					.00506	.00878	.0231	.0536	.102			
910						.00505	.00876	.0230	.0535	.102			
920						.00505	.00874	.0229	.0535	.102			
930						.00505	.00872	.0229	.0534	.102			
940						.00505	.00870	.0228	.0534	.102			
950	(0)			. •		.00504	.00868	.0228	.0533	.101			
960	(16°)					.00504	.00866	.0227	.0533	.101			
970						.00504	.00864	.0226	.0532	.101			
980			· •			.00504	.00863	.0226	.0532	.101			
990						.00503	.00862	.0226	.0531	.101			
1000						.00503	.00860	.0225	.0530	.101			
1050				•		.00502	.00854	.0222	.0529	.100			
1100						.00502	.00848	.0220	.0528	.0990			
1150	(00.8)					.00501	.00842	.0218	.0527	.0985			
1200	(20^{-1})					.00501	.00837	.0216	.0526	.0980			
1250						.00500	.00832	.0214	.0525	.0976			
1300						.00499	.00828	.0213	.0524	.0972			
1350						.00499	.00824	.0212	.0523	.0969			
1400						.00498	.00820	.0210	.0522	.0964			
1450	(0-9)				.'	.00498	.00817	.0209	.0521	.0961			
1500	(25)					.00497	.00814	.0208	.0520	.0958			
1550						.00497	.00812	.0207	.0519	.0954			
1600						.00496	.00810	.0206	.0518	.0951			
1000						.00496	.00808	.0205	.0517	.0949			
1750						.00496	.00806	.0204	.0517	.0947			
1000	(70 %)					.00495	.00804	.0203	.0516	.0946			
1050	(30)						.00802	.0203	.0516	.0944			
1000							.00800	.0202	.0515	.0942			
1900							.00799	.0201	.0515	.0941			

TABLE III, continued

Targe	t		Adaptation Luminance (foot-lamberts)								
(Min.)	1000	100	10	1	10-1	10-2	10-3	10-4	10 ⁻⁵	
1950 2000 2100 2200 2300 2400	(35°) (40°)	.00272	.00272	.00277	.00332	.00495	.00798 .00798 .00797 .00797 .00796	.0201 .0200 .0199 .0199 .0199	.0514 .0514 .0513 .0513 .0512	.0939 .0938 .0936 .0934 .0932	
2500 2600 2700	(45°)		`				.00795	.0198 .0198 .0198	.0512 .0511 .0510 .0510	.0930 .0928 .0926 .0924	
2800 2900 3000	(50°)					·		.0198 .0198 .0197	.0510 .0510 .0510	.0923 .0922 .0921	
3200 3300 3400	(55°)								.0509 .0509	.0920 .0919 .0918	
3500 3600 3700	(60°)										

A COLUMN TO A COLUMN

ł

Acknowledgement

The preparation of the extrapolated curves which are the primary concern of this report has been greatly assisted by the efforts of other members of the staff of the Visibility Laboratory. Grateful acknowledgement is made to Mrs. Jacqueline Gordon, Miss Catharine Fean, Dr. S.Q. Duntley, and Mr. James Harris for their help and suggestions. <u>Thanks are due also to Mr. Robert Colsky</u>, Mr. John Poster, and Mr. Robert Puich who have served as observers during the rather extensive period required for data collection. SIO Ref. 60-31

in Nati

.

i

References

- Taylor, J. H., <u>Visual Contrast Thresholds for Large Targets</u>, <u>Part I</u>, USN BuShips Contract NObs-72092, Index No. 714-100, SIO Reference 60-25, June 1960.
- Blackwell, H. R., <u>Contrast Thresholds of the Human Eye</u>, J. Opt.
 Soc. Am., <u>36</u>, 624-643, (1946).
- (3) Anon., <u>Visibility of Targets</u> (Record of Research), Vols. I V, The Louis Comfort Tiffany Foundation, NDRC Div. 16-250-M2, (March 1943 - September 1945).
- (4) Duntley, S. Q., <u>Improved Nomographs for Calculating Visibility</u> by <u>Swimmers</u>, (<u>Natural Light</u>), USN BuShips Contract NObs-72039, Task 5, Report No. 5-3, (February 1960).
- NDRC, <u>Summary Technical Report of Division 16</u>, Vol. 2, Washington, D. C., (1946).